
T A N D E M

SYSTEMS REVIEW

:\
I

NonStop SQL Release 2 Overview

Performance • Parallelism

NonStop SQL Release 2 Benchmark

Online Reorganization

Outer Join • NonStop SQL Gateways

Online Batch Processing

\)('10!\IR \'!'!(I

Volume 6, Number 2, October 1990

Editorial Director
Susan W Thompson
Editor
Anne Lewis

Associate Editors
Steven Kahn
Mark Peters
Technical Advisors
Mark Anderton
Terrye Kocher
Mike Noonan
Assistant Editor
Sarah Rood
Electronic Publishing
Annie F. Valva
Art Director
Janet Stevenson
Cover Art
Niklas Hallin
Illustrations
Laurie Scott
Cynthia Moore
Circulation
Cathy Gerrity

The Tandem Systems Re1:iew is pubfo,hed
by Tandem Computers Incorporated.

Purpose: The Tandem Systems Rel'iew
publishes technical infonnation about
Tandem .software releases and products.
Its purpose is to help prograrnmer
analy~ts who use our computer systems
to plan for, install. m.e. and tune Tandem
products.

Subscription additions and
changes: A~ of the March 1990 issue,
subscription~ to the Tandem Systems
Rel'iew must be approved by a Tandem
representative. Complete the customer
portions of the order fonn at the back of
thi~ copy and ~end the fonn to your local
Tandem sales oflke.

Comments: The editors welcome
suggestiom for content and fonnat.
Please send them to the Tandem
Srsrem.:J Reriew. LOC 216-05, I 8922
Forge Drive, Cupertino, CA 95014.

Tandem Computen, Incorporated make~
no repre~entation or warranty that the
infonnation contained in this publication
ii, applicable to "Ystems configured
differently than those system~ on which
the infon11ation has been developed and
tested. It also a~sumes no responsibility
for errors or omissions that may occur in
this publication.

Copyright© 1990 Tandem Computers
Incorporated. All righb reserved.

No part of this document may be
reproduced in any fonn, including
photocopy or translation to another
language. without the prior written
coment of Tandem Computers
Incorporated.

ENFORM, EXPAND, GUARDIAN,
MEASURE. MULTI LAN, NetBatch.
NonStop, PS TEXT, TACL, TAL,
Tandem, the Tandem logo. and TMF are
trademarks and service marks of Tandem
Computers Incorporated, protected
through use and/or registration in the
United States and many foreign
countrie.'>.

Microsoft is a registered trademark of
Micro~oft Corporation. Oracle is a
registered trademark of Oracle
Corporation. INGRES is a registered
trademark of Relational Technology. Inc.
SYBASE and SY BASE SQL Server arc
trademarks or Sy base, Inc.

TANDEM SYSTEMS REVIEW

2

4

12

24

36

52

60

76

86

Editor's Preface

An Overview ofNonStop SQL Release 2
Mike Pong

Performance Benefits of Parallel Query Execution
and Mixed Workload Support in NonStop SQL
Release 2
Susanne Englert.Jim Gray

The NonStop SQL Release 2 Benchmark
Susanne Englert, Jim Gray, Terrye Kocher, Praful Shah

Parallelism in NonStop SQL Release 2
Mark Moore, Amardeep Sodhi

Online Reorganization of Key-Sequenced
Tables and Files
Gary S, Smith

The Outer Join in NonStop SQL
Jay Vaishnav

Gateways to NonStop SQL
Don Slutz

Batch Processing in Online Enterprise Computing
Timothy Keefauver

2

Editor's Preface

ith Release 2 of
the NonStop" SQL
relational database
management system,
Tandem" systems
can simultaneously
run batch jobs, ad hoc

queries, and online transaction processing
(OL TP) applications against a single, large
database. Release 2 meets the growing demand
for a relational database that can manage large
amounts of data (100 gigabytes or larger) and
at the same time satisfy all types of processing
demands.

This is the Tandem Systems Review's
second issue featuring NonStop SQL.Volume 4,
number 2 (July 1988) introduced NonStop SQL
as a new product and discussed its most
important features.

The first article in this issue, by Pong, is
an overview of the new release. It briefly de
scribes the features introduced with Release 2
and guides the reader to the other articles in
this issue.

By exploiting the Tandem multiprocessor
architecture, Release 2 of NonStop SQL simulta
neously executes portions of an SQL query on
several processors, reducing its execution time
to a fraction of what it would be on a single
processor. In addition, NonStop SQL can
execute parallel queries and batch jobs on the
database with little impact on the response time
of concurrently running OL TP applications.

The article by Englert and Gray is the first of
two articles that describe the performance
benefits of parallel query execution in Release 2.
The authors describe in detail how parallel query
execution can provide speedup and scaleup for
batch and query processing. They also outline
new Tandem system features that support
parallelism in NonStop SQL by optimizing
sequential processing and mixed workload
performance.

The second of the two performance articles,
by Englert, Gray, Kocher, and Shah, describes
the benchmark tests that demonstrate near-linear
speedup and scaleup for SQL queries on a variety
of Tandem systems. The article explains how
the tests were run and describes the results of
each query.

TANDEM SYSTEMS REVIEW• OCTOBER 1990

Release 2 of NonStop SQL manages parallel
query execution by dividing an SQL query into
smaller tasks and assigning the tasks to separate
processors. The article by Moore and Sodhi
describes how Release 2 implements parallel
query execution. It suggests how Tandem users
can configure their systems to take maximum
advantage of this feature. Examples show how
each basic NonStop SQL operation executes in
parallel in a sample system configuration. The
article also describes the parallel index mainte
nance feature.

An important element of managing a very
large database is the ability to reorganize
fragmented files without having to suspend
access to online applications:Version C30 of
the Guardian" 90 operating system allows users
to reorganize audited, key-sequenced files
online, thus improving performance and recover
ing unused disk space. Smith's article explains
how tables and files become disorganized,
describes the impact on system performance,
and outlines the methods available to reorganize
them. It also describes how to control and tune
online file reorganization.

With the outer join operation, a new feature
in Release 2 of NonStop SQL, users can generate
exception reports while benefiting from simpler
SQL queries. The outer join operation combines
rows from multiple tables and also preserves
information that failed to qualify for the join.
Thus, with a single outer join query, users can
generate a complex exception report. The article
by Vaishnav defines the basic concepts related
to the outer join operation and compares the
functions of inner join and outer join operations.

To make NonStop SQL available to users of
PCs and workstations, Tandem is developing
gateways to connect popular SQL applications to
NonStop SQL. Tandem is working together with
SQL database vendors such as Oracle, INGRES,
and Microsoft/Sybase. Although a standard for
SQL exists, each vendor's implementation of an
SQL gateway differs. Slutz discusses general
design issues for SQL gateways, the standardiza
tion efforts currently in progress, and solutions
for gateway applications.

The final article in this issue discusses the
importance of batch processing in the online
computing enterprise. Keefauver describes the
enhancements in Tandem batch processing and
discusses the advantages of integrating batch
processing with OLTP. The article also describes
the software requirements for online batch
processing, including I/0 optimization, record
locking, and transaction protection.

The last page of this issue is a customer
survey. This questionnaire gives the Tandem
Systems Review staff information about reader
interests. Please take a few minutes to evaluate
each article in this issue and indicate the subjects
about which you would like to see more articles.

Susan W Thompson
Editorial Director

OCTOBER 1990 •TANDEM SYSTEMS REVIEW 3

4

An Overview of NonStop SQL
Release 2

elease 2 of NonStop'" SQL,
the Tandem'" relational data
base management system
(RDBMS), allows users to run
batch jobs and ad hoc
queries, as well as online
transaction processing (OLTP)

applications, on a single database. It meets the
growing demand for an RDBMS that can manage
large databases (100 gigabytes or larger). By
supporting concurrent batch, query, and online
transaction processing, NonStop SQL Release 2
eliminates the need to operate one database for
OLTP applications and a second database for
batch and query processing. NonStop SQL
Release 2 realizes the goal, increasingly sought
after by users, of managing all basic business
computing tasks on a single, up-to-date, enter
prise-wide database.

Release 1 of NonStop SQL, which imple
mented the American National Standards Insti
tute (ANSI) SQL standard on Tandem NonStop
computer systems, was a fully distributed
RDBMS (ANSI, 1986). It provided transparent
access to both local and remote data. It also
provided transaction protection for updates to
data stored in a distributed network. Further
more, benchmark tests demonstrated that
NonStop SQL Release 1 was viable for pro
duction-scale OLTP (Tandem Performance
Group, 1988). NonStop SQL achieved superior
performance by integrating SQL with the
Tandem file system and disk process, compo
nents of the Tandem Guardian'" 90 operating
system (Borr and Putzolu, 1988). The articles
in the July 1988 issue of the Tandem Systems
Review (Vol. 4, No. 2) describe various aspects
of NonStop SQL Release 1.

This article briefly describes the features
introduced with Release 2 of NonStop SQL. It
also discusses how those features contribute to
meeting the goals of NonStop SQL Release 2.
Finally, it guides the reader to the other articles
in this issue of the Tandem Systems Review;
those articles give detailed information about
many of the features outlined here.

TANDEM SYSTEMS REVIEW• OCTOBER 1990

The Goals ofNonStop SQL
Release 2
Tandem had two major goals in developing
Release 2 of NonStop SQL. First, DBMS users are
increasingly choosing NonStop SQL to manage
large databases. To meet this demand, NonStop
SQL must offer batch and query performance that
matches its proven OLTP performance. It must
also provide the management tools to handle
large tables.

Second, users are increasingly asking for a
single DBMS to manage OLTP, batch, and query
processing on a single database. Traditionally,
users have one database for their OLTP applica
tions and one or more databases for their query,
batch and report generating applications. They
must separate the databases so that the batch and
report generation applications do not degrade the
response time of the OLTP applications. The
demands on corporate information have become
even more complicated with the rise of informa
tion centers.

Maintaining separate databases has several
drawbacks. First, one of the databases is always
out of date. Consider, for example, a bank's
24-hour ATM system operating on an OLTP
database. Typically, that database is a stripped
down version of the complete customer
account database maintained by the batch
system. A memo-posting mechanism transfers
data from the OLTP database to the batch data
base. When the nightly batch run finishes, a
similar mechanism strips the batch data and
transfers it to the OLTP database. As long as
new data is not transferred the instant each
update occurs, at least one database system
must operate on stale data.

Second, maintaining separate systems is
expensive. Often, different vendors' hardware
and software (DBMS) systems operate the differ
ent databases. Equipment and processing power
may not be used as efficiently as they could be
in a single-database installation. Also, commu
nicating between the databases is costly. Users
must maintain common data definitions (the
databases must understand each other) and pay
the costs of transferring information from one
database to the other.

The Features of Nonstop SQL
Release 2
NonStop SQL Release 2 solves the dilemmas
inherent in maintaining separate databases by
allowing all three types of processing (online
transaction, batch, and query) to execute concur
rently on a single database. NonStop SQL Re
lease 2 realizes both this goal and the first goal,
managing large databases, by introducing fea
tures in three areas:

■ Performance.

■ Operability and manageability.

■ Compatibility with the ANSI standard.

If OLTP, batch, and query processing are to
coexist on a single database, batch jobs and
queries must perform well without degrading
OLTP performance. Intra-query parallel process
ing and parallel index maintenance, two features
introduced with NonStop SQL Release 2, signifi
cantly enhance batch and query processing and
also benefit OLTP performance.

To maintain performance in a mixed work
load environment, the system must be able to
balance properly the various demands being
made on it. Typically, it must give priority to
online transactions and allow batch jobs to run
in the background. A new disk process algorithm
ensures that large batch jobs and queries do not
take over the system and interfere with OLTP
response times.

OCTOBER 1990 •TANDEM SYSTEMS REVIEW 5

6

Also, NonStop SQL must offer users tools
that manage and operate a large, distributed
database without taking the database offline. The
online reorganization and partition split features
simplify database management by performing
these operations online; they keep the data-
base continuously available to OLTP and batch
applications.

Finally, because SQL is becoming an industry
wide standard, NonStop SQL must extend its
compatibility with the versions of SQL provided
by other vendors. NonStop SQL Release 2 has
become more compatible with the ANSI standard
by supporting null values, the UNION operator,
the outer join operator, and the DATETIME and
INTERVAL data types.

Performance
NonStop SQL Release 2 significantly improves
performance in batch and query processing,

I ntra-query processing
offers the potential for

scale up and speedup.

OLTP, and mixed
workload environments.
Features that benefit
batch jobs and queries
include intra-query
parallelism and
improved buffering for

update operations. Features that enhance OLTP
performance include better optimization of the
SQL OR operator and support of non-unique
clustering keys. Parallel index maintenance offers
advantages to both OLTP and batch processing.
Finally, a new load-balancing feature allows
mixed workloads of OLTP and batch processing
to operate concurrently.

Parallel Query Execution
Intra-query parallelism, introduced with
NonStop SQL Release 2, significantly improves
the response times of batch and ad hoc query
processing. When the user invokes intra-query
parallelism, NonStop SQL Release 2 divides a
large query into smaller parts and evaluates all
the parts in parallel. This feature takes advantage
of the Tandem multiprocessor architecture by
distributing the parts of a query among the
processors in the Tandem system.

NonStop SQL Release l provided parallelism
for OLTP applications by distributing each online
transaction to a separate processor. It did not
divide an individual transaction among multiple
processors. This type of parallelism, called inter
query parallelism, is not adequate for batch jobs
and ad hoc queries, which are usually much
larger than online transactions.

Intra-query parallelism has two advantages
over traditional sequential processing; it offers
the potential for scaleup and speedup. Scaleup
allows users to maintain the same response time
for a query when the database size increases. To
achieve scaleup, users increase the amount of
system hardware in proportion to the size of the
job. For example, by doubling the number of
processors and disks, users can maintain the same
execution time for a query on a database that has
doubled in size.

Speedup allows users to reduce the response
time of a query by adding more system hardware
to the system. For example, by doubling the
number of processors and disks, users can reduce
the response time of a query by half (assuming
that the database size remains constant.) In an
audited benchmark, NonStop SQL Release 2 has
demonstrated that the intra-query parallelism
feature provides both linear scaleup and linear
speedup for the basic SQL operations, including
the SELECT, UPDATE, DELETE, aggregate, and
join operations.

TANDEM SYSTEMS REVIEW• OCTOBER 1990

Three articles in this issue of the Tandem
Systems Review discuss various aspects of intra
query parallelism. Scaleup and speedup are
described in "Performance Benefits of Parallel
Query Execution and Mixed Workload Support
in NonStop SQL Release 2" (Englert and Gray,
1990). The benchmark tests are described in
"The NonStop SQL Release 2 Benchmark"
(Englert et al., 1990). The parallel processing
feature is described in "Parallelism in NonStop
SQL Release 2" (Moore and Sodhi, 1990).

Parallel Index Maintenance
NonStop SQL Release 2 further augments the
OLTP performance of Release 1 by updating
indexes in parallel. With parallel index mainte
nance, NonStop SQL can update 10 indexes in
approximately the same elapsed time it takes to
update one index (as long as the user has as
signed each index to a separate disk volume).
This reduces the elapsed time of online transac
tions that update tables containing many indexes.

Because multiple indexes are no longer a
performance liability for OLTP, application
designers can define multiple indexes on a table
to benefit batch and query processing. For
example, by taking advantage of the increased
number of indexes, application designers can
reduce the number of times the application
performs sorting, a time-consuming process.
Parallel index maintenance is described else
where in this issue of the Tandem Systems
Review (Moore and Sodhi, 1990).

OR Operator
NonStop SQL Release 2 provides another OLTP
performance enhancement by improving the
optimization of queries that use the OR operator.
In NonStop SQL Release 1, a query that con
tained the OR operator often resulted in a full
table scan of the affected tables. Since table scans
are time-consuming operations for large tables,
OLTP applications had to minimize the use of the
OR operator. To avoid the OR operator, applica
tion designers had to devote more effort to
writing application programs.

NonStop SQL Release 2 can rapidly evaluate
queries that use the OR operator if the predicates
involved reference index columns. Consider the
query:

SELECT * FROM T
WHERE COLI= 10 OR COL2 = 20

If COLI and COL2 are the prefix of two
different indexes, NonStop SQL uses the indexes
to retrieve (first) all the rows that satisfy the
predicate COLI = 10 and (second) all the rows
that satisfy the predicate COL2 = 20. Evaluating
the query in this fashion is much more efficient
than scanning the entire table.

Non-Unique Clustering Keys
The addition of non-unique clustering keys
provides yet another OLTP performance enhance
ment. Clustering permits related rows of a table
to be stored physically close to one another,
which allows the system to retrieve them quickly.
In NonStop SQL Release 1, only the primary
keys of a key-sequenced table were clustered.
However, primary keys must be unique and
many applications do not have unique key
values. NonStop SQL Release 2 allows non
unique key values to be clustered by attaching
unique, system-generated values to the non
unique keys.

OCTOBER !990 •TANDEM SYSTEMS REVIEW 7

8

Batch Updates
NonStop SQL Release 1 introduced virtual
sequential block buffering (VSBB) for reading
NonStop SQL tables (Pong, 1988). This feature
allows the disk process to select rows and project
fields before it returns a block of qualified rows
to the application. NonStop SQL Release 2
extends the concept of VSBB to insert and update
operations.

By buffering insert and update operations on
NonStop SQL tables, NonStop SQL Release 2
significantly reduces the amount of messages and
overhead data passed from the file system to the
disk process. Because of the VSBB feature, the
efficiency of insert and update operations has
increased by up to 30 percent in NonStop SQL
Release 2.

Balancing OLTP and Batch Processing
As the number of OLTP applications grows,
business enterprises increasingly want to process
their OLTP, batch, and query applications on the
same computer hardware, using the same data
base, and at the same time. In a traditional,
multiple-database installation, OLTP and batch
applications do not interfere with one another
because they execute on different databases. In a
single-database installation, applications having
different priorities compete for the same process
ing resources and need access to the same data
base. NonStop SQL Release 2 handles these
competing demands by balancing processor
loads according to the priority of the requesting
applications.

Before NonStop SQL Release 2, a problem
could arise when an application asked the disk
process to retrieve data. (Traditionally, the disk
process executes at a high priority even on behalf
of a low-priority request.) A low-priority batch
process executing in a lightly loaded CPU could
send multiple requests to a disk process execut
ing in another CPU. The low-priority requests
could keep the disk process busy and slow down
any OLTP process executing in this other CPU.

In NonStop SQL Release 2, the disk process
includes a new scheduling algorithm that pre
vents low-priority batch and query applications
from adversely affecting the performance of
high-priority OLTP applications. In an internal
Tandem benchmark, a background batch job did
not affect the performance of online transactions.
(This enhancement affects all requests to the disk
process; thus, it applies to applications that use
the Tandem Enscribe record management system
as well as those that use NonStop SQL.) The new
scheduling algorithm is described elsewhere in
this issue of the Tandem Systems Review (Englert
and Gray, 1990).

Operability and Manageability
As the corporate database grows in size and
becomes increasingly distributed, it also be
comes increasingly difficult to handle. Managing
a complex, distributed network of databases can
be human-resource intensive and, as a result,
error prone. To make this task easier, NonStop
SQL Release 2 has implemented several database
management features, including online reorgani
zation, semi-online partition split, and enhanced
node autonomy.

Online Reorganization
As update and delete operations modify a
database, the database can become fragmented.
Over time, a fragmented database can degrade
the performance of the applications that access
it. To maintain satisfactory application perfor
mance, the database administrator must per
iodically reorganize the database. For many
applications (such as 24-hour-a-day banking),
it is especially desirable to be able to reorganize
the database without taking it offline.

TANDEM SYSTEMS REVIEW• OCTOBER 1990

Online reorganization is a new disk process
feature that allows a key-sequenced NonStop SQL
table or a key-sequenced Enscribe file to be
reorganized online. During the reorganization,
online and batch applications can maintain full
read and write access to the data.

To minimize the impact the online reorganiza
tion may have on the performance of online and
batch applications, users can specify the rate at
which the reorganization is performed. Further
more, users can suspend and restart an online
reorganization; these features allow users to
suspend the reorganization during periods of
heavy system load and continue the reorganiza
tion later, when the system load is lighter. Online
reorganization is described elsewhere in this issue
of the Tandem Systems Review (Smith, 1990).

Partition Split
As the size of a database grows, more partitions
may be needed to accommodate the new data. For
example, application activity may cause the first
partition of a three-partition table to become full.
In many DBMSs, the database administrator must
unload the table, define a new table with four
partitions, and load the unloaded data onto the
new table. Unloading and loading a large table
can take many hours or even days. This is unac
ceptable to applications that require extended
operations (24 hours a day, 7 days a week).

NonStop SQL Release l helped to alleviate this
problem by letting users add a new partition to the
end of a table. NonStop SQL Release 2 lets users
split a partition into two partitions while allowing
read access to all partitions of the table and write
access to all partitions of the table not involved in
the partition split. If necessary, NonStop SQL can
also move the affected data to the new partition.
With this feature, the database designer does not
have to worry about defining a table with enough
partitions to accommodate anticipated growth.

Enhanced Node Autonomy
A DBMS should be flexible enough to obtain
access to a distributed database even when a node
in the database network is not available. A DBMS
that implements the principle of node autonomy
is restricted only when it cannot retrieve the
requested data (or part of the data) because
the particular node on which that data resides
is not available. With node autonomy, a query
such as an SQL SELECT statement can execute
without error as long as all SQL database objects
(table partitions, indexes, and catalogs) that
contribute to the result of the query are available
at execution time.

NonStop SQL Release 1 provided two forms
of node autonomy. If a query access plan required
the use of an index and the index was not avail-
able at execution time,
NonStop SQL still
returned the result
of the query as long
as the base table was
available (Pong, 1988).
Furthermore, a query
compiled successfully

F ull read and write
access is maintained

during online reorganization.

as long as the referenced table was registered
in a catalog that was available. The query com
piled even if different partitions of the table
were registered in other catalogs that were not
available.

OCTOBER 1990 •TANDEM SYSTEMS REVIEW 9

10

NonStop SQL Release 2 enhances these forms
of node autonomy by allowing a query to execute
even when a table partition specified in the query
is not available at execution time (as long as that
partition does not contribute data to the result of
the query). Furthermore, if the access path
requires the use of an index, NonStop SQL
Release 2 allows the query to execute even when
the primary partition of the index is not available.
Again, the primary partition of the index must
not contribute data to the result of the query. (In
NonStop SQL Release 1, the query would have
failed under these conditions.) With NonStop
SQL Release 2, Tandem achieves nearly complete
node autonomy.

Consider, for example, a query that specifies
P 1 as the first partition of a table that contains
three partitions, Pl, P2, and P3, and the first keys
of the partitions as 1, 100, and 200, respectively:

SELECT* FROM Pl
WHERE PRIMARY _KEY
BETWEEN 150 AND 200

Suppose partition Pl is not available at exe
cution time. In NonStop SQL Release 1, this
query would fail even though Pl does not con
tribute to the result of the query. In NonStop SQL
Release 2, the query executes successfully.

The only requirement in NonStop SQL
Release 2 is that all partitions required by the
query access plan must be available. Consider
the query:

SELECT* FROM Pl
WHERE PRIMARY _KEY< 100
OR PRIMARY _KEY> 200

Suppose partition P2 is not available at
execution time. If NonStop SQL chooses a
query access plan that involves scanning the
entire table, the query will fail because partition
P2 is not available.

ANSI Compatibility
When NonStop SQL Release 1 was developed,
ANSI SQL 86 had not yet become an industry
standard. As a result, there were several minor
incompatibilities between NonStop SQL and the
ANSI SQL standard. NonStop SQL Release 2
eliminates several of these incompatibilities.
NonStop SQL Release 2 also introduces features
that will become part of the ANSI SQL 2
standard.

Compatibility with ANSI SQL 86
NonStop SQL Release 2 supports null values
(ANSI, 1986). In SQL, a null value represents
missing or unknown information. For example,
an EMPLOYEE table may contain a field called
SPOUSE_NAME. However, a given employee
may not have a spouse. To represent the nonex
istent spouse, NonStop SQL fills in the field with
a null value. In essence, a null value allows a
database to model real-life situations in which
missing information is commonplace. With
NonStop SQL Release 2, applications can define
and manipulate unknown values in an industry
standard fashion.

NonStop SQL Release 2 also supports the
UNION operator, another ANSI SQL 86 feature
(ANSI, 1986). The UNION operator allows users
to combine the results of two or more SELECT
statements that have the same number of
SELECT list entries and equivalent data types.
NonStop SQL Release 2 makes it easy to frag
ment and distribute data across the system
because users can recombine the data easily
with the UNION operator.

Compatibility with ANSI SQL 2
NonStop SQL Release 2 also includes features
that will be part of the future ANSI SQL 2
standard (ANSI, 1989). These new features are
the LEFT JOIN operator and the DATETIME and
INTERVAL data types.

TANDEM SYSTEMS REVIEW• OCTOBER 1990

With the LEFT JOIN operator, an application
can preserve information from one or more
joined tables without having matched that
information in the joined columns. The LEFT
JOIN operator is described elsewhere in this issue
of the Tandem Systems Review (Vaishnav, 1990).

The new DATETIME and INTERVAL data
types simplify the manipulation of date and time
values, a welcome feature for application pro
grammers. NonStop SQL Release 2 supports
arithmetic operations on date, time, and interval
data. It also includes several specialized func
tions that help to simplify the manipulation of
these data. Finally, to allow for different national
preferences, NonStop SQL supports the USA,
European, and ANSI formats for displaying date
and time values.

Conclusion
NonStop SQL Release 1 provided users with a
superior, distributed, ANSI-compatible RDBMS
that performed well enough to support produc
tion-level OLTP. NonStop SQL Release 2 applies
the power of parallel processing to batch and
query processing, making it an ideal DBMS for
large, enterprise-wide databases. Also, NonStop
SQL Release 2 allows OLTP, batch processing,
and query processing to coexist in a single
database system without adversely affecting
OLTP applications.

By introducing the online reorganization and
partition split features, NonStop SQL Release 2
makes it simpler and easier to maintain large
databases. NonStop SQL also shows its commit
ment to ANSI standards by implementing ANSI
SQL 2 features such as the LEFT JOIN operator
and the DATETIME and INTERVAL data types.
With Release 2, NonStop SQL offers businesses
a DBMS that can manage all of their important
information processing needs on a single data
base of record.

References
ANSI. 1986. X3H2 Data Base Languall,es. (January 1986.)
American National Standards Institute.

ANSI. 1989. X3H2 Data Base Languages. (July 1989.) American
National Standards Institute.

Borr. A. and Putzolu. F. 1988. High Performance SQL Through
Low-Level System Integration. Proceedinll,s of'SIGMOD 88. ACM.

Englert, S. and Gray, J. 1990. Performance Benefits of Parallel
Query Execution and Mixed Workload Support in NonStop SQL
Release 2. Tandem Systems Review. Vol. 6, No. 2. Tandem
Computers Incorporated. Part no. 46987.

Englert, S. et al. 1990. NonStop SQL Release 2 Benchmark.
Tandem Systems Review. Vol. 6, No. 2. Tandem Computers
Incorporated. Part no. 46987.

Moore, M. and Sodhi, A. 1990. Parallelism in NonStop SQL
Release 2. Tandem Systems Review. Vol. 6, No. 2. Tandem
Computers Incorporated. Part no. 46987.

Pong, M. 1988. NonStop SQL Optimizer: Query Optimization and
User Influence. Tandem Systems Review. Vol. 4, No. 2. Tandem
Computers Incorporated. Part no. 13693.

Smith, G. 1990. Online Reorganization of Key-Sequenced Tables
and Files. Tandem Systems Review. Vol. 6, No. 2. Tandem
Computers Incorporated. Part no. 46987.

Tandem Performance Group. 1988. Tandem's NonStop SQL
Benchmark. Tandem Systems Review. Vol. 4, No. I. Tandem
Computers Incorporated. Part no. 11078.

Vaishnav, J. 1990. The Outer Join in NonStop SQL. Tandem
Systems Review. Vol. 6, No. 2. Tandem Computers Incorporated.
Part no. 46987.

Acknowledgments
I would like to thank the members of the NonStop SQL develop
ment team for their contributions to an outstanding release of
NonStop SQL. Special thanks are also due to the reviewers of this
article for providing technical and editorial suggestions.

Mike Pong is manager of the SOL Compiler Group in the
Transaction Networks Division. He is the designer of the Nonstop
SOL optimizer. Before joining the SOL Compiler Group, Mike
designed and implemented the autorollback feature of DP1 TMF.

OCTOBER 1990 •TANDEM SYSTEMS REVIEW 11

12

Performance Benefits of Parallel
Query Execution and Mixed Workload
Support in NonStop SQL Release 2

elease 2 of the Tandem'"
NonStop'" SQL distributed
relational database manage
ment system transparently
and automatically imple
ments parallelism within

------- individual SQL statements.
By exploiting the Tandem multiprocessor
architecture, NonStop SQL simultaneously
executes portions of an SQL query on many
processors, reducing its execution time to a
fraction of what it would be on a single proces
sor. At the same time, new Guardian" 90 operat
ing system support for mixed workloads allows
NonStop SQL to execute parallel queries and
batch jobs on a production-level database with
little impact on the response time of concur
rently running online transaction processing
(OLTP) applications.

With parallel query execution, users can
increase the speed of a NonStop SQL query
almost linearly by adding processors and disk
drives to their system. This performance benefit,
called speedup, helps users to meet the increas
ing demand for up-to-date information. Parallel
ism also helps users to manage a growing data
base. When a batch job increases in size, users
can keep its processing time constant by adding
proportionately more equipment to their system.
This performance benefit, called scaleup, is
especially useful for batch jobs restricted to a
fixed execution time (such as an overnight shift).

This is the first of two articles describing the
performance benefits of parallel query execution
in NonStop SQL Release 2. This article discusses
the reasons for implementing parallel query
execution, explains speedup and scaleup, and
describes OLTP scaleup (provided by NonStop
SQL Release 1). Next, the article describes in
detail how parallel query execution provides
speedup and scaleup for batch and query pro
cessing. Finally, the article outlines new Tandem
system features that support parallelism in
NonStop SQL by optimizing sequential process
ing and mixed workload performance.

The second article, "The NonStop SQL
Release 2 Benchmark," describes the bench
mark tests performed by Tandem staff that
demonstrate near-linear speedup and scaleup
for NonStop SQL queries on a variety of
Tandem systems.

TANDEM SYSTEMS REVIEW• OCTOBER 1990

Why Tandem Developed Parallel
Query Execution
Release I of NonStop SQL offered users a
distributed relational database system that
could support high-performance OLTP on a
production-scale database. NonStop SQL was
the first SQL system to offer distributed data
(with node autonomy); distributed, fault-tolerant
execution; and distributed transaction process
ing. It was integrated with the Tandem software
environment, including the Guardian 90 operat
ing system, Transaction Monitoring Facility
(TMF") logging system, Pathway transaction
processing system, and Pathmaker'" application
generator. Because of its low-level integration
with Guardian 90 (and its integration with other
Tandem software), NonStop SQL Release 1
provided outstanding performance for OLTP
applications. Benchmark tests demonstrated its
performance at over 200 DebitCredit transac
tions per second (tps) (NonStop SQL Benchmark
Workbook, 1987).

Tandem had two reasons for implementing
parallel query execution in Release 2 of
NonStop SQL. First, users are increasingly
choosing NonStop SQL for large databases
(100 gigabytes or larger). Without parallelism,
a query scanning a database at one megabyte
per second would take about one day to search
a 100-gigabyte database. With parallelism,
the query can execute in less than an hour.
Large databases require parallel execution for
scanning data as well as for utilities such as
building indexes and loading, dumping, and
reorganizing data.

Second, users increasingly want to establish
a single database of record that supports concur
rent OLTP, batch processing, and query process
ing. OLTP systems have many processors and
disks to support many small transactions doing
random I/0. By automatically converting SQL
statements to parallel execution, NonStop SQL
can apply this OLTP hardware to a batch job
running against the online database. Further
more, by bringing batch jobs and queries from
the information center (which contains stale
data) into the online environment, NonStop SQL
provides access to current data and satisfies the
performance requirements of a single database
of record. With the new mixed workload support
in NonStop SQL Release 2, a low-priority batch
job will not significantly degrade the response
time of a simultaneously executing OLTP
application.

The Uses of Parallelism: Speedup
and Scaleup
A multiprocessor system can be used to divide
a big task into many smaller ones and solve
them in parallel. Parallelism has two applica
tions: speedup and scaleup. Speedup allows a
task to be completed more quickly by breaking
it into many smaller tasks. Scaleup allows a
large task to be completed in the same time as
a small one by using proportionately more
processing power.

For example, consider a manufacturing
application that runs a batch job every night to
perform materials resource planning (MRP).
The user faces a speedup problem if the MRP
batch run takes thirty hours on a single proces
sor. A parallel processing system with ten
processors should be able to run the job in three
hours. The user faces a scaleup problem if the
batch job now doubles in size (because new
products are added). With parallel processing,
if the user adds another ten processors and a
corresponding number of disk drives to the
system, the MRP job should continue to execute
in three hours.

Users with OLTP applications that grow also
face a scaleup problem. If a company doubles
the number of customers it serves, its order-entry
OLTP system must process twice as many
transactions per second. A parallel processing
system should be able to double the size of its
terminal network, processors, and database to
meet the increased demand.

OCTOBER 1990 •TANDEM SYSTEMS REVIEW 13

Figure 1.

This is a good speedup
curve showing linear
speedup in elapsed time
as more processing
elements are applied to
the Joh.

14

Figure 1

Processors and disks

How Speedup and Scaleup Differ
Speedup and scaleup are closely related
concepts, but they differ in interesting ways.
A system or an application can have good
scaleup properties but no opportunities for
speedup.

When users apply parallelism to speedup,
they trade time for money by buying more
equipment to finish a job more quickly. Suc
cessful speedup gives a linear (even) tradeoff
between time and money; twice as much equip
ment produces an answer in half as much time.
In some cases, users have already bought the
hardware for OLTP, so batch programs can run
at times of light load to get "free" speedup.

When users apply parallelism to scaleup,they
can save money by adding new processors and
storage modules to their system as the demand
grows. In contrast, a system that does not exploit
parallelism cannot be expanded incrementally.
To improve performance, users must replace
their entire hardware investment with new
equipment. Thus, a system that scales up has
significant financial benefits over traditional
system designs.

The challenge is to design a system that
automatically gives linear speedups and scale
ups. There are exceptions; some tasks do not
decompose even when parallelism is available.
However, users can get linear speedups and
scaleups when querying large tables using any
of the SQL relational operators: SELECT,
INSERT, UPDATE, DELETE, project, aggregate,
and join. Evidence of linear speedups and
scaleups was given by the Gamma System at
the University of Wisconsin (De Witt et al.,
1988) and by the benchmark results described
in "The NonStop SQL Release 2 Benchmark,"
the companion article in this issue of the
Tandem Systems Review (Englert et al., 1990).

Defining Speedup
Speedup measures how much faster a parallel
multiprocessor system completes a task than a
single processor. It is defined by the formula:

S d
OldElapsedTime

pee up=
NewElapsedTime

As users add more processors and disks, the
new elapsed time for the job should be propor
tionately less than the old time. Figure I shows
an ideal speedup curve, in which speedup
increases in linear fashion.

TANDEM SYSTEMS REVIEW• OCTOBER 1990

Speedup and OLTP. Most systems do not
display speedup because they do not exploit
parallelism. (See Figure 2.) For example, Release
1 of NonStop SQL did not automatically decom
pose relational operations into smaller jobs that
could be executed independently on multiple
processors and disks. Instead, each individual job
used a single processor and a single disk at a
time. Therefore, NonStop SQL Release 1 dis
played a speedup of one for a single job no
matter how many processors and disks were
added to the system.

Because NonStop SQL Release 1 focused
on OLTP performance, it obtained parallel
execution by running many independent transac
tions in parallel. Parallelism is explicit in OLTP
applications, which consist of many small jobs.
Moreover, dividing an individual transaction is
impractical. When a small job is decomposed
into parallel units of work, the system may spend
more processing time starting and distributing
the work than executing the transaction.

Speedup for Queries and Batch Jobs. Unlike
an online transaction, an individual query or
batch job is often large enough to benefit from
parallel execution. Release 2 of NonStop SQL
provides near-linear speedups for queries and
batch jobs by automatically executing individual
SQL statements in parallel.

Startup, Interference, and Skew. Typically,
even parallel systems do not have linear speed
ups because of problems with startup, interfer
ence, and skew. (See Figure 3.) Startup problems
occur because parallel processors take more time
to begin working on a job than a single proces
sor, just as a large group of people takes longer
to begin a shared project than a small group.

After the processors start working, they can
interfere with one another or queue behind a
bottleneck. For example, in shared-memory
multiprocessors, memory or software interfer
ence can cause a six-processor system to have
only three times the power of a single processor.
If the system grows beyond a certain size, adding
an additional processor may introduce more
interference than its processing power contrib
utes to the system, causing the system to slow
down rather than speed up.

Figure 2

Q) Q)

E .!;;
~ !:;
u Q)
Q) (/)
(/) 0.
g- ~
~~
- Q)
Oz

0.
::,
u
Q)
Q)
0.

Cf)

Figure 3

0.
::,
u
Q)
Q)
0.

Cf)

Processors and disks

Processors and disks

OCTOBER 1990 •TANDEM SYSTEMS REVIEW

Figure 2.

This is a had 5peedup
curve typical of systems
without parallelism. The
application uses only one
processor and disk at a
time no matter how many
are added, so there is no
speedup at all.

Figure 3.

This is another kind of
had speedup curve. The
initial slowdown is due
to parallelism startup
costs; the nonlinear then
diminishin?, speedup
is due to interference
problems, skew problems,
or both.

15

Figure 4.

This is a good batch
scaleup curve showing
constant processing
time as proportionately
more processing
elements are applied
to a proportionately
largerjoh.

Figure 5.

This is a bad scaleup
curve showing that as
the job grows, the
elapsed time grows
even though more
processing and disk
elements are applied
to the job.

16

Figure 4

Q)

E . .,
-g
U)
a. ro
uJ

Figure 5

Q)

E
:.::;

-g
U)
a. ro
uJ

Job size and processors and disks

Job size and processors and disks

Skew problems arise when a job is divided
into such tiny units that the startup and process
ing variance is larger than the processing time
for each unit. After skew begins to dominate,
subdividing a job further does not increase the
speedup. Startup, interference, and skew prob
lems are inherent in parallel systems (Smith et
al., 1989). Therefore, the speedup curve shown
in Figure 3 ultimately flattens out and begins to
curve downward.

Defining Scaleup
Scaleup measures the degree to which a
parallel system can manage a growing work
load. Scaleup has two forms: one applies to
batch processing, the other to OLTP. Both types
of scaleup postulate that the workload and the
system grow in proportion to one another, but
the two scaleup types differ in their goals. Batch
scaleup should keep a constant elapsed process
ing time for a large job. OLTP scaleup should
increase the system's transaction throughput
(transactions per second) while keeping re
sponse times the same. Scaleup is defined by
the formulas:

New ElapsedTime
Batch Scaleup = -------

0 ldElapsedTime

and

OLTP Scaleup = NewThroughput
OldThroughput

Good batch scaleup numbers for an n
processor, n-disk system are close to 1. Good
OLTP scaleup numbers for such a system are
close ton.

Batch scaleup is a requirement for any appli
cation that must execute within a fixed time
period (such as the nightly eight-hour graveyard
shift). As the batch job grows, the system must
continue to execute it within the batch window.

Figure 4 shows an ideal batch scaleup curve;
the processing time remains constant as the job
and system grow proportionately in size. Figure
5 shows a more typical batch scaleup curve. As
the job grows, the processing time grows.

TANDEM SYSTEMS REVIEW• OCTOBER 1990

Figure 6 uses the specific example of the
NonStop SQL Release I DebitCredit OLTP
workload benchmark to illustrate linear OLTP
scaleup of a system (NonStop SQL Benchmark
Workbook, 1987). The transaction throughput
(transactions per second) grows in linear fashion
as the number of terminals, processors, and disks
increases. (OLTP scaleup curves are similar to
speedup curves, except that the abscissa indicates
transaction throughput rather than speedup.)

Previous benchmark tests have shown that
Release I of NonStop SQL provided near-linear
scaleup for OLTP applications (Tandem Perfor
mance Group, 1988). To achieve this goal,
NonStop SQL provides inter-transaction
parallelism, in which many relatively simple
transactions execute in parallel.

A system with good speedup on a large job
will probably have good batch scaleup on smaller
jobs. With scaleup, one must consider how large
the job can grow before the system reaches a
bottleneck or system limit. Ideally, one should hit
an economic barrier long before the system hits a
software or hardware limit.

Batch Speedup and Scaleup
NonStop SQL Release 2 exploits the Tandem
parallel architecture to provide intra-transaction
parallelism, in which a single SQL operation
executes in parallel on many processors. Intra
transaction parallelism gives near-linear speedups
and scaleups for batch SQL operations.

SQL is a nonprocedural, set-oriented data
manipulation language. SQL operations are built
on the following basic operations:

■ Select all rows in a set that satisfy a predicate.
■ Project (remove) certain fields from all rows
in a set.

■ Aggregate all values in a set (compute a
function on the values in a set; for example,
find their count, average, sum, minimum, or
maximum value).

■ Join the rows in two sets on some attribute to
form a new set.

Figure 6

200
208

D
C:
0 u
Q)
(/)

uj
C:
0 ·n
"' 100 (/)
C:

"' i=

0
0 8 16 24 32

VLX processors

Each of these operations produces a new
set that can be fed into other operations or
deleted, updated, or inserted into an existing
table. The power of the relational model derives
from its ability to arbitrarily compose relational
operators. If a system can give linear speedup
and scaleup for each of these operators, then it
should give linear speedup and scaleup for any
combination of them.

OCTOBER 1990 •TANDEM SYSTEMS REVIEW

Figure 6.

OLTP scaleup of
NonStop SQL Release I
on the Debit-Credit OLTP
workload. As processors
grew.from 4 to 32, the
database grew.from
3.2 million rows to
25.6 million rows, and
the terminal network
grcw.fi-om 320 terminals
to 2560 terminals.
A 26-GB history table
was also maintained.
The throughput of the
system scales almost
linearly with the
workload.

17

Figure 7.

A t_,pical speedup design.
(a) The I -GB table is
stored on a single disk.
and the SELECT, project.
aggregate. or other
relational operator is
executed h_v a single
SQL executor on a single
processor and disk.
(h) The same table is
partitioned among JO
disks on JO processors.
The application running
in one of'the processors
transparently accesses all
JO disks in parallel (one
SQL exerntor sen·er per
disk). The parallel
execution should run
JO times faster than the
serial execution.

18

Figure 7

(a)

CPU

SOL
application

SOL

1 GB

Partitioning the Database

(b)

CPU1

SOL

0.1 GB

Before NonStop SQL can execute an SQL
operation in parallel, users must partition the
table being operated on. Consider a 1-gigabyte
table consisting of 10,000,000 rows, each 100
bytes long. Users could store the table on a
single disk accessed by a single processor or,
to achieve parallelism, they could partition it
equally among ten disks and processors. If the
database system gives location transparency,
the partitions are invisible to the application
program. The application can run in any of the
processors and access the partitioned table as
a single logical table. (See Figure 7.)

•••

CPUS

SOL
application

SOL

0.1 GB

CPU10

• ••

SOL

0.1 GB

Now consider a SELECT operation requiring
a complete scan of the table. The NonStop SQL
layer of the application program automatically
spawns an executor server process in each CPU
that issues disk-process scan requests for the
local partition. The NonStop SQL system scans
all ten disks in parallel, achieving a speedup of
ten. More information about how NonStop SQL
implements parallel processing appears else
where in this issue of the Tandem Systems
Review (Moore and Sodhi, 1990).

NonStop SQL achieves linear scaleup in a
similar way. Suppose the database grows by a
factor of ten, from a I -gigabyte table comprising
10,000,000 rows to a 10-gigabyte table compris
ing 100,000,000 rows. As the table is scaled
up, it is spread among ten disks and processors.
(See Figure 8.) By operating on all ten disks
in parallel, the NonStop SQL system can scan
the 10-gigabyte database in the same time it
took to scan the original I -gigabyte database.

As these examples show, parallelism in
NonStop SQL depends on two key features.
First, users must partition the data horizontally
among multiple disks and processors. Second,
when the query is invoked, NonStop SQL must
subcontract the execution of the relational
operator to each processor (and table partition).
This method works with the aggregate, project,
UPDATE, and DELETE operators just as it does
with SELECT.

TANDEM SYSTEMS REVIEW• OCTOBER 1990

Figure 8

(a)

CPU

SOL
application

SOL

1 GB

(b)

CPU1

SOL

1 GB

The INSERT operator adds one complication.
If the target of the insert is an entry-sequenced
table (a common format for intermediate tables
and query answer sets), the end of the sequential
table is a location of concentrated access (a hot
spot) and consequently a potential bottleneck. To
avoid the bottleneck, users can create a parti
tioned entry-sequenced table; NonStop SQL
directs the inserts to the end of each local parti
tion rather than the global end-of-file. If the
target table is partitioned to match the partition
ing of the query executors, NonStop SQL divides
the hotspot among the executors and eliminates
the bottleneck.

Even with parallel query execution, bottle
necks can occur elsewhere in the system. For
example, if the answer set of a SELECT, project,
or join operation is directed to an application, the
overall system speed is limited by the speed with
which the application can read and process the
answer set.

The COBOL, C, or Pascal application can
become the ultimate bottleneck because it runs
on a single processor. Typically, NonStop SQL
uses predicates to filter out most rows in a table,
so the system does not reach this bottleneck until
it has achieved considerable parallelism. Never
theless, the application bottleneck remains a
barrier to transparent parallelism. If this barrier is
a problem, users must partition the application
into several parallel applications, each working
on a partition of the answer set (Reuter et al.,
1989). To avoid the bottleneck internally,

CPU5

••• SOL
application

SOL

1 GB

CPU10

• ••

SOL

1 GB

NonStop SQL horizontally partitions all interme
diate answers among the processors and disks so
that no bottlenecks occur within the processing of
an SQL statement.

Parallel Join Operations
NonStop SQL uses a similar scheme to apply
parallelism to join operations. NonStop SQL
has three parallel join strategies. As shown in
research prototypes (DeWitt et al., 1986; DeWitt
et al., 1988), these techniques give both linear
speedups and linear batch scaleups for join
operations. The three parallel join strategies
are described in detail elsewhere in this issue
of the Tandem Systems Review (Moore and
Sodhi, 1990).

The first and most common strategy applies
when the tables being joined are already parti
tioned in the same way and the join is on a prefix
of the tables' primary keys. Suppose the outer
table is the item master of an invoice application
and the inner table comprises the item details.
The physical database design will probably cause
corresponding partitions of the item details and
item master to be located on the same disk. (The
primary key of the item detail table will be a
prefix of or the same as the primary key of the
item master table.) In this case, each individual
processor and disk execute one portion of the
join and no interprocessor communication or
interference occurs.

OCTOBER 1990 •TANDEM SYSTEMS REVIEW

Figure 8.

A typical hatch scaleup
design. (a) The 1-GB tahle
is stored on a single disk,
and the SELECT, project.
aggregate, or other
relational operator is
executed hy a single
SQL executor on a single
processor and disk.
(h) The same tah/e has
grown to JO GB; it is
partitioned among
10 disks 011 JO processors.
The application running
in one of"the processors
transparently accesses all
10 disks in parallel (one
SQL executor server
process per disk). The
parallel execution should
runjust as fast on the
10-GB tahle as the serial
execution runs on the
1-GB datahase.

19

20

The second join strategy applies when the
inner table is small and joined on a key field
and the outer table is large and partitioned. In
this case, each partition of the large table per
forms a nested join in parallel with the small
(inner) table.

The third strategy applies when both tables
are large or no useful key fields are involved in
the join. In this case, NonStop SQL uses a hash
function to repartition the two tables among all
local processors. When the partitioning is com
plete, the join is divided into many small joins
that can be performed independently. NonStop
SQL can perform both the partitioning and the
subsequent joining in parallel. NonStop SQL
usually performs the individual partition joins
as sort-merge joins.

Parallelism in a Commercial Environment
The parallel strategies implemented by NonStop
SQL are similar in spirit to those used by the
Teradata machine (The Genesis of a Database
Computer, 1984; DBC/1012 Database Computer
System Manual, Release 1.3, 1985) and other
database machines, including Gamma (De Witt
et al., 1986; Schneider and DeWitt, 1989), Bubba
(Smith et al., 1989), and Prospect (Reuter et al.,
1989). The algorithms are a subset of those used
in the University of Wisconsin Gamma Database
machine.

Database machines are designed for large
batch jobs and queries only. Users must buy
and maintain a separate general-purpose system
to run the computer network, transaction moni
tor, application programs, and operator interface.
This two-system approach is inconvenient, and
if the general-purpose system cannot provide
speedup and scaleup as the application grows,
the database machine's speedup and scaleup
benefits may be lost.

However, Tandem implemented the algo
rithms on a conventional, commercial multipro
cessor system rather than a specialized database
machine like the Teradata or Gamma system.
NonStop SQL also provides full transaction
integrity for applications and data distributed
in a local area network or a wide area network.
Because of its many capabilities, the NonStop
SQL system can be used for OLTP, networking,
and running application programs as well as for
batch and query processing.

System Support for Parallel Query
Performance and Mixed Workloads
NonStop SQL requires low-level system
support to achieve good performance for
parallel batch queries that involve sequential
processing. Several features in the Guardian 90
operating system and disk process, including
bulk read-ahead, sequential block buffering,
and asynchronous sequential write-behind,
provide that support.

In a mixed workload environment in which
batch jobs run concurrently with OLTP appli
cations, the system must prevent batch jobs
from interfering with OLTP performance. Two
Guardian 90 features, browse access locking
and the new mixed workload enhancement,
allow parallel queries to execute without ad
versely affecting OLTP applications.

TANDEM SYSTEMS REVIEW• OCTOBER 1990

Sequential Processing Performance
Improvements
NonStop SQL Release 2 substantially improves
sequential read and write performance. Sequen
tial reading benefits because the disk process
(a part of the Guardian 90 system) detects
sequential access and performs asynchronous
bulk read-ahead of data (up to 56-kilobyte
transfers). Thus, the disk process rarely has
to wait for physical disk reads to complete.
By the time the disk process needs it, the data
has already been read from disk into memory.

Similar logic applies to inserts and updates.
The SQL executor transparently buffers sequen
tial write operations into 4-kilobyte blocks and
sends them to the disk process. This sequential
block buffering typically reduces the number of
messages for a sequential insert or cursor update
by a factor of twenty or more (depending on the
record size). Also, it preserves update consis
tency by locking key ranges of the target table.

After the disk process receives the sequential
insert or update data, it generates a single log
record to cover all the inserts or updates, saving
messages to the TMF logging system. The disk
process buffers the sequential updates (and
inserts) in cache until the log record has been
written to the audit trail and enough data has
accumulated to allow a single, large asynchro
nous write of multiple blocks to disk. Because
of this read-ahead and write-behind logic, the
application and disk execution of sequential
reading and writing are completely overlapped,
a traditional kind of parallelism.

Support for Mixed Workloads
Parallel query execution can exploit all the
processors in a global network. For example,
on a database partitioned among nodes in
London, New York, and Tokyo, NonStop SQL
automatically processes queries in parallel at
all three sites. This benefit can also be a problem
if the processors are executing online transac
tions at the same time.

The sequential processing features of the disk
process (discussed previously) limit the impact
of batch queries on on line transactions to some
extent. In particular, they minimize the number
of I/Os generated by sequential programs and
prevent sequentially accessed data pages from
flooding the disk cache. However, additional
support for mixed workloads is essential.

Browse Access Locking in NonStop SQL.
NonStop SQL goes to considerable lengths to
allow parallel queries to execute with minimal
disruption of online transactions. First, batch
read queries can specify BROWSE ACCESS,
which allows the query to access data without
setting any interfering locks and without being
stalled by the locks of other operations. Many
batch reports can operate using browse access
locking because they produce ad hoc or statis
tical reports and need only an approximate view
of the database. Operations that need a consis
tent picture of the database can specify either
STABLE ACCESS or REPEATABLE ACCESS as
the locking option, but these forms of locking can
cause the batch operations to delay online
transactions.

Mixed Workload Enhancement. In the past,
and in spite of the other features that support
mixed workloads, batch NonStop SQL requests
involving sequential access could still adversely
affect a simultaneously executing OLTP work
load. The problem was caused by an anomaly
in preemptive priority schedulers such as the
one used by the Guardian 90 operating system.

When users execute a batch application at
low priority, the system services it only when
no high-priority task is ready to execute in its
processor. However, if a low-priority task asks
a high-priority server to perform an operation,
the request is executed at the server's high
priority. This problem, known as priority inver
sion, can cause high-priority servers executing
on behalf of low-priority requesters to monopo
lize the processor in which they run, delaying
servicing of other high-priority jobs.

OCTOBER 1990 •TANDEM SYSTEMS REVIEW 21

22

In particular, the priority inversion problem
can occur with the Tandem Disk Process 2 (DP2),
a high-priority disk server. A low-priority batch
job in a lightly loaded processor can create many
requests to a DP2 process executing in a busy
processor used by high-priority OLTP jobs.
Because DP2 has higher priority than any user
process, it executes on behalf of the low-priority
batch job, making the processor unavailable to
the OLTP job.

The problem is exacerbated if the requests
generated by the batch job require lengthy
servicing by DP2. Requests such as SQL queries
requiring full table scans not only make DP2's
processor unavailable to high-priority jobs for
relatively long periods, but also delay servicing
of DP2 requests made by other processes. This
is true even though the DP2 request queue is
ordered by the priority of the requesting process,
because a low-priority request may arrive and be
serviced when the queue is momentarily empty.

With NonStop SQL Release 2, the priority
inversion problem becomes critical because a
single query can tie up several processors. This
can occur when a query causes all partitions of
a table to be scanned in parallel and several DP2
processes execute scan requests simultaneously.

Two new features in DP2 significantly reduce
the impact of priority inversion and allow batch
jobs to execute without severely degrading
performance of high-priority OLTP jobs. First,
DP2 delays initiating service to a low-priority
requester if there are ready-to-execute jobs of
higher priority in DP2's processor. This allows
other processes in DP2's processor to perform
their work and approximates uniprocessor
priority scheduling. The DP2 request is pro
cessed only when there are no processes of
higher priority on the processor's ready list.

Second, once DP2 begins processing a
long-running request, it "comes up for air"
every few records to see if high-priority pro
cesses need the processor or high-priority DP2
requests are pending. In either case, DP2 pre
empts processing of the current request, which
allows the high-priority processes to run or
frees DP2 to service the high-priority requests.
In this way, low-priority batch jobs are serviced
only if the concurrently running high-priority
OLTP workload does not need processor and
disk resources. Thus, large NonStop SQL
queries executing in parallel on multiple pro
cessors become viable in a mixed workload
environment.

Conclusion
NonStop SQL uses many techniques to detect
and exploit parallelism, including parallel query
plans and algorithms, requester-server structur
ing, sophisticated concurrency control, distrib
uted transaction management, preemptive
priority scheduling, read-ahead, and write
behind. With these features, NonStop SQL
provides near-linear speedups and scaleups for
batch jobs and queries. At the same time, it
ensures that batch jobs and queries do not
adversely impact high-priority, response time
critical OLTP applications, which makes
NonStop SQL well suited for mixed workload
environments.

TANDEM SYSTEMS REVIEW• OCTOBER 1990

To verify the performance of NonStop SQL,
Tandem staff measured several sample queries on
Tandem VLX and CLX systems. That benchmark
test, which demonstrates near-linear speedup and
scaleup for basic queries on a uniform database,
is described in "The NonStop SQL Release 2
Benchmark," the companion to this article.

References
DBCI 10/2 Datahasc Computer System Manual, Release 1.3. 1985.
Part No. CI0-0001-01. Teradata Corporation.

DeWitt. D. et al. 1986. Gamma~- A High Performance Dataflow
Database Machine. Proceedings of'the 12th VLDB (Ven· Large
Dara Base!.

DeWitt. D. ct al. 1988. A Performance Analysis of the Gamma
Database Machine. Proccedings of'the /988 ACM SJGMOD
Conference.

Englert. S. et al. 1990. The NonStop SQL Release 2 Benchmark.
Tandem S,·stems Re,·iew. Vol. 6. No. 2. Part no. 46987. Tandem
Computers Incorporated.

Moore. M. and Sodhi. A. 1990. Parallelism in NonStop SQL
Release 2. Tandem Systems Rei'lew. Vol. 6, No. 2. Part no. 46987.
Tandem Computers Incorporated.

NonStop SQL Benchmark Workhook. 1987. Part no. 84 I 60.
Tandem Computers Incorporated.

Reuter. A. et al. 1989. Progress Report #5 of' Prospect Project.
Institute of Parallel and Distributed Super-Computers. University
of Stuttgart.

Schneider, D. and DeWitt, D. 1989. A Performance Evaluation of
Four Parallel Join Algorithms in a Shared-Nothing Multiprocessor
Environment. Proceedings ofrhe /989 ACM S!GMOD Conference.

Smith, M. et al. 1989. An Experiment on Response Time
Scalability. Proceedings ofrhc Si,th International Workshop on
Datahasc Machines.

Tandem Performance Group. 1988. A Benchmark of NonStop SQL
on the DebitCredit Transaction. Proceedings of'rhe 1988 ACM
SJGMOD Conference.

The Genesis of a Database Computer: A Conversation with Jack
Shemer and Phil Neches of Teradata Corporation. 1984. / EEE
Compute,: Vol. 17, No. 11.

Susanne Englert has worked in Tandem's Performance Measurement
and Analysis group in Software Development since 1986. She
provided performance support for the Multilan product and Nonstop
SOL Release 2. Her most recent project involved extensive analysis
and testing of the DP2 mixed workload enhancement.

Jim Gray works in the Software Development and has worked on the
design and implementation of Nonstop SOL. He has also worked on
developing a word processor, system dictionary, parallel sort, and
enhancements to the Encompass data management system. Jim is
currently writing a book on transaction processing.

OCTOBER 1990 •TANDEM SYSTEMS REVIEW 23

24

The NonStop SQL
Release 2 Benchmark

elease 2 of NonStop'M SQL,
the Tandem'M distributed
relational database manage
ment system, transparently
and automatically executes
NonStop SQL queries in
parallel on multiple proces

sors. Audited benchmark tests have demon
strated that the parallel query execution imple
mented in Release 2 of NonStop SQL achieves
near-linear speedup and scaleup for five dif
ferent SQL query types on a uniform database.
The benchmark queries included a SELECT
that returned no data, an INSERT, an UPDATE,
a representative aggregation function (AVG),
and a join.

Speedup allows users to decrease the elapsed
time of a job by adding processors and disks to
their system. Scaleup allows users to process a
large job in the same elapsed time as a small one
by adding hardware to their system.

This is the second of two articles describing
the performance benefits of parallel query
execution in Release 2 of NonStop SQL. The first
article, "Performance Benefits of Parallel Query
Execution and Mixed Workload Support in
NonStop SQL Release 2," explains how parallel
ism provides speedup and scaleup for SQL
quenes.

This article describes the benchmark tests
run for Release 2 of NonStop SQL. It defines the
components of the benchmark (database tables,
query set, and hardware), explains how the tests
were run, and describes the results of each
query.

Defining the Benchmark
Parallel query execution benefits only certain
types of queries and tables. In general, it can
be applied to queries (including some joins)
that require scans of large partitioned tables
or partitioned index files. The purpose of the
benchmark was to demonstrate the performance
characteristics of parallel query execution using
simple queries that satisfied these conditions and
represented common types of batch operations.

The test query set included all the basic
NonStop SQL relational operators. The organiza
tion of the tables allowed NonStop SQL to take
the fullest advantage of parallel execution. To
measure both speedup and scaleup, the Tandem
staff performed each test on systems that grew
incrementally in size.

TANDEM SYSTEMS REVIEW• OCTOBER 1990

The Database Tables
The benchmark database tables were modeled
on the Wisconsin Database schema (Bitton et al.,
1983). The rows were 200 bytes long, consisting
of integer and character fields filled with
random values. Figure I shows the definition of
a single table with n rows.

In the complete definition, all fields were
declared DEFAULT SYSTEM NOT NULL and the
numerics declared UNSIGNED. Figure I omits
these attributes for the sake of brevity. All the
tables were transaction-protected, allocated with
4-kilobyte pages and large extents, and used
row-granularity locking. (These features are
defaults in NonStop SQL.)

Tandem constructed a data generator that
builds the table partitions in parallel. The
generator builds multi-gigabyte tables in less
than an hour and uses a novel scheme to gener
ate the random values (Englert and Gray, 1990).

The tables were uniform in the sense that all
the partitions were of equal size, and the rows
qualifying in the SELECT, UPDATE, INSERT,
and join queries were distributed evenly across
all partitions. This ensured, for example, that a
query that scanned the entire table and updated
I percent of all the rows spent about the same
time on each partition and updated approxi
mately l percent of the rows in each. As a
result, all of the parallel executor processes
would finish at roughly the same time. The
tables were constructed with these properties in
order to demonstrate the best-case performance
of parallel query execution. Users with data
bases having very uneven distribution of data
or widely varying partition sizes might want to
consider reorganizing their tables to take fullest
advantage of parallelism.

Figure 1

CREATE TABLE f1 (unique1 NUMERIC(8) ,

unique2 NUMERIC(8) ,

two NUMERIC(8) ,

four NUMERIC(4) ,

ten NUMERIC(4) ,

twenty NUMERIC(8) ,

onepct NUMERIC(8) ,

tenpct NUMERIC(8) ,

twenpct NUMERIC(8) ,

fiftypct NUMERIC(8) ,

hundpct NUMERIC (8) ,

odd1 pct NUMERIC (8) ,

even1 pct NUMERIC (8) ,

stringu1 CHAR (52).

stringu2 CHAR (52),

stringu3 CHAR (52),

PRIMARY KEY unique2);

OCTOBER 1990 •TANDEM SYSTEMS REVIEW

--

unique random n[0 .. n-1]

primary key, unique [0 .. n-1]

random [0 .. 1]

random [0 . .4]

random [0 .. 1 0]

random [0 .. 20]

random [0 .. (n/100)-1]

random [0 .. (n/10)-1]

random [0 .. (n/5)-1]

random [0 .. (n/2)-1]

random [0 .. n-1]

random [L(n/100)-1]

2 x odd1 pct

random string

random string

random string

Figure 1.

The defi'nition of'a tahle
l'l'ith n ru\'\'s.

25

26

The Query Set
The query set consisted of five simple queries
that included all the basic NonStop SQL opera
tors. It was considered sufficient to demonstrate
linear speedup and scaleup for the basic opera
tions because more complex queries composed
of several operations would retain the same
speedup and scaleup properties.

■ The SELECT 0% query scanned the entire
table but did not return any data. It measured
how quickly NonStop SQL can sequentially scan
rows. The performance characteristics of a zero
selectivity table scan are important because all
the other queries are based on this operation.

■ The INSERT/SELECT I% query scanned the
entire table and inserted a random I percent of
the rows into a target table. As well as measur
ing the cost of scanning the entire table, this
query measured the additional overhead of
returning data to the application and inserting
it into a target table.

■ The AVG query computed the average value
of a field in the table. It tested the performance
of aggregation functions.

■ The UPDATE I% query scanned the entire
table and updated 1 percent of the rows at
random. It measured the additional overhead
of logging and locking updates.

■ The join query joined a table with a copy
of itself via the primary key. The join operation
included a 1 percent selection and a 50 percent
projection, which made the target table a man
ageable size (1 percent of the original table). The
result of the join was inserted into a new table.

The use of parallel query execution was
transparent to the queries. No special program
ming was required except for issuing a single
NonStop SQL directive that causes the query
optimizer to consider parallel execution in
choosing its access plan.

The queries in the benchmark tests also had
location transparency. The queries did not say
where the tables were; they could, for example,
have been partitioned between Tokyo, New
York, and London. If a table being scanned had
partitions in those three cities, NonStop SQL
would create appropriate server executors to
scan the data in parallel in each city (if that
were the fastest way to get an answer).

The Hardware Environments
Tandem performed the queries in two contexts,
one to measure speedup and one to measure
scaleup. It performed the same queries in two
hardware environments: the entry-level Tandem
CLX'M system and the high-performance Tandem
VLX'" system. Thus, the benchmark produced
four curves for each query.

Each CLX/780 processor is rated at about
4 DebitCredit transactions per second (tps);
the eight-processor CLX system is rated at 30
tps. Each VLX processor is rated at 7 tps; the
sixteen-processor YLX system is rated at over
100 tps.

The CLX configuration consisted of two, four,
or eight processors, each with 16 megabytes of
memory and two mirrored pairs of data disks.
The CLX disks each hold about 300 megabytes
of formatted data.

The VLX configuration consisted of two,
four, eight, or sixteen processors, each with
16 megabytes of memory. As with the CLX
system, each processor had two mirrored pairs
of data disks. The YLX disks each hold about
800 megabytes of formatted data.

In both cases, the first and second processors
had an extra disk pair attached. (Each processor
had a total of three disk pairs.) On the first
processor, the extra disk stored programs
($SYSTEM). On the second processor, it stored
the transaction log (audit trail). All disk caches
were configured at 2 megabytes.

TANDEM SYSTEMS REVIEW• OCTOBER 1990

To simplify the measurements, Tandem kept
all eight CLX processors and sixteen VLX
processors (and their disks) attached at all times.
For the two-processor tests, Tandem used only
the first two processors and their disks. For the
other tests, Tandem also used only the required
number of processors. In every test, all disks
were configured as mirrored volumes.

Table Sizes
Tandem used a fixed table size for the speedup
tests. The table was successively partitioned
among two, four, eight, and sixteen processors
and disks. In each case, Tandem measured the
elapsed time for each query and plotted the
resulting speedup curves. The fixed-size tables
were called F2, F4, F8, and F16.

Tandem used a fixed partition size for the
scaleup tests. In each successive test, the table
doubled in size. The tables had two, four, eight,
and finally sixteen partitions. The growing
tables were called G2, G4, G8, and G 16.

Table I shows the number of rows per table.
For example, table G 16 on the VLX system had
16 million rows evenly divided among 16
mirrored disks attached to 16 VLX processors.
Table G 16 contained 3.2 gigabytes of data. Table
F8 on the CLX system had 2,441,400 rows
partitioned among 8 CLX processors and disks.
Each partition contained 305,180 rows. Table F8
contained 488 megabytes of data.

Tandem chose these table sizes to allow all
the tables, temporary results, and answers to fit
on the disks at once. Tandem first built all the
tables (F2 through FI 6, G2 through G 16) and
then ran the experiments. The chosen row counts
allowed the entire test suite to run within a day,
so that all the tests could be audited in a reason
able time. There were 5 queries and 14 tables (8
on the VLX system and 6 on the CLX system),
totalling 70 tests in all. To complete the bench
mark in a day, the average test had to run in a
few minutes. As it turned out, however, it was
possible to audit only 59 of the 70 tests.

Table 1.
Table sizes.

Type

F Tables

G Tables

VLX

8,000,000 rows

1 ,000,000 rows/partition

CLX

2,441,440 rows

420,000 rows/partition

The results of the INSERT queries were
directed to an entry-sequenced table that was
partitioned among the processors to allow
parallel inserts. (To reduce the number of mes
sages, the SQL executor buffers inserted rows
into 4-kilobyte blocks before passing them
to the disk process. This is called sequential
block buffering of inserts.) Writes to disk also
benefited from a feature known as sequential
asynchronous write-behind, which permits the
disk process to perform multiple logical writes
as a single, large (up to 28-kilobyte) physical
transfer.

OCTOBER 1990 •TANDEM SYSTEMS REVIEW

Table 2.

Speedup ratios of all audited tests.

Partitions SELECT0% INSERT/ SELECT 1 %

VLX
-- -

2 1.00 1.00

4 1.99 1.99

8 386 3.87
--

16 7.21 7.31

CLX

2 1.00 1.00

4 1.95 1.98

8 3.70 3.67

Table 3.

Scaleup ratios of all audited tests.

Partitions SELECT0% INSERT/ SELECT 1 %

VLX

2 1.00 1.00

4 1.00 1.01

8 1 01 1.02

16 1.05 1 04

CLX
-

2 1.00 1.00

4 0.99 1.01

8 1.02 1.06

28

AVG

--

1.00

2.02

3.86
- ---

7.51

1.00

1.97

3.86

AVG

1.00

1.00

1.03

1.05

- --

1.00

1.01

1.02

- - -- - -- -

UPDATE JOIN

- -- - -- -- --

1.00

2.00
-- -- --

3.67
-- -- - -

7.00

- -- - - - -

1.00 1.00
-- -- --

1.86 1.99
-- - --

3.49 3.82

- -- --

-- -- --

UPDATE

-- - - --

1.00

1.03
-- -- - -- -- - --

1.08

1.10

-- - -

1.00
-- - - -- --- -

0.98
- - ---

1.04

Running the Benchmark Tests
The Tandem staff ran the tests as scripts fed
to the NonStop SQL conversational interface
(SQLCI). SQLCI optionally displays statistics
on such metrics as elapsed time, CPU time, rows
accessed, and messages sent. During the tests,
the Tandem staff ran Measure'M, the Tandem
system performance monitor, to measure CPU,
process, message, file, and disk activity. Codd
and Date, Incorporated, audited the tests; Tables
2 and 3 are based on the table that appears in the
auditor's report (Sawyer, I 989).

Because parallel query execution can be
resource-intensive, users must explicitly request
that NonStop SQL consider parallel query plans.
The default option generates sequential plans,
just as in Release 1 of NonStop SQL. Therefore,
at the beginning of the test run, the script
contained this directive:

CONTROL EXECUTOR PARALLEL
EXECUTION ON;

Thereafter, all compiled plans used multiple
executors if that was the quickest way to get
the answer. (The NonStop SQL optimizer
would still use serial plans for queries such
as single-row SELECT or UPDATE operations,
which get no parallel speedup or scaleup.
Users can turn off parallelism by executing the
directive CONTROL EXECUTOR PARALLEL
EXECUTION OFF;.)

TANDEM SYSTEMS REVIEW• OCTOBER 1990

The SELECT 0% Query
The first series of tests studied the speedup
and batch scaleup of a zero-selectivity table
scan. This query caused NonStop SQL to read
all the rows in the table but return none to the
application. The actual query was:

SELECT
FROM
WHERE

*
=table
hundpct > ?tablesize
FOR BROWSE ACCESS;

The notation =table is a logical table name
supported by NonStop SQL. The same query
was run repeatedly, successively setting =table
to F2, F4, FS, and Fl6 and to G2, G4, GS, G 16.
The term ?tablesize was a host-language vari
able. Before each run, it was set to the size of
the table being scanned. Because there was no
index on hundpct, the query required NonStop
SQL to perform a full table scan. Because
hundpct was always less than ?tablesize, this
predicate was always false and the SELECT
returned no rows.

To test speedup, Tandem ran the query
on tables F2, F4, FS, and F 16, as appropriate,
on the VLX and CLX systems. Figure 2 shows
the resulting speedup curves. To test scaleup,
Tandem ran the query on tables G2, G4, GS,
and G 16. Figure 3 shows the resulting scaleup
curves. Because the CLX system had only eight
processors, queries were not run on tables F 16
and G 16 on the CLX system.

Figures 2 and 3 show a near-linear speedup
and scaleup of table scans on both the CLX
and VLX systems. Startup delays caused the
slight nonlinearity of the CLX and VLX systems.
Each job's elapsed time was only a few minutes
at full speedup. When the entire job's elapsed
time was that short, the startup time for the eight
or sixteen NonStop SQL execution processes
(a second or two per process) caused a slight
slowdown of the overall job. The speedup and
scaleup curves did not display interference or
skew problems. 1

'Englen and Gray (1990) address the topics of startup, interference. and skew
problems in detail.

Figure 2

16

Q_
::,

"O
a,
a,
Q_

(/)
8

4

2

Figure 3

a,
E . ..,

"O
a,
U)
Q_

"' w

V

2 4 8 16

Processors and disks

• • • CLX

• • • • VLX

2 4 8 16

Job size, processors, and disks

OCTOBER l990•TANDEM SYSTEMS REVIEW

Figure 2.

Speedup cuJTes.fiw
SELECT 0% on \1LX and
CLX.

Figure 3.

Batch sea/cup cun·esf<1r
SELECT 0% m1 \1LX and
CLX.

29

Figure 4.

Speedup cwTesfrJr
INSERT/SELECT lo/c
on VLX and CLX.

Figure 5.

Batch scaleup curves for
INSERT/SELECT!% on
VLX andCLX.

30

Figure 4

a.
:::,
u
<D
<D
a.

(/)

16

8

4

2

Figure 5

u
<D
U)
a.
"' w

Vl

2 4 8

Processors and disks

• • • Cl}(

• • • VLX

2 4 8

16

•

16

Job size, processors, and disks

These figures (as well as the figures that
follow) treat the two-processor case as a
speedup of two over the one-processor case,
so all the speedup numbers are doubled. Also,
the CLX scaleup tables appear above the VLX
tables to indicate that a job runs about twice as
fast on a VLX system as on a CLX system.

The INSERT/SELECT 1 % Query
The next series of tests studied the speedup and
batch scaleup of a I percent SELECT query that
inserted its output into an entry-sequenced table.
The result table was partitioned to exploit the
parallel INSERT feature. The actual query was:

INSERT INTO =result
SELECT *
FROM =table
WHERE hundpct < (?tablesize/100)

FOR BROWSE ACCESS;

The hundpct column took random values
between O and the ?tablesize value, so this
query selected a random I percent subset of
the table. (Before the query was executed, the
variable ?tablesize was set to the relevant table
size in rows.) Tandem ran the query for all the
tables on the VLX and CLX systems.

Figures 4 and 5 show near-linear speedup and
scaleup curves for the SELECT/INSERT 1 %
query. The curves were virtually identical to
those in Figures 2 and 3, except that here the
speedup curve of the CLX system coincided
with that of the VLX system. Also, the startup
times caused less distortion of the scaleup
curves than they did in the table scans because
the startup time was a smaller fraction of
elapsed time.

NonStop SQL chose an execution plan for
the INSERT/SELECT I% query that created an
SQL server executor in each processor. (One
server executor handled each partition in the
table.) Each executor asked the corresponding
disk process to perform a sequential scan of its
partition. The disk process returned 1 percent
of the partition's rows to the executor.

TANDEM SYSTEMS REVIEW• OCTOBER 1990

Next, the SQL executor sent the rows to
be inserted into the local partition of the result
table. Using sequential block buffering, it passed
the rows to the disk process servicing the result
table in blocks of about 20 (20 rows times 200
bytes per row fills up the 4-kilobyte buffer). The
executor used only a single message for each
block. The block of inserts generated a single log
record when it arrived at the disk process. When
several blocks of sequential inserts had accumu
lated in the disk's cache, all the blocks were
written to disk in a single physical transfer.

The AVG Query
The third set of tests studied the speedup
and batch scaleup of an AVG query, computing
the average value of a numeric field in a table.
The actual query was:

SELECT
FROM

AVG(onepct)
=table
FOR BROWSE ACCESS;

Tandem ran the query for all the tables on
the VLX and CLX systems. Figures 6 and 7
show near-linear speedup and scaleup curves
for the AVG query. The execution plan directed
each processor to compute the row sum and
count of its partition. The application process
combined all the individual computations to
compute the global average.

The UPDATE Query
The fourth set of tests studied the speedup
and batch scaleup of an UPDATE query. The
query scanned the table in parallel and updated
I percent of the rows, all within one transaction.
The UPDATE query tested the ability of the
transaction log to absorb the updates generated
by eight CLX processors and sixteen VLX
processors. The actual query was:

UPDATE
SET
WHERE

=table
four = four + 11 7
hundpct < (?tablesize/100);

Figure 6

0.
:::,

"O
(JJ
(JJ
0.

Cl)

16

8

4

2

Figure 7

(JJ

E
s=
"O
(JJ
<JJ
0.

"' w

V

2 4 8 16

Processors and disks

■ ■ ■ CLX

■ ■ • ■ VLX

2 4 8 16

Job size, processors, and disks

OCTOBER 1990 •TANDEM SYSTEMS REVIEW

Figure 6.

Speedup cuJTesfiJr
an A VG query on VLX
andCLX.

Figure 7.

Batch scaleup curves
Jr1r an AVG query on
VLX andCLX.

31

Figure 8.

SJJecclufi c111-rcs.frJr a11
UPDATE operation on
VLX and CLX.

Figure 9.

Batch srn/eufi cu1TcsfiJr
a11 UPDATE operation 011
VLX ancf CLX.

Figure 8

0.
:::,
~
<JJ
<JJ
0.

(/)

16

8

4

2

Figure 9

<JJ
E

+=
~
<JJ
Cf)
0.
(1j

w

2 4 8 16

Processors and disks

■ Ill ··•••

2 4 8 16

Job size, processors, and disks

Tandem ran the query for all the tables on
the VLX and CLX systems. Again, Figures 8
and 9 show near-linear speedup and scaleup
curves for the UPDATE query. The decline in
the elapsed time for the four-processor CLX
case fell within experimental error.

The UPDATE query ran as a single transac
tion. It defaulted to specifying the option
STABLE ACCESS (all rows were locked when
read), but locks were immediately released if
the row was not updated. The query generated
about I 6 megabytes of log data on the F 16 table.
This did not saturate the log process and disk
(in CPU I). If the query had been a I 00 percent
UPDATE, the log process and disk would have
had to absorb about 4 gigabytes of audit trail
data. In that case, the query would have
reached a bottleneck on the log, which would
have limited the speedup and scaleup.

The UPDATE query showed the greatest
nonlinearity of any of the tests: a 12.5 percent
deviation at 16 processors. This indicated
that the log processing (performed by CPU I)
slowed down the UPDATE query being per
formed by CPU I. If and when this became a
serious issue, the database manager could
move the database disks from CPU I in order
to devote CPU I to supporting the log activity.

Parallel Join Operations
The final tests studied the speedup and
batch scaleup of a parallel join operation.
In these tests, each of the tables F2, ... , F8
and G2, ... , G 16 were joined with copies of
themselves. The join operation occurred on
the primary key (unique2).

To reduce the size of the join answer, the
query added a selection expression that limited
the qualifying rows to I percent of the table.
The result of the join operation was placed in
a partitioned, entry-sequenced target table.
Figure IO shows the actual query.

TANDEM SYSTEMS REVIEW• OCTOBER 1990

NonStop SQL executed the query in parallel
by scanning the two tables (in parallel), filtering
out the desired 1 percent of the rows. NonStop
SQL joined each pair of partitions in parallel and
inserted the result of that mini-join into the
result table. The INSERT operation was similarly
partitioned. This operation was completely
parallel, so near-linear speedup and scaleup
were expected.

The Tandem staff had planned to execute the
join query for all tables on both the CLX and
VLX systems. However, because of time con
straints, the staff was able to execute and audit
only the CLX speedup tests for the join query.
Nevertheless, the tests that were completed
indicated that the results of the remaining tests
would have been similarly linear.

Why Nonstop SQL Gives
Near-Linear Speedup and Scaleup

The results of this benchmark contradict the
belief that multiprocessors do not give linear
speedup or scaleup. (Designers have built
multiprocessors for 30 years, and each one has
had difficulty scaling past 10 or 20 processors.)
The belief that multiprocessors cannot be scaled
ignores the distinctions among three types of
multiprocessor designs: conventional shared
memory (shared-everything), shared-disk, and
the Tandem shared-nothing design (Bhide, 1988;
Stonebraker, 1986). Figure 11 contrasts these
three designs diagrammatically.

In a shared-everything design, all processors
can access all memories and disks. The IBM
3090 system, which scales to six processors,
typifies this design. A shared-everything design
has inherent speedup and scaleup problems
because all traffic must pass over the intercon
nect. The interconnect becomes a bottleneck due
to contention or physical constraints (such as the
speed of light) that limit the interconnect size.

Figure 10

INSERT INTO = result
SELECT one.unique1, one.unique2, one.two, one.four,

one.ten, one.twenty, one.onepct, one.tenpct,
one.twenpct, one.fiftypct, one.hundpct,
one.odd1 pct, one.even1 pct, one.stringu1,
two.stringu2, two.stringu3

FROM =table1 one, =table2 two
WHERE one.unique2 = two.unique2

AND one.hundpct <= (?tablesize/100 -1)
AND two.hundpct <= (?tablesize/100 -1)

FOR BROWSE ACCESS;

Figure 11

Shared every1hing

Shared disk

Shared nothing

OCTOBER 1990 •TANDEM SYSTEMS REVIEW

Figure 10.

Actual text of the parallel
join operation.

Figure 11.

Three classes of
computer architectures
showing sharing and
interconnection of
processors (P), memories
(M), and disks (D).

33

34

To deal with the interconnect bottleneck, some
designers have partitioned the memory among
the processors (or groups of processors) but have
continued to share the disks among all proces
sors. The DEC VaxCluster typifies the shared
disk design. This design reduces many intercon
nect problems, but continues to have severe
problems with disk cache interference.

A shared-nothing design completely partitions
processors and disks, letting them communicate
only through high-level (NonStop SQL-level or
application-level) messages. This greatly reduces
interconnect traffic and eliminates the cache
invalidation problem. Tandem NonStop systems
typify the shared-nothing design.

Typically, the DBMS must examine a great
deal of data to produce one answer. A shared
nothing design moves the DBMS to the data
rather than data to the DBMS. Only the answer
returns to the application program. The test
queries described in this article demonstrate the
performance benefits of this design.

Previous research prototypes such as
Gamma at the University of Wisconsin (DeWitt
et al., 1986) and Bubba at MCC (Smith et al.,
1989) have demonstrated near-linear speedup.
Teradata has made similar demonstrations on
special-purpose hardware (The Genesis of a
Database Computer, 1984; DBC/1012 Database
Computer System Manual, Release 1.3, 1985).
Like Tandem NonStop systems, these systems
are shared-nothing designs. The results obtained
in this benchmark show that the ideas pioneered
by these other groups can apply to a commer
cially available, general-purpose, shared
nothing system. Tandem believes that a shared
nothing architecture is the key to achieving
near-linear speedup and scaleup.

Conclusion
The results of this benchmark, audited by Codd
and Date, Incorporated (Sawyer, 1989), demon
strate that NonStop SQL Release 2 provides
near-linear speedup and scaleup on the basic
SQL relational operators. No skew or interfer
ence problems were observed in the benchmark.
Minor startup problems did occur, but a solution
to them is well understood. Tandem demon
strated speedup and scaleup on its CLX and VLX
systems, using up to 16 processors. Except for
log processing in the UPDATE query, no visible
bottlenecks were noted.

This benchmark shows that with NonStop
SQL Release 2, users can reduce query execu
tion time on large databases or keep it constant
on growing databases by adding hardware. This
capability makes Tandem NonStop SQL ideally
suited for batch and query workloads.

TANDEM SYSTEMS REVIEW• OCTOBER 1990

References
Bhide, A. 1988. An Analysis of Three Transaction Processing
Architectures. Proceedings of the 14th VLDB.

Bitton, D. et al. 1983. Benchmarking Database Systems: A
Systematic Approach. Proceedings of the 9th VLDB.

DBC/1012 Database Computer System Manual, Release 1.3. 1985.
Part No. CI0-0001-01. Teradata Corporation.

Dewitt, D. et al. 1986. Gamma - A High Performance Dataflow
Database Machine. Proceedings of the 12th VLDB.

Englert, S. and Gray, J. 1990. Generating Dense-Unique Random
Numbers for Synthetic Database Loading. Tandem Technical
Report (in preparation). Tandem Computers Incorporated.

Sawyer, T. 1989. Auditor's Report on NonStop SQL Release 2
Benchmark. Codd and Date, Incorporated.

Smith, M. et al. 1989. An Experiment on Response Time
Scalability. Proceedings of the Sixth International Workshop on
Database Machines.

Stonebraker, M. 1986. The Case for Shared-Nothing. Database
Engineerin[?. Vol. 9.1.

The Genesis of a Database Computer: A Conversation with Jack
Shemer and Phil Neches of Teradata Corporation. November 1984.
IEEE Computer.

Acknowledgments
The parallel features of NonStop SQL were designed and
implemented by Yung-Feng Kao (parallel partition inserts), Haleh
Mahbod (SQL language), Mark Moore (parallel index mainte
nance), Carol Pearson (parallel sort), Mike Pong (parallel
optimization), and Franco Putzolu and Amardeep Sodhi (parallel
executor). The sequential read and write optimizations were
designed and implemented by Andrea Borr (disk process) and Julia
Lai and Harjit Sabharwal (file system). To the credit of all these
people, the pre-alpha software that Tandem tested worked without
problems.

The benchmark used the facilities of the Cupertino Benchmark
Center. Steve Shugh was the liaison. Jeff Marturano and Phil Rose
assembled the VLX and CLX systems. Ray Glasstone helped with
some of the performance reports.

Tom Sawyer of Codd and Date, Incorporated, was the Auditor.

Susanne Englert has worked in Tandem's performance measure
ment and analysis group in Software Development since 1986.
She provided performance support for the MULTILAN product and
Nonstop SOL Release 2. Her most recent project involved extensive
analysis and testing of the DP2 mixed workload enhancement.

Jim Gray works in Software Development and has worked on the
design and implementation of Nonstop SOL. He has also worked
on developing a word processor, system dictionary, parallel sort, and
enhancements to the Encompass data management system. Jim is
currently writing a book on transaction processing.

Terrye Kocher is currently a senior advisory analyst in Large
Systems Marketing Support within the Tandem Customer Support
Organization. Since joining LSMS in early 1988, she has been
working in the areas of database and application development. Prior
to joining CSO, Terrye spent six years with Tandem as a field analyst.

Praful Shah joined Tandem in June 1984. Since then he has worked
with the Performance Group in Software Development on perfor
mance studies related to Nonstop SOL, DP2, DP1, TMF, processors,
and peripherals. Before joining Tandem, he worked in a performance
group for another mainframe vendor. Praful has an M.S. in Computer
Science from Pennsylvania State University and a B.S. in Electrical
Engineering.

OCTOBER 1990 •TANDEM SYSTEMS REVIEW 35

36

Parallelism in NonStop SQL
Release 2

elease 2 of Nonstop'" SQL,
the Tandem'" relational
database management
system, introduces
parallel query execution.
NonStop SQL can auto
matically exploit the

Tandem multiprocessor architecture by dividing
a NonStop SQL query into smaller tasks and
assigning the tasks to separate processors. This
divide-and-conquer approach can improve the
response time of all the basic SQL operations,
including selections, insertions, updates,
deletions, joins, and aggregate computations.

Databases containing many gigabytes of
data are becoming increasingly common (Cassidy
and Kocher, 1989). A business with a growing
database must continue to perform batch jobs
and generate reports in limited periods of time.
Without parallel execution, this requirement
becomes increasingly hard to satisfy. Buying
multiple computers or a multiprocessor computer
does not improve query performance if the data
base management system directs a single proces
sor to execute the query. Users can redesign their
batch applications so that separate processors
execute parts of each task, but this alternative
can be costly and hard to manage.

Parallel execution allows NonStop SQL to
perform batch jobs, generate reports, and submit
ad hoc queries on a production-scale database.
By dividing a query among many processors,
NonStop SQL can reduce enormously the
elapsed time it takes to execute. By the same
token, NonStop SQL can perform a task that has
grown enormously (because the database has
grown) in the same amount of time it performed
the original task.

NonStop SQL Release 2 also uses parallel
execution to maintain indexes. As a database
increases in size, users must maintain multiple
indexes to achieve acceptable OLTP and ad hoc
query performance. In most database manage
ment systems, increasing the number of indexes
also increases the cost of maintaining the indexes,
and OLTP response time suffers.

TANDEM SYSTEMS REVIEW• OCTOBER 1990

NonStop SQL solves this dilemma by intro
ducing parallel index maintenance. When a
query causes a base table to be modified,
NonStop SQL allows all the affected indexes to
be modified in parallel (as long as each index is
defined on a separate disk volume). Because this
feature improves the response time of maintain
ing indexes, users can define multiple indexes
on a table without adversely affecting OLTP
performance.

This article describes how NonStop SQL
Release 2 implements parallel query execution.
The article also suggests how to configure a
system to take advantage of parallel execution.
Examples show how each basic NonStop SQL
operation executes in parallel on a sample
database. Finally, the article describes the
parallel index maintenance feature in NonStop
SQL. A discussion of the performance of parallel
query execution appears in "Performance
Benefits of Parallel Query Execution and Mixed
Workload Support in NonStop SQL Release 2"
in this issue of the Tandem Systems Review
(Englert and Gray, 1990).

Overview of the Tandem
Architecture
To take advantage of the parallel capabilities
of NonStop SQL Release 2, users need to
understand Tandem hardware architecture.
A Tandem system consists of as many as 16
processors, each with its own memory. Users
can connect multiple systems into a transparent
network comprising over 4000 processors.
(A Tandem network functions as if it were a
single system.)

Typically, a disk volume consists of a
mirrored pair of disk units. Each disk unit is
connected to a pair of disk controllers, each of
which is connected to a pair of processors. Thus,
the system can access each disk unit through
any of four physical paths. Each disk volume
is managed by a pair of disk processes running
in separate processors. However, at any given
time, only one process in a pair has the primary
responsibility for managing both units in a
mirrored disk volume.

NonStop SQL allows a table or index to be
partitioned across as many as 100 disk volumes
(NonStop SQL Conversational Interface Refer
ence Manual, 1989). In a partitioned table or
index, the rows are physically distributed across
multiple disk volumes based on a key range
(key-sequenced tables only) or partition size
(entry-sequenced and relative tables only). This
is often called horizontal partitioning.

The benefits of parallelism in NonStop SQL
depend largely on system configuration. It is
important to balance the ratios of controller
pairs to mirrored volumes and disk volumes to
processors. Users should configure processors,
controllers, and disks to allow simultaneous
access to the table partitions and indexes needed
by critical applications. Users can maximize
parallelism by dedicating a controller pair per
mirrored disk volume and by primaring at most
one disk volume per processor. However,
parallel query processing can still be very
beneficial even if such an ideal configuration
is not available.

OCTOBER 1990 •TANDEM SYSTEMS REVIEW 37

Figure 1.

A disk confi'guration
that allows maximum
parallelism.

38

Figure 1

$D'AJ!Ac1·'~
·· µllito

B\
$fi!<-r~iti4

.Oi\lt1

I~

~ntr~~r,'lktt ---.

pl<' \MB

$0ATiA2•P
. UnitO

$PA"fiA2~M
wn1t1

Cootmller:¼13 --~

· $0'4TAJ-'M
.· llltif..1_

/M

. .

1---- ~~tet'lkfi.

P/ \~B
$0A'TA4•P

UriitO
$0'ATM-M

l.imt.1

B\ /M
C<>ntr~mi~t7

CPU3

- Current primary path to disk unit

-- Current backup path to disk unit

P=Primary

M=Mirror

Figure 1 illustrates a configuration consisting
of four processors, mirrored disk volumes, and
controller pairs. Each disk volume is connected
to a separate pair of controllers and controlled
by a separate processor. The mirrored volumes
are also configured so that the Tandem Disk
Process 2 (DP2) can perform parallel reads and
writes. The examples in this article use the
configuration shown in Figure 1.

B=Backup

MB= Mirror backup

If users must reduce the cost of a configura
tion, they can use a weaker configuration at the
expense of maximum parallelism or fault
tolerance. For example, users can configure
two mirrored volumes per controller pair (Sitler,
1986). This configuration takes advantage of
parallelism because it avoids contention among
processors and disk controllers. However, it has
less fault tolerance than the configuration shown
in Figure 1, and it does not allow DP2 to perform
parallel reads and writes.

TANDEM SYSTEMS REVIEW• OCTOBER 1990

NonStop SQL comprises a conversational
interface (SQLCI), SQL compiler and optimizer,
SQL executor, SQL file system, catalog manager,
and an extensive set of SQL utilities (Cohen,
1988). The SQL executor and file system are
system library procedures; the other components
are separate processes. Figure 2 illustrates the
major components involved in the nonparallel
execution of an ad hoc SQL query against a
partitioned table.

Figure 2

~L~l2pr<>ee$$
• • <SPL<flXecutar .·•
~file~·

Nonstop SQL Release 2 Executor
Architecture /I~
Release 2 of NonStop SQL introduces a new
process, called an executor server process (ESP),
that uses parallel processing in executing SQL
statements. A master executor invokes several
ESPs in parallel to process a statement or part of
a statement. The master executor is the same as
the NonStop SQL Release 1 executor, but it also
starts, manages, and communicates with the
ESPs.

In Release 1, the NonStop SQL optimizer
determined (at compile time) the best access
plan for processing a statement. In Nonstop SQL
Release 2, the optimizer also considers whether
the system can process the entire statement or
parts of the statement in parallel. The optimizer
selects the parallel execution plan only if it is
the best plan.

Partitioning a table and its indexes increases
the likelihood that the optimizer will choose a
parallel execution plan. The partitions may
reside on one system or on many systems in a
network.

If the optimizer determines that a statement
would benefit from parallel execution, the
master executor will assign one ESP process
to each partition that must be accessed (as
defined by the access plan). At run time, the
master executor starts an ESP process in the
current primary processor of each partition's
disk volume (unless an existing ESP process
can be used). Each ESP works only on the
partition to which it is assigned.

·Oisi<·~~-·

I
Volume containing Volume containing

partition 1 partition 2

l
Volume containing

partition 3

The master executor simultaneously employs
a number of ESPs to work in parallel on the
chosen part of the statement. If there are n ESPs,
the portion of the task processed by each ESP is
1/n and the ESPs can finish the task in 1/n of the
time it would have taken a single process. For
example, 10 ESPs can achieve a 90 percent time
reduction. This performance benefit is called
speedup. If a task increases by a factor of n,
increasing the number of ESPs by the same fac
tor allows NonStop SQL to process the task in
the same elapsed time. This performance benefit
is called scaleup. Speedup and scaleup are
described in the article by Englert and Gray
in this issue of the Tandem Systems Review.

OCTOBER 1990 •TANDEM SYSTEMS REVIEW

Disk process

I
Volume containing

partition 4

Figure 2.

Major NonStop SQL
components involved in
the execution of a
nonparallel ad hoc SQL
query. Each volume is
accessed serially during
the execution of the query.

39

Figure 3

Volume containing
partition 1

r1-T2

Figure 3.

Release 2 parallel
executors architecture.
Master executor and
executor server processes
(ESPs) perform a SELECT
statement on a partitioned
table (where all partitions
are of equal size).

40

Volume containing
partition 2

r1-r2
Time

Volume containing
partition 3

r1-r2

Volume containing
partition 4

r1-r2

The master executor assigns the work to
ESPs. The ESPs perform the work and return
to the master executor either data or status
information. The master executor processes
that information and returns the end results
to the user.

Figure 3 shows how the master executor
assigns four ESPs to perform a SELECT state
ment on a table with four partitions. Each ESP
selects data from one partition and returns it
to the master executor.

An ESP returns status information to the
master executor when it processes a DELETE
statement. A separate ESP deletes data in each
partition of the table. Depending on the outcome
of the operation, it returns either success or error
status to the master executor. If all ESPs return
success status, the DELETE operation succeeds.
If one or more ESPs return an error status, the
master executor reports the error to the user and
the DELETE operation fails.

ESPs are reusable. After they finish a task,
the master executor can assign them to process
other SQL statements or other parts of the same
statement. Reusing an ESP saves the overhead
of creating a new one each time one is needed.

Only the master executor that starts an ESP
can use it. The master executor keeps as many
as two ESPs in each CPU in the local system (the
system in which the master executor is running).
The master executor also maintains information
about the use and status of the ESPs.

Repartitioning Data
Users can make the most efficient use of parallel
query execution by partitioning their database
tables (and indexes) across disk volumes. The
best database configuration takes advantage of
the system configuration illustrated in Figure 1.
Each partition resides on a separate disk volume,
and a separate processor has primary responsi
bility for each partition. When one ESP is
assigned to each table partition, the ESPs can
execute in parallel. The total time needed to
finish a parallel task is the time needed to work
on the largest partition.

Some tables may not be partitioned or may
be partitioned in a way that does not facilitate
parallel processing. In these cases, the optim~~er
can ask the NonStop SQL executor to repartztwn
(reorganize) a copy of the data at run time.
During repartitioning, NonStop SQL distributes
the data over a set of temporary partitions. Each
partition contains data that can be processed in
parallel by a separate ESP.

The optimizer considers the cost of
repartitioning and sorting the data when it
selects the best access plan for the statement.
If the optimizer chooses repartitioning, it asks
that one temporary partition be created in each
processor in the local system (the system in
which the master executor will run). All the
temporary partitions will reside in the local
system.

At run time, the master executor starts an
ESP (or uses an existing ESP) for each partition
of the source table. The ESPs select tuples from
the partition based on the predicates specified
in the statement. NonStop SQL applies a hash
function to the tuples to determine the target
partition into which they will be inserted.
A good hash function ensures almost eq~~l
distribution of the tuples among the part1t1ons.

TANDEM SYSTEMS REVIEW• OCTOBER 1990

Usually, NonStop SQL needs to sort the
resulting data, either to process a GROUP BY
clause or to participate in a SORT MERGE join
with another table. Using multiple SORTPROG
processes, NonStop SQL simultaneously sorts
the data in each of the temporary partitions.

NonStop SQL uses the temporary partitions
for the subsequent steps in processing the
statement. After the statement finishes execut
ing, NonStop SQL keeps the partitions if the
statement is embedded in a NonStop SQL
application. This saves the overhead of creating
them again if the statement is executed many
times. However, the data is purged from the
temporary partitions at the end of the statement
execution. Every time the statement is executed,
a fresh copy of data (as needed by that execu
tion) is loaded into the partitions. When the
application process terminates, the system
automatically drops the partitions. If a user
initiates the statement with dynamic
NonStop SQL, the partitions are dropped
after the statement finishes executing.

Consider a SELECT statement that contains
a GROUP BY clause. If there is no index on the
GROUP BY columns, NonStop SQL repartitions
the data by placing all tuples that belong to
a group into one partition. The GROUP BY
columns are the criteria for repartitioning.
NonStop SQL applies a hash function to these
columns in each tuple to determine the partition
into which that tuple is inserted.

Figure 4 illustrates the repartitioning of a
table with three partitions into a temporary
table with four partitions. Suppose the data is
repartitioned on the basis of the first character
of the column. The ESPs place column values
with first characters from a through e in the first
partition,/ through l in the second, m through r
in the third, and s through z in the fourth. (In real
statements, NonStop SQL uses a more rigorous
hash function than the one described here.)

Three ESPs perform the repartitioning in
parallel. Each ESP selects a tuple and, based on
the result of the hash function, inserts the tuple
into one of the four target partitions.

Figure 4

a-e f-1 m-r

I SELECT

NonStop SQL Release 2 Parallel
Operations
To allow the NonStop SQL optimizer to choose
a parallel execution plan, users must issue the
CONTROL EXECUTOR PARALLEL EXECUTION
ON compiler directive before compiling a query.
(Users may not want parallel execution if
maximizing throughput is more important than
minimizing response time.) Users can choose
whether or not to execute queries in parallel,
but parallel index maintenance is automatic.
That is, NonStop SQL always uses parallel
index maintenance when multiple indexes
need maintenance.

OCTOBER 1990 •TANDEM SYSTEMS REVIEW

s-z

I SELECT

Figure 4.

Temporary
partitions

Repartitioning
ESPs

Base table
partitions

Repartitioning data using
a hash function.

41

Figure 5

Appl~~

.. SOL mast~'9x~

l::SP

1 SELECT 1 SELECT

EMP1 EMP2

Figure 6

ESP

1 1 SELECT/ jo/c 1
I SELECT/ join

ST11 ST21

Figure 5.

Parallel aggregate
evaluation.

Figure 6.

Parallel INSERT INTO ...
SELECT FROM operation.

E$P

1 SELECT

EMP3

Compute
final
aggregate
results

ESPs
compute
partial
aggregate
results

Partitioned
table

Target table
partitions

INSERT
operations

1
I SELECT/ join

Source
table(s)
partitions

Parallel Aggregate Evaluation
Summary reports frequently use aggregate
functions such as COUNT, SUM, and AVG.
Often a query asks the database how many
tuples a table contains before it lists them; the
COUNT aggregate can count tuples. Report
queries also use the SUM and AVG functions
to find, for example, the total and average
salary in a department.

Parallel ESPs can perform an aggregate
evaluation on a partitioned table. (The best
database configuration gives a separate proces
sor primary responsibility for each partition.)
Each ESP computes intermediate results for its
partition and returns them to the master execu
tor. The ESPs also return the number (count)
of tuples that contributed to the aggregate. The
master executor then computes the final value of
the aggregate and returns it to the user. Figure 5
shows how NonStop SQL processes the follow
ing query on a table named EMP with three
partitions (EMP,, EMP2, and EMP3):

SELECT COUNT(*), AVG(commission)
FROMEMP;

For the COUNT aggregate, each ESP returns
the count of tuples in its partition. The master
executor totals the counts to obtain the final
value of COUNT for the entire table. For the
AVG aggregate, each ESP returns the SUM of
the non-null values in the commission column
and the COUNT of the tuples with non-null
commissions. The master executor adds up the
SUM and COUNT values returned by the ESPs
and then computes the final value by dividing
the SUM by the total COUNT values.

In aggregate evaluation, NonStop SQL
examines the entire table once. Therefore,
NonStop SQL would not execute an aggregate
query in parallel on a non-partitioned table.
NonStop SQL never repartitions the source table
to process only the aggregate functions in
parallel. However, if a statement contains a
GROUP BY clause and aggregate functions must
be computed for the groups, the source table can
be repartitioned.

42 TANDEM SYSTEMS REVIEW• OCTOBER 1990

Figure 7

TT1

1 1
ESf) E$J)

1
[SELECT/join

1
[SELECT/join

$T11
ST21 .ST1 .. ll.

.st~.

Parallel INSERT INTO ... SELECT FROM
Statements
An INSERT INTO ... SELECT FROM statement
loads a target table by selecting some or all
tuples from a source table or a join of two or
more tables. If the source table is partitioned,
a separate ESP selects tuples from each partition.
If a join of two or more tables selects the tuples,
NonStop SQL uses a parallel join strategy to
perform the join (whenever possible). In both
cases, the ESPs insert the selected tuples directly
into the target table.

For INSERT INTO ... SELECT FROM state
ments, the best database configuration gives a
separate processor primary responsibility for
each affected partition in the source table and
target table. To allow parallel execution of
INSERT INTO ... SELECT FROM statements, the
source table must be partitioned; the target table
does not have to be partitioned.

Figure 6 shows three ESPs selecting tuples
from one or more source tables and inserting
them into a partitioned target table. The file
system determines which partition receives
each selected tuple. Because tuples selected by
any ESP can belong in the same target partition,
several ESPs may try to insert tuples into the
same partition at the same time. In that case,
the tuples are queued at the disk process of the
partition, and the disk process inserts them in
the order of their arrival. While a tuple waits
in the disk process queue, the ESP that selected
it is suspended until the tuple is inserted.
This diminishes the parallel execution of the
statement.

TT$

1
ESf) .. ·

1
[SELECT/join

ST13
~23

Target table
partitions

Source table(s)
partitions

If the number of ESPs far exceeds the number
of target table partitions, the disk process queues
can grow large enough to hamper ESP activity
and reduce parallelism. This is especially true if
each ESP selects many tuples. However, if each
ESP selects only a few tuples, the disk queues
should remain small and the parallel ESPs will
benefit the performance of the query.

The system can eliminate (or reduce) disk
process queueing when the target table is a
partitioned, unaudited, entry-sequenced table
(SYNCDEPTH is set to 0, and SEQUENTIAL
INSERT is ON). (See Figure 7.) Each ESP writes
directly to one partition of an entry-sequenced
table. If there are at least as many target parti
tions as source partitions, each ESP writes
exclusively to one partition. If there are fewer
target partitions than source partitions, the target
partitions are assigned to ESPs in a round-robin
manner. In that case, several ESPs may write to
a target partition. A special protocol between
the ESPs and the file system allows the ESPs
to insert data into specified partitions. Also, it
allows the ESPs to insert data into many parti
tions simultaneously, even though the first
partition is not yet full. The end-of-file (EOF)
for these entry-sequenced tables is the EOF of
the last partition that contains data. If a partition
becomes full, the file system inserts the data into
a partition either succeeding or preceding the
full one. The file system returns a "file is full"
error only when all partitions are full.

OCTOBER 1990 •TANDEM SYSTEMS REVIEW

Figure 7.

Parallel INSERT INTO ...
SELECT FROM operation
for an entry-sequenced
target table.

43

Figure 8.

Results of an experiment
using a parallel execution
plan to update 1% ofa
1.6 GB table.

44

Figure 8

Q)

E . .,

0 4 8 12

Number of partitions, processors,
and disk volumes

Parallel Updates and Deletions

16

If an affected table (or an index defined on the
table) is partitioned, NonStop SQL Release 2
can execute searched UPDATE and DELETE
statements (those not associated with a cursor)
in parallel, just as it can with other NonStop
SQL statements. Thus, parallel execution can
greatly reduce the elapsed time of a batch update
or deletion.

The master executor assigns one ESP to
each partition that must be accessed (as defined
by the query access plan). Each ESP performs
the update or deletion on its partition and returns
an acknowledgement to the master executor.
The parallel process shown in Figure 3 (the
parallel execution of a SELECT statement on a
table partitioned across four disk volumes) is
essentially the same as a parallel update or
deletion on a similarly partitioned table.

The NonStop SQL optimizer considers
several factors in deciding that an UPDATE or
DELETE statement is to be executed in parallel
rather than serially. First, either the base table
or an index defined on the table must be parti
tioned. Second, the UPDATE or DELETE must
need to access multiple partitions. For example,
assuming that a database and system configura
tion follows the one shown in Figure 1, consider
the following table and index definitions:

CREATE TABLE $DATA1.X.T (... ,A INT, ...);
CREATE UNIQUE INDEX $DATA2.X.I

ON $DATA1.X.T (A)
PARTITION ($DATA3.X.I

FIRST KEY 100000,
$DATA4.X.I

FIRST KEY 200000);

The optimizer would not use parallelism to
execute the statement DELETE FROM T because
the qualifying rows the statement deletes reside
in a single partition of the base table. (However,
NonStop SQL would maintain the index in
parallel.) In contrast, the optimizer would use
parallelism to execute the statement DELETE
FROM T WHERE A BETWEEN 78000 AND
142000 (depending on the execution cost)
because executors would scan two partitions
of INDEX X.I for qualifying rows.

Finally, the optimizer compares the costs
of the serial and parallel execution plans. The
optimizer chooses a parallel execution plan if the
combined time needed to start up the ESPs and
modify one partition is less than the combined
time needed to modify all the affected partitions
serially. Since minimal communication occurs
between the master executor and ESPs for
UPDATE and DELETE statements, communica
tion costs are negligible.

Figure 8 shows the results of an experiment
performed against a 1.6-gigabyte table using
VLX'" processors. Tandem staff measured four
system configurations consisting of 2, 4, 8,
and 16 partitions, respectively. In each case,
an UPDATE statement that affected 1 percent
of the rows was issued against the table. The
test results show that when an appropriate
configuration is used, the parallel execution
feature of NonStop SQL can greatly decrease
the elapsed time required to perform batch
UPDATE and DELETE statements. This experi
ment is described in detail elsewhere in this
issue of the Tandem Systems Review (Englert
etal., 1990).

TANDEM SYSTEMS REVIEW• OCTOBER 1990

Parallel Join Operations
Loosely speaking, a join is "a query in which
data is retrieved from more than one table"
(Date, 1984). Consider the following example:

SELECT EMPNAME, DEPTNAME
FROM EMP, DEPT
WHERE EMP.DEPTNO = DEPT.DEPTNO;

This query produces the names of employees
and the departments they work in. The query
selects employee information from the EMP
table and department information from the DEPT
table. It produces the results by matching the
values of the DEPTNO column in the two tables.
This column is called the join column. The
matching condition, EMP.DEPTNO =
DEPT.DEPTNO is called the join predicate.
A join predicate with an equality comparison
operator is called an equijoin.

Since equijoins produce results over matching
values of join columns, NonStop SQL can divide
the task into smaller pieces by repartitioning the
tables, making sure that matching values of the
join column are in corresponding partitions. By
giving each ESP responsibility for one outer
table partition and the corresponding inner table
partition, NonStop SQL can join each pair (or
set) of partitions in parallel. The total time to
perform the join should equal the time it takes
to perform a join for one set.

In some cases, the tables are already parti
tioned so that matching join column values are
in corresponding partitions. These tables are
identically partitioned; they do not have to be
repartitioned.

Release 2 of NonStop SQL uses three parallel
strategies to perform equijoins between two or
more tables. The optimizer selects a strategy
depending on the relative distribution of join
column values among the tables, the availability
of an index on the join column, and the relative
sizes of the tables. The three strategies are
based, respectively, on the following conditions:

■ All tables are identically partitioned on the
join columns.

■ One table is partitioned; the other table is
relatively small and has an index on the join
columns.

■ All tables either are not identically partitioned
on the join columns or there is no index on the
join columns.

Parallel Join Strategy I. In the first parallel join
strategy, the tables are partitioned identically on
the join columns. Partitioned identically implies
that the join columns are the key columns on
which the partitioning is based. (Either the base
table or an index can be partitioned.) Also, for
all tables involved in the join, the corresponding
partitions must have column values in the same
range. This ensures that matching data for join
operations is located only in the corresponding
partitions.

For joins involving identically partitioned
tables, a separate processor can have primary
responsibility for each individual partition or
each set of corresponding partitions. However,
parallel performance declines if a single proces
sor has primary responsibility for two partitions
not involved in the same portion of the join. In
that case, one processor becomes responsible for
joining more than one set of partitions.

One ESP processes the join for each set of
identical partitions. The ESP returns the selected
Uoined) tuples to the master executor, which
returns them to the user. The ESPs collect a
number of tuples in a buffer before returning
them to the master executor. This technique
limits the interprocess communication between
the ESPs and the master executor. While the
master executor returns the previously selected
tuples to the user, the ESPs asynchronously
process the join to produce the next set of tuples.
For a join of tables with n partitions (in which
each partition contains approximately the same
number of rows), NonStop SQL spends approxi
mately 1/n the time to process it in parallel as it
would to process it serially.

OCTOBER 1990 •TANDEM SYSTEMS REVIEW 45

Figure9

Contents of Table T1 (Partitions T1,, T1,, T1 3)

T1, T1 2 T1 3

key_col col2 key_col col2 key_col col2

0 aaaa 100000 qqqq 200000 spdf

3 cccc 100003 rrrr 200004 fghi

6 cccc 120010 spdf 200010 fghd

14 spdf 121060 cccc 210555 rstu

99999 mous 199999 zbra 888888 graf
----~--

Figure 10

Contents of Table T2 (Partitions T2,, T22, T2,)

T2,

key_col

0

4

6

14

95566

T22

col2 key_col col2

aaaa 100000 qqqq

cccc 111003 rrrr

cccc 119999 rrrr

graf 121060 cccc

kity 199999 zbra

Aptiij~,~--; -

-- ~Qt.~~~~~j: -

T23

key_col

200000

200004

245678

256789

999999

/ · .. ·•.· 1 ·~

col2

spdf

fghi

dddd

spdf

turk

" ' ,)', <

ESP ESP

I join I I join I join I
t1 --1- T~, -1';12

Figure 9. Figure 10.

Partitioned data. Parallel join strategy 1.

"Set" of
selected
tuples

Identically
partitioned
tables

An exception to this asynchronous pro
cessing occurs if the join is performed within
a user transaction and it requires locks. In that
case, no row is returned to the user until all ESPs
have replied to the master executor. Also, the
next WRITEREAD operations to the ESPs do not
occur until the current tuples have been returned
to the user.

Figure 9 shows a two-table database parti
tioned for parallel join operations. Two tables,
Tl and T2, have three partitions each (numbered
1 through 3). The tables are partitioned identi
cally on the column KEY_COL. The KEY_COL
values are less than 100,000 in the first partition,
between 100,000 and 199,999 in the second, and
greater than 199,999 in the third. Consider the
following join statement:

SELECTTI.KEY_COL, Tl.COL2, T2.COL2
FROM TI, T2
WHERE Tl.KEY _COL= T2.KEY _COL
FOR BROWSE ACCESS;

Assume that a cursor was declared for this
statement and the user is issuing FETCH state
ments to retrieve tuples. As shown in Figure 10,
the master executor employs three ESPs to
process the join. One ESP joins partitions Tl 1

and T21, a second ESP joins Tl 2 and T22, and
the third ESP joins Tl 3 and T23•

The master executor issues NOWAIT requests
to all ESPs to fetch the first set of tuples. As
soon as an ESP returns the first batch of tuples,
the master executor issues to that ESP another
NOWAIT request to fetch the next batch of
tuples. The ESP immediately starts to select the
next batch of tuples. Meanwhile, the master
executor returns one tuple (out of the batch last
received) for each FETCH request from the user
until no more tuples are left in that batch. When
no ESP has any tuples to return, the FETCH
returns with the "no more tuples" status.

In NonStop SQL Release 1, the join statement
would always produce tuples in the same order
(that of the KEY_COL). In NonStop SQL Re
lease 2, the ESPs do not return the batches of
tuples in any given order. Users should specify
an ORDER BY clause on KEY _COL if they want
the tuples to arrive in that order. Before the
optimizer chooses a parallel join access plan,
it considers the collective cost of performing
the join and the ORDER BY sorting.

46 TANDEM SYSTEMS REVIEW• OCTOBER 1990

The optimizer is unlikely to use a parallel
join access plan if the statement contains the
FOR STABLE ACCESS clause. If a join statement
contains the FOR STABLE ACCESS clause, each
selected tuple must be locked until the ESP
selects the next tuple. This limits the ESPs to
returning one tuple per batch. Because the
system locks only the last selected tuple in a
batch, it would not provide stable access for the
other tuples. For statements with the FOR
STABLE ACCESS clause, the optimizer selects
parallelism only if the ratio of selected tuples to
the total number of tuples to be scanned is small.

Parallel Join Strategy 2. In the second parallel
join strategy, one table is partitioned, the second
table is much smaller than the first, and the
smaller table has an index on the join columns.
This join strategy uses one ESP for each parti
tion of the large table. Each ESP performs the
join between one partition of the large table and
the entire small table. The small table may or
may not be partitioned.

NonStop SQL can achieve maximum parallel
ism for this join strategy when separate proces
sors have primary responsibility for each
partition in both tables. (If the small table is
not partitioned, one processor has primary
responsibility for the whole table.)

Figure 11 shows three ESPs joining a large
table divided into three partitions (Tl) with a
small table (T2) that is not partitioned. The ESPs
and master executor communicate in the same
way as in the first parallel join strategy.

Parallel Join Strategy 3. In the third parallel
join strategy, the tables are not identically
partitioned. This can happen in two cases. First,
the join columns may not be part of any key.
Second, if the join columns are the same as the
key columns, the corresponding partitions of
the tables involved in the join may not have the
same key ranges.

Using the third parallel join strategy,
NonStop SQL repartitions the tables on the join
columns, creating an equal number of temporary
partitions for each of the base tables. During the
repartitioning, NonStop SQL applies the same
hash function to all partitions of all tables to
ensure that the same join column values fall into
the respective partitions. NonStop SQL creates
as many temporary partitions as there are CPUs

Figure 11

I join

1PP1icatiQn~~

SQ!. m~.r ft)teC!JtOr

ESP

available in the local system. If many CPUs
are available, the temporary partitions can be
relatively small; this permits greater parallelism
and better response time.

Usually, the temporary partitions are entry
sequenced and NonStop SQL sorts the data to
allow for SORT-MERGE join operations. ESPs
process the join between the corresponding pairs
of temporary partitions. Consider the following
join statement:

SELECT Tl.COL2, Tl.KEY _COL,
T2.KEY_COL

FROM Tl, T2
WHERE Tl.COL2 = T2.COL2;

OCTOBER 1990 •TANDEM SYSTEMS REVIEW

ESP

Partitioned
T1a table

Figure 11.

T1

Small table
T2

Parallel join strategy 2.

47

Figure 12

Contents of Temporary Table TT1 (Partitions TT1 1, TT1 2, TT1 3, TT1,)

TT1 1 TT1 2 TT1, TT1 4

col2 key_col col2 key_col col2 key_col col2 key_col

aaaa 0 fghd 200010 mous 99999 spdf 14

cccc 3 fghi 200004 qqqq 100000 spdf 120010

cccc 6 graf 888888 rrrr 100003 spdf 200000

cccc 121060 rstu 210555 zbra 199999

Contents of Temporary Table TT2 (Partitions TT21, TT22 , TT23 , TT24)

TT21

col2 key_col

aaaa 0

cccc 4

cccc 6

dddd 245678

Figure 13

Volume containing
index 13

Figure 12.

Repartitioned
and sorted data
for parallel join
strategy 3.

TT2,

col2 key_col

fghi 200004

graf 14

kity 95566

Volume containing
index 12

Figure 13.

TT23

col2 key_col

qqqq 100000

rrrr 111003

rrrr 119999

Volume containing
index 11

Modifying a base table
and three indexes
serially, as is done in
most database systems.

TT24

col2 key_col

spdf 200000

spdf 256789

turk 999999

zbra 199999

Volume containing
table T

Assume that tables Tl and T2 are structured
as shown in Figure 9 and that a cursor has been
declared on the statement. At OPEN cursor time,
NonStop SQL repartitions the base tables Tl and
T2 into four temporary partitions each. (See
Figure 4). This example is based on a system
configuration of four processors, as shown in
Figure 1.

NonStop SQL repartitions the tables serially
(processing table Tl before table T2), but uses
parallelism to repartition each individual table.
For example, to repartition table Tl, the master
executor employs three ESPs to select tuples (one
ESP for each original partition of table Tl). The
ESPs insert the tuples into one of the four tempo
rary partitions based on the outcome of a hash
function applied to the join column COL2. The
ESPs select and insert the tuples in parallel. The
master executor can use the same set of ESPs
later to repartition table T2. If the data needs
to be sorted after the repartitioning, the master
executor uses four SORTPROG processes to sort
the partitions in parallel.

Assume that the hash function distributes
the data based on the first character of column
COL2. The ESPs place all values starting with a
through e in the first partition,/ through l in the
second, m through r in the third, and s through z
in the fourth. Figure 12 shows the repartitioned
and sorted data.

After the tables are repartitioned, NonStop
SQL processes the join operations exactly as
it does in the first parallel join strategy. As the
FETCH cursor statements are issued, the master
executor employs four ESPs to process the join
operations on the repartitioned tables Tl and T2.

Parallel Index Maintenance
A relational database system can perform
acceptably only if it has indexes. With indexes,
the system often can locate all rows having a
particular column value or range of values
without having to scan the entire table. Even
when a query requires the system to scan the
entire table, the system can reduce the number
of disk accesses by obtaining the data from an
index that contains the desired columns (instead
of from the base table). Indexes are also needed
to impose a uniqueness constraint on a column
or group of columns.

48 TANDEM SYSTEMS REVIEW• OCTOBER 1990

Unfortunately, indexes are costly to main
tain, and creating too many indexes degrades
OLTP performance. However, tables with too
few indexes may cause batch and ad hoc query
performance to suffer. To satisfy these compet
ing constraints, database administrators must
have intimate knowledge of the application
load. They must choose carefully the base table
columns on which they create indexes, and
they must limit the total number of indexes
on a table.

An index is a copy of a subset of columns in
a base table. When an SQL query updates a base
table column, the database system must also
apply the update to all corresponding index
columns. Most database systems update the base
table and then update each index serially. Thus,
each index adds to the response time whenever
the system inserts, deletes, or updates data in
the table. Figure 13 shows a database system
inserting a row into a table with three indexes;
the system performs the insert operations
serially.

Release 2 of NonStop SQL introduces parallel
index maintenance. If a change in a base table
requires a corresponding change to multiple
indexes, NonStop SQL changes the indexes
in parallel. After completing the change in the
base table, the NonStop SQL file system issues
asynchronous update requests to each disk
process controlling an affected index. The
parallel index maintenance feature modifies
multiple indexes in approximately the same
elapsed time it would take to modify a single
index (as long as NonStop SQL is running on a
hardware configuration designed to maximize
parallelism). To take advantage of parallel index
maintenance, users should define a table's
indexes on different disk volumes.

Figure 14 shows how NonStop SQL
modifies three indexes in parallel. The illus
tration is based on the disk configuration shown
in Figure 1. (The configuration of the disk
volume in which the base table resides is not
crucial for achieving best results.)

Figure 14

Volume containing Volume containing
table T index 13

OCTOBER 1990 •TANDEM SYSTEMS REVIEW

l l

Volume containing Volume containing
index 12 index 11

Figure 14.

Parallel index maintenance
within NonStop SQL.

49

Figure 15.

Results of an experiment
comparing the use of
parallel index mainte
nance versus serial index
maintenance when
inserting or updating
10,000 rows in a table
with four indexes. The
percentages shown
represent the reduction in
the overall elapsed time
for the transactions. The
elapsed time required to
perform index mainte
nance was reduced by
over 60%.

50

Figure 15

-0
Q)
<fl
Cl.
cu

uJ

29% reduction

I
INSERT UPDATE

D Serial index maintenance

■ Parallel index maintenance

Figure 15 shows the results of an experiment
comparing the serial and parallel insertion of
10,000 rows into a table with four indexes.The
results demonstrate that NonStop SQL, operat
ing on a disk configuration that promotes
parallel index maintenance, significantly
reduces the elapsed time of SQL operations in
both batch and OLTP applications.

NonStop SQL automatically maintains
indexes in parallel whenever multiple indexes
are affected by an INSERT, UPDATE, or DELETE
statement. The CONTROL EXECUTOR PARAL
LEL EXECUTION ON compiler directive does
not affect the use of this feature. (NonStop SQL
does not perform parallel index maintenance
during a LOAD operation.)

Taking Advantage of Parallelism

If the user selects parallel execution, the
NonStop SQL optimizer chooses a parallel
execution plan whenever it would improve the
response time of a query. The following actions
can help users maximize the chance that
NonStop SQL will use parallel execution.

Issue the CONTROL EXECUTOR PARALLEL
EXECUTION ON compiler directive before
compiling the NonStop SQL statement. This
compiler directive allows the NonStop SQL
optimizer to use parallelism. The optimizer
weighs the performance benefits of a parallel
execution plan against those of a serial plan.
If the parallel plan improves performance, the
optimizer automatically chooses it.

Whenever possible, use the BROWSE
ACCESS or the REPEATABLE ACCESS option
instead of the STABLE ACCESS option. These
options sometimes allow parallel execution
when the STABLE ACCESS option does not.

To encourage the use of parallelism for
SELECT statements, do not perform the SELECT
within a transaction unless the table is audited
and locking is desired. The Transaction Monitor
ing Facility (TMF") will not allow a row to be
returned to the application if the master executor
has any outstanding requests to ESPs.

For unaudited tables, use BROWSE ACCESS
whenever possible. The optimizer will not
choose the second parallel join strategy if there
is a chance that ESPs will compete for the same
locks.

For audited tables, use either BROWSE
ACCESS, STABLE ACCESS with file locking, or
REPEATABLE ACCESS whenever possible. The
optimizer avoids parallel strategies (such as the
second parallel join strategy) in which the ESPs
may acquire excessive record locks.

When creating tables to store temporary query
results, consider using partitioned, entry
sequenced tables. This table structure combines
the advantages of writing entry-sequenced data
with the benefits of parallelism. (The ESPs can
write in parallel to multiple partitions.)

TANDEM SYSTEMS REVIEW• OCTOBER 1990

If a large partitioned table is frequently joined
with a small table, partition the small table in the
same way as the large table. NonStop SQL can
use parallel execution more efficiently when it
joins identically partitioned tables, even if one
table is small enough to reside on a single disk
volume.

Whenever possible, create partitioned in
dexes. When it executes a query, NonStop SQL
can use parallelism to retrieve data from a
partitioned index (if the desired columns reside
in the index). This improves response time in
two ways. First, NonStop SQL can retrieve data
from an index more quickly than from the base
table. Second, it can access many partitions in
parallel more quickly than it can access data
from the entire index serially.

Conclusion
The parallel execution feature introduced with
Release 2 of NonStop SQL greatly improves
the response time of batch operations, ad hoc
queries, report generation, and OLTP applica
tions. At the user's request, NonStop SQL can
use parallel execution to perform all the basic
SQL operations, including aggregate, SELECT,
INSERT, UPDATE, DELETE, and join operations.

To maximize the benefits of parallel execu
tion, users must properly configure their sys
tem's disks, controllers, and processors. The
best configuration designates a separate pair
of controllers and a separate processor for each
disk volume. In addition, users should partition
their tables across disk volumes in a way that
takes maximum advantage of parallelism.

NonStop SQL Release 2 also introduces
parallel index maintenance. By reducing the
time it takes to maintain multiple indexes, this
feature allows users to define more indexes
across a wider range of columns. This simplifies
database design and improves batch and ad hoc
query performance without sacrificing OLTP
response time.

References
Cassidy, J. and Kocher, T. 1989. NonStop SQL: The Single
Database Solution. Tandem Systems Review. Vol. 5, No. 2.
Part no. 28152. Tandem Computers Incorporated.

Cohen, H. 1988. Overview of NonStop SQL. Tandem Systems
Review. Vol. 4, No. 2. Part no. 13693. Tandem Computers
Incorporated.

Date, C.J. 1984. An Introduction to Database Systems. Volume I.
Addison-Wesley.

Englert, S. and Gray, J. 1990. Performance Benefits of Parallel
Query Execution and Mixed Workload Support in NonStop SQL
Release 2. Tandem Systems Review. Vol. 6, No. 2. Part no. 46987.
Tandem Computers Incorporated.

Englert, S. et al. 1990. The NonStop SQL Release 2 Benchmark.
Tandem Systems Review. Vol. 6, No. 2. Part no. 46987. Tandem
Computers Incorporated.

NonStop SQL Conversational Interface Reference Manual. 1989.
Part no. 22978. Tandem Computers Incorporated.

Sitler, S. 1986. Configuring Tandem Disk Subsystems. Tandem
Systems Review. Vol. 2, No. 3. Part no. 83938. Tandem Computers
Incorporated.

Acknowledgments
The authors wish to thank all the members of the NonStop SQL
development group and other Tandem organizations who helped to
add support for parallelism in NonStop SQL.

Mark Moore is a member of the Nonstop SOL development group.
He joined Tandem in 1981 as a member of the database group in
Software Development. Mark began working on Nonstop SOL in
1984 and helped design and implement the Nonstop SOL File
System.

Amardeep Sodhi is a member of the Selected Tools Vendors' (STV)
program, working on the Oracle tools project. He joined Tandem in
1983 and was a member of the Nonstop SOL development group
from 1984 to 1989. He helped design and implement the Nonstop
SOL Executor and the expressions code generator of the Nonstop
SOL Compiler.

OCTOBER 1990 •TANDEM SYSTEMS REVIEW 51

52

Online Reorganization of
Key-Sequenced Tables and Files

ith version C30 of the
Tandem'" Guardian'" 90
operating system,
users can reorganize
audited, key-sequenced
tables and files without
having to stop or

suspend access to their online applications. The
online reorganization utility, part of the Tandem
File Utility Program (FUP), operates on key
sequenced files created by the Tandem Enscribe
record management system and key-sequenced
tables created by the Tandem NonStop'" SQL
distributed relational database management
system.

Occasionally, tables or files need to be reorga
nized because online transactions and batch jobs
alter the information in them, eventually causing
them to become inefficient. Properly organized
key-sequenced tables and files can improve the
performance of online transaction processing
(OLTP), batch, and query applications.

In the past, users had to weigh the benefits of
reorganization against a major disadvantage: they
had to interrupt the service to the application in
order to reorganize a key-sequenced table or file.
With a large table or file, the reorganization could
make the system unavailable for hours or even
days. This is not acceptable for OLTP systems in
the 1990s, which must be continuously available
to users.

With online reorganization, users can maintain
their tables and files efficiently without disrupt
ing OLTP applications. This article explains how
tables and files become disorganized, describes
the impact on system performance of disorga
nized tables and files, and outlines the methods
available to reorganize them. It also describes
how to control and tune online file reorganiza
tion. Online reorganization utility supports both
NonStop SQL tables and Enscribe files; therefore,
for clarity, this article uses the word table or file
to identify the object being reorganized.

TANDEM SYSTEMS REVIEW• OCTOBER 1990

Key-Sequenced Table
Disorganization

Figure 1

I
Index
b'®k

Roo1illdex
block

I
I

Index
btQGk

A key-sequenced table or file is organized when
two conditions are met. First, the blocks contain
ing the data records must be physically contigu
ous and arranged according to the primary record
keys. Second, the blocks of both index and data
records must be filled with data, leaving little or
no wasted space. (See Figure 1.)

Over time, random insert, delete, and update
operations can cause a key-sequenced file to
become disorganized. There are two forms of
disorganization: physical discontinuity and poor
space utilization. Physical discontinuity arises
when one data block follows another in logical or
key value order, but the two blocks do not reside
in physically adjacent locations on disk. Poor
space utilization arises when many data and index
blocks fail to contain the optimum number of
records. 1 (See Figure 2.)

~ ~

During online activity, the application may
perform a random insert or update operation. The
Tandem Disk Process 2 (DP2) may find that the
block in which the record logically belongs has
insufficient space to accommodate the added or
updated record. In that case, DP2 must split the
block by moving some records from the full block
to an empty, available block. Because data blocks
are chained by means of a double-linked list to
allow both forward and reverse sequential pro
cessing, DP2 must write the new block and update
the linked list. Random deletes can result in the
deletion of the last remaining record in a block. In
that case, DP2 must collapse the block by remov
ing it from the chain. To complete a split or
collapse operation, DP2 must modify multiple
blocks, which increases the time the system takes
to perform transactions.

Many systems other than those manufactured
by Tandem collapse logically adjacent blocks
when both blocks become less than half full.
Collapsing partly full blocks can help control
space utilization, but it can also impair perfor
mance in OLTP applications. For example, an
OLTP application could perform a delete opera
tions that causes a block to collapse and then
perform an insert to the same logical block,
causing it to split again.

'Schachter (1985) provides details on efficient use of buffered
cache.

- ~
'ii~ader
Record
R~l'CI
Rec:Qrcf
ReGord

--- . Block
·- !leader

Reeord
---- . BIil<*

header
Reoord
Record
ReGord
Record

Figure 2

Figure 1.

An organized.file. The
data blocks are physically
contiguous on disk. The
amount of free space in the
blocks is consistent. There
are no empty blocks. The
fewest possible index
levels are used.

R~
Record
R$CPl'(l

Figure 2.

Rootitl(llillC
block

Index
b~

. EIIO!l~
~r
ii\~
-Record
R~

A disorganized.file.
The data blocks are not
physically contiguous on
disk. The amount of.free
space in the blocks is not

OCTOBER 1990 •TANDEM SYSTEMS REVIEW

--

Bl'ock
header
Record
Record
ReGord
Record

Index
block

I
Block

header
R~rd
Aecoi'd

-

consistent. There are
many empty blocks. The
fewest possible index
levels are not used.

53

Figure 3

Partial output of FUP INFO filename, STAT before RELOAD:

(a) EOF 100249600 (63.2% USED)

TOTAL TOTAL AVG# AVG AVG%
LEVEL BLOCKS RECS RECS SLACK SLACK

3 2 2.0 4039 99
2 2 231 115.5 1035 25
1 231 23622 102.3 1393 34

DATA 23622 519322 22.0 1263 31
FREE 618

BITMAP

Partial output of FUP INFO filename, STAT after RELOAD (SLACK set to 100%):

(b) EOF 68460544
TOTAL

LEVEL BLOCKS
2
1 115

DATA 16597
FREE

BITMAP

Figure 3.

Partial output of the FUP
INFO filename STAT
command. The signifi
cant numbers are the
number of FREE blocks,
average slack of DATA
blocks, and averaie slack
of INDEX blocks.

0

(43.1% USED)
TOTAL AVG# AVG AVG%
RECS RECS SLACK SLACK

115 115.0 977 24
16597 144.3 247 6

519322 31.3 77 2

To minimize the performance drawbacks of
collapsing and splitting blocks, Tandem systems
collapse blocks only when they become empty.
However, when a table or file in any system
becomes disorganized, the number of block splits
and collapses rises, adversely affecting system
performance.

Users may be able to reduce file disorganiza
tion by using sequential inserts (SETMODE 91,
parameter= 3). Without the use of sequential
inserts, blocks are split by placing about 50
percent of the records into the new block. With
sequential inserts, DP2 leaves the block being
split as full as possible and places the overflow
records into the new block. (This feature is
only useful if records are inserted sequentially.)
Sequential inserts help to control space utiliza
tion, but do not always prevent physical dis
continuity. Sequential inserts are described
in detail in the September 1989 issue of the
Tandem Systems Review (Keefauver 1989).

The Advantages of Reorganizing Tables
Most often, users reorganize tables or files to
recover unused disk space. A disorganized key
sequenced table requires more disk space than
an organized one because empty and partly filled
blocks multiply as the table becomes physically
disorganized.

An organized key-sequenced table improves
the performance of sequential operations by
reducing the number of I/Os and decreasing the
time required to perform read operations. When
logically contiguous data blocks are physically
contiguous, disk access time is reduced because
the disk arm moves a smaller distance between
I/Os. Because each block in an organized file
contains the optimum number of records, DP2
needs to scan fewer blocks to access a given
amount of data. An organized file allows the
NonStop SQL prefetch feature2 to take full ad
vantage of bulk transfers. The performance of
utilities such as the Tandem Disk Compression
Utility (DCOM) improves when key-sequenced
files are organized, because there are fewer
extents to be moved.

The performance of random access operations
also improves after a table is reorganized. Reor
ganization reduces the number of index blocks,
which improves DP2 cache utilization. It also
reduces the number of index levels, which speeds
up index searches.

How to Determine When a Table Is
Disorganized
Two commands of the FUP INFO utility
determine when a key-sequenced table or file
is disorganized. The most commonly used com
mand is FUP INFO filename, DETAIL. This
command shows how full the table is (in per
centage), based on the current End-Of-File and
the maximum possible End-Of-File. When this
value approaches 100 percent, the user must
increase the maximum number of extents or
reorganize the table to avoid an insertion failure.

The FUP INFO filename, STAT command
shows the number of unused (free) blocks and
the percentage of space used in data and index
blocks. (See Figure 3.) A large number of free
blocks or a low space utilization indicates that
the table should be reorganized. Note that there
is no current method that can be used to deter
mine when data blocks are not contiguous.

--

'The pref etch feature is described in Borr (1988).

54 TANDEM SYSTEMS REVIEW• OCTOBER 1990

Reorganizing Tables with the
LOAD Utilities

Before online reorganization was introduced,
database managers could use two LOAD utilities
to reorganize tables or files. The Tandem
NonStop SQL Conversational Interface (SQLCI)
LOAD utility reorganizes a NonStop SQL key
sequenced table. The FUP LOAD utility reorga
nizes an Enscribe key-sequenced file.

The use of these LOAD utilities has several
disadvantages. First, application processes have
no access to a table being reorganized until the
LOAD is completed. Making a table inaccessible
for an extended time is unacceptable in an OLTP
environment that must be continuously available.

Second, these utilities require both a source file
and a destination file. Users must copy the data
to disk or tape before the LOAD can be accom
plished. Loading a large, partitioned database
usually requires a complex set of procedures that
may take hours or days to complete.

In addition, during the LOAD, the Tandem
Transaction Monitoring Facility (TMF") does not
protect files normally protected by TMF. If TMF
is configured for full recovery, users must obtain
a new TMF online dump after the LOAD is
completed.

Reorganizing Tables Online
The C30 version of Guardian 90 offers the
online RELOAD utility as an alternative to the
LOAD utilities. Invoked with the FUP RELOAD
command, the online RELOAD utility performs
concurrently with application processing; it
does not interrupt OLTP operations. By reorganiz
ing the table in place (operating on one or two
blocks of data at a time), it eliminates the need
to copy the table. Because the online RELOAD
utility audits all reorganization operations on
TMF-protected tables and files, users do not have
to perform a TMF online dump after the reorgani
zation is completed.

Users can initiate the online RELOAD utility
for any key-sequenced Enscribe file, Enscribe
alternate key file, NonStop SQL base table, or
NonStop SQL index table. RELOAD reorganizes
only the specified file or table. For example, to
reorganize both an Enscribe primary key file and
its alternate key file, users must invoke RELOAD
twice, once each for the primary and the alternate
key files.

Comparing the RELOAD and LOAD Utilities
Both the LOAD utilities and the online RELOAD
utility produce an organized key-sequenced table.
Both types of utilities fill the table's data and
index blocks based on a SLACK parameter
specified by the user. (SLACK determines the
amount of unused space left in each block after
the reorganization.)

Both types of utilities organize the data blocks
to be contiguous based on the primary key. How
ever, the online RELOAD utility places all the
data blocks together, followed by all the index
blocks, whereas the LOAD utilities intersperse
the index blocks among the data blocks. After
the reorganization is completed, both types of
utilities reset the End-Of-File to the first unused
block and deallocate any unused extents.

OCTOBER 1990 •TANDEM SYSTEMS REVIEW 55

Figure 4.

Online RELOAD timing.

56

Figure 4

File size
Slack
Key length
Record length
Block length

100249600
100%

226
326

4096

Time required to complete RELOAD

bytes
(default)
bytes
bytes
bytes

Rate: 10% 20% 50% 100%

RELOAD Time 17.1 9.5 4.4 2.2

(hours)

Reorganizing Partitioned Tables
When the user issues a FUP RELOAD
command for the primary partition of a table or
file, the secondary partitions are not reorganized.
The user must issue a separate FUP RELOAD
command for each Enscribe or NonStop SQL
partition. To initiate a RELOAD for an Enscribe
secondary partition, the user must include the
PARTOF parameter followed by the volume
name of the primary partition. NonStop SQL
partitions do not require the PARTOF parameter.
Users can reload NonStop SQL or Enscribe
partitions independently or concurrently.

Controlling the RELOAD in an Online
Environment
Users can append several parameters to the
FUP RELOAD command, including PARTOF,
NEW, RATE, SLACK, DSLACK, and !SLACK.
These parameters (together with other FUP
commands that can be initiated while the
reorganization is in progress) allow users to
control the pace of the reorganization so that it
does not interfere with OLTP and batch activity.
By determining the amount of unused space the
reorganized table will have, the parameters help
users to adapt the table to various system loads
and types of activity.

The RATE parameter, which controls the
pace of the reorganization, allows the user to
minimize the impact the RELOAD will have on
OLTP applications. If the user specifies a RATE
of 100 percent, the reorganization proceeds at
full speed. If the user specifies a lower RATE,
the reorganization rate is reduced via delays
between each RELOAD operation.

Figure 4 shows the results of an online
RELOAD. These results were obtained on a
VLX system with XLSO disks with parallel
writes on mirrored disk volumes. Actual results
will depend upon system load factors, TMF
configuration, and the hardware platform.

The SLACK parameters control the amount
of unused space each block will have after the
reorganization is completed. When setting
values for these parameters, the user should
consider the performance expectations for the
file. The user can improve the performance of
random inserts by increasing the DSLACK,
which controls the slack in data blocks. A large
DSLACK leaves space available to insert new
records without having to split the block. The
user can improve the performance of sequential
operations by decreasing the DSLACK, which
reduces the number of data blocks. To improve
the performance of random queries, the user can
decrease the ISLACK, which controls the slack
in index blocks. Decreasing the !SLACK reduces
the number of index levels in the file.

TANDEM SYSTEMS REVIEW• OCTOBER 1990

To obtain the current status of a reorganization,
the user can issue a FUP STATUS filename com
mand while the reorganization is in progress.
(Control returns to the user after a RELOAD
operation is initiated.) If the RELOAD has not
finished, the status contains the time the RELOAD
was initiated, the RATE and SLACK values, and
the estimated completion percentage. If the
RELOAD has been completed, the status also
contains the completion time.

During periods of peak system activity, the
user can suspend a RELOAD in progress by
issuing a FUP SUSPEND filename command. The
user can reinitiate the reorganization with the FUP
RELOAD command. If the user does not specify
values for RATE or SLACK, the RELOAD utility
uses the values in effect at the time the RELOAD
was suspended. If the user does specify a new
RATE or SLACK, the suspended RELOAD will
resume with the new values.

While the RELOAD is suspended, the part
of the table that was reorganized can become
disorganized again. When the user reissues the
FUP RELOAD command, reorganization continues
at the block where the suspended RELOAD
stopped processing, leaving the first part of the
table disorganized. To solve this problem, the user
can use the NEW parameter in the FUP RELOAD
command string, which causes the RELOAD to
start again at the beginning of the table.

TMF Audit Considerations
The online RELOAD utility is implemented for
audited key-sequenced tables and files only. The
online RELOAD utility does not operate on key
sequenced tables or files that use index or data
key compression. The RELOAD utility can
generate a large amount of audit in a short time.
A single RELOAD running at full speed can
produce more than 90 megabytes of audit data
per hour. If the TMF audit trail configuration
cannot handle this amount of audit, it may cause
a MAXFILES condition (suspension of transaction
start). If this may be a problem, the user should
set the RATE parameter to reduce the rate at
which the audit trail is generated.

The Online RELOAD Server
Process
The FUP RELOAD command initiates an
online RELOAD server process (ORSERV),
which processes the online reorganization. The
ORSERV process initiates the RELOAD operation
and controls the rate at which the RELOAD is
accomplished. A separate ORSERV process man
ages each table reorganization in progress. The
ORSERV process is also responsible for obtaining
the status for a FUP STATUS command and
suspending a RELOAD for a FUP SUSPEND
command.

To facilitate the suspension of a RELOAD,
ORSERV creates a key-sequenced status file,
ZZRELOAD.ZZRELOAD. The status file contains
a record for each file that is reloaded on the
volume. The record contains the information
necessary to restart a suspended RELOAD and
obtain the status of the RELOAD. ORSERV
creates one status file per volume. To purge the
history of the RELOAD operations performed on
a volume, the user can issue a FUP PURGE or
FUP PURGEDATA command for the status file.

OCTOBER 1990 •TANDEM SYSTEMS REVIEW 57

58

ORSERV Requests to DP2
The ORSERV process issues a series of online
RELOAD requests to DP2 to accomplish the table
reorganization. The first request tells DP2 to start
processing at the beginning of the table. DP2
examines and reorganizes the first block in the
table and returns its key value to ORSERV. With
each subsequent request, DP2 examines and
processes the next logical block until the table has
been reorganized.

If the RATE is less than 100 percent, ORSERV
delays between each online RELOAD request. The
following formula determines the time used for
the delay:

[(I 00 - RATE)/ RATE] x T

where

T = the time to complete the last online
RELOAD request.

Thus, if the user specifies a RATE of 50 per
cent, ORSERV pauses one delta before sending
the next request. If the user specifies a RATE
of 10 percent, ORSERV pauses 9 deltas before
sending the next request. This throttling mecha
nism automatically adjusts the reorganization
rate to changing system loads; the rate is fast
under light loads and slower under heavy loads.
This reduces conflict between the online reor
ganization and other batch jobs, thus increasing
the effectiveness of the ORSERV process
(Keefauver, 1989).

DP2 Support for Online RELOAD
New procedures have been added to DP2 to
support online reorganization. The procedures
determine the resources required to reorganize
a file; they also perform the reorganization.

DP2 processes the online RELOAD in primary
key order. It examines and moves each block
until all the blocks are in consecutive order and
filled based on the SLACK specified by the user.
DP2 processes the data record blocks first, fol
lowed by the index record blocks. Each online
RELOAD DP2 request performs one of four
atomic operations:

■ The block swap operation swaps the contents
of two blocks. This operation moves blocks into
consecutive order.

■ The block move operation moves the contents
of a block to an empty block. DP2 performs this
operation instead of the block swap operation
when the target block is empty.

■ The block merge operation merges the con
tents of two blocks into one block. DP2 uses
this operation to obtain the SLACK specified
by the user.

■ The block split operation divides the contents
of a block into two blocks, preparing it for a
block merge operation. DP2 uses this operation
to obtain the SLACK specified by the user.

For each of these new operations, DP2 must
prevent other requests from accessing the file
for the duration of the operation.Users should
be aware of the impact these operations have
on system performance and response time. Users
can set the RATE parameter to a lower value to
lessen that impact.

TANDEM SYSTEMS REVIEW• OCTOBER 1990

When the compaction of the index blocks
reduces the number of index levels needed in
the B-Tree, DP2 executes a special operation
that reduces the number of index levels. After
the compaction is complete, the ORSERV process
automatically returns unused disk space to the
system by deallocating the unused file extents.

Conclusion
With the online reorganization utility, users
of Enscribe and NonStop SQL systems can
manage disk space resources and maintain high
performance without reducing system availa
bility. Users can initiate or resume the online
reorganization without having to suspend OLTP
applications. They can adjust the pace of a reor
ganization so that it does not interfere with OLTP
or batch performance. Online table and file
reorganization is a key component of continuous
availability, a requirement for online enterprise
computing in the 1990s.

References
Borr, A. 1988. Technical Paper: High-Performance SQL through
Low-Level System Integration. Tandem Systems Review. Vol. 4,
No. 2. Tandem Computers Incorporated. Part no. 13693.

Keefauver, T. 1989. Optimizing Batch Performance. Tandem
Systems Review. Vol. 5, No. 2. Tandem Computers Incorporated.
Part no. 28 I 52.

Schachter, T. 1985. DP2 Key-sequenced Files. Tandem Systems
Review. Vol. I, No. 2. Tandem Computers Incorporated. Part no.
83935.

Acknowledgments
Franco Putzolu designed and implemented the online RELOAD
utility and aided the author in the preparation of this article.
Special thanks to Larry McGowan for his valuable assistance
in the preparation of this article.

Gary S. Smith joined Tandem in 1985 with the Systems
Support Group in Reston and currently works in the DP2 software
development group.

OCTOBER 1990 •TANDEM SYSTEMS REVIEW 59

60

The Outer Join in
NonStop SQL

elease 2 of Nonstop'" SQL,
the Tandem'" relational
database management sys
tem, offers a new SQL
feature, the outer join.
The outer join operation
enhances the functionality

of NonStop SQL in accordance with the specifi
cations of the emerging ANSI SQL2 standard
(ISO-ANSI, 1989). It is especially useful for
generating exception reports.

NonStop SQL is often used to query databases
for report generation. A NonStop SQL query
involving a join can generate a complex report
requiring data from multiple tables. However,
a join can lose information because its result
excludes rows that do not satisfy the join condi
tion. These rows, the exceptions to the rule
represented by the join condition, can provide
useful information. An exception report includes
these rows.

In NonStop SQL Release 1, users could per
form a join operation. In NonStop SQL Release
2, a join operation is also called an inner join to
distinguish it from an outer join. An inner join
can combine rows from multiple tables, but it
cannot at the same time identify rows that failed
to satisfy the join condition. To generate an
exception report, users had to invoke a sequence
of queries together with specialized logic in
embedded SQL programs.

TANDEM SYSTEMS REVIEW• OCTOBER 1990

In NonStop SQL Release 2, users can per
form outer join operations by using the left join
operator. An outer join combines rows from
multiple tables; at the same time, it preserves
rows that failed to qualify for the join. Thus,
with a single outer join query, users can generate
a complex exception report. Applications that
use the outer join to generate exception reports
realize an increase in programmer productivity
because they:

■ Benefit from a simpler design.

■ Need less procedural logic and are therefore
easier to code and maintain.

■ Are easier to prototype through ad hoc SQL
queries using the NonStop SQL Conversational
Interface (SQLCI).

This article begins by defining the basic
concepts related to the outer join. It compares
the functions of inner join and outer join opera
tions, describes the roles played by the various
clauses in an outer join query, and shows how
users can combine inner join and outer join
operations.

The article assumes that readers are familiar
with the Structured Query Language (SQL) and
the concepts and terminology of relational
databases. Readers should also be familiar with
Nonstop SQL and its Explain facility (NonStop
SQL Programming Reference Manual, 1989a,
1989b, and 1989c).

Basic Concepts and Definitions
The outer join operation can be defined infor
mally by explaining a few basic concepts. These
concepts clarify the differences between an inner
join and an outer join. They also define the three
types of outer joins: full outer join, left outer
join, and right outer join.

The definition of each operation is accompa
nied by an example. The examples use the tables
shown in Figure 1.

Figure 1

Table A

Figure 2

The Null Value

1
\~

2 4

Table B

In a relational database, a null value for a
column represents missing information or
indicates that a desired value is unknown. In
this article, a null value is represented by a
question mark(?).

The Union Operation
Two tables, A and B, are union compatible when
they have the same number of columns and their
columns in corresponding positions have com
patible data types. A union of tables A and B
is the set consisting of all rows from table A
together with all rows from table B, when tables
A and B are union compatible. The operation is
represented by A U B. Its result is the table
shown in Figure 2.

OCTOBER 1990 •TANDEM SYSTEMS REVIEW

Figure 1.

Sample tables A and B.

Figure 2.

Result of the union
operation AU B.

61

Figure 3.

Result of the Cartesian
product AX B.

Figure 4.

Result of A join B on
A.q=B.r.

Figure 5.

A-component and B
component of A join B.

62

Figure 3

Figure 4

Figure 5

p q s

·2 2 4
1 2 .3 4
3 4 2 4
3 4 3 4

p q: (s

'.2 -~ 4

The Join Operation
A Cartesian product of tables A and B is the set
of rows formed by concatenating each row of
table A with each row of table B. The operation
is represented by AX B. Its result is the table
shown in Figure 3.

A join condition is a predicate, or a com
bination of predicates, that evaluates to true,
false, or null. The predicates may be of different
types. A join predicate contains columns from
two or more tables being joined. For example,
A.q = B.r is a join predicate. A single-table
predicate contains one or more columns from the
same table. For example, A.p < 3 is a single
table predicate. A predicate that does not contain
any columns is called an orphan predicate. For
example, 6 > 4 is an orphan predicate.

The join of tables A and B, given a join
condition C, is the set formed by selecting the
rows from the Cartesian product of tables A and
B that satisfy condition C. The operation is
represented by Ajoin B. The table shown in
Figure 4 is the result of applying the join condi
tion A.q = B.r to AX B.

Each row in the result of the join of tables
A and B contains two components, a row
derived from table A and a row derived
from table B. (The two rows are concatenated,
forming a single row.) All columns of a joined
row that are derived from table A are together
called the A-projection of A join B. In Figure 4,
the columns p, q form the A-projection of
Ajoin B; the columns r, s form the B-projection
of Ajoin B.

The set formed by including only the compo
nent of the rows of A join B that contains the
A-projection is called the A-component of
Ajoin B. Similarly, there is the B-component
of Ajoin B. (See Figure 5.)

TANDEM SYSTEMS REVIEW• OCTOBER 1990

The Difference Set
The difference of tables A and B, when A and B
are union compatible, is the set of those rows
from table A that do not occur in table B. A-B
represents the difference of tables A and B.It
produces the result shown in Figure 6.

The Join Complement
The join complement of table A with respect
to A join B is a set of rows constructed in
the following manner. First, take each row
belonging to the difference of table A and the
A-component of Ajoin B. (See Figure 7.)
Second, augment (extend) the row with as
many null values as the number of columns
in the B-projection of Ajoin B. Third, add
the augmented row to the join complement.
Figure 8 shows the join complement of A join B.

Each row in the resulting set contains two
components, a row derived from table A and
its extension with null values. The null extension
corresponds to the B-projection of A join Band
indicates that there is no row in table B that
can be joined with the row derived from table A.
Thus, the join complement preserves informa
tion from table A when corresponding informa
tion is missing in table B. The notion of
preservation applies only to those rows in table
A that do not contribute to the result of Ajoin B.

The rows in a join complement contain the
same number of columns as the rows in the
result of A join B. Also, because a row in a join
complement is derived from the same parent
tables as a row in A join B, columns in corre
sponding positions have the same data types.
(The null extension introduces appropriate null
values into these columns.) Therefore, given
two tables to be joined, the join and the join
complement produce sets of rows that are union
compatible.

Figure 6

Figure 7

Figure 8

2

3 4

p q

. _3··... 4'

OCTOBER 1990 •TANDEM SYSTEMS REVIEW

Figure 6.

Result of the difference
of tables A and B (A - B).

Figure 7.

Result of A - (A-component
of A join B).

Figure 8.

The join complement of
A join B.

63

64

The Full Outer Join Operation
The full outer join of tables A and B, given a
join condition C, is represented by A full join B.
It is the union of the following sets ofrows:

■ The join of tables A and B, represented by
Ajoin B.

■ The join complement of table A, with respect
to A join B.

■ The join complement of table B, with respect
to A join B.

The full outer join produces a result that
contains all the rows that satisfy the join condi
tion C. It also contains the preserved rows from
table A and the preserved rows from table B.
This operation is called a full outer join because
it preserves rows from each of the participant
tables.

In addition to the full outer join, there are
two other outer join operations: the left outer
join and right outer join. These joins produce
results that are subsets of the result produced by
a full outer join; they preserve rows from one of
the tables, but not both. The operator determines
which table will have its rows preserved.

The Left Outer Join Operation
The left outer join of tables A and B, given a
join condition C, is represented by A left join B.
It is the union of the following sets of rows:

■ The join of tables A and B, represented by
Ajoin B.

■ The join complement of table A with respect
to A join B.

The left outer join preserves rows from table
A. The operation is called a left outer join
because the table from which information is to
be preserved appears on the left side of the
operator. Note that, unlike A join B, A left join B
is not equal to B left join A. In other words, the
left outer join operation is not commutative (the
joining sequence of the tables cannot be changed
without affecting the result). It is also not
associative. (Associativity is another property
that influences the sequence in which tables are
joined.) Therefore, (A left join B) left join C is
not equal to A left join (B left join C).

The Right Outer Join Operation
The right outer join of tables A and B,
given a join condition C, is represented by
A right join B. It is the union of the following
sets of rows:

■ The join of tables A and B, represented by
Ajoin B.

■ The join complement of table B with respect
to A join B.

The right outer join preserves rows from
table B. It is called a right outer join because
the table to be preserved appears on the right
side of the operator. Like the left outer join,
it is neither a commutative nor an associative
operation.

Note that A full join B is equal to the
union of A left join B and A right join B.Also,
A left join B is equal to B right join A. More
information about all three outer join operations
appears in Date, 1986.

TANDEM SYSTEMS REVIEW• OCTOBER 1990

NonStop SQL Syntax
In NonStop SQL Release 2, users can formulate
an outer join using new keywords in the FROM
clause as shown in Figure 9. The syntax rules
are described in detail in NonStop SQL Pro
gramming Reference Manual, 1989a, 1989b,
and 1989c.

This syntax is identical to the one prescribed
in the ANSI SQL2 draft standard in all respects
but one (ISO-ANSI, 1989). In Release 2,
NonStop SQL does not support parenthesized
join operations. This syntax is implemented for
the inner join and left join operations. Note that
many left join operations can be performed in
the FROM clause. NonStop SQL Release 2
provides a new ON clause to associate predicates
explicitly with a specific left join operation.
Predicates in the ON clause are used to realize
the outer join.

Developing Applications Using
the Outer Join
The examples in the remainder of this article
show how to use the outer join in queries that
can produce exception reports and other com
plex results. They illustrate the different results
produced by inner join and outer join operators
when they are placed in similar queries. It is
important to demonstrate how these results are
obtained because the results are not intuitively
obvious. The examples differentiate between
the functions of the WHERE and ON clauses.
Finally, they show how inner and outer joins
are combined and how the results are to be
interpreted.

The examples in this article refer to the
tables shown in Figure I 0. The SALESEMP
table contains data covering employees who are
salespersons. It includes the employee number,
employee name, region number, and manager's
employee number. The REGION table contains
the region number, region name, and a number
indicating the location of the head office for
each region. The ORDERS table contains, for
each order, the order number, customer number,
and the employee number of the salesperson
who booked the order.

Figure 9

FROM <table reference> [{ , <table reference> }]

<table reference> ::=
<table name> [[AS] <correlation name>]
I <joined table>

<joined table> : :=
<table reference> [<join type>] JOIN
<table name> ON <join condition>

<join type>::=

INNER I LEFT

<join condition> specifies a condition or a combination
of conditions that evaluate to
true, false, or unknown.

<Correlation name> is an identifier.

<table name> is an identifier.

Figure 10

The SALESEMP table

EMP_NUM EMP_NAME

2703 Morrison, J.
2705 Hennessy, A.
2906 Nakagawa, E.
3598 Chu, F.
4096 Chow,J.

The REGION table

REG_NUM REG_NAME

6400 Japan
6420 Hong Kong
6470 Taiwan
7600 USA

The ORDERS table

ORD_NUM CUST_NUM

12 729
33 912
57 283
77 1064

REG_NUM

7600
7600
6400
6470
6420

REG_HQLOC

900
920
970
100

BOOKED_BY

3598
11022
2705
2906

MGR_NUM

2705
6554
6554
2906
3598

OCTOBER 1990 •TANDEM SYSTEMS REVIEW

Figure 9.

Join syntax in NonStop SQL
Release 2.

Figure 10.

The sample database.

65

Figure 11.

Irifin-mation ahout
salespersons who have
hooked an order.

Figure 12.

Infi1rmatio11 ahout sales
persons who hm·e not
hooked an order.

66

Figure 11

Figure 12

EMP _NUM EMP _NAME ORD_NUM

3598 Chu. F 12
2705 Hennessy. A. 57
2906 Nakagawa, E. 77

EMP _NUM EMP _NAME

2703 Morrison, J.
4096 Chow, J.

Examples of Inner Join Queries
The inner join query in the following example
uses the SQL syntax available in NonStop SQL
Release 1. (NonStop SQL Release 2 continues
to support this syntax.) The query lists the
employee number, name, and order-related
information pertaining to salespersons who
have booked an order.

SELECT S.EMP _NUM, S.EMP _NAME,
O.ORD_NUM

FROM SALESEMP S, ORDERS 0
WHERE S.EMP _NUM = O.BOOKED_BY

The following query, expressed using
NonStop SQL Release 2 syntax, is equivalent to
the preceding query, even though the SQL syntax
for the two queries looks different. NonStop SQL
translates the latter form into the former one.
Thus, both queries produce the same result and
have the same performance characteristics.

SELECT S.EMP _NUM, S.EMP _NAME,
O.ORD_NUM

FROM SALESEMP S
INNER JOIN ORDERS 0

ON S.EMP_NUM = O.BOOKED_BY

Both queries produce the 3-row table shown
in Figure I I. The result contains only those
rows that satisfy the join condition given in the
WHERE clause in the first query and the ON
clause in the second query. Order 33 does not
appear in the result because it was booked by
salesperson 11022, who is not an employee of
the company.

Information about salespersons who have
not booked any orders is missing from the result
of this query. Users can obtain this information
from the database by running an additional
query. Consider the following query, which
lists the employee number and the name of the
salespersons who have not booked orders.

SELECT EMP _NUM, EMP _NAME
FROM SALESEMP S

WHERE EMP _NUM NOT IN
(SELECT BOOKED BY

FROM ORDERS)
This query computes the difference

of the values occurring in the columns
SALESEMP.EMP_NUM and ORDERS.BOOKED_BY.
It produces the 2-row table shown in Figure 12.
The subquery lists the employee numbers of
those salespersons who have booked an order.
The main SELECT statement lists the names of
the salespersons who do not appear in the list
returned by the subquery.

Since NonStop SQL Release 2 also supports
the SQL UNION operator, users can simulate full,
left, and right join operations. The following
example simulates the left join operation by
using the queries that gave the results shown in
Figures I 1 and I 2.

SELECT S.EMP _NUM, S.EMP _NAME,
O.ORD_NUM

FROM SALESEMP S, ORDERS 0
WHERE S.EMP _NUM = O.BOOKED_BY
UNION
SELECT EMP_NUM, EMP_NAME, -I

FROM SALESEMP S
WHERE EMP _NUM NOT IN

(SELECT BOOKED BY
FROM ORDERS)

TANDEM SYSTEMS REVIEW• OCTOBER 1990

The second SELECT statement is the same
one that gave the result shown in Figure 12.
Its select list is augmented with a -1 to ensure
that the results of the two SELECT statements
are union-compatible. The -1 corresponds to the
column O.ORD_NUM in the select list of the
first SELECT statement. Assuming that an order
number is always greater than 0, the -1 repre
sents an invalid order number in the union
result. Thus, this augmentation of rows produces
the join complement of the SALESEMP and
ORDERS tables. By definition, the join of the
SALESEMP and ORDERS tables in a union with
their join complement is the left join of the
two tables. Figure 13 shows the result of the
preceding query, which is the left join of the
SALESEMP and ORDERS tables. Note that this
simulation of the left join operation is valid only
because the tables SALESEMP and ORDERS do
not contain any duplicated rows.

In Figure 13, the first and last rows have
the value -1 in the column ORD_NUM. These
rows represent salespersons who have not
booked an order.

An Example of an Outer Join Query
A single outer join query can retrieve the
information produced by the queries discussed
earlier. The left outer join query in the following
example preserves the employee numbers and
names of the salespersons who have not booked
orders. Each question mark in the result repre
sents a null value.

SELECT S.EMP _NUM, S.EMP _NAME,
O.ORD_NUM

FROM SALESEMP S
LEFT JOIN ORDERS 0

ON S.EMP _NUM = O.BOOKED_BY

This outer join query produces the 5-row
table shown in Figure 14. Rows 2 through 4 are
the same as those shown in Figure 11. These
rows represent the join of the SALESEMP and
ORDERS tables. The rows having the values
2703 and 4096 in the EMP _NUM column belong
to the difference set. They are preserved in
Figure 14 by augmenting the order information
with null values. The results shown in Figures
13 and 14 are similar; the only difference is that
a null value in Figure 14 replaces the -1 in
Figure 13.

Figure 13

EMP_NUM EMP_NAME ORD_NUM

2703 Morrison, J. -1
2705 Hennessy, A. 57
2906 Nakagawa, E. 77
3598 Chu, F. 12
4096 Chow, J. -1

Figure 14

EMP_NUM EMP_NAME ORD_NUM

2703 Morrison, J. ?
2705 Hennessy, A. 57
2906 Nakagawa, E. 77
3598 Chu, F. 12
4096 Chow,J. ?

The Role of the ON Clause
A given join condition can be a combination
of join, single-table, or orphan predicates.The
ON clause allows a join condition to be asso
ciated unambiguously with a particular outer
join operation in the FROM clause. Consider
the following join:

FROM SALESEMP S, ORDERS 0
WHERE S.EMP _NUM = O.BOOKED_BY

AND S.EMP _NUM < 2800

This example illustrates a join of the
SALESEMP and ORDERS tables. The join
condition relates rows in which a salesperson's
employee number matches the employee number
of the salesperson who has booked an order and
the employee number is less than 2800. The join
is performed only when the entire join condition
is satisfied. Both predicates must evaluate to true
before a row from the SALESEMP table is joined
with a row from the ORDERS table.

OCTOBER 1990 •TANDEM SYSTEMS REVIEW

Figure 13.

The result of'a leji join
expressed usinf; a union
of'SELECT statements.

Figure 14.

The result of'an outer join
query.

67

Figure 15.

Influence of the
ON-clause join condition
on preserved rows.

68

Figure 15

EMP_NUM EMP_NAME ORD_NUM

2703 Morrison, J. ?

2705 Hennessy, A. 57
2906 Nakagawa, E. ?
3598 Chu, F. ?
4096 Chow,J. ?

In the following example, an outer join is
performed using the same join condition as the
inner join in the preceding example. In the outer
join, the FROM clause appears as follows:

FROM SALESEMP S
LEFT JOIN ORDERS 0

ON S.EMP _NUM = O.BOOKED_BY
AND S.EMP _NUM < 2800

By using the NonStop SQL Release 2 syntax,
a query can combine inner and outer join
operations in the same FROM clause. Therefore,
it is necessary to distinguish between join
conditions for the different join operations
performed for the same query. This is achieved
by specifying join conditions for an outer join
in the ON clause and those for an inner join or
between tables participating in different outer
joins in the WHERE clause. The following
example shows an inner join of the REGION
table with the outer join of the SALESEMP and
ORDERS tables.

FROM REGION R, SALESEMP S
LEFT JOIN ORDERS 0

ON S.EMP _NUM = O.BOOKED_BY
AND S.EMP _NUM < 2800

WHERE S.REG_NUM = R.REG_NUM
AND S.REG_NUM IN (6400, 7600)

The ON clause demarcates the join condition
for the outer join from the join condition for the
inner join (specified in the WHERE clause). If the
ON clause were not available in NonStop SQL,
all outer and inner join predicates would appear
in the WHERE clause, as shown in the following
example:

FROM REGION R, SALESEMP S
LEFT JOIN ORDERS 0

WHERE S.EMP _NUM = O.BOOKED_BY
AND S.EMP_NUM < 2800
AND S.REG_NUM = R.REG_NUM
AND S.REG_NUM IN (6400, 7600)

In this example, the relationship between
join predicates and the corresponding join
operation is clear. However, the association
of single-table predicates becomes ambiguous.
It is no longer clear whether the predicates
S.EMP _NUM < 2800 and S.REG_NUM IN(...)
should be associated with the join condition for
the outer join or for the inner join.

The ON clause also realizes preservation of
tables in outer join queries. It behaves like the
WHERE clause when each row from the tables
being outer-joined satisfies the join condition.
These rows are added to the result, just as in the
case of an inner join. However, if either row
being outer-joined fails to satisfy any predicate
appearing in the join condition, the row from the
table to be preserved is augmented with an
appropriate number of null values; then the
augmented row is added to the result. In an outer
join, the ON clause forms not only the join, but
also the join complement.

The query in the following example empha
sizes the influence that the join condition of
the ON clause exercises on the rows that are
preserved. Figure 15 shows the result of the
following query.

SELECT S.EMP _NUM, S.EMP _NAME,
O.ORD_NUM

FROM SALESEMP S
LEFT JOIN ORDERS 0

ON S.EMP _NUM = O.BOOKED_BY
AND S.EMP _NUM < 2800

TANDEM SYSTEMS REVIEW• OCTOBER 1990

The row having the value 2703 in the
EMP _NUM column is for one of the sales
persons who has not booked an order. Thus, the
row does not satisfy the first predicate in the join
condition, S.EMP _NUM = O.BOOKED_BY. The
row is preserved in Figure 15 by augmenting its
order information with null values. The next row
is for the salesperson who has an EMP _NUM
value of 2705, has booked an order, and has an
employee number less than 2800. The row
contains original information from both the
SALESEMP and ORDERS tables. The next two
rows, having the values 2906 and 3598 in the
EMP _NUM column, have employee numbers
larger than 2800. Although they satisfy the first
predicate, they fail to satisfy the second,
S.EMP _NUM < 2800. Hence, their rows are also
preserved by augmenting their order information
with null values. The last row satisfies neither
predicate in the join condition and is preserved
in the same fashion.

The keywords LEFT JOIN and ON occur in
a pair. For each LEFT JOIN that occurs in the
FROM clause, there is a corresponding ON. Each
pair causes the performance of an outer join
operation. The table preserved in each outer join
can, in tum, be inner-joined or outer-joined with
another table. The query in the following
example joins the SALESEMP table, which is
preserved in the outer join of the SALESEMP
and ORDERS tables, with the REGION table. The
query lists the employee numbers and names of
salespersons, along with order information and
region name, for individuals in region 6400 or
7600. Figure 16 shows the result of this query.

SELECT S.EMP _NUM, S.EMP _NAME,
O.ORD_NUM, R.REG_NAME

FROM REGION R, SALESEMP S
LEFT JOIN ORDERS 0

ON S.EMP _NUM = O.BOOKED_BY
AND S.EMP _NUM < 2800

WHERE S.REG_NUM = R.REG_NUM
AND S.REG_NUM IN (6400, 7600)

If the syntax of NonStop SQL Release 2
is used for an inner join query, the ON clause
is transformed to become the WHERE clause.
Therefore, the ON clause and the WHERE clause
show identical behaviors for inner join queries.

Figure 16

EMP_NUM EMP_NAME ORD_NUM REG_NAME

2703 Morrison, J. ? USA
2705 Hennessy, A. 57 USA
2906 Nakagawa, E. ? Japan

Figure 17.

EMP _NUM EMP _NAME ORD_NUM

2703 Morrison, J. ?
2705 Hennessy, A. 57

The Role of the WHERE Clause
Each ON clause for an outer join contains the
predicates that are necessary to preserve the
appropriate table. The WHERE clause contains
the predicates that are not necessary for preserva
tion but are used to perform inner joins or to
relate columns belonging to the results of two or
more different outer join operations. The WHERE
clause is also used to retrieve specific informa
tion from the result of an outer join. In an outer
join query, predicates from the WHERE clause
that apply to a table participating in a particular
outer join operation are evaluated only after that
outer join operation is completed.

Figure 16 contains an example of a WHERE
clause that relates a table in the FROM clause
with the preserved table of an outer join opera
tion. The following query lists the the employee
numbers and names of the salespersons together
with order related information for region 7600.

SELECT S.EMP _NUM, S.EMP _NAME,
O.ORD_NUM

FROM SALESEMP S
LEFT JOIN ORDERS 0

ON S.EMP _NUM = O.BOOKED_BY
WHERE S.REG_NUM = 7600

Figure 17 shows the result of this query. It
is a 2-row table that includes the salesperson
having EMP _NUM 2703, who did not book an
order, and the salesperson having EMP _NUM
2705, who did.

OCTOBER 1990 •TANDEM SYSTEMS REVIEW

Figure 16.

The result of a join of the
preserved SALESEMP
table with the REGION
table.

Figure 17.

Order status for sales
persons in region 7600.

69

Figure 18

Figure 18.

explain
"SELECT S.EMP _NUM, S.EMP _NAME, O.ORD_NUM"

&"FROM SALESEMP S LEFT JOIN ORDERS 0
&" ON S.EMP _NUM = O.BOOKED_BY
&"WHERE O.ORD NUM IS NULL

QUERY PLAN 1
STATEMENTTYPE : SELECT

OPERATION 1.1 SCAN

TABLE NAME . \SQL.$SQL.TSRDB.SALESEMP

VIEW NAME
ACCESS TYPE
LOCK MODE
COLUMNS USED
TABLE SELECTIVITY

ACCESS PATH1
SBB
PRED. EVALUATED

with correlation name S
: NONE
: RECORD for STABLE ACCESS
: DEFAULT
: 2 out of 5 columns will be retrieved.

100% of rows will be selected.

: PRIMARY
: VIRTUAL
: NONE

PREDICATES APPLIED TO THE RESULT OF THE JOIN
O.ORD_NUM IS NULL

INDEX SELECTIVITY : 100% of primary index will be selected.
BEGIN KEY PRED. : NONE
END KEY PRED. : NONE

OPERATION COST : 2

OPERATION 1.2 NESTED JOIN
JOIN TYPE : OUTER
TABLE NAME : \SOL.$SQL.TSRDB.ORDERS

with correlation name 0
VIEW NAME : NONE
ACCESS TYPE : RECORD for STABLE ACCESS
LOCK MODE DEFAULT
COLUMNS USED : 1 out of 4 columns will be retrieved.
TABLE SELECTIVITY : 33.33% of rows will be selected.

ACCESS PATH1 : PRIMARY
SBB : VIRTUAL
PRED. EVALUATED : by DISK PROCESS

S.EMP _NUM = O.BOOKED_BY
INDEX SELECTIVITY : 100% of primary index will be selected.
BEGIN KEY PRED. : NONE
END KEY PRED.

OPERATION COST
TOTAL COST : 4

: NONE
: 2

Explain report detailing
evaluation of'the WHERE
clause for a LEFT JOIN
query.

Figure 18 shows the NonStop SQL
optimizer's Explain output for an outer join
query. The Explain report lists the steps that
NonStop SQL will follow to evaluate the query.
It is useful for checking that a query has correct
semantics, especially for the outer join opera
tion, which is inherently complex. The plans
that appear in Figures 18 and 19 demonstrate the
differences in the evaluation of the predicates in
the ON and WHERE clauses.

The left join query that generates the Explain
report shown in Figure 18 is reformulated as an
inner join query in Figure 19. The evaluation of
the predicate O.ORD_NUM IS NULL differs in
the two cases. In Figure 18, the Explain report
states that the predicate is applied to the result
of the join. This means that the predicate is
evaluated after the preservation has been
achieved through augmentation with null values.

By contrast, in Figure 19 the Explain report
states that the same predicate is to be evaluated
by the disk process. This means that the predi
cate is evaluated before the join phase,
while NonStop SQL is retrieving rows from
the ORDERS table. This is a more efficient
approach, but an outer join query cannot use it.
The outer join is a different type of operation
than an inner join. In an outer join, predicates
from the WHERE clause must be evaluated only
after the operation is completed.

The Role of the GROUP BY and HAVING
Clauses
NonStop SQL performs both the GROUP BY
and HAVING operations after the join phase is
completed. Hence they are independent of the
different types of joins. There is no special
treatment of the GROUP BY and HAVING
clauses in outer joins.

70 TANDEM SYSTEMS REVIEW• OCTOBER 1990

Implications for Other SQL DML
Commands
A FETCH statement on a cursor employing an
outer join query must be coded to handle null
values in the result. Otherwise the application
might get an error at run time. Assume, for
example, that the column ORD_NUM is declared
to be NOT NULL in the definition of the table
ORDERS. Now consider the following cursor,
which is declared using an outer join query.

DECLARE CURSOR ORD BOOK AS
SELECT S.EMP _NUM, O.ORD_NUM

FROM SALESEMP S
LEFT JOIN ORDERS 0

ON S.EMP _NUM = O.BOOKED_BY

Because the ORDERS table appears on the
right side of the left join operator, the result
table can contain null values in the column
position corresponding to ORD_NUM. When
preservation of SALESEMP occurs by augment
ing its rows with null values, the left join
operator disregards the NOT NULL attribute
of a column. Hence, when a FETCH is per
formed on the cursor ORDBOOK, it is advisable
to associate a null indicator variable with the
host variable allocated to retrieve data from
ORD_NUM. More information about null
indicator values appears in NonStop SQL Pro
gramming Reference Manual, 1989a, 1989b, and
1989c. In the following example, INDVAR is an
indicator variable for ORD_NUM.

FETCH ORDBOOK INTO :EMPNUM,
:ORDNUM :INDVAR

Whenever NonStop SQL returns a null value
for ORDNUM, it sets INDVAR. The program
must check INDVAR before attempting to use
the value returned in ORDNUM. The same
considerations apply for a SELECT ... INTO
statement.

An INSERT INTO ... SELECT FROM statement
utilizing an outer join query may also get an
error at run time if columns in the table in which
rows are to be inserted are declared as NOT
NULL when they correspond to columns derived
from the right table of an outer join.

Figure 19

explain
"SELECT S.EMP _NUM, S.EMP _NAME, O.ORD_NUM"

&"FROM SALESEMP SINNER JOIN ORDERS 0
&" ON S.EMP _NUM = O.BOOKED_BY
&"WHERE O.ORD NUM IS NULL

QUERY PLAN . 1
STATEMENT TYPE SELECT

OPERATION 1.1 SCAN
TABLE NAME : \SQL.$SQL.TSRDB.ORDERS
VIEW NAME : NONE
ACCESS TYPE : RECORD for STABLE ACCESS
LOCK MODE : DEFAULT
COLUMNS USED : 1 out of 4 columns will be retrieved.
TABLE SELECTIVITY : 33.33% of rows will be selected.

ACCESS PATH1 : PRIMARY
SBB : VIRTUAL
PRED. EVALUATED : by DISK PROCESS

O.ORD_NUM IS NULL
INDEX SELECTIVITY : 100% of primary index will be selected.
BEGIN KEY PRED. : NONE
END KEY PRED. : NONE

OPERATION COST : 2

OPERATION 1.2 NESTED JOIN
JOIN TYPE : INNER
TABLE NAME
VIEW NAME
ACCESS TYPE
LOCK MODE

: \SQL.$SQL.TSRDB.SALESEMP
: NONE
: RECORD for STABLE ACCESS
: DEFAULT

COLUMNS USED : 2 out of 5 columns will be retrieved.
TABLE SELECTIVITY : 33.33% of rows will be selected.

ACCESS PATH1
SBB

: PRIMARY
: VIRTUAL

PRED. EVALUATED : by DISK PROCESS
S.EMP _NUM = O.BOOKED_BY

INDEX SELECTIVITY : 100% of primary index will be selected.
BEGIN KEY PRED. : NONE
END KEY PRED.

OPERATION COST
TOTAL COST : 3

: NONE
: 2

Figure 19.

Explain report detailing
evaluation of'the WHERE
clause jr1r an INNER
JOIN query.

OCTOBER 1990 •TANDEM SYSTEMS REVIEW 71

Figure 20.

The result of the
SALESEMP LEFT JOIN
ORDERS LEFT JOIN
REGION query.

72

Figure 20

EMP_NUM EMP_NAME ORD_NUM REG_NAME

2703 Morrison, J. ? ?
2705 Hennessy, A. 57 ?
2906 Nakagawa, E. 77 Japan
3598 Chu, F 12 Taiwan
4096 Chow,J. ? Hong Kong

Implications for Shorthand Views
A shorthand view based on an outer join
query might return null values in those columns
that are derived from the right table. Such a view
can only participate in an outer join operation if
it occurs on the left side of the keyword LEFT
JOIN. Actually, no shorthand view involving
either an inner join or an outer join can occur
on the right side of the keyword LEFT JOIN.
This limitation exists because NonStop SQL
Release 2 does not support parenthesized
outer joins.

Commutative and Associative Properties
of Outer Joins
An inner join operation is commutative;
the same result is obtained regardless of the
sequence in which the tables are joined. For
example, the two queries that follow yield the
same result:

SELECT * FROM SALESEMP, ORDERS
WHERE EMP _NUM = BOOKED_BY

SELECT * FROM ORDERS, SALESEMP
WHERE EMP _NUM = BOOKED_BY

An outer join, on the other hand, is not com
mutative. The result depends on the sequence in
which the tables appear in the FROM clause. To
demonstrate this property, the following query
lists the employee numbers, employee names,
order status, and region names for salespersons
belonging to all regions numbered between 6000
and 7000. The query uses two outer join opera
tions to join three tables. The ORDER BY clause
is added only for clarity.

SELECT S.EMP _NUM, S.EMP _NAME,
O.ORD_NUM, R.REG_NAME

FROM SALESEMP S
LEFT JOIN ORDERS 0

ON S.EMP _NUM = O.BOOKED_BY
LEFT JOIN REGION R

ON S.REG_NUM = R.REG_NUM
AND R.REG_NUM BETWEEN

6000 AND 7000
ORDER BY S.EMP _NUM

According to the FROM clause of this query,
NonStop SQL performs the outer join of the
SALESEMP and ORDERS tables first. (See the
5-row table in Figure 20.) A null value appearing
in the ORD_NUM column in any row indicates
that the row does not satisfy the ON clause of
the first outer join. Therefore, the rows with
EMP _NUM 2703 and 4096 have a null value in
the ORD_NUM column because these employees
have not booked an order.

Next, NonStop SQL performs a second outer
join on the result of the first outer join and the
REGION table. A null value appearing in the
REG_NAME column in any row indicates that the
row does not satisfy the ON clause of the second
outer join. The rows with EMP _NUM 2703 and
2705 have null values in the REG_NAME column
because these employees both belong to region
7600, which lies outside the range 6000 to 7000
specified in the last ON clause.

TANDEM SYSTEMS REVIEW• OCTOBER 1990

The following query is the same as the
preceding query except that it reverses the
sequence in which the outer joins are performed.
First, it forms an outer join of the REGION and
SALESEMP tables. Next, it outer-joins the result
of the first outer join with the ORDERS table.

SELECT S.EMP _NUM, S.EMP _NAME,
O.ORD_NUM, R.REG_NAME

FROM REGION R
LEFT JOIN SALESEMP S

ON S.REG_NUM = R.REG_NUM
AND R.REG_NUM BETWEEN

6000 AND 7000
LEFT JOIN ORDERS 0

ON S.EMP _NUM = O.BOOKED_BY
ORDER BY S.EMP _NUM

Figure 21 shows the result of this query. The
result does not contain any rows for the salesper
sons having EMP _NUMs 2703 and 2705. The
first three rows are identical to the last three
rows of the result in Figure 20. However, there
is an additional row containing null values in
the EMP _NUM, EMP _NAME, and ORD_NUM
columns. In the query whose result is shown in
Figure 20, the SALESEMP table was preserved
because it was the leftmost table in the outer
join sequence. In the previous query whose
result is shown in Figure 21, the REGION table
is preserved instead. Clearly, the semantics of
the two queries are quite different.

Actually, because the join sequence does
not affect the result of an inner join, the
NonStop SQL optimizer decides the join
sequence for inner joins. However, the optimizer
upholds the outer join sequence prescribed in the
FROM clause of an outer join query. Thus, for
the last query above, NonStop SQL would begin
by performing the outer join of the REGION and
SALESEMP tables. Next, NonStop SQL would
execute the second LEFT JOIN statement, which
joins the result of the first outer join with the
ORDERS table.

Note that even though the optimizer upholds
the join sequence prescribed for an outer join, it
still chooses the best access path for retrieving
rows from each table. It also chooses the join
technique in the same fashion as is done for
inner joins.

Figure 21

EMP_NUM EMP_NAME ORD_NUM REG_NAME

2906 Nakagawa, E. 77 Japan
3598 Chu, F. 12 Taiwan
4096 Chow,J. ? Hong Kong

? ? ? USA

Figure 22

EMP _NUM EMP _NAME MGR_NUM EMP _NAME

2703 Morrison, J. 2705 Hennessy, A.
4096 Chow, J. 3598 Chu, F.

In NonStop SQL Release 2, parenthesized
outer joins are not permitted in the FROM clause.
The outer join operation is not associative. Thus,
(SALESEMP LEFT JOIN ORDERS) LEFT JOIN
REGION will not produce the same result as
SALESEMP LEFT JOIN (ORDERS LEFT JOIN
REGION).

Combinations of Inner Joins and Outer Joins
Users can combine inner and outer join opera
tions in the same query using the NonStop SQL
Release 2 syntax. The following query lists the
employee numbers and names of salespersons,
together with the employee numbers and names
of their managers, for individuals who failed
to book an order. (See Figure 22.) Users can
retrieve this information by means of a single
SQL SELECT statement.

SELECT S.EMP _NUM, S.EMP _NAME,
S.MGR_NUM, X.EMP _NAME

FROM SALESEMP S
LEFT JOIN ORDERS 0

ON S.EMP _NUM = O.BOOKED_BY
,SALESEMPX

WHERE O.ORD_NUM IS NULL
AND S.MGR_NUM = X.EMP _NUM;

OCTOBER 1990 •TANDEM SYSTEMS REVIEW

Figure 21.

The result of the
REGION LEFT JOIN
SALESEMP LEFT
JOIN ORDERS query.

Figure 22.

The result of combining
an inner join and an
outer join.

73

Figure 23.

The result of' a lef't outer
join.

Figure 24.

The result of a jiill outer
join expressed hy usinK
/efi outerjoins.

74

Figure 23

EMP _NUM EMP _NAME ORD_NUM

3598 Chu, F 12
? ? 33

2705 Hennessy, A. 57
2906 Nakagawa, E. 77

Figure 24

EMP _NUM EMP __ NAME ORD _NUM

2703 Morrison, J. ?

2705 Hennessy, A. 57
2906 Nakagawa, E. 77
3598 Chu, F 12
4096 Chow, J. ?

? ? 33

In NonStop SQL Release 2, parenthesized
join operations are not permitted in the FROM
clause. Therefore, an expression such as
(SALESEMP INNER JOIN ORDERS) LEFT JOIN
REGION or SALESEMP LEFT JOIN (ORDERS
INNER JOIN REGION) is considered illegal.

The Left Join: Compliance with
ANSI SQL

The ANSI SQL2 draft standard recommends
support for three types of outer join operations:
left, right, and full (ISO-ANSI, 1989). Release 2
of NonStop SQL supports the left outer join.
Although the right and full outer join operations
are not yet supported, users can express certain
right and full outer join queries in terms of the
left outer join. Note that this is valid only if
the tables do not contain any duplicate rows.

Simulating a Right Outer Join
The following query performs a left outer join
of the ORDERS and SALESEMP tables, which
preserves the ORDERS table. The query lists
employee numbers, employee names, and
order status to correlate the orders booked by
salespersons. (See Figure 23.)

SELECT S.EMP_NUM, S.EMP_NAME,
O.ORD_NUM

FROM ORDERS 0
LEFT JOIN SALESEMP S

ON S.EMP _NUM = O.BOOKED_BY

This query accomplishes the same result as
would be achieved by a right outer join of the
SALESEMP and ORDERS tables. The statement
FROM ORDERS O LEFT JOIN SALESEMP S
in this query performs the same function as a
FROM SALESEMP S RIGHT JOIN ORDERS 0
statement (if the right join operation were
supported).

NonStop SQL does not perform this trans
formation because it can give rise to parenthe
sized join operations, which are not supported
in NonStop SQL Release 2. The transformation
of an operation like SALESEMP LEFT JOIN
ORDERS LEFT JOIN REGION would yield
(ORDERS LEFT JOIN REGION) RIGHT JOIN
SALESEMP.

The question marks representing a null
values indicate that order 33, booked by
salesperson 11022, does not have matching
information in the SALESEMP table. Apparently
salesperson 11022 is not an employee of
the company. (The salesperson might be a
commission agent or an outside contractor.)

TANDEM SYSTEMS REVIEW• OCTOBER 1990

Simulating a Full Outer Join
A full outer join is the union of a left outer
join and a right outer join. Users can specify
a full outer join in terms of a union of two left
outer joins, as the following query shows. This
query creates a 6-row table and produces the
same result as that produced by a full outer join
if the full join operation were supported. (See
Figure 24.) This transformation is valid only in
the absence of duplicate rows in each of the
participating tables.

SELECT S.EMP _NUM, S.EMP _NAME,
O.ORD_NUM

FROM SALESEMP S
LEFT JOIN ORDERS 0

ON S.EMP _NUM = O.BOOKED BY
UNION
SELECT S.EMP _NUM, S.EMP _NAME,

O.ORD_NUM
FROM ORDERS 0

LEFT JOIN SALESEMP S
ON S.EMP _NUM = O.BOOKED_BY

Conclusion
The left outer join operation, introduced with
NonStop SQL Release 2, provides an answer
to users' needs and is a step toward greater
ANSI SQL compliance. With this powerful
new feature, a single SQL query can generate
complex reports that require preservation of
information belonging to certain tables.

References
Date, C. l 986. Relational Databases-Selected Writings by C . .I.
Date. Addison-Wesley.

ISO-ANSI. July l 989. Database Language SQU and SQL3
X3H2-R9-252 (working draft).

NonStop SQL Programming Reference Manual.fi,r C (release
version C30L). 1989a. Tandem Computers Incorporated. Part no.
22967.

NonStop SQL Programming Refi'rence Manua/.fr,r COBOLf/5
(release version C30L). 1989b. Tandem Computers Incorporated.
Part no. 24467.

NonStop SQL Programming Refi'rence Manua/fr,r Pascal (release
version C30L). I 989c. Tandem Computers Incorporated. Part no.
26942.

Acknowledgments
Mike Pong contributed substantially to the design of the outer join.
Anoop Shanna designed and implemented the run-time support
for the outer join. Haleh Mahbod implemented the SQL syntax.

Jay Vaishnav is a member of the Nonstop SOL Compiler group and
is working on the Nonstop SOL optimizer. He joined Tandem in
1987.

OCTOBER 1990 •TANDEM SYSTEMS REVIEW 75

76

Gateways to NonStop SQL

______ onStop'" SQL is a high-

-------1-- performance relational
database management
system implemented on
Tandem'" computer systems.
In order to make NonStop
SQL available to PC and

workstation users, Tandem is providing gate
ways that connect popular SQL applications to
NonStop SQL.

The SQL language is in widespread use and
has become an ISO-ANSI standard (ANSI, 1989;
ISO-ANSI, 1989a). SQL is supported by almost
all database vendors, and several vendors are
using SQL to develop a wide range of easy-to
use tools. Database vendors such as Oracle,
Ingres, and Microsoft/Sybase provide widely
used application programming interfaces for
SQL on PCs and workstations. Demand for tools
developed on these interfaces is high because
they provide off-the-shelf solutions for decision
support and ad hoc queries on a variety of
platforms.

Although a standard for SQL exists, each
vendor's implementation of SQL differs in sig
nificant ways. An application written on one
interface will generally not run on another ven
dor's interface. Tandem, together with the other
database vendors, is building SQL gateways
to NonStop SQL so that Oracle, INGRES, and
Microsoft/Sybase users can have access to
NonStop SQL without having to change their
applications. (Tandem is developing the
Microsoft/Sybase SQL Server. The other gate
ways are being developed by their respective
vendors with support from Tandem.)

The gateways to NonStop SQL provide two
benefits. First, they make popular tools available
to Tandem system users. Second, they allow users
familiar with these tools on other platforms to
take advantage of Tandem system fundamentals
such as high availability, high performance,
distribution, and fault tolerance.

This article discusses general design issues
for SQL gateways and describes particular solu
tions for the gateways to Nonstop SQL. (For
an overview of NonStop SQL, see Cohen, 1988;
for details about NonStop SQL features, see
NonStop SQL Programming Reference Manual,
1989.) This article also discusses the standardiza
tion efforts that affect SQL gateways.

TANDEM SYSTEMS REVIEW• OCTOBER 1990

SQL Gateway Technology
A gateway connects two or more (usually)
different systems by translating the information
being passed between them. Ideally, the gateway
can hide the system differences so that each
system performs as though it were connected to
a similar system. A user of the first system is said
to obtain transparent access to the second system.
Transparent access has the advantage that the
user does not need to know how to use the
second system. An application written for the
first system can run unchanged and access the
second system.

The gateways to NonStop SQL are based on
a client-server architecture, which is used by
most database vendors. In this case, an applica
tion requesting information is the client and the
database system providing the information is the
server. (A different form of client-server applica
tion, the Pathway transaction processing system,
has existed on Tandem systems for several
years.)

To retrieve information, a client application
process makes a call to a server database pro
cess, often running on another machine. An SQL
statement is passed in the call. The server ex
ecutes the SQL statement and returns result data
or status information to the client. (See Figure 1).

Several clients can communicate with a server
concurrently, and a single user can be connected
to several servers concurrently. The calls to
the server are made by the client application
through a library provided by the database
vendor. Most vendors provide a precompiler to
transform embedded SQL statements into library
calls, while others allow applications to make
the library calls directly. The message formats
between clients and servers, as well as the ser
vers themselves, are proprietary and are different
for each vendor.

Figure 1

Client

With vendors that employ a client-server
architecture, a natural place for the gateway is
at the client-server interface. The gateway takes
the place of the database server. The client appli
cation performs as if it were communicating
with its own server. Actually, it communicates
with the gateway program, which is running on
a different vendor's SQL system. Because the
client-server interface of each database vendor
is different, a separate gateway is needed to
connect to each vendor's clients.

Let the term client database system refer
to the SQL database system the client believes
it is connected to. Let the term server database
system refer to the actual SQL database system
being accessed by the gateway. The terms are
introduced here to distinguish the two database
systems being discussed. For example, a
user would place client SQL statements in an
application, and the gateway would execute
corresponding server SQL statements.

OCTOBER 1990 •TANDEM SYSTEMS REVIEW

Server

Figure 1.

Client-server architecture.

77

Figure 2.

Gatewavs to NonStop SQL.

78

Figure 2

Workstation

Oracle
application

Oracle
database
system

Workstation

Oracle
gateway to

NonStopSQL

Tandem

Workstation

INGRES
application

INGRES
database
system

Workstation

Figure 2 shows examples of gateways to
Nonstop SQL. An Oracle application can access
an Oracle database directly or a NonStop SQL
database through a gateway. In this case, Oracle
is the client system and NonStop SQL is the
server system. Similarly, an INGRES or
Microsoft/Sybase SQL application can make
the same calls to its own SQL database or to a
NonStop SQL gateway. In this case, INGRES
or Microsoft/Sybase is the client system and
NonStop SQL is the server system.

Figure 3 shows the operation of a typical
gateway to NonStop SQL. A message containing
an SQL statement arrives from the client. The
gateway decodes the message and translates the
SQL statement syntax from the client's SQL to
NonStop SQL. Next, the gateway executes the
statement and translates the resulting data or
status information into the client's format.
Finally, the gateway encodes the result in a
message and returns it to the client.

The gateway contains code to communi-
cate with the client application (derived from
the client system's database server), code to
access NonStop SQL, and new code that per
forms the translations. In Figure 3, the code
shown to access NonStop SQL is similar in
function to SQLCI2, the back-end server for the
NonStop SQL conversational interface (SQLCI).

INGRES
gateway to

NonStopSQL

Tandem

Workstation

MicrosofVSybase
application

Microsoft'Sybase
database
system

Workstation

Gateway Issues

Microsoft'Sybase
gateway to

NonStopSQL

Tandem

An SQL gateway must resolve several issues in
addition to the differences between the client's
and server's SQL syntax. These issues include
variations in data types, SQL object names, SQL
catalog structures, and error numbers. A con
straint affecting all these issues is that the client
application software is often an off-the-shelf
package and cannot be altered to accommodate
a gateway.

Connectivity
Most vendors use proprietary message formats
and protocols for client-server communication.
Formats and protocols define the message
contents and valid sequences of messages
between the client and server. Common trans
port mechanisms, such as TCP/IP or NetBios,
provide basic interconnectivity. The vendor
protocols are implemented above the transport
level; they allow a client to identify and con
nect to a particular server as well as send SQL
statements.

Gateways must support the proprietary
vendor protocols, including features such as
out-of-band cancel messages. An out-of-band
message is delivered to the receiver as soon as
it arrives. It supersedes the normal messages that
have arrived earlier but have not been read from
the incoming message queue.

A gateway must connect a client with a
suitable server process. Some vendors provide
a single multithreaded server, in which case all
clients connect to a known address or name.
Others provide a separate server for each client;
the client first connects to a known server and
then makes a second connection to a personal
server. The gateway has to mimic this behavior.

TANDEM SYSTEMS REVIEW• OCTOBER 1990

Security
Because of their complexity, security issues
can be difficult for gateways to resolve. Many
vendors provide their own security. The data
base server owns the files containing the
database objects. A client attempting to connect
to a server must be authenticated, usually by
providing a user ID and password. The client
logs on either to the server or to a database,
but not necessarily to the system on which the
server is running. The server then controls
access to SQL objects in the database.

The situation is different for users of
Tandem systems. A user logs on to the system,
and the Tandem Guardian" 90 operating system
or the Tandem Safeguard'" security system
controls NonStop SQL file accessing.

Language Translation
Language translation involves mapping
syntactic differences between different versions
of SQL. Many vendors closely follow the ISO
A'-JSI SQL standard but also introduce differ
ences, particularly in data definition statements
such as CREATE TABLE or CREATE INDEX. In
addition, vendors provide their own extensions
to the SQL language such as specifying locking
options. If possible, a gateway shou_Id suppor_t
client system extensions by translatmg them mto
extensions supported by the server system.

Although it is a violation of transparency,
sophisticated users wishing to develop a custom
application can benefit from a pass-through
feature, which allows the client to have direct
access to the server system's version of SQL,
including its extensions. In pass-through mode,
the client uses server system syntax, and the
gateway passes the statement to the server
untouched.

For example, pass-through mode to NonStop
SQL can be used to create SQL tables partitioned
across the network or to set SQL compiler
directives for parallel execution. Subsequently,
existing client applications, using client system
SQL, can take advantage of these features.

Data Type Translation
Although all SQL implementations support
common data types like integers and character
strings, the precise representations of these
data types are diverse. Each vendor supports
a different maximum length character string,
and numeric types often differ in precision and
scale limits. Date and time data types are also
common, but they often differ in format.

Figure 3

SOL statement
from client

l
Communication

encooingldecoding

!

Data, status
to client

f

t
Code from client
database server

Translate to Translate to client New code
for gateway NonStopSQL data types/status

i
Compile/execute

Nonstop SOL statement

These differences can affect applications.
For example, the following query retrieves
part information for all parts weighing more
than 48.57226.

SELECT*
FROM PARTS
WHERE WEIGHT> 48.57226

t

This query could return different results,
depending on the number of digits of precision
of the WEIGHT column. For example, assume
that system A has four-digit precision and system
B has nine-digit precision. The query running on
system A would return all the parts returned by
system B plus the parts weighing between 48.57
and 48.57226. Some vendors also support
specialized data types (such as money) that are
hard to support fully with common data types.

Object Naming . _
An SQL system deals with many kmds ot
objects, including databases, tables, views,
indexes, columns, constraints, users, and pro
grams. Each object is named and the names
appear in SQL statements and SQL catalogs.
Most vendors follow ISO-ANSI naming conven
tions, but discrepancies exist in conventions
such as the lengths of name components and
the special characters allowed in names. Tan~em
does not currently support the ISO-ANSI nammg
conventions for some types of objects.

Code to access
Nonstop SOL
database

Figure 3.

Inside the gateway.

OCTOBER 19lJO •TANDEM SYSTEMS REVIEW 79

A gateway must resolve these naming
differences. A variety of techniques can be used,
depending on the extent of the naming discrep
ancies. A typical gateway will use different
techniques for the different types of names.

If the differences affect only a few marginal
cases, the gateway can resolve them by restrict
ing the names available to the client. For
example, suppose the client system supports
SQL table names of up to 32 characters, consist
ing of a-z, A-Z, 0-9 and $. Suppose, also, that the
server system supports table names of only 31
characters, consisting of a-z, A-Z, and 0-9. It
may be sufficient in such a case to restrict the
client to using only server-valid names, because
names using$ or names 32 characters long are
rare. However, if the server system can only
support 18-character names, the restriction
would be too great, because many names can be
longer than 18 characters.

If the sets of legal names in the client and
server systems are significantly different, the

A gateway must resolve
differences in SQL

naming conventions.

gateway can map
names by using tables.
The gateway scans
incoming SQL state
ments for client
names, looks them up
in the tables, and
replaces them in the

statement with corresponding names that are
legal in the server system. This technique,
called name-mapping, avoids restrictions on
the clients' use of names but involves the extra
work of maintaining the mapping tables.

SQL Catalogs
An SQL catalog is a set of SQL tables that
describes objects in the system such as tables,
columns, views, and indexes. Catalogs are
maintained by the system and are available for
users to read. Some programs such as applica
tion generators use SQL catalogs extensively.

Almost all vendors· SQL catalogs differ
significantly. The names of the catalog tables
differ, as do the column order and the meaning
and data type of each column. Because users
read from the catalogs, the gateway must supply
catalogs on the server system that look like the
catalogs on the client system. Often, the gate
way can accomplish this with SQL views over
the server system catalogs. The view is given
the name of the client catalog and provides the
columns the client expects to see.

In some cases, a view cannot mimic a client
catalog. For example, suppose the catalog on
the server system uses a separate catalog table
row to represent each column in an index. If the
client expects to see all the columns of an index
listed within one catalog row, an SQL view
cannot be used.

When a view cannot be used, the gateway
can support a separate SQL table that mimics
the catalog table the client expects but contains
data extracted from the catalog on the server
system. This option is less desirable than using
views because a separate table requires extra
work to install and maintain. It may be difficult
to keep the information in the table up to date
if it describes server system objects that can be
altered by other server system users (who don't
use the gateway).

Transactions
Database vendors support transactions in
various ways, just as they do SQL catalogs.
A transaction represents a set of operations that
are executed as a unit. The system guarantees
that either all the operations are completed or
none are completed. In some systems, transac
tions are optional. In others, a transaction must
always be in progress. Similarly, some systems
perform each data definition operation such as
CREATE TABLE in a separate transaction,
whereas other systems allow multiple data
definition operations in a single transaction.
In NonStop SQL, certain data definition opera
tions on nonaudited tables must be performed
outside of a transaction.

The gateway can resolve these differences
by adopting the most restrictive of the client
system and server system transaction models.
These restrictions are not likely to cause prob
lems because production applications usually
query and modify data and only occasionally
deal with data definitions. In most implementa
tions, transactions that modify and query data
behave similarly.

80 TANDEM SYSTEMS REVIEW• OCTOBER 1990

Error Handling
Vendor support for error codes and error
message text differs widely. This can be a
problem because applications often contain
substantial logic that deals with error conditions.
The gateway must map the error code values
for common errors to values understood by the
client application. Examples of common errors
are "object not found" and "unique constraint
violation.'' The gateway may map other error
code values to special values representing
gateway or server system errors. The gateway
should also map object names in the error
message text from server system names back
to client system names.

Note that the gateway maps error codes and
object names in error text in the opposite direc
tion that it maps object names in SQL statements.
In SQL name mapping, the gateway translates
a client system name into a name the server
system can understand. In error code mapping,
the gateway translates an error code generated
in the server system into an error code the client
system can understand.

Administration
Administration includes maintaining SQL data
definitions, monitoring system users and usage,
and running utilities to perform tasks such as
backing up and restoring data. Except for main
taining SQL data definitions, these administrative
tasks differ greatly in each system and gateways
do not try to make them transparent. A gateway
supplied pass-through feature can help client
users perform these administrative tasks.
Otherwise, the server system administrator
can perform them.

Compatibility Across Releases
Because new versions of client and server
systems are usually released at different times,
it is difficult to provide compatibility across
releases. The gateway vendor must provide a
mode in each new version of the gateway that
allows applications written for previous versions
to run. The gateway program may have to con
tain code to run on multiple versions of the ser
ver system in order to take advantage of new
features as they become available. Ideally, a
new version of the gateway program should be
released whenever a new client system version is
released so that client applications using the new
feature will run on the gateway. In general, the
gateway program may have to support multiple
versions of both the client and server systems.

Solutions for Nonstop SQL
Gateways
Gateways to NonStop SQL on Tandem systems
are being developed to allow popular SQL
applications running on other systems to use
NonStop SQL. All the major gateway issues
have been considered in designing gateways
to NonStop SQL.

In practice, a gateway does not support totally
transparent access. (It does not provide all fea
tures of the client database system.) However,
to be successful, a gateway to be used for a
particular set of SQL applications must support
at least the subsets of SQL syntax, data types,
and catalogs used by those applications. The
SQL subsets used by popular applications center
on data manipulation (SELECT, UPDATE,
DELETE, INSERT) and simple data definition
(CREATE/DROP TABLE, INDEX, VIEW). These
subsets have provided the design focus for the
gateways to NonStop SQL. To promote easy
connectivity of future applications, Tandem is
active in standardization efforts in such areas
as SQL, transaction management, and remote
data access.

Security
The Guardian 90 operating system provides
security for the NonStop SQL gateways.
Clients that connect to a gateway must present
a Guardian 90 user ID and password. With some
gateways, clients do this directly, while with
others the gateway does it on their behalf.
Access to NonStop SQL objects is based on the
Guardian 90 user ID presented at connect time.

Most other database vendors support some
form of the ISO-ANSI GRANT/REVOKE security
model. The GRANT and REVOKE statements are
not simulated by the gateways to NonStop SQL.
This is not generally a problem for client
applications because most of them do not use
GRANT and REVOKE.

0 C ·1 0 R E R I 9 9 0 • T A N D E M S Y S T E M S R E V I E W 81

Figure 4

Figure 4.

Client name Nonstop SOL name

ADMIN.DEPARTMENTS . \N:~vt:ADtvt!N.[lEPARTME
ADMIN,EMPLO:YEES '.it,t:$v.2,At)MIN.Ej34$
AOMIN.EMPD10 \f1f;$V1 .AOMIN;~Ptl10

Name Mapping

Type

TABLE
TABtE
VIEW

A name-mapping table. In the NonStop SQL gateways, object naming
requires special attention. Most SQL vendors
support the ISO-ANSI naming convention
(SCHEMA.OBJECTNAME) for tables, views,
and indexes. Each component of the name is a
character string, although the name lengths vary
among vendors. Currently, NonStop SQL only
supports Guardian 90 file names of the form
\NODE.$VOL.SUBVOL.FILENAME for these
objects.

Applications cannot run transparently on
a gateway if the object names are different.
Consequently, the gateways to NonStop SQL
support name mapping for objects with
Guardian 90 names. The name-mapping tables
are implemented as SQL tables, and the gate
ways use NonStop SQL to access and maintain
them.

Figure 4 illustrates a name-mapping table.
The table contains the client name, the corre
sponding NonStop SQL (Guardian 90) name,
and the type of object.

The gateways use the name-mapping tables
to replace client SQL names with NonStop SQL
names in SQL statements. To recognize and
replace names in statements, the gateways must
usually parse the statement.The parsing is needed
because recognizing name types can be difficult.
Consider, for example, the SELECT list of the
subquery in the following query:

SELECT COLI
FROMTABX
WHERE EXISTS

(SELECT X.COL2,Y.COL2
FROMY
WHERE COLl=COL3)

Y in Y.COL2 should be mapped because it is
a table name, but X in X.COL2 should not
because it is a correlation name for table TAB.
(NonStop SQL follows ISO-ANSI conventions
for correlation names, so they do not have to be
mapped.)

Creating and Placing Name-Mapping Tables.
The way in which the gateways create and place
a name-mapping table depends on the architec
ture of the SQL database. Commonly, an SQL
database is a set of objects described in a single
SQL catalog. Databases are in a one-to-one
correspondence with SQL catalogs. In many SQL
implementations, users must explicitly connect
to a database or include the database name in
an object name in order to access objects in the
database.

Because of its unique distributed system,
Tandem is able to extend this common database
model. A Tandem network can contain an arbi
trary number of NonStop SQL catalogs, and users
can directly access any SQL object in the network
by specifying its full Guardian 90 name. Thus,
the network is a single distributed database
instead of a distributed network of databases.

For compatibility with other vendors' notions
of a database, the gateways to NonStop SQL
usually define a "database" as the set of objects
registered in a single NonStop SQL catalog. One
set of name-mapping tables is associated with a
single NonStop SQL catalog and can only refer to
objects in that catalog. One gateway has relaxed
this restriction to allow objects registered in other
catalogs to be added to the mapping tables.

82 TANDEM SYSTEMS REVIEW• OCTOBER 1990

A NonStop SQL catalog with name-mapping
tables is visible as a database to gateway clients.
This means the clients "see" the "database" and
can access its objects. The gateway provides
utilities to make NonStop SQL catalogs visible
(create the name-mapping tables) or invisible
(erase them). In some cases, a client-issued
CREATE DATABASE command can create a
NonStop SQL catalog and then execute the
utility to make the catalog visible.

Creating Client and Server Object Names.
To make an existing NonStop SQL catalog
visible, the gateway must generate the client
system object names and place them in the
name-mapping tables. In general, a client name
can be any valid name, but it is desirable to
make the client name suggestive of the
Guardian 90 name from which it is derived.
Similarly, if the client creates an SQL table, T,
the gateway must choose a Guardian 90 name
for the new table. Again, it is desirable to choose
a name that can be related to T.

One technique is for the gateway to try to
equate the client name with the last component
of the Guardian 90 name. An exact match is
not always possible because the client name
can exceed eight characters or the matching
name may already be in use. In these cases,
other techniques such as truncation or random
selection are used to generate names.

An example is shown in Figure 4. The
client name DEPARTMENTS is truncated to
the Guardian 90 name DEPARTME. The name
EMPD IO is used in both the client system and
the NonStop SQL system. Finally, the client
name EMPLOYEES is mapped to the Guardian
90 name E345 because the Guardian 90 name
ADMIN.EMPLOYEE is already in use.

Security for Name-Mapping Tables. Security
for gateway name-mapping tables is a difficult
issue. On the one hand, name-mapping tables
should be tightly secured because they represent
the gateway view of NonStop SQL. On the other
hand, name-mapping tables should be loosely
secured because the gateway processes usually
run under common Guardian 90 user IDs and
must modify the tables for data definition
statements. The latter approach is followed in
the gateways to NonStop SQL. Note that this
approach does not impair the integrity of
NonStop SQL objects.

The gateways provide special utilities to check
and correct the name-mapping tables as needed.
These utilities are required because the name
mapping tables are not active. For example, if a
NonStop SQL user drops a NonStop SQL table,
the appropriate name-mapping table entries are
not automatically deleted.

Pass-Through Mode
NonStop SQL provides several extensions to SQL,
primarily for use in high-performance, production
applications. For example, users can specify file
options with the CREATE TABLE statement,
specify SQL compiler options that allow a query
to execute in parallel, and control locking granu
larity and duration.

To provide client access to these extensions,
most gateways to NonStop SQL provide a pass
through mode. The client can issue any NonStop
SQL statement and the gateway executes it
directly. No names are mapped and no translation
is performed. The pass-through mode is indicated
either by a special dynamic SQL verb or by an
escape sequence within a client SQL statement.

OCTOBER 1990 •TANDEM SYSTEMS REVIEW 83

Figure 5

~ Gateway NonStopSQL Client 1
process execution

~ Gateway NonStopSQL Client2
process execution

~ Gateway Nonstop SOL Client 3
process execution

Figure 5.

Gutnrn_\' architecture
showing the gutnm_\'
processesfi>r three clirnts.

Tandem Gateway Architecture
In designing and implementing a gateway,
one must consider the various issues associated
with the translation tasks the gateway performs.
One must also consider a second set of issues
associated with the architecture of the gateway
and its environment because the gateway to
NonStop SQL is an application program running
on Tandem systems.

The Tandem gateways use standard transport
mechanisms such as TCP/IP and NetBios for
connectivity. Clients, or servers on their behalf,
must provide a Guardian 90 logon (user ID and
password). It can be difficult for a client appli
cation package to do this. (The application code
cannot be altered in any way.) In some vendor
systems, a client connects first to a database
server and then to one of the databases the
server owns. In others, a client connects to a
logical database name. Library code bound
into the client application consults a local table
or a name server to determine where the data
base or server resides, what its real name is,
and how to connect to it.

One way to provide connectivity is to run a
one-time utility on the client system. The utility
performs the Guardian 90 logon, creates a gate
way process on the Tandem system, and causes
the gateway process to wait for input. The utility
also registers the gateway server process in
the local table or name server. When the client
application makes a connection, it becomes
connected to the existing gateway process. If
the client system fails and is restarted, the utility
must be rerun.

The process architecture of the gateway
raises another important issue. Many database
vendors provide a single multithreaded server
for a set of databases. In contrast, Tandem
provides a separate gateway process for each
client. This architecture provides isolation
between clients to benefit security and perfor
mance, and it allows clients to run easily under
different Guardian 90 user IDs. However, it also
limits the number of concurrent clients to fewer
than a typical Pathway application can support.

Figure 5 shows the gateway processes for
three concurrent clients. Each gateway server
actually consists of two processes, the gateway
process and a NonStop SQL execution process.
The gateway process performs all gateway tasks
except executing NonStop SQL statements. It
passes the NonStop SQL statements to a second
process for execution.

This two-process architecture allows the
gateway to support out-of-band cancel requests
that must take effect immediately, even if an
SQL statement is currently being executed.
NonStop SQL does not provide a NOWAIT
interface. Instead, the gateway simulates a
NOWAIT interface by using the NOWAIT option
for the messages it sends to the NonStop SQL
execution process. This frees the gateway
process to monitor the communication line
for a client-issued cancel command. If a cancel
command arrives, the gateway process stops
the NonStop SQL execution process (effectively
interrupting the SQL statement) and starts a new
one. This two-process architecture is the same
as the one the NonStop SQL conversational
interface (SQLCI) uses to support the BREAK
key function.

84 TA'.'.JDEM SYSTEMS REVIEW• OCTOBER 1990

Standards
Most of the issues for gateway design discussed
above arise because of differences in SQL imple
mentations. The standardization of SQL and other
interfaces, together with vendor compliance,
can greatly reduce the issue list. In addition to
ISO-ANSI SQL, several other standardization
efforts currently in progress affect SQL gate
ways. It is important to note that the intense
efforts of the standardization committees and
the participation of virtually all vendors reflect
the importance of interoperability among the
various implementations of SQL.

The Remote Data Access (RDA) committees
of ISO and ANSI are working to standardize
remote access to data, including SQL data (!SO
ANS!, 1989b). They are developing standardized
verbs for connecting to a remote server and for
sending and executing statements. Other ANSI
and ISO committees are working on transaction
support. The RDA committee will incorporate
their results into the RDA standard.

A consortium of vendors and users called
SQL Access is working to extend the standardi
zation efforts so that they can apply to actual
implementations. SQL Access addresses practical
details not covered by the RDA and ISO-ANSI
SQL standards. For example, it proposes choos
ing a simple subset of ISO-ANSI SQL syntax
and data types acceptable to all database vendors
and users. It also addresses network naming,
standardized SQL catalogs, standardized error
numbers, and precise but efficient message
formats and protocols. To show feasibility,
several members of SQL Access are building
a demonstration system consisting of clients
and servers on a number of different platforms.
SQL Access actively shares its results with
ISO-ANSI committees and other organizations,
including Open Systems Foundation (OSF),
X/OPEN, and National Institute for Standards
and Technology (NIST).

Tandem played a key role in forming SQL
Access and participates actively in the consor
tium. Tandem also participates in the ISO-ANSI
SQL, RDA, and other standardization efforts.
Progress in this direction will reduce the number
and complexity of gateways. Successful stan
dardization would provide clients with a single
interface to access all database systems and
would allow each database vendor to build a
single gateway to achieve connectivity to all
client systems.

Conclusion
Tandem is building a gateway that connects
Microsoft/Sybase clients to NonStop SQL and is
participating in the development of two other
gateways that connect Oracle and INGRES clients
to NonStop SQL. With these gateways, Tandem
database users can benefit from popular applica
tion tools on PCs and workstations.

At the same time, Tandem is actively contrib
uting to standardization efforts relating to SQL
interconnectivity. These standardization efforts
will help stem the proliferation of gateways.

Database vendors face an interesting challenge
if they intend to adhere to standards and also
differentiate their products. Tandem is ideally
suited to this challenge because standard inter
faces still allow outside clients to take advantage
of the inherent strengths of Tandem systems:
high availability, high performance, distribution,
and fault tolerance.

References
ANSI. 1989. Standard for Database Language (SQL). ANSI
X3. l 35-l 989.

Cohen, H. 1988. Overview of NonStop SQL. Tandem Systems
Rei·iew. Vol. 4. No. 2. Tandem Computers Incorporated. Part no.
13693.

ISO-ANSI. 1989a. Database Language SQL2 and SQL3 (working
draft). ANSI X3H2-89-252 or ISO DBL FIR-3.

ISO-ANSI. 1989b. Generic Remote Data Access Service and
Protocol. ANSI X3H2. l-89-l 13 or ISO/JTC I/SC 21 N 3606.

NonStop SQL Programming Reference Manual. 1989. Tandem
Computers Incorporated. Part no. 84258.

Acknowledgments
I would like to thank the members of the NonStop SQL and
connectivity groups and the reviewers of this article for their
many suggestions and con-cctions.

-

Donald Slutz has worked at Tandem for six years on
Nonstop SOL and SOL connectivity. He previously worked at
a database startup company and at IBM Research on database
systems and performance.

OCTOBER 1990•TANDEM SYSTEMS REVIEW 85

86

Batch Processing in Online
Enterprise Computing

ntil now, most large busi
nesses have satisfied their
various computing needs
by maintaining more than
one database. Typically,
one or more large databases
support batch processing,

and other databases, often running on separate
hardware and using different database structures,
handle online transaction processing (OLTP) and
queries. The disadvantages of managing separate
databases are many. Because information must
be transferred from one database to another, one
of them is always out of date. Also, operating
different database designs is expensive.

These multiple databases came into being as a
way to work around the limitations of traditional
computing architectures. For example, hierarchi
cal databases were not suitable for all types of
data accesses, or systems did not have high
enough availability or expandability to meet the
demands of all users. Therefore, multiple data
bases began to proliferate.

Tandem offers a solution to the multiple
database dilemma. Enhancements in the perfor
mance and operability of Tandem'" software now
allow users to execute batch jobs and submit ad
hoc queries as well as support OLTP on a single,
enterprise-wide database. OLTP, batch process
ing, and query processing can occur simulta
neously, without impairing the high performance
and continuous availability associated with
Tandem systems. These achievements are
possible on Tandem systems because of the
unlimited expandability and high availability
inherent in the Tandem architecture. Further
more, users can meet all these computing needs
using a relational database management system,
the Tandem NonStop'" SQL system, without
sacrificing performance.

TANDEM SYSTEMS REVIEW• OCTOBER 1990

The challenge for Tandem has been to inte
grate batch processing with an online environ
ment. Batch jobs should execute on a large
database while multiple users continue to have
immediate OlTP and query access to current
information that may be distributed across a
worldwide network. The same information
must be available at the same time for multiple
uses. Many Tandem products contribute to
achieving this goal, including Release C30 of
the Guardian" 90 operating system, NonStop SQL
Release 2, and the NonStop Cyclone" mainframe
computer system.

This article describes the enhancements in
batch processing introduced with these Tandem
products. It discusses the advantages of integrat
ing batch processing with OLTP. Next, it
describes the important software requirements
for online enterprise computing, including 1/0
optimization, record locking, transaction protec
tion, and new utilities such as online file reorga
nization. The article also describes performance
improvements provided by the NonStop Cyclone
mainframe computer. Finally, it describes parallel
batch processing, a key performance enhance
ment for an integrated online enterprise.

Why Batch Processing Is Needed
Although a growing number of business applica
tions use OLTP, batch processing will continue
to play an important role in an integrated online
enterprise. Because batch processing is highly
efficient, it can accomplish certain large, repeti
tive tasks at a great savings in cost. For example,
in the banking industry, interest must be applied
to groups of accounts once a month. The applica
tion software must use the same formula (the
new interest) to update every record in the
customer table or file. A batch application can
save time and system resources by reading and
changing the account information in a single,
sequential process.

The objective of batch processing is to
process as many records as possible over a set
time period. Typically, data access is sequential
(records are read and updated in order), a
more efficient method than the random data
access usually required by OLTP. Also, users
can perform batch processing during off-peak
hours to make even more efficient use of
system resources.

Finally, many businesses will continue to
keep batch applications for historical reasons.
Converting a large batch application to an
OLTP application can be complicated. The
cost of developing the new application, training
personnel, and managing the conversion can be
too high to justify.

An online enterprise should include both
batch processing and OLTP. When deciding
whether to design a particular business applica
tion for OLTP or batch processing, users should
weigh the benefits of OLTP (improved customer
service and savings in time) against those of
batch processing (efficient execution of large
computing tasks).

OCTOBER 1990 •TANDEM SYSTEMS REVIEW 87

Figure 1.

Online enterprise
computing accesses a
datahase with mrying
ln·cls of'OLTP. query
processing, and hatch
processing at different
times of day. A typical
example is shown in this
figure.

88

Figure 1

9 am 1 pm 11 pm

OLTP - OLTP
OLTP

Batch Batch -
Batch

Query

\/
Single database Single database Single database

The Benefits of Using a Single
Database
An online enterprise that uses a single database
for OLTP, batch processing, and ad hoc queries
offers many advantages to its users. By having
immediate access to information from both
centralized and distributed business operations,
executives can improve the accuracy and speed
of their decisions. Batch jobs that access the
online database can also use the most current
information. If older batch programs or activities
such as sorting require database extracts, users
can create the extracts from the same up-to-date
data. Operating a single database can be less
expensive than operating two databases because
it requires only one hardware and software
environment.

A single database eliminates the cost of
transferring data from one database to another.
Also, in traditional two-database installations (a
database for batch and another for OLTP), batch
jobs often execute during off-peak hours (usually
overnight) and finish by the time customers
resume using OLTP applications (usually the next
morning). With Tandem's single, online data
base, batch jobs can execute concurrently with
OLTP operations. Release C30 of the Guardian 90
operating system and the Tandem NetBatch"'
Plus job scheduling software help to keep batch
processing from interfering with OLTP response
times. Though most batch processing wi11
continue to take place during off-peak hours,
the single database reduces the pressure to
complete batch jobs within a fixed time period.
(See Figure I.)

The information itself is much easier to
manage in a single database than in two data
bases. Users do not have to maintain data
relationships between the OLTP and batch
databases. This also saves processing time and
eliminates the software needed to communicate
between two databases.

TANDEM SYSTEMS REVIEW• OCTOBER 1990

Achieving Online Batch Processing
When a single database supports all types of
data access (OLTP, query processing, and batch
processing), the distinctions between those types
of access are no longer absolute. Both OLTP
applications and batch jobs can be thought of
as processing transactions, though the two types
of transactions may be of different sizes. Online
transactions are relatively small and occur at
random. Usually, batch jobs process larger
transactions or large amounts of work that
comprise what may be considered a virtual
transaction. Batch jobs are scheduled, whereas
queries can be thought of as batch jobs that
arrive at random. 1

Because all three types of access can occur at
the same time, the online enterprise must manage
them so that they do not interfere with one
another. Therefore, batch jobs that update the
same database as OLTP (while OLTP is active)
are fundamentally different from traditional
batch jobs. For example, batch jobs in an online
enterprise require sophisticated record locking
because the system cannot allow them to hold
exclusive locks on entire data files.

Furthermore, because batch jobs may be
updating the online database system, they cannot
recover from e1rnrs merely by restoring files and
rerunning. In some instances, transaction protec
tion appropriate for batch processing is also
required.

Tandem calls this new style of batch pro
cessing online batch processing (OLBP). Batch
processing becomes online when a batch job
updates information and a split second later an
OLTP transaction can use that new information.
Conversely, an online batch job can access
information updated a split second before by
an OLTP transaction. To support online batch
processing, a single computer environment must
provide the required high performance and
functionality for all types of data access.

1Typically. ad hoc 4ueric-. do not alter data: h~;;ch joh~ may-~; may not ahe-r
data.

Tandem supports OLBP with the development
of four major elements:

■ Software performance and functionality.

■ Flexible batch scheduling.

■ Hardware that supports OLTP, batch
processing, and query processing.

■ Parallel job processing that provides a
linear improvement in performance with
each processor added to the system.

Software Performance and
Functionality
The software features that achieve OLBP perfor
mance and functionality in a Tandem environ
ment include low-level integration of database
queries, automatic I/0 optimization, effective
record locking, transaction protection appropri
ate for OLBP, protection of OLTP response times
from batch processing, and batch utility perfor
mance. These features are also discussed in
more detail in the September 1989 issue of the
Tandem Systems Review (Keefauver, 1989).

OCTOBER 1990•TANDEM SYSTEMS REVIEW 89

90

Low-Level Integration
A key feature of 0LBP is its efficient use of
computer resources. The low-level integration
of NonStop SQL into the Guardian 90 operating
system enhances processing performance (Borr,
1988). For example, NonStop SQL can send a
single request to the disk process (a part of
the Guardian 90 operating system) to update
multiple data records. Because almost no data
is passed up through higher layers of software,
large savings in time and system resources result.

Automatic Optimization of 1/0
To improve programmer productivity and to
ensure optimal batch processing performance, the
selection of optimal disk 1/0 used in sequential
processing has been automated. For example,
NonStop SQL Release 2 automatically selects
optimal blocking and buffering of application 1/0.
It can transfer as little as 512 bytes or as much as
56 kilobytes of data at a time. Programmers no
longer need to program and test various 1/0
transfer methods in an attempt to find the optimal
method.

Aspects of the traditional record-at-a-time
interface used by the Tandem Enscribe record
management system have also been enhanced.
For example, C0B0L85 applications that use
entry-sequenced files created by Enscribe can
take advantage of fast 1/0 routines. These rou
tines transparently block and buffer disk 1/0,
providing up to ten times faster throughput than
unblocked access methods.

Record Locking
In an online enterprise, batch jobs may often run
at the same time and have access to the same
data as online transactions. To allow 0LBP and
0LTP to coexist, record lock management must
become more sophisticated. For example, batch
jobs operating on a retail inventory database
should lock the fewest records for the shortest
time needed to accomplish an operation. Data
base designers have applied the rule of minimal
required locking to 0LTP operations; they must
apply a similar rule to 0LBP jobs in an online
environment.

When a batch job obtains access to a data file,
it must lock only the records it needs at any one
time so that 0LTP can continue to operate on the
other records in the file. For example, if retail
clerks process purchases that change the inven
tory database online, a batch job that changes or
updates inventory levels cannot lock the entire
file. If the batch job is written to share the
database with 0LTP, the job can run whenever it
is requested and provide completely up-to-date
information. Therefore, to permit concurrent
batch processing and 0LTP, each batch job
must efficiently and quickly apply (and remove)
record locks.

TANDEM SYSTEMS REVIEW• OCTOBER 1990

With the Guardian 90 operating system,
the application designer can specify a lock on
a single record (the default), an entire file, or a
range of records. A generic lock, which locks a
range of records having a common key prefix,
can reduce the overhead of applying and remov
ing locks. It also reduces demands on main
memory. A single lock takes about 52 bytes of
main memory. Using a generic lock, the retail
inventory batch job can lock a category of items
(such as slacks or dress shirts) comprising 100
records in about the same time it would take to
lock a single record. The job not only uses less
main memory, but also runs faster and uses less
total CPU time. Because generic locks are easy
to use, the application designer can accurately
apply the minimal number of locks needed at
any one time.

Transaction Protection for OLBP
When a batch job obtains access to a database
where OLTP transactions are also executing,
Tandem Transaction Monitoring Facility (TMF'")
software may be needed to provide transaction
protection for the records being accessed, just
as it does for OLTP transactions. TMF includes
many optimizations, including some that in
crease batch throughput.

Tandem continues to enhance TMF to meet
the needs of concurrent OLTP, OLBP, and query
processing. More information on using TMF to
optimize batch applications appears in Keefauver
(1989).

Simultaneous OLTP, Query Processing, and
Batch Processing
By taking advantage of lulls in the demand for
OLTP, OLBP can take place concurrently with
OLTP. Thus, OLBP can accomplish more batch
work than traditional batch processing, which
often occurs during fixed, off-peak time periods
(usually overnight).

Enhancements have been made to the
Guardian 90 operating system to make sure
that disk I/Os of low-priority jobs, such as batch
jobs, have little or no impact on higher priority
jobs, such as OLTP. The disk process (a part of
Guardian 90 Release C30) executes 1/0 requests
in priority order, matching the Guardian 90
priority of the requesting jobs.

These enhancements also keep low-priority
jobs from monopolizing the disk process after
it starts executing them. After the disk process
begins executing a
request, it avoids being
monopolized by a large
job by periodically
checking its request
queue. If a request of
higher priority than
the one it is currently

0 LBP can accomplish
more batch work than

traditional batch processing.

executing appears, it suspends the current request
and immediately executes the higher priority
request. Thus, an online transaction will always
interrupt and supersede a long-running batch (or
query) request. During a lull in online transac
tions, the disk process continues executing the
low-priority batch request, starting where it left
off. Low-priority batch processing can now run at
any time during the day by utilizing spare system
resources that are not otherwise committed.

OCTOBER 1990 •TANDEM SYSTEMS REVIEW 91

92

OLBP Utilities
Tandem has enhanced the performance of OLBP
utility programs. For example, with Release C30
of Guardian 90, enhancements to disk controller
microcode (in the Tandem 3120 and 3125 models)
allow Tandem systems to write data to disks more
quickly. Because of this performance enhance
ment, several utilities can write files up to 35
percent faster than they could in previous releases.
This enhancement benefits such bulk 1/0 disk
write utilities as TMF transaction audit trail writes,
database loads, File Utility Program (FUP) file
duplicating, the Tandem FASTSORT batch sorting
utility, and RESTORE data recovery.

Parallel processing can also improve the
performance of Tandem utilities. For example, the
FASTSORT program takes advantage of parallel
ism. By specifying the parallel processing option
using two processors, FASTSORT can sort about
twice as quickly as it can using one processor
(Gray, 1986).

The online reorganization utility, introduced
with Release C30 of Guardian 90, can reorganize
audited Enscribe files or NonStop SQL tables
online. By reorganizing a file in place (operating
on one data or index block at a time), the utility
has little or no impact on OLTP performance.
Online transactions and batch jobs can continue
to access and update the file during a reorganiza
tion. Reorganizing files helps to keep batch pro
cessing and OLTP running at peak performance
(Smith, 1990).

Hardware for OLTP and Batch
Processing
The online enterprise needs hardware flexible
and powerful enough to support all the demands
placed on it. With the hardware and software
enhancements of recent years, Tandem has
improved batch processing performance about
tenfold (Keefauver, 1989; Oleinick and Shah,
1986). The Tandem NonStop Cyclone system
improves batch processing throughput another
threefold. It allows data transfers to be driven
at much higher rates than before. The NonStop
Cyclone can consistently run more than one
batch job concurrently and provide increased
throughput.

The NonStop Cyclone system features
direct memory access (DMA), which transfers
data from the 1/0 channel to main memory with
very little processor intervention. By improving
the speed and efficiency of data transfers to and
from main memory, the NonStop Cyclone can
easily handle the great number of data transfers
required in batch processing.

Users can configure the NonStop Cyclone
with four l/0 channels (twice as many as other
Tandem systems). Because batch processing
usually places a heavier load per second on 1/0
channels than OLTP does, the additional channel
capacity is especially valuable for batch jobs.
Enhancements to the 1/0 channel itself make it
possible for the NonStop Cyclone to transfer data
in large bursts, another feature that improves
batch job performance.

Parallel Batch Processing
Tandem has long provided parallel processing
to boost OLTP performance. Now, Tandem
provides at least four ways to apply the benefits
of parallel performance to batch processing.

TANDEM SYSTEMS REVIEW• OCTOBER 1990

Figure 2

Job1

Inventory
program

NetBatch-Plus

Job2

General ledger
program

On a Tandem multiprocessor system, users
can execute multiple batch jobs, each using a
different type of parallel processing, while OLTP
applications are also using the same files. More
over, by using the Tandem NetBatch-Plus batch
scheduling software available with Guardian 90
Release C20, users can schedule and control all
batch jobs, including those that employ parallel
ism, across all nodes in a Tandem network
(Earle and Wakashige. 1990). Four approaches to
parallel batch processing on Tandem systems are:

■ Inter-job parallelism.

■ Automatic intra-job parallelism.

■ Designed-in intra-job parallelism.

■ Job step pipelining.

Inter-Job Parallelism
This first approach to parallel batch processing
utilizes multiple processors to run multiple batch
jobs. For example, in a Tandem system contain
ing I 6 processors, users can schedule 16 batch
jobs to run simultaneously, one job in each
processor. (See Figure 2.) This feature is called
inter~joh parallelism and is available on most
vendor systems.

Payroll
program •••

Intra-Job Parallelism

Job 16

Accounting
program

With NonStop SQL Release 2, users can request
that the system automatically perform a single
batch job in parallel. For example, in a 16-
processor system in which database tables are
partitioned over 16 (or more) disk volumes,
NonStop SQL can distribute a single job to all
16 processors and update the disk partitions
simultaneously.

OCTOBER 1990 •TANDEM SYSTE\1S REVIEW

Figure 2.

lnter~joh parallelism.
Si.rteen different
hatch johs run in 16
processors scheduled
hy NetBatch-Plus.

93

Figure 3

NetBatch-Plus

Job 1

16-processor system

Application
••• program • ••

/ ~
SOL SOL SOL

executor executor executor

Figure 4

Ne!Batch-Plus

Job 1

'6pm=smsys<e/ ~

Figure 3.

Application
program

Automa1ic intra-Joh
parallelism. NonStop
SQL Release 2 rnntrols
the execution of"l6
suhprocesses to simulta
neously update 16
partitions of"a NonStop
SQL tahle. NetBatch-Plus

••• Application
program • ••

can control the application
program that contains the
NonStop SQL statement.,·
responsihlefor the
parallelism.

Application
program

Figure 4.

Designed-in parallelism.
Programmers can design
a hatch program to work
against 16 different disk
fi'/e partitions at once. If"
desired, NetBatch-Plus can
pass startup parameters
and control the 16 copies
of" the hatch program.

This feature, called automatic intra-job
parallelism, is especially useful for large batch
jobs requiring repeated operations. For example,
a batch application might need to update all
bank customer records, adding seven percent
interest to those records with money market
accounts. The first processor and disk volume
processes customer records A through C, the
second processes records D through F, and so
on. (See Figure 3.)

If the job runs in parallel across 16 database
partitions, it will execute in approximately one
sixteenth the time it would take a single proces
sor to execute. Intra-job parallelism is described
in detail elsewhere in this issue of the Tandem
Systems Review (Moore and Sodhi, 1990).

Designed-in Parallelism
While automatic intra-job parallelism operates
at the system level, users can also design
specific applications to process in parallel.
Designed-in intra-job parallelism can benefit
complex batch applications by distributing a
complicated task among several processors.

For example, users can design a batch
program so that a separate copy of the program
executes in each of 16 processors and uses the
disk volumes associated with that processor.
The parallel design allows the application to
process 16 portions of the batch job simulta
neously. (Users do not have to design parallel
ism into a batch application comprising a simple
series of NonStop SQL queries, because auto
matic intra-job parallelism can process each
NonStop SQL query in parallel.)

Figure 4 shows NetBatch-Plus controlling a
batch application designed to execute in paral
lel. More information about designed-in intra
job parallelism appears in Keefauver (1989) and
de Torok (1989).

Job Step Pipelining
When a batch job contains discrete program
steps, users can design the job to use multiple
processors in parallel. This feature, called job
step pipelining, is especially effective when
each successive step uses the output of a previ
ous one. Each job step executes in a different
processor and passes its output directly to the
next process, bypassing disk I/0.

94 TANDEM SYSTEMS REVIEW• OCTOBER 1990

Because the message-based Guardian 90
architecture can pass data from one processor to
another so efficiently, this method can greatly
reduce the run time of a job. For example, a job
with job steps distributed across 16 processors
can use less than one-sixteenth the run time it
would use in a single processor. (See Figure 5.)
Job step pipelining also reduces the need for
temporary file disk space, which batch processing
often requires.

The Benefits of Parallelism
By improving the performance of OLTP, OLBP,
and query processing, parallelism benefits the
online enterprise in two important ways. First,
users who start with a Tandem system that
provides satisfactory performance can maintain
that performance as their database grows simply
by adding resources to their system. The ability to
perform tasks on a large database as quickly as on
a small one is called scaleup.

Second, users who want to improve the perfor
mance of their enterprise can simply add re
sources to their system. For many applications,
doubling resources can cut processing time in
half. The ability to improve the performance of a
stable database in this way is called speedup.
Scaleup and speedup are discussed elsewhere in
this issue of the Tandem Systems Review (Englert
and Gray, 1990).

To demonstrate the capabilities of parallelism
provided by NonStop SQL, Tandem ran many
benchmark tests on different Tandem systems.2

The scaleup tests showed that the elapsed time
for database queries remained constant when the
number of resources grew in linear proportion to
the size of the database. For example, a complex
query that took one hour to execute on one pro
cessor continued to execute in one hour as the
database and the number of processors both grew
eightfold.

2R~sults were audited by Codd and Date Consulting Group, San Jose,
California.

Figure 5

NetBateh-Plus

Job1

Step1 ••• Steps

r

The speedup tests showed that the elapsed
time for database queries decreased in linear
proportion to the number of resources used.

• ••

A complex query that executed in eight minutes
on one processor executed in one minute when
eight parallel processors were used. The bench
mark tests demonstrating scaleup and speedup
are described elsewhere in this issue of the
Tandem Systems Review (Englert et al., 1990).

OCTOBER 1990 •TANDEM SYSTEMS REVIEW

Step 16

l

Figure 5.

Joh step p1jJe/ining.
One joh with 16 steps
(each consisting of' an
executing program)
processes the data
without using disk
scratch file space.
Bv the time the first
step reads the /~st data
record. only a few
seconds remain hejiire
the last step finishes
executing. /{desired,
NetBatch-Plus can also
control thisjrirm of'
processing.

95

96

Users can easily expand most Tandem systems
from 2 to 16 processors. With a fiber-optic link,
users can expand a system to as many as 224
processors. Using the Tandem Expand'" network
software, users can extend their system into a
geographically distributed network of up to 4080
processors, where similar speedup and scaleup
factors are possible.

Conclusion
The traditional view of mixed workloads is that
OLTP, batch processing, and query processing
cannot coexist cost-effectively on one system
because they make such different demands on
the system. This belief has led most large
enterprises to implement a multiple-database
strategy to satisfy their information processing
needs.

Tandem's approach to online enterprise
computing combines the cost-effective elements
of batch processing with an online environment.
By designing and implementing parallel pro
cessing and database technology for online
enterprise computing, Tandem offers a flexible,
cost-effective alternative to the multiple-data
base strategy. Tandem NonStop systems provide
a hardware and software architecture that can
support a single online database exploiting
the benefits of concurrent OLTP, online batch
processing, and query processing.

References
Borr, A. 1988. Technical Paper: High-Performance SQL Through
Low-Level System Integration. Tandem S\·stems Rniew. Vol. 4.
No. 2. Tandem Computers Incorporated. Part no. 1369].

de Torok. D. 1989. The International Tandem Users' Group.
Tandem Users· Journal. Vol.10. No. 3. May/June 1989. Chicago. Ill.

Earle. G. and Wakashige. D. 1990. NetBatch-Plus: Structuring the
Batch Environment. Twulem Systems RC\"iew. Vol. 6. No. 1.
Tandem Computers Incorporated. Part no. 32986.

Englert. S. and Gray. J. 1990. Performance Benefits of Parallel
Query Execution and Mixed Workload Support in NonStop SQL
Release 2. Tandem Sntcm., Rel"iew. Vol. 6. No. 2. Tandem
Computers Incorporated. Part no. 46987.

Englert. S. et al. 1990. NonStop SQL Release 2 Benchmark.
Tandem Systems Rnicw. Vol. 6. No. 2. Tandem Computers
Incorporated. Part no. 46987.

Gray. J. 1986. FASTSORT: An External Sort Using Parallel
Processing. Tandem Svs1ems Rc,·in\". Tandem Computers
Incorporated. Vol. 2. No. 3. Part no. 83938.

Keefauver. T. 1989. Optimizing Batch Processing. Tandem Svs1cm.1
Re,·iew. Vol. 5. No. 2. Tandem Computers Incorporated. Part no.
28152.

Moore. S. and Sodhi, A. 1990. Parallelism in NonStop SQL
Release 2. fondcm Svs1cm.1 Rn·inl". Vol. 6. No. 2. Tandem
Computers Incorporated. Part no. 46987.

NetBatch-Plus Data Sheet. 1989. Tandem Computers Incorporated.
Part no. IO I 030.

Oleinick. P. and Shah. P. 1986. A Performance Retrospective.
Tandem Sys/ems Revinl". Vol. 2, No. 3. Tandem Computers
Incorporated. Part no. 83938.

Smith, G. 1990. Online Reorganization or Key-Sequenced Tables
and Files. Tandem Sys/em., Re,·iew. Vol. 6. No. 2. Tandem
Computers Incorporated. Part no. 46987.

Tandem Perfomiance Group. I 988. Tandem's Non Stop SQL
Benchmark. Tandem Svs/ems Re\'iew. Vol. 4. No. I. Tandem
Computers Incorporated. Part no. 11078.

Timothy Keefauver is product manager for batch processing,
Disk Process 2, and optical storage. Before joining Tandem, he
worked in systems management, design and management consulting,
econometric research, and marketing research using various vendor
systems. Tim holds a BA in economics from Monmouth College and
an MBA in business policy from the University of Chicago.

TANDEM SYSTEMS REVIEW OCTOBER 1990

TANDEM SYSTEMS REVIEW ORDER FORM

Use this form to subscribe, change a subscription, and order back copies. Tandem customers must com
plete Part A of the subscription order form and the questionnaire on the reverse side of this page. Submit
the completed form to your local Tandem representative for approval. The Tandem representative will
complete Part B of this form and submit it for processing.

Part A To be completed by the Tandem customer.
and reverse
side of this

page.

Subscription information:

COMPANY

NAME

JOB TITLE

DIVISION

ADDRESS

COUNTRY

TELEPHONE NUMBER (include all codes for U.S. dialing)

Please turn page to complete form.

□ New subscription

□ Address change
Subscription number: _________ _
(Your subscription number is in the upper
right comer of the mailing label.)

Back order requests:

D Vol. 1, No. 1, February 1985

D Vol. 1, No. 2, June 1985

D Vol. 2, No. 1, February 1986

D Vol. 4, No. 2, July 1988

D Vol. 4, No. 3, October 1988

□ Vol. 5, No. 1, April 1989

D Vol. 2, No. 2, June 1986 D Vol. 5, No. 2, September 1989

D Vol. 2, No. 3, December 1986 D Vol. 6, No. 1, March 1990

D Vol. 3, No. I, March 1987

D Vol. 3, No. 2, August 1987

□ Vol. 4, No. I, February 1988

Your Tandem representative can order these for
you through COURIER (see 2 below).

Part B. To be completed by the Tandem representative.

Please complete this portion of the form to approve the above request. Incomplete requests will be
returned for resubmittal.

NAME

TITLE

LOC

CUSTOMER NUMBER

SIGNATURE

1. For subscription processing only,
send form to:

Tandem Computers Incorporated
Tandem Systems Review
LOC 216-05
18922 Forge Drive
Cupertino, CA 95014-0701

DEPARTMENT NUMBER

TELEPHONE NUMBER

SYSTEM NUMBER

2. For requesting back orders for customers,
use COURIER. The menu sequence is:
Marketing Information, Literature Orders,
Tandem Systems Review. The COURIER
form allows the literature order to be sent
directly to your customer's address.

□ Date of COURIER order submittal: __ _

10/90

This page must be completed by the Tandem customer.

1. Which of the following best describes your title? (check only one)

D President/CEO 2 D DirectorNP info services 3 D MIS/DP manager

4 D Software develop manager 5 D Programmer/Analyst 6 D System operator

7 D End-user 8 D Other ________________ _

2. What is your (or your company's) association with Tandem? (check all that apply)

9 D Tandem customer 10 D Tandem employee l l D Third-party vendor

12 D Consultant 13 D Other

3. What is company's primary operation? (check only one)

14 □ Education 15 □ Financial/Bank/Insurance

l7 □ Healthcare/Medical 18 □ Manufacturing

20 □ Research/Library 21 □ Telecommunications

23 □ Utilities 24 □ Reseller/Distributor

26 □ Other

4. How many employees does your company employ?

27 D 24 or less 28 D 25-99

30 □ 500-999 31 □ 1000-4999

16 D Government/Military

19 D Retail/Wholesale

22 D Transportation

25 D Consultant

29 □ 100-499

32 D 5000 or more

5. Which applications run on your systems? (check all that apply)

33 D Database management

36 D PC/mainframe access

39 D Scientific/Engineering

34 D Accounting 35 D Electronic mail

37 D Word processing/Publish 38 D Software development

40 D LANs/Networking

41 D Other __________________ _

6. Approximately how many dollars of Tandem-based products and services do you
anticipate your company will purchase in 1991?

42 D $50,000orless 43 D $50,000-150,000 44 D $150,000-500,000

45 □ $500,000-IM 46 □ $1M-5M 47 □ Morethan$5M

7. Are you planning on purchasing Tandem third-party products in the coming year?
48 D Yes 49 □ No

8. In what areas would you like to see more articles? (check all that apply)

50 D Guardian/Systems 51 D Database management 52 D Data comm/Networking

53 D Tools/Utilities 54 D Languages 55 D UNIX

56 D Industry applications 57 D Third-party products

58 Cl Other _________________ _

10/90

TANDEM SYSTEMS REVIEW CUSTOMER SURVEY

The purpose of this questionnaire is to help the Tandem Systems Review staff select topics for publication.
Postage is prepaid when mailed in the U.S. Customers outside the U.S. should send their replies to their
nearest Tandem sales office.

1. How useful is each article in this issue?

An O,·erview of NonStop SQL Release 2
01 1-1 lndispensible 02 D Very 03 LI Somewhat 04 l--:J Not at all

Performance Bene.fl ts of Parallel Query Execution and ML-red Workload Support in NonStop SQL Release 2
05 17 Indispensible 06 D Very 07 [J Somewhat 08 D Not at all

The NonStop SQL Release 2 Benchmark
09 D Indispensible 10 D Very 11 [J Somewhat 12 D Notatall

Parallelism in NonStop SQL Release 2
13 'D Indispensible 14 D Very 15 0 Somewhat 16 D Notatall

Online Reorganization qf Key-Sequenced Tahles and Files
17 , J Indispensible 18 D Very 19 C, Somewhat 20 [J Not at all

The Outer Join in NonStop SQL
21 D Indispensible 22 D Very 23 Cl Somewhat 24 D Not at all

Gateways to NonStop SQL
25 [J Indispensible 26 C Very 27 Cl Somewhat 28 D Not at all

Batch Processing in Online Enterprise Computing
29 D lndispensible 30 D Very 31 [] Somewhat 32 D Notatall

2. I specifically would like to see more articles on (select one):

33 D Overview discussions of new products and enhancements. 34 □ Performance and tuning information.

35 ':::J High-level overviews on Tandem's approach to solutions.

37 C Technical discussions of product internals.

38 [' Other __ ·-- __

3. Your title or position:

39 L President, VP, Director

42 D MIS manager

40 LJ Systems analyst

43 ~ Software developer

36 D Application design and customer profiles.

----·-- ·--· --

41 D System operator

44 D End user

45 [J Other __ ··-- ----· ·-- --···-- ·-- -------

4. Your association with Tandem:

46 D Tandem customer 47 [; Tandem employee 48 □ Third-party vendor 49 D Consultant

so □ Other ___ ··-·

5. Comments

·--·--.-- ---·---- ----

------·-

NAME

CO"1PA'JY NAME

ADDRESS

► FOLD

► FOLD

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 482

POSTAGE WILL BE PAID BY ADDRESSEE

TANDEM SYSTEMS REVIEW
LOC 216-05

CUPERTINO, CA. U.S.A.

TANDEM COMPUTERS INCORPORATED
19333 VALLCO PARKWAY
CUPERTINO, CA 95014-9862

ll1l111l1l1ll11111ill1l11ll1l11l11l11ll1111l1l1ll11I

► FOLD

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

► FOLD

~TANDEM

Tandem Computers Incorporated
19333 Valko Parkway
Cupertino, CA 95014-2599

Part No. 46987

11ARC BRANDIFINO
LOC NUN 50-00
NEW YORK NY DISTRICT

400109 10/90 Printed in USA

