
VOLUME 2. NUMBER 1

The High-Performance
NonStop TXP Processor

The ENCORE Stress Test Generator
for On-line Transaction Processing

Applications

The 6100 Communications
Subsystem: A New Architecture

The Relational Data Base
Management Solution

WINTER 1984

Volume 2, Number 1, Winter 1984

Editor
Carolyn Turnbull White
Associate Editors
Kent Madsen
Anita Yan Auken

Production Editor
Anita Van Auken

Technical Advisor
Geary Arceneaux

Design
Craig Frazier Design

Cover Art
Craig Frazier

The Tandem Journal is published
quarterly by Tandem Computers
Incorporated.

Purpose: The purpose of the Tandem
Journal is to bring to Tandem
users the perspectives of Tandem
software developers, engineers.
and support analysts on Tandem
software and hardware.

Subscriptions: The Tandem Journal
is offered with the Tandem Appli­
cation Monograph Series in one sub­
scription. The annual subscription
rate is $l00.00. Tandem bills the sub­
scriber. US. Orders-Send directly
to Tandem Computers Incorporated,
Sales Administration, 19333 Valko
Parkway, Cupertino, CA 95014.
Orders outside the US. -Give to
your local Tandem sales office or
distributor. All subscribers should
address subscription problems or
questions to their local Tandem ~ales
office or distributor.

Change of address: Send all changes
of address to Sales Administration
(address listed above).

Comments: We welcome comments
and suggestions about content
and format. Please send them to
Carolyn Turnbull White, Editor.
Tandem Journal, Tandem Computers
Incorporated, 1309 So. Mary Ave ..
Sunnyvale, CA 94087.

Copyright ©1982. 198] by Tandem
Computers Incorporated. All rights
reserved.

No part of this document may be
reproduced in any form. includ­
ing photocopying or translation to
another language, without the
prior written consent of Tandem
Computers Incorporated.

The following are trademarks of
Tandem Computers Incorporated:
ENABLE, ENCOMPASS, ENCORE,
ENFORM. ENSCRlBE, ENVOY,
EXCHANGE. GUARDIAN,
NonStop. NonStop 11, NonStop TXP.
PATHWAY.

T

2

6

18

26

A N D E M J 0 u R

The High-Performance
NonStop TXP Processor
Wendy Bartlett, Tom Houy, Don Meyer

N A L

The ENCORE Stress Test Generator
for On-line Transaction Processing
Applications
Stan Kosinski

The 6100 Communications
Subsystem: A New Architecture
Rich Smith

The Relational Data Base
Management Solution
Gary Ow

2

The High­
Performance
NonStop TXP
Processor

n 1976, Tandem introduced
the NonStop™ system, designed
to meet the need for a truly
fault-tolerant computing
resource. It was targeted at those
sensitive application areas

_____ in which computer down-time
cannot be tolerated.

As the years went by, Tandem users dis­
covered more and more applications that
could benefit from the unique capabilities of
the NonStop system. The applications grew
more complex, and the number of required
peripheral devices increased to the point
that the capacities of the original NonStop
system were strained. In response to this
problem, Tandem introduced the NonStop II™
system. Its 32-bit virtual addressing capa­
bility and other enhancements removed the
major limitations inherent in the original
design.

Many Tandem users are now contemplating
fault-tolerant computing on a very large scale.
Accordingly, their concerns, and Tandem's,
have shifted to cost/performance issues. With
larger application loads, there is a pressing
need to increase the number of transactions
per second that Tandem NonStop systems
can process. The NonStop TXP™ processor
was designed to meet this need.

The NonStop TXP system is an all-new, high­
performance processor designed to increase
the throughput of Tandem systems. Bench­
mark tests have shown that it can handle
more than twice as many transactions per
second as a NonStop II processor. NonStop
TXP processors currently function as the
new NonStop TXP system, and in June of 1984,

they will also be available to mix with
NonStop II processors in the same system,
running a single version of the GUARDIAN™
operating system. Strategic placement of the
new processors in such an environment can
significantly increase the throughput of the
system, while preserving the customer's
investment in NonStop II equipment.

Performance Enhancements

The performance offered by the NonStop TXP
processor is the result of many elements:

■ The design incorporates recent circuitry
advances, including: Programmable Array
Logic (PAL), Fairchild Advanced Shottky
Technology (FAST), and high-speed static
RAMs.

■ The micro-instruction cycle time is 83.3 ns,
as opposed to 100 ns on the NonStop II
processor.

• The micro-instruction itself is very wide
(124 bits versus 36 bits), which allows for
greater parallelism.

• The processor operates on 32 bits during
each cycle, using dual 16-bit data paths.

■ Macro-instruction pipelining has been
increased from two levels on the NonStop II
processor to three levels on the NonStop
TXP processor.

■ A hardware-based cache memory scheme
reduces effective memory access time from
400 ns to 116 ns.

• The 32-bit absolute extended addresses are
generated by hardware in a single cycle.

T A N D E M J O U R N A L WINTER 1984

The NonStop TXP processor has 64K bytes
of memory cache. Thus, a considerable
amount of information can be kept close to
the central processing unit (CPU), where it
is accessible in a fraction of the time that it
would take to access main memory. Imple­
mented with 16K fast static RAMs, the cache
uses direct mapping and has a data block
transfer size of 16 bytes. A "store through"
feature ensures that main memory always
holds a valid copy of all data. Cache memory
has a one-cycle (83.3 ns) READ access time
and a two-cycle WRITE time. Cache measure­
ments made during application benchmarks
show a better than 97% hit ratio. All cache
misses are handled in the firmware.

In the NonStop II processor, 16 memory
maps, containing up to 64 page-table entries
each, were kept in hardware registers. In
the NonStop TXP processor, these hardware
registers have been replaced with a 2048-
entry page-table cache, which provides fast
address resolution when a cache miss does
occur and physical memory must be accessed.

Physical Characteristics

The NonStop TXP processor is made up
of four circuit boards plus memory. (The
fourth board fits into an unused slot in the
NonStop II system cabinet.) The circuit
boards include:

■ The Instruction Processor (IP). The IP board
contains the main data path and arithmetic
logic unit (ALU); 64K bytes of memory cache;
and address translation hardware, includ-
ing a separate cache containing 2048 page­
table entries.

■ The Sequencer and Control Store (SQ). The
SQ board contains the microcode sequencer
circuitry and the control store RAM. Special
compaction techniques make it possible for
this board to accommodate 8K 124-bit
lines of microcode, stored as 8K 40-bit vertical
control store words and 4K 84-bit horizontal
control store words.

■ The Channel Control (CC). The CC board
contains the 1/0 channel interface, along with
the diagnostic data transceiver (DDT),
which provides an interface to the Operations
and Service Processor (OSP); the other

arithmetic logic unit; a 10-ms interrupt timer;
and 8K bytes of scratchpad registers for
the firmware's use.

■ The Memory Control (MC). The MC board
contains the interprocessor bus interface,
the interrupt logic, the system clock, and state
machines and logic used to access main
memory. The error-correction control (ECC)
logic also resides on this board. It uses
6 bits of control information stored with each
16-bit data word to detect and correct
single-bit errors and detect double-bit errors.

■ The Memory Module (MM). The MM board
for the NonStop TXP processor has been
designed with cache operations in mind. In
particular, it provides access to eight bytes
of memory at a time, allowing the firmware to
fill a 16-byte cache block by issuing two
pipelined quad-word READs. There are no lights
or switches on the board; memory address­
ing is now configured by the DDT processor.
Up to four 2-megabyte memory modules
can be placed in a NonStop TXP processor.

Software Compatibility

One of the major goals of the development
team was to mask all the differences between
the NonStop TXP and NonStop II processors
(except their speed) from as much of the soft­
ware as possible. The requirement that all
non-privileged software run without change on
both processors was met. There were a few
minor changes to 1/0 processes; the remainder
of the new code is confined to areas such
as interrupt handlers, processor loading, low­
level debugging, and offline diagnostics.

The system manager need only be aware
that two processor types exist. The manager
must provide the SYSGEN system configu­
ration program with both the NonStop TXP
instruction set microcode files and the
corresponding NonStop II files. Given both
sets of files, the type of each processor
in the system does not have to be specified
at the time of system generation. Instead,
the GUARDIAN operating system determines
each processor's type at load time and
then loads the appropriate instruction set micro­
code. This flexibility permits processor
swapping without system reconfiguration,
which is particularly useful in a development
or benchmark environment.

WINTER 1984 T A N D E M J O U R N A L 3

Figure 1

Terminals
(8 per CPU)

Primary
link,---

Three server
classes
(three
transaction
types)

Figure 1.

Configuration of hard­
ware and software used
in benchmark tests.

4

Mirrored discs (4)
housing a 1 a-megabyte

data base

CPUs (4)

A Performance Benchmark

Tandem conducted benchmark tests in which
the performance of a NonStop TXP system
was measured under carefully controlled con­
ditions and compared with the perform­
ance of a NonStop II system under identical
conditions. Both sets of tests were run on
four-processor systems with four mirrored
discs (see Figure 1). The PATHWAY™ appli­
cation used in the tests effectively simulated
a banking application with full teller func­
tionality. As shown in Figure 1, there were:

■ 4 PATHWAY Terminal Control Processes
(TCPs) running as process pairs, 1 primary
process in each CPU.

■ 32 terminals (8 per TCP).

■ 24 server processes (6 per CPU, belonging to
3 server classes).

■ A 10-megabyte, key-sequenced data base
file and an entry-sequenced log file.

The key-sequenced file, with a record size
of 667 bytes and a key size of 14 bytes,
was partitioned across three discs. The entry­
sequenced file, a log file with a record size
of 500 bytes, was on a fourth disc.

There were three types of transaction: an
inquiry transaction, an update transaction,
and another, referred to simply as the "big"
transaction. Each one had different 1/0
requirements. The inquiry transaction involved
one random data base READ. The update
transaction involved one random data base
UPDATE and one WRITE to the log file. The
big transaction involved one random data base
READ, two data base UPDATES, and one
WRITE to the log file. The workload consisted
of 75% update transactions, 15% inquiry
transactions, and 10% big transactions. The
average transaction consisted of:

■ One ACCEPT from the terminal.

■ One SEND to a server.

■ Two logical (Transaction Monitoring Facility,
or TMF) updates.

■ One message back to the terminal.

Each server class was made up of eight static
servers distributed evenly across the system.
For example, the server class handling update
transactions consisted of $UPDATED through
$UPDATE?, with $UPDATED and $UPDATE4
located in CPU 0, $UPDATE! and $UPDATES
located in CPU 1, and so on. To balance
the workload, the PATHWAY system was con­
figured in such a way that the primary links
between the four TCPs and a particular server
class were granted to one server per pro­
cessor. (The primary linked server is the first
server a particular TCP calls upon when it
needs service of the kind offered by that server
class. If the primary linked server is busy,
the TPC calls upon the next linked server, and
so on. Thus, the four primary linked servers
within a given class are always busier than the
other four, and placing one of them in each
CPU distributes the workload evenly.)

TMF was configured to cross-audit the
disc volumes with data base recovery on.

T A N D E M J O U R N A L WINTER 1984

The cross-auditing for the four discs, $DATA1
through $DATA4, was as follows:

The audit file Was located on
for this volume
$DATA1
$DATA2
$DATA3
$DATA4

this volume
$DATA2
$DATA1
$DATA4
$DATA3

The application system used 32 internal
terminal simulators to drive the transaction
throughput. The simulator "think time"
was varied to increase or decrease the number
of transactions per second flowing into
the system so that performance at various
loads could be measured.

One measure of performance in transaction
processing systems is the cost of an average
transaction in CPU cycles. Figure 2 shows the
measured levels of CPU utilization for the
NonStop II and NonStop TXP systems at
various transaction rates. In both systems, the
relationship between transaction rate and
CPU utilization is linear. From these results,
one can calculate the CPU cost per transaction
for the two systems. By this measure, the
performance of the NonStop TXP system is
2.2 times better than that of the NonStop II
system.

Another measure of performance in trans­
action processing systems is response time.
Figure 3 shows the measured response times
for the NonStop II and NonStop TXP sys­
tems at various transaction rates, and Figure 4
shows the measured response times at various
levels of CPU utilization. As shown in Figure 3,
if the response time is held constant at
two seconds, the measured performance in
transactions per second for the NonStop TXP
system is 2.8 times better than that of the
NonStop II system.

This benchmark gives an indication of the
performance improvements that result from
moving a specific application from a NonStop II
system to a NonStop TXP system of equal
size. Other benchmarks, run by Tandem and
by Tandem users, have shown varying trans­
action rate factors, ranging from 2.2 to approxi­
mately 3. The performance to be gained
from a NonStop TXP system is clearly appli­
cation-dependent; more comprehensive
information about the behavior of NonStop
TXP systems, and of mixed systems, will be
made available as performance testing proceeds.

Figure 2

7

~ 6
0 u
~ 5
u,
§ 4

g 3
u,
C

~ 2

Figure 3

0 20

o Nonstop 11 system
■ Nonstop TXP system

40 60 80 100

CPU utilization (%)

Figure 2.

Measured levels of CPU
utilization at various
transaction rates.

o Nonstop II system • Nonstop TXP system

~ 3
C
0 u
Q)

!!!, 2
Q)

E
:;:
Q)
u,
C
0
0.
u,

3 ~
C
0 u
Q)

2 !!!,
Q)

E
:;:
Q)
u,
C
0
0.
u,

Q) 0
a: 0 2

Transactions/second

3
0 Q)

01234567 a:

Transactions/second

Figure4

~ 3
C
0

~
!!!, 2
Q)

. .§
~ 1
C
0
0.
u,

& 0 0 20

o Nonstop 11 system
■ Nonstop TXP system

40 60 80 100

CPU utilization (%)

Wendy Bartlett is Manager of the Operating Systems Group in
Software Development. She developed a major portion of the
operating system for the Nonstop TXP system. She has been with
Tandem for over five years.

Tom Houy, coordinator of the Nonstop TXP System Support
Team, is Manager of Customer Application Support's Performance
Group. He has been with Tandem for three years. Before that,
he worked for another major mainframe vendor where he main­
tained operating systems and analyzed system performance.

Don Meyer is currently working in the United Kingdom. Since
joining Tandem in November 1981, he has also participated in pre­
sales activities and customer design reviews. Before coming to
Tandem, Don worked for a large Chicago bank, where he managed
a development team that installed a 15-node Tandem network.
His work at the bank included design, Tandem hardware sizing,
application implementation, and performance analysis.

Figure 3.

Measured response times
at various transaction
rates. Left: NonStop JI.
Right: NonStop TXP.

Figure 4.

Measured response times
at various levels of CPU
utilization.

WINTER 1984 T A N D E M J O U R N A L 5

6

The ENCORE
Stress Test Generator
For On-line
Transaction Processing
Applications

n-line transaction pro­
cessing is one of the most
rapidly expanding areas
of computer automa­
tion. As in everyday
business transactions, an
on-line transaction takes

place after one or more conversations,
called interactions, between a buyer (the
terminal operator) and a producer (the
on-line application program).

Computer interactions are more structured
than human ones and generally follow the
form shown in Figure 1. First, the application
prompts the operator with a data entry
screen (the prompt). After a pause for reflec­
tion, the operator enters data and presses
a function key. The application interprets the
function key, reads the data from the ter­
minal screen, and computes a response, which
is used to complete the prompt for the
next interaction.

Figure 1 also divides the time used to
complete an interaction into two pieces: think
time and system reply time. The think time
is the amount of time used by the terminal
operator to compose a query. The system
reply time is the amount of time consumed
by the system in returning a response.

Although operator think time is important,
it is the system reply time that ultimately
determines the success or failure of an on-line
application. Because productivity in on-line
transaction processing is intimately linked to
system reply times, excessive processing
delays are equated to increased costs to the

user. Inadequate performance can even
nullify the expected gain from automating a
company process.

Because performance is so important to
on-line transaction processing, specific
performance objectives, such as a certain num­
ber of transactions per hour and a response
time less than a certain number of seconds,
are typically made a part of application
design specifications. These performance
objectives are as important to successful
system implementation as the functional
objectives.

Verifying that the performance of the
application meets predetermined acceptability
criteria while processing expected work­
loads is called stress testing. Stress testing is
usually the last step in application develop­
ment cycles. Should performance deficiencies
be uncovered during this step, they can be
corrected before the system goes live. This
provides a measure of protection against
costly performance errors. A performance­
critical application that has not under-
gone a stress test is not fully tested.

Stress Testing Requirements

Stress testing consists of generating a workload
and applying it to a system while measuring
the system's performance. A workload is a
measured collection of work to be processed
by the system under test. For on-line trans­
action processing systems, generating a work­
load means to present transactions from the
terminal environment to the system under test.

T A N D E M J O U R N A L WINTER 1984

There are five major requirements for a
stress testing tool:

■ Accurate workload presentation. Presenting
an accurate workload means closely dupli­
cating the type and frequency of transactions
presented to the application during produc­
tion. Since the intent of a stress test is to verify
that the application will perform adequately
under live conditions, presenting a workload
that does not model the live situation clearly
results in an invalid test.

■ Controllability. Controllability provides the
tester with the ability to manipulate the
workload to reflect different environments.
Test variables might include the rate at
which interactions are presented to the sys­
tem, terminal start-up time, and number
of terminals.

■ Repeatability. Repeatability in a stress
testing tool means the ability to accurately
repeat a workload. This allows the tester
to vary performance parameters in the appli­
cation or reconfigure the hardware while
holding the workload constant. In other words,
parameters can be changed and an iden-
tical workload can be presented to the system
to determine the effect of the changes.

■ Low cost. The cost of running a stress test
should not outweigh the cost of trial-and­
error tuning on a live system. Testing costs
are measured in terms of the personnel
and hardware required to conduct the test.
Expensive techniques often discourage
testing in all but the most critical applications.

■ High performance. To accommodate the
demands of high-throughput applications, a
suitable stress testing tool must be capable
of high performance in terms of the number
of interactions presented to the system per
unit of time.

Stress Testing Techniques

Until recently, two major techniques were
used to conduct stress tests: the live-operators
technique and the remote terminal emulation
technique.

The live-operators approach, illustrated
in Figure 2, uses the live system's full set of

Figure 1

Figure 2

Activity

Function key
transm1ss1on

Data flow

User System ---
(Null)

(Null)

(Null)

Time period

•
System reply
time

I Think
time

System reply
time

System under test

hardware, including data communications
lines and terminals. Operators at terminals
connected to the system exercise the system
by following prearranged scripts. This solu­
tion presents an accurate workload to the
system, but suffers from several serious draw­
backs: the high cost of hardware and per­
sonnel, the lack of control over parameters
affecting the workload, and the lack of
repeatability.

Figure 1.

Components of an
interaction.

Figure 2.

The live-operators
technique.

WINTER 1984 T A N D E M J O U R N A L 7

Figure 3

Driver system

Figure 3.

The remote terminal
emulation technique.

Figure 4.

The ENCORE stress test
generator solution.

8

Figure 4

System under test

System under test

Remote terminal emulation is similar to the
live-operators technique in that it uses most
of the same hardware, but it employs one or
more external computer systems to emulate
the function of terminals and their operators.
The driver that replaces the terminals and
operators is called a remote terminal emulator
(RTE). This technique is illustrated in Figure 3.

With the RTE approach, an accurate
workload can be presented to the application,
and repeatability and controllability can
be provided through the automated driver. On
the other hand, a major disadvantage of
the RTE approach is its cost. Not only is there
a high cost associated with procuring and
installing all the communications cables and
equipment, as there is in the live-operators
technique, but at least one more external com­
puter system is required as well. Modem
communications terminals have evolved func­
tionally to the point that many have several
microprocessors to perform the work. Emulat­
ing them is very costly in terms of central
processor consumption. These costly hardware
requirements severely limit the usefulness
of RTES.

Recent research has demonstrated the
viability of a third technique in which the
stress test driver is located in the system
under test (see Figure 4). The Tandem ENCORE™

stress test generator for PATHWAY applica­
tions uses this technique, replacing the func­
tion of the line handlers that are present
under live conditions. By replacing the line
handlers, ENCORE can take advantage of
the system resources thus freed. Also, since
ENCORE does not emulate the low-level
functions of terminals, it provides high per­
formance. In short, ENCORE presents an
accurate, controllable, and repeatable work­
load while providing high performance at
a low cost.

The ENCORE stress test generator consists
of three components: CAPTURE, a mechanism
to create workload scripts; EDITOR, a utility
to edit workload scripts; and REPLAY, the work­
load generator. The rest of this article dis­
cusses some of the features of ENCORE. A basic
understanding of the role of the PATHWAY

Terminal Control Process (TCP) is assumed.

T A N D E M J O U R N A L WINTER 1984

Figure 5

Line
handler

The CAPTURE Module
The CAPTURE module is the data collec-
tion component of the ENCORE stress test
system. It functions simply as a recording
mechanism. Optionally, the CAPTURE module
provides a trace facility and summary sta­
tistics about the interactions. At least one
CAPTURE process is placed between a PATHWAY
TCP and its live terminals (see Figure 5). A
TCP communicates with a CAPTURE process
in the same manner it communicates with
a line handler process. To accomplish this, the
CAPTURE process operates as a mediator.
That is, 1/0 operation requests (e.g., READS
and WRITES) are passed from the TCP to a
CAPTURE process, which then communicates
the request to a line handler process. When
the operation is completed, the results (i.e.,
error codes and data) are returned from
the line handler process to the CAPTURE pro­
cess, which then passes them to the TCP,
thereby completing the original request.

The CAPTURE module interprets each TCP

request to determine what type of opera-

TCP Servers bata
base

tion it is so the proper request can be com­
municated to the line handler process. Any
data contained in the requests is recorded in
the CAPTURE file associated with each
terminal. Exactly one CAPTURE file is opened
for each terminal. Input data from a ter­
minal is recorded in its CAPTURE file and is
passed, along with the operation results,
back to the TCP.

The CAPTURE module times the operations
and records timing information critical to
performing the stress test in the CAPTURE files,
along with the request data. Typical on-line
transaction processing applications exhibit a
sizable range of operator entry times, as
some interactions require more time than
others. For example, input to a menu screen
usually requires very little time to be com­
posed, whereas input to a data entry screen
containing many fields may take much
more time for the operator to complete.
Because the module records the individual
interaction timings, realistic interaction rates
can be generated to accurately model the
varying complexity in the interaction screens.

WINTER 1984 T A N D E M J O U R N A L

Figure 5.

Functional diagram of the
CAPTURE module.

9

Figure 6.

The interaction cycle.

Figure 6

Components of the Interaction Cycle
The time during which an interaction cycle
is completed is called the interaction period,
and is composed of think time and system
reply time. The portion of the interaction
period consumed by the operator in compos­
ing a query is think time. System reply time,
the other component of the interaction period,
includes all the time consumed by the sys­
tem in interpreting a query, reading the screen
data, and writing out the next prompt
screen. The cycle is illustrated in Figure 6.

Since data communication delays have
a direct effect on the components of the inter­
action period, they are included in the
timings. This allows the system-reply-time
values to more accurately reflect the time
required for the system to respond to a query.
Likewise, the think time better reflects the
amount of time before the next query is
submitted to the system.

As indicated in the introduction, the per­
formance requirements of on-line transaction
processing systems are usually expressed
in terms of interaction throughput and
response time.

To effectively model a variety of workload
environments, the tester needs the ability
to vary the interaction frequency, i.e., the rate
at which interactions are presented to the
application. Manipulating just think time does
not provide enough control of the interac-

tion frequency because system reply time dur­
ing the stress test may vary considerably
from that observed during the CAPTURE phase.
For example, suppose an interaction were
composed equally of think time and system
reply time, and the tester wanted to double
the interaction rate. If the tester attempted to
do this by adjusting the think time, he or
she would have to reduce the think time to
zero to double the interaction rate (assuming
the system reply time remained the same).
Since the system reply time might vary during
the test, it would have to be considered
when adjusting the overall interaction rate.

To properly control a stress test, the ENCORE
stress test generator records the interaction
period, rather than just the think time, with
operator input records in the CAPTURE
file. The tester can then specify the interac­
tion rate during the stress test as a function
of the rate during the CAPTURE phase. If the
system reply time increases during the stress
test, the REPLAY module decreases the
think time to obtain the proper interaction
period. This mechanism works as long as
system reply time is less than the requested
interaction period. If the system reply time
exceeds the requested interaction period, then
REPLAY can do no better than send the
query immediately and record it as a late query.
Late queries are discussed later in more detail.

Identification of Interaction Data
In addition to monitoring I/0 requests for
timing information, the CAPTURE module
categorizes the requests. Categorizing the
requests aids the EDITOR and REPLAY modules
in interpreting a CAPTURE file. For example,
many transaction processing applications place
a base screen on the terminal and then
accept multiple inputs from the screen with­
out redisplaying the base screen. Because
the CAPTURE module records interaction data
as it is encountered, only one copy of the
base screen is recorded. The records associated
with the interaction immediately follow-
ing the display of a base screen are located
adjacent to the base screen, while subse­
quent interaction records are not. The EDITOR
uses the base screen records identified by
the CAPTURE module to reconstruct an inter­
action as it appeared during the record phase.

Records identified by the CAPTURE module
as operator input records cause the REPLAY

T A N D E M J O U R N A L WINTER 1984

module to pause, simulating operator think
time. Note that output data records are
recorded in the CAPTURE files for use by the
EDITOR only, since only the input data is
required to drive a stress test.

CAPTURE Module Commands
The user interface to the CAPTURE module
consists of linking commands and output
control commands.

Linking Commands. The linking commands
establish a CAPTURE process between a
TCP and its associated terminals, and direct
the CAPTURE process to intercept and pass
the data communications traffic through to the
terminal or TCP. The file specification
parameter in the PATHCOM configuration is
modified for each terminal that is to be
linked into CAPTURE. The modification spe­
cifies the CAPTURE process as the file to
open instead of the terminal. A logical terminal
name is also passed in the FILE OPEN to
CAPTURE. This name is later used by CAPTURE
to determine the physical terminals to be
opened. The PATHCOM command syntax is as
follows:'

SET TERM FILE <CAPTURE process
name>.# <logical terminal name>

Example: SET TERM FILE $TSK1.#TERM01

<CAPTURE process name> is the name of the
CAPTURE process to be linked to the appli­
cation. <Logical terminal name> is an arbitrary
name of one to seven alphanumeric char­
acters beginning with a letter. It must match
a logical terminal name specified in a PARAM
command given to the CAPTURE process.
The PARAM syntax is as follows:

PARAM <logical terminal
name> <physical terminal name>

Example: PARAM TERM0l $Tl

<Logical terminal name> is one to seven
alphanumeric characters, beginning with a
letter. <Physical terminal name> is the name
of the real terminal to which the logical
terminal name is to be linked. This arrange­
ment provides the greatest flexibility in
terminal naming. Also, the use of logical
terminal names, because they are typically

1Lower-case characters enclosed in less than/greater than symbols represent
all variable entries supplied by the user.

Figure 7

PATHCOM commands
SET TERM FILE $T1
SET TERM FILE $T2
SET TERM FILE $T3

Figure 8

Line
handler TCP

PATHCOM

CAPTURE commands
PARAM TERM01 $T1
PARAM TERM02 $T2
PARAM TERM03 $T3

PATHCOM commands
SET TERM FILE $TSK1.#TERM01
SET TERM FILE $TSK1.#TERM02
SET TERM FILE $TSK1.#TERM03

$TI'
$T2 ---=--

$T3 /

Line
handler

CAPTURE files

short, provides a convenient means to refer
to the physical terminal names, e.g., as
used by the trace facility.

Examples of the SET TERM FILE and PARAM
commands are shown in Figures 7 and 8.
To reduce the complexity of the figures, the
role of the various hardware and software
components, e.g., PATHMON, have been
reduced or eliminated. Figure 7 shows the
configuration of an application before the
record phase. Figure 8 shows the same con­
figuration with a CAPTURE process, STSKl,
properly inserted.

TCP

PATHCOM

Figure 7.

A simple transaction
processing environment.

Figure 8.

A simple CAPTURE
configuration.

WINTER 1984 TANDEM JOURNAL 11

Output Control Commands. The output
control commands specify the destination
of trace and statistical output. Output can be
directed to any output device, such as a
printer, disc, or process. The ENCORE Users
Manual contains more information about
the commands.

Once configured, the CAPTURE process is
started as an ordinary user program from
a command interpreter. After initializing,
CAPTURE waits for FILE OPEN requests from
the TCP to begin processing. When a FILE
OPEN request is received, the logical terminal

The REPLAY module is
1 the stress test driver
and, in many respects, the
most important module.

name contained in
it is extracted and used
to search a table con­
taining the terminal
names specified by the
PARAM commands.
When the logical ter­
minal name is located,

the physical terminal name associated with
the logical name is used to construct a new
FILE OPEN request that is passed to the
appropriate line handler process. For con­
venience, the logical terminal name is also
used as the name of the CAPTURE file asso­
ciated with the logical terminal.

Once the OPENS to the terminal and CAPTURE

files have completed, the CAPTURE process
is established as the mediator between the TCP
and the terminal. Users at the application
terminals interact with the application in a
normal fashion. The actions of the CAPTURE
process are not visible to the terminal operators.

When all terminals controlled by a
CAPTURE process are stopped, the CAPTURE

process writes out its statistical output, if
requested; closes the CAPTURE files; and ter­
minates. The CAPTURE files associated
with each terminal are then ready for input
to the REPLAY module, or they can be
edited by the EDITOR.

The EDITOR Module

The EDITOR is a screen-oriented, interactive
utility that manipulates interactions and
sets of interactions within CAPTURE files. An
interaction is composed of a set of output
streams (the prompt) and the input (query)

in response to the prompt. The output
streams may be as complicated as the set of
terminal instructions that construct a data
entry screen, or as simple as a reply from the
application to the preceding operation (e.g.,
ADD SUCCESSFUL). Usually, the prompt
and its associated query form an indivisible
unit. The EDITOR combines the input data
with the prompts to form complete interactions
and presents them one at a time to the
users, as a logical unit for EDITOR operations.

The EDITOR pieces together the com­
ponents of an interaction to display it on the
terminal screen as it appeared during the
recording phase. The records in the CAPTURE
file contain the data streams that make up
the interaction; however, some interaction
components may be widely dispersed in
the file. This can occur when part of an inter­
action screen is written to the terminal as
a base screen early in a CAPTURE session and
ensuing interactions then make use of the
base screen as part of their prompt.

An example of this might be the applica­
tion heading that often appears at the top
of each interaction screen (e.g., AIRLINE
RESERVATION SYSTEM-CANCEL SCREEN).

The heading might be transmitted when
entering the cancel screen and would remain
there while the user performed cancel oper­
ations. When the user changed modes, e.g.,
entered the add screen, the heading would
then change. Because this type of heading is
only written once but is used by subse­
quent interactions, the EDITOR uses pointers
placed by the CAPTURE module to locate
and identify the base screen associated with
the later interactions.

Occasionally, it becomes difficult for the
EDITOR to select the set of records that
comprise an interaction from the continuous
stream of records in the CAPTURE file.
In other words, it may be difficult to deter­
mine when an arbitrary interaction starts
and ends. There is no begin-interaction or
end-interaction marker. In fact, some of
the information that might help to identify the
appropriate set of records resides in the
application and with the developer. Because
this information is not available to the
EDITOR, reconstruction of an interaction
screen can sometimes be done incorrectly.

12 T A N D E M J O U R N A L WINTER 1984

Figure 9

It is important to be aware of this possibility
and to be prepared to recognize such an
occurence and recover from it. In some cases,
it may be necessary to reposition to the
first interaction of the CAPTURE file and single
step forward to the desired interaction.

The external interface to the EDITOR uses
the terminal function keys to manipulate
the file. The user simply runs the EDITOR,
specifying the name of the file to be edited
as a parameter. A complete description of the
external interface can be found in the ENCORE
Users Manual.

The REPLAY Module

Once a CAPTURE file has been prepared
and, if necessary, edited, it is ready for use in
a stress test. The REPLAY module is the
stress test driver and, in many respects, the
most important module of the ENCORE
stress test generator. As described in the intro-

TCP

TCP

Servers
oata
base

duction, the REPLAY module operates in
simplex mode, i.e., it resides in the system under
test. It was designed to replace the line
handler process that the TCP would have used
to communicate with the terminals connected
to the application (see Figure 9). Optionally,
the REPLAY module can produce a trace of
interaction data and a statistical summary
of the interactions.

From the viewpoint of the line handler
process, the outgoing and incoming data
transfers consist of blocks of terminal instruc­
tions and screen data. This is exactly the
data that was recorded by the CAPTURE module
in the CAPTURE file. When the application
makes a request for input during a stress test,
the request is passed to the REPLAY process.
To satisfy the request, the REPLAY process
retrieves the next input record from the appro­
priate CAPTURE file and presents this data
to the requesting process. From the TCP's view­
point, it appears as if a terminal just satisfied
the input request.

WINTER 1984 T A N D E M J O U R N A L

Figure 9.

Functional diagram of the
REPLAY module.

13

14

Because REPLAY operates with preassem­
bled data, CPU consumption is minimized.
In fact, the RJ::PLAY process typically consumes
less of the total CPU resource than the real
line handler process it replaces. This efficiency
can cause problems. An application that
functions adequately during the stress test
could experience performance degradation
due to queueing for CPU resources, if the line
handler processes require substantially
more of the total CPU resource than the
REPLAY processes.

To prevent problems caused by CPU con­
sumption perturbations, each REPLAY process
can be configured to consume additional
CPU resources. The command to configure
the REPLAY process is presented later in
the discussion of the user interface.

The other components of the on-line
transaction processing system replaced by the
REPLAY module are the data communica­
tions lines, terminals, and terminal operators.
These components affect a system only
indirectly by introducing delays into the flow
of data. The effect of these delays is con­
trolled by varying the interaction rate of the
stress test.

Controlling the Interaction Rate
As described in the CAPTURE module sec­
tion, the interaction period is composed of
system reply time and operator think time.
Because the system reply time is under the
control of the system under test, it is not pos­
sible for REPLAY to manipulate that time
to modulate the interaction rate. Control of
the operator think time, however, rests with
the operator. Since REPLAY replaces the func­
tion of the terminal operator, it can modify
the duration of think time, thereby influencing
the interaction rate. REPLAY modifies think
time by inserting a delay before replying to
a request for an operator input record.

Input records are classified by the CAPTURE

process as operator input and terminal
input when the CAPTURE files are created.
Operator input records are generated by
terminal operator action, e.g., function key
input. Terminal input records are records
generated by the terminal in response to an
application request and without intervention
from the terminal operator, e.g., the terminal
instruction READ WITH ADDRESS. When

an input request is made to a REPLAY process,
REPLAY simply responds with the next input
type record found in the CAPTURE file. If the
input record is of operator input type, then
a delay mechanism may be invoked depending
on the interaction rate requested by the user.

The REPLAY module can produce either a
fixed interaction rate or a variable rate
based on a multiple of the period associated
with each interaction in the CAPTURE file.
In either case, the desired interaction period is
first determined. For fixed interaction
rates, the requested rate is converted into the
desired interaction period. For variable
rates, the interaction period in each operator
input record is adjusted by a multiplier
specified by the user.

Next, the system reply time is determined
by saving the time at which the last query
(operator input) was sent to the application to
satisfy an input request, and then subtract­
ing that time from the time at which the current
input request was received. The saved time
is then subtracted from the time at which the
current input request was received to obtain
the system reply time. Then by subtracting the
system reply time from the desired interac­
tion period, the time required to match the
desired interaction period, the think time,
is obtained:

CURRENT-REQUEST-TIME

- LAST-QUERY-TIME

SYSTEM-REPLY-TIME

DESIRED-INTERACTION-PERIOD

- SYSTEM-REPLY-TIME

THINK-TIME

If the think time is positive, the request is
placed on a delay queue and resumed after
the proper amount of time has elapsed.

Late Queries
Although the REPLAY module accurately
computes the time at which a query must be
submitted to meet the desired interaction
period, a number of factors can prevent it
from replying to the associated request
on time. If REPLAY fails in submitting a query
on time, it is called a late query. Figure 10
illustrates the situations causing late queries.

T A N D E M J O U R N A L WINTER 1984

In Figure 10, TO is the time at which the
previous query was submitted by REPLAY. Tl
is the time at which the query for the current
request must be submitted to conform to the
desired interaction period, Tl-TO. The
think time is the difference between the time
the request is received and Tl, Tl-Tr. Nor­
mally, the system replies by time Tr, the REPLAY
module delays for the think time, Tl-Tr,
and submits the query on time at Tq. If the
difference between the time when the input
request was received and Tl is negative, the
request was received after Tl, as indicated
by Tr'. In this situation, REPLAY can do no
better than to submit the query as soon as
possible, as indicated by Tq'. This late query
situation is usually caused by driving the
application too hard, resulting in excessive
system reply time and leaving no surplus
time for operator think time.

Over-driving the REPLAY module can also
cause late queries. If a large number of
requests must be activated at the same time,
some requests are clearly going to be acti­
vated late. REPLAY attempts to alleviate this
condition by varying an activation time
window to allow sufficient activation time. If
late queries occur, the statistics output lists
the percentage of queries that were late and
the mean and standard deviation of the
amount of time that the queries were late. High
values warn of a possible performance
deficiency during the stress test.

REPLAY Module Commands
The user interface to REPLAY is similar to that
of the CAPTURE module. The user com­
mands may be categorized as linking, perform­
ance control, and output control commands.

Linking Commands. The linking commands
establish the connection between a REPLAY
module and a TCP. The file specification in the
PATHCOM configuration is modified for
each terminal involved in the stress test by
specifying a REPLAY process as the file
to be opened by the TCP. A logical terminal
name is passed to the REPLAY module to
indicate which simulated terminals it is to
open. The PATHCOM syntax is as follows:

SET TERM FILE <REPLAY process
name>.# <logical terminal name>

Example: SET TERM FILE $TSK1.#TERM01

Figure 10

Figure 11

TO =Time when last query was submitted.
T1 = Time when current query should be submitted.
Tr = Current input request received.
Tr" = Late input request received.
Tq = Query submitted.
Tq' = Late query submitted.

TO

PATHCOM commands
SET TERM FILE $TSK1.#TERM01
SET TERM FILE $TSK1.#TERM02
SET TERM FILE $TSK1.#TERM03

TCP

PATHCOM

CAPTURE files

<REPLAY process name> is the name of the
REPLAY process to which the user desires
to link the TCP. <Logical terminal name> is com­
posed of one to seven alphanumeric char­
acters, beginning with a letter. It is used as the
name of the physical CAPTURE file to be
associated with the terminal (see Figure 11).

<Logical terminal name> is also used to
associate the stress test parameters, start delay
and interaction frequency, with a specific
terminal.

WINTER 1984 T A N D E M J O U R N A L

T1

Figure 10.

Request-query timing.

Figure 11.

A simple REPLAY
configuration.

15

Performance Control Commands. One use
of the start delay parameter is to ensure
that the interactions contained in identical
files used by separate terminals are not
presented to the application at the same time.
When the interactions are staggered, access­
ing the same data base location at the same

A proper stress testing
tool provides accurate

workload presentation,

time is avoided, the
disc heads are made
to move, and the
latency associated
with live data base
access is introduced.

Another use of
the start delay param­
eter is to simulate
a terminal load that

controllability, repeatabil­
ity, low cost, and high
performance.

increases as the day
progresses. An example of this is an air­
line reservation system at which only a few
operators are available before 6 A.M., more
come on line at 6 and 7 A.M., and at 8 A.M.,
the full staff is on line. With proper settings
of start delay, any system of this nature can
be simulated. The general syntax for the
terminal stress test parameters is as follows:

PARAM <logical terminal name> (<start
delay>, <frequency>)

Examples: PARAM TERM0l (300, 0.125)
PARAM TERM02 (180, *0.5)

<Logical terminal name> is obtained by the
REPLAY module from the FILE OPEN request
generated by the TCP. It is specified by
the user in the SET TERM FILE command in
PATHCOM. If a PARAM command is not
specified for a terminal that is later opened
by a REPLAY module, then global defaults
are used. <Start delay> is used to delay the
activation of a terminal until the specified
number of seconds has elapsed. In the first
example, a delay of five minutes has been
specified, and in the second example, three
minutes.

<Frequency> is used to specify the interaction
frequency for a terminal. It may be a fixed
interaction frequency or, if preceded by an
asterisk (*), a multiplier to be applied to
the interaction period stored with each inter­
action in the CAPTURE file. The rate mul­
tiplier is very powerful because it retains the
relative speed of operator entry with inter­
actions of varying complexity, thus presenting
a more realistic stress test. In the first example
above, a fixed interaction frequency of
0.125 interactions per second has been speci­
fied, i.e., an interaction every eight seconds.
In the second example, the interaction rate of
the interactions in the CAPTURE file are
decreased by one half.

The last performance control command is
CPUBUSYPEROP. It is used to specify the
CPU time to be consumed with each terminal
I/0 operation requested by the application.
As outlined earlier, it is important for REPLAY
to consume CPU resources equivalent to
those consumed by the line handler process
it replaces.

For simplicity, the CPUBUSYPEROP com­
mand uses the average CPU consumption for
each terminal I/0 operation. The syntax
of the CPUBUSYPEROP command is as follows:

CPUBUSYPEROP (<microseconds>)

Example: CPUBUSYPEROP (14850)

<Microseconds> specifies the CPU time the
REPLAY module is to consume for each
terminal I/0 operation performed. To obtain
this value, the tester should use the XRAY

performance analysis tool to determine the
CPU time consumed by the line handler
process. A perfect opportunity to perform this
measurement is at the time the CAPTURE

module is run, during the recording phase. The
CAPTURE module lists, as part of its statis­
tics output, the number of terminal I/0 oper­
ations it performed. Thus, CPUBUSYPEROP
parameter can be calculated simply by dividing
the total CPU time that the line handler
process consumed by the number of terminal
I/0 operations performed. In the above
example, 14,850 microseconds of CPU time
will be consumed by REPLAY for each
terminal I/0 operation performed.

16 T A N D E M J O U R N A L WINTER 1984

Of course, the REPLAY module consumes
a certain amount of the total CPU resource on
its own. This consumption has been pre­
measured and is subtracted by the REPLAY

module from the requested consumption.
The difference is then consumed by REPLAY

in a busy loop.

Output Control Commands. The output
control commands are used to specify the
destination of trace and statistical output.
Output can be directed to any output device,
such as a printer, disc file, or process.

Once configured, the REPLAY process
is started as an ordinary user program from a
command interpreter. After initializing, it
waits for FILE OPEN requests from the appli­
cation to begin processing. When a FILE

OPEN request is received, the logical terminal
name contained in the request is extracted
and used to search a table containing the ter­
minals specified by PARAM commands. If
the logical terminal name is located, the stress
test parameters associated with the logical
terminal are applied; otherwise, the global
defaults are used. Each simulated terminal
then begins interacting with the application
after an optional start delay.

The REPLAY process terminates when
all the simulated terminals attached to it are
closed. The terminals may be closed by
PATHCOM commands or by the application
itself via a query in the CAPTURE file; e.g.,
an application that terminates when the opera­
tor enters a function-key four can be ter­
minated by setting up the last query in the
CAPTURE file to submit function-key four.

Conclusion

Stress testing is an essential part of appli­
cation development for any application in
which performance is an issue. In a perform­
ance-critical environment, an application
is not fully tested until it has been through a
stress testing cycle.

A proper stress testing tool provides
accurate workload presentation, control­
lability, repeatability, low cost, and high
performance. The ENCORE stress test generator
provides all these features, along with a
simple, user-friendly interface. It makes stress
testing a more practical and effective method
of assuring the performance of an on-line
transaction processing system before it is
placed in production.

References
Smith, L. April 1982. Designing a Network-Based Transaction­
Processing System. Tandem Application Monograph Series.
SEDS-002. Tandem Computers Incorporated.

Spiegel, M. Summer 1981. 1981 RTE's-Past is Prologue.
ACM Sigmetrics Performance Evaluation Review.
vol 10, no 2, 66-73.

Stan Kosinski is currently a member of the Terminal Systems
Group in Austin, Texas. Since joining Tandem in December 1980,
he has worked on various terminal simulation projects and
developed the ENCORE stress test generator while in the Operat­
ing Systems Performance Group. Before joining Tandem, Stan
spent ten years in the computer field in a variety of areas, includ­
ing performance prediction and analysis, artificial intelligence,
computer hardware/software architecture, and data communica­
tions. While a graduate student at the University of California,
Santa Barbara, he wrote a thesis on stress testing on-line
transaction processing systems.

WINTER 1984 T A N D E M J O U R N A L 17

18

The 6100
Communications
Subsystem: A New
Architecture

ith the 6100 Communi­
cations Subsystem"'
(6100 CSS), Tandem has
introduced a new inte­
grated communications
architecture. The 6100
CSS was designed to

assume many of the teleprocessing control
functions in Tandem NonStop systems formerly
assigned to separate software and hard-
ware components, such as interrupt handlers,
communications processes, and communi­
cations controllers. It consists of a set of basic
hardware and software components which
can be assembled to do a variety of teleprocess­
ing tasks, providing more capabilities, fault
tolerance, and flexibility than other Tandem
communications products. The 6100 CSS
is supported by both the Tandem NonStop II
and NonStop TXP systems. (Any refer­
ences in this article to the "host" refer to the
NonStop II or the NonStop TXP processors.)

Tandem communications controllers have
evolved from the original 6301 (2) asynchronous
controller to the recently announced 6204
bit-synchronous controller. While these con­
trollers are limited to supporting certain
protocols and electrical interfaces, the 6100
CSS architecture has been designed to sup­
port a variety of communications protocols
and electrical interfaces. It provides a foun­
dation for future communications evolution.

Motivations

The following limitations of the asynchro­
nous, byte-synchronous, and bit-synchronous
controllers were considered when the
requirements for the 6100 CSS were defined:

1. Polling and being polled are nonproductive
overhead within a processor.

2. Controller failures may bring down 4 lines
in the best case and 32 in the worst case.

3. Most controllers are protocol-specific,
prohibiting the cost-effective mixing of
different line disciplines. Adding a new
protocol entails adding controller micro­
code, a processor driver and protocol,
and controller diagnostics.

4. Controllers do not provide for new electrical
interface standards.

It was decided that limitations 1, 3, and 4
could be eliminated by designing a new
controller that was programmable and could
support the polling protocol supported at
that time by the host processor. Limitation 2
could be eliminated in most configurations
by redesigning the communications controller
architecture. The approach agreed upon
was to provide a programmable controller that
had the flexibility to support multiple elec­
trical interfaces and that diminished the
possibility of a single point of failure.

T A N D E M J O U R N A L WINTER 1984

The Architecture

The architecture of the 6100 CSS eliminates
the need to program the host in order to
implement communications protocols at the
Link Level or Level 2. (The term "Level 2"
refers to the lowest software level of the Inter­
national Standards Organization seven-layer
Open Systems Interconnection reference
model for data communications.) The
development approach taken was to off-load
the Link-Level processing onto an intelli­
gent controller. This was done by designing
a subsystem made up of easy-to-configure,
easy-to-manufacture devices that can support
any of the desired line types, with the
loading of appropriate software from the host.

To implement the 6100 CSS design, the
designers took a "building-block" approach.
For example, a standard host-system inter­
face module was designed to eliminate the
need for separate controller design efforts
as new communications peripherals are inte­
grated into the system. This approach
reduces the need to alter software drivers
and host adapters when new devices or pro­
tocols are integrated.

A high-level language was used to develop
the 6100 CSS, resulting in a shorter devel­
opment period as well as a product that is much
simpler to support. The use of a high-level
language also ensures the transportability of
the communications protocols.

Because of the programmable nature of the
6100 CSS, most device changes and correc­
tions can now be made in software instead of
hardware. This allows field upgrades to be
made more easily, quickly, and inexpensively.
Although Level 2 has been off-loaded, the
6100 CSS has dump and trace facilities that can
be used without stopping the processor.

6100 CSS Hardware
Component Overview

The 6100 CSS consists of three intelligent
hardware components: the Communications
Interface Unit (CIU), the Break Out Board
(BOB), and the Line Interface Unit (LIU).

Figure 1

6100 css I cabinet

1/0 channel

Communications
interface unit

(CIU)

CIU-to-LIU
serial link

CIU-to-LIU
serial link

Communications
interface

unit

These components and their interfaces are
illustrated in Figure 1. When configured
together with a serial link and mechanical
packaging, they provide an electrical and
protocol interface to a variety of communi­
cations devices and systems. Figure 2 illus­
trates the physical packaging of the 6100 CSS.

WINTER 1984 TANDEM JOURNAL

1/0 channel

Figure 1.

6100 Communications
Subsystem hardware
components.

19

Figure 2.

6100 CSS physical
packaging.

20

Figure 2

CLB--------~

CSS unit C ---+-----

System
expansion
cabinet

System
CPU cabinet

CSS unit B---+--------++-

CSS unit A---!--------++-

BOBO

CUP

BOB1

6100 css
cabinet
assembly

The Communications Interface Unit (CIU)
is the I/0 controller located on the host
that is the interface between the host and the
remainder of the 6100 CSS. It is designed
to facilitate the attachment of the 6100 CSS
to a host processor's I/0 channel. Each CIU
is dual-ported to allow it to interface to the
I/0 channels of two host processors. Each
6100 CSS has two CIUs to eliminate a pos­
sible single point of failure. The CIU pair
is capable of supporting up to 15 LIUs.

The CIU-to-LIU serial link (CLB) is a serial,
full-duplex, point-to-point link. Address deter­
mination for the LIU is performed by the
BOB. The end points of the CLB are the CIU
at the host side and either the BOB or an
LIU at the communications enclosure side.
Transmission over the CLB is serial, using
a bit-synchronous protocol and operating
full-duplex at one megabit per second in
each direction. The cable used for the CLB is

a pair of twisted-pair wires, available in
lengths of 50, 100, and 200 feet.

The cabinet in which the 6100 CSS resides
is capable of accommodating up to three
complete subsystems.

The Break Out Board (BOB) functions as an
intelligent switch or multiplexor that con­
trols the high-speed CLB serial link, allowing
the CIU to select and talk to individual
LIUs. It also provides the host with a mechanism
for monitoring and controlling the 6100 CSS
power supply attached to the BOB. The inter­
face provided by the BOB allows the LIU
and the application process in the host pro­
cessor to act as if they have a point-to­
point connection instead of a multiplexed link.

The Line Interface Units (LIUs) are
microprocessor-based communications con­
trollers responsible for handling individual
communications lines. Each LIU is dual-ported
on the CLB side to allow it to communicate
with either of the two CIUS, each of which is

T A N D E M J O U R N A L WINTER 1984

connected to two host processors. An LIU
consists of two separate modules: a Line
Interface Module (LIM), and a Communica­
tions Line Interface Processor (CLIP).

The LIM provides the electrical and
mechanical interface to the communications
line, while the CLIP provides the Level 2
protocol and the host software interface to
the line. The 6100 CSS supports a mix of
two CLIP types: a one-line version (CLIP-1) and
a four-line version (CLIP-4). Figure 3 illus­
trates the physical relationship between the
CLIP and LIM.

The CLIP-1 supports asynchronous, byte­
synchronous, and bit-synchronous communica­
tions protocols on a single line, while the
CLIP-4 supports asynchronous communica­
tions with up to four lines. The CLIP-1 sup­
ports asynchronous communications at speeds
from 50 bps to 19.2K bps, byte-synchronous
communications at speeds up to 9.6K bps,
and bit-synchronous communications at
speeds up to 56K bps full-duplex.

6100 CSS Software
Component Overview

As Figure 4 illustrates, the 6100 CSS soft­
ware consists of a number of different
components, each of which executes in one
of the four processor types (the host, the
CIU, the BOB, or the LIU). At a very general

Figure 4

Tandem Nonstop II and
Nonstop TXP software

Figure 3

level, the software is structured as follows:

■ The host software is loaded by, and runs
under, the GUARDIAN operating system in much
the same way that current 1/0 system code does.

■ The LIU and CIU software is made up of both
bootstrap software, in programmable read­
only memory (PROM), and down-loaded soft­
ware, in random-access memory (RAM).

■ The BOB software is a microprogram in
PROM that is factory-installed and not modifi­
able except by hardware revision.

Communications
interface unit

(CIU)

Communications
line interface

processor (CLIP)

Communications
--------- access

communications
management

. process fCMP)

+
I
I

process (CAP)

' Communications
subsystem

manager (CSM)

~------- OIAG
8100

- - New process/file management
- File management request
• • • • Message system

1/0
channel

WINTER 1984 T A N D E M J O U R N A L

Figure 3.

Modem/
terminal
cable

6100 CSS card cage
assembly.

Figure 4.

Major 6100 CSS software
components.

21

22

Host Software
The 6100 CSS software that runs in the host
consists of the Communications Manager
Interface (CMI/CMP), the Communications
Subsystem Manager process (CSM), the
Communications Access Processes (CAPs),
and the DIAG6100 diagnostic process.

The new Communications Manager Inter­
face (CMI/CMP) utility provides the operator
interface to the 6100 CSS for configuration,
control, and status display.

The Communications Subsystem Manager
(CSM) is the host process that controls
access to the CIU(s) for CIU and CLIP software
down-loading, CIU diagnostics, and CIU
tracing. It is also used to track CAP/CLIP paths,
maintain configuration and status infor­
mation, and monitor and control the 6100 CSS
power supplies.

The Communications Access Processes
(CAPs) are host processes that implement
the user's file management interface to the
6100 CSS. All CAPs use a common internally
defined protocol to communicate with a peer
process in the LIU managing the communi­
cations line. For the initial release, most CAPs
are merely modified versions of existing
communications processes, with compatible
application interfaces.

The diagnostics are provided by the DIAG6100
diagnostic process, a host process initiated
by the user. During diagnostic testing, the CAP
and CSM processes are suspended, and the
DIAG6100 diagnostic process provides a direct
interface to the user-specified, non-host
portions of the 6100 CSS.

CIU Software
The cm software implements the CLB
protocol and the host 1/0 channel interface
in the cm. The cm software object code
resides in a disc file on the host system. It is
down-loaded into the CIU by the CSM at
system initialization.

LIU Software
Of the two cards that make up an LIU, the
CLIP and the LIM, only the CLIP is an intelli­
gent device. CLIP software implements
specific communications line protocols. Each
CLIP program is tailored to be accessed
through a host CAP. The CLIP software object
code resides in a disc file on the host sys-
tem and is down-loaded into the CLIP by the
CSM, at the request of the CAP.

With the 6100 CSS, much of the overhead
involved in driving communications lines has
been moved into the subsystem processors.
In fact, all of the Level 2 processing, and in
some cases, some of the Level 3 process-
ing, has been off-loaded onto the LIUs. The
host process providing the interface to code
running in the LIU is the CAP. A CAP replaces
each of the existing communications prod­
ucts, and each CAP includes the current Com­
munications Process code above Level 2 as
well as new 6100 CSS interface code.

The intermediate processing functions
within the 6100 CSS that handle the control and
routing of information within the subsystem
are performed by the CIU (attached to the
host channel interface) and by the BOB (in
a separate communications cabinet). The cm
routes information from the parallel host
channel interface to the serial CLIP interface
via the CIU-to-LIU serial link (CLB).

6100 CSS Design Features

The 6100 CSS has the power and perform­
ance of a communications front-end without
the costs normally associated with it, and
has other significant design features. This
discussion highlights some of these fea­
tures and explains its advantages over more
conventional monolithic front-end designs.

Fault-Tolerant Operation
The 6100 CSS can be configured to minimize
the possibility of a single point of failure
and therefore maximize its fault-tolerant
aspects. This can be accomplished by having

T A N D E M J O U R N A L WINTER 1984

one CIU primaried in one of the host pro­
cessors and the other CIU primaried in the
alternate processor. In the event of a fail-
ure, the maximum loss would involve only one
LIU and its associated line(s). Any module
in the 6100 CSS can be removed or replaced
without affecting any other module. This
includes the removal and replacement of power
supplies, cables, fans, and logic modules.

Failure of a CPU, CIU, or BOB causes a "path"
switch. A path switch does not take the line out
of service, but end-to-end application recovery
is required if the application is not using
the Tandem EXPAND™ networking software.

The fault tolerance of the 6100 CSS is also
ensured by the following four characteristics:

1. Host software process pairs.

2. Dual hardware components (CIUs, CLBs,
BOBs, and power supplies).

3. Dual porting of CIUs and LIUs.

4. Automatic path failure recovery in the CSM
and CAP processes.

Again, note that, given a properly coded
application process and a fully configured
6100 CSS, the greatest loss that can occur from
an LIU failure is the loss of a single line
(or, with the CLIP-4, four asynchronous lines).

Adaptability
Both the 6100 CSS hardware and software
are designed to allow a high degree of flex­
ibility in configuring a communications sub­
system. Because of the modular nature
of the hardware and software components,
many types of communications lines can
be supported by a single 6100 CSS. This is
especially advantageous when an installa­
tion supports a mixed network with a variety
of terminals.

As with the Tandem NonStop systems, the
6100 CSS can start small and grow in incre­
mental steps. LIUs can be added to an existing
6100 CSS, or additional 6100 CSSs can be added
(up to three can be housed in one com­
munications cabinet). This modularity allows
the 6100 CSS to grow and to easily meet the
needs of an expanding telecommunications
installation.

Because one device can have a wide range
of capabilities (bit-synchronous, byte­
synchronous, asynchronous, and different
protocol flavors of each), communications
lines can be easily reconfigured. This increases
the potential for system enlargement and
development. Some line changes may require
different electrical
interfaces, necessitat­
ing a change to the
LIM (a small inexpen­
sive card) and its asso­
ciated software
driver in the CLIP. The
rest of the hardware
remains unchanged.
Likewise, new link­

The modularity of the
1 6100 CSS allows it to
grow to meet the needs of
an expanding communica­
tions installation.

level protocols can often be adapted by simply
reconfiguring the line and by altering the
modifiers and/ or the CLIP program or line
software. The hardware remains the same.

Supportability
Advanced diagnostics have been built into
the 6100 CSS for easier maintenance and
faster identification of problems. The modular
design and lack of cabling in the 6100 CSS
cabinet make it easy to replace individual
hardware components simply and quickly,
ensuring minimum time between fault detec­
tion and repair.

Through the DIAG6100 diagnostic process,
the 6100 CSS accommodates a mechanism
for initiating diagnostic (or general-purpose
maintenance) routines on-line. Unlike
previous Tandem diagnostics, the 6100 CSS
diagnostics can be run while the system
remains running.

These diagnostic routes are designed to
identify problems down to the field-replaceable
unit level. In addition, the CSM process
periodically initiates a low-priority TEST
sequence to perform backup path testing.

Also, hardware in the individual LIUs allows
full loopback of a single communications
line without having to remove any cables. This
makes on-line testing easier and more thorough
than ever before.

WINTER 1984 TANDEM JOURNAL 23

Another feature is that execution of the
diagnostics from a remote node via EXPAND
networking software allows for problem
determination from a remote site.

Extensive tracing capability in both the
CAP and CLIP software has been provided to
assist in isolating line problems and soft-

T T tilizing Tandems multi­
U processor architec­
ture, the 6100 CSS allows
the communications load
to be distributed across
any number of processors.

ware bugs. When
required, CLIP mem­
ory can also be
dumped for use in
isolating software
problems.

Performance
The 6100 CSS takes
over many of the func­
tions that were per­

formed by the access method. This makes
resources in the host processor available to
handle other tasks.

Polling of asynchronous or synchronous
multi-dropped lines is now done by the
6100 CSS. This eliminates the frequent inter­
rupts that could otherwise slow down Tandem
CPUs burdened with polling large numbers
of terminals. The 6100 CSS also allows con­
tinuous polling. (The bit-synchronous and
byte-synchronous controllers interrupt the
host processor at the end of the poll list.)

Utilizing Tandem's
Multi-Processor Architecture
In keeping with Tandem's multi-processor
architecture, the 6100 CSS allows the com­
munications load to be distributed across any
number of processors. In other words,
rather than funneling all communications lines
into one processor, users can spread the
load across two Tandem processors sharing a
6100 CSS, or across two or more Tandem
processors, each with their own 6100 CSS.

Only the required amount of line-handling
power need be purchased, and that power
can be spread across the system in the most
useful way. The same load-balancing features
described above allow communications
lines to be placed where processing power is
available to handle them.

Single 1/0 Cardslot
in the Host Processor Cabinet
Another advantage of the 6100 CSS is that
it requires only one cardslot per CIU in the
host 1/0 backplane. In the standard fault­
tolerant configuration, two slots are used per
6100 CSS, which in turn can support 15
lines (or up to 60 asynchronous lines when
the CLIP-4 is released). This allows more
peripheral 1/0 equipment to be attached to
each CPU.

First Release

Initial release of the 6100 CSS focused
primarily on providing the pieces necessary
to upgrade communications applications
without redesign or additional coding. This
was done by modifying existing access
methods so that they interfaced to the 6100 CSS
rather than to the existing communications
controllers. (In effect, the access methods
became CAPs.) Tandem communications
products supported by the 6100 CSS are
described below.

■ The AM3270 Access Method provides an
application process with the capability for
accessing IBM 3270-type cluster controllers
attached to a Tandem system via a bisyn­
chronous multipoint communications line.

■ The AM6520 Access Method provides
an application process with the capability of
accessing Tandem 6520 or 6530 terminals
operating in block mode and connected to a
multipoint communications line.

■ The EXPAND networking software provides
all of the components necessary to imple­
ment a network of Tandem systems, all con­
nected to one another. It is an extension
of the GUARDIAN operating system.

■ The ATP6100 Access Method (previously
referred to as TERMPROCESS) provides
an application process with the capability of
accessing asynchronous-type terminals
(e.g., general TTY as well as ADM-2, 652Os and
653Os) on a point-to-point communications line.

24 T A N D E M J O U R N A L WINTER 1984

• The X25AM Access Method provides
access for Tandem NonStop systems to public
X.25 packet switching networks such as
DATANET-1, DATAPAC, DATEX-P, PSS, TELENET,
TRANSPAC, TYMNET, or UNINET.

• The EXCHANGE™ communications sub­
system provides the ability to perform remote
job entry (RJE) batched communications
with a host IBM mainframe, over switched
or leased-line facilities, emulating either
an IBM Multileaving HASP Workstation or an
IBM 2780/3780 Data Transmission Terminal.

Currently, the Tandem ENVOY™ and
ENVOYACP data communications managers pro­
vide a Level 2 interface; however, these
products are not supported by the 6100 CSS
because the Level 2 processing has been
off-loaded from the system. Instead, the CP6100
CAP has been developed to allow the user
direct interface to CLIP-based line tasks. Ini­
tially, CLIP line tasks were developed to
support bisynchronous point-to-point and
Advanced Data Communications Control
Procedures (ADCCP) Level 2 protocols. The
user application interface to the 6100 CSS
versions of ADCCP and bisynchronous point­
to-point protocols is a higher, process-level
interface than the file-level interface of the
ENVOY communications manager. This
change in interface alleviates some of the file­
level calls.

Future Releases

In the near future, the CP6100 CAP will inter­
face to CLIP line tasks that support Texas
Instruments Numeric Entry Terminals (TINET),
as well as Burroughs Poll/Select protocol.

Several hardware introductions will also be
made. The CLIP-4 will support four asyn­
chronous communications lines, either in cur­
rent loop or RS-232 interfaces. The X.21
and V.35 (CCITT recommendations) electrical
interfaces will also be supported.

Conclusion

The 6100 Communications Subsystem ori­
ginated out of a need for a programmable
communications controller that supported
multiple electrical interfaces and diminished
the possibility of a single point of failure.
As a result of these development considera­
tions, the 6100 CSS is highly reliable and
flexible, and it provides a foundation for future
Tandem communications products.

Its hardware architecture, with the dual I/0
controller interface, lessens the possibility
of a single point of failure. Diagnostics can be
run on an individual line without bringing
down additional lines or host processors, and
repairs can be made without affecting oper­
ational units. Also, the hardware is modularized
to enable different electrical and mechanical
communications interfaces to be imple­
mented with minimal impact on the 6100 CSS.
Finally, because the 6100 Communications
Subsystem is a programmable product, many
diverse protocols can be supported from
the same hardware.

Rich Smith wrote this article from information gathered by
Customer Application Support's Data Communications Group,
which he joined in April 1982 when he came to Tandem. Rich has
developed software courses for the 6100 CSS, and is now in
Tandem's Systems Support Group supporting the product. Before
joining Tandem, Rich was employed by another computer vendor
as a member of the development staff for an IBM 3274 simulator.

WINTER 1984 T A N D E M J O U R N A L 25

26

The Relational Data
Base Management
Solution

elational data base manage­
ment systems originated in
the early 1970s as an alterna­
tive to network systems.
Due to their numerous advan­
tages, they are a highly

______ effective method of data base
management for today's processing environ­
ment. This article provides a basic under­
standing of both systems, and briefly introduces
the Tandem ENCOMPASS™ relational data
base system. It then compares network and
relational systems and discusses the advan­
tages of relational systems. It concludes with
a discussion of the role of relational systems
in the software life cycle and their suitability
for application development.

Trend Toward Relational Systems

From the 1960s on, computer vendors,
software houses, and educational institutions
devoted much of their resources to the
research and development of data base man -
agement systems based on the network
model. Network systems such as Cullinane's
IDMS, Cincom's TOTAL, and Hewlett-Packard's
IMAGE were widely used. Because of the
proliferation of network systems, the Com­
mittee on Data System Languages (CODASYL)

was formed in an attempt to establish network
industry standards. Although CODASYL

began its efforts in the early 1960s, after 20
years, the standard is still incomplete. The
basis for the description of network data base
management systems in this article is the
CODASYL Model of Network Data Base
Systems, established by the CODASYL Data
Base Task Group (DBTG).

Network systems originated when hardware
was slow and expensive, and system-level
software was rudimentary. Because of this
limited technology, the primary concern
of the computer industry was user control
over resources for efficient performance.
During this period, network systems were
the most efficient data base management
systems available.

With the advances in hardware and software
technology that followed, efficiency and
low-level resource control were no longer the
only desirable qualities for software. Addi­
tional requirements included flexibility, sim­
plicity, and ease of use. As a result, a more
effective model for data base management
systems, the relational model, originated
in the early 1970s. Today, many providers of
data base management systems recognize
that the relational model meets modem require­
ments better than the network model. Not
only are relational systems flexible and easy
to use for non-technical users, they also
increase data base functionality.

T A N D E M J O U R N A L WINTER 1984

As a result of extensive research by non­
profit organizations and computer manu­
facturers in relational system areas such as
query optimization, hardware architecture,
recovery, deadlock, operating system support,
utilities, and distributed data bases, rela­
tional systems have become feasible for pro­
duction applications. Professional groups
such as the Association for Computing
Machinery (ACM) and the Institute for Electrical
and Electronic Engineers (IEEE) provide
publications to communicate developments
and exchange opinions. Also, a Data Base
Systems Study Group (DBS-SG) governed by
the American National Standards Institute
(ANSI) is investigating the development of a
relational data base standard to provide
guidelines for consistent terminology, user
interfaces, and functionality.

As is evident from the announcements
of new data base systems in current computer
publications, the industry trend is toward
relational systems. New relational systems that
are highly successful include Relational
Technology's INGRES, Oracle Corporation's
ORACLE, and IBM's DS/SQL. IBM has announced
another relational data base system, DB2,
which is expected to be available in late 1984.
Cincom Systems, who successfully mar­
keted the TOTAL Network Data Base System,
is now marketing a relational system, TIS,
as their next generation data base manager.
Some vendors of network systems are even
providing a layer on top of their data base
software to provide some relational access
capabilities.

The Basics

In Table 1, the terms for fields, records,
and files used in network and relational data
base management systems are listed.

The Data Model
Before any data base, network or relational,
can be defined, the data base designer must
first design a logical data model. This model
captures the meaning and relationships of
the data as they exist in the real world. To build
a logical data model, the designer must
determine which data entities are involved and
what the relationships among them are.

Figure1

Real-world
data entities

Data entities represented
in data base records

Data entity: Attributes: PERSON record
PERSON WEIGHT

HEIGHT
AGE
SEX

WEIGHT HEIGHT AGE • -
Data entity: Attributes: CAR record
CAR MAKE

MODEL
YEAR
COLOR

MAKE MOI;)EL. Yl;Al':i

Data entities are the things that the data base
will store information about. They are
described by attributes. For example, the entity
PERSON might have the attributes WEIGHT,
HEIGHT, AGE, and SEX, and the entity CAR
might have the attributes MAKE, MODEL,
YEAR, and COLOR. Data entities in a data base
are represented with records. The attri­
butes of the data entities are represented with
fields within the records. Figure 1 illus­
trates the representation of real-world entities
and their attributes in data base records
and fields.

Relationships among the data entities
can be one-to-one, one-to-many, or many­
to-many. The data base designer deter­
mines each relationship type by analyzing
the application requirements and the user's
real-world regulations for the data entities.

Table 1.

Basic terms used in network and relational data
base management systems.
File Theoretical
System Network Relational Relational

Field Field Column Attribute

Record Record Row Tuple

File Link-Set Table Relation

Figure 1.

Real-world entities and
attributes as represented
in data base records and
fields.

WINTER 1984 T A N D E M J O U R N A L 27

Figure 2.

An example of a one-to­
many relationship is that
of a department to its
employees.

28

Figure 2

DEPT. 1: SALES

EMPLOYEES: JILL BAKER
JOHN DOE
NICK SMITH

DEPT. 2: SYSTEMS
EMPLOYEES: ROB GOODMAN

ANNE HUNT
MIKE TOPPER

For example, the relationship between the
entities DEPARTMENT and EMPLOYEE could
be one-to-many (a department has many
employees). This relationship would be valid
only if the real-world regulations of the
company state that a department can have
many employees, but an employee can
work for only one department. Figure 2 illus­
trates the one-to-many relationships in
two departments, a sales department and a
system department.

If the company allowed its employees to work
in more than one department, the relation­
ship would be many-to-many since a depart­
ment could have many employees, and an
employee could work in many departments.

An example of a one-to-one relationship,
DEPT-CODE, could be the relationship between
the data entities DEPARTMENT and DEPT­
NUMBER. Each department would have a
unique department number, and that depart­
ment number would identify that depart­
ment only. In Figure 2, the department SALES
is uniquely related to the department code
of 1, and SYSTEMS to code 2.

The purpose of the data model is to guide
the definition and physical implementation
of the data base. The data base structure
should accurately reflect the relationships
among the entities and provide data access
paths for efficient data manipulation.

Network and relational systems are based
on extremely different data models, and
many of the advantages of relational systems
over network systems stem from this differ­
ence. Network and relational data models are
described in detail in following sections.

The Data Manipulation Language
While the data model defines entities and
relationships, the data manipulation language,
or DML, allows the user to manipulate the
data. The user can add, delete, move, update,
and read data, as well as perform other
operations. The data manipulation languages
for the network data model and the rela­
tional data model are as different as the
models themselves.

Network Systems
Network Data Model. In a network data
model, real-world data entities, such as
people, cars, and departments, are represented
with record types. A record type is similar
to a COBOL definition of a group item or to a
PASCAL record-structure type declaration.
An instance of a record type is simply called
a record. Relationships among the record
types are defined with the link-set, the basic
informational building block. The link-set
consists of one owner record type and possibly
many member record types. The owner
is the parent of its member record types. For
example, a salesperson (the owner record)
has many customers (the member records), just
as a department has many employees, and
a writer writes many books. Graphically, the
link-set may be represented with the tree
notation or multi-list notation, as in Figure 3.

Using link-sets, a data base designer con­
structs a network data model by connecting
the owner record types and member record
types. The connections among record types
are called links or chains. Member record
types can themselves be owners of other record
types; similarly, owner record types can
be members of a parent record type. Thus,
the term "network" is appropriate because
link-sets can be connected in a network to
form any topology.

The main restriction of the link-set is that
the owner and member records cannot be
of the same record type. This restriction makes
it very difficult to design network data
bases for certain applications, such as organi­
zational charts and bills of material. For
example, in most companies, a person can
manage other people and can, in turn, be
managed by someone else. Also, everyone in
the company is considered an employee of
the company, including the president. The

T A N D E M J O U R N A L WINTER 1984

most efficient data model for this type of
organization would be made up of the entity
EMPLOYEE and the relationship MANAGED-BY

among the employees. This would establish
a link-set in which the owner record of type
EMPLOYEE would be the manager of its
member records of type EMPLOYEE. This link­
set, however, is prohibited in the network
model, since both the owner and member
record types are the same. (Network data
base designers commonly avoid this by defin­
ing a dummy indirect owner record of a
different type.)

Figure 4 illustrates how the link-set in a
network data model is used to represent the
relationship of a salesperson to many cus­
tomers. Using the multi-list notation, a link­
set SALESPERSON-CUSTOMERS is defined.
The owner record type SALESPERSON has the
fields ID, NAME, and DEPT, and the mem­
ber record type CUSTOMER has the fields
CUSTOMER-NAME and ADDRESS. A chain from
the owner record type to one or more
records of the member type represents the
desired relationship.

In the link-set in Figure 4, JOE has two
customers (FANTASY CO and TOYBOX) in his
member chain, MARY has one customer
(SUITS INC), and JOHN has no customers.

Network Data Manipulation Language. The
data manipulation language in the network
data model is based on the concept of chains
within link-sets. These chains provide logical
access paths for the network data manipu­
lation language to traverse in order to access
related records. The traversal of chains is
known as navigation. Therefore, not only does
the network data manipulation language
provide verbs to add, delete, update, and read
records, but it also provides verbs such as
CONNECT, DISCONNECT, and RECONNECT to
navigate and manage chains.

For navigation, network systems provide
many types of currency pointers, such as the
current of run-unit, current of link-set-type,
and current of record-type. The current of
run-unit identifies the desired program pro­
cess, the current of link-set-type identifies the

Figure 3

Figure 4

Tree notation
Owner record is
parent of
member records.

OWner

~
Members

Multi-list notation
Owner record has
a "chain" of
member records.

Owner

• Member

+
Merribet

+
Member

Figure 3.

Link-sets can be repre­
sented graphically by the
tree notation or the
multi-list notation.

LINK-SET: SALESPERSON-CUSTOMERS

OWNER: SALESPERSON MEMBER: CUSTOMER

desired link-set, and the current of record­
type identifies the desired record within the
current link-set. In other words, the record­
type currency pointer keeps track of the user's
position in a chain. Many statements
of the network data manipulation language
implicitly reference a currency pointer.
For example, the DELETE verb deletes the
record indicated by the record-type currency
pointer, and the INSERT verb adds a record
to a chain just after the record indicated by
the record-type currency pointer.

Figure 4.

A link-set in the network
data model, representing
the relationship of a
salesperson to many
customers.

WINTER 1984 T A N D E M J O U R N A L 29

Figure 5.

Example of a table in the
relational data model.

Figure 6.

The common column
SALESPERSON-ID defines
a one-to-many relation­
ship between the SALES­
PERSON and CUSTOMER
tables.

30

Figure 5

Column
(attribute)

SALESPERSON TABLE

SAUES-
PERSOK-ID NAME

01 JOE

JOHN

Figure 6

SALESPERSON TABLE

CUSTOMER TABLE

t,,i~e

JOE
MARY
JOHN

CUSTOMER­
NAME
FANTASYCO
TOYBOX
SUITS INC

DEPT

TOYS
CLoTHES
AUTOS

ADDRESS

11 ELM
23CHeRRY
36PINE

For example, in a generic network data
manipulation language, to answer the question,
"For which customers is salesperson Joe
responsible?" one could say:

FIND SALESPERSON RECORD
WHERE NAME = "JOE'

FIND FIRST CUSTOMER RECORD
IN CURRENT SALESPERSON-CUSTOMERS
WHILE NOT FAIL DO

PRINT CUSTOMER-NAME OF CUSTOMER
RECORD
FIND NEXT CUSTOMER RECORD
IN CURRENT SALESPERSON-CUSTOMERS

END

The first FIND initializes the link-set-type
and record-type currency pointers to JOE's
record in the owner chain SALESPERSON. Next,
the FIND FIRST statement sets the record­
type currency pointer to the first member
record in JOE's chain (the member record
with CUSTOMER-NAME FANTASY CO). The
WHILE loop prints each customer name with
PRINT and traverses the chain with FIND NEXT
until the end-of-chain is reached.

Relational Systems
Relational Data Model. In the relational data
model, data entities are represented with
two-dimensional tables. A table is a collection
of homogeneous records, and each record
is composed of fields. In relational terminology,
records are called rows, and fields are
called columns. Figure 5 illustrates a table
representing the data entity SALESPERSON with
the columns SALESPERSON-ID, NAME, and DEPT.

Each column is an attribute of the data
entity that the table represents. In Figure 5,
each salesperson has the attributes IDENTI­
FICATION NUMBER, NAME, and DEPARTMENT.
In order to maintain data integrity, a column
can store data from a set of acceptable
values only, known as the domain of the
column. Whether or not a value is acceptable
in the domain is defined by the applica-
tion. For example, if the column represents
CUSTOMER-ACCOUNT, its domain is taken
as the list of valid customer account numbers
currently on file. If the column represents
GENDER, its domain is (MALE, FEMALE).

Relationships among tables are defined when
the same column appears in two or more
different tables. The column does not have
to have the same name in each table, but
it must have the same domain of acceptable
values with the same real-world semantics.
For example, if the common column were called
DISTANCE, the tables that had this column
would all have to contain values represented
in the same form of measurement, such as
feet, in this column. One table could not store
the distance in inches, and another table
in yards or metric units.

T A N D E M J O U R N A L WINTER 1984

Each row in the table represents an instance
of the data entity. In Figure 5, the SALESPERSON
table has three rows, each representing a
different salesperson (JOE, MARY, JOHN). To
distinguish one salesperson from the other,
the SALESPERSON-ID column stores a unique
identification number for each salesperson.
Other unique numbers often used to identify
people are SOCIAL-SECURITY and DRIVERS­
LICENSE.

Such a column used to distinguish rows in
a table is called a key. A key can be com­
posed of multiple columns. For example, the
columns YEAR, DAY-OF-YEAR, and TIME

could form a key that represents a unique
timestamp. A table can be defined to allow
duplicate key values or to maintain unique key
values, depending on the table's role in any
relationships in which it participates.

In Figure 6, a one-to-many relationship
among two entities, SALESPERSON and
CUSTOMER, is defined. In this relationship, a
salesperson is responsible for many customers.

The SALESPERSON table and CUSTOMER

table are related through a common column
called SALESPERSON-ID whose values
are taken from the domain of valid salesper­
son identification numbers. The column
SALESPERSON-ID is used to establish the rela­
tionship, since it guarantees the unique
identification of a salesperson. In the SALES­
PERSON table, the key SALESPERSON-ID can
store unique key values only, since each sales­
person is identified with a unique identi­
fication number. In the CUSTOMER table, the
key SALESPERSON-ID allows duplicate key
values, since a salesperson can have multiple
customers.

A salesperson is related to his or her
customers through an identification number
represented in the SALESPERSON-ID column
of the CUSTOMER table. For example, both
the customers FANTASY co and TOYBOX
belong to the salesperson with identification
number equal to "01." By looking at the
SALESPERSON table, one can determine that
this salesperson is JOE. In this fashion, the
two tables represent the fact that JOE is respon­
sible for the customers FANTASY co and

TOYBOX, MARY is responsible for SUITS INC,
and JOHN currently is not responsible for
any customers.

The common columns used to form an
informative relationship are usually among
different tables, but this is not mandatory.
They can be in the same table. For example,
as illustrated in Figure 7, only a single table
is required to record information on employees
and identify their immediate managers.
Each row not only describes the entity
EMPLOYEE but also defines the employee­
manager relationship.

Figure 7

EMPLOYEE TABLE

NAME TITLE DEPT
JOAN PREStDEm 3
SALLY VICE PRES 4
MARY SALES REP 5
SILL ACCOUNTANT 5
JOE CONSULTANT 4

The two columns EMPLOYEE-ID and
MANAGER-ID store data from the same domain
of valid employee numbers. An employee,
described with a unique row distinguished by
the key EMPLOYEE-ID, is related to his or
her manager through the manager's identifica­
tion number in the row's MANAGER-ID
column. For instance, both MARY and BILL
work for the manager with identification
number "2021." To determine whose ID this is,
one can look in the EMPLOYEE-ID column
and find that the ID is associated with SALLY.

Therefore, this single table represents the
fact that MARY and BILL work for SALLY, and
SALLY and JOE work for JOAN. As president,
JOAN does not have a manager.

W I N T E R I 9 8 4 T A N D E M J O U R N A L

Figure 7.

A single table can repre­
sent a relationship. In
this table, the employee­
manager relationship is
represented.

31

Figure 8.

Projection selects columns;
selection selects rows.

32

Figure 8

Selection of the row
where NAME= 'JOE'

SALESPERSON TABLE

SALES·
PERSON-to

02
03

CUSTOMER TABLE

SALes~
PERSON-ID
01
01
02

NAME

MARY
JOHN

DEPT

CLOTHES
AUTOS

Projection of the column
CUSTOMER-NAME

ADDRESS

11ELM
23CHERRY
36PINE

Relational Data Manipulation Language.
The relational data manipulation language
provides three fundamental operations that
allow the user to pinpoint the data to be
manipulated. The user can choose specific
columns, select certain rows, and link mul­
tiple tables in order to access related data
from tables.

Based on the same sales and customers
example, a relational query that asks, "For
which customers is salesperson Joe respon­
sible?", would be:

LIST CUSTOMER-NAME
WHERE NAME OF SALESPERSON TABLE = 'JOE'

AND SALESPERSON-ID OF
SALESPERSON TABLE =
SALESPERSON-ID OF
CUSTOMER TABLE

In this relational query, the column
CUSTOMER-NAME is a projection of the table
CUSTOMER. Since the purpose of the query
is to list certain names, only the appropriate
column (in this example, CUSTOMER-NAME)
is projected onto the output device; all other
irrelevant columns are ignored. The require­
ment NAME = 'JOE' is called a selection.

Whereas a projection selects columns, a selec­
tion selects rows. Projection and selection
are the two fundamental operations that allow
users to extract specific subsets of a table
non-procedurally. (The non-procedural
properties of a relational query language are
further defined and analyzed in a follow-
ing section.) Figure 8 illustrates projection
and selection.

In the relational model, relationships
among data entities (tables) are represented
by a column common to those tables. For
example, SALESPERSON-ID is common to both
the SALESPERSON and CUSTOMER tables.
A row in the SALESPERSON table is related to
its row in the CUSTOMER table when the
SALESPERSON-ID column in both tables stores
the same value. Thus, to access related
rows from multiple tables, the user matches
rows from the tables, based on equal values
of the common column. This is called a join
operation. In the previous query, the match­
ing of rows in the SALESPERSON and CUSTOMER
tables by equating the SALESPERSON-ID
columns from the two tables is an example
of a join.

The join operation produces a logical view of
the data to establish an informational rela­
tionship by recomposing the physical tables
into a single virtual table. The set of columns
of the single virtual table is the union of
columns from the physical tables. Figure 9
illustrates a join where SALESPERSON-ID
OF SALESPERSON TABLE = SALESPERSON-ID OF
CUSTOMER TABLE. Note that since sales­
person JOHN (identification "03") has no
customers, he does not appear in the resul­
tant logical view, as there is no row in the
CUSTOMER table with SALESPERSON-ID
equal to "03" to satisfy the join operation.

Figure 10 shows the procedure for process­
ing the query in the example, involving
projection, selection, and join operations
applied together. The relational system
first applies selection on the SALESPERSON
table to find all rows with column NAME
equal to JOE. Then, it performs the join to the
CUSTOMER table using the common column
SALESPERSON-ID. JOE's ID is "01'', so all rows

T A N D E M J O U R N A L W I N T E R I 9 8 4

in the CUSTOMER table with SALESPERSON-ID
equal to "01'' are linked. Finally, a projec­
tion applied to the linked rows in the logical
view prints the desired CUSTOMER-NAMES
of FANTASY co and TOYBOX.

A relational data manipulation language
also provides other verbs to allow a user
to add, update, and delete data. The user still
applies projection, selection, and join
operations to qualify the exact rows to be
operated on. For example, the following
deletes JOE's customers:

DELETE ROWS FROM CUSTOMER TABLE
WHERE NAME OF SALESPERSON

TABLE = 'JOE'
AND SALESPERSON-ID OF

SALESPERSON TABLE =
SALESPERSON-ID OF
CUSTOMER TABLE

In addition to AND, the set qualifiers OR and
NOT can be used in the WHERE clause of
a relational statement. For example, the fol­
lowing retrieves all the names of sales­
people who work in the department TOYS or
AUTOS:

LIST NAME OF SALESPERSON TABLE
WHERE DEPT = 'TOYS'

OR DEPT = 'AUTOS'

Also, selection and join operations do
not have to be based on equality. For example,
the following retrieves the names of sales­
people with identification numbers greater
than "02":

LIST NAME OF SALESPERSON TABLE
WHERE SALESPERSON-ID OF

SALESPERSON TABLE > '02'

Summary of Network and Relational Systems
In a network system, data entities are
represented with record types. Each record
type has fields which are the attributes of
the represented data entity. An instance of a
record type is called a record. Relation­
ships among the record types are established
with link-sets, each consisting of one owner
record type and possibly many member record
types. All link-sets are established when
the data base is initially defined and created.

Figure 9

SALESPERSON TABLE

CUSTOMER TABLE

SALES· CUSTOMER-
PERSON-ID NAME

LOGICAL VIEW produced by join

SALES-
PERSON-ID NAME

ADDRESS

Join where
SALESPERSON-ID of
SALESPERSON TABLE =
SALESPERSON-ID of
CUSTOMER TABLE

02 MARY CLOTHES SUITS INC 36 PINE

Figure10

SALESPERSON TABLE

SALES­
PERSON-ID

02
03

CUSTOMER TABLE

NAME

MARY
JOHN

DEPT

CLOTHES
AUTOS

SALES- CUSTOMER- ADDRESS
PERSON-ID NAME

02 SUITS INC 36PINE

LOGICAL VIEW produced by join

SALES-
PERSON-ID NAME

Figure 9.

A join operation pro -
duces a logical tabular
view of the data by recom­
posing the related
physical tables into a single
virtual table.

Step 1. Selection
of row where
NAME= 'JOE'

Step 2. Join of
SALESPERSON and
CUSTOMER TABLE where
SALESPERSON-ID= '01'

Step 3. PROJECTION of
column CUSTOMER-NAME
lists answer to query.

Figure 10.

The steps involved in
processing a query.

WINTER 1984 T A N D E M J O U R N A L 33

A connection from an owner record to its
member records is called a chain. Chains pro­
vide the logical paths the network data
manipulation language uses to access related
records. Member record types can be
owners of other member types, and owner
record types can be members of other
owner types. Using currency pointers, the
user accesses information by navigating the
chains in link-sets.

In a relational system, data entities are
represented with tables that have rows and

A relational query is
simpler because it is

non-procedural, set-based,
and can be formed from
a small group of verbs.

columns. The columns
for a table are the
attributes of the data
entity, and the rows
are instances of the
data entity. Relation­
ships among tables
are represented by a
column common
to those tables. The

common column must have the same domain
and same semantics in all related tables.

I~ a ~elational data manipulation language,
proJectlon selects columns, selection selects
rows, and joining accesses related rows from
multiple tables. Relationships among tables
are only represented when the data base is
initially defined and created. At run time,
the join operation establishes the relationship
and constructs a logical tabular view of
the data by linking the physical tables that
are related.
. Th~ term "record type" in a network system
1s eqmvalent to the term "table" in a rela­
tional system. A record type and a table both
represent data entities. The terms "record"
and "row" are also equivalent since they both
represent instances of a data entity, and
the terms "field" and "column" are equivalent
because both represent attributes of the
data entity. Therefore, the representation of
data entities in both systems is basically
the same. It is the representation of relation­
ships among the data entities that varies
significantly between the systems.

The ENCOMPASS
Distributed Data Base System

The Tandem ENCOMPASS relational data
base system consists of six products: the Data
Definition Language (DDL), the ENFORM™

relational query language, the ENABLE™ pro­
gram generator, the ENSCRIBE™ data base
record manager, the Transaction Monitoring
Facility (TMF), and the PATHWAY trans­
action processing system. This section briefly
describes the role of each product.

The Data Definition Language (DDL) is
primarily used to define tables and their
columns. Each data base has an associated
data dictionary that describes the tables
and their columns in the data base. DDL is
used to add, delete, or update data defini­
tions in a data dictionary. After a table is
defined, the GUARDIAN File Utility Program
(FUP) is used to create the physical table. The
table is physically implemented with a
standard file-system file type that has records
with fields. Together, DDL and FUP are used
to create and maintain tables in the data base
as defined by the logical and physical data
models.

The ENFORM non-procedural relational
query language can be used interactively or
programmatically. Its interactive interface
allows users to make ad hoc queries and to
generate reports. Its host language inter­
face allows programs to retrieve information
from a data base using a relational access
language.

The ENABLE program generator creates
a simple interactive program that is based on
screens and driven by function keys. It
allows a user to peruse, add, delete, and update
rows in a table.

The ENSCRIBE data base record manager
provides high-level access to, and manipu­
lation of, records in a data base. As an integral
part of the GUARDIAN operating system,
it helps ensure data integrity if a processor
module, 1/0 channel, or disc drive fails.
Some of its important features are relational
access among files, record and file locking,
multiple volume (partitioned) files, and
mirrored discs.

34 T A N D E M J O U R N A L WINTER 1984

The Transaction Monitoring Facility (TMF)

protects the integrity and stability of infor­
mation in a data base that can be distributed
over many communications network nodes.
If a transaction is interrupted and does not
complete successfully, it may leave the
data base in an inconsistent state. TMF removes
the inconsistencies by restoring the data
base to its original state before the execution
of the transaction.

The PATHWAY transaction processing
system allows users to develop fault-tolerant
on-line applications in a requester-server
design structure. Requester programs control
terminals, screens, and the flow of trans­
actions, while server programs perform 1/0
accesses to data bases. Requesters and
servers communicate with each other by send­
ing messages. This division of responsibility
and functionality into independent processes
makes a PATHWAY transaction processing
application flexible, expandable, and easily
tuneable, taking full advantage of the Tandem
multi-processor hardware architecture.

Advantages of Relational Systems

The following discussion of the advantages
of relational systems over network systems
is based on the features and limitations inherent
in their data models. Hybrid data base
management systems providing some relational
features for a network system are not con­
sidered, since their underlying network model
does not efficiently support relational features.

Simplicity
Today, simplicity with full functionality is an
important requirement of software prod­
ucts. In a relational system, the data model
and data manipulation language are sig­
nificantly simpler than in a network system.
A relational system is easier to learn in
less time, does not require the user to have
extensive technical knowledge, allows the
user to be more productive, and reduces
overall costs.

Simpler Data Model. To use a relational
system, the user need only understand the
common concept of a table with rows and
columns. It is not necessary to understand the
underlying physical implementation of the
data base.

On the other hand, the network data model
is more complex. It involves the intercon­
nection of owner and member record types
to form link-sets. The user's view of the
data is a complicated one, involving chains
and access paths defined among the link-sets.

Simpler Data Manipulation Language. A
relational data manipulation language is simpler
than a network language because the rela­
tional language is non-procedural and set­
based, and it has a small set of concise
verbs to accomplish all operations. A network
data manipulation language is procedural
and record-oriented, and it has many verbs,
all of which make it very difficult to use
unless the user has expert knowledge of
the language.

Earlier, for each language, an example
answering the question, "For which cus­
tomers is Joe responsible?" was given. In the
following sections, the queries from the
examples are analyzed in order to illustrate
the properties of each language.

In the relational system, the example query
to be analyzed is:

LIST CUSTOMER-NAME
WHERE NAME OF SALESPERSON TABLE= 'JOE'

AND SALESPERSON-ID OF
SALESPERSON TABLE =
SALESPERSON-ID OF
CUSTOMER TABLE

This relational query is non-procedural
because it does not specify the steps necessary
to find the information; instead, it specifies
the criteria the rows must satisfy, using projec­
tion, selection, and join operations of the
WHERE clause. Also, it is set-based, in that
all rows that satisfy the selection criteria
are found, not just the first row.

WINTER 1984 T A N D E M J O U R N A L 35

36

Furthermore, the relational data manipula­
tion language is easy to use because a small
number of verbs can accomplish the data
operations. The verbs READ (LIST), WRITE,

UPDATE, and DELETE are sufficient for data
manipulation; no additional verbs for chain
manipulation are necessary. To access related
data in multiple tables, the user simply uses
the join operation. Built-in functions such as
AVERAGE, SUM, MIN, and MAX, known as
aggregate functions, are also available. These
functions can operate on sets of rows to
produce calculated results from the raw data
stored in the tables.

The example network query to be
analyzed is:

FIND SALESPERSON RECORD
WHERE NAME = 'JOE'

FIND FIRST CUSTOMER RECORD
IN CURRENT SALESPERSON-CUSTOMERS

WHILE NOT FAIL DO

PRINT CUSTOMER-NAME OF
CUSTOMER RECORD

FIND NEXT CUSTOMER RECORD
IN CURRENT SALESPERSON-CUSTOMERS

END

In this query, the FIND, FIND FIRST, FIND NEXT,

and WHILE statements illustrate the proce­
dural aspects of the network language, since
the user specifies the required steps to locate
the information. Also, the WHILE state­
ment illustrates the record orientation of the
language, that which provides the loop
control to process each record in a chain.

In addition to the standard READ, WRITE,

UPDATE, and DELETE verbs, the network data
manipulation language further complicates
the language with several formats of the FIND

verb and with the CONNECT, DISCONNECT,

and RECONNECT verbs. using the FIND verb
to manipulate currency pointers, the user
must navigate among the link-sets to access
data records, since the network data model
defines relationships with chains of logical
access paths. Some formats of the FIND

verb include FIND FIRST, FIND NEXT, FIND
DUPLICATE, FIND OWNER, and FIND ANY.

Besides navigation, the user may have to use
the CONNECT, DISCONNECT, and RECONNECT

verbs for the manual linking of records to,
and unlinking of records from, chains.

As more relationships among record types
are established, and the complexity of the
network data base increases, the complexity
of navigation increases also. To address
this problem, some vendors of network systems
provide a utility that displays a map of the
data base link-sets on a terminal screen to
indicate the location of various types of
currency pointers. It serves as a "you-are-here"
map like the ones found in large building
complexes. Although this map is a very useful
tool for navigating the data base, the navi­
gation itself is an extra task for the user. In a
relational data manipulation language,
maps are not needed, since complex navigation
problems do not exist.

Flexibility
Flexibility, another requirement of data base
management systems, allows the data base
designer to design a data base without know­
ing all the relationships and information
retrieval requirements before implementation
of the data base. As the application require­
ments change and evolve, so can the data
base structure, with minimal impact on existing
application software investments.

Relational systems can provide this flexibility
because the rows in multiple related tables
are not joined until run time, when a program
or query accesses the data base. The rela­
tional system dynamically creates the logical
view of the related data from the physical
tables, using, among several alternatives, the
most efficient access algorithm applicable,
given the physical structures of the tables at
the time of execution. For example, when
the selection or join operation in a relational
query involves a column whose physical
structure is supported by a primary or alternate
key index, the access algorithm accesses
the rows via the index. If the query involves a
non-indexed column, the access algorithm
may invoke a sort-merge procedure. At the
cost of some flexibility, some relational
systems allow the user to invoke a pre-compiled
query that has already determined the
access strategy.

In a network system, this flexibility at run
time is unavailable, because all relation­
ships are established with link-sets when the
data base is defined. Only those access
paths provided by chains that have been

T A N D E M J O U R N A L WINTER 1984

designed into the data base can exist. Rela­
tionships cannot be easily changed unless
the data base is re-defined.

The following conceptual analogy, based on
the elementary "connect-the-dots" game,
illustrates a network system's establishment
of relationships at definition time.

In Figure 11, each dot represents a table
in the relational data base, and each connected
pair of dots represents a link-set in the
network data base. In the relational data base,
the dots are not connected at definition
time, while in the network data base, the dots
must be connected for the data base to exist.

The run-time creation of the logical view
of related data makes it possible for a rela­
tional system to be more flexible than a
network system, allowing data-independence,
dynamic relationships, and ad hoc query
processing.

Data-Independence. In a relational system,
not only is the logical tabular view of the
data simpler, the physical level of the tables
is separated from users and applications.
Since users and applications interface with the
data base via the relational data manipu­
lation language, which is non-procedural and
operates on logical tables, the users and
applications are not dependent on the physical
structures of the tables. This data-independence
protects applications from changes at the
physical level.

The data base administrator can restructure
the physical level, made up of sequential,
relative, and indexed file types, to improve
performance or to change data definitions
without affecting users or applications. For
example, the data base administrator could
add an alternate key index for a column in a
table to enhance performance of searches
based on key values of the column. To use the
added index, no changes to any existing
applications or queries would be required. The
relational system would automatically use
the alternate key index at run time, if it would
improve performance. Thus, in relational
systems, the physical implementation of a table
is the responsibility of the data base adminis­
trator; the user simply uses the table.

In a network system, the separation of
the logical and physical structure is not as dis­
tinct. The user's view of the pre-defined

Figure 11

Figure 12

Relational
data base

f Table

Befor_e __

Network
data base

[

!ink set

l I I

I I
, ___ 1 ___ 1

After

I I
I I
I I -f- ---

Predefined
connection

j,lllb

f
New
tables

logical access paths in link-sets is dependent
on the physical chains in the data base
structure, and restructuring these chains
changes the connections of the logical
access paths. Because users and applications
interact with the data base by using a pro­
cedural data manipulation language, they must
navigate currency pointers among access
paths, becoming dependent on the paths' exist­
ence. Thus, it is difficult to alter the struc­
ture of a network data base without affecting
users and applications adversely.

Dynamic Relationships. In a relational system,
because relationships are not established
until run time, new relationships can be created
or old ones destroyed dynamically. Infor­
mation from different tables can be combined
to create new tables to represent new rela­
tionships. (It is easy to add or remove dots
from the picture.) This flexibility, illustrated
in Figure 12, makes it easier for the data base
structure to evolve as application require­
ments and the data model change.

WINTER 1984 T A N D E M J O U R N A L

Figure 11.

Network systems link
record types (or "connect
the dots") when the data
base is defined, prohibit­
ing flexibility.

Figure 12.

In relational systems,
new tables can be dynami­
cally created to represent
new relationships.

37

Figure 13.

The new table
PHONENUMBERS records
multiple phone num-
bers for each customer.
The common column
CUSTOMER-NAME
defines the one-to-many
relationship between
the CUSTOMER and
PHONENUMBERS tables.

38

Figure 13

SALESPERSON TABLE

NAME;.

JOE
MARY
JOHN

PHONENUMBERS TABLE

l~Mni:V..:i:& PHoNE-NUM

•

313-122-3201
313-122-3202
217-232-4477
415-122-7780
408-752-7125

DEPT

TOYS
CLOTHES
AUTOS

ADDRESS

11 ELM
23CHERRY
36PINE

For example' in the SALESPERSON TABLE
and CUSTOMER TABLE example presented
earlier, a new table called PHONENUMBERS with
columns CUSTOMER-NAME and PHONE-NUM
could be added to represent customers with
multiple phone numbers. This is illustrated
in Figure 13.

Based on the new table, the following answers
the query, "What are the phone numbers
of the customers for which Joe is responsible?":

LIST CUSTOMER-NAME OF
CUSTOMER TABLE,
PHONE-NUM OF PHONENUMBERS
TABLE

WHERE NAME OF SALESPERSON TABLE = 'JOE'
AND SALESPERSON-ID OF

SALESPERSON TABLE =
SALESPERSON-ID OF
CUSTOMER TABLE

AND CUSTOMER-NAME OF
CUSTOMER TABLE =
CUSTOMER-NAME OF
PHONENUMBERSTABLE

In most network systems (especially the
older ones), adding a new relationship or
destroying an old one would be extremely
difficult since the record types and their
connections are fixed at definition time.

To allow a customer to have a chain of phone
numbers in the network data base, a PHONE­
NUMBERS relationship, with a new link-set
called CUSTOMER-PHONENUMBERS (where the
owner record type would be CUSTOMER
and the member record type would be
PHONENUMBERS) would have to be added. This
additional link-set would be impossible to
add without re-defining the schema, restruc­
turing the data base, and performing a
data base unload/reload.

Ad Hoc Queries. Another benefit of estab­
lishing relationships at run time is that
relational systems can process a wide variety
of ad hoc queries, making the data base
an even more valuable source of information.
The flexibility inherent in relational systems
allows the user to dynamically create the new
relationships to satisfy ad hoc queries.
Given a query at execution time, the relational
system connects the dots (that is, it per­
forms join operations among the tables) to
establish the relationships necessary to
satisfy the query. This is illustrated in Figure 14.
This run-time flexibility is also advanta­
geous to the data base designer, since the
designer need not determine all queries to
be executed before implementing the physical
data base.

On the other hand, ad hoc queries can be
very difficult to process on network systems,
as new relationships providing new access
paths cannot be formed after the data base is
defined. In fact, it may not be possible to
satisfy certain classes of queries at all, simply
because the paths were not pre-defined.

System Optimization of Queries
A relational data manipulation language
is non-procedural, in that the user specifies
only the criteria for isolating the data to
be manipulated, not the data manipulation
steps to be performed. This allows the
relational system to determine how to optimize
the query process for the user. Since a net­
work data manipulation language is procedural,
the user has the responsibility of deter­
mining how to retrieve the data most efficiently.

T A N D E M J O U R N A L WINTER 1984

Query optimization in relational systems
involves reformulation of the user's query for
better run-time performance. Relational
data manipulation languages are based on
theoretical relational calculus, a field of
mathematics. Using the laws of relational
calculus such as the commutative and
associative properties, the query optimizer
can re-arrange, add, and delete projections,
selections, and joins to minimize:

■ Unnecessary operations.

■ Workspace sizes for intermediate results.

■ The number of rows to be joined.

Generally, query optimization involves
(1) performing selections as soon as possible
in order to reduce the number of rows,
and (2) combining selections and projections
in the same operation. The latter reduces
the length of the selected rows by eliminating
all columns not required to satisfy the query.

System optimization offers two benefits over
programmer optimization. First, the pro­
grammer need not be overly concerned with
optimization and the development of ultra­
efficient data base access algorithms. Second,
as new optimization techniques are developed,
they can be integrated into the existing
relational system. An existing application
automatically benefits from new optimiza­
tion features, and thus, is not tied to the current
state of technology.

Suitability for Distributed Data Bases
A relational system is better suited for the
implementation of distributed data bases
since there are no physical dependencies
among tables. A relationship among tables
is represented with the presence of a column
that is common to the tables, allowing the
tables to be distributed to remote nodes with
the relationship intact. The related data
from multiple tables can still be accessed,
regardless of the geographic location of
the tables.

Figure 14

Ad hoc query 2

I •
In a network system, record types are not

independent from one another at the physical
level. Owner record types are connected
to member record types to produce a data
base with intertwined access paths. This
dependency makes it very difficult for network
systems to implement distributed data bases
efficiently because the connections are based
on physical descriptions of record pointers.
When physical descriptions span communica­
tions network nodes, distributed record
types become bound to their locations and
cannot easily be moved. For example, if
record type A on node 1 is connected to record
type B on node 2 by a physical description,
the movement of record type B would invalidate
record type A's physical description of the
connection. B would no longer be located
where A thinks it is.

In relational systems, the ability to place a
table, whole or partitioned, on any disc
attached to the same or remote node offers
many performance advantages and cost
savings. By spreading one or more tables and
their alternate key files over many disc
devices, one can increase concurrent input/
output activity. While one disc is servicing
a request, another disc is available for access.
Moreover, since tables are geographically
independent, they can be placed on the node
closest to the users who use them most
often. This proximity can eliminate enormous
amounts of data transmission, reducing com­
munications costs and response-time delays.

WINTER 1984 T A N D E M J O U R N A L

~ hoc query 3

' I

' •--•-

Figure 14.

In relational systems, rela­
tionships among tables
are established at nm time,
as required, allowing
ad hoc queries.

39

40

Conclusion

Network data base management systems
were popular when technology dictated
that efficiency and low-level resource control
be of primary importance. Today, require­
ments have changed; user-friendliness and
maximal productivity are also important.
Relational systems, the latest generation of data
base management systems, offer the following
advantages:

• Simpler data model and data manipulation
language.

• Flexibility to restructure the physical level
for data-independence.

• Dynamic creation of tables and relationships.

• Easier ad hoc query processing.

• System optimization of queries.

• Easier implementation of distributed data
bases.

Finally, when relational systems are used,
many benefits are realized during the life
cycle of an application. During the design
phase, the data base definition does not
have to be complete, with all paths pre-defined,
as with network systems. Application require­
ments typically change, and the flexibility
inherent in relational systems ensures easy
initial data base design and ongoing growth.

In the implementation phase, that part of
the data base which has already been designed
can be generated immediately. Data entry
into these tables and verification of the tables
can proceed while the remaining portion
of the data base is being designed and gen­
erated. Also, with performance-tuning
parameters involving file structures, alternate
keys, locking strategy, and file placement,
application performance can be tuned, based
on execution statistics. Significant tuning
is possible, since the logical structure is clearly
separated from the physical structure. This
separation allows the data base administrator
to tune the physical level without affecting
applications that access the data base as logical
tabular views.

In conclusion, a relational system is
advantageous when:

• The application is not completely defined or
will change over time.

• The data base is dynamic and growing.

• New, nonstandard or ad hoc reports are
needed.

Today, many applications have the above
properties. These applications are well suited
for implementation on a relational system
such as the Tandem ENCOMPASS distributed
data base system.

Acknowledgements
Eileen Chan, Eric Chow, Nick Franks, Mike King, Bob
Sawyer, Hal Voege, Gil Wai, and Rob Welsh provided valuable
early review comments. Jim Gray, Jim Morrow, John Nauman,
and Ken Schmidt provided technical expertise and guidance
for later revisions. The author wishes to give his sincere thanks
to all.

References
Brodie, M., and Schmidt, J. July 1982. Final Report of the
ANSI/X3/SPARC Relational Data Base Task Group. ACM
SIG MOD, vol. 12, no. 4.

CODASLYL Data Description Language Committee. 1978.
DDL Journal of Development.

Data Base Task Group of CODASYL Programming Language
Committee. April 1971. Report.

Date, C.J. 1981. An Introduction to Data Base Systems.
3rd ed. Addison-Wesley Publishing Company.

Digital Equipment Corporation. May 1982. Software Product
Description VAX-11 DBMS. version 1.1.

Draffin, I. W, and Poole, F. 1980. Distributed Data Bases:
An Advanced Course. Cambridge University Press.

Engles, R. W November 1978. Description of the COBOL Data
Base Facility. Proc. GUIDE 47.

Gray, J. March 1981. An Approach to End-User Application
Design. Tandem Computers Incorporated.

Oracle Corporation. 1979. Oracle Introduction. version 1.5.
Relational Technology Incorporated. 1982. INGRES Reference
Manual.

Schmidt, K., Morrow, J., and Madsen, K. August 1983.
Application Data Base Design in a Tandem Environment.
Tandem Application Monograph Series. Tandem Computers
Incorporated.

Schuster, S. February 1981. Relational Data Base Management
For On-line Transaction Processing. Tandem Computers
Incorporated.

Ullman, J.D. 1980. Principles of Data Base Systems. Computer
Science Press, Inc.

Wiederhold, G. 1977. Data Base Design. McGraw-Hill.

Gary Ow is a senior systems analyst In Tandem's San Francisco
sales office. He joined Tandem in April, 1983. Before joining
Tandem, Gary developed languages and compilers for another
major mainframe vendor. He also designed relational and net­
work data base application systems for the petroleum industry. He
has a Masters Degree in Computer Science Engineering from
Stanford University and a Bachelors Degree in Computer Science
from San Francisco State University.

T A N D E M J O U R N A L WINTER 1 9 8 4

Nonstop™ Computer Systems

Part No. 83931 400091 01/84 Printed in USA

