
T A N D E M

SYSTEMS REVIEW

A Performance Retrospective

New Nonstop VLX Processor

GUARDIAN 90 Message System

MEASURE ■ FASTSORT ■ SNAX

Capacity Planning ■ Tuning

Configuring Disks ■ Tape Performance

Customer Profile: ATM Network

~RArvbc F1f\JO

Volume 2, Number 3, December 1986

Editor
Ellen Marielle-Trehoiiart
Technical Advisor
Dick Thomas

Associate Editors
Wendy Osborn
Carolyn Turnbull White
Assistant Editor
Sarah Rood

Art Director/Cover Art
Stephen Stavast

Production and Layout
Claire Dolan
J aroslav Dostal
Steve Elwood
Jim Geddes
Stephen Stavast
Janet Stevenson
David Thompson
John Tomasini

Typesetting
Barbara Cowlishaw

The Tandem Systems Review is
published by Tandem Computers
Incorporated.

Purpose: The Tandem Systems
Review publishes technical in forma­
tion about Tandem software releases
and products. Its purpose is to help
programmer-analysts who use our
computer systems to plan for, install,
use, and tune Tandem products.

Subscription additions and changes:
Subscriptions are free. To add names
or make corrections to the distribu­
tion data base, requests within the
U.S. should be sent to Tandem
Computers Incorporated, Tandem
Systems Review, 1309 South Mary
Avenue, LOC 5-04, Sunnyvale,
CA 94087. Requests outside the U.S.
should be sent to the local Tandem
sales office.

Comments: The editor welcomes
suggestions for content and format.
Please send them to the Tandem
Systems Review, 1309 So. Mary
Avenue, Sunnyvale, CA 94087.

Copyright © 1986 by Tandem
Computers Incorporated. All rights
reserved.

No part of this document may be
reproduced in any form, including
photocopying or translation to
another language, without the prior
written consent of Tandem Com•
puters Incorporated.

The following are trademarks or
service marks of Tandem Computers
Incorporated: DYNABUS,
DYNAMITE, ENCOMPASS,
ENCORE, ENFORM, ENVOY,
EXPAND, FASTSORT, FOX,
FOXII, GUARDIAN,
GUARDIAN 90, MEASURE,
NonStop, NonStop !+ , NonStop 11,
NonStop TXP, NonStop VLX,
TACL, TAL, Tandem, TMF,
TRANSFER, VS, XLS, XRAY.

IBM and SNA are trademarks of
International Business Machines
Corporation. Express Stop is a
trademark of Wells Fargo Bank.
INTERLINK is a trademark of First
Interstate Bank of Los Angeles.
CIRRUS is a trademark of Cirrus
System Inc. MasterTeller is a trade­
mark of Mastercard International.

TANDEM SYSTEMS REVIEW

2

8

19

48

55

68

80

99

A Performance Retrospective

Processors

Nonstop VLX Hardware Design

Nonstop VLX Performance

System Software
Message System Performance Enhancements

Message System Performance Tests

MEASURE, Tandem's New
Performance Measurement Tool

FASTSORT: An External Sort
Using Parallel Processing

Data Communications
The 6600 and TCC6820 Communications Controllers:
A Performance Comparison

Capacity Planning and Tuning
Capacity Planning Concepts

How to Set Up a Performance Data Base
with MEASURE and ENFORM

Application Design and Implementation
Performance Considerations for Application Processes

Disk and Tape Subsystems
Configuring Tandem Disk Subsystems

Getting Optimum Performance from
Tandem Tape Systems

Customer Profile
Performance Measurements of an
A TM Network Application

8

13

19

27

32

40

48

55

62

68

80

92

99

2

A Performance Retrospective

ver the years, Tandem has
made a substantial com­
mitment to product per­
formance, both for
hardware and software.

=~§ii.ii~:::== This article gives a retro­
spective on some of

Tandem's performance enhancements and
explains their significance.

For any computer vendor to survive, first it
must deliver products that work; how fast and
efficient its products are is important but not
essential. In the small computer company,
software product performance is usually a
distant third behind functionality and quality
when it comes to spending the company's very
limited resources. As the company grows and
matures, three factors come into play to
increase the amount of effort put into improv­
ing performance: increases in available money
for product performance evaluations, compet­
itive pressures, and customer demand. All of
these forces have been at work for a number
of years at Tandem and have given rise
to an impressive history of performance
improvement.

Tandem's commitment to providing soft­
ware performance enhancements for our
systems is evidenced by the number of per­
formance groups within the company. One
group is chartered with the responsibilities to
produce computer performance evaluation
products, to provide engineering and develop­
ment groups with predictive modeling and
simulation expertise, and to provide perfor­
mance measurement and analysis services for
many parts of the company. Another provides
performance benchmarking for Tandem users
and first-line corporate performance consulta­
tion for the field support organization. A third
group creates software prototypes and recom­
mends performance enhancements to Software
Development.

The combined investment in capital equip­
ment alone for these organizations exceeds
$9 million. Without Tandem's commitment to
channel some of its resources into perfor­
mance improvements, the many product per­
formance enhancements would never have
occurred. Customers have benefited greatly
from Tandem's investments in performance
improvements.

The following four areas illustrate the types
of performance improvements that have
occurred during the past few years: on-line
transaction processing (OLTP}, batch, disk­
to-tape and tape-to-disk utilities, and sorting.

TANDEM SYSTEMS REVIEW D E C E M B E R 1 9 8 6

OLTP
The performance of OLTP systems is usually
characterized by transaction throughput at a
given response time. In this case, the through­
put rates of a standard debit-credit banking
transaction, also known as ETI, were exam­
ined.1 For this transaction, throughput is
defined as the rate at which transactions are
processed when 95% of the transactions com­
plete with a response time of two seconds or
less. Figure I shows throughput versus
response time for six different configurations
of the same application. From left to right, the
curves illustrate the product innovations'
effect on performance. Figure 2 shows the
incremental and cumulative improvements in
throughput with each innovation.

Throughout this article improvement factors
are used to describe performance improve­
ments (e.g., an improvement factor of 1.8
means that the new version yields an 80%
increase in performance).

The bar on the far left of Figure 2 is the
performance of the NonStop II processor
running the PATHWAY Terminal Control
Process I (TCPI) and Disc Process I (DPI) on
the A05 version of the GUARDIAN™ operating
system. The first significant performance
innovation was the advent of the more effi­
cient PATHWAY Terminal Control Process 2
(TCP2). The next two bars show the incremen­
tal and cumulative improvement resulting
from this innovation. This software improve­
ment boosted the transaction throughput by a
factor of 1. 8.

Next came the introduction of the
NonStop TXP™ processor. This hardware per­
formance improvement increased the through­
put rate by an additional factor of 2.8. The
new Disc Process 2 (DP2), with a rewritten
Transaction Monitoring Facility (TMF™), fur­
ther boosted performance by a factor of 1. 9.
The enhanced B30 Message System yielded a
1. I performance improvement in throughput.

·- ----- ----
1This transaction was based on the debit~credit, or ET!, transaction standard
defined in" A Measure of Transaction Processing Power," Datamation,
April I, 1985.

D E C E M B E R I 9 8 6 T A N D E M

A Pe,formance Retrospective

Figure 1

6
U)
cJ
C 5 0
0
Q)

-:!!-
4 Q)

E
"' Q) 3
<I)
C
0
a. 2 <I)
Q)

a:

0

Figure 2

♦ NooStop IDTCP1

No11Stop lIITCP2/A06
• NooStop ixPm:::P2/A06

Nonstop TXP/DP2/B20
• NonStop TXP/DP2/B30

NooStop VI..XIDP2/830

Throughput (transactions/second)

16.8

16

14

lncrefn!"lnl!ill imi:,rov.ement

■ Cumuralive impr~'!lfli'tt

c
Q)

~ 12
> e
a.
-~ 10
Q)
0

~ 8
E
0
~ 6
a.

l 4
"' ~

2

0

10.5
9,5

Nonstop II Nonstop II Nonstop TXP Nonstop TXP Nonstop TXP Nonstop VLX
TCP1, DP1 TCP2, DP1 TCP2,DP1 TCP2, DP2 TCP2, DP2 TCP2,DP2
A05 release A06 release A06 release 820 release 830 release 830 release

Figure 1.

OLTP throughput versus
response-time curves.
Shows throughput versus
response time of six
different configurations

for a debit-credit bench­
mark. From left to right,
the curves illustrate the
product innovations'
effect on performance.

SYSTEMS REVIEW

Figure 2.

OLTP relative perfor­
mance improvement.
From left to right the
chart shows the incre­
mental and cumulative
improvements in the
transaction through­
put rate with each
innovation.

3

A Performance Retrospective

Figure 3

8
1ncremen1a1 irni;irovemen1

■ Cumulative improvement

0

Figure 3.

Nonstop II
DP1
BOO release

Batch relative perfor­
mance improvement.
From left to right it
shows the incremental
and cumulative improve­
ments in performance
with each innovation.

4

Nonstop TXP Nonstop TXP Nonstop TXP
DP1 DP2 DP2
BOO release BOO release B3O release

Nonstop VLX
DP2
B3O release

Finally, the introduction of the NonStop VLX™
processor raised the throughput rate by an
additional factor of l.6. 2

To calculate the total performance improve­
ment since the starting point, multiply the
various factors. Since the advent of TCP2,
Tandem has improved the performance of
OLTP by a factor of 1.8 * 2.8 * 1.9 * 1. 1 * 1.6
= 16.8. If one separates the improvements
into those that are hardware-based
(NonStop TXP and NonStop VLX processors)
and those that are software-based (TCP2, DP2,
and the B30 GUARDIAN Message System),
fairly balanced improvement factors of 4.5
and 3. 8, respectively, result.

This analysis shows how both hardware
and software improvements have contributed

2Onc should interpret these numbers with caution. Using the data from this
article, throughput with a 950-/0 response time of two seconds results in the
VLX transaction throughput of I.I * 1.6 = l.8 times the NonStop TXP.
Public staLements made by Tandem have claimed that the NonStop VLX with
the nc\v B30 GUARDIAN operating system has from 1.6 to 2.2 times the
throughput capacity of the NonStop TXP. This article's data produces a
rclati\e performance ratio on the low end of the ,pectrum because we chose a
more conservative response-time requirement in order to compare the perfor­
mance of the Non Stop VLX to that of the NonStop I!, a much slower
proce.,sor.

At the 95o;'o, one--,econd response time, the performance ratio of the Non­
Stop VLX to the Nonstop TXP processor is a factor of 2. But the performance
ratio or the Non Stop TXP to the NonStop II processor at this response time is
approximately a factor of 9, Although the NonStop TXP and NonStop VLX
can be correctly compared at this response time, making a performance
comparison to the NonStop II processor at this response time is not very
realistic.

Aho, the number~ for the NonStop II are not meant to be optimal perfor­
mance. This i.:; evidenced by the fact that the NonStop ll performance with
LJP2 i.'I not mentioned. The intent was to show the "leading edge" of perfor­
mance over the period di~cussed.

T A N D E M SYSTEMS

to Tandem's 17-fold increase in OLTP perfor­
mance. In fact, if there had been only
hardware improvements, the following per­
formance improvements would have resulted.
The NonStop VLX processor, capable of ten
transactions per second, would only be able to
process 10/3.8 = 2.6 transactions per second
if Tandem had not invested in software per­
formance improvements.

While it is clear that software has improved
the throughput capacity of the system, mea­
surements show that a reduction in instruc­
tions needed to process a transaction can
account for only 1.7 of the 3.8 improvement
from software; a factor of more than 2 in soft­
ware improvements is unaccounted for. Some
factor other than reducing the number of soft­
ware instructions is at work.

Bottleneck analysis shows where the unex­
plained performance improvement comes
from, and an examination of a simple, one­
CPU, one-disk system helps to demonstrate the
effect. Suppose a transaction takes 1000 ms of
CPU time and 800 ms of disk time and the
disk operates concurrently with the CPU. Bot­
tleneck analysis reveals the CPU as the bottle­
neck in the system; it limits the system
capacity to no more than 1 transaction per
second (tps).

What happens to the performance of the
system when the CPU speeds up? Using the
hypothetical numbers, if the new CPU is 2.5
times the speed of the old one, the transaction
that required 1000 ms of CPU time now needs
only 400 ms. If the CPU was the bottleneck,
the two systems would have a maxim um
throughput of 1 and 2.5 tps. However, at the
rate of 2.5 tps, the system must also provide
2.5 * 800 ms = 2000 ms of disk time. But the
disk can't deliver 2000 ms of service per sec­
ond, so it has become the bottleneck in the
system and limits the system throughput rate
to no more than 1000/800 = 1.25 tps.

This example shows how bottlenecks place
limits on system performance and performance
improvements. The introduction of a CPU
with 2. 5 times the processing power of the old
one results in a system throughput increase of
only 1.25-half the additional CPU processing
power is wasted.

A similar condition existed for the
Nonstop II™ processor running DPl. When
the NonStop TXP processor was introduced,

REVIEW DECEMBER I 9 8 6

the performance of the system improved, but
not as much as was theoretically possible
because the disk subsystem became the bottle­
neck in the system. Thus the software enhance­
ments are not only a good idea, they are
essential.

Batch
Batch processing has a similar history of per­
formance enhancements. A sequential-copy
benchmark that is protected by TMF was used
to characterize the performance of batch. 3 The
measure of performance for this benchmark is
the number of records per second copied from
one disk file to another. The starting point was
the NonStop II processor running the BOO
release of GUARDIAN with DP 1. The various
performance improvements appear in Figure 3.
The NonStop TXP processor was introduced
first, followed by DP2. Next came the faster
Message System in B30 GUARDIAN and
finally, the NonStop VLX processor. '

Again, the total improvement in perfor­
mance is the product of the factors (2.2 * 2.3 *
1.1 * 1.4 = 7 .8). If the hardware and software
contributions are separated, hardware
accounts for 3.1 and software for 2.5 of
the gain.

BACKUP and RESTORE
The performance of the BACKUP and
RESTORE utilities is characterized in terms of
the data transfer rate. The investigation was
limited to performance improvements from
innovations other than new processors and
tape drives. The base consisted of the perfor­
mance of BACKUP and RESTORE on the
NonStop TXP processors running DPl using
3106 disk controllers on the GUARDIAN A06
operating system. The 5106 Tape Subsystem
was used.

With the BOO release, the RESTORE utility
was rewritten to incorporate an algorithm
change that increased parallel processing. The
reading of data from the tape was overlapped
with the writing of data to the disk. This inno­
vation is labeled DPl/BOO in Figure 4, and was
responsible for improving RESTORE perfor­
mance by a factor of 1.6.

--------- -

'Th.is benchmark was based onthc seq~;~tial-c~py be;~h;;;-~rk standard also
delmed 111 the Datamation article previously mentioned.

DECEMBER I 9 8 6 T A N D E M

A Performance Retrospective

Figure 4

c
Q)

~ 2.5
>
2
Q.

.S: 2.0

Figure 5

Q)

'-'
ffi 1.5
E
s a, 1.0
Q.

1 0 5 "' . a:;
a:

0

c
Q)

E
!li 5
2
§ 4
Q)

'-'
ai 3
E
0 i 2

!li
~
Q)

a:
0

DP1 DP1
A06 release BOO release

DP1 DP1
A06 release BOO release

DP2
B10 release
(16-word bursts)

1.~{12:0·.··.·.··.·•.·.· .. ·· ... ·.
' ,:\:

/N .
DP2
B10 release
(16-word bursts)

The new 3107 disk controller made it possi­
ble to transfer larger blocks of data than the
3106 controller (30-Kbyte blocks versus
4-Kbyte blocks), increasing the efficiency of
the utilities. DP2 and the BACKUP/RESTORE
software took advantage of these longer
transfers, and both BACKUP and RESTORE
were faster by factors of l. 8. A microcode
change permitted the tape controller to move
data over the channel in larger and more eco­
nomical chunks, or controller burst sizes, than
the standard size, i.e., 64 words instead of 16
words. A further improvement factor of 1.4
and 1.5 resulted (see the incremental improve­
ment factors for DP2/B10 (b = 64) in both
Figures 4 and 5).

SYSTEMS REVIEW

DP2
B10 release
(64-word bursts)

DP2
B10 release
(64-word bursts)

Figure 4.

BACKUP-relative
performance improve­
ment. From left to right
the chart shows the
incremental and cumula­
tive improvement in
BACKUP performance
with each innovation.

Figure 5.

R £STORE-relative
performance improve­
ment. From left to right it
shows the incremental
and cumulative improve­
ment in RESTORE
performance with each
innovation.

5

A Pe,formance Retrospective

Figure 6

"O
C
0
(.)
Q)
<I)

1200

1000

Nonstop ll/DP1 /830
Nonstop TXP/DP1 /830

II Nonstop TXP/DP2/B30
II Nonstop VLX/DP2/B30

1137

cii
800 0.

"O
2
0 600 <I)

603

<I)

~
0 400
(.) 330
Q)

a:
200

61 110 120

UL
155

0
SORT FASTSORT(S) FASTSORT(P)

Performance improvement

Under four different hardware/software configurations.

Figure 6.

SORT performance
under j(Jur d(fferenl
hardware/software con­
figuralions. The SORT
ulilily was rewrilten
inilial/y lo improve the
ejJiciency of the serial
sor/ algorithm, referred
10 as FASTSORT(S), and
/a/er to incorporale addi­
tional parallelism in !he
form (If parallel concur­
rem subsor/s, referred to
us T'AS7:SORT(PI.

The total improvement factors for BACKUP
and RESTORE are 2.5 and 4.3. Without buy­
ing any faster processors or tape drives users
could simply acquire a new disk controller and
move forward with new software releases,
reducing the time it takes to back up and then
restore a 100-Mbyte file from more than 37
minutes to just over 10 minutes.

SORT
Sorting is another task used to characterize the
performance of a computer system. Perfor­
mance is usually measured as the time to sort
a given number of records or, inversely, the
number of records sorted per second.

T A N D E M SYSTEMS

Tandem has paid particular attention to the
SORT utility. The performance improvements
shown in Figure 6 illustrate the dramatic
results achieved. As in the previous figures,
the sequence of performance innovations used
include the Nonstop II processor running DPI
and the NonStop TXP and Nonstop VLX
processors running DP2.

This figure differs in that the SORT
algorithm itself was rewritten twice. It was
rewritten initially to improve the efficiency
of the serial sort algorithm, referred to as
FASTSORT(S), and later to incorporate addi­
tional parallelism in the form of parallel con­
current subsorts, referred to as FASTSORT(P).
FASTSORT(P) employs multiple processors to
carry out the subsorts. (For a more detailed
discussion see the accompanying article by
Jim Gray, et al., "FASTSORT: An External
Sort Using Parallel Processing.") Measure­
ments indicate that performance is linear with
the number of processors (subsorts)-two
subsorts are twice as fast as one, three sub­
sorts are three times as fast, and so on. Tan­
dem has only begun to explore parallelism of
this type (multiple processors cooperating to
speed up the execution of a single task). The
FASTSORT(P) data in Figure 6 is for the two
subsort case only.

As shown by the SORT measurements alone,
by upgrading from a Nonstop Il processor to
the NonStop TXP and switching from DP 1 to
DP2, users can improve performance by about
a factor of 2. However, without upgrading
processors or switching to the new disk pro­
cess, a factor of 2.5 increase can be obtained
by employing the faster FASTSORT(S)
algorithm. In fact, a factor of 5 .4 increase in
performance is possible simply by using
FASTSORT(P).

For users presently using a NonStop II sys­
tem running DPI and the old SORT algorithm,
a performance improvement factor of at least
1137 /61 = 18.6 can be achieved simply by
upgrading to the latest software and hardware.
A factor of about 3 .2 is obtained by processor
upgrades, but a factor of at least 5 .8 is due to
software performance improvements.

REVIEW DFC:EMBFR I 9 8 o

Conclusion
This article describes Tandem's long-standing
commitment to improving product perfor­
mance. Though it is not intended to compare
Tandem's compound annual performance
improvement rate to other computer vendors'
rates, it may well be that Tandem is second to
none in delivering performance innovations.

Performance improvements take many
forms, the most visible being new, faster pro­
cessors. Tandem, the press, and our customers
find it easy to understand and talk about
faster hardware because it is tangible-it looks
different. It is more difficult to relate to
software-it can't be photographed and
doesn't take up floor space. In fact, software
performance improvements are often a well­
kept secret.

Software enhancements are as much respon­
sible for system performance improvement as
new hardware, however. In one case, it was
shown that the new high-performance DP2
software was necessary to use much of the
added power of new processors. In another
case, high-performance software employing
multiple processors sped up the processing of a
single task.

Over the years, Tandem has provided about
a 30% software performance improvement per
year, and a 65% annual price/performance
improvement. As the customer's business
grows, they need only install the latest soft­
ware release to get more work from the same
hardware. In summary, it is easy to see why
Tandem has one of the best price/performance
ratios in the industry.

DECEMBER I 9 8 6 T A N D E M

Reference
Anon, et al. 1985. A Measure of Transaction Processing Power.
Datamation. Vol. 31, No. 7.

Peter Oleinick manages the Performance Section in Software
Development. He joined Tandem in August 1978 to work on
performance evaluation. As Software Development grew, a
section was created under Peter's direction to concentrate on
performance modeling, measurement, and analysis. Before
coming to Tandem, Peter obtained a B.S. in Electrical Engineer­
ing from the University of Michigan, and an M.S. and Ph.D. in
Electrical Engineering/Computer Science from Carnegie-Mellon
University.

Praful Shah joined Tandem in June 1984. Since then he has
worked with the Performance Group in Software Development on
performance studies related to DP2, DP1, TMF, processors, and
peripherals. Before joining Tandem, he worked in a performance
group for another mainframe vendor. Praful has an M.S. in
Computer Science from Pennsylvania State University and a B.S.
in Electrical Engineering.

SYSTEMS REVIEW

A Performance Retrospective

7

8

NonStop VLX
Hardware Design

he team that designed the
Nonstop VLX processor
accomplished significant
performance increases by
providing a greater number
of dedicated hardware func­
tional units than were imple­

mented in the NonStop TXP system. The
additional functionality was made possible
through the use of bipolar VLSI gate arrays
with an average density of 2300 equivalent
gates. This article describes some of the con­
siderations behind the Nonstop VLX hardware
design and their effect on performance.

Cost, performance, reliability, maintainabil­
ity, and time to market are all considerations
in the design of a processor. Performance for
the NonStop VLX system was significantly
improved, with attendant improvements in
cost, reliability, and maintainability. The
resulting CPU is well balanced in that all of
its attributes were improved relative to its
predecessor.

The Technology
Technology defines both the machine envelope
and its cycle time. The envelope is determined
by the number of chips needed and their
power, cooling, and interconnect require­
ments. Each of the architectural styles
described below has its own influence on the
number of chips and chip types.

Gate Array Technology
The design team selected the VLSI gate arrays
after performing an analysis of speed, density,
costs, development tools, vendor capability,
and product availability, considered in terms
of product performance goals and develop­
ment schedule.

Technologies considered included emitter­
coupled logic (ECL), complementary metal­
oxide semiconductor (CMOS), transistor­
transistor logic (TTL), and combinations of
these.

ECL interface levels were dismissed, among
other reasons, because proven ECL-rules
printed circuit (PC) design tools were una~ail­
able. A choice was made to develop the chip
design tools first, then tackle the ECL PC tools
for a later product. ECL internal gates, how­
ever, have a definite speed advantage over
CMOS or other bipolar designs.

TANDEM SYSTEMS REVIEW DECEMBER 1986

In considering TTL versus CMOS, the ability
of TTL to drive heavy loads was a deciding
factor. The power and cooling requirements of
a mixed ECL internal, TTL-interface gate
array were deemed manageable. The chosen
array uses ECL internal logic with TTL 1/0
signals.

RAM Technology
Both the inherent speed of the gate array (and
the wiring delays involved in their interconnec­
tion) and the speed of the supporting Static
RAM (SRAM) arrays were considered in estab­
lishing the cycle time of the processor. There is
more than 3/4 Mbyte of SRAM in the CPU.
After assessing the product introduction date,
RAM vendor predictions, technology trends,
second source risks, and performance objec­
tives, the design team decided to pursue archi­
tectural performance enhancements rather
than faster cycle time. The resulting design is
quite conservative; neither the gate arrays nor
the RAMs are being pushed to their limits.

Given the decision not to reduce the cycle
time to gain performance, the team then con­
sidered the options available in the realm
of architecture.

Performance Improvements by
Architecture

Architectural techniques for performance
improvement might be classified as hierarchy,
specialization, and replication. Each tech­
nique is discussed briefly below.

Hierarchy
A hierarchy is a layered structure. In the case
of a processor's memory system, the layers are
disk, main memory, cache, and the processor's
registers. This list is ordered by decreasing size
and access time, and increasing cost per bit.

Over a sufficiently small interval, a pro­
gram does not need to access the entire data
base available to it, and the portion which it
does need to access may be moved into faster
memory to increase performance. Movement
of data from disk to main memory is con­
trolled by software. Movement of data from
main memory to cache is controlled by hard­
ware responding to a program's memory refer­
ence requirements. Data moves from cache to
the internal processor registers in response to
the execution of instructions by the processor.

A hierarchical memory system exploits the
statistics of a program's memory access pat­
tern. Memory references are obtained from the
cache more than 96% of the time in typical
on-line transaction processing (OLTP) applica­
tions. These accesses are serviced in one cycle,
as compared to ten cycles for those accesses
which are not cache-resident.

Disk-resident data is also cached in main
memory by the DP2 software, providing appli­
cations with fast access to frequently used disk
data. The 16-Mbyte capacity of the VLX pro­
cessor provides the ability to cache many disk
blocks.

Specialization
Specialization is a design style that breaks a
problem into small parts and devotes facilities
to the solution of each part. A specialized
design is optimized to do one thing well.

The high-level specialization for the
NonStop VLX system is OLTP. This specializa­
tion does not detract from its performance in
other applications, however. The VLX executes
an extension of the same instruction set as its
architectural predecessors, the TXP and
NonStop II CPUs. The extensions are trans­
parent to nonprivileged application programs.
This instruction set was designed with OLTP
in mind. The VLX has many specialized hard­
ware elements, each optimized to execute its
part of this instruction set.

Each of these specialized elements may
operate concurrently, thus speeding the execu­
tion. The instruction pipeline, the displace­
ment adder, and the barrel shifter are examples
of specialization. They are discussed in more
detail in the "Hardware Features" section.

Replication
Replication is characteristic of the NonStop™
macroarchitecture and is also evident in the
microarchitecture of the NonStop VLX sys­
tem. Replication allows multiple activities of a
particular class to be performed simultane­
ously. The newly introduced dual-bank con­
trol store is an example. Two accesses are in
progress at any time, effectively doubling the
bandwidth of the control store memory.

DECEMBER I 4 8 6 T A N D E M S Y S T E M S REVIEW

Prncesson

9

Processors

10

Measuring the Application
Extensive measurements were made in a trans­
action processing benchmark to determine
what architectural features would provide the
most benefit. The debit-credit (ET1) 1 transac­
tion processing benchmark simulates a debit­
credit application and exercises the disk
process, the PATHWAY transaction processing
system, and the Transaction Monitoring Facil­
ity (TMF) in an OLTP environment. These
measurements yielded instruction usage data
for the Non Stop TXP system, both by fre­
quency and by percentage of total execution
time. (See Table 1.) More important, perhaps,
was the ability to see the usage of various
machine resources in an OLTP environment.
(See Table 2.)

Hardware Features
The data from which Table I was extracted
was thoroughly studied to find out how the
TXP was spending its time. Architectural
enhancements were conceived, analyzed, and
modeled to find the most cost-effective ways
to improve on the TXP's performance.

Cache
The cache-fill routine was improved from a
23-cycle microcode routine to a 10-cycle
hardware-driven interface. This reduces the
cache-miss penalty on the average instruction
from 1.33 to 0.41 cycles.

The cache-miss penalty (the time needed to
get the data from main store if it is not in the
cache) is also a function of the cache organiza­
tion. Alternative cache addressing mechanisms
and organizations were investigated, but none
showed any consistent advantage over the way
the NonStop TXP cache was organized.

~;; hcncl1;;~k;;,,. bas;J~~e dcbil=~;dit, or E-I~, benchmark standard
Jcfined in "I\ Mea,;urc of Tran-;action Proce\sing Po\\er," Datamation,
April I, 1985.

T A N D E M SYSTEMS

Table 1.
Top ten instructions in transaction processing
benchmark.'

By frequency of execution

LDI

LOAD direct, unindexed

LDXI

LDD

BAZ

STOR

DADD

ANRI

LOAD indirect, indexed

CMPI

By percentage of total
execution time

LOAD direct, unindexed

LDI

LWXX (L-relative)

PUSH

BAZ

MVBX

LDD direct, unindexed

LOAD indirect, indexed

SEND

PCAL

•See the System Description Manual, Part no. 82507 A00, for a
description of the instruction mnemonics.

Barrel Shifter
Data scaling (shifts) and byte manipulation
are somewhat cumbersome operations in some
architectures. The VLX has dedicated a gate
array to performing these functions in a single
cycle. This function reduces the average
instruction time by a fraction of a cycle.

Microcode Architecture
Each instruction in the Nonstop TXP system
ends with a FINIS microinstruction which
calculates the displacement address for the
next macroinstruction. This means that the
shortest TXP instruction is two clocks in
length. These two-clock instructions account
for a significant portion of the execution time.

The designers dedicated NonStop VLX
hardware to the displacement address
calculation, making the shortest instructions
one clock in length. This hardware is the
"displacement adder" function, which
examines instructions in the pipeline and
calculates their operand address. This reduces
the average instruction time by one cycle.

The Interprocessor Bus (IPB) Subsystem
The IPB out queue of the Nonstop TXP
processor is only one packet deep. The
NonStop VLX processor incorporates a
16-packet buffer to reduce blockage due to the
IPB output queue. A small fraction of a cycle
per instruction is thus saved.

REVIEW DECEMBER I lJ K 6

The !PB protocol was redesigned in order
to reduce expensive cabling and improve
the electromagnetic interference characteristics
of the bus. In the process, the IPB bandwidth
was raised from 13.3 Mbytes per second to
20 Mbytes per second. This performance
improvement provides for the increased bus
use expected from future high-end systems.
A pseudo-random poll sequencer reduces the
average latency of the !PB by a factor of two,
providing improved Message System response.

The FOXIJ'M fiber optic extension provides
improved buffering and buffer management
strategies to reduce the latency of intersystem
traffic. In order to maintain compatibility
with FOX™ on Nonstop TXP or Nonstop II
systems, the data rate and packet structure of
the optical link have not been changed.

1/0 Subsystem
1/0 latency and throughput are enhanced by
the reconnect poll hardware. The reconnect
poll sequencer generates an alert signal six
cycles before the poll is complete. Certain
lengthy instructions test this condition before
executing, and defer starting if the condition is
true. This saves the overhead of saving and
restoring state to service the reconnect.

Dual-bank Control Store
The highest-speed 8Kx8 SRAM believed
feasible in early 1986 had an access time of
70 ns. Since the cycle-time goal was 83.3 ns
(12 MHz), there was insufficient time to
propagate the control-store address and meet
setup-time requirements in a single-cycle
access. Faster RAM was available in 16-Kbit
density, but the physical requirements would
overflow the printed circuit board partitioning.
This led to the use of a dual-bank overlapped
control-store approach, in which two identical
banks of control store are accessed on alter­
nate cycles. This approach gives the VLX the
same effective control-store bandwidth as that
of the TXP with the use of slower parts.

The presence of two identical copies of
control-store data provided an opportunity to
correct "soft" errors in one bank. A soft error
is one that can be corrected by rewriting the
correct information into the memory. Soft
errors are the result of the interaction of alpha
particles from trace impurities in the chip
package with the circuitry on the chip. Their
frequency is low, but not so low as to be
negligible. When an error occurs, the error

DECEMBER I 9 8 6 T A N D E M

Proces.1·01:1

Table 2.
Comparison of Nonstop VLX and Nonstop TXP systems, based on an
average instruction.
Characteristic NonStopTXP Nonstop VLX

5.03 Cycles/instruction (with 100% hits)
--'----------------'-------'-----~~----- ------
Data reads/instruction

Data hit rate

Code reads/instruction

Code hit rate

Cache miss time (cycles)

0.63

96.31

1.14

96.95

23

4.03

0.63

96.31

1.14

96.95

10

Cache miss penalty/instruction 1.33 0.41

Page Table Cache (PTC) hit rate

PTC miss time (cycles)

99.74 99.80

PTC miss penalty/instruction

Pauses/instruction

Total cycles/instruction

VLX:TXP speed ratio (instruction execution)

40

0.03

0.12

address is saved and used to access the other
bank. The correction takes three additional
cycles, effectively operating at one-third
speed. In fact, the CPU runs with only a
single bank, but at only one-third speed.
Software is notified of the erring address,
which is rewritten with data from the good
copy.

On-line Sparing
The logic density available in the VLSI gate
arrays made it possible to implement on-line
sparing in the control-store, cache, and
scratchpad SRAM arrays. When a hard
(uncorrectable) error is detected, the logic
receiving the bad bits is commanded to take its
data from the spare RAM instead of the normal
one. Hard errors (chip failures) in these
SRAMs are very infrequent, but the sparing
was determined to be cost-effective in light of
the service cost goals of the product. The
spare RAM is "revived" from the data in the
other control-store bank. Once the revive is
complete, all operations continue at full
speed.

SYSTEMS REVIEW

1.49

38

0.02

0

11

Processors

12

Memory Control Unit
The main memory accesses may be pipelined,
with one access buffered for delivery to the
processor data path while a second access is
under way in the memory array. Dedicated
address registers for the block move
instructions MOVW and MOVB, along with the
pipeline capability, permit the MOY loops to
execute in three clock cycles.

The VLX Outperforms the TXP
As a result of these architectural enhance­
ments, the VLX executed instructions at
1. 5 times the rate of the TXP. Transaction
throughput relative to the Nonstop TXP
system will typically be greater than this. (The
factor will vary depending on the application.)
The greater transaction throughput was a bit
of a surprise and at first seemed to be pulling
a rabbit out of a hat. At a specified response
time, however, some portion of the processor's
capacity is not used. The faster the processor,
the more of it there is to use at a specified
response time.

The following bank teller analogy, from
Bob Horst of Tandem's Processor-Memory
Group, may provide more insight: if a
response time of one minute is needed and the
bank tellers take one minute per transaction, a
line cannot be allowed to form behind each
teller. (In this example, the tellers aren't very
busy because there is no line or queue to even
out the bunchy arrivals of new customers.)

If the tellers were replaced with faster ones
who took only 30 seconds per transaction,
throughput would double. In addition to this,
an average of one person could be allowed to
wait in line for each teller, making the tellers
busier as well.

T A N D E M S Y S T E M S

The double multiplier is the faster speed of
the tellers times the higher utilization of each
teller. If a response time were not specified,
long lines would form behind the slow tellers
and shorter ones would form behind the faster
ones, but the utilization would be the same
(100%). Quite simply, with a more powerful
processor, less reserve capacity is needed to
meet peak demands; this translates as fewer
idle tellers.

The performance of the VLX compared to
that of the TXP is

VLX throughput
TXP throughput

(1 - VLX idle)
(1 - TXP idle) * VLX performance.

The equation simply relates the portion of
the machines that are actually used at the
one-second response level to the increased
hardware performance of the NonStop VLX
processor. The following article, entitled
"NonStop VLX Performance," provides more
detail on this "double multiplier effect."

Conclusion
The NonStop VLX processor has achieved
significant performance improvements over
the Nonstop TXP system without raising the
clock speed through the use of specialized and
replicated hardware functions. The conserva­
tive use of VLSI technology permitted the
additional hardware to be incorporated with a
reduction in board count, power consump­
tion, and failure rate.

Reference
Anon, et al. 1985. A Measure of Transaction Processing Power.
Datamation. Vol. 31, No. 7.

Acknowledgments
Thanks are due the entire design team of the NonStop VLX
system, with special thanks to Shannon Lynch for the design
and development of the SIMPLE performance monitor, and to
Bob Jardine and Lino Costantino for their performance mea­
surement experiments and analysis. Thanks also to Bob Horst
for clarifying the double multiplier effect.

Mike Brown has been with Tandem for three years, working on
the development of the Nonstop VLX processor. He has previ­
ously held senior engineering and product planning positions,
with 19 years of experience in the minicomputer business.

REVIEW DECEMBER I 9 8 6

~--~ his article presents perfor­
mance data for the
NonStop VLX system.
A description of the features
responsible for these per­
formance improvements is
contained in the preceding

article, "Nonstop VLX Hardware Design."
To characterize application performance on

the Nonstop VLX system, a series of tests was
run on two identical NonStop VLX and TXP
hardware configurations running the B20 and
B30 versions of the GUARDIAN 90™ operating
system. Two of these applications are pre­
sented here. The first test was a sequential
copy operation; the second was an on-line
transaction processing (OLTP) application.
This article discusses the workload for each
application and describes the configuration.
Test results and observations are listed at the
end of each section.

Sequential Copy Benchmark
Application
To perform the sequential copy (also called the
SCAN or mini-batch) application, a 100-Kbyte
file was copied from one file to another resid­
ing on the same disk. This was done using a
program written in TAL™, Tandem's Transac­
tion Application Language, and a single disk
extent was used for each file. A single mir­
rored volume contained both files. Three dif­
ferent versions of this application were run.

The first version used unstructured access
to the file. Twenty-five 4-Kbyte blocks were
read and then written.

NonStop VLX Performance

For the two structured access versions (one
with transaction protection, the other without
protection) 1,000 100-byte records were read
and then written. Sequential block buffering
was used for reading. Writes made during the
file close operation were buffered in cache.
The time to close was included in the elapsed
time.

Configuration
Identical hardware configurations were used
for each of the tests. This configuration con­
sisted of a two-processor NonStop system
(TXP or VLX) using two 3107 disk controllers
to access a single mirrored disk volume. The
disk volume was configured for parallel
writes. (See Figure 1.)

Figure 1 Figure 1.

Sequential copy bench­
mark configuration.
Each processor was
configured with 8 Mbytes
of memory.

D E C E M B E R I 9 8 6 TANDEM SYSTEMS REVIEW 13

Processors

Table 1.

Sequential copy results (records copied per second).
NonStop TXP/B20 Nonstop VLX/B30

Unstructured access read/write 581 709
(25 4-Kbyte blocks)

Structured access
(1.000 100-byte records)'

Read/write without TMF 149 224
Read/write with TMF 115 165

'Sequential block buffering for reads; buffered writes.

Table 2.

Sequential copy results (elapsed times in seconds).

Unstructured access read/write
(25 4-Kbyte blocks)

Structured access
(1.000 100-byte records)'

Read/write without TMF
Read/write with TMF

Nonstop TXP/B20

1.72

6.27
8.72

'Sequential block buffering for reads; buffered writes.

Figure 2

Figure 2.

9

8

7

"' 1J
C

~ 6
!E.
~ 5

"" 1J
~ 4
0.

"' DJ 3

2

0

NopStep TXPil;"!~Q
■ ,Non$top n<PtBBO •

■f\10!'.lSte~V~

Unstructured files Structured files

Sequential copy results
(elapsed time to copy a
100-Kbyte file).

Nonstop VLX/B30

1.41

4.47
6.06

Structured files.
with TMF

Improvement

22%

50%
43%

Improvement

22%

40%
44%

14 T A N D E M S Y S T E M S

Results
Tables 1 and 2 demonstrate both the number
of records per second that can be copied, and
the total elapsed time to copy the entire file.
Figure 2 graphically compares the elapsed time
required to copy the file for both the TXP and
VLX processors. An improvement of 220/o was
measured for unstructured files. This modest
improvement can be explained very simply.
1/0 time is the major component of elapsed
time. Since no changes were made to the 1/0
subsystem, little improvement can be expected
here.

For structured files, the elapsed time was
reduced by 400/o. This value approaches the
raw processor speedup of 50%. When the
application files were audited by TMF, the
improvement increased still further to 440/o.
This additional improvement is due to the
slightly larger CPU requirement for transac­
tion protection.

The structured file access improvements are
due to a larger portion of the elapsed time
being spent in the processor. For the structured
files protected by TMF, the audit trail was
placed on a separate mirrored disk volume
that was primaried in a different processor
than the TAL program driving the application.

The high-performance XLS™ disk drive, as
sold with the packaged NonStop VLX system,
was not tested but could further improve these
times. A processor-only comparison is pre­
sented in this article.

On-line Transaction Processing
Benchmark
Application
A debit-credit banking application (known
as ETl) using the full ENCOMPASS™ line of
application development products was
measured: 1

■ A SCREEN COBOL requester was used by
the PATHWAY Terminal Control Program
(TCP), which sent requests to a server written
in COBOL.
■ The TCPs were run with the auto restart
option, and backup disk processes were run
(the default). The backup processor main­
tained a second disk cache.

1This benchmark was i~t~oduced in Datamation, April 1985, "A Measure of
Transaction Processing Power."

REVIEW DECEMBER I 9 8 6

■ All application files were mirrored and
audited by TMF without audit compression.
■ The ENCORE™ stress test generator was used
to simulate the 800 terminals submitting trans­
actions. It also provided response-time and
transaction-rate data.

■ The XRAY™ performance analysis tool was
used to collect performance data.

■ The ENFORM™ query language and report
formatter was used to process the performance
data.

The transaction flow is outlined in Figure 3.
The application data base in the example

consisted of over 200 Mbytes of application
data in four files. Three of the application
data base files were accessed randomly. The
fourth file, an entry-sequenced log, was
written sequentially, one record for each trans­
action. A complete description of each appli­
cation file is contained in Table 3. All three
structured file types were used.

Configuration
Each system consisted of four Nonstop TXP
or VLX processors with 8 Mbytes of memory
each. There were a total of four 3107 disk con­
trollers per processor pair for the TXP system.
The VLX system was configured identically,
also with 3107 controllers. (This differs from
the packaged Nonstop VLX systems sold
today. 2) Sixteen disk drives were used to make
eight mirrored volumes. The 800 simulated
terminals were equally distributed on each of
the systems. A diagram of the configuration is
shown in Figure 4.

The processes were evenly distributed to
balance the load across the system. Two disk
volumes were primaried in each CPU. Addi­
tionally, two volumes had backup processes in
each processor. A total of 16 TCPs (four per
CPU) were used for both tests. ENCORE simu­
lators and PATHWAY servers were evenly dis­
tributed. Three DP2 disk processes per volume
(the default) were used. The READLINK
caching feature of the B30 Message System
was also used for our testing. (For more infor­
mation on the B30 Message System, see the
accompanying articles, "Performance
Changes to the GUARDIAN 90 Message Sys­
tem," and "Message System Performance
Tests.")

2The packaged VLX configuration replaces a pair of 3 !07 disk controllers
(1.2 Mbyte per second transfer rate) with a pair of 3108 disk controllers
(1.8 Mbyte per second transfer rate) connected to the XIA disk drive.

DECEMBER 1 9 8 6 T A N D E M

Figure 3

Table 3.

Requester flow.

Accept 100 bytes.
Begin TMF transaction.
Send 100 bytes to server with 100-byte reply.
End TMF transaction.
Display 100 bytes

Server flow.

Read 100 bytes from TCP
READ Account (random, not cached).
UPDATE Account.
WRITE History (sequential, cached).
READ Teller (random, cached).
UPDATE Teller.
READ Branch (random, cached).
UPDATE Branch.
Reply 100 bytes to TCP

OLTP benchmark file description.

Figure 3.

Transaction
description.

Processors

File type Name Record size Number of records Notes

Key-sequenced Account 100 bytes

Relative Branch 100 bytes

Relative Teller 100 bytes

Entry-sequenced History 50 bytes

Figure 4

S Y S T E M S REVIEW

2 million

200

800

1 per transaction

Large key-sequenced
file, not cached

Random access,
in cache

Random access,
in cache

Sequential access,
in cache

Figure 4.

OLTP benchmark con­
figuration. Each proces­
sor was configured with
8 Mbytes of memory.

15

Processors

Figure 5

100

-gJ 80
C
0

al
~ 60

20

0

Non$top.1XPJB20
• NoflS\<i!P~~
•~~~o

The B30 Message System changes shortened
the instruction path to send a message by
about 30%. B20 message processing repre­
sented approximately one-third of the total
CPU processing time in the test. With the new
Message System, the message processing por­
tion of the CPU time was reduced to about
20% of the total. In other words, the total
CPU demand for this application was reduced
by 10% through changes to the Message
System.

Disk process TCP Interrupts Server Replay TMF

This 10% improvement (or 1.1 times
increase) in CPU power multiplied by the 49%
faster (or 1.49 times instruction speedup) pro­
vides an improvement of 64% (or 1.1 * 1.49 =
1.64 increase in processing power). This value
is used for the computation preceding Table 4.

Figure 5.

OLTP benchmark results
(CPU milliseconds per
transaction by process
type).

16

Process type

Results
This discussion focuses on CPU demand
throughput of transactions, and increas;d
utilizations with identical response times.

CPU Usage. The rate at which the VLX pro­
cesses transactions is 1.64 times the rate at
which the TXP processes transactions. In
other words, the TXP CPU time divided by
1.64 equals the VLX CPU time. Figure 5
breaks this time down by process type for both
the VLX and TXP. This processor power
improvement has two components: the VLX
hardware improvements and the Message
System software improvements.

When executing the debit-credit banking
application instruction mix with system soft­
ware identical to that on the TXP, the VLX
processor power alone was 490Jo, or 1.49 times,
better than that of the TXP. This was com­
puted by comparing the CPU demand per
transaction for both systems. For more infor­
mation about the specific features of the pro­
cessor that provides this increased level of
performance, refer to Mike Brown's article
"NonStop VLX Hardware Design," or the'
VLX data sheet.

Reduction in Interrupts
The burden of processing interrupts has been
greatly reduced on the Nonstop VLX system.
The changes to B30 Message System software
and to the interprocessor bus (IPB) in the VLX
hardware reduced interrupt time by 56%.

Throughput and Response Time
Response time and throughput improvements
can be seen in the curves in Figure 6.

An important observation can be made
from this figure. By comparing the increased
workload that the VLX system can process at a
specified response time, the Nonstop VLX
throughput improvement can be determined.
Figure 6 shows that with a one-second
response-time requirement for 95% of the
transactions, the VLX running the B30 version
of the operating system delivered two times the
throughput of a similarly configured TXP
running the B20 version of the operating sys­
tem. Intuitively, this improvement seems too
large given that the processing power is only
64% greater than its predecessor. However, the
double multiplier effect, discussed later in this
article, explains this unexpectedly large per­
formance improvement.

For applications requiring a particularly
stringent response time, the Nonstop VLX
offers a significant reduction in response time.
At equal transaction rates, the VLX provided
a response time of 0.46 seconds for 95% of all
transactions. The NonStop TXP yielded a
response time of 1.13 seconds. The reduced
response time (over 50% with the VLX proces­
sor) increases both the number and the types
of critical-response application solutions that
can be supported on Tandem systems.

T A N D E M SYSTEMS REVIEW DECEMBER I 9 8 6

The Nature of On-line Transaction
Processing
OLTP workloads usually require that a certain
response-time requirement be met for individ­
ual users at terminals or workstations. The
amount of work that the system can perform,
while not exceeding that response-time
requirement for a large percentage of the
users, is the single most useful measure of sys­
tem performance. Because of this response­
time requirement, systems are typically run at
much less than 100% processor utilization to
allow the system to respond quickly to the
user.

Queuing and Utilization. The OLTP-specific
response-time requirement determines which
system resources are available to deliver work
before the alloted time has elapsed. A faster
CPU allows longer queues to be processed in
the same amount of time that a slower CPU
can process a shorter queue. This, in turn,
allows the Nonstop VLX processor to operate
at a higher utilization while still achieving the
response-time goal. This increased utilization
is possible because of a longer allowable queue
length in the processor. The effects of this are
characterized below.

As an example, assume the following:

• The response-time requirement is 0.5 sec­
onds (not including such elements as commun­
ication time delays-just a host delay
requirement of a 500 ms or less).

• Only a single CPU exists.

• The job uses 300 ms of CPU time to com­
plete processing.

In a perfect system, 0.66 of the transactions
could be in the queue to be processed before
"transaction T" and the response-time
requirement could still be met for that
transaction:

0.66 * 300 = 200 ms elapsed time.

This would leave 300 ms of processor time
remaining before the response time would
exceed the half-second requirement.

Now assume that the processor is 1.64 times
faster and, therefore, the service time require­
ment drops to 300 divided by 1.64, or 182 ms.
Now, I. 75 other transactions can be queued up
in front of transaction T and the processor can
still meet the response-time requirement.

DECEMBER 1 9 8 6 T A N D E M

Figure 6

if)
"O
C:
0
()
(])

!!!,
(])

E
"" (])
if)
C:
0
0.
if)
(])
a:

2.0

1.5

1.0

0.5

0

,. lilonSjop JXP:,$20

~ ~p JXF'.ill3~
• NDf!Stop~pO

Throughput (transactions per second)

With 1. 75 transactions queued up for the
processor instead of 0.66, the faster processor
exhibits a higher utilization than the slower
processor. This higher utilization allows addi­
tional work to be performed beyond what one
would expect from a "simple" 1.64 times
processor speedup. This higher processor utili­
zation has been measured at identical terminal
response times (see Table 4). The equation

83.0 (VLX CPU utilization) * 1 _64 = 1.95
69. 7 (TXP CPU utilization)

describes the impact on system performance.

The Double Multiplier Effect. Not only does
the faster NonStop VLX process the transac­
tion in less time, but it also allows more of the
CPU to be used. Tandem refers to this as the
double multiplier effect.

Table 4.
OLTP throughput capacity increase.

Response time'

Nonstop VLX/B30 1.01

Nonstop TXP/B20 1.00

'For 95% of all transactions.

SYSTEMS REVIEW

Average CPU
utilization

83.0

69.7

Processors

Figure 6.

OLTP response time
versus throughput
with TMF.

17

Processors

18

The two times throughput improvement at
equivalent response times measured for
NonStop VLX systems can be attributed to
three major factors:

■ A more efficient processor.

■ Higher allowable utilization.

■ More efficient software.

At a one-second response time for 95% of
the transactions, the CPU BUSY rate for the
TXP averaged 70% (Table 4). Because of its
ability to sustain longer queue lengths without
increasing the response time, the Nonstop VLX
processor operated at an average of 83% while
still responding within one second for 95% of
the transactions. This ability to operate at
higher CPU utilizations, coupled with the
decreased CPU demand per transaction,
provides the double multiplier improvement.

The Nature of the VLX Processor
The Nonstop VLX processor was designed to
perform in a demanding OLTP environment.
Examples of design innovations are found in
the larger page table cache and faster hardware
cache fill times. Such features become more
important in demanding, "real life" process­
ing situations.

The cache fill times have been reduced from
over 20 to 10 clock cycles. The cache memory
itself provides a faster cycle time. A new IPB
with a faster cycle time and a larger outgoing
queue for messages reduces main processor
involvement with message traffic. Addition­
ally, movement of 1/0 buffers into the hard­
ware cache was eliminated, thereby increasing
the efficiency of the hardware cache.

Because of their size, small test applications
used to benchmark applications may not dem­
onstrate the full benefit of these features. They
are usually smaller in scope than the real
applications they mimic, with little or no
hardware-cache-filling requirements during
the test. Additionally, benchmark memory
requirements are sometimes smaller than their
real life counterparts.

Different types of user applications will
experience different performance improve­
ments with the Nonstop VLX system. The
applications deriving the greatest benefit are

TANDEM SYSTEMS

those that are currently processor-limited,
rather than 1/O-limited, although even 1/O­
bound applications will benefit from decreased
service costs and better price/performance
too. Those applications that also have strin­
gent response-time requirements will espe­
cially benefit from the faster VLX processor.
The key to determining performance improve­
ments beyond the "raw power increase" of the
Nonstop VLX processor lies in increasing the
processor utilization. If processor utilization
cannot be increased, performance improve­
ments may be below the range of 1.6 to 2.2.

Conclusion
As the range of workloads processed on
Tandem systems expands, so must the range of
benchmarks used to investigate system per­
formance. The debit-credit benchmark model
has provided an excellent measure of one type
of transaction. Future benchmarks, with more
varied transaction types and mixed batch/
OLTP workloads, will be required to further
study system performance.

The Nonstop VLX processor improved
batch application performance by 40% in the
sequential copy tests. The raw processor power
for our OLTP instruction mix improved by
50%. New system software available with
the B30 release of GUARDIAN 90 added
10% to this performance improvement on
both the NonStop VLX and TXP processors.
Because of the double multiplier effect, OLTP
benchmark performance was improved by a
factor of two. Tandem delivered these per­
formance improvements along with a reduced
cost of ownership, improved reliability, avail­
ability, serviceability, and industry-leading
price/performance.

Reference
Anon, et al. 1985. A Measure of Transaction Processing Power.
Datamation. Vol. 31, No. 7.

Acknowledgments
The information presented in this article was generated from
measurements performed by the Performance Analysis and
Measurement Group early in 1986. This group included (but
was not limited to) Pat Beadles, Nhan Chu, Praful Shah, Susan
Uren, and the author. Additionally, the author would like to
thank Susan Whitford for her contributions.

Jim Enright, manager of the Performance Analysis and Measure­
ment Group in Software Development, joined Tandem in August
1983. His group has been involved in testing and analyzing the
performance of new and existing Tandem software and hardware
products.

REVIEW DECEMBER I 9 8 6

or the B30 software
release, large parts of the
GUARDIAN 90 Message
System were rewritten to
improve performance. As a
result of these changes, the
Message System sometimes

operates internally differently from the way it
did before B30, and there are new SYSGEN
options useful for tuning a system to peak
performance. This article describes the
changes i? how the Message System works, for
the benef 1t of those engaged in improving sys­
tem performance. This information should
also be helpful to anyone who would like to
understand the Message System.

From an external viewpoint, the overall
operation of the Message System is the same
as before the B30 release, as described by Mala
Chandra in the Tandem Systems Review (Feb­
ruary 1985). The same procedures are called
by Message System clients (such as the File
System), producing the same results, and the
fields in the link control block (LCB) used by
Message System clients are the same as before.
It is only the internals of the Message System
including LCB fields not used by Message '
System clients, that were modified to improve
performance.

Two Main Changes
Two main changes were made:

• Message System code and low-level data
structures were streamlined (i.e., rewritten for
higher performance).

• The Message System's protocol for sending
the text of a message (request) across the
interprocessor bus (IPB) from the requester to
the server was improved by arranging to send

Message System
Performance Enhancements

the data associated with a request across the
bus earlier, so the server doesn't have to
request the data across the bus. This change is
variously called Expedited Request Transmis­
sion or READ LINK caching.

Each of these changes accounts for about
half of the Message System performance
improvement.

The code streamlining is the largest change
in terms of the number of lines of code
changed. However, it is largely an invisible
change and there is nothing to tune to get the
maximum benefit from this change. Accord­
ingly, this article discusses it only briefly, after
discussing other changes.

The change to the IPB protocol is a much
smaller change, as measured in lines of code.
However, the change is more visible and there
are some SYSGEN options that you might
want to adjust to tune your system for better
performance or better use of memory
(although the defaults should be reasonable
for the great majority of installations).
Accordingly, the article discusses this change
in detail.

Definition and Overview of the
Message System
In the Tandem system design there are many
layers or levels. Components at higher levels
are built on top of components at lower levels.
Components at higher levels provide more
complex and abstract capabilities, such as the
ability to write to a file. Components at lower
levels provide more concrete capabilities, such
as the basic processor definition and machine
instructions.

DECEMBER 1986 TANDEM SYSTEMS REVIEW 19

Svstem Software

Figure 1.

The relationship between
the Message System
and other layers of
GUARDIAN 90.

20

Figure 1

Reg~sler appficatioo Set~(al:ll;l1!®tiQ!'.1

File WRITE~~Ao
system

Message t.lNK
System

WAIT.<i:iltlerl~•level.!!o~.·.

· Pr~$$Qr.defi~
(ban:!Wilfe&'ld lilil::n:i!tQCle!

The Message System is at a level above the
basic processor definition but below the File
System and I/0 processes. The processor pro­
vides facilities such as:

■ The SEND instruction.

■ The transmission or reception of a series of
related bus packets.

■ BUSRECEIVE interrupts.

(These facilities are described in the System
Description Manual for NonStop systems.)

The Message System builds on the facilities
supplied by the processor to provide higher­
level facilities related to the sending of mes­
sages. The most important such facility is the
ability of a process to send a message (request)
to another process and receive a response
(reply) back from the process. (See Figure 1.)

The File System, I/0 processes, and other
higher-level components use messages for
almost all process-to-process communications,
whether or not the processes are in the same
CPU. Because of the large amount of process­
to-process communication typical of on-line
transaction processing, improvements in
performance of the Message System result
in significant improvements in overall
system performance.

Message System Procedures
The process-to-process message protocol is
based on a requester-server model. For every
message, one process is the requester and one
process is the server. The requester and server
are usually called the Linker and the Listener.
The requester (Linker) initiates the message
link and calls the LINK procedure. The server
(Listener) listens for requests and calls the
LISTEN procedure.

Privileged Procedures
The Message System procedures (LINK, LIS­
TEN, BREAKLINK, READLINK, and WRITE­
LINK) are privileged procedures. In a typical
system most requests are sent to privileged 1/0
processes such as disk processes, which call
LISTEN, READLINK, and WRITELINK
directly. Also, many requests are sent by privi­
leged processes, such as the case of a primary
disk process checkpointing to its backup
process. Requests sent or received by privi­
leged processes often dominate considerations
of performance.

File System Procedures
Using the File System, nonprivileged processes
can act as either requesters or servers. A non­
privileged requester calls WRITEREAD, which
calls LINK to initiate the request, calls WAIT
to wait for completion, and then calls
BREAKLINK to complete the interaction.
A nonprivileged server calls READUPDATE to
obtain the request and calls REPLY to reply to
the request. READUPDATE calls WAIT to wait
for a request, calls LISTEN to get a small part
of the request, and calls READ LINK to get the
text of the request. REPLY calls WRITE LINK
to reply to the request.

Message-exchange Protocol
The message protocol follows this sequence
of events:

1. The Linker initiates the interaction by call­
ing LINK. The Linker then specifies six
words describing the type of request, a
buffer containing request text, and the
amount of request text in the buffer. Upon
completion of the request, the request text
will be replaced with response/reply text,
and the six words describing the type of
request will be replaced with status. The
Message System allocates a Linker's LCB
(whose address is given to the Linker) and
a Listener's LCB (which is inserted into the
queue of requests for the Listener). If the
Listener is waiting for a request, it is woken
up.

2. The Listener calls LISTEN to get the
address of the LCB for its next incoming
request. The LCB contains six words of
data (P 1 through P6) describing the type of
request and the amount of additional data
(request text) for the request.

T A N D E M SYSTEMS REVIEW DECEMBER I 9 8 6

Figure 2

(a)

Linker/requester
in CPU X

1 Call to LINK 1 a LCB ln PMSG (Here's a Message:.) state'

1b ~wledgment

Listener/server
in CPU Y

(b)

Linker/requester
in CPU X

2 Call to LISTEN
1 b RequesUext

3a
3 Call to READLINK

LC8 fn PGO ("Give Me Dala"}~la(e
1c

3c

3d

4a

4b

4c Acit<~~~
5 Call to BREAKLINK

4a LOB Iii PHOB{Hliire's dalal:!ack.}~late 4 Call to WRITELINK

4b R!;lp[ytext

4c /1.clqiowledgment

5 Call to BREAKLINK

3. The Listener allocates enough memory to
hold the request text, and calls READLINK.
READLINK obtains the request text from
the Linker's buffer and copies it into the
Listener's buffer. Usually, the Listener calls
READLINK once, very soon after being
woken up to process the request. However,
the Listener is allowed to call READLINK
as many times as it wants and might not
call READLINK at all if, for example, there
is an error in the contents of Pl through P6.

4. After performing the request, the Listener
calls WRITELINK to reply to the request,
sending back status information and addi­
tional data (reply text), if any. The Mes­
sage System copies the status information
and the optional reply text back to the
Linker's LCB and the Linker's buffer,
marks the LCB as "done," and wakes up
the Linker if the Linker is waiting for a
reply. This ends the Listener's part of the
interaction.

5. The Linker examines the status informa­
tion and reply text, and then calls
BREAKLINK to release the Linker's LCB.

This message-exchange protocol is used
whether the requester and server are in the
same CPU or in different CPUs. However, the
Message System operations inside LINK, LIS­
TEN, READLINK, WRITELINK, and
BREAKLINK depend on whether or not the
processes are in the same CPU.

DECEMBER I 9 8 6 T A N D E M

If the Linker and Listener are in the same
CPU, then the Message System uses ordinary
data movement instructions to copy informa­
tion back and forth between the Linker's and
Listener's LCBs and buffers. If the Linker and
the Listener are in different CPUs, then the
Message System must use the IPB.

READLINK caching simplifies and speeds
up the IPB protocol used when the Linker and
the Listener are in different CPUs. The
improvement in IPB protocol is readily appar­
ent in Figure 2, which shows the protocols
before and after the development of READ­
LINK caching.

In Figure 2 the Linker's side of the typical
interaction is shown on the left, and the Lis­
tener's side is shown on the right, with arrows
representing transmissions over the bus.

As can be seen (Figure 2a), the READLINK
call (step 3) takes four bus transmissions (and
consequently generates four BUSRECEIVE
interrupts) without READLINK caching. Also,
without READLINK caching, execution of the
Listener must be suspended pending arrival of
the request text from the Linker's CPU. With
READ LINK caching (Figure 2b), all the bus
transmissions for step 3 are eliminated except
for transmission of the request text, which is
moved from step 3c to step 1 b.

SYSTEMS REVIEW

System Software

Listener/server
in CPU Y

2 Call to LISTEN

3 Call to READLINK

Figure 2.

/PB protocol. (a) With­
out READL/NK
caching. (b) With
READLINK caching.

21

System Software

Essentially, the request text is transmitted
over the bus at the time of the LINK, in the
expectation that the Listener will READLINK
it soon. Since the request text is transmitted
before the Listener has specified the place in
memory to receive it, it is temporarily stored
(cached) in a special pool of holding buffers (a
READLINK cache buffer), to be available if the
Listener asks for it soon enough. If the Lis­
tener does not ask for the text within a reason­
able amount of time, the buffer may be
"stolen" and used for another request.

Benefits of the New IPB Protocol
The 830 bus protocol saves CPU time:

■ There is less bus activity and fewer
interrupts.
■ There is no need to wait for the data to
arrive in the Listener's CPU. The Listener

doesn't have to be
suspended while wait­
ing for the data, so
the dispatcher doesn't
have to switch to a
different process and
then back again.

The new IPB proto­
col also reduces wait

Amessage must be
reasonably short, or

the costs of READLINK
caching outweigh the
benefits.

time in the server by
doing more Message System processing in
parallel with processing by the server process.
The data for one request can be received while
the server is busy processing another request.
Because of this, a server can handle a larger
number of requests without falling behind.

The preceding benefits can improve response
time and/or throughput. Because the overall
elapsed time to do a transaction has been
reduced, it is possible to let the queues of
pending requests for servers become a little
longer while still maintaining the same
response time.

Balanced against the benefits of the new
protocol are the costs of using the cache:

■ Physical memory for caching the data must
be made available.
■ There is extra data movement, from the
cache to the Listener's memory.

Both costs of caching are higher for longer
messages. Accordingly, GUARDIAN 90 uses
READLINK caching for short requests and
uses the old bus protocol for long requests. If
the availability of memory were not a consider­
ation, it would be beneficial to use READLINK
caching for messages up to 3 Kbytes or so,
depending on the processor. For longer mes­
sages, the additional costs in CPU time might
actually decrease performance. Since the avail­
ability of memory is a consideration, and since
most messages are much shorter than 3 Kbytes,
SYSGEN normally sets up Message System
data structures to use READLINK caching for
messages up to 1536 bytes long.

Conditions for Using Cache
READLINK caching is used for short messages
between different CPUs of the same system,
when not disabled by SYSGEN.

As discussed, a message must be reasonably
short, or the costs of READLINK caching
would outweigh the benefits. The default defi­
nition of "short" is less than or equal to
1536 bytes, including File System overhead.
There is a SYSGEN option to change this.

A message must also be between different
CPUs of the same system, or data will not be
transferred across the local bus. (The imple­
mentation does not include use of the new bus
protocol from system to system using FOX.)

Finally, for cases where memory is very
scarce or if for some reason READLINK
caching were not beneficial, SYSGEN can be
used to completely disable READLINK
caching. This is done by saying that even a
message of O bytes is a "long" message.

22 TANDEM SYSTEMS REVIEW DECEMBER 1986

Data Structures Changed for
READLINK Caching

This section provides a simplified description
of the changes in data structures to explain
how READLINK caching is implemented.

CACHEBUF
A new field (CACHEBUF) has been defined in
a formerly unused word of the LCB. A Listen­
er's LCB can be in any of the following states,
as shown by values in this field:

■ The LCB may have a READLINK cache
buffer associated with it, ready for READLINK
to use. If so, CACHEBUF points to the associ­
ated buffer, and the buffer points back to the
LCB so the LCB can be updated if the buffer is
"stolen" from the LCB.

■ The request may have no READLINK cache
buffer associated with it because READLINK
caching was not used for this request. The
request may have been too long, from a
requester in the same CPU, or sent via FOX.

■ The request may have no READLINK buffer
currently associated with it because, although
READLINK caching was used for the request,
the READLINK cache buffer was later
"stolen" from the LCB to be used for a more
recently arriving request.

Cache Buffers
READLINK cache buffers are broken into two
parts: a small READLINK cache header in
system data space, and a large part in an abso­
lute extended-memory segment which actually
holds the request text.

A READLINK cache buffer can be in any of
the following classes or states:

Unused. Initially, no memory is used for the
"request text" part of READLINK cache
buffers that have never been used. An unused
LCB is available, if needed, to accommodate
incoming requests, but the Message System
will have to allocate ("lock") physical memory
for the request text before bringing the buffer
into use.

Receiving Text. A READLINK cache buffer is
receiving text when a PMSG ("Here's a Mes­
sage") LCB has been received over the bus
from another CPU and the bus has been set up
to receive the request text into the request text
part of the READ LINK cache buffer.

New. A "new" READLINK cache buffer has
request text ready for a READLINK call to use,
and is associated with an LCB. The Listener
has not yet called READLINK to retrieve the
request text. Typically, a new READLINK
cache buff er is still on the incoming request
queue for the Listener process.

Used. A "used" READLINK cache buffer is
like a new one, except that the Listener has
already called READLINK to retrieve the
request text. The reason for distinguishing
between new and used buffers is that,
although a Listener is allowed to READLINK
the text in a used buffer again, this is rela­
tively uncommon. A used buffer is a better
choice for stealing than a new buff er if a
buffer is to be stolen for use with another
incoming request.

Junk. A "junk" READLINK cache buffer is
no longer associated with an LCB and its
request text is no longer useful. Usually the
buff er has been junked because the Listener
completed processing for the request and
replied back to the requester by calling the
WRITELINK procedure. Junk buffers are
the best choice for use with new incoming
requests.

Handling the Pool of Buffers
When the BUSRECEIVE interrupt handler
encounters the PMSG LCB, it checks to see
whether or not this request will use READLINK
caching; if so a READLINK cache buffer is
allocated.

In choosing a buffer, the Message System
uses the classes/states of READLINK cache
buffers described in the preceding section,
with the following rules:

■ A junk buffer is the first choice, because
the contents of a junk buffer are completely
useless.
■ A used buffer (as opposed to a new buffer)
is the second choice, because it's unlikely that
the request text will be linked a second time.
■ An unused (not yet placed into service)
buffer is the third choice.

DECEMBER 1986 TANDEM SYSTEMS REVIEW

System Software

23

System Software

Figure 3

Figure 3.

■ Anew buffer (one not yet linked) is the last
resort. (The count reported by PEEK as DIS­
CARDED BEFORE USE is the number of times
a new buffer is chosen.)
■ A buffer that is already receiving text can't
be chosen to simultaneously receive text from
another CPU.

When the Message System chooses a junk
buffer, a used buffer, or a new buffer, it
chooses the oldest buffer of that class. For
example, the oldest new buffer is the buffer
that has been a new buffer for the longest
time.

EXPEDITED REQUEST TRANSMISSION BUFFERS 20 BUFFERS USED: 16
REQUESTS CACHED 6,896,254 DISCARDED BEFORE USE: 0.0%
ATTEMPTS TO READ FROM CACHE: 7,015,553 SUCCESSFUL: 98.2%
UNSUCCESSFUL 1.8% LENGTH> 1536b 1.8% TOO LATE 0.0%

Output from a "PEEK/
cpu 1 I EXP" command.

When an unused buffer is used for the first
time, the Message System allocates real mem­
ory ("locked" memory, not pageable memory)
for the request text part of the buffer. Cur­
rently, there is nothing in GUARDIAN 90 to
ever undo this allocation of real memory;
when a buffer is no longer needed it becomes a
junk buffer. The number of buffers IN USE (as
shown by PEEK) is the largest number ever
needed since the CPU was last reloaded (the
"high-water mark"). For example, 20 buffers
"in use" times a buffer length of 1536 bytes
would mean 30,720 bytes (15 pages) of physi­
cal memory were tied up for READLINK cache
buffers, even if the buffers are currently
empty. After the accumulation of more experi­
ence with READLINK caching, the software
might be changed to periodically undo the
allocation of one or more buffers. This

24

should be done infrequently, to avoid
degrading performance.

T A N D F. M SYSTEMS

PEEK Instrumentation
PEEK has been updated to optionally display
information on Expedited Request Transmis­
sion (READLINK caching). To display this
information specify:

PEEK I CPU <cpu> I EXPEDITED

(Note that EXPEDITED may be shortened to
EXP.)

The four new lines of information described
in this section are shown in Figure 3.

EXPEDITED REQUEST TRANSMISSION
BUFFERS are the number of message cache
buffers allowed in this CPU.

BUFFERS USED indicates the number of
message cache buffers "in use" in this CPU.
This number times the buffer length gives the
amount of physical memory allocated for
READLINK cache buffers. There is currently
no mechanism for removing a buffer once it
has been brought into use, so this number
reflects the peak number of buffers needed in
this CPU.

REQUESTS CACHED is the number of expe­
dited transmissions to this CPU (the number
of times a message cache buffer has been allo­
cated). This number is the base for the follow­
ing percentage.

DISCARDED BEFORE USE is the percentage
of requests cached that were discarded before
the server asked for the data. If this percentage
and the percentage discarded before use are
both high, you may want to allow a larger
number of message cache buffers for this
CPU. Also, you might start by using
MEASURE or XRAY to determine whether one
or more servers in the CPU are running slowly.
If so, you should fix that problem and then
recheck the use of the message cache before
altering the number of message cache buffers.
(See the MEASURE User's Guide for more
information on how to determine this.)

ATTEMPTS TO READ FROM CACHE indi­
cates the total number of times a server in this
CPU asked for the data part of a request sent
from another CPU. This is the base for the
following percentages.

SUCCESSFUL means the percentage of
attempts to read from cache that were satisfied
from the cache.

UNSUCCESSFUL refers to the percentage of
attempts to read from cache that were not
satisfied from cache.

R E V I F. W DECEMBER I lJ H 6

LENGTH> 1536b is the percentage of
attempts to read from cache that were not
satisfied from cache because the data part of
the request was longer than 1536 bytes, or
whatever the message cache buffer size is (the
value "1536b" is replaced with the actual
buffer size if your SYSGEN specifies a differ­
ent size).

TOO LATE is the percentage of attempts to
read from cache that were not satisfied from
cache because the buffer had already been
stolen to make room for a later expedited
transmission. If this percentage and the per­
centage discarded before use are both high,
better performance might be obtained by
increasing the number of message cache
buffers in the CPU. Alternatively, it might be
interesting to try to find out which servers
tend to build up a backlog of requests and help
them out.

Server Behavior and READLINK
Caching
READLINK caching was designed to take
advantage of typical server process behavior.
Specifically, READLINK caching takes advan­
tage of the tendency of servers to READ LINK
their requests promptly.

Even in a heavily loaded system, with
queues of unprocessed requests building up for
some servers, READLINK caching is still likely
to be effective for the majority of requests.
This is true because of the large numbers of
requests that go to high-priority processes
such as I/0 processes and backup processes.

A problem that can occur, particularly in a
testing environment, is that a server can get
"stuck" and build up a big backlog of requests
before someone stops it. This causes the Mes­
sage System to try to hold onto requests that
will never be processed by the intended recipi­
ent. Once the maximum number of buffers
allowed have been brought into use, the Mes­
sage System handles the situation pretty well
by discarding the oldest of the new buffers,
which is likely to be the requests going to the
stuck process.

Ignore READLINK caching when you do
your application design. Instead, concentrate
on such things as reducing the number and
complexity of disk operations. After the appli­
cation is running, it might be appropriate to
make minor adjustments to READLINK
caching (such as increasing or decreasing the
length of the cache buffers) to better handle
the application.

SYSGEN Options and Defaults
Two optional parameters added to SYSGEN
allow control of READ LINK caching. If the
parameters are not specified, standard
defaults are used.

One of the new options is:

EXPEDITED_REQUEST _BUFFERS
<number>;

The number of message cache buffers
allowed per CPU is designated by using the
EXPEDITED_REQUEST _BUFFERS clause.
Different CPUs are allowed to have different
numbers of message cache buffers. This
parameter is specified in either the ALLPRO­
CESSORS paragraph or the PROCESSORS par­
agraph, depending on whether or not the same
number of message cache buffers are to be
used for all the processors in the system. The
minimum number of buffers is 15, and the
maximum number is 512. Also, the total
amount of memory (the number of buffers
times the buffer length) must not exceed 64
pages (131,072 bytes).

If the EXPEDITED_REQUEST _BUFFERS
clause is not used, a default of 20 buffers is
provided.

The second optional parameter is:

EXPEDITED_REQUEST _LENGTH <length>;

The message cache buffer length is specified
by the EXPEDITED_REQUEST _LENGTH
clause. The same value applies to all CPUs of
a given system. This clause is specified ~n the
ALLPROCESSORS paragraph. The maximum
value for <length> is 3072 bytes (one-and­
one-half pages of memory). The default value
is 1536 bytes (three-fourths of a page of
memory). .

To disable the Expedited Request Transmis­
sion feature, specify <length> as 0. SYSGEN
then allocates no space for message cache
buffers. PEEK will show the allowed number
and the used number of buffers as 0.

So far, the default values have worked well
in a variety of environments. It would be rea­
sonable to use the default values at first, and
to override them only if the defaults seem to
be working poorly as evidenced by PEEK sta­
tistics, or if memory is scarce.

DECEMBER 198n TANDEM SYSTEMS REVIEW

System Software

25

System Software

26

Code Streamlining
Although READLINK caching is the focus of
this article, Message System code streamlining
in B30 resulted in an approximately equal
amount of performance improvement, with­
out the need for additional buffer space or
SYSGEN parameters.

Faster Code
Several approaches were used to get the code
to run faster while performing the same opera­
tions as before.

More Efficient Data Structures. Additional
information was grouped together with the
control packet reception area in a new control
block called a Bus State Descriptor (BSD).
Grouping the information together made it
faster to find.

To help find the BSDs quickly, there is an
array of pointers to BSDs, called the BSD
Address Array (BSDAA). For example, the
address of the BSD for CPU 5 is in BSDAA[5].
This array avoids the need for a MULTIPLY
instruction that would otherwise be used to
index to the fifth BSD.

Within the BSD, there is a word of flags for
infrequent cases, called BSDSPECIALCASES.
By simply checking the word and learning that
it is zero, the code is able to bypass several
rare cases all at once, without having to test
for the cases one by one.

Code Rearrangement to Reduce Conditional
Branching. To avoid excessive tests, code was
rearranged by separating cases. For example,
there was a procedure called LINKMOVE that
could be called in by either READLINK or
WRITE LINK, if the requester and server were
in the same CPU. It moved data between
requester and server message buffers in either
of two directions: from the server to the
requester, or from the requester to the server.
However, the cases for the two directions were
different enough that many tests for which
case was being handled were needed inside
LINKMOVE. The two cases are now handled
separately by subprocedures of READLINK
and WRITELINK; LINKMOVE has been
eliminated.

T A N D E M SYSTEMS

Controlled Use of Index Registers. Control­
ling the use of index registers was done by
using USE and DROP statements for registers
6 and 7, in sequences of code that repeatedly
refer to fields within the same control block.
Typically, register 7 points to a BSD and regis­
ter 6 points to another control block, such as
an LCB.

Conclusion
This article described the internal changes to
improve performance in the Message System
for the B30 release of GUARDIAN 90. Most of
the discussion was of READLINK caching;
code streamlining was briefly outlined.

Since the externals of the Message System
were not changed-not even the interfaces
used by privileged programs-these changes
should affect you only by making your system
run faster. If memory is very scarce or if your
system is extremely performance sensitive,
then you might need to adjust the new
SYSGEN parameters. However, the default
values appear to work well for the great major­
ity of installations.

For a discussion of measurements of the
performance improvement, please see the fol­
lowing article by Susan Uren, "Message Sys­
tem Performance Tests."

References
Chandra, M. 1985. The GUARDIAN Message System and How
to Design for It. Tandem Systems Review. Vol. I, No. I.

Software Release Document for Release B30 of
GUARDIAN 90.

System Description Manual for NonStop Systems. Part no.
82507 A00. Tandem Computers Incorporated.

Acknowledgments
The author wishes to acknowledge the work of Richard Larson,
the lead developer for these Message System improvements;
Richard Carr, who prototyped READLINK caching in Frank­
furt and supplied programs for measuring performance in
wonderful detail; and Susan Uren, who measured the results
with realistic applications and workloads. Thanks are also due
to Mala Chandra for allowing the author to rework figures from
her article describing the Message System, and to Leslie White,
Richard Carr, and innumerable others for their helpful review
comments.

Dave Kinkade joined Tandem as a software designer in the
GUARDIAN OS Kernel Group in February 1984. Before joining
Tandem, Dave participated in the development of several widely
used software products, including a large operating system and
a high-performance data base system.

REVIEW DECEMBER I 9 8 6

---- - his article presents test
results comparing the per­
formance of the B20 and B30
releases of the GUARDIAN 90
Message System, as run on
both the Nonstop TXP and
VLX systems. The perfor-

mance improvements reflect two major
enhancements to the Message System: READ­
LINK caching and streamlining of Message
System code. For a detailed explanation
of these enhancements, see the preceding
article, "Message System Performance
Enhancements."

The Enhancements
Streamlining
Streamlining the Message System code
involved optimizing the low-level code. Many
parts of the code were optimized to reduce the
number of processor cycles needed for mes­
sage transfer. The streamlining has resulted in
fewer instructions executed for the same
amount of work done.

READLINK Caching
The READLINK caching protocol is a per­
formance enhancement for messages up to
3072 bytes long that are sent between proces­
sors. The smaller the message is, the better the
performance gain from READLINK caching.

When a message is sent from one CPU to
another, the information sent consists of two
parts: the LCB (Link Control Block), which
contains information about the message, and
the data. The LCB part of a message records
such items as the message type, the receiving
process's identification number, and the length
of the message.

DECEMBER I 9 8 6 T A N D E M

Message System
Perf orrnance Tests

When a message is sent under the standard
protocol (i.e., without READLINK caching),
the Message System uses the following
sequence of events:

1. The LCB is sent to the receiver's CPU.

2. The receiver's CPU allocates an LCB to
store the information received and queues
the message for the receiver.

3. When it is time for the receiver to read the
message, the Message System supplies the
LCB part of the message.

4. The receiver asks for the data part of the
message and specifies a memory location at
which the data can be stored.

5. The Message System in the receiver's CPU
asks for the data from the sender's CPU,
and the data is transmitted over the bus
from the sending processor to the receiving
processor. This step causes dispatches and
bus-receive interrupts in both processors.

When a message is sent using the READLINK
caching protocol, the sequence of events is as
follows:

1. The LCB is sent to the receiver's CPU, and
the data is sent after it. When the Message
System at the receiver's CPU recognizes
that the incoming message is being sent via
READLINK caching, a temporary message
cache buff er is picked to hold the data part
of the message. (The buffer is needed
because the receiver is not yet awakened.
It acts as a temporary residence for the data
until the receiver specifies a memory loca­
tion to which the data can be moved.
The size of the buff er is predetermined at
SYSGEN time.)

SYSTEMS REVIEW

System Software

Figure 1

(a) (b)

Nonstop TXP/820
700 700

• Nonstop TXP/830

• NPn8rop VLX/830
_ 600
"O
C
0

~
!1! 500
(/)
Q)
Ol

"' (/)

:Jl 400
.s
:,
_§- 300
Ol
::,

e
.c
,.... 200

100

0

- 600
"O
C
0 u
Q)

!1! 500
(/)
Q)

gi
(/)

:Ji 400
.s
:,
_§- 300
Ol
::,

e
.c
,.... 200

100

0
0 512 1024 1536 2048 2560 3072 3584 4096 0

Figure 1.

Message throughpul
be/ween two processes
for (a) inter-CPU mes­
sages and (b} intra-CPU
messages. Results are for
the B20 software release
(Non Stop TXP processor)
and the B30 release
(Non Stop TXP and
NonStop VLX
processors).

28

Message size (bytes)

2. When both the LCB and the data have
arrived, the message system in the receiv­
er's CPU allocates an LCB for the message
and wakes up the receiver process.

3. The receiver wakes up and reads the LCB
part of the message, and it specifies a
memory location for the data. At this
point, the Message System need only copy
the data from the cache buffer to memory.

In brief, several benefits are gained from
using the READLINK caching protocol. Less
bus activity and fewer interrupts occur
because the data part of the message is already
in the receiving process's CPU; also, fewer
dispatches are required as there is no need to
dispatch the receiver to process the request for
data in step 5 of the standard protocol. Hence,
fewer processor cycles are needed to transmit
a message over the bus. This means service
time is reduced and the processor is able to
handle more requests, improving system
throughput.

There are costs for using READLINK
caching, however. Memory is needed to hold
the message cache data, and an extra data
movement is required to transfer data from the
cache buffer to the memory location specified

T A N D E M SYSTEMS

NPnSrop TXP/820

• Nonstop TXP/B30

■ Nonstop VLX/830

512 1024 1536 2048 2560 3072 3584 4096

Message size (bytes)

by the receiving process (see step 3 in the
READLINK caching protocol). The amount of
extra memory needed depends on the size and
number of message cache buffers allocated
with SYSGEN, but the maximum amount of
memory allocated is 64 Kbytes.

Performance Tests
Test Description
A program written in Tandem's Transaction
Application Language (TAL) was used to gen­
erate and send messages from a sender to a
receiver using the File System procedure calls
WRITEREAD, READUPDATE, and REPLY. All
messages were sent WAITed, and all replies
from the receiver consisted of the same
amount of data as the message sent. The data
was not written to disk.

All tests were conducted on a stand-alone
system. The XRAY performance analysis tool
was run in the background to collect measure­
ment data; all other activities in the system
were generated by the test program. Each test
consisted of sending tens of thousands of mes­
sages. The elapsed time for each test was long
enough so that when the test data was ana­
lyzed, beginning and ending perturbations
caused by the test program could be excluded
to cover program setup time, process creation
time, and other software overhead. In this
way, the actual message throughput between
two processes could be measured.

REVIEW DECEMBER I 9 8 fl

Figure 2

(a)

11

10

9

~
·~ 8
@

D

al 7
c
(])

~ 6

~
1B 5
E
en
E 4

::J
Q_

u
3

2

0

Nonstop TXPIB20

... Nonstop TXP/830
• Nonstop VLX/B30

(b)

11

10

9
D
g;
·~ 8
@
D
Ki 7
c
%
(]) 6
2'
~ 5
E
en
E 4
::J
Q_

u
3

2

0

NonStop TXPIB20

... Nonstop TXP/830
• NonStop VLX/830

Svstem Software

0 512 1024 1536 2048 2560 3072 3584 4096 0 512 1024 1536 2048 2560 3072 3584 4096

Message size (bytes)

All B30 tests used the default READLINK
cache size of 1536 bytes. That is, READLINK
caching was used to send messages up to
1536 bytes in length, and the standard message
protocol was used for larger messages. (The
default size was used because, at the time the
measurement tests were conducted, the
SYSGEN option for the cache buffer size was
not yet available.)

Definitions
In the context of this article, throughput is
defined as the number of messages sent and
received per second between two processes.
Given the message throughput for a message
of n bytes, the elapsed time to send and receive
an n-byte message is equal to the reciprocal
of the throughput (i.e., elapsed time =
I/throughput). CPU demand per message is
defined as the CPU time in milliseconds
required per message sent and received,
including interrupt time.

Test Results
Figure 1 shows the throughput between pro­
cesses for (a) inter-CPU and (b) intra-CPU
messages. Note that these figures represent
message throughput for single-threaded
process-to-process communication; they do
not represent message throughput for the pro­
cessor or the system.

DECEMBER I 9 8 6 T A N D E M

Message size (bytes)

Figure 2a shows CPU cost per inter-CPU
message sent and received, and Figure 2b
shows this for intra-CPU messages. In general,
the CPU cost of sending a message is about the
same as that of receiving a message of the
same size.

For intra-CPU messages, very few interrupts
occur; inter-CPU messages, however, cause a
significant number of interrupts. READLINK
caching was implemented to reduce the
amount of interrupt time for messages sent
between processors. The test results indicate
that this enhancement reduced the interrupt
time for sending messages between two proces­
sors by as much as 50% for the sender and
43% for the receiver.

As Figures 1 and 2 show, significant per­
formance gains were obtained when messages
smaller than the cache size were sent. Although
the tests used the default READLINK cache
size, users can optimize system performance
by setting this size through the SYSGEN pro­
gram. (This should be done only after a
detailed study of the message traffic in the
application is made.)

SYSTEMS REVIEW

Figure 2.

CPU demand per
(a) inter-CPU message
and (b) intra-CPU
message.

29

System Software

Figure 3.

Parallelism yields better
throughput for inter­
CPU messages up to
300 bytes long. S repre­
sents the CPU cost for
the sender and R the
CPU cost for the receiver.
For two processors,
although each unit is
larger, the total elapsed
time per message is less.

Figure 3

--------~~ Time

Two processors

An unexpected result was that, in the B30
release, inter-CPU message throughput is
higher than that for intra-CPU messages when
small messages (up to 300 bytes) are sent.
More operations can be done in parallel by
two processors than can be done by one. In
Figure 3, the boxes labelled S and R represent
the CPU cost for sender and receiver, respec­
tively. For two processors, although each unit
is larger, parallelism increases throughput.
(Note that the total CPU time it takes to com­
plete a message is still higher for inter-CPU
messages than that for intra-CPU messages.)

A small increase in CPU cost occurs for
messages larger than 1024 bytes, as is evident
in Figure 2. This is because, at the File System
level, each process has a memory buffer of
1024 bytes allocated for use as a temporary
residence for message transfers. When the
message is less than 1 Kbyte, the buffer is
used; otherwise, the File System allocates a
buffer to hold the message. Since buffer allo­
cation consumes processor cycles, the CPU
cost for messages larger than 1 Kbyte
increases. (Note that in a normal user environ­
ment, this increase is negligible compared to
the cost of other system activities. The reason
it was seen so clearly in these tests is that the
system was doing nothing but sending and
receiving messages from one process to
another.)

--------- ------- ----

CPU Cost Approximation
The linear formulas in Table 1 can be used to
approximate CPU demand per message sent
and received. For a message of size X, the
resulting Y is the CPU time in milliseconds.

Increase in OLTP Throughput
As the results in Figures 1 and 2 indicate,
messages under 512 bytes gained significant
performance improvement with the B30
Message System. But what does this perfor­
mance improvement really mean to users run­
ning on-line transaction processing (OLTP)
applications?

Benchmark results have shown that 850/o of
the messages in an OLTP debit-credit applica­
tion are small, i.e., less than 512 bytes long. 1

In Tandem systems, OLTP applications are
based on requesters and servers, which com­
municate by messages. If the CPU cost of a
message transfer is reduced, the service time
for a typical transaction is less. This means
that the processor can handle more requests;
hence, a higher transaction throughput is
possible.

To compare the performance of the B20 and
B30 versions of the Message System for OLTP
applications, the performance measurement
team defined an averaged CPU cost per mes­
sage to be the mean value of CPU costs for
messages up to 512 bytes. This number was
computed by summing up the CPU cost per
message for messages of 0, 64, 128, 256, and
512 bytes and then dividing the sum by 5; i.e.,
the averaged CPU cost per message equalled

(Co + C64 + C12s + C2s6 + Cs12)

5

Figure 4 shows the averaged CPU demand
per message for inter-CPU and intra-CPU mes­
sages. For example, the averaged CPU demand
per inter-CPU message on the Nonstop TXP
system is 3. 73 ms for the B30 Message System,
as compared to 4.88 ms for the B20 Message
System. Figure 5 translates the results in Fig­
ure 4 into CPU savings.

1For a complete description of the debit-credit benchmark mentioned here, see
the accompanying article, "NonStop VLX Performance."

30 T A N D E M SYSTEMS REVIEW D E C E M B E R 1 9 8 6

Table 1.

Formulas for approximating CPU demand per message sent and received (X = message size, Y = CPU
time in milliseconds).
Type of system and
software release Message size (bytes) Formula for inter-CPU messages Formula for intra-CPU messages

Nonstop TXP system,
820 release

<1000
2,: 1000

Y(X) = 0.00177 X + 4.491
Y(X) = 0.00171 X + 4.937

Nonstop TXP system,
830 release

<1000
2,:1000

Y(X) = 0.00203 X + 3.277
Y(X) = 0.00167 X + 4.144

Nonstop VLX system,
830 release

<1000
2,:1000

Y(X) = 0.00126 X + 2.349
Y(X) = 0.00120 X + 2.769

Figure 5 shows that, on the average, the B30
release of the Message System is 1.3 times the
speed of (31 % faster than) the B20 release for
inter-CPU message transfer. Since the
Message System takes up about one-third of
the processor cycles in an OLTP debit-credit
environment, overall transaction throughput is
improved by about 10% (31% * 0.33 = 10%).

Conclusion
The B30 Message System reduces CPU cost
and speeds up the process of sending messages
between processors. The READLINK caching
protocol results in less bus activity and fewer
interrupts during a message transfer from one
processor to another. Fewer dispatches are
required and, hence, fewer processor cycles are
needed to transmit a message over the bus.
Service time is thus reduced and the processor
is able to handle more requests, improving
system throughput. On an average, the per­
formance of the Message System has improved
by about 31 % , which means a 10% improve­
ment for overall system performance in a typi­
cal OLTP environment.

Acknowledgments
The author would like to thank Dave Kinkade and Rich Larson
for their support throughout the measurement project. Thanks
are also extended to Nhan Chu, Anil Khatri, Praful Shah, Art
Sheehan, Mala Chandra, Leslie White, and Susan Whitford for
reviewing the article.

Susan Uren joined Tandem in June 1984 as a member of the
Performance Group in Software Development. Since then she
has worked on performance evaluations of many Tandem prod­
ucts, such as the GUARDIAN Message System, TRANSFER,
FASTSORT, and the Nonstop VLX system. Currently, she is a
software developer for MEASURE, Tandem's new performance
measurement tool. Susan holds a 8.S. in computer science from
California State University at Chico.

Figure 4

<I)

E

5

4

:::i 3
a.
()

2

0

Figure 5

ti
2.0

0
(.)

:::i 1.5
a.
()

" 1.0 >
~
<ii
a: 0.5

0

Inter-CPU
messages

Inter-CPU

Y(X) = 0.00104 X + 2.491
Y(X) = 0.00137 X + 2.051

Y(X) = 0.00104 X + 2.349
Y(X) = 0.00136 X + 1.619

Y(X) = 0.000749 X + 1.729
Y(X) = 0.00103 X + 1.290

Intra-CPU
messages

Intra-CPU
messages messages

DECEMBER I 9 8 6 T A N D E M SYSTEMS REVIEW

System Software

Figure 4.

CPU demand per
message in an OLTP
environment. The mea­
surements represent the
mean cost per message
up to 512 bytes long (send
and receive).

Figure 5.

Relative CPU cost in an
OLTP environment. The
measurements are based
on the mean cost per
message up to 512 bytes
long (send and receive).

31

32

MEASURE, Tandem's
New Performance
Measurement Tool

new performance
measurement tool,
MEASURE™, has been
designed for the
GUARDIAN 90 operating
system. Its data collection
and examination facilities

are useful for system tuning, application opti­
mization, and capacity planning.

The MEASURE Reference Manual provides
detailed descriptions of the MEASCOM com­
mand language and the callable procedures.
The MEASURE User's Guide shows a step-by­
step approach to performance measurement,
analysis, and system tuning. This article is
intended to augment that information by pro­
viding details of MEASURE's structure and
internal mechanisms. It is written for software
designers who plan to use the programmatic
interface.

The Need for MEASURE
MEASURE is a robust system performance
measurement tool. It was designed to use min­
imal system resources while providing a wide
range of performance metrics. It is a highly
reliable, highly available subsystem. .

In either a single CPU system or a multipro­
cessor shared-memory system, all performance
counters are located in main memory. In a
multicomputer system such as the Tandem
Nonstop system, each CPU has its own mem­
ory with counters for the local CPU. Counters
located in a remote CPU's memory must be
accessed with the cooperation of processes in
the remote CPU. The NonStop system pro­
vides many options for system tuning and
expansion that are not possible on single mem­
ory systems. Simple changes in the assi?nment
of processes to CPUs can cause dramatic
improvements in system response time. Thus a
robust performance measurement and collec­
tion mechanism such as MEASURE is
required.

Functions
With the cooperation of the GUARDIAN 90
operating system, MEASURE provides a vari­
ety of performance statistics for each of the
several entity types it monitors. Measurable
entity types include processors, disks, com­
munication lines, network lines, terminals,
other 1/0 devices, remote systems, FOX clus­
ter traffic, Transaction Monitoring Facility
(TMF) transactions, processes, pro~ess c~de
ranges, logical file opens, and physical disk­
file opens.

T A N D E M SYSTEMS REVIEW D E C E M B E R I 9 8 6

Currently, 169 different standard counters
are assigned to the 13 entity types. The stan­
dard counters were chosen to provide a com­
plete picture of an entity's performance
characteristics without duplicating informa­
tion that can be found by combining two or
more standard counter values. In addition,
three types of user-defined counters are avail­
able to measure application-specific perfor­
mance parameters.

A measurement can include any combina­
tion of measurable entities. Entities are speci­
fied by entity type and entity identifying
names and numbers (e.g., CPU 12, process
$APPL2, and system \TANDEM). Measure­
ments can start or stop at any time. Some
entity types are transient (e.g., processes and
file opens); these can be created and termi­
nated during a measurement.

A counter record is allocated for every
active entity included in a measurement. These
records are written to a measurement data file
at the end of a measurement or, optionally, at
periodic intervals during the measurement.
Counter records may be read from the data
file or directly from active counter records.
Up to 64 concurrent measurements are sup­
ported. When more than one measurement
includes the same entity, the counter record
allocated for the first measurement is shared
by the second and subsequent measurements.

Components and Structure
MEASURE is composed of several processes
and system library procedures:

■ MEASCOM, the command interpreter
process.
■ MEASFH, the measurement data file-handler
process.
■ MEASMON, the subsystem monitor process.
■ MEASCTL, the counter-record allocation
process.
■ OMEASG, a file containing low-level system­
library procedures.

■ OMEASP, a file containing the callable
procedures.

Both OMEASG and OMEASP are included
in the system library by the GUARDIAN 90
SYSGEN program.

D E C E M B E R I 9 8 6 T A N D E M

Counters are "bumped" by the
GUARDIAN 90 kernel, File System, disk
processes, communication processes, and
TMF. The MEASURE XCTR instruction is
used to bump counters.

MEASCOM is the high-level command inter­
preter process. It provides a verb-object­
attribute command language for measurement
configuration, control, and status; counter­
record access; and report and plot generation.
Counter records can optionally be written to a
structured performance data base. Multiple
measurements can be controlled and accessed
with a single MEASCOM process.

The callable procedures, listed in Table 1, sit
between MEASCOM and the rest of the subsys­
tem. They provide the basic subsystem func­
tions to any calling program. All functions
used by MEASCOM are available to any other
process via these procedures. There are no
undocumented parameters or functions. This
interface is intended to serve as a foundation
for future high-level performance tools.

Table 1.

MEASURE callable procedures.
Procedure

MEASOPEN

MEASCLOSE

MEASCONFIGURE

MEASCONTROL

MEASSTATUS

MEASREADACTIVE

MEASREAD

MEASREADCONF

MEASCOUNTERBUMPINIT

MEASCOUNTERBUMP

MEASMONCONTROL

MEASMONSTATUS

SYSTEMS

Function

Creates MEASFH process to
initialize or read a data file.

Terminates access to data file.

Defines entities to be
measured.

Controls (starts/stops) a
measurement.

Returns resource usage for an
active measurement.

Returns a copy of an active
counter record.

Returns counter records from
a data file.

Returns measurement
configuration and resource
usage from a data file.

Returns offset of a
user-defined counter.

Bumps a user-defined counter.

Starts or stops the MEASURE
subsystem.

Returns current measurement
data file names.

REVIEW

System Software

33

System Software

Figure 1.

Communication paths
between the MEASURE
processes and callable
procedures.

34

Figure 1

MEASFH is the measurement data file han­
dler. It validates the format of a new measure­
ment configuration, builds an index with an
entry for each record in the measurement data
file, builds external-format counter records
from internal-format entity identifier and
counter records, and provides measurement
configuration information. Each MEASFH
process handles one measuremerit data file.

A MEASCTL process runs in each proces­
sor. It allocates counter records at measure­
ment start or transient-entity (processes and
file opens) start and deallocates counter
records at measurement or transient-entity
stop. It returns snapshots of active counter
records directly to the callable interface and
writes counter records to the measurement
data files.

MEASMON runs as a process pair that con­
trols the MEASCTL processes. On subsystem
start-up it creates a MEASCTL process in each
local processor. It also creates a new MEASCTL
process on processor reload. MEASMON keeps
a copy of each measurement configuration
and sends it to the MEASCTL processes on
measurement start or processor reload. It dis­
seminates control messages and gathers status
information to and from all MEASCTL pro­
cesses. MEASMON sits between the callable
interface and the MEASCTL processes.

The communication paths between the
MEASURE processes and callable procedures
are illustrated in Figure 1.

T A N D E M SYSTEMS

-------- ----------

Measurement Configuration
A measurement configuration consists of a set
of entity descriptors. Entity descriptor fields
describe an individual entity or an entity set.
CPU descriptors include a CPU number; disk
descriptors include a CPU number, controller
number, unit number, and volume name; and
process descriptors include a CPU number,
process identifier number (PIN), process
name, and program file name. Other entity
descriptors include fields appropriate to the
entity type.

Any descriptor field may have a wild card
value that matches any name or number. Sets
of entities can be specified with wild card
values. Each descriptor has a type field, a
length field, and a flag bit, which, when set,
means any entities matching the descriptor
should not be measured.

Descriptors are grouped into a configura­
tion table (CONTAB) that includes a header
record containing the offset to the first
descriptor of each entity type in the CONTAB.
The CONTAB is sent from MEASCOM via the
MEASCONFIGURE procedure to the MEASFH
process for validation. Any process code-range
descriptors require MEASFH to generate extra
records for the CONTAB and data file.
MEASFH sends the validated CONTAB along
with any extra code-range records to MEAS­
MON. MEASMON stores the CONTAB in its
own data space and checkpoints a copy to the
backup MEASMON process. Later, at mea­
surement start time, MEASMON sends a copy
of the CONTAB to each MEASCTL process.

Measurement Start
A measurement start request contains a start
time, an optional stop time, and an optional
time interval. It is sent from MEASCOM via
the MEASCONTROL procedure to MEASMON.
MEASMON keeps an entry in its MEASTABLE
for each configured measurement. These
entries are indexed by measurement number
and linked together on a list, ordered by start
time for unstarted measurements and by stop
time for running measurements. When a mea­
surement's start time is reached, MEASMON
sends a copy of the measurement's CONTAB in
a start measurement message to each
MEASCTL process.

REVIEW D E C E M B E R I 9 8 6

Upon receipt of the measurement start mes­
sage, the MEASCTL allocates a MEASTABLE
entry and space for the CONTAB. MEASCTCs
MEASTABLE, like MEASMON's MEASTABLE,
is indexed by measurement number, but its
entries are linked on a list ordered by the next
copy time interval. This list is used to copy
counter records to the data file at user­
specified intervals for any measurement using
the optional time interval.

Each counter record is accessed by a
counter-record pointer, or XPTR, in the entity
control block corresponding to the counter
record. Examples include the PCBXPTR in the
Process Control Block, the PDTXPTR in the
Physical Device Table, and the NRTXPTR in
the Network Routing Table. In addition to
these pointers, MEASCTL allocates a counter­
record identifer (CID) for each counter record.
The CID entry contains a pointer to the
counter record and a pointer to the XPTR. An
active counter record contains a pointer to its
CID entry. These pointers are illustrated in
Figure 2.

Counter records are allocated in counter
space, absolute segment zero, and CID entries
are allocated in MEASCTI.!s extended seg­
ment. Entity control blocks are allocated in
system data space, system-process data stacks,
process file segments, and various extended
segments.

At measurement start, the new CONTAB is
used to find the entities to be measured. If an
entity type has one or more descriptors in the
CONTAB, each control block for that entity
type in the CPU is examined to see if it is a
member of the new CONTAB. If it is a mem­
ber, it is included in the new measurement.

If the entity is not already being measured
by another measurement, a CID entry and a
counter record are allocated. The MEASCTL
process then sets mutual exclusion on,
reads the current time, initializes any
queue counters, sets the XPTR, and resets
mutual exclusion. The entity is now under
measurement.

If the entity is already being measured by
another measurement, the address of the
counter record is found from the XPTR and
the address of the CID entry is found in the
counter record.

Figure 2

Entity control block Counter record

CID entry

The following is done for either a new
counter record or an existing counter record
that is to be shared with the new measure­
ment. The CID entry contains a four-word
sharemask with one bit for each possible mea­
surement number (0 through 63). The bit for
the new measurement number is set in this
mask. Resource usage data kept in the
MEASTABLE entry is updated to show the
addition of the new counter record. A new
entity identifier record is created and written
to the data file buffer (writes to the data file
are only done when a measurement's data file
buffer becomes full or the measurement is
stopped). New entity identifier records con­
tain the time that the XPTR was set and the
entity identifiers (names and numbers). If the
counter record was already allocated for a
previous measurement, a copy of the counter
record is also written to the measurement's
data file buffer. Whenever a counter record is
copied, several fields are added to the record.
These include the allocation time, copy time,
CPU number, and a field that indicates the
copy type (measurement start copy, interval
copy, or measurement stop copy).

DECEMBER 1986 • TANDEM SYSTEMS REVIEW

System Software

Figure 2.

Counter-record pointers,
as implemented in
MEASURE.

35

System Software

36

Measurement Stop
A measurement stop request is triggered by a
call to MEASCONTROL with a valid stop time.
The stop time may be specified in the call that
starts the measurement or in a subsequent call.
When the stop time is reached, MEASMON
sends a stop measurement request to each
MEASCTL.

When a MEASCTL gets a stop request, it
examines each CID entry. If the bit corre­
sponding to the stopping measurement's num­
ber is set in the sharemask, the counter record
associated with the CID entry is copied to the
stopping measurement's data file buffer and
the bit in the sharemask is reset. If the share­
mask is all zero, the XPTR is set to zero, the
counter record is deallocated, and the CID
entry is put on a free list.

When all the busy CID entries have been
examined, the MEASTABLE entry for the stop­
ping measurement is deallocated.

Entity Start/Stop
The GUARDIAN 90 monitor process, the File
System, the disk process, and several com­
munication processes notify MEASCTL of
process creation/ deletion, file open/ close, and
subdevice add/ delete with a simple procedure
call that sends a message to the MEASCTL
process in the same processor.

When MEASCTL gets an entity start mes­
sage, it examines all the current measurement
CONTABs to see if the new entity should be
included in one or more of the currently active
measurements. If the new entity is a member
of an entity set specified in one of the CON­
TAB entity descriptors, a CID entry and
counter record are allocated and initialized as
described above.

When MEASCTL gets an entity stop mes­
sage for an entity with a nonzero XPTR, it
copies the counter record to the measurement
data file buffer of each measurement indicated
in the CID's sharemask. The XPTR is set to
zero, the counter record is deallocated, and the
CID entry is put on a free list.

TANDEM SYSTEMS

Counter Maintenance
Each measurable entity type has a unique,
internal counter-record format. The offset to
each counter in these records is used by system
procedures and processes to maintain counter
values. The XCTR instruction is used to bump
MEASURE counters. Its input includes the 16-
or 32-bit address of a counter-record pointer,
the offset of the counter within the counter
record, the type of counter bump to be per­
formed, and an optional value which may be
added to a counter. XCTR accepts a variable
number of input words. Counter-record
pointers are located in control blocks for pro­
cesses, file opens, 1/0 devices, remote sys­
tems, and other system entities. They are set
by the MEASCTL processes when a counter
record is allocated and reset to zero on deallo­
cation. If the counter-record pointer is zero,
no operation is performed. If the pointer is
nonzero, it is used as an offset into absolute
memory segment zero, the system counter seg­
ment. The counter offset is added to locate the
start of the counter to be bumped.

Accumulating counters are 32 bits wide and
can be incremented by an input value. Busy
counters include a busy/idle flag and a 64-bit
microsecond counter; they can be set busy or
idle. Queue counters consist of the current
queue length, the maximum queue length, and
a 64-bit value that is used to yield the sum of
the queue lengths for each microsecond since
the counter was started. A queue counter can
be incremented or decremented. Each of these
counter types is bumped by the XCTR instruc­
tion when a measurable event occurs.

Several counters require special treatment.
Process memory-usage counters are main­
tained with the aid of a resident table which
tells how many pages are in use by each pro­
cess. A system procedure updates this table
whenever a memory page is allocated or
deallocated. Transaction start time is saved in
each terminal counter record and subtracted
from the transaction end time to obtain the
response time for a terminal transaction. The
TERMPROCESSes, as well as all communica­
tion processes that support terminals, call a
pair of system procedures to start and stop
terminal response-time counters.

REVIEW DECEMBER I 9 8 6

Process code-range measurement uses
pseudorandom sampling to estimate the
amount of CPU time spent in different pro­
cedures or code ranges of a process. When
MEASFH validates the CONTAB, an address
record is built for each code space to be mea­
sured. The address record contains the base
address for the code range and is attached to
the CONTAB sent to MEASMON. MEASFH
also builds a code-range name record contain­
ing the ASCII name of each code range. The
name record is saved in the data file. For an
object file, procedure names and addresses
are used.

When process code-range measurement is
started for a process, MEASCTL allocates an
internal counter record with one 32-bit
counter for each address in the address record.
A pseudorandom sampling mechanism is
implemented with help from the microcode in
the diagnostic data transceiver, or DDT (used
for hardware diagnostics). MEASCTL sends a
command to the DDT to start generating
pseudorandom interrupts when the first code­
range measurement is started and a second
command to stop interrupts when the last
one stops.

When the CPU receives a sampling interrupt
from the DDT, the current process is examined
to see if it is under process code-range mea­
surement. If it is, and its current code space
has an address record, a binary search is done
to find the index of the address range for the
current value of the interrupted process's pro­
gram counter. The index is used to increment
the correct counter in the associated counter
record. Control is then returned to the inter­
rupted process. Later, the MEASFH process
uses the name record and the counter record to
build external counter records showing code­
range utilization.

User-defined Counters
One or more user-defined counters can be
specified for a process. The counter descriptor
includes a name, type (accumulating, busy, or
queue), and optional array size for allocating
a group of similar counters. User-defined
counter descriptors are included in the
CONTAB.

When MEASCTL starts measurement on a
process with a set of user-defined counters, it
allocates a counter record with the requested
counters and builds an entity identifier record
that includes the name and off set within the
counter record for each user-defined counter.
Before the first counter bump, the measured
process calls the MEASCOUNTERBUMPINIT
procedure with the counter name. If a mea­
surement exists with the named counter, an
offset to the counter is returned. This offset
is supplied in all subsequent calls to the
MEASCOUNTERBUMP procedure, which is
used to bump the counter.

Up to 256 user-defined counters can be
specified for each measured process. This

Svstem Software

facility provides the
ability to measure
parameters known
only to the process
that bumps the
counters. In an on­
line transaction pro­
cessing application,
user-defined counters
provide the capability
to count the various

I T T ser-def ined counte~s
V can count transaction
types, measure transaction
response times, and track
queuing delays.

transaction types, measure transaction
response times, and track queuing delays.
Many other uses are possible also.

Active Counter Access
MEASCOM calls MEASREADACTIVE with an
entity descriptor to return an active counter
record. MEASREADACTIVE then uses the
CPU number in the entity descriptor to deter­
mine which MEASCTL process can access the
requested record. When MEASCTL gets the
request, it uses the entity descriptor data to
find the entity control block; it then uses the
XPTR in the entity control block to find the
counter record, and the CID index in the
counter record locates the CID entry.

DECEMBER I 9 8 6 TANDEM SYSTEMS REVIEW 37

System Software

MEASCTL builds an entity identifier record
and makes a time-stamped copy of the
internal-format counter record. These are
returned to the MEASREADACTIVE proce­
dure, which converts them to an external­
format counter record and returns this record
to the calling process.

External-format counter records contain the
counter-record allocation time, copy time,

entity identifier

M inimizing the cost of
measurement was a

primary design goal.

name(s) and/or num­
ber(s), and the vari­
ous counter values at
copy time. Busy and
queue counters are
converted from their
five- and six-word

internal formats to a single 64-bit time value
plus a one-word maximum queue-length value
for queue counters.

Data File Access
When a new measurement is started,
MEASCOM calls MEASOPEN, requesting write
access. If access to an existing measurement
data file is desired, MEASOPEN is called with
read-only access specified. MEASOPEN cre­
ates a MEASFH process and sends it the data
file name. (MEASFH creates a new data file if
the named file doesn't already exist.)

If write access is requested or the data file is
already open (presumably for an active mea­
surement), MEASFH opens the file via the File
System and, if write access is not specified (all
previous data is purged when write access is
specified), it copies any data to an extended
memory segment. Otherwise the file is
"opened" via the memory manager as a swap
file for an extended memory segment. This
method provides very fast access to data file
records.

On a new measurement start, after the
MEASOPEN call, MEASCOM calls
MEASCONFIGURE, passing a CONTAB with
descriptors of the entities to be measured.
MEASCONFIGURE forwards the CONTAB to
the MEASFH process. After verifying the for­
mat of the CONTAB and processing any pro­
cess code-range files, MEASFH writes a copy
of the CONTAB to the data file and sends a
copy to MEASMON.

During a measurement, the MEASCTL pro­
cesses write entity identifier and counter
records to the data file. An entity identifier
record is written when measurement on an
entity is started. If measurement is started on
a counter record with any nonzero counters, a
copy of the initialized counter record is written
to the data file along with the entity identifier
record. If the measurement was started with a
copy interval, all counter records in the mea­
surement are copied to the data file at each
copy interval. When a measurement stops, all
counter records are copied to the data file and
each MEASCTL writes a record containing
counter space-usage data for each entity type.

MEASCOM calls MEASREAD to get counter
records from the data file. MEASREAD sends
the request to the MEASFH process created to
access the data file. A read request includes an
entity descriptor and an optional target time
or time window to select the desired counter
record(s).

MEASFH provides access to data file
records at any time during or after the mea­
surement. Each external-format counter
record contains information from the entity
identifier record and one or two internal­
format counter records. To provide fast access
to the needed records, MEASFH builds an
index with one entry for each record in the
data file. Each index entry contains the entity
type, counter-record allocation time, CPU
number, record type (entity identifier, initial
value copy, interval copy, or measurement stop
copy), copy time, and record address. The
index entries are sorted on entity type through
copy time. These indices exhibit the following
useful properties:

• They are sorted by entity type.

• All indices for a given entity (same alloca­
tion time) are located together.

• The index entries for a given entity are
ordered in the following way: entity identifier
record, initial value record, copy interval 1,
copy interval 2, ... , copy interval n, measure­
ment stop copy.

38 TANDEM SYSTEMS REVIEW DECEMBER 1986

MEASFH builds the initial index when
MEASOPEN is called. Thereafter, when a read
request is received, MEASFH checks the data
file EOF against the EOF when the index was
last updated. If the two EOFs differ, MEASFH
updates the index.

When a read request is received, MEASFH
uses its data file index to find each entity iden­
tifier record that matches, or is a member of,
the specified entity descriptor. For each
matching entity identifier record, a counter
record is selected by using the optional target
time, time window, or the default time. Speci­
fying a target time causes MEASFH to select
the counter record copied closest to that time.
When a time window is used, MEASFH selects
the counter record closest to the middle of the
window, but if no records are found within the
window, none are returned. When the default
time is used, MEASFH selects the measure­
ment stop copy, if it is present, or the last
interval copy.

The entity identifier record, initial value
record (if present), and the target counter
record are used to build the external-format
counter record returned to the MEASREAD
caller. The number of external-format counter
records built depends on the measurement
configuration and the entity descriptor sup­
plied in the MEASREAD call. MEASFH uses
two extended segments to build these records:
one for the data file index and one for external
counter records. The number of counter
records returned to the caller by MEASREAD
depends on the number built and the size of
the caller's buffer. If the caller's buffer is too
small to hold all the records, subsequent calls
will fetch the remaining external counter
records.

MEASURE's Performance
Minimizing the cost of measurement was a
primary design goal for MEASURE. During
the design phase, two guidelines were used to
determine how and where to implement
performance-critical functions: (1) when given
a choice between using memory or CPU
cycles, the designers used memory, and
(2) when a function could be done at measure­
ment start-up, shutdown, or during a mea­
surement, they selected start-up or shutdown
time.

DECEMBER I 9 8 6 T A N D E M

The amount of memory currently in use for
counter space can be monitored during a mea­
surement with the MEASCOM STATUS com­
mand. The maximum amount of counter
space used for a complete measurement can
be obtained from the MEASCOM INFO com­
mand. These values can also be obtained by
calling the MEASSTATUS and MEASREAD­
CONF procedures.

MEASURE object files require 515 Kbytes
of disk space. The disk (or tape) space used
for measurement data files depends on the
number of entities measured and the size of
the optional copy interval. A small copy inter­
val requires more measurement data file
space than a longer copy interval or no copy
interval.

The developers measured MEASURE's per­
formance on a system having adequate mem­
ory to determine memory usage by MEASURE
processes. Only the CPUs and the MEASURE
processes were included in the measurement.
Memory pages are 2048 bytes each. MEAS­
COM used 52 pages, MEASFH used 24, the
primary MEASMON used 16, the backup
MEASMON used 11, and each MEASCTL
used 27.

Measurements have shown that MEASURE
processes required from 0.02% to 1.14% of the
system's CPU time, depending on the number
of entities measured and number of concur­
rent measurements. More detail on MEASURE's
performance can be found in the MEASURE
User's Guide.

References
MEASURE Reference Manual. Part no. 82441 AOO. Tandem
Computers Incorporated.

MEASURE User's Guide. Part no. 82440 AOO. Tandem Com­
puters Incorporated.

Acknowledgments
The author wishes to thank Raghav Sharma for implementing
MEASCTL and MEASMON, Dennis Markt for implementing
MEASCOM, Joyce Lamkin for implementing the MEASURE
quality assurance tests, and Heidi Kuehn for writing the
MEASURE Reference Manual and MEASURE User's Guide.

Denny Dennison joined Tandem in August 1979, taking responsi•
bility for the XRAY performance analysis tool. He rewrote XRAY
for the Non Stop II system and, in the last two years, has written
the MEASURE product requirements and external and internal
specifications and has implemented MEASFH and the
MEASURE callable procedures. Before joining Tandem, Denny
was a chemical quality control inspector, math teacher, and
software quality assurance programmer. He has a B.S. in Math
and an M.S. in Math Education.

SYSTEMS REVIEW

System Software

-- ------

39

40

FASTSORT: An External Sort
Using Parallel Processing

he FASTSORT™ program is
an external sort which uses
parallel processing, large
main memories, and parallel
disk accesses to obtain high
performance. When sorting a
file of one million 100-byte

records, FASTSORT is competitive with the
industry leader in single-processor sorting and
can outperform it by using the Tandem archi­
tecture for parallel sorting. FASTSORT is
four to eight times faster than Tandem's
standard SORT product. With larger files,
the FASTSORT program's advantages are even
more dramatic.

The speed of the FASTSORT program is pro­
portional to the size of the input file, N, rather
than the traditional Nlog(N) speed of conven­
tional sorting products. This linearity is
achieved by distributing the processor and disk
load among several processors if the load
exceeds the capacity of a single processor or
disk. FASTSORT can sort records as quickly as
it can read them. Once the file has been read,
FASTSORT can produce the output as quickly
as it can write the output file.

Loosely coupled multiprocessors can give
linear growth in transaction throughput for
on-line transaction processing. By doubling
the number of processors, disks, and com­
munications lines, Tandem systems can pro­
cess twice as many transactions per second
(Chmiel and Houy, 1986).

This linear growth of throughput as
resources are added does not usually apply to
batch transaction processing. A batch COBOL
program will not run much more quickly as
processors are added because the program
executes on a single processor. Tandem is
exploring ways to apply parallelism to process­
ing large volumes of data. The FASTSORT
program is an example of this research.

FASTSORT breaks a large sort job into sev­
eral smaller ones that are done in parallel by
subsort processes. These subsorts can use mul­
tiple processors, multiple channels, and multi­
ple disks. The result is a high-performance
sorting system.

This article presents the history and design
of the FASTSORT program. It also explains
how to estimate FASTSORT execution times on
NonStop II, NonStop TXP, and NonStop VLX
processors.

Evolution of FASTSORT
Many programs and products use the SORT
utility on Tandem systems. User programs and
batch-oriented job control files invoke it
explicitly. The File Utility Program (FUP)
invokes SORT to create key-sequenced files
and indexes for structured files. The ENFORM
query processor uses SORT to evaluate queries.

TANDEM SYSTEMS REVIEW DECEMBER 1986

SORT
The SORT utility is a mature and functional
product. It sorts records based on multiple­
typed key fields, allows a user-defined collat­
ing sequence, eliminates duplicates, projects
out fields, merges sorted files, and produces
statistics on the sort run. It accepts input from
devices, processes, and all file types. Simi­
larly, the sorted output can be sent to any des­
tination, although SORT does not directly
produce key-sequenced or edit files.

The SORT utility's only serious flaw is per­
formance. Originally written for the Tandem
16-bit NonStop I+ TM system, SORT does not
take advantage of the 32-bit addressing or the
parallel architecture of the newer Tandem
NonStop systems. SORT runs as a single pro­
cess that defaults to 34 Kbytes of memory and
uses a maximum of 128 Kbytes of main mem­
ory. Consequently, its performance is not
impressive for large batch applications, or for
loading or reorganizing large files.

Because of the SORT utility's limitations,
other sort/merge products were developed for
Nonstop systems. Roland Ashbaugh created
SUPERSORT, and Eric Rosenberg developed
and marketed QSORT. Both of these sort pro­
grams use multiple processors executing in
parallel to sort large files using a technique
known as parallel sorting. In addition, QSORT
uses the large main memory provided by the
NonStop architecture.

FASTSORT
The FASTSORT program is a compatible
evolution of SORT. They share a common
manual, and any program using SORT will
work with FASTSORT. External improvements
in FASTSORT include:

■ The ability to build key-sequenced files in
addition to other file types.
■ Automatic selection of an efficient configu­
ration which the user can override.
■ Generation of better diagnostic messages in
error cases.

Speed is the main advantage of FASTSORT.
Internally, FASTSORT uses improved algorithms,
extended memory, double buffering, stream­
lined comparison logic, streamlined structured
file access, bulk 1/0, and multiple processors
and disks.

As a result, when sorting a file of one mil­
lion 100-byte records, FASTSORT on a single
processor is four times faster than SORT (eight
times faster if multiple processors are used).

DECEMBER 1 9 8 6 T A N D E M

Figure 1

Input

~••or•~.·
. Tournament I

How FASTSORT Works
From one or more input files, the FASTSORT
program produces an output file containing
the input records ordered by up to 32 key
fields.

Sorting is done in passes. During the first
pass FASTSORT reads the input records and
adds them to a binary tournament tree
arranged much like the winners in a tennis
tournament. The maximum record is at the
root of the tree, and the winner of each sub­
tree is the root of that subtree. (See Figure 1.)

Initially the tournament tree is full of "max­
imum" null records. FASTSORT adds input
records to the leaves of the tree, gradually
displacing null records, which are removed at
the root of the tree. The tree minimizes the
number of times FASTSORT compares a record
with other records. A tree of height 14 can
hold 16,385 records (214 + 1), and the FASTSORT
program compares each record with only 14
others in sorting the whole tree. If the records
are 100 bytes each, such a tree occupies about
16K*l00, or approximately 1.7 Mbytes.

SYSTEMS REVIEW

System Software

Figure 1.

The structure of a tour­
nament. The input
arrives as double­
buffered blocks of
records. The sorted
output is produced in
double-buffered blocks
of records. Records move
from the leaves (top) of
the tournament tree to
the root (bottom). The
"winner" record is at
the root.

41

System Software

42

Even with all this attention to minimizing
compares, about 75% of FASTSORT's time is
devoted to comparing records. This is because
the compare work for a file of N records rises
as Nlog(N). For N beyond 10,000, the Nlog(N)
work dominates the costs of reading the input
and writing the output. For more detailed
information, refer to Knuth's discussion of
replacement selection (Knuth, 1973).

One-pass Sorts
If the input file is less than the size of main
memory, the sort can be done in one pass. As
records are read in, they are added to the
leaves of the tournament tree. By the time the
last record is read, the records are completely
sorted in the tree and ready to be written to
the output file.

Currently, Tandem NonStop systems can
attach 16 Mbytes of main memory per proces­
sor. Such a processor can sort large files
entirely in memory. On a full system, parallel
FASTSORT can apply 16 processors to the
problem and sort even larger files in main
memory. In this parallel one-pass approach, a
distributor-collector process starts a subsort
process in each CPU. The subsorts allocate
sufficient memory to hold their part of the
job. The distributor then reads the input
stream (tape, process, or disk file) and distrib­
utes the records in round-robin fashion to the
subsorts. When the distributor-collector comes
to the end of the input file, it sends an end-of­
file to the subsorts. The distributor-collector
process now becomes a collector. It reads the
output runs from the subsorts, merges (sorts)
these runs into a single run, and writes the
resulting run to the output stream.

The FASTSORT program reads input records
and writes output records in large blocks to
minimize message overhead and disk usage.
Block sizes can be up to 30 Kbytes, but
16-Kbyte blocks provide most of the benefits.
FASTSORT also uses double buffering; it
always gets the next input block while sorting

the current block. During output, it always
writes the previous block to the output stream
while filling the current block in memory. Dur­
ing the first pass, reading the input file and
writing the output file is purely sequential
access to the disk (almost no seeks), so paral­
lel FASTSORT is limited by the speed at which
disks can be sequentially read or written.

Multipass Sorts
One-pass main-memory sorts are the fastest,
but not always the cheapest, way to sort. For
larger files, or for a less memory-intensive
approach, a two-pass or a multipass algorithm
is appropriate.

If the file is bigger than the tournament,
non-null winners are selected from the root
and written out to a scratch file as new
records arrive. The tournament is then recom­
puted to calculate the new root. The result is a
"hole" in a leaf of the tournament. A new
input record replaces this hole and the cycle
repeats (thus the name, "replacement­
selection" sort). This process produces a
run of output records.

If an input record bigger than the previous
winner arrives, it "breaks" the run-the new
record cannot be added to the end of the cur­
rent run and still keep the run sorted. In this
case, the sorted tournament is written to the
scratch file and a new tournament is begun
with the new record. The actual implementa­
tion is a little fancier than this (Knuth).

If the file arrives sorted or almost sorted,
then only one run is generated. This is the best
case. If the file arrives sorted in reverse order,
then each run is the size of the tournament.
This is the worst case. On average, if the file is
random, the average run is twice the size of the
tournament (Knuth).

Merging
If only one run is produced, it is copied to the
output file and the FASTSORT program is
done. If multiple runs are produced, then
FASTSORT merges them to form a single run.
These latter passes over the data are collec­
tively called merging. If multiple merge passes
are necessary, the intermediate results are kept
in the scratch file. (See Figure 2.)

TANDEM SYSTEMS REVIEW DECEMBER 1986

During merging, a tournament is used to
combine multiple runs into a single larger run.
For example, suppose that the first pass gener­
ates 14 runs, and that the tournament size is
ten. Only ten runs can be merged at the same
time. During first merge, five runs will be
merged, which reduces the number of runs to
ten-one run produced from merging, and
nine runs from pass one. During a third pass,
these ten runs are merged into the output file.

Each pass over the data costs disk and CPU
time. Therefore, it is very desirable to have at
most one merge pass-an initial pass to pro­
duce runs, and a second pass to merge them
into the sorted output. A sufficiently large
tournament gives a two-pass sort. Surpris­
ingly, not much memory is required for a two­
pass sort. The memory requirement rises as

File Size * Block Size
2

Table I assumes a 16-Kbyte blocking factor to
show the approximate memory requirements
for a two-pass sort.

Memory Requirements
Table 1 shows that the file can get 10,000 times
bigger and only need 100 times as much mem­
ory. Note that 10 Mbytes of main memory
costs $50,000 while the disk file cost is $1 mil­
lion unmirrored and $2 million mirrored (a
total of 30 Gbytes for input, scratch, and out­
put files). Memory cost is only 5% of the
disk cost.

If a user selects the AUTOMATIC option, the
FASTSORT program tries to allocate enough
memory to give a one-pass sort if the file is
small (less than 100 Kbytes) or a two-pass sort
if enough memory is available. In general, it
uses the equation shown in Table 1 to estimate
the memory size and then adds 30% as a
safety factor. The AUTOMATIC option limits
itself to 50% of available main memory, while
the MINTIME option uses at most 70% of
the processor's available main memory.

Table 1.

Tournament size needed for a two-pass sort
assuming a 16-Kbyte block size.
File size (bytes) Tournament

1M 0.1M

10M 0.3M

100M 1M

1G 3M

10G 10M

Figure 2

Sort input into
runs of sorted
records stored
on scratch disk.

Merge runs
to produce
sorted
result.

Alternatively, the user can specify how much
memory FASTSORT should use instead of letting
FASTSORT estimate memory requirements.

Block Size
The FASTSORT program also tries to optimize
its I/O by using a large block size (16 Kbytes is
the default) in reading and writing files. It also
double-buffers reads and writes so that sorting
overlaps I/O requests. These features enable
FASTSORT to reduce I/Os by a factor of four
and to eliminate half of the data moves.

By combining all these improvements, serial
FASTSORT runs about four times faster than
standard SORT in sorting a file of one million
100-byte records-reducing the time from
115 minutes to 29 minutes on a NonStop VLX
processor. This compares to 21 minutes
for the industry leader, SYNCSORT, on an
IBM 4381-II.

FASTSORT can beat SYNCSORT by using
parallel processing.

D E C E M B E R I 9 8 6 TANDEM SYSTEMS REVIEW

Figure 2.

A two-pass sort. The
first pass over the data
produces runs of sorted
records stored on a
scratch disk. A new run
starts whenever an input
record is bigger than the
tournament winner.
During the second pass,
the runs are merged
together to form a single
run (the sorted output).
If there are many runs,
then more than one
merge pass over the data
may be required.

43

System Software

Figure 3

Figure 3.

The structure of a paral­
lel sort. The distributor­
collector process drives
two or more subsorts,
which in turn write their
runs to their scratch
Jiles. When input is
complete, the subsorts
merge their runs and
return their sorted data
to the distributor­
co//ector, which merges
them into the output file.

44

Input

Distributor•
collector

Subsort
processes

DiStributor,
aolle$tor

Parallel Sort

Input

The speed of a single processor sort is limited
by the speed of one CPU and the speed of one
scratch disk. Figure 3 shows how parallel
sorting uses multiple subsort processes to
sort parts of the input file and a distributor­
collector process to allocate work to the sub­
sort processes and merge their output runs into
the final result. Parallel FASTSORT operates as
follows:

1. The distributor-collector accepts user
parameters and starts subsort processes.
Every subsort has its own scratch file.

2. The distributor-collector reads the input
file(s) and distributes records among sub­
sort processes on a round-robin basis. Each
subsort sorts its part and produces a sorted
stream of records.

3. The distributor-collector merges output
from the subsorts and writes the output
file.

T A N D E M SYSTEMS

Each sort process should run in a different
CPU to minimize CPU and memory conten­
tion. To minimize disk contention, each sub­
sort should have a different scratch disk. Also,
the distributor-collector should run in a lightly
loaded CPU because it can be CPU-bound.
Finally, each subsort should run in the CPU
containing its primary scratch disk so that
DYNABUS™ traffic does not increase with
file size.

The FASTSORT program automatically
configures parallel sorts to satisfy these con­
figuration rules. The user can configure a
three-subsort parallel sort by simply naming
the scratch disks. (In the following example,
the scratch disks are called $DATA!, $DATA2,
and $DATA3.)

FROM
TO
SUBSORT
SUBSORT
SUBSORT
RUN

infile
outfile
$data!
$data2
$data3
AUTOMATIC

Of course, the user can override the
FASTSORT program's decisions by specifying
the CPU, priority, memory size, block size,
and other attributes of the sub sort processes.
The user can also prohibit use of certain CPUs
or restrict use to certain CPUs.

When properly configured, parallel sorting
is faster than serial sorting for the following
reasons:

■ The first pass is CPU-bound for tournaments
containing more than 10,000 records. Parallel
sorting spreads this load among multiple CPUs
so that the first pass remains bound by the
speed at which the distributor-collector can
read the input file.
■ The second {merge) pass is disk-seek-bound
while merging the runs. By applying multiple
disks to the merge pass, merging can run at the
speed of the distributor-collector writing the
output file.

Consequently, parallel sort runs as fast as
the distributor-collector can read and write the
input and output files. The fact that SORT
does Nlog(N) work to sort a file of size N is
completely hidden in the subsorts. Parallel
FASTSORT is a linear time sorting algorithm,
running at the rate of about 30 Kbytes per
second on a Nonstop II processor, 80 Kbytes
per second on a NonStop TXP processor, and
110 Kbytes per second on a Nonstop VLX
processor.

REVIEW DECEMBER I 9 8 6

Table 2.

The Nonstop TXP system's elapsed time to sort
various file sizes using single-processor sort or
multiprocessor sort.

Sort time (seconds)
File size Serial Parallel Parallel
(bytes) time time CPUs Speedup'

0.1M 5EO 8EO 2 0.6

1M 2.7E1 2.8E1 2

10M 2.1E2 1.3E2 2 1.6

100M 2.5E3 1.3E3 3 2

1G 3.7E4 1.2E4 4 3

'The speedup of parallel sorting over serial sorting.

As a general rule, files less than 1 Mbyte
should be sorted in one pass in memory. For
such files, the parallel sort setup time
dominates any savings in speed, so parallel
sort is slower than serial sort for files under
0.5 Mbyte. But for files larger than 1 Mbyte,
parallel sort begins to pay off. Table 2 shows
the speedups from parallel sorting on a
NonStop TXP processor.

At our design point of a million 100-byte
records, parallel FASTSORT gives a speedup of
about two over a single-processor sort, and it
outperforms SYNCSORT on 4381-11 by a factor
of 1.4 on the NonStop VLX processor.

FASTSORT Performance
Measurements
A specific benchmark is needed to discuss sort
performance. Tandem uses the sort benchmark
described in Datamation (Anon, et al., 1985)
as its standard. It is based on an entry­
sequenced file of one million records. Each
record is 100 bytes long and has a ten-character
key. The input records are in random order.

In the following tests all disks are mirrored.
The file is scaled to be one thousand, ten thou­
sand, one hundred thousand, one million, and
ten million records. For each of these file
sizes, the elapsed time for the sort is measured
on the best configuration for a specific proces­
sor type. For these measurements, our "best
configuration" includes GUARDIAN 90, Disc
Process 2 (DP2), 3108 disk controllers, and
4130 disks (XLS). Partitioned files are used in
the ten million record case: six mirrored input
disks, six mirrored scratch disks, and six mir­
rored output disks. Figure 4 gives the resulting
log-log plots of elapsed times.

DECEMBER I 9 8 6 T A N D E M

Figure 4

(a) 100K

(b)

10K

ui" 1 K
"O
C
0
()
a,
!E,
a,

~ 100

i
C
0

10

100K

10K

1K

al 100
!E,
a,
E
i=

10

100K

•Nonstop TXP serial sort
NonSt®lXPl)Qr8)reJsort

1M 10M

File size (bytes)

• Nonstop llsetial sort

• ~sort
~ sort

1M

File size (bytes)

Parallel Sorting and Throughput

10M

Table 2 shows that parallel sorting improves
throughput over serial sorting by a factor of
two for one million records, and a factor of
three for ten million records. As the file sizes
get even larger, parallel sorting becomes even
more attractive. On the other hand, at the low
end, below 1 Mbyte, parallel sorting is more
expensive than serial sorting because the pro­
cess setup time dominates. The break-even
point is about 10,000 records, or about
1 Mbyte. Files smaller than this are best
sorted entirely in main memory using a single
processor.

SYSTEMS REVIEW

System Software

100M 1G

100M

Figure 4.

Plot of file size (bytes)
vs. FASTSORT elapsed
time (seconds) for vari­
ous CPU types. (a) Par­
allel and serial sort for
the TXP. (b) Parallel
and serial sort for the
Nonstop II and VLX.
Note that CPU speed is
significant and that
parallel sort is faster than
serial sort for files larger
than I Mbyte.

45

System Software

Figure 5.

Speed in records per
second of various CPUs
and methods in sorting
one million records.

Figure 6.

Speed of FASTSORT of
a million records of
various file types on a
Nonstop VLX processor.

46

Figure 5

Figure 6

1!
0

al
~
~
0

al
a:

----·---- --- ----------

Nonstop II Nonstop TXP Nonstop VU<

Unstructured Entry- Relative Key-
sequenced sequenced

The time to sort "N" 100-byte records on
the various processors can be roughly com­
puted by dividing by the rate shown in
Figure 5. For example, serial FASTSORT on
the Nonstop VLX processor would take about
N/604 = 166 seconds, or approximately three
minutes to sort if N = 100,000 records. Such
calculations are very rough, but are helpful in
giving estimates. Actual sorting speed may
vary depending on the input stream, the con­
figuration, and the concurrent workload.

Speed vs. File Type
The speed of FASTSORT varies very little with
file type if records are packed densely in the
file. (See Figure 6.) The 5% difference
between structured and unstructured files is
caused by the differences between the routines
used to deblock the records. Figure 6 gives the
FASTSORT rate versus file type assuming the
files are dense. If the files are sparse, e.g., an
almost empty relative file or a B-tree with
slack, the FASTSORT program will appear to
run more slowly because it is reading some
useless data. For example, if the input and
output files are B-trees with the typical 30%
slack, FASTSORT runs about 10% slower on a
per-record basis.

Speed also varies with disk process type and
block size. The old disk process (DPI) sup­
ports at most a 4-Kbyte file transfer size.
The new disk process (DP2) supports up to a
30-Kbyte transfer size. Large transfer sizes
reduce the number of disk and message trans­
fers. Figure 7 shows the effect of block size on
sorting speed, i.e., using 16-Kbyte blocks
instead of 4-Kbyte blocks improves through­
put by about 30%. Using larger blocks pro­
vides very little additional savings.

Conclusion
The FASTSORT program taught one lesson
quickly-when in doubt use brute force.
Sophisticated algorithms gave small gains. But
brute force techniques (faster processors, mul­
tiple processors, large memories, large block
sizes, and double buffering) yielded high
payoffs.

TANDEM SYSTEMS REVIEW• DECEMBER I 9 8 6

These techniques make FASTSORT competi­
tive with the fastest sort products. A novel
feature of the FASTSORT program is that, by
using parallel processors and disks, it can sort
in time proportional to the size of the input
file, rather than the traditional NLog(N) time
of conventional sorts. On a Nonstop VLX,
for example, FASTSORT can sort at the rate of
I IO Kbytes per second, independent of file
size.

References
Anon, et al. 1985. A Measure of Transaction Processing Power.
Datamation. Vol. 31, No. 7.

Chmiel, T., and Houy, T. 1986. Credit-authorization Bench­
mark for High Performance and Linear Growth. Tandem
Systems Review. Vol. 2, No. 1.

Knuth, D. 1973. The Art of Computer Programming, Vol. 3.
Addison Wesley.

Rosenberg, Eric. 1984. QSORT Reference Manual. Dedalus
Systems.

SORT and FASTSORT Manual. Part no. 82442 A00. Tandem
Computers Incorporated.

Acknowledgments
John Shipman wrote the original Tandem SORT software. The
product was enhanced and refined by Bob Wells. The idea for
parallel sorting is not new, but was suggested by the work of Ed
Ashbaugh on SUPERSORT. During the implementation, the
authors benefited both from the sequential 1/0 improvements
of DP2, and from the utilities which use these improvements
provided by Joan Pearson, Janardhana Jawahar, and Charles
Levine. Richard Carr gave valuable advice, showed us how to
streamline the compare logic, and helped us interface to the
operating system memory manager. David Hatala and Larry
Watson provided the performance numbers for SYNCSORT.
Kevin Coughlin, Peter Oleinick, and Art Sheehan contributed
valuable review comments on this document.

Jim Gray is in the Software Development department and is
currently working on enhancements to the ENCOMPASS data
management system. He has worked on the design and imple­
mentation of a word processor, system dictionary, parallel sort,
and a distributed SQL.

Michael Stewart joined Tandem in August of 1984. Since then he
has worked as a software designer in data base utilities, specifi­
cally on FUP, DSAP/DCOM, and FASTSORT. Before coming to
Tandem, he developed a set of interactive file system utilities.
He has a B.S. in Mathematical Sciences from Stanford and an
M.S. in Computer Science from Cal Poly SLO.

Alex Tsukerman has an M.S. in Mathematics from Kharkov
University. He is currently a member of the Low-Level Database
Group, involved with enhancements to ENCOMPASS, and has
worked on both FASTSORT and the Spooler. Prior to joining
Tandem, Alex worked in applications areas (optimization prob­
lems, resource consumption, marketing research) and as an IMS
system programmer on Fast Path-related utilities.

Susan Uren joined Tandem in 1984. She contributed to this
article and wrote the accompanying article, "Messenger System
Performance Tests."

Bonnie Vaughan is a technical writer in the Software Publica­
tions department of Software Development. She writes manuals
for languages and tools, including the SORT and FASTSORT
Manual. Before joining Tandem, she wrote and edited a variety of
software manuals. Her writing career began in journalism and
public relations. She has published many oowspaper and maga­
zine articles and holds a B.A. in Journalism from San Jose State
University.

DECEMBER 9 8 6 T A N D E M

Figure 7

u
C
0

j
"' 'E
0

&

Blocking factor vs. records/second
(VU< serial sort of 1 M records)

4K 4K BK 12K 16K 22K 24K
DP1 DP2

SYSTEMS REVIEW

System Software

Figure 7.

Effect of block size
on speed of single­
processor FASTSORT of
a million records on a
Nonstop VLX processor.

47

48

The 6600 and TCC6820
Communications Controllers:
A Performance Comparison

----- andem's 6600 Cluster Con­
troller and TCC6820 Terminal
Cluster Concentrator were
tested to determine which
performed more efficiently.
A stress test was used to sat­
urate the line; then the CPU

cost and maximum throughput were observed.
The performance differences encountered are
as follows:

■ The throughput of the 6600 Controller is
higher than that of the TCC6820 Concentrator
in most cases, despite the fact that the 6600's
CPU cost per message is higher than that of
the TCC6820.

■ The 6600 Controller performs better than the
TCC6820 Concentrator in four- and eight­
terminal configurations. 1 In certain instances,
however, the TCC6820 outperforms the 6600
when only two terminals are configured.

In this article, the two products are briefly
described, the test environment is explained,
and the test results are presented.

1 The tests described in this article were run on the A00 release of the 6600
Intelligent Cluster Controller, which allows up to eight terminals to be attached
to the controller. The latest release is now AIO, which allows up to 12 terminals
to be attached.

Product Descriptions
6600 Controller
The 6600 Cluster Controller is an intelligent
communications controller that allows the
remote clustering of Tandem terminals, work­
stations, and printers. The remote clustering is
implemented with SNATERM software, which
emulates an SNA PU Type 2 cluster controller.
It communicates to a Tandem host through
SNAX6600, part of SNAX, Tandem's fault­
tolerant interface to the Systems Network
Architecture, SNA.

As of the Al0 version, a single 6600 can
support up to 12 Tandem terminals or work­
stations using 6530 point-to-point protocol at
speeds up to 19,200 bps.

Application programs on a Tandem host
communicate to terminals attached to the 6600
as if they were locally attached Tandem 653X
terminals. One SNA LU session can be config­
ured per terminal.

Other features include:

■ Coexistence on a multipoint, leased RS-232C
communications circuit with IBM SNA
devices, using half-duplex, flip-flop, send­
receive protocols at speeds up to 19,200 bps.
■ Support of 5508, 5520, 5530, 5540, and most
generic DTR printers as IBM 3287 LU Type 3
devices. The printer ports can support trans­
mission rates up to 19,200 baud.

■ Connection of DYNAMITE™ workstations in
current loops up to 1500 feet long, RS-232C
circuits up to 50 feet long, and RS-422 circuits
up to 4000 feet long.
■ Connection of 653X terminals in current
loops up to 1500 feet long and RS-232C
circuits up to 50 feet long.
■ Power-on self-test diagnostics.

T A N D E M SYSTEMS REVIEW DECEMBER I 9 8 6

TCC6820 Concentrator
The TCC6820 aids multiuser data communica­
tions by providing a simple communications
link between Tandem systems and up to eight
strings of Tandem terminals and/ or two serial
printers. A maximum of 64 devices can be
connected to a single line.

The TCC6820 is simply a broadcast box
managed by the AM6520 access method.
AM6520 polls one terminal at a time, and only
that terminal responds with an acknowledg­
ment of data or no data.

Additional features include:

■ Sixteen data transmission speeds from
50 bps to 19,200 bps.

■ Connection of devices up to 1500 feet
(454 meters) away.

■ Cascading of additional TCC6820s to
increase the number of ports available or
to increase the distance to remote terminal
clusters.

■ Simplification of installation and testing
through a built-in test mode.
■ Plug-in installation.

The Differences
As the 6600 supports the controlling intelli­
gence for devices connected to it, it is a true
cluster controller. None of the devices attached
to it needs to provide protocol support to the
communication access method; it provides
responses to the host for all connected termi­
nals. With the TCC6820 Concentrator, how­
ever the host (using AM6520) must poll each
of the devices connected to the communica­
tion line individually. Thus, the 6600 Control­
ler reduces polling overhead, most signifi­
cantly when large numbers of terminals are
connected.

Also, SNAX6600 protocol is more efficient
than that of the AM6520 access method. By
sending larger amounts of data between line
turnarounds and acknowledgments, the 6600
Controller makes more efficient use of the
communication resource. SNAX6600 also
improves data integrity by using a 2-byte
frame check sequence (FCS) that includes
address and control information. This means
all frames, not just those containing user data,
are included in error checking. The AM6520
access method uses a longitudinal redundancy
check (LRC), which checks only data.

DECEMBER I 9 8 6 T A N D E M

Data Communications

Figure 1

I ,-~~+-----.--:, ~----tj~,---------,~,: ~, ~
CPU0
NonStopTXP

CPU 1 CPU 2 CPU 3
NonStop Il NonStop TXP Nonstop Il

I

n. appli­
cation

n ~ 2. 4. or 8 terminals

Test Environment

SNAX
line handler

(810)

L
8 ms RTS delay,

19.2 Kbps,
9600 bps

A test program based on 6530 terminals i_n
block mode was used. The program consisted
of 20 iterations of a write operation followed
by a read operation. Eight terminals were con­
figured and enabled (started) in each test.
(This is the maximum for the A00 release of
the 6600 Controller and the current release of
the TCC6820 Concentrator.)

The number of concurrent applications
(active 6530 terminals) were two, four, or
eight. Thus, although all eight terminals were
being polled, two, four, or eight were actually
sending and receiving data. The message
sizes examined were 240 bytes (1/8 screen),
960 bytes (1/2 screen), and 1920 bytes
(full screen).

6600 Controller Test
The BIO release of SNAX was run on a
four-processor system (two NonStop TXP
and two Nonstop II processors). One 6204 bit­
synchronous controller with a modem elimi­
nator set for 9600 bps or 19.2 Kbps was
connected to one 6600 Intelligent Cluster
Controller. The line handler resided in proces­
sor 2 and the applications in processor O (see
Figure 1).

SYSTEMS REVIEW

6203
bit-synch
controller

Modem
eliminator

6600
controller

8 terminals

Figure 1.

Hardware configuration
for the 6600 Intelligent
Cluster Controller tests.
All processors were con­
figured with 4 Mbytes
of memory.

49

Data Communications

Figure 2

AM6520
line handler

tt:Cla820
concentrator

8 terminals

Figure 2.

Hardware configuration
for the TCC6820 Termi-
nal Cluster Concentrator
tests. All processors
were configured with
4 Mbytes of memory.

Figure 3.

Number of transactions
per second processed by
the 6600 and TCC6820
(1920-byte messages,
9600 bps).

50

19.2 Kbps,
9600 bps

Figure 3

3.0

2.5

" C
0 2.0 (.)
CJ)
if)

<iJ
C 1.5 0

u
"' if) 1.0 C

"' F
0.5

0
0

n • appli­
cation

n ~ 2, 4, or 8 terminals

•~o
"!'CC6820

2 4 6

Number of terminals

- ---- ----- -----

8

TCC6820 Concentrator Test
The BIO release of the AM6520 access method
was run on a four-processor system (two
Nonstop TXP and two Nonstop II proces­
sors). One 6202 byte-synchronous controller
with a modem eliminator set for 9600 bps or
19.2 Kbps was connected to one TCC6820 Ter­
minal Cluster Concentrator. The line handler
resided in processor O and the applications in
processor 2 (see Figure 2).

Parameter Changes

SNAX. To test the performance of the SNAX
line handler and 6600 Cluster Controller, sev­
eral parameter changes were needed during the
course of testing.

The TIMEOUT parameter for the SNAX line
handler was changed from the default of
3 minutes and 20 seconds to 10 seconds. This
was done to allow only a IO-second delay in
SNAX line handler processing if no reply was
received to the receiver ready. Because the 6600
Cluster Controller has a timeout default of one
minute, the controller would have gone idle
before SNAX could have sent the next poll if
the default had been used.

The polling interval (POLLINT) was
changed from the default of one second to
250 ms to decrease the amount of time the
SNAX process waited between transmissions
of the poll list when no I-frames were ready
for transmission.

The RTS-CTS (request to send-clear to send)
on the modem eliminator has a default of
0 ms. This was changed to 8 ms to slow down
the Nonstop TXP processor to allow the 6600
Controller to send its receive/response (RR)
and extra pad bytes. (Without this delay, the
NonStop TXP processor would have sent
another RR before the 6600 had changed from
transmit to receive, in half-duplex operation;
then, because of this early transmission, the
SNAX line handler would have waited for a
response with a TIMEOUT of ten seconds.)

AM6520. The AM6520 line was configured for
PACE 7. (The PACE parameter specifies the
number of times one terminal can be selected
to send data before it receives an acknowledg­
ment from the host.) This was done to corre­
spond with the SNA RR scheme. SNAX sends
seven packets, then waits for an RR or
acknowledgment from the controller before
sending the remainder of the message.

TANDEM SYSTEMS REVIEW• DECEMBER 1 9 8 6

Data Communications
-- -- --- -------- ----- -- --

The nonactive terminals were in conversa- Figure 4 Figure 4.
tional (ITI) mode with a COMINT command Bytes per second pro-
interpreter. The SLOWPOLL (time between cessed by the 6600 and
polling inactive terminals) was set at 120 sec- •eeoo TCC6820 (1920-byte

TCC6820
onds. (The default SLOWPOLL is 0.) 1200 messages, 9600 bps).

1000

Test Results
~ 800
0
u

-~ 600
Throughput <I)

<lJ

In almost all cases, the 6600 Controller dem- ~ 400

onstrated higher throughput. Figure 3 shows 200

throughput in transactions (a write followed
by a read) per second; Figure 4 shows 0

throughput in bytes per second.
0 2 4 6 8

Notice that the transaction rate for the
Number of terminals

TCC6820 Concentrator does not vary signifi-
cantly with the number of terminals. The rea-
son for this is that the TCC6820 individually
polls each of the devices connected to the Figure 5 Figure 5.
communication line, regardless of whether or CPU milliseconds per
not there is data. If there is data, the TCC6820 transaction required for
pushes it through to the terminal as quickly as ■ 6600 the 6600 and TCC6820 TCC6620
possible. The only buffer is in the terminal. 120 to process 1920-byte

With the 6600 Controller, the devices do not messages at 9600 bps.
C 100

need to provide protocol support to the com-
0

~
"' munication access method; the 6600 provides <I) 80 C
r:1

the responses to the host. This difference sig- '5i 60 E
nificantly reduces the polling overhead, which, ::i

n.
in turn, increases throughput when a large 0 40

number of terminals are connected. When 20

fewer than four terminals are active, however,
the TCC6820 could produce higher throughput. 0

The reason for this is that the 6600 Controller
0 2 4 6 8

uses two buffers (one in the controller and one
Number of terminals

in the terminal). This increases handling
requirements.

CPU Cost Figure 6 Figure 6.

As a consequence of overhead processing for Line handler process
the SDLC protocol, the CPU cost per transac- CPU BUSY rates pro-

tion for SNAX6600 is higher than that for the aeeoo duced by the 6600 and "§ 'f:OC~2P
AM6520 access method. (Figure 5 shows CPU 3.0 TCC6820 (1920-byte

>- messages, 9600 bps). (f)

milliseconds per transaction, and Figure 6 ::i
Cll 2.5

shows the line handler process CPU BUSY ::i n.

rate.) The following is a description of the
0 2.0
<I)
<I)

overhead processing for SNAX6600 and
<lJ
u

1.5 e
AM6520.

a.
cii
15 1.0
C

"' .c
<lJ 0.5 C
::J

0
0 2 4 6 8

Number of terminals

DECEMBER I 9 8 6 T A N D E M S Y S T E M S REVIEW 51

Data Communications

Figure 7

(a) SNAX6600 sends a first-in-segment (FIS) of 267 bytes:

A C TH RH Data bytes RU FCS

I
I

Frame check sequence (2 bytes)

Request1response unit (256 bytes)

Request'response header (3 bytes)

Transmission header (6 bytes)

Control character (1 byte)

--- Secondary PU address (1 byte)

(b) SNAX6600 sequentially sends the next six
middle-in-segments (MIS) of 264 bytes:

A C TH Data bytes RU FCS

I I
I Frame check sequence (2 bytes)

Request1response unit (256 bytes)

Transmission header (6 bytes)

Control character (1 byte)

Secondary PU address (1 byte)

(c) SNAX6600 sends the last-in-segment (LIS) with the
remaining data bytes plus 8 bytes of overhead:

A C TH Data bytes RU FCS

LJ_I I
I

Frame check sequence (2 bytes)

Request/response unit (-a; 256 bytes)

Transmission header (6 bytes)

Control character (1 byte)

Secondary PU address (1 byte)

(d) SNAX6600 receives a positive response (OIS) that the
data transmission was completed:

A C TH RH +RSf> FCS

I

I
I

Frame check sequence (2 bytes)

Positive response (1 byte)

Request;response header (3 bytes)

-- Transmission header (6 bytes)

Control character (1 byte)

Secondary PU address (1 byte)

Figure 7. Overhead Processing for SNAX6600. The
application issued a 1920-byte write to the
terminal, and SNAX segmented the message
into eight packets. The format is shown in
Figure 7. The following is an explanation of
the SDLC protocol overhead, as represented in
Figure 7.

The jormat used by
SNAX6600 to segment
the write to the terminal
into eight packets.

52 T A N D E M SYSTEMS

A represents the secondary PU address,
which identifies the physical unit sending the
frame.

C represents the SDLC control character.
The control features provided include the poll/
final bit, frame sequence numbers, and the
frame format. The poll/final (PIP) bit is used
to control the directional flow of SDLC frames
on the data link. Its presence signals the
receiving station that it may now send frames.

TH represents the transmission header, an
SNA header format created and interpreted by
the path-control elements of network address­
able units (NAU). It specifies the desired phys­
ical manipulation of the message (blocking and
segmenting) and controls the physical routing
of the message to the correct series of links
toward its destination.

Any of three frame formats can be specified
in the transmission header:

• Unnumbered format (U-frames), also
known as nonsequential frames (NSF), is used
to initialize and control the response mode of
secondary PUs, report procedural errors, and
transmit unsequenced data.
• Information transfer format (I-frames) is
used to hold sequence-numbered information
fields (I-fields) and to confirm the error-free
receipt of other I -frames.

• Supervisory format (S-frames) is used to
confirm the error-free receipt of sequence­
numbered I-frames and to convey the ready or
busy condition of a PU.

RH represents the request/response header,
an SNA header containing data flow control
(DFC) and transmission control (TC) indica­
tors that apply to the transmission of a single
request/response unit (RU).

RU represents the request/response unit, the
fundamental portion of an SNA message to
which the various SNA headers are added. For
message units that transfer data characters,
the RU is the data portion of the SNA message.

FCS represents the frame sequence numbers,
next receive (Nr) and next send (Ns). They are
used by the SDLC protocol to guarantee the
proper transmission and receipt of I-frames,
given that link error recovery is possible. Ns is
used in the control character of an I-frame,
and Nr, in the control character of the
S-frame.

REVIEW DECEMBER I 9 k h

Overhead Processing for the AM6520. When
AM6520 byte-synchronous protocol is used,
the character overhead is much lower. The
application issued a 1920-byte write to the
terminal, which AM6520 broke into eight
256-byte packets, including overhead and
data. The protocol overhead is illustrated in
Figure 8.

Before sending data, the AM6520 access
method sends a fast select to the appropriate
terminal (Figure Sa). It then waits for the
acknowledgment from the terminal before
sending the data.

For outbound data (Figure Sb), AM6520
expects a single buffer containing the textual
part of a screen, escape character sequences,
or both text and escape sequences. AM6520
adds a start of text (STX) at the beginning of
the buffer and an end of text (ETX) after the
last text character. Write operations to the
selected terminal are split into 256-byte blocks
for transmission.

AM6520 polls the terminal poll list again
(Figure Sc).

For inbound data (Figure 8d), the buffer
passed back to the application process con­
tains the complete data message starting with
the first text character received from the sub­
device. Communication characters are
removed. Although a Tandem 653X terminal
sends input data in 256-byte blocks, AM6520
passes a single buffer back to the application
containing the data portions of all blocks in a
screen transfer.

The following is a description of some of the
AM6520 protocol overhead:

■ Q, or fast select, is generated when an appli­
cation process issues a call to the WRITE­
READ procedure.
• ENQ, or enquiry byte, is a priority request
for a response.

• ACK is a positive acknowledgment from the
device, returned in response to each block.
NAK is a negative acknowledgment.
• DEL or DELE is a padding character.
• P, or polling, is initiated when an application
issues a read to a device.
• LRC, or longitudinal redundancy check, is a
I-byte error check.

Figure 8.

AM6520 Protocol
Overhead. (The SYN
characters supplied

DECEMBER

by the driver are
not shown.)

I 9 8 6 T A N D E M

Data Communication\

Figure 8

(a) The AM6520 access method sends a fast select to the
appropriate terminal:

EOT ID ID Q ENO

I
I

I
I

Enquiry (1 byte)

Fast select (1 byte)

Identification (1 byte)

Identification (1 byte)

End of test (1 byte)

The terminal sends an acknowledgment:

ACK DEL DEL

I
I Pad byte (1 byte)

Pad byte (1 byte)

Acknowledgment (1 byte)

(b) For outbound data, AM6520 splits the write operations
to the selected terminal into 256-byte blocks:

STX Seq Screen text ETX LRC

I
I

I
I Error checking (1 byte)

End of text (1 byte)

Data bytes (~ 252 bytes)

Sequence (1 byte)

Start of text (1 byte)

The terminal receives the end of text (ETX) and responds
with an acknowledgment that it has received the data:

ACK DEL DEL

I
I Pad byte (1 byte I

Pad byte (1 byte I

Acknowledgment (1 byte)

AM6520 signals the end of the message:

EQT
I End of test (1 byte)

(c) AM6520 polls the terminal poll list again:

EOT ID ID p ENO

I
I

I
I Enquiry (1 byte)

Polling (1 byte)

Identification (1 byte)

Identification (1 byte)

End of test

(d) The host sends the inbound data to the terminal:

STX ID SEO Screen text ETX LRC

I

I
I

I
I Error checking (1 byte)

End of text (1 byte)

Data bytes (252 bytes)

Escape-character sequence (1 byte)

Identification (1 byte)

Start of text (1 byte)

SYSTEMS REVIEW

Data Communications

Figure 9.

Elapsed times for the
6600 and TCC6820 to
process 1920-byte mes­
sages at 9600 bps.

54

Figure 9

800

:g 600
C
0
()
Q)

!!!,
Q)

E
.= 400
a;
:g_
ell

w

200

0
0

■ 6600
TC06820

I I
2 4 6

Number of terminals

8

Elapsed Time
To measure elapsed time, timestamps, buffered
in memory, were placed in the application, one
at the beginning of the first write and one at
the end of the last read.

Figure 9 shows the elapsed times for the
6600 Controller and TCC6820 Concentrator.
The difference in the elapsed time for four or
more terminals is accounted for by the polling
algorithms. Because of the "round robin"
effect, the AM6520 access method must poll
each device and wait for an acknowledgment
before continuing down the list, whereas
SNAX6600 uses first-come, first-served order,
and polls only the controller.

T A N D E M SYSTEMS

Equations Used
The transaction rate was calculated by dividing
the total number of transactions by the elapsed
time (see the elapsed time calculation below).
For example, for SNAX6600, two terminals, a
message size of 1920 bytes, a rate of 9600 bps,
and a completion of 20 transactions (trans),

2 terminals * 20 trans = 4o trans
193 secs

or 0.207 transactions per second.
CPU cost per transaction was calculated by

dividing the SNAX line handler CPU BUSY
rate in milliseconds for the entire test by the
number of transactions per second. For exam­
ple, for SNAX6600, two terminals, a message
size of 1920 bytes, a rate of 9600 bps, and a
completion of 20 transactions,

24.8 CPU ms

0.207 trans/sec
= 119.8 CPU ms/trans.

The elapsed time was calculated by subtract­
ing the timestamp of the first terminal started
from the timestamp of the last terminal stopped.
For example, for SNAX6600, two terminals, a
1920-byte message size, a rate of 9600 bps,
and a completion of 20 transactions,

12:19:37.21 (time last terminal stopped)
- 12: 16: 19. 3 7 (time first terminal started)

3: 13 .40 or 193 secs elapsed time.

Acknowledgments
The author would like to thank David Yang and Dick Van Praag
of Large Systems Marketing Support for application support
and hardware support, respectively.

Pat Beadles joined Tandem's Software Development Group in
April 1984. She is currently developing a DP2 course in Software
Education. Before joining Tandem, Pat spent three years as an
analyst supporting data base performance and transaction
accounting software for another mainframe.

REVIEW DECEMBER I 9 8 6

-- o the computer industry,
capacity planning means the
process of predicting future
data processing needs. Its
goal is to ensure the avail­
ability of necessary data
processing resources when

and where they are needed. When used as a
continuous process, it is an effective tool
for an organization's tactical and strategic
planning.

A comprehensive discussion of capacity
planning and its relationship to capacity man­
agement, including performance tuning, is
beyond the scope of this article. This piece
discusses capacity planning and why it should
be done. Intended for those individuals unfa­
miliar with capacity planning, it introduces
the subject and describes some of the benefits
derived from conducting capacity planning in
an ongoing fashion. It also gives a general
description of a model, general guidelines for
conducting a successful study, suggestions for
what can go wrong, and tips for presenting the
results to management.

DECEMBER 1986 TANDEM

Capacity Planning Concepts

What Is Capacity Planning?
Almost everyone experiences capacity plan­
ning on a daily basis. Rush hour traffic jams
are an example of demand outstripping capac­
ity. The stop-and-go traffic caused by too
many cars for the capacity of the highway is
similar to what happens in a system when the
demand exceeds the available capacity of the
CPU; bottlenecks caused by contention for
resources cause individual jobs and/or trans­
actions to experience stop-and-go situations.
The delay in getting to work is equivalent to
the increased response time users experience
when demand exceeds available capacity.

Scope
Capacity planning deals with a broad range of
activities. For example, capacity planners are
concerned with both network and host capaci­
ties.1 They are interested not only in the
growth of existing applications, but in new
application development, business issues such
as new market penetration or divestment, and
changing strategic decisions. Any of these
things may have an impact on the need for, or
redistribution of, computing resources. There­
fore, capacity planning can be viewed as a
decision support mechanism for management.
While its methods are technical, its point of
view is that of business planning.

1Changes in the host hardware and/or software confi?uration can have
dramatic effects on the response times that users receive. Conversely, the
number of new terminals, the manner of attachment, locatio~ wit~in the
network, and type of work being done on them can have a serious impact on
both users and the available capacity within the host.

SYSTEMS REVIEW 55

Capacity Planning and Timing

56

Getting Started
The development of an effective capacity plan­
ning program requires an in-depth study of
current resource utilization and workload
characterization. From this study, the three or
four applications that account for 80% to 90%
of the workload become apparent. Also, by
learning about future business growth plans
and new or enhanced applications under devel­
opment, the capacity planner knows which
applications are likely to grow the most and is
able to calculate the resources needed in the
future. Steps can then be taken to ensure that
resources are available to maintain established
service levels.

These growth projections are used in many
ways. Once an organization knows how and
where its data processing resources are con­
sumed, it can implement a chargeback system.
A chargeback system can be used to distribute
costs for the data center across departments
within the organization or to sell time to other
companies on a time-sharing basis. Growth
projections can also be useful in the justifica­
tion of new equipment.

Terminology

Total Capacity vs. Available Capacity. When
an individual CPU is running at 100%, it is
running at "total capacity." "Available capac­
ity" is that available for use by a CPU before
queuing delays inhibit processing and through­
put. While this varies with the workload mix­
ture, available capacity is usually between
70% and 800/o of a CPU's total capacity.

Capacity Planning vs. liming. A system must
be well tuned prior to conducting a capacity
planning study. Whereas performance tuning
is aimed at the technical staff and is done on a
day-to-day basis, capacity planning is aimed
at management, is expressed in business
terms, and predicts various levels of resource
utilization for the future (i.e., six months, one
year, etc., in the future).

T A N D E M SYSTEMS

Models. The performance characteristics of a
system can be represented mathematically as a
model. The use of models, simple or complex,
is an efficient means of estimating how chang­
ing the characteristics of the system (via the
model) will affect various components of the
system such as CPU Busy, Response Time, etc.

There are two primary capacity planning
methodologies: regression analysis and extrap­
olation (RAE), and modeling. In the RAE type
of analysis, historical data for the last two
years or so is collected and plotted using
regression analysis. Within confidence limits,
the regression line produced by this method is
then extended into the future on the assump­
tion that, in general, growth will continue
along the regression line. This line can then be
adjusted based on assumptions about future
growth.

With the modeling method of analysis, cur­
rent performance data is collected to establish
the current levels of resource utilization and
available system capacity. A model is built and
validated to the measurement sample. Data on
resource utilization is collected by talking to
application developers, strategic planners, and
the organization's management. This data is
then placed into the model and predictions are
made as to when and where bottlenecks are
most likely to occur. Proposed hardware, soft­
ware, or configuration changes can also be
added to a baseline model to determine the
effects of these changes.

This article discusses the modeling method
since it is more accurate in today's constantly
changing data processing environment.

Model Types
The complexity of the model used in capacity
planning depends on the study's objective. If
its objective is to determine the overall capac­
ity of a system, the model can be fairly simple.

A baseline model is the first model built and
reflects the current environment. Projected
changes to the system use this model as their
base.

Predictive models are used to predict where
resource bottlenecks will occur. They are also
used to determine the effects of any proposed
changes to the system. When the projections
are added to the baseline model, it becomes a
"predictive model."

REVIEW DECEMBER I 9 8 6

However, models used for detailed I/O sub­
system analysis are an advanced form of mod­
eling and can greatly increase the complexity
of a model. An I/O subsystem model is needed
only about 5% of the time and is used primar­
ily for very specialized studies.

Conducting a Capacity
Planning Study
Who Should Conduct It
Where there is a critical dependence on com­
puting resource availability and performance,
some form of capacity planning should be
going on. This can be as critical in small shops
as in large organizations. How formalized the
process is often depends on the size of the
organization.

When possible, the capacity planning func­
tion is a staff function reporting to the Direc­
tor of Management Information Systems or
higher. This helps to ensure the cooperation
necessary when capacity planning crosses
organizational boundaries.

Large organizations should have formal
charters for capacity planning functions with
one or more full-time people dedicated to
them. (A charter is a statement of purpose
endorsed by management.) Smaller shops may
have someone in the operations or systems
area doing informal capacity planning on a
part-time basis.

Because of its size, a smaller shop has fewer
available resources and possibilities for expan­
sion. Also, the smaller shop is likely to expe­
rience more rapid growth than the larger
organization. A small shop can, in most cases,
take advantage of capacity planning help from
the CPU vendor. This help is usually in the
form of guidelines for setting up the capacity
planning process based on the shop's needs
and may include the vendor doing a study for
the customer.

When to Conduct It
The data collection for capacity planning
should be an ongoing process. Current capac­
ity figures should be added to the capacity
planning projections monthly and "actual vs.
projected" charts should be produced quar­
terly for management review. At least semi­
annually, a new baseline model should be built
and new projections obtained and input to the
model. Major changes to the existing configu­
ration or the introduction of a new application

which is a large resource consumer also neces­
sitates a new baseline model and correspond­
ing projections. If the data that the projections
are based on changes significantly due to eco­
nomic conditions or changes in management
direction, then it is time to prepare a new
baseline model and adjust the projections
accordingly.

How to Conduct It
The methods used and the assumptions made
when doing a capacity planning study have a
direct bearing on the accuracy of the results.
Even "quick and dirty" studies must consider
certain steps to follow.

Senior management support and a well­
tuned system are the two primary prerequisites
for conducting a study.

Senior management support is necessary
because the capacity planner conducting the
study interfaces with different managers and
departments. This

Capacity Planninrt and Tuninrt

support aids in get­
ting the information
and support needed
from other managers.
Diplomacy is impor­
tant, as are assur­
ances to the managers
that they can review
the final document
before publication.

I Senior management
I support and a well-
. tuned system are the two
primary prerequisites for

I conducting a study.

If the system being modeled is not well
tuned, the projections vary significantly from
actuality. The capacity planner should know
enough about performance tuning to ensure
that the system is well tuned. If there is some
question about this, it may be necessary to
consult with the people in charge of system
tuning to see if improvements can be made.
If necessary, the vendor can provide valuable
support in this area.

DECEMBER I 9 8 6 TANDEM SYSTEMS REVIEW 57

Capaci(v Planning and Tuning

58

This preliminary tuning should be done with
a minimum expenditure of funds on addi­
tional hardware or software. The results of the
capacity planning study determine what, if
anything, is needed and aid in providing justi­
fication for the recommendation.

A successful capacity planning study
requires a definite plan. The following steps
are typical, though there may be variations
dictated by the nature of the study or company
policy. The time needed to complete each step
may also vary.

Management Approval. Getting management
approval for a study is essential to the success
of the study. With upper management sup­
port, the people contacted are more likely to
realize the importance of the project and pro­
vide the level of support and information
needed. If they know that senior management
supports the project they are more careful to
ensure the accuracy of the information given
to the analyst.

Establishing Objectives. Everyone involved
must be aware of the objectives and of the
importance of the outcome to the future of the
organization. Answering the following ques­
tions helps to identify the objectives:

■ What is our current capacity?

■ Based on our projected rate of growth, when
will we run out of capacity?

■ What are our options and the associated
costs?

Collecting Data. Data must be collected on a
continuous basis for performance tuning,
problem resolution, job accounting, and
capacity planning. By having this data avail­
able at the start of a capacity planning study,
the analyst can save time and ensure that the
data selected is representative of "normal"
operating conditions.

T A N D E M SYSTEMS

Analyzing Data. To effectively analyze data,
the capacity planner must first determine the
"typical" workload level to plan for (i.e., the
peak hour of the peak day of the year, the
peak hour of an average day of the year, etc.).
This information determines the time frame
and characteristics of the period selected for
modeling.

The data collected is analyzed to verify the
following:

■ The criteria established by the questions
above are met.
■ There is nothing abnormal in the system that
might skew the data.

The various workloads in the system (batch,
on-line, etc.) broken down by major applica­
tion and the resources consumed by each need
to be determined. Accurate characterization
of the workload mix in the system during the
time frame being modeled is critical to the
accuracy of the results.

Building a Model. After completion of the
previous steps, a model is built using perfor­
mance data from the "typical" time period
selected in the previous step.

A basic model generally has two major sec­
tions: a description section containing infor­
mation about the operating environment (CPU
type, disk and tape types) and the major appli­
cations that are in the system, and a resource­
consumption section.

These applications are known as workloads.
There is usually one workload for each major
application in the study and additional work­
loads for batch, on-line, and an "other" cate­
gory to allocate the rest of the resource
consumption.

The resource consumption section of the
model is where the resource utilization of each
workload is distributed across each of the vari­
ous devices used by that workload.

Each disk and/or tape device, as well as the
CPU, is known as a server. Every workload
has some of its total resource consumption
allocated to the CPU server. The rest of the
resource utilization is distributed only among
servers used by that workload.

The resource allocated to each server is the
amount of time spent at each server. This
information comes from the measurement
report analyzed previously and is usually in
milliseconds. This value is known as "service
time" or "demand."

REVIEW DECEMBER I 9 8 6

The model constructed from the current
system and its current workloads is the base­
line model.

Validating the Model. After the baseline model
is built, it is run and the output compared to
the corresponding measurement data. The
utilizations, queue lengths, throughputs, etc.,
calculated by the model should match the mea­
sured data from which the model was built to
within 5%. The key indicators are the utiliza­
tion percentages of the CPUs, I/0 activity, and
I/0 devices of concern. If the model doesn't
match to within 5% or less, a check of the
input data is made. This check shows whether
or not the various workloads were determined
correctly in the first place, and if the total
resource consumption was accurately allocated
to each workload.

Other items of interest are queue times,
queue lengths, memory utilization, and
throughput, if this data is available.

Collecting Growth Projections. GIGO (gar­
bage in/garbage out) is a frequently used acro­
nym in capacity planning. When interviewing
managers for growth predictions for the
upcoming year, the capacity planner must
stress that the accuracy of the model's projec­
tions is only as good as the input data. It is
also important to remember that growth can
be either upward or downward. Downward
growth can result in more capacity in the
future than is available now. To collect the
information needed for growth projections,
start with the following questions:

• Will there be more, fewer, or the same num­
ber of employees next year?

• Will people be doing the same type of work
they are doing now? If not, how will the work­
load change?

Senior management should be able to provide
insight into how economic projections will
affect the company's growth plans over the
next year. For industry growth projections,
check trade publications.

What-if Analysis. Once the growth projec­
tions are collected, they can be broken down
by application, converted to milliseconds of
service time, and added into the baseline
model. This provides the same results as ask­
ing "What if system resource consumption
grows by this amount?"

Capacity Planning and Tuning

When applying the growth projections to a
model, allow for projections being high or
low. A good way to do this is to add 10% or
15% to the projections and rerun the model.
Next, subtract 10% or 15% from the projec­
tions and run the model. Plot all three projec­
tions on the same graph. When this is done,
available capacity shortfalls can be evaluated
based on the possibility that the projections
were high, low, or right on target.

"Reality Checks" of Analysis Results. When
both the runs and preliminary charts are
made, a "reality check" is done to see if the
projections look reasonable. If they don't,
then the projections and their distribution
across the various workloads needs reevaluat­
ing. This is perhaps the most difficult aspect
of capacity planning, for it requires sound and
seasoned judgment.

Evaluating Alternatives and Costs. After the
projections are accepted as reasonable, alter­
natives are examined. If the growth projec­
tions were negative, there will be available
capacity. On the other hand, if the projections
were positive, bottlenecks in the system will
have appeared.

Various alternatives can now be evaluated to
determine what can be done to minimize or
eliminate the effect of the additional workload
caused by the projected growth. Alternatives
to consider include:

• Doing nothing.
• Adding a CPU, disks, controllers, etc.
■ Adding more memory.
■ Making scheduling or operations changes.

• Redistributing the hardware and/or the
data base.

DECEMBER 1 9 8 6 T A N D E M S Y S T E M S REVIEW 59

Capacity Planning and Tuning

60

Total costs must also be considered when pro­
posing a plan of action to management. Too
often a capacity planner makes the mistake of
recommending a solution that includes only
the cost of the hardware. Take care to include
costs such as heating/cooling, power, and
other physical site changes that may be
needed. Also consider the need for additional
personnel in the operations and/or scheduling
areas to support any additional equipment.
And finally, can the new equipment fit in the
existing computer room and still meet any
cable length restrictions?

The Report. The most important step in the
capacity planning process is the preparation of
the report, but it is begun only after the fol­
lowing steps are completed:

• All data is collected, validated, placed into a
model, and evaluated.

• Growth projections are added to the model
and it is run.

• All options are considered and decided on.

While preparing the report it is important to
remember that a poorly prepared report can
kill an excellent study.

Care must be taken to ensure that the
results of the study are presented to manage­
ment in terms related to business functions
and not in "computerese." One of the most
important abilities of the capacity planner is
that of translating technical computer terms
into business-related measures that manage­
ment understands. Rather than talking about
"resource consumption," examples of it are
used; i.e., how do the number of passenger
miles flown or the number of ATM transac­
tions in a day relate to the available CPU
capacity.

Management is not interested in detail
information; a general outline of the steps for
collecting and validating the data and growth
projections is sufficient. Management needs
to know what the options are, why a particu­
lar course of action is recommended, the costs
and time involved, and most importantly, how
this will improve the overall efficiency and
profitability of the company.

T A N D E M SYSTEMS

Make sure that all assumptions in the study
are clearly presented in the report to manage­
ment. If inaccuracies occur later between
actual and projected changes, these assump­
tions should be reevaluated.

When considering various alternatives and
the effects of each on the data processing envi­
ronment, be sure to include the option of
"doing nothing" and its effect.

Also allow for latent demand. Latent
demand is work that needs doing, but the
resources to do it are lacking. An example is
when logon is denied to a user because the
system's maximum capacity for logged-on
users has been reached. As more resources
become available and the number of users
allowed on the system is increased, new users
may use up the additional capacity that was
just gained. The system is out of capacity
again and the capacity planner is forced to
return to management and request more
resources. This undersizing of needed capacity
damages the capacity planner's credibility.
Lines of communication should be established
early with the user community, and users
should be encouraged to report any inability to
access the system. This provides a barometer
of latent demand.

Presenting the Results to Management. After
the repmt is prepared, it is presented to man­
agement. Just as a poor report can kill a good
study, a poor presentation of that report to
management casts doubt on the validity of the
study and the credibility of the capacity plan­
ning group. Be prepared and sure of the facts.
Credibility is the most important asset of the
capacity planning group as well as the hardest
to achieve. It comes only after many studies in
which the group's predictions and analyses of
the issues are proved correct. One bad study
can lower credibility more than many good
ones can improve it.

Presenting the report to management gives
the capacity planner the opportunity to state
his or her case in person and to answer ques­
tions. The more supporting information the
capacity planner has, the better the case made.
Detailed supporting documentation is needed
on hand for answering technical questions that
may arise. Color foils and/or slides aid man­
agement's understanding of the study as well
as enhance the professional image of the
capacity planning group.

REVIEW DECEMBER

Jizlidating Projected vs. Actual Growth. The
study does not end when management reaches
a decision concerning the proposed options.
The analyst continues to track actual versus
projected growth as the data becomes avail­
able (usually monthly) and presents this infor­
mation to management.

If a wide discrepancy starts to develop, the
capacity planner determines why and adjusts
the model accordingly. Only by this constant
refining of the model is the capacity planner
assured of the utmost accuracy on future pro­
jections. Management should always be
in formed when changes are made. They are
also given reasons for the variance between the
actual and the projected data.

This feedback loop is equally important for
the departments supplying projections. They
must be aware of the effects of any discrepan­
cies introduced by them if they are to fine tune
their own planning processes. Accuracy must
be emphasized.

Pitfalls and/ or Reasons for Inaccuracies
in Studies. There are a number of things to
watch out for when conducting a capacity
planning study. Any one can cause problems
and render a study useless. Some of the major
ones are listed below:

• The system is poorly tuned to start with.
■ The system workload characteristics are
misunderstood.
■ The objectives of the study are
misunderstood.

■ The baseline model is inaccurately validated.
■ Management support is lacking.

• Nontypical data is chosen to build the
model.
• Growth predictions are inaccurate.
■ The needed data is unavailable.

DECEMBER I 9 8 o T A N D E M

Conclusion
Much of an organization's cost savings today
comes from effective capacity planning.
Money saved by deferring installation of one
piece of equipment or by ordering only as
much as is needed can exceed a million dol­
lars. There are also the productivity improve­
ments experienced by the system's users. With
hardware costs decreasing and personnel costs
increasing, organizations must make users as
productive as possible. Good capacity plan­
ning assures that sufficient resources are avail­
able when people need them the most.

Increasingly, senior management is coming
to realize that the lifeblood of an organization
is the information contained in the data pro­
cessing system. Because of this, data process­
ing is treated as an important resource to the
company rather than an overhead function.

References
Cooper, J.C. 1980. A Capacity Planning Methodology. IBM
Systems Journal. Vol, 19, No. I.

Lipner, Dr. L.D. Capacity Planning Methodology. Auerbach
l,iformation Management. Series 45-01-07.

_____ . 1984. Five Risks in Information Center
Capacity Planning. BGS Systems Inc.

Watson, L., and Madsen, K. 1984. Capacity Planning for
Tandem Computer Systems. Tandem Application Monograph
Series. Part no. 83904. Tandem Computers Incorporated.

Acknowledgment
The author would like to thank Karna Thulin for providing
valuable support and expertise during the development of this
article.

Richard W. Evans was a senior staff analyst in the PSG Capacity
Planning Group. He joined Tandem in March 1985 after spending
15 years doing capacity planning and performance analysis on
IBM systems. He currently works for a Tandem customer.

SYSTEMS REVIEW

~'apacit,i· Plannit1g and TuninR

61

62

How to Set Up a
Performance Data Base
with MEASURE
andENFORM

performance data base is
a structured data base of
system performance infor­
mation. It is used for
capacity planning and the
tuning and balancing of
system resources. The

data is measured and collected with a perfor­
mance measurement tool, such as MEASURE.
Other software, such as the File ytility Pro~
gram (FUP), PATHWAY transaction processmg
system, Communications Management Inter­
face (CMI), and Communications Utility
Program (CUP), can provide additional
information.

The detailed data from these sources is con­
densed to form the performance data base.
Only those items necessary to analyze the per­
formance of the system/network over a period
of time are stored. Currently, on Tandem sys­
tems, this can be done with the ENFORM
query language and report generator.

This article provides a brief introduction to
using MEASURE and ENFORM together and
then describes one way to set up a perfor­
mance data base and produce reports. It
includes sample OBEY files of MEASURE
commands and ENFORM queries that stream­
line the process. To benefit fully from the
article readers should have a basic under­
standi~g of which performance metrics are
significant for Tandem systems and how
Tandem system performance is analyzed.

Using MEASURE and
ENFORM Together
MEASURE collects performance data on all of
the major hardware elements in typ!cal_ on-line
transaction processing (OLTP) apphcations,
such as the processors, disk drives, and lines
to the terminals. It also collects information
on all the major software elements, such as the
system software for disk drives and lines_ and
the application requesters and servers. Fmally,
it collects information on such elements as
files and supporting software (for example,
PATHMON, the PATHWAY Monitor) ..

Users may not need all of the many Items
MEASURE collects for a given performance
analysis task. To condense the data and pro­
duce the specific reports they need they can
use ENFORM.

The use of ENFORM with MEASURE gener­
ally follows a standard scenario. Typically, the
performance analyst sets up a MEASURE
measurement. Then the data generated by
MEASURE is moved to structured files and
fed into ENFORM queries for data reduction
and analysis. If the data is to be used for hi~­
torical purposes, ENFORM can be used agam
to condense the data for long-term storage.
For example, 24 hourly reports can be con-.
<lensed into three 8-hour shift reports contam­
ing their minimum, maximum, and average
measurements. This data can then be summed
up into monthly minimum, maximum, and
average measurements.

ENFORM can also make the data more use­
ful by computing the results of _various t:ormu­
las on specific data items. For mstance It can
compute the ratio of the MEASURE Process
Entity report items ATIME READY ~n~
ATIME BUSY so that the effect of pnonty
queuing can be analyzed.

TANDEM SYSTEMS REVIEW DECEMBER 1986

With ENFORM, users can create a variety of
reports on the performance data base as well
as correlate the performance data with that of
other data bases. One highly useful report
signals threshold violations for key perfor­
mance indicators (Figure l); another shows the
CPU utilization trend (Figure 2).

For a complete description of how to use
ENFORM with MEASURE, see the MEASURE
User's Guide, MEASURE Reference Manual,
and ENFORM Reference Manual.

Setting Up the Data Base
The following is one example of how to set up
a performance data base with MEASURE and
ENFORM. The OBEY and ENFORM query files
mentioned follow in the next section of the
article.

Define Performance Indicators
Start by defining the key performance indica­
tors for the system and setting optimum goals
for them. These indicators should show how
much of each system resource is being used
and how much is left. They should also aid in
predicting resource usage trends, including
which of the resources are most likely to
become bottlenecks.

The resource usage and queue lengths for
CPUs, disks, and lines as well as system
response time, turnaround time, and transac­
tion throughput are excellent indicators of
these system characteristics. With MEASURE,
these indicators are easily accessible, as is
information related to applications, such as
file activity and interprocess message traffic.

Set Up MEASURE Commands in
OBEY Files
A sample MEASURE data-collection configu­
ration, set up in a MEASCOM OBEY file,
appears in the next section. This configuration
is suitable for a generic OLTP application.' The
MEASURE User's Guide explains how to
implement the counters in the application
programs.

A sample OBEY file containing MEASURE
commands to convert raw data files into
structured data files is also shown.

1 Information from other sources, such as the Communications Utility Program
(CUP) and the PATHWAY transaction processing system may also be useful.
ENFORM can be used to integrate this information into the data base as well.

D E C E M B E R I 9 8 6 T A N D E M

Capacity Planning and Tuning

Figure 1

THRESHOLD REPORT

SYSTEM:BANCARD
DATE: 05/08/86
SHIFT N
OS VERSION: B30

CPU TIME MAX DELT MAX MAX DELT MAX AVG AVG AVG AVG
OF CPU CPU CPU CPU CPU INTR CPU CPU CPU CPU

DAY OLEN OLEN SWAP BUSY BUSY BUSY OLEN SWAP BUSY INTR

0 11:00 2.0 1.3 .2 55.4 10.5 8.5 1.2 .1 42.6 6.3
0 13:00 3.4 2.8 1.4 65.1 15.3 10.2 1.5 .3 53.3 8.6
0 14:00 4.6 2.7 3.1 60.2 17.9 13.8 2.6 1.6 52.4 11.5
0 15:00 7.1 4.1 1.2 75.1 24.9 15.5 2.6 .6 63.6 12.9
0 17:00 9.3 1.1 7.2 85.3 23.0 19.2 3.8 1.8 73.2 14.4

Figure 2

CPU TREND REPORT

DATES: JAN 1 TO APR 2

SYSTEM LOADID CPU CPU OS MAX DELT MAX MAX DELT
NAME DTDDDHH

\POS DT00111
\POS DT00211
\POS DT00310
\POS DT00411

\POS DT06011

\POS DT09211

Figure 1.

A sample threshold
report created with the
ENFORM query language
and report generator
from MEASURE per­
formance data. This
report signals threshold
violations for key per­
formance indicators. The
ENFORM query file to
produce the report
appears in the last sec­
tion of the article.

NUM TYPE VERS CPU CPU

01
01
01
00

00

01

OLEN OLEN

02 B30 1.5 .3
02 B30 2.0 1.3
02 B30 4.6 2.7
02 B30 3.4 2.8

02 B30 7.1 4.1

02 B30 9.3 1.1

Figure 2.

A sample CPU utiliza­
tion trend report created
with ENFORM from
MEASURE data. For the
hour of each day with
the largest maximum
average CPU queue
length, the following are
listed: the maximum
average CPU queue
length (MAX CPU
QLEN), the difference

SYSTEMS REVIEW

CPU CPU CPU
SWAP BUSY BUSY

.2 35.4 5.5

.2 55.4 10.5
3.1 60.2 17.9
1.4 65.1 15.3

1.2 75.1 24.9

7.2 85.3 23.0

between the maximum
and minimum average
CPU queue lengths
(DELT CPU QLEN),
and the swap rate (MAX
CPU SWAP), maximum
CPU BUSY rate (MAX
CPU BUSY), and delta
CPU BUSY rate (DELT
CPU BUSY) between the
busiest processor and the
least busy processor.

63

Capac it\' Planning and Tuning

Figure 3

Figure 4

Figure 3.

(Log on with normal user group ID.)

VOLUME $VOL.CPLNWEEK

ADD CPU•
ADD DISC•
ADD LINE •
ADD PROCESS SYSTEM-PROCESSES
ADD USER DEF $PROGS.SERVER1.'
ADD COUNTER RESP-TIME,

PROCESS $PROGS.SERVER1. •,
QUEUE

! Sets subvolume.

Measures all CPUs.
! Measures all disks.

Measures all lines.
1 Measures all system procedures.

Adds processes that have
response time and ...

ADD COUNTER THROUGHPUT, throughput counters in
PROCESS $PROGS.SERVER1. •, them.
ACCUM

START MEASUREMENT CPLNDAY < n >, Starts the measurement for
day < n > of the week.

FROM 00:05 FOR 24 HOURS, Starts at midnight for
24 hours.

INTERVAL 1 HOURS Writes data every hour.

VOLUME $VOL.CPLNWEEK ! Sets volume for week file.
ADD FILE CPLNDAY < n-1 > ! Lists yesterday's data.
SET REPORT FORMAT STRUCTURED ! Outputs structured files.
LIST CPU ', LOA DID OT< id> 00, FROM 00:00, FOR 1 HOURS
LIST DISC •, LOA DID OT< id> 00, FROM 00:00, FOR 1 HOURS
LIST LINE •, LOA DID OT< id> 00, FROM 00:00, FOR 1 HOURS
LIST PROCESS•, LOAD ID OT <id >00, FROM 00:00, FOR 1 HOURS
LIST USERDEF ', LOA DID OT <id >00, FROM 00:00, FOR 1 HOURS
LIST CPU', LOADID OT <id>01, FROM 01:00, FOR 1 HOURS
LIST DISC', LOADID DT<id>01, FROM 01:00, FOR 1 HOURS

LIST CPU ', LOAD ID OT< id> 23, FROM 23:00, FOR 1 HOURS
LIST DISC ', LOA DID OT< id> 23, FROM 23:00, FOR 1 HOURS
LIST LI NE ', LOAD ID OT< id> 23, FROM 23:00, FOR 1 HOURS
LIST PROCESS', LOADID DT<id>23, FROM 23:00, FOR 1 HOURS
LIST USERDEF •, LOAD ID OT <id> 23, FROM 23:00, FOR 1 HOURS

Figure 4.

A MEASCOM input file
containing a sample
MEASURE
configuration.

An OBEY file that con­
verts raw data files to
structured data files.

64 T A N D E M SYSTEMS

Set Up ENFORM Queries
Make a set of ENFORM query files. These files
will manage the data condensation, analysis,
and reporting. Typically, they will handle the
following:

■ Daily reports, containing threshold alarms.

■ Weekly or monthly reduction of daily files.
■ Monthly /yearly trend reports of resource
consumption and system health.

As mentioned earlier, sample threshold and
CPU trend reports are illustrated in Figures I
and 2. Sample ENFORM query files follow the
MEASURE OBEY files in the next section.

Sample OBEY and ENFORM
Query Files

These files can be used to streamline the data
collection, condensation, and reporting pro­
cess for performance analysis.

Start Up the MEASURE Subsystem
Begin by starting up the subsystem:

LOGON < Super.operator,password > 2

START MEASSUBSYS

Start Up the MEASURE Configuration
Once the MEASURE data collection processes
have been started, the data collection configu­
ration must be installed in the MEASCTL
processes. The MEASCOM input file in
Figure 3 contains a sample configuration and
starts the data collection for the next 24 hours.
(The collection automatically stops at the end
of the 24-hour period.)

After this file has been obeyed by
MEASCOM, wait 24 hours, change < n >
to < n + 1 > , and obey it again (< n > is
modulo 7).

Convert Raw Data to Structured Data File
Use MEASCOM nightly to convert raw data
files to structured data files. The OBEY file in
Figure 4 contains operations performed in
MEASCOM. Change the data file name to
CPLNDAY < n >, where < n > is the day of the
week; the start-up OBEY file is an example of
this. (Note that <jd > is the Julian date of the
MEASURE data.)

'Angle brackets (< >) in the examples represent user-supplied variable entries.

REVIEW DECEMBER 1 9 8 6

Condense the Data for Each Hour of the Day
The query in Figure 5 condenses the data set to
a much smaller subset by selecting only those
items in the CPU report that are of interest to
the capacity planner. This step begins to make
the data set more manageable. This report is
for the CPU resource only; use the same tech­
nique for the rest of the resource reports before
the next set of ENFORM queries.

Note: The ENFORM queries presented in
this article are examples only; they may not
work on all systems. Read the EN FORM
User's Guide, section 3, before attempting to
use ENFORM to analyze MEASURE data.

Condense Hourly Items into Shift Items
The query in Figure 6 further condenses the
data from hourly items into shift items by
approximately an 8-to-1 reduction. This
example is for CPU performance; set up simi­
lar queries for the other resources.

When the query is complete, copy the results
of the data reduction into the end of the cur­
rent month's summary file for that shift:

FUP
copy cplnmnth.cput,cplnmnth.cpushft < n >

Run the query and copy the results to the
summary file as many times as there are shifts,
changing the BEGIN"'SHIFT and END"'SHIFT
parameters and the CPUSHFT < n > file name
each time.

Figure 5.

An ENFORM query that
condenses the perfor­
mance data set to a more
usable subset. (This
query condenses CPU
data; use similar ones for
the other resources.)

D E C E M B E R

Figure 6.

A query that further
condenses the data from
hourly items into shift
items (approximately an
8-to-1 reduction).

I 9 8 6 T A N D E M

Capaci~v Planning and Tuning

Figure 5

?DICTIONARY
?VOLUME CPLNWEEK

OPEN CPU,CPUT;

FIND CPUT (
BY SYSTEM-NAME
BY LOADID
BY CPU-NUM

OS-VERSION
CPU-TYPE

Condenses the MEASURE data into
fewer data files containing
pertinent data only.

OLEN
MOLEN
SWAP
BUSY
IBUSY
SBUSY

CPU-OTIME/DELTA-TIME
MEM-OTIME/DELTA-TIME
SWAPS/DELTA-TIME
CPU-BUSY-TIME/(DELTA-TIME/100)
I NTR-BUSY-TI M E/(DELTA-TI M E/100)
SEND-BUSY-TIME/(DELTA-TIME/100)

);

Figure 6

?VOLUME CPLNWEEK
?DICTIONARY
PARAM Begin"shift

End"shift
shift;

OPEN CPUT,CPLNMNTH.CPUT;

FIND CPLNMNTH.CPUT (
BY SYSTEM-NAME
BY CPU-NUM
BY LOADID

OS-VERSION
CPU-TYPE
SHIFT

Brackets the data into shifts.

Specifies the shift number.

Condenses the MEASURE data into
fewer data files containing
pertinent data only.

OLEN-AVG-D: = AVG ((OLEN) OVER CPU-NUM)
OLEN-MAX-D: = MAX ((OLEN) OVER CPU-NUM)
OLEN-MIN-D: = MIN ((OLEN) OVER CPU-NUM)

MOLEN-AVG-D: = AVG ((MOLEN) OVER CPU-NUM)
MOLEN-MAX-D: = MAX ((MOLEN) OVER CPU-NUM)

SWAP-AVG-D: = AVG ((SWAP) OVER CPU-NUM)
SWAP-MAX-D: = MAX ((SWAP) OVER CPU-NUM)

BUSY-AVG-D: = AVG ((BUSY) OVER CPU-NUM)
BUSY-MAX-D: = MAX ((BUSY) OVER CPU-NUM)
BUSY-MIN-D: = MIN ((BUSY) OVER CPU-NUM)

IBUSY-AVG-D: = AVG ((IBUSY) OVER CPU-NUM)
IBUSY-MAX-D: = MAX ((IBUSY) OVER CPU-NUM)

SBUSY-AVG-D: = AVG ((SBUSY) OVER CPU-NUM)
SBUSY-MAX-D: = MAX ((SBUSY) OVER CPU-NUM)

);

Where (From"time > (Begin"shift - 1))
AND

(End"time < (End"shift + 1))

SYSTEMS REVIEW 65

Capacity Planning and Tuning

Figure 7

PQLEN-AVG-D: = AVG ((RECV-QTIME/DELTA-TIME)
OVER PROCESS-NAME)
WHERE (RECV-QTIME/DELTA-TIME) > .3

PQLEN-MAX-D: = MAX ((RECV-QTIME/DELTA-TIME)
OVER PROCESS-NAME)
WHERE (RECV-QTIME/DELTA-TIME) > .3

VSEM-MAX-D: = MAX ((VSEMS/DELTA-TIME)
OVER PROCESS-NAME)
WHERE (RECV-QTIME/DELTA-TIME) > .3

READY-BUSY-AVG-D: = AVG ((READY-TIME/CPU-BUSY-TIME)
OVER PROCESS-NAME)
WHERE (CPU-BUSY-TIME/(DELTA-TIME/100)) > .3

Figure 8

);

?DICTIONARY
?VOLUME CPLNMNTH

OPEN CPUT,CPUSHFTN; Condenses the MEASURE data into
fewer data files containing

FIND CPLNYEAR.CPUT (
BY SYSTEM-NAME

! pertinent performance data only.

Figure 7.

BY CPU-NUM
BY LOADID

OS-VERSION
CPU-TYPE
SHIFT

QLEN-AVG-M: = AVG ((QLEN-AVG-D) OVER CPU-NUM)
QLEN-MAX-M: = MAX ((QLEN-MAX-D) OVER CPU-NUM)
BUSY-DELT-M: = MAX ((BUSY-DELT-D) OVER CPU-NUM)

MQLEN-AVG-M: = AVG ((MQLEN-AVG-D) OVER CPU-NUM)
MQLEN-MAX-M: = MAX ((MQLEN-MAX-D) OVER CPU-NUM)

SWAP-AVG-M: = AVG ((SWAPS-AVG-DJ OVER CPU-NUM)
SWAP-MAX-M: = MAX ((SWAPS-MAX-D) OVER CPU-NUM)

BUSY-AVG-M: = AVG ((BUSY-AVG-D) OVER CPU-NUM)
BUSY-MAX-M: = MAX ((BUSY-MAX-D) OVER CPU-NUM)
QLEN-DELT-M: = MAX ((QLEN-DELT-D) OVER CPU-NUM)

IBUSY-AVG-M: = AVG ((IBUSY-AVG-D) OVER CPU-NUM)
IBUSY-MAX-M: = MAX ((IBUSY-MAX-D) OVER CPU-NUM)

SBUSY-AVG-M: = AVG ((SBUSY-AVG-D) OVER CPU-NUM)
SBUSY-MAX-M: = MAX ((SBUSY-MAX-D) OVER CPU-NUM)

);

Figure 8.

A query that condenses
data from the PROCESS
data file by restricting it
to minimum activity
level. Use similar queries
to condense the data for
the disk, line, and
USERDEF reports.

A query that produces
the monthly average data
for a resource. This
example is for the CPU
resource, by shift.

66 TANDEM SYSTEMS

Summarize PROCESS Data
The query in Figure 7 resembles the CPU query
except that the data is derived from the
PROCESS data file (created by MEASURE for
input to ENFORM). Note that the number of
records is reduced by restricting the data to
minimum activity level.

Use similar queries to condense the data for
the disk, line, and USERDEF reports. For
disks, key items include DISC BUSY, REQ
QLEN, SEEK BUSY, CACHE HITS, and
CACHE MISSES. WRITE BUSY and BYTE
RATE suffice as report line items. For USER­
DEF, see the documentation on user-defined
counters in the MEASURE User's Manual.

After all data in the weekly subvolume has
been condensed, the data files in that subvol­
ume can be purged.

Condense Weekly Shift Summaries into
Monthly Ones
For long-range trend analysis, summaries of
monthly averages are useful. The query in
Figure 8 produces the monthly average data
for the various resources that comprise the
system. This example is for the CPU resource,
by shift.

After the data has been condensed, copy the
results into the end of the current year's sum­
mary file for that shift and do the same for the
process, disk, line, and USERDEF reports.

REVIEW D E C E M B E R I 9 8 6

Produce Special Threshold Reports
Threshold reports can highlight potential or
real problems for prompt action. Figure 9 con­
tains a sample OBEY file for such a report. It
uses ENFORM to isolate maximum queue
lengths, CPU BUSY rates, and other rates
above acceptable limits. The report is illus­
trated in Figure I .

Use the same query for process, disk, line,
and USERDEF data. Run these reports daily.

Note: Each system has its own set of thresh­
old items and values. The Tandem application
monograph, Capacity Planning for Tandem
Computer Systems, explains the criteria for
deriving these threshold values.

References
ENFORM User's Guide. Part no. 82349 BOO. Tandem Com­
puters Incorporated.

MEASURE Reference Manual. Part no. 82441 A00. Tandem
Computers Incorporated.

MEASURE User's Guide. Part no. 82440 A00. Tandem Com­
puters Incorporated.

Watson, L., and Madsen, K. 1984. Capacity Planning for
Tandem Computer Systems. Tandem Application Monograph
Series. Part no. 83904. Tandem Computers Incorporated.

Acknowledgments
The author wishes to thank the entire Performance Support
Group, Peter Oleinick, and Susan Uren for their valuable
suggestions for the article. He would also like to thank Joyce
Lamkin for her assistance with the ENFORM queries and
MEASURE OBEY files.

Michael L. King is an analyst in the Performance Support Group.
Before this he was a performance specialist in Tandem's North­
west Region for four years. He joined Tandem in 1979 as an
analyst in the corporate Software Education Group.

DECEMBER 1 9 8 6 TANDEM

Capacity Planning and Tuning

Figure 9

?DICTIONARY
?VOLUME CPLNWEEK ! Threshold report OBEY file.

DECLARE
d-FROM-TIME as TIME "H2:M2" HEADING "TIME"

OPEN CPUSHFTN; Creates a table of average
and maximum values, one set

LIST per day, if threshold values
are exceeded in the WHERE
statement at the end of the

BY CPU-NUM OBEY file. Otherwise, no report
AS 12 HEADING "CPU/#" is generated.

d-FROM-TIME: = MIN(TIMESTAMP-DATE(B-FROM-TIME))
HEADING "TIME/OF/DAY"

OLEN-MAX-D
AS F5.1 HEADING "MAX/CPU/OLEN"

OLEN-DELT: = (OLEN-MAX - OLEN-MIN)
AS F5.1 HEADING "DELT/CPU/OLEN"

SWAP-MAX-D
AS F5.1 HEADING "MAX/CPU/SWAP"

BUSY-MAX-D
AS F5.1 HEADING "MAX/CPU/BUSY"

BUSY-DELT: = (BUSY-MAX - BUSY-MIN)
AS F5.1 HEADING "DELT/CPU/BUSY"

IBUSY-MAX-D
AS F5.1 HEADING "MAX/INTR/BUSY"

OLEN-AVG·D
AS F5.1 HEADING "AVG/CPU/OLEN"

SWAP-AVG-D
AS F5.1 HEADING "AVG/CPU/SWAP"

BUSY-AVG-D
AS F5.1 HEADING "AVG/CPU/BUSY"

IBUSY-AVG-D
AS F5.1 HEADING "AVG/INTR/BUSY"

Where
(qlen-max-d > 2) OR
(qlen-delt > 1) OR
(swap-max-d > 2) OR
(busy-max-d > 70) OR
(busy-dell > 20) OR
(ibusy-max-d > 25) OR

TITLE
"\NEW" SKIP 1" THRESHOLD REPORT"

SKIP 1 "SYSTEM: "SYSTEM
SKIP 1 "DATE: "FROM"TIME AS DATE•
SKIP 1 "SHIFT" SHIFT
SKIP 1 "OS VERSION:" OS-VERSION

Figure 9.

An OBEY file that pro­
duces the threshold
report in Figure I. It
isolates maximum queue
lengths, CPU BUSY

rates, and other rates
above acceptable limits.
Use similar queries for
process, disk, line, and
USERDEF data.

SYSTEMS REVIEW 67

68

Performance Considerations
for Application Processes

- iiiiii
his article is intended to help
analysts investigate the per­
formance of a production
system. Many of the exam­
ples are derived from cus­
tomer application field
experience. Often the imple-

mentation of the system is different from the
design. (Not all programmers follow the spec.)
It is also not unusual for the person charged
with analyzing system performance to lack
detailed knowledge of the application. This is
especially true if the customer is using soft­
ware written by a third party. This article
shows some of the techniques used on cus­
tomer sites to analyze the system design and to
highlight performance problems in the system
implementation.

System tuning does not stop at load balanc­
ing, PATHWAY tuning, and CACHE optimiza­
tion. MEASURE provides a great deal of
information about application design that is
not obvious unless the relationship between
the entities is understood. This article presents
several ways of using performance data col­
lected by MEASURE to identify programs that
are placing excessive demands on hardware
resources. Guidelines are also included to
assist the analyst in determining whether the
problem is design-related or caused by ineffi­
cient programming.

The first phase of a performance and tuning
study is usually an attempt to balance hard­
ware usage and to tune software products
(such as PATHWAY and GUARDIAN 90). The
MEASURE User's Guide and the PATHWAY
System Management Reference Manual
describe load balancing and general tuning
procedures. Specific ways of tuning the
PATHWAY terminal control process (TCP) are
also documented in previous issues of the
Tandem Journal (Wong, 1984) and the Tandem
Systems Review (Vatz, 1985).

If the response time at the terminal or the
elapsed time for batch jobs are still unaccept­
able after basic tuning, further analysis is
needed. It is often useful to identify the reason
that the user is unhappy with the system per­
formance. The nature of the complaint indi­
cates both the type of problem and which

TANDEM SYSTEMS REVIEW DECEMBER 1986

aspects of the system warrant further investi­
gation. For example, problems with the "aver­
age" response time for all transaction types
may well be design-related or caused by overly
complex transactions. If the response time for
specific transactions is causing concern, the
analysis could be focused onto just those
transactions. "Hiccups" in the system may
be caused by batch work or unusual peak
workloads.

Data Collection
To analyze software performance, the data
collected must be complete enough to charac­
terize workload patterns and to identify
heavily used (or resource-hungry) programs.
Generally, this will include data for all disk
files and processes. MEASURE writes to the
data file at the beginning and end of the mea­
surement and at intervals specified when the
measurement is started. The frequency for
writing the data is known as the "collection
interval." The collection interval for the type
of analysis discussed in this article should be
short enough to show the workload profile
without placing an undue demand on disk
resources. A 30-minute collection interval will
usually meet these requirements.

In practice, it is not always possible to col­
lect enough data in a single measurement
because of restrictions in the amount of
counter space available and the amount of disk
space required to store the data file. In this
case, several measurements must be taken,
each concentrating on a specific aspect of the
application. For example, to identify the peak
time periods, only hardware devices (CPUs
and disks) need be measured. Software entities
such as files and processes need only be mea­
sured for a relatively short time period (one or
two hours). For the reports shown in this
article it is not necessary to specify a collec­
tion interval for these entities.

MEASCOM can be used to output the col­
lected data to a set of structured files which
can be analyzed using ENFORM. Besides
allowing far greater flexibility in the report
formats, structured files also allow the analyst
to build a historical data base for capacity
planning purposes.

DECEMBER 1 9 8 6 T A N D E M

Application Design and Implementation

Figure 1

DECLARE CPU-BUSY INTERNAL F6.6;
OPEN PROCESS;
LIST BY PROGRAM-FILE-NAME

COUNT(PROGRAM-FILE-NAME OVER PROGRAM-FILE-NAME) HEADING
"COUNT"
AS "M<ZZZ>"

CPU-BUSY:= SUM ((CPU-BUSY-TIME) OVER PROGRAM-FILE-NAME) NOPRINT
CPU-BUSY:= (CPU-BUSY/1000000)
AS "M <Z,ZZ9.99>" HEADING "CPU/SEC"

SUM (MESSAGES-RECEIVED OVER PROGRAM-FILE-NAME)
AS "M <ZZZ,ZZ9>" HEADING "MESSAGES/RECEIVED"

SUM (MESSAGES-SENT OVER PROGRAM-FILE-NAME)
AS "M <ZZZ,ZZ9>" HEADING "MESSAGES/SENT"

TITLE "PROCESS SUMMARY REPORT'';
CLOSE PROCESS;
PROCESS SUMMARY REPORT

CPU
PROGRAM-Fl LE-NAME COUNT SEC

$HENLEY DEVOVJ GL001A 6 21.63
$MARLOW AAPOBJ PAGEOBJ 2 1.01
$MARLOW AAPOBJ PITMOBJ 2 1.82
$SYSTEM PRODOBJ GL50OC 6 6.07
$SYSTEM OPERATE D630OBJ 1 34.55
$TEMPLE TRANSFERTISERV 11 79.61
$TEMPLETRANSFERTRECV 4 4.08
$TEMPLETRANSFERTSCHED 2 29.29
$TEMPLE TRANSFERTWORK 4 9.52
$TEMPLE TRANSFERWMSERV 2 7.34

Reports on Process Data
ENFORM can be used to produce summary
reports of the data collected for processes and
to calculate the number of FILE I/Os and the
number of CPU seconds used by individual
processes for each transaction.

The Process Summary report shown in
Figure 1 contains one line for each program
object file measured. The COUNT column
shows how many times the program was
started. The last three columns show the totals
of CPU-BUSY-TIME, MESSAGES-SENT, and
MESSAGES-RECEIVED for the program.

SYSTEMS REVIEW

MESSAGES MESSAGES
RECEIVED SENT

136 3,844
25 134
90 240
0 666

2,518 2,970
930 7,681

36 262
2,615 3,310

83 1,090
385 285

Figure 1.

The Process Summary
report. The number of
times that the program
was started is given in
the column headed
COUNT. The other
columns show totals
of CPU seconds, mes­
sages received over
$RECEIVE and mes­
sages sent via the file
system.

69

Application Design and_lmplementati_o_n

Figure 2

DECLARE RUN-TIME INTERNAL F6.6;
DECLARE CPU-PER-SEC INTERNAL F6.2;
DECLARE IO-PER-SEC INTERNAL F6.2;
OPEN PROCESS;
LIST BY DESC CPU-BUSY-TIME NOPRINT

PROGRAM-FILE-NAME

RUN-TIME:= (DELTA-TIME/1000000)
AS "M <Z,ZZ9.99>" HEADING "RUN TIME/(SECONDS)"

CPU-PER-SEC:= (CPU-BUSY-TIME/DELTA-TIME)
AS "M<9.99>" HEADING "CPU/UTILIZATION"

IO-PER-SEC: =(MESSAGES-SENT/DELTA-TIME)
AS "M<999>" HEADING "1.0. PER SECOND"

PRIORITY

WHERE CPU-BUSY-TIME > 60000000 PRIORITY < 200
TITLE "BUSY PROCESS REPORT";
CLOSE PROCESS;
BUSY PROCESS REPORT

RUN TIME CPU 1.0. PER
PROGRAM-FILE-NAME (SECONDS) UTILIZATION SECOND PRIORITY

$SYSTEM SYSTEM OP
$SYSTEM PRODOBJ BATCH01
$SYSTEM PRODOBJ ACTREPT
$SYSTEM SYS30 BACKUP
$SYSTEM SYS30 FUP
$OXFORD CNSRUND GLUT140A
$SYSTEM SYSTEM OP

1,197.49
1,202.32
1,197.49
1,200.48
1,207.82

361.25
279.12

0.29
0.19
0.16
0.08
0.06
0.20
0.22

32
24
06
12
03
21
25

190
185
185
131
148
149
139

Figure 2.
Figure 2 shows the Busy Process report. It

only includes entries for processes using over
60 seconds of CPU time and is sorted in
descending order of CPU-BUSY-TIME (i.e.,
CPU utilization in seconds). RUN TIME shows
the program's duration (in seconds). CPU
UTILIZATION and 1/0 per second show the
resource consumption per second of the pro­
cess. PRIORITY is self-explanatory.

The Busy Process
report. This report shows
the resource consump­
tion and process priori­
ties of processes that
consumed more than
600 seconds of CPU time
during the measurement.
The report is sorted in
descending order of
CPU-BUSY-TIME in
seconds. The values
printed for CPU UTILI­
ZATION and I.O. PER
SECOND are resource
consumption per second.

70

The Process Activity report (see Figure 3)
shows the number of I/Os and CPU seconds
consumed by a process for each message read
over $RECEIVE. For an on-line transaction
processing (OLTP) server process, MESSAGES­
RECEIVED will often be equal to the number
of transactions that it has processed.
MESSAGES-SENT is the number of messages
sent, and will usually be equal to the number
of file I/Os initiated by the process.

- --------

T A N D E M SYSTEMS

The FILE report of MEASCOM can show
files being accessed by a particular process
(see Figure 4 for syntax). If the MEASURE
command "ADD FILE *" was used to start the
measurement, the reports will be printed for
all GUARDIAN 90 files including $RECEIVE,
terminals, and processes. This data can be
written to structured files, and the ENFORM
query shown in Figure 5 can be used to pro­
duce a summary of the output. (This is a very
expensive ENFORM query and is, therefore,
best used with a small amount of data.)

These four reports provide a very detailed
view of the total resource usage of any pro­
gram or process. Note that the Summary
report should be run against a file contai_ning
data on all of the processes that were active
during a measurement period. The Activity
report should concentrate on application pro­
cesses and the FILE report should be printed
only f~r selected application processes requir­
ing further analysis.

The Process Summary Report
The column titled COUNT on the Process
Summary report (refer to Figure 1) shows the
total number of times that a process based on
the program object file was started. If possi­
ble, process creations should be avoided in an
on-line system. Process creation is very expen­
sive relative to the cost of processing a trans­
action. A high value in the count field is an
indication of dynamic process creations.

The last three columns of this report (CPU
SEC, MESSAGES-RECEIVED, MESSAGES­
SENT) show the total resource usage of the
program. These figures help identify where
detailed investigation is likely to yield the
most benefit. A small improvement in resource
utilization of a busy process will give a large
overall improvement, whereas a large improve­
ment in a seldom-used program is unlikely to
show any noticeable change.

The Busy Process Report
The Busy Process report shows the individual
processes that use the most CPU time, and is
most effective used in conjunction with the
Process Summary report. The CPU UTILIZA­
TION is the same value as would be obtained
from MEASCOM if the report was produced
with RATE ON. However, the report is sorted
as if RATE OFF were set.

REVIEW D E C E M B E R I 9 8 6

The value of this report is that it indicates
large processes run at the wrong priority and
processes that are "resource hogs." For exam­
ple, in the report shown in Figure 2, the QP
process at the top of the list, was running at a
very high priority; it used 29% of the proces­
sor and performed 32 file I/Os per second. If
this process were running alongside OLTP
work, it would be likely to have a detrimental
effect upon the response time at the terminal.

The Process Activity Report
The Process Activity report is most valuable
for OLTP servers. Usually the number of
transactions that a server has processed can be
equated to its MESSAGES-RECEIVED counter.
Assuming this to be true, this report shows the
1/0 and CPU consumption per transaction of
server processes.

One factor influencing response time at the
terminal is the time that the server processes
take to service each request. If queuing has
been eliminated from the configuration and
resources are not overloaded, the service time
is a function of the number of file I/Os that
the server must perform. For an OLTP system,
each transaction will typically need to per­
form between 5 and 20 file I/Os. If the values
calculated are much greater than this, the
actual 1/0 performed by the process should be
checked against expected I/Os used for the
sizing of the application or shown in the
design documentation. For transactions
requiring a very large number of I/Os, it may
be necessary to revise the response-time expec­
tations for that transaction or redesign the
data base to reduce the number of disk I/Os
required.

---·-----~

D E C E M B E R I 9 H 6 TANDEM

Application Design and Implementation

Figure 3

DECLARE CPU-PER-IO INTERNAL F6.6;
DECLARE CPU-PER-TRANS INTERNAL F6.6;
DECLARE IO-PER-TRANS INTERNAL F6.6;
OPEN PROCESS;
LIST BY DESC CPU-BUSY-TIME NOPRINT
PROGRAM-FILE-NAME

CPU-PER-TRANS:= (CPU-BUSY-Tl M E/M ESSAGES-RECEIVED/1000000)
AS "M <ZZ9.9999>" HEADING "CPU PER/TRANS"

IO-PER-TRANS: = (MESSAGES-SENT/MESSAGES-RECEIVED)
AS "M <ZZZZZ9.9>" HEADING "1.0. PER/TRANS"

CPU-PER-IO: = (CPU-BUSY-TIME/MESSAGES-SENT/1000000)
AS "M<9.9999>" HEADING "CPU PER/1.O."

WHERE MESSAGES-RECEIVED > 0 AND MESSAGES-SENT> 0
TITLE "PROCESS ACTIVITY BY PROGRAM";
CLOSE PROCESS;

PROCESS ACTIVITY BY PROGRAM

CPU PER
PROGRAM-FILE-NAME TRANS

$SYSTEM PRODOBJ GL 10A 0.0924
$SYSTEM PRODOBJ GL10B 0.0320
$SYSTEM PRODOBJ PO15A 0.0241
$SYSTEM PRODOBJ GL07C 0.0914
$SYSTEM PRODOBJ PO15D 0.0736

Figure 3.

Process Activity report.
For an OLTP server the
CPU-BUSY-TIME
divided by MESSAGES-

RECEIVED will be
equal to the CPU con­
sumption per transaction
and MESSAGES-SENT

Figure 4

SET REPORT FORMAT STRUCTURED
LIST FILE• (cpu,pin),FROM hh:mm,TO hh:mm

Where cpu,pin is the CPU and PIN of the relevant
process, and hh:mm give the start and stop limes
of the process.

SYSTEMS REVIEW

1/0 PER CPU PER
TRANS 1/0

8.7 0.0107
3.5 0.0093
2.9 0.0084

13.2 0.0069
8.2 0.0090

divided by MESSAGES­
RECEIVED will be
equal to the number of
file I/Os per transaction.

Figure 4.

MEASCOM syntax to
write file data for a
specijic process to a
structured file.

71

Application Design and Implementation

Figure 5.

Detailed reports based
on data extracted from
the command in Fig­
ure 4. This report shows
in great detail the
resource consumption
of a process.

72

Figure 5

DECLARE CPU-BUSY
INTERNAL F6.6; OPEN FILE, PROCESS

LIST BY PROCESS.CPU-NUM NOPRINT
BY PROCESS.PIN NOPRINT
BY FILE.OPENER-CPU NOPRINT
BY FILE.OPENER-PIN NOPRINT
BY PROCESS.FROM-TIMESTAMP NOPRINT
BY FILE.FROM-TIMESTAMP NOPRINT

CPU-BUSY:= (CPU-BUSY-TIME/1000000) NOPRINT

FILE-NAME
READS SUBTOTAL OVER PROCESS.FROM-TIMESTAMP
WRITES SUBTOTAL OVER PROCESS.FROM-TIMESTAMP
DELETES-OR-WRITEREADS HEADING "DELETE OR/WRITEREAD"

SUBTOTAL OVER PROCESS.FROM-TIMESTAMP
INFO-CALLS HEADING "INFO/CALLS" SUBTOTAL OVER
PROCESS.FROM-TIMESTAMP

WHERE DEVICE-TYPE = 3
AND PROCESS.CPU-NUM = FILE.OPENER-CPU
AND PROCESS.PIN = FILE.OPENER-PIN
AND PROCESS.FROM-TIMESTAMP < FILE.FROM-TIMESTAMP
AND PROCESS.TO-TIMESTAMP > FILE.TO-TIMESTAMP

AFTER CHANGE ON PROCESS.FROM-TIMESTAMP PRINT FORM SKIP
PROCESS-NAME
" CPU" PROCESS.CPU-NUM
"PIN" PROCESS.PIN
SKIP
"PROGRAM" PROGRAM-FILE-NAME
"FROM" TIMESTAMP-TIME(

(((PROCESS. FROM-Tl M ESTAM P - 211024440000000000)/ 10000) • 65536)
)AS TIME•

"TO" TIMESTAMP-TIME(
(((PROCESS.TO-TIMESTAMP - 211024440000000000)/ 10000) • 65536)

)AS TIME•
SKIP
" CPU-BUSY" CPU-BUSY
"SENT" MESSAGES-SENT
"RECVD" MESSAGES-RECEIVED
SKIP

TITLE "PROCESS DISC FILE ACTIVITY REPORT";
CLOSE FILE, PROCESS;

PROCESS DISC FILE ACTIVITY REPORT

FILE-NAME READS

$Y186 CPU 0 PIN 37

WRITES

PROGRAM $MARLOW SWFSYS SVR05OBJ FROM 09:25:59
CPU-BUSY .495949 SENT 82 RECVD

$MARLOW SWF FILECOMP 7 0
$MARLOW SWF FILESTUD 7 0
$MARLOW SWF FILEXREF 0 0
$MARLOW SWF FILECOUR 21 7
$MARLOW SWF FILECLAS 1 0
$MARLOW SWF FILEENRL 1 1
$MARLOW SWF FILELODG 0 7
$MARLOW SWF FILEACOM 0 7

40 22

PROCESS DISC FILE ACTIVITY REPORT

FILE-NAME READS WRITES

$Y178 CPU 0 PIN 58
PROGRAM $MARLOW SWFSYS SVR01OBJ FROM 09:20:01
CPU-BUSY 2.387662 SENT 440 RECVD

$MARLOW SWF FILECOMP 22 0
$MARLOW SWF FILESTUD 26 0
$MARLOW SWF FILEXREF 0 0
$MARLOW SWF FILECOUR 84 0
$MARLOW SWF FILECLAS 93 0
$MARLOW SWF FILEENRL 44 0
$MARLOW SWF FILELODG 0 0
$MARLOW SWF FILEACOM 0 0

269 0

2

21

DELETE OR
WRITEREAD

AM TO 09:53:37

0
0
0
0
0
0
0
0

0

DELETE OR
WRITE READ

AM TO 09:53:37

0
0
0
0
0
0
0
0

0

INFO
CALLS

AM

2
2
2
2
2
2

2
2

16

INFO
CALLS

AM

2
2
2
2
2
2
2
2

16

TANDEM SYSTEMS REVIEW DECEMBER I 9 8 6

Servers and the CPU. Typically, OLTP servers
are 1/0-intensive and do not consume a large
number of CPU cycles per transaction; there­
fore, the CPU consumption of a server usually
relates directly to the number of file I/Os that
it performs. This consumption reflects the file
system cost to set up the disk request, and
does not include the CPU costs for the disk
process, TMF, or the interrupt handlers. These
items are the larger consumers of CPU
resources. If the Process Activity report shows
any server to have a profile that is different
from the other servers in the system, an inves­
tigation of the application code should be
made to ensure that it is written in an efficient
manner.

The Disk Subsystem
An 1/0 request to a disk file can be viewed in
two ways:

■ As logical 1/0 (requests to the file system
from a program).
■ As physical 1/0 (reads or writes of data and
index blocks to disk).

The FILE entity records the 1/0 operations
performed by a user process on an explicitly
opened file (logical file access). The DISC­
OPEN entity measures the 1/0 operations per­
formed by the disk process on a specified file
(physical file access). A logical 1/0 request
can be satisfied from the "process file seg­
ment," in which case no counters will be
incremented on the DISCOPEN entity and no
physical 1/0 will take place. Alternatively, the
I/0 will be handled by the disk process and
recorded in the DRIVER-INPUT-CALLS and
DRIVER-OUTPUT-CALLS counters of the
DISCOPEN entity. A proportion of these driver
calls will be satisfied from cache and will also
be recorded in the CACHE-HITS and CACHE­
WRITE-HITS counters.

The File Summary report (Figure 6) is an
ENFORM report summarizing activity on a
subset of disk files opened during the measure­
ment period. This report would usually be run
against a file containing entries for all of the
files accessed during the measurement, identi­
fying any files which are being opened dynam­
ically by processes, and highlighting the
busiest files on the system. A similar report
can be run against data collected for the
DISCOPEN entity. (See Figure 7 on the follow­
ing page.)

DECEMBER 1 9 8 6 T A N D E M

Application Design and Implementation

Figure 6

OPEN FILE;
LIST BY FILE-NAME
COUNT(FILE-NAME OVER FILE-NAME) HEADING "COUNT"
AS "M<ZZZ>"

SUM (READS OVER FILE-NAME) HEADING "TOTAL/READS"
AS "M <ZZZ,ZZ9>" TOTAL

SUM (WRITES OVER FILE-NAME) HEADING "TOTAL/WRITES"
AS "M < zzz,zz9 >"

SUM (UPDATES-OR-REPLIES OVER FILE-NAME) HEADING "/UPDATES"
AS "M<ZZZ,ZZ9>"

SUM (DELETES-OR-WRITEREADS OVER FILE-NAME) HEADING "/DELETES"
AS "M <ZZZ,ZZ9>"

SUM (INFO-CALLS OVER FILE-NAME) HEADING "INFO/CALLS"
AS "M<ZZZ,ZZ9>"

WHERE file-name NOT contains"#" AND
(READS + WRITES + UPDATES-OR-REPLIES +
DELETES-OR-WRITEREADS + INFO-CALLS) > 0
AND DEVICE-TYPE = 3
TITLE "DISC FILE SUMMARY REPORT";
CLOSE FILE;

DISC FILE SUMMARY REPORT

TOTAL TOTAL
FILE-NAME

$TEMPLE TRANDBA DISTLIST
$TEMPLETRANDBAFOLDER
$TEMPLETRANDBAIFOLDER
$TEMPLE TRANDBA ITEM DATA
$TEMPLE TRANDBA ITEMDESC
$TEMPLE TRANDBA PROFILE
$TEMPLE TRANDBA READY
$TEMPLE TRANDBA RECIP
$TEMPLE TRANDBA SESSION

COUNT READS WRITES

Figure 6.

:274
1,:305

772
1,:252

18
0

59
1,:238

0
115
147

2
3
0
4
2
3

TOTAL
UPDATES

0
0
0
4
4
0
0

38
1

TOTAL
DELETES

0
79
79

0
0
0
0
0
0

INFO
CALLS

File Summary report.
The number of times
that a file was opened is
given by the COUNT
column; the other col­
umns show logical I/Os.
Only files explicitly

opened by a process are
included in this report.
Alternate-key files and
secondary partitions are
shown in the DISCOPEN
Summary report
(Figure 7).

SYSTEMS REVIEW 73

Application Design and Implementation
--- -- ---

Figure 7

Figure 7.

OPEN DISCOPEN;
LIST BY FILE-NAME
COUNT(FILE-NAME OVER FILE-NAME) HEADING "COUNT"
AS "M<ZZZ>"

SUM (DRIVER-INPUT-CALLS OVER FILE-NAME)
HEADING "TOTAL/INPUT" AS "M <ZZZ,ZZ9>"
SUM (CACHE-HITS OVER FILE-NAME)
HEADING "CACHE/HITS" AS "M <ZZZ,ZZ9>"

SUM (DRIVER-OUTPUT-CALLS OVER FILE-NAME)
HEADING "TOTAL/WRITES" AS "M<ZZZ,ZZ9>"

SUM (BLOCK-SPLITS OVER FILE-NAME)
HEADING "TOTAL/BLOCK/SPLITS" AS "M<ZZ,ZZ9>"

SUM (REQUESTS-BLOCKED OVER FILE-NAME)
HEADING "TOTAL/STALLS" AS "M <ZZ,ZZ9>"

WHERE FILE-NAME NOT CONTAINS"#" AND
(DRIVER-INPUT-CALLS+ DRIVER-OUTPUT-CALLS) > 0
TITLE "DISCOPEN SUMMARY REPORT";
CLOSE DISCOPEN;
DISCOPEN SUMMARY REPORT

TOTAL
TOTAL CACHE TOTAL BLOCK TOTAL

FILE-NAME COUNT INPUT HITS WRITES SPLITS STALLS

$MAIL TRANDBA ITEM DATA 1,788 1,348 0 0 0
$MAIL TRANDBA ITEMDESC 1,748 1,468 1 0 1
$MAIL TRANDBA RECIP 207 90 28 0 0
$TEMPLE TRANDBA DISTLIST 3 0 0 0 0
$TEMPLE TRANDBA FOLDER 1,324 1,249 210 4 1
$TEMPLETRANDBAIFOLDER 4,163 3,881 194 0 0
$TEMPLE TRANDBA ITEM DATA 610 491 10 1 0
$TEMPLETRANDBAITEMDESC 2,030 1,844 6 0 0
$TEMPLE TRANDBA PROFILE 36 30 0 0 0
$TEMPLE TRANDBA READY 8 7 4 0 0
$TEMPLE TRANDBA READY0 8 7 4 0 0
$TEMPLE TRANDBA RECIP 62 35 12 0 0
$TEMPLE TRANDBA SESSION 3,727 3,681 8 1 0

DISCOPEN Summary
report. The DISCOPEN
entity collects data on the
physical 1/0 required to
access a file including
indexes, alternate-key
Jiles, and secondary
partitions.

The relationship between the FILE and
DISCOPEN entities is illustrated by the FILE
Summary and DISCOPEN Summary reports.
The files $TEMPLE.TRANDBA.ITEMDATA,
ITEMDESC, and RECIP are all partitioned
files with secondary partitions on $MAIL. The
file $TEMPLE.TRANDBA.READY has an
alternate-key file on the same subvolume
called READY0. Alternate-key files and sec­
ondary partitions are not directly opened by
the program, therefore they only appear on the
DISCOPEN report. Note also that the figures
for physical I/Os (DISCOPEN report) are
greater than those for logical I/O (FILE
report). This occurs because several physical
I/Os are required to satisfy one logical I/O to
a key-sequenced file.

74 T A N D E M SYSTEMS

As with dynamic process creations,
dynamic file opens are an undesirable over­
head. A program is usually designed to open
all its files when it starts up, and to close them
all when it terminates. However a program
can be coded (either deliberately or acciden­
tally) to open and close one or more files for
each transaction. Programs which do this are
likely to have a long response time and will
waste system resources.

Files that are opened dynamically can be
located using the COUNT column. To establish
which program is responsible for the dynamic
file opens, get the CPU/PIN of the openers
from the FILE or DISCOPEN entity using
either MEASCOM or ENFORM and locate the
process or processes in the PROCESS entity.

Block Splits
The position of a new record to be inserted
into a key-sequenced file is determined by the
value of its primary key field. If the block
where the new record is to be inserted into the
file is full, a block split occurs. This means
that the disk process allocates a new data
block, moves part of the data from the old
block into the new block, and gives the index
block a pointer to the new data block. Block
splits are reported on the DISCOPEN SUM­
MARY report in the column headed "BLOCK
SPLITS." The column headed "WRITES" on
the FILE SUMMARY report shows the number
of new records inserted into a key-sequenced
file, therefore, the higher the ratio of WRITES
to BLOCK SPLITS the better. If the blocks are
very full (more than 70%) or if the blocks only
contain one or two records, block splits will be
frequent.

If the block split rate is unacceptably high,
it may be possible to decrease the rate by
increasing the amount of free space, or slack,
in each block. This is done using FUP LOAD
with SLACK specified, or by changing file
block size and reloading the file. If the volume
containing the file has insufficient free space
to allow this, the file will need to be parti­
tioned over several volumes.

Occasionally, records are so large that only
two or so can fit in a block. In this case it may
be appropriate to just configure one record per
block and partition the file. At the expense of
disk space and some read degradation, this
will get many disk processes involved for ser­
vicing the file, and will keep index levels down
for key-sequenced structures.

REVIEW DECEMBER I 9 8 f,

FILEINFO Calls
The GUARDIAN FILEINF0 call provides error
and characteristic information about a file. In
addition to obtaining the error code after a
failed I/0, it can collect information such as
the time of the last update or the end-of-file
location.

Some FILEINF0 parameters require a call
to the disk process while others do not. This
depends primarily on whether the target entity
is in the file label/file control block (FCB) or
in the access control block (ACB). If it is in the
ACB, it is simply fetched from the process file
segment. If it is in the label/FCB, a request
must be issued to the disk process to service it.

The same holds true for the FILERECINF0
call. The requests for those entities that are in
the FCB (usually E0F or file name) appear in
the report. A call to FILEINF0 to fetch a
GUARDIAN error code associated with an I/0
operation would not entail going to the disk
process since that information is retained in
the process file segment.

A call to FILEINF0 handled by the disk
process will have a cost in CPU cycles similar
to other disk file I/Os.

Design and Operational Hints
This section is essentially a checklist of some
problems discovered using data collected by
XRAY on customer applications. For the pur­
pose of this article XRAY data is considered
identical to that collected by MEASURE. In
most cases the application programs will
appear functionally correct to the user but will
consume excessive resources or give a poor
response time because of the way they are
written.

Variable Length Transactions
To the majority of users, a predictably long
response time for some transactions is prefer­
able to one which is very variable. Unfortu­
nately some server programs need to perform
a variable number of I/Os for different trans­
action types. End-user response times will be
more predictable if functions with very similar
service times are grouped into server classes.
This reduces the variability of response time
and helps to avoid a potential performance
problem. However, these servers are not easily
identifiable from measurement data.

DECEMBER I 9 8 6 T A N D E M

Application Design and Implementation

Figure 8

The problem arises when functions with
long service times are mixed in the same server
with functions that have short service times.
Such a mapping of requesters to servers would
lead to a system with erratic service times. For
example, a request requiring many file
accesses and known to have a mean service
time of many seconds could begin just prior to
another request for a single-record update,
which will require less than one second. The
response time for the update could be one to
many seconds, depending on the arrival
sequence of transaction types.

It is possible to have transactions in which
the same type of request results in a variable
amount of 1/0. Typically, data-base searches
may result in a variable number of "hits."

If this happens, erratic response time can be
avoided by scanning a fixed portion of the
data base and returning a message to the user.
The option then is to either stop scanning or to
continue with the search.

Once a server with variable service time is
coded little can be done externally to improve
respo~se time. Defining more servers of this
class will not guarantee predictable response
times.

Multiple Sends to a Server
The usual transaction flow is shown in
Figure 8. However, it is possible to code a
requester to make multiple sends to the same
server for a single transaction. This will not
always be obvious from the measurement data,
but a server with a low number of I/Os per
transaction and a high receive rate should be
regarded with suspicion, especially if users
complain of a poor response time for this
transaction type.

SYSTEMS REVIEW

Figure 8.

Normal transaction path.
]ypically a transaction
will only require one
message to be sent from
the requester to a partic­
ular server.

75

Application Design and Implementation
--- ---- --

TABLE LOOKUP Routines
TABLE LOOKUP routines used to replace disk
1/0 can be a cause of excessive CPU consump­
tion identified from the Process Activity
report (refer to Figure 2). If the table is very
large, a serial search will require far more
CPU cycles than a binary search and, in some
cases, more than the disk read it replaces.
(Note that the COBOL74 SEARCH verbs initi­
ate a serial search. However, COBOL85 will
perform a binary search for SEARCH ALL.)
A high CPU consumption is not necessarily a
sign of poor design or programming practices.
The performance advantages gained by hold­
ing and manipulating data in memory often
far outweigh any costs incurred for program­
ming or extra memory.

SORT
The SORT utility is normally used during
batch processing, although it can be used by

Running batch programs
during on-line hours

is often unavoidable.

OLTP servers. If
SORT is being used by
on-line work, ques­
tion the data-base
design and, if possi­
ble, introduce an
alternate key to make
the sort unnecessary.

For a small number of records the TAL pro­
cedure provided by Tandem, HEAPSORT, will
sort the data in the application programs data
stack. This is much more efficient than using
the external sort process. If a program is
required to perform individual sorts, the pro­
gram can create a sort process once and keep
reusing it, rather than creating and deleting a
new process for every sort. See the SORT and
FASTSORT Manual for details on how to
achieve this. FASTSORT, which is significantly
faster than SORT, is discussed in an accompa­
nying article by Jim Gray, et al., "FASTSORT:
An External Sort Using Parallel Processing."

PATHMON
In a stable PATHWAY environment, the
PATHMON process rarely becomes active. If
the PATHMON process is busy (check the CPU­
BUSY-TIME counter of the Process Summary
report), verify that dynamic servers are not
being excessively used, PATHWAY STATS are
not being printed too often, or that some other
operation using PATHMON is not being done
repeatedly. On one customer's system,
PATHMON was using 50% of a processor
because of a background process that continu­
ously requested SERVER STATUS information
to check for PENDING SERVERS.

Continuously Executing Processes
Most processes in an OLTP environment are
event-driven. This means that they wait for
work by reading from $RECEIVE or from a
terminal. However, a process may be written
so that it actively looks for work. Some exam­
ples of these are:

■ A queue manager process that repeatedly
reads a disk file, until a particular record is
present.

■ A communications process, which continu­
ously "polls" devices.

■ A process which constantly sends requests to
system processes (such as the spooler,
PATHMON, or a communications process)
asking for status information.

Such processes will seriously bias perfor­
mance measurements in that they will consume
all spare CPU and device resources. This can
so distort an XRAY or MEASURE session that
tuning cures are not evident. If the processes
are executing at a high priority, on-line
response time will be adversely affected.

A system with a continuously executing
process is usually not hard to spot, and the
remedy is often quite simple. The symptoms
are a high CPU utilization or a high read rate
on a disk with most reads satisfied from cache
even at slack times. Often hardware utilization
will increase as terminal-driven workload
decreases. The process causing the problem
may not have a high CPU-BUSY-TIME figure,
but it may have a very high value for
MESSAGES-SENT.

76 TANDEM SYSTEMS REVIEW DECEMBER 1986

The Spooler
The spooler housekeeping disk 1/0 associated
with starting, printing, and purging a spooler
job normally amounts to over 20 disk I/Os.
These can be minimized by using level 3 spool­
ing and by always specifying report names and
printer locations.

For large jobs, such as compiles or ENFORM
queries, this overhead is inconsequential, but it
accounts for a high proportion of the work
associated with collecting and printing a small
job.

Level 3 spooling allows direct I/0 to the
spooler data file in a mechanism analogous to
buffered writes. The interprocess communica­
tion to the collector and the associated dis­
patches are also saved.

If no report name is specified, the spooler
will obtain the name of the report owner from
the USERID file. This requires a dynamic open
of the file.

In extreme cases, it may be preferable to
write individualized routines to control the
printers or to install low-cost printers attached
to the screens. It is also possible to configure
several spooler collector processes with differ­
ent priorities to handle different workloads;
i.e., use a high-priority process for OLTP and
a lower priority process for batch work.

Interactive and Batch Programs
Most interactive programs will not have a det­
rimental effect on the response time of transac­
tion processing work, provided that they
execute at the appropriate priorities. However,
some operations such as an ENFORM request,
PUP LISTFREE, BACKUP, RESTORE, FUP
LOAD/DUP /COPY, FUP INFO STAT, and some
Tandem Application Command Language
(TACL™) programs can be resource-intensive
and should only be allowed to execute when
resources are available. This means that they
should execute at a low priority and if possible
outside of the peak periods.

The Busy Process report (refer to Figure 2)
highlights the programs which use the most
CPU time. The report shows resource con­
sumption in terms of CPU utilization and file
I/Os per second of all processes which have
used more than five minutes of CPU time dur­
ing the measurement period. The report
excludes most system processes by selecting
processes with a priority of less than 200.

Application Design and Implementation

Running batch programs during on-line
hours, although undesirable for performance
reasons, is often unavoidable. A batch job
running at a low priority will be using high­
priority resources (such as disk processes).
This will have an effect on processes running
on the same CPU. Batch jobs started from a
terminal with a high-priority COMINT or
TACL will have a high priority unless the pri­
ority is specified, a $CMON process overrides
GUARDIAN 90. In many installations at least
one terminal (normally in the computer room)
will have a high-priority command interpreter.
This terminal should not be used for running
batch or heavy interactive work.

If a batch job uses data from only one disk,
its effect on the rest of the system can be mini­
mized by running it in the same processor as
the primary CPU of the disk it is using. It is
not normally advisable to dedicate a CPU to
batch or development work unless other
resources such as disks and the spooler are
running in same CPU.

If the batch job uses TMF, consider the
number of TMF transactions within the job.
If possible, several file updates should be
batched within the same TMF transaction.
Attention should also be given to the number
of record locks that will be held concurrently
in each DISCPROCESS.

Sequential Block Buffering
Sequential block buffering (SBB) improves the
efficiency of reading structured files sequen­
tially by allowing the record-deblocking buffer
to be in the application process file segment.
This eliminates the request to the disk process
to retrieve each record in the block. Instead, a
request retrieves an entire block of records. If
a file is being read using SBB, the MESSAGES­
SENT counter of the PROCESS entity and the
DRIVER-INPUT-CALLS counter of the DISC­
OPEN entity will only be incremented for each
block. However, the READS counter of the file
entity will be incremented for each record
read.

DECEMBER 1'186 • TANDEM SYSTEMS REVIEW 77

Application Design and Implementation

Table 1.

Some trouble-shooting guidelines.
Symptoms

Excessive process
creations

Large number of file
I/Os per transaction

High CPU
consumption per file
1/0

Low number of I/Os
per transaction

High CPU
consumption per
transaction

High CPU
utilization, high 1/0
per second and a
high priority

High CPU utilization
or high 1/0 per
second

Large number of file
opens

Large number of
block splits

Where to look

Process Summary report

Process Activity report

Process Activity report

Process Activity report

Process Activity report

Busy Process report

Busy Process report

File Summary report

DISCOPEN Summary
report

Problem

Programming bug, causing
process to terminate

"Dynamic servers" being overused

Process starting new processes

Complex transaction

"Batch" type enquiry

Programming error

Serial scan of large tables

Sensible use "in memory" tables

Small transaction

Requester sending many
messages per transaction

Serial scan of large tables

Complex transaction

Programming error

Batch job run at the wrong priority

Continuously executing processes

Programming error

Dynamic process creations

Blocks too full to allow inserts

78 TANDEM SYSTEMS REVIEW

Possible solution(s)

Correct error

Change PATHWAY configuration to
allow additional static servers

If possible, modify program to keep
the new process active

Educate users to expect a long
response time or redesign the
program

Break transaction down into
smaller units

Check the actual number of I/Os
against the expected number of
I/Os and, if different, correct the
program

Modify program to use a binary
search

None needed

None

Redesign requester program

Modify the program to use a binary
search

Educate users to expect a long
response time or simplify the
program

Correct program

Control priorities of batch work

If possible, redesign the program
to become "event-driven" or
introduce a DELAY into the idle
loop

Correct program

Correct program

Reload the file using FUP,
specifying a value of at least 30%
for "SLACK"

D E C E M B E R 1 9 8 6

A potential problem with SBB is that it can­
not detect record or key locks. If the file is
opened for shared access, it is possible for
other processes to update records in the block
after it has been read into the process file seg­
ment. In this case, data in a block may not be
absolutely up-to-date. This will not be a prob­
lem for most enquiry-type transactions
because the data will be displayed almost
instantly and could change at any time. How­
ever, if the data is to be updated, the program
will need to be coded with this in mind.

If a file is read using an alternate key, the
full benefits of SBB are not available. This is
because only the alternate-key file can be read
via SBB; the data file will be read randomly.

The performance and concurrency issues of
SBB are discussed in detail in a previous issue
of the Tandem Systems Review (Mattran,
1986).

Workload Patterns
Most OLTP systems are sized on known or
planned transaction rates for the peak period.
It is important to know if the transaction rates
and workload patterns are consistent with
those used to size the system. A report of the
transactions from MEASURE data is not
directly possible because MEASURE has no
concept of a transaction. However, it is possi­
ble to obtain a report of the number of sends
to a particular server, which in many cases will
map onto the transaction rates.

Earlier in this article, a 30-minute collec­
tion interval was suggested. This allows the
peak periods of the day to be identified and
analyzed separately. It is not enough to mea­
sure just one day and expect that day to be
representative. Measurements should be col­
lected daily for several weeks (or even months)
so that workload patterns and trends can be
identified. The data collected can also be used
to validate any sizings that were performed for
the application. If a large discrepancy is
found, further investigation may discover
some programming errors that were not visible
to conventional system testing. If the work­
load pattern is not as expected, there are two
possibilities: the system is not being used as
intended (users may benefit from more train­
ing), or the data provided for the sizing may
be inaccurate.

DECEMBER I 9 8 6 TANDEM

Application Design and Implementation

Conclusion
Data collected by MEASURE can be used to
analyze the performance and resource con­
sumption of an application allowing the iden­
tification and correction of application-related
bottlenecks, design flaws, and programmming
errors. Table 1 contains some trouble-shooting
guidelines.

A note of caution: There is a point in granu­
lar analysis where the returns will certainly be
less than efforts expended to perform the anal­
ysis. Recognizing this point is important.
MEASURE will provide a wealth of data.
A risk, however, is that the appeal of analysis
and collection may become an end in itself.
Macroanalysis yields macro results. Micro­
analysis yields micro results.

References
Mattran, R. 1986. Buffering for Better Application Perfor­
mance. Tandem Systems Review. Vol. 2, No. I. Tandem Com­
puters Incorporated.

MEASURE Reference Manual. Part no. 82441. Tandem Com­
puters Incorporated.

MEASURE User's Guide. Part no. 82440. Tandem Computers
Incorporated.

PATHWAY System Management Reference Manual. Part no.
82365. Tandem Computers Incorporated.

Vatz, J. 1985. The PATHWAY TCP: Performance and Tuning.
Tandem Systems Review. Vol. 1, No. I. Tandem Computers
Incorporated.

Wong, R. 1984. Understanding PATHWAY Statistics.
Tandem Systems Review. Vol. 2, No. 2. Tandem Computers
Incorporated.

Acknowledgments
Thanks to Dick Thomas for his advice on the article structure
and technical content, and to Art Sheehan, Scott Sitler, Wouter
Senf, and Tuomo Stauffer for their technical input.

Ray Glasstone joined Tandem in April 1983. Since then he has
analyzed the performance of many customer applications and
taught performance and tuning courses to Tandem's staff and
customers. Before joining Tandem, Ray was responsible for
capacity planning and performance tuning of a large IBM CICS
network.

SYSTEMS REVIEW 79

80

Configuring Tandem
Disk Subsystems

n most systems composed of
Tandem's current hardware and
software, mirrored disk volumes
should be configured for parallel
writes. When done correctly, this
configuration ensures optimum
performance and fault tolerance.

This article provides a practical guide to
configuring disk subsystems. It first explains
how various disk subsystems can be config­
ured, with the aid of configuration diagrams
and system generation (SYSGEN) configura­
tion entries. Next, it presents some new
approaches to fault tolerance. The examples
used are becoming increasingly more common
with Tandem's V8™ and XL8 disk drives.
Finally, it discusses the results of a compre­
hensive set of on-line transaction processing
(OLTP) tests and some new rules of thumb for
configuring disks. The test results show the
impact of various disk configurations on sys­
tem performance.

To benefit fully from the discussion, readers
should possess a general understanding of the
following:

■ Tandem system architecture.
■ Access paths and how these paths are
defined with SYSGEN.

■ Tandem system performance.

Configuration Options
How does one best configure mirrored disk
volumes on a Tandem system? The decision is
not always straightforward.

Many NonStop 1 + systems were configured
with two mirrored volumes per processor and
disk controller pair. Usually, one mirrored
volume was "primaried" in one processor
through one controller and the other volume
was primaried through the other processor and
controller. Each volume was configured for
serial writes, as they yielded optimum per­
formance. The advent of the more powerful
Nonstop II, Nonstop TXP, and Nonstop VLX
processors and Disc Process 2 (DP2) has since
made this configuration unnecessary. Now, a
parallel write, more fault-tolerant configura­
tion yields the best performance and data
integrity.

Also, while some systems have a dedicated
controller pair per mirrored volume (making
configuration choices fairly easy), more typi­
cally, systems have a controller pair supporting
more than one mirrored volume. The architec­
ture of the high-performance V8 and XL8 disk
drives, for example, is such that a maximum
of four controllers per disk cabinet can be
connected. If the cabinet is equipped with
eight spindles, the decision to configure for
serial or parallel writes becomes significant.

TANDEM SYSTEMS REVIEW DECEMBER 1 9 8 6

Closely coupled with this decision is the
determination of the correct ratio of disk vol­
umes per processor. Will a processor be over­
utilized if more than one disk volume is
primaried in it? Is over-utilization a risk only
on the NonStop II processor, or is it also a risk
on the NonStop TXP processor? These issues
are discussed in detail below.

Regardless of the application and system,
users should configure their disk subsystems
carefully. Some of the examples that follow
illustrate that, in some instances, there is only
one right way to configure the disk subsystem;
in one example, however, the best way to con­
figure is not obvious. Clearly, the most impor­
tant aspect of disk configuration is the
analysis of application and system characteris­
tics that must be made before any kind of
reconfiguration or upgrade is undertaken.

Software and Hardware Studied
Two disk configurations are emphasized in
this study: those for serial writes and parallel
writes. Their performance is compared on the
following systems:

• The NonStop I+ processor running Disc
Process I (DPI).

• The NonStop II and NonStop TXP proces­
sors running DP2. 1

All the examples assume that only those
disks illustrated are configured and all vol­
umes are mirrored.

Basic Configurations
There are four distinct access paths to each
unit of a mirrored volume, and both units of a
mirrored volume are controlled either by one
disk process (DPI) or by a group of disk pro­
cesses all in the same processor (DP2). This
requires that both units of a mirrored volume
be controlled by the same processor. Figure I
illustrates all possible access paths to a mir­
rored volume.

In this simple example, there are two basic
ways of configuring access to the mirrored
volume: either serial or parallel writes.
Figure 2 illustrates the serial write configura­
tion. With this type of configuration, only
one of the disk controllers (DISCA in this
example) is used. When a mirrored volume is
configured for serial writes, both halves of the

1Tests on DP I were also performed on the NonStop II and NonStop TXP
processors, although, for brevity, the results are not presented here. The system
running DP2 clearly outperformed the identically configured system running
DP I. The two systems exhibited nearly the same relative performance from one
disk configuration to the other; thus, for disk configurations, what holds true
for a system running DP2 generally holds true for a system running DPl.

- ---- -----

DECEMBER l 9 8 6 TANDEM

Figure 1

Figure 2

Disk and Tape Subsystems

Figure 1.

Access paths to a mir­
rored volume.

CONTROLLERS: DISCA 3107 0,1 % 10 CONTROLLER_DISC_PROCESS_2;
DISCS 3107 0,1 % 110 CONTROLLER_DISC_PROCESS_2;

PERIPHERALS: $SYSTEM DISCA-DISCB.0,DISCA-DISCB.1 4110
NUMDISCPROCESSES 3;

PUP LISTDEV DISC
4 $SYSTEM-P •

$SYSTEM-B
$SYSTEM-M •
$SYSTEM-MB

00,007
00,007
00,007
00,007

%10
%110
%11
%111

Figure 2.

01,007
01,007
01,007
01,007

%10
%110
%11
%111

Serial writes to a
mirrored volume. This
corifiguration is not
recommended because it
wastes a resource, pro­
vides less protection

3 8 4096 DP2

from hardware failures,
and does not take advan­
tage of the improved
performance of parallel
writes.

S Y S T E M S REVIEW 81

Disk and Tape Subsystems
--- -~--- --- -------- --- ----- --- -- -- --- -~- -~

Figure 3

CONTROLLERS: DISCA 3107 0,1 %10 CONTROLLER_DISC_PROCESS_2;
DISCS 3107 0,1 % 110 CONTROLLER_DISC_PROCESS_2;

PERIPHERALS: $SYSTEM DISCA-DISCB.0,DISCB-DISCA.1 4110
NUMDISCPROCESSES 3;

Figure 3.

:PUP LISTDEV DISC
4 $SYSTEM-P •

$SYSTEM-B
$SYSTEM-M •
$SYSTEM-MB

Parallel writes to a
mirrored volume. This
configuration is recom­
mended for its full
resource usage, improved
fault tolerance, and
performance advantages.

Figure 4.

A common disk configu­
ration for two mirrored
volumes.

00,007
00,007
00,007
00,007

%10
%110
%111
%11

Figure 4

01,007
01,007
01,007
01,007

%10
%110
%111
%11

3 8 4096 DP2

mirror use the same controller for data trans­
fers. (In this article, it is referred to as the
preferred controller. DIS CB is referred to as the
nonpreferred controller and is not used unless
a path switch is made to it.)

In Figure 3, DISCA is the preferred control­
ler for unit O and DISCB is the preferred con­
troller for unit 1. Because each half of the
mirror is accessed via a separate controller,
thus improving fault tolerance, this is the best
way to configure a single mirrored volume
connected to a pair of disk controllers.

Besides improving fault tolerance through
the use of separate controllers, this configura­
tion has performance advantages. Writes to
mirrored volumes require two separate opera­
tions, i.e., a write operation for each of the
two units. When data is written to a volume
configured for serial writes, the first data
transfer to one half of the mirror must com­
plete before the second can begin. With the
configuration in Figure 3, the data transfer for
both writes starts (almost simultaneously)
through each of the two controllers, thus the
term parallel write. This method reduces the
elapsed time required for both write opera­
tions by approximately the amount of time
required to perform one data transfer.

With the introduction of DP2, parallel reads
became possible. To take advantage of this
new feature, each unit of a mirrored volume
must be configured through a separate con­
troller, in the same way parallel writes are con­
figured. In fact, on a system running DP2,
configuring for parallel writes automatically
makes parallel reads possible. (While parallel
writes are possible with either DP 1 or DP2,
parallel reads are possible only with DP2.)

It should now be clear why the mirrored
volume in Figure 1 should be configured as in
Figure 3. The configuration in Figure 2 is
unacceptable because:

■ Unless there is a path switch, controller
DISCB will never be used, wasting a valuable
system resource.
■ Serial writes provide less protection from the
consequences of hardware failures.
■ Parallel writes are not possible.
■ Parallel reads are not possible.

--------- -----------------------------------~

82 T A N D E M SYSTEMS REVIEW D E C E M B E R I 9 8 6

Two Mirrored Volumes
A configuration having more than one mir­
rored volume between a controller pair is more
complicated. Figure 4 represents a configura­
tion in which a pair of mirrored volumes, logi­
cal devices 4 and 5, share the same disk
controller pair. The volumes could be config­
ured for serial or parallel writes. Figure 5
illustrates the SYSGEN for parallel writes.

The configurations in Figures 3 and 5 are
similar in that each half of the mirrored vol­
ume has each of its two units accessed via a
different controller. Fault tolerance is
improved with this configuration. Further­
more, this configuration allows parallel writes
on both DPI and DP2 and parallel reads on
DP2. Notice that both volumes are primaried
in the same processor. This means that the disk
processes for the two logical volumes compete
for use of the same processor and disk control­
ler pair.

Figure 6 illustrates the access paths to two
logical volumes configured in a serial write
SYSGEN. Compare this configuration with the
one in Figure 2. The serial write SYSGEN
allows one logical volume to use one processor
and controller for its access paths while the
other logical volume uses another processor
and controller for its access paths. Thus, this
configuration avoids processor and disk­
controller contention at the expense of parallel
writes {DPI and DP2) and parallel reads {DP2).

There are trade-offs to consider when disks
are configured as in Figure 4. Should they be
configured (at the expense of fault tolerance
and parallel writes and reads) for serial writes
so that potential processor and controller con­
tention is eliminated? Or, in the interest of
fault tolerance and possibly performance,
should they be configured for parallel writes?

Figure 5.

The SYSGEN for paral­
lel writes for the configu­
ration in Figure 4
(recommended).

D E C E M B E R

Figure 6.

The S YSGEN for
serial writes (not
recommended).

I 9 8 6 T A N D E M

Disk and Tape Subsystems

Figure 5

CONTROLLERS: DISCA 3107 0,1 %10 CONTROLLER_DISC_PROCESS_2;
DISCS 3107 0,1 %110 CONTROLLER_DISC_PROCESS_2;

PERIPHERALS: $SYSTEM DISCA-DISCB.0,DISCB-DISCA.1 4110
NUMDISCPROCESSES 3;
$SIGN DISCA-DISCB.2,DISCB-DISCA.3 4110
NUMDISCPROCESSES 3;

:PUP LISTDEV DISC
4 $SYSTEM-P . 00,007 %10 01,007 %10 3

$SYSTEM-B 00,007 %110 01,007 %110
$SYSTEM-M • 00,007 %111 01,007 %111
$SYSTEM-MB 00,007 %11 01,007 %11

5 $SIGN-P . 00,008 %12 01,008 %12 3
$SIGN-B 00,008 %112 01,008 %112
$SIGN-M . 00,008 %113 01,008 %113
$SIGN-MB 00,008 %13 01,008 %13

Figure 6

8 4096

8 4096

CONTROLLERS: DISCA 3107 0,1 % 10 CONTROLLER_DISC_PROCESS_2;
DISCS 3107 1,0 % 110 CONTROLLER_DISC_PROCESS_2;

PERIPHERALS: $SYSTEM DISCA-DISCB.0,DISCA-DISCB.1 4110
NUMDISCPROCESSES 3;
$SIGN DISCB-DISCA.2,DISCB-DISCA.3 4110
NUMDISCPROCESSES 3;

:PUP LISTDEV DISC
4 $SYSTEM-P 00,007 %10 01,007 %10 3

$SYSTEM-B 00,007 %110 01,007 %110
$SYSTEM-M • 00,007 %11 01,007 %11
$SYSTEM-MB 00,007 %111 01,007 %111

5 $SIGN-P 01,008 %112 00,008 %112 3
$SIGN-B 01,008 %12 00,008 %12
$SIGN-M . 01,008 %113 00,008 %113
$SIGN-MB 01,008 %13 00,008 %13

SYSTEMS REVIEW

8 4096

8 4096

DP2

DP2

DP2

DP2

83

Disk and Tape Subsystems
'-------~--------------~

Figure 7.

Four logical volumes
sharing the same proces­
sor pair.

84

Figure 7

Four Logical Volumes Sharing a
Processor Pair
Figure 7 represents an extension of the config­
uration in Figure 4. Though these two config­
urations are very similar, the best way to
configure the disks in Figure 7 is somewhat
more obvious, as will be seen in a moment.

This configuration represents what may well
become a common configuration when a VS or
XLS disk drive is connected to a processor
pair. As mentioned earlier, a VS or XLS cabi­
net can be configured with a maximum of
four controllers, making a two-to-one ratio of
disk units to disk controllers. This results in a
single disk controller being shared by at least
two units and, when mirrored volumes are
configured, a two-to-one ratio of logical vol­
umes to processors.

Of course, a VS or XLS drive could be con­
nected to only two controllers, but this config­
uration implies low levels of physical disk-file

activity. Since this article primarily addresses
high performance, the two-controller configu­
ration is not discussed further here.

To gain optimum performance with the
configuration in Figure 7, all system compo­
nents should be utilized equally. This means
that each processor should be the primary for
two volumes and each of the four disk control­
lers should be configured as a preferred con­
troller. Also, in the interest of fault tolerance,
parallel writes should be configured.

Primarying all four of the mirrored volumes
in the same processor is possible but undesir­
able because of the likelihood that the proces­
sor would be over-utilized. It is not necessary
to primary all four volumes in the same pro­
cessor in order to have parallel writes; con­
versely, if each processor is the primary for
two volumes, the system is not restricted to
serial writes.

Figure 8 illustrates proper hardware utiliza­
tion for this configuration: each processor is
the primary for two volumes. This configura­
tion also provides acceptable fault tolerance
because parallel writes are configured. The
configuration is typical in systems having four
mirrored volumes connected to a pair of pro­
cessors through four controllers.

A More Thorough Approach to
Fault Tolerance
Although the configuration in Figure 8 pro­
vides optimum performance and acceptable
fault tolerance, it can be enhanced slightly to
improve fault tolerance without compromising
performance. Figure 9 illustrates the enhanced
version and is strongly recommended.

The configuration in Figure 9 has signifi­
cant advantages over that in Figure 8. Because
all disk units configured between a controller
pair share a common pair of control (daisy
chain) cables, a direct physical connection
exists between these units. When disks are
configured so that each half of a mirror is
connected to a different controller pair, the
control cables are not shared by both halves of
the mirror, thus eliminating the direct physical
connection. The configuration in Figure 9
eliminates physical connection between the
primary and mirror halves of a logical volume
all the way back to the processor's 1/0 chan­
nel. This is because each half of the logical
volume is configured between a different con-
troller pair.

TANDEM SYSTEMS REVIEW• DECEMBER 1986

Figure 8

Figure 9

~,

DECEMBER 9 8 6 T A N D E M

Disk and Tape Subsystems

CONTROLLERS: DISCA 3107 0,1 % 10 CONTROLLER_DISC_PROCESS_2;
DISCS 3107 0, 1 % 110 CONTROLLER_DISC_PROCESS_2;
DISCC 3107 1,0 %210 CONTROLLER_DISC_PROCESS_2;
DISCO 3107 1,0 %310 CONTROLLER_DISC_PROCESS_2;

PERIPHERALS: $SYSTEM DISCA-DISCB.0,DISCB-DISCA.1 4110
NUMDISCPROCESSES 3;
$SIGN DISCA--DISCB.2 ,DISCB-DISCA.3 4110
NUMDISCPROCESSES 3;
$BIG1 DISCC-DISCD.0,DISCD-DISCC.1 4110
NUMDISCPROCESSES 3;
$SML1 DISCC-DISCD.2,DISCD-DISCC.3 4110
NUMDISCPROCESSES 3;

:PUP LISTDEV DISC
4 $SYSTEM-P . 00,007 %10 01,007 %10 3 8 4096 DP2

$SYSTEM-B 00,007 %110 01,007 %110
$SYSTEM-M • 00,007 %111 01,007 %111
$SYSTEM-MB 00,007 %11 01,007 %11

5 $SIGN-P . 00,008 %12 01,008 %12 3 8 4096 DP2
$SIGN-B 00,008 %112 01,008 %112
$SIGN-M 00,008 %113 01,008 %113
$SIGN-MB 00,008 %13 01,008 %13

6$BIG1-P . 01,009 %210 00,009 %210 3 8 4096 DP2
$BIG1-B 01,009 %310 00,009 %310
$BIG1-M . 01,009 %311 00,009 %311
$BIG1-MB 01,009 %211 00,009 %211

7 $SML1-P 01,010 %212 00,010 %212 3 8 4096 DP2
$SML1-B 01,010 %312 00,010 %312
$SML1-M . 01,010 %313 00,010 %313
$SML1-MB 01,010 %213 00,010 %213

CONTROLLERS: DISCA 3107 0,1 % 10 CONTROLLER_DISC_PROCESS_2;
DISCS 3107 1,0 %110 CONTROLLER_DISC_PROCESS_2;
DISCC 3107 0,1 %210 CONTROLLER_DISC_PROCESS_2;
DISCO 3107 1,0 %310 CONTROLLER_DISC_PROCESS_2;

PERIPHERALS: $SYSTEM DISCA-DISCB.0,DISCC-DISCD.3 4110
NUMDISCPROCESSES 3;
$SIGN DISCA-DISCB.1,DISCC-DISCD.2 4110
NUMDISCPROCESSES 3;
$BIG1 DISCB-DISCA.2,DISCD-DISCC.1 4110
NUMDISCPROCESSES 3;
$SML1 DISCB-DISCA.3,DISCD-DISCC. 0 4110
NUMDISCPROCESSES 3;

:PUP LISTDEV DISC
4 $SYSTEM-P .

$SYSTEM-B
$SYSTEM-M •
$SYSTEM-MB

5 $SIGN-P .
$SIGN-B
$SIGN-M .
$SIGN-MB

6 $BIG1-P .
$BIG1-B
$BIG1-M .
$BIG1-MB

7 $SML1-P .
$SML1-B
$SML1-M .
$SML1-MB

S Y S T E M S

• 00,007
00,007
00,007
00,007
00,008
00,008
00,008
00,008
01,009
01,009
01,009
01,009
01,010
01,010
01,010
01,010

%10 01,007 %10
%110 01,007 %110
%213 01,007 %213
%313 01,007 %313
%11 01,008 %11
%111 01,008 %111
%212 01,008 %212
%312 01,008 %312
%112 00,009 %112
%12 00,009 %12
%311 00,009 %311
%211 00,009 %211
%113 00,010 %113
%13 00,010 %13
%310 00,010 %310
%210 00,010 %210

Figure 8.

Balanced hardware
utilization for the con-

3

3

3

3

j iguration in Figure 7.
Using parallel writes, this
configuration provides
acceptable, but not opti­
mum, fault tolerance.

REVIEW

8

8

8

8

4096 DP2

4096 DP2

4096 DP2

4096 DP2

Figure 9.

The best configuration
for performance and
fault tolerance. In addi­
tion to providing parallel
writes and balanced
hardware utilization, it
protects against dual
controller failure.

85

Disk and Tape Subsystems

Table 1.

Advantages and disadvantages of the configurations illustrated.
Figure

2 3 5 6 8 9

Connectivity

Number of paths per processor per logical volume 4 4 4 4 4 4

Fault tolerance

Protection from:
Single-processor failure Yes Yes Yes Yes Yes Yes
Channel failure Yes Yes Yes Yes Yes Yes
Controller failure Yes Yes Yes Yes Yes Yes
Control cable failure No No No No No Yes

Access of mirrored halves via different controllers No Yes Yes No Yes Yes

Protection from dual controller failures No No No No No Yes

Performance

Disk processes in different processors No Yes Yes Yes

Parallel writes

Parallel reads

No Yes Yes No Yes Yes

No Yes Yes No Yes Yes

In the unlikely event that controllers DISCA
and DISCB fail simultaneously, if the disks
were configured as in Figure 8, the data on
logical devices 6 and 7 would become
inaccessible. The configuration in Figure 9,
however, provides protection against dual
controller failure. The best aspect of this
configuration is that it costs no more to
configure than does the one in Figure 8
because no additional hardware is required.

The advantages of the configuration in
Figure 9 should be clear. It allows for parallel
writes and balanced hardware utilization, as
the configuration in Figure 8 does, while at
the same time offering fault tolerance
capabilities that Figure 8 does not. This
configuration should be used whenever
possible.

--- ·--------

It is not the intent of this article to illustrate
all possible disk configurations or component
failure conditions, however. For example, what
if the configuration illustrated in Figures 8
and 9 were to be used between four processors
instead of two? Some system loads might
require this in order to avoid over-utilizing the
processors. The four-processor /four-controller
configuration could end up looking like the
one illustrated in either Figure 10 or 11. The
configuration in Figure 11 offers the same
fault tolerance as the configuration in
Figure 8, but does not offer the degree of fault
tolerance provided by the configuration in
Figure 9.

It is important to note that the configura­
tions in Figures 8 and 9 react differently to
certain component failures. Configurations
must be clearly understood in order to predict
path-switching scenarios and the impact they
might have on overall system performance.
Each system must be reviewed individually
and all trade-offs and compromises taken into
consideration before a final configuration
decision is made.

What Have We Learned So Far?
There is a right way and a wrong way to con­
figure a disk subsystem. In some instances,
performance studies need not be done to
determine which configuration is best. The
disk subsystem illustrated in Figure 1 can be
correctly configured one way only, as it is
done in Figure 3. Before disks are configured,
diagram the configuration, including all pri­
mary preferred access paths, so that potential
errors such as those illustrated in Figure 2 can
be detected.

The configuration in Figure 7 is one that
will become more common with V8 and XL8
disk drive installations, particularly for the
Nonstop VLX system. The configuration illus­
trated in Figure 8 might seem to be the best
one for this type of disk subsystem because it
allows for balanced processor and disk con­
troller utilization. It should be reevaluated,
however, in light of the advantage the configu­
ration in Figure 9 has over it. The improved
fault tolerance ensured by the latter configura­
tion makes it the obvious choice.

86 T A N D E M SYSTEMS REVIEW DECEMBER I 9 8 6

When the disks in Figure 4 are configured,
a potential trade-off exists between perfor­
mance and fault tolerance. To quantify the
trade-off, the performance of this configura­
tion was tested with both the serial and paral­
lel write configurations. (The results are
presented in the following section.)

Table 1 summarizes the advantages and
disadvantages of the configurations illustrated
in Figures 2, 3, 5, 6, 8, and 9.

Performance Tests
Application
A model of a simple banking application was
used to compare the performance of the sys­
tem configurations. In the benchmark, 1200
simulated bank tellers operated from 120
branches supporting 1.2 million accounts.
All account activity was randomly generated.
The system environment was strictly con­
trolled and all hardware resources were evenly
utilized.

Files. The application consists of three key­
sequenced files: the account file of 1.2 million
records, the teller file of 1200 records, and the
branch file of 120 records. The history file is
unstructured. Table 2 describes the files.

In this benchmark, two other files were
included in the application: the data file for
the XRAY performance analysis tool and a file
called Ustatfil. Each simulated terminal wrote
transaction performance data to U statfil as
the tests were run. Then, upon test comple­
tion, summary report programs were run
against Ustatfil to calculate throughput and
response times.

Transaction. In this application, a transaction
consists of reading one record each from the
account, branch, and teller files; updating the
records in the three files; and writing to a
transaction history file. Thus, the transaction
performs three reads and four writes.

The operations are performed as follows:

■ Read 100 bytes from terminal.

■ Send transaction to server.

■ Read user account information (100 bytes
from account file).

Table 2.

Files used in the model application.
Number of

File name File type records

Account Key-sequenced 1,200,000

Branch Key-sequenced 120

Teller Key-sequenced 1,200

History Unstructured 1 per transaction

■ Read associated branch information
(100 bytes from branch file).

Record size
(bytes)

100

100

100

50

■ Read associated teller information (100 bytes
from teller file).
■ Rewrite branch file record.
■ Rewrite teller file record.

■ Rewrite account file record.

■ Perform ten compares, ten moves, five adds,
and five subtracts to account-related variables
in the server.
■ Write history log file to record transaction.
■ Return from server to requester.
■ Perform ten compares, ten moves, five adds,
and five subtracts to account-related variables
in the requester.

■ Write 200 bytes to simulated terminal.

D E C E M B E R I 9 8 6 TANDEM SYSTEMS REVIEW

Disk and Tape Subsystems

Key length
(bytes) End of file

10 126,582,784

6 16,896

6 159,744

Varied

Disk and Tape Subsystems

Table 3.

File placement for the tests.
File

Volume Account Branch Teller History Ustatfil XRAY data

$SYS X X X

$SIGN X X X

$BIG1 X X X X

$SML1 X X X

Table 4.

Memory and disk cache size for the tests.
Operating Memory size

Cache size' Processor System per processor

Nonstop 1+ E08/DP1 576 pages 128 pages

Nonstop II B30/DP2 4 Mbytes 512 = 8
1024 = 50
2048 = 6
4096 = 200

NonStopTXP B30/DP2 4 Mbytes 512 = 8
1024 = 50
2048 = 6
4096 = 200

•cache size per processor for the Nonstop 1+ processor; cache size per volume for the Nonstop II
and Nonstop TXP processors.

Configuration. The following configuration
was used for all testing on the NonStop II and
NonStop TXP systems. The PATHWAY trans­
action processing system was configured with
120 terminals, 4 NonStop Terminal Control
Processes (TCPs), and 52 servers. The simula­
tor that generated the random transaction
stream was implemented in Tandem's Transac­
tion Application Language (TAL) aµd was
configured for the PATHWAY system.

The 120 simulated PATHWAY terminals were
run with varying arrival rates, or think times.
(Think time is a fixed period of time, speci­
fied at run time, during which the simulator
waits after learning that the previous transac­
tion has completed before sending the next
transaction.)

The servers were written in COBOL. The
requesters used the PATHWAY Terminal Con­
trol Process 2 (TCP2) and were written in
SCREEN COBOL. The servers were not run as
process pairs, and the Transaction Monitoring
Facility (TMF) was not configured.

Because of the limitations of the NonStop l+
system, a scaled-down version of the test was
run on it.

File placement for all tests is shown in
Table 3.

Test Configurations
Figures 10 and 11 illustrate the serial and par­
allel write configurations used in the tests.

All hardware resources were evenly utilized;
for example, processor utilization was bal­
anced to within 4%. Disk utilization was very
evenly balanced. In the serial write configura­
tion, each processor had one primary disk
process and was a primary processor for one
of the four TCPs. Servers were moved as nec­
essary to fine tune the system. In the parallel
write tests, two processors had two disks pri­
maried in them. The two processors that were
not a primary for a disk process had two
TCPs. Again, the servers were moved for fine
tuning. Page faults did not occur during any
of the tests.

Memory size and disk cache were config­
ured as in Table 4. Note that disk cache on the
Nonstop II and NonStop TXP processors was
configured according to data-base file block
size. Block sizes for the application were
4096 bytes for the account file, 512 bytes for
the branch file, and 1024 bytes for the teller
file.

88 T A N D E M SYSTEMS REVIEW DECEMBER I 9 8 6

Figure 10

Figure 11.

D E C E M B E R I 9 8 6

I

I
- -1

I

I

T A N D E M SYSTEMS

Figure 10.

The serial write configu­
ration used in the tests.

Disk and Tape Subsystems

Figure 11.

The parallel write config­
uration used in the tests.

---- ------

REVIEW 89

Disk and Tape Subsystems

Figure 12.

Response time versus
throughput for serial and
parallel writes on the
NonStop I+, NonStop JI,
and Nonstop TXP pro­
cessors. For the
Nonstop II and TXP
processors, parallel
and serial writes yield
nearly equal system
performance.

90

Figure 12

3.0

fl" 2.5
C:

-~ 2.0
Q)

E .,
~ 1.5
C:
0
C.

~ 1.0

0.5

0
1.0 2.5 4.0 5.5 7.0 8.5 10.0 11.5 13.0 14.5 16.0 17.5 19.0

Throughput (transactions/second)

Results
The serial write configuration far outper­
formed the parallel write configuration on the
NonStop 1+ processor. Throughput increased
and response time decreased for serial writes.

On the Nonstop II system, performance of
the serial and parallel write configurations was
nearly identical. As long as all hardware
resources are evenly utilized, the test results
indicate that system performance for serial
writes and parallel writes is the same in the
model OLTP environment.

The test results for the Nonstop TXP system
indicate slightly improved system performance
with parallel writes. Though the performance
improvements were modest, the parallel write
configuration consistently outperformed the
serial write configuration at all system loads in
the model OLTP environment.

T A N D E M SYSTEMS

Figure 12 and Table 5 summarize the test
results. Figure 12 shows response time versus
throughput; Table 5 lists the test results by
configuration and system load.

Some New Rules of Thumb
Only the Nonstop l+ system showed signifi­
cant performance improvements when serial
rather than parallel writes were configured. 2

For a NonStop II system, parallel writes
should be configured since the test results
show nearly identical performance regardless
of configuration. Parallel writes on the
NonStop II system come at no cost to per­
formance and provide superior fault tolerance.

The results for the Nonstop TXP system are
similar to those obtained for the NonStop II
system, except that the performance advantage
of DP2 emerges more clearly.

2This does not mean that the serial write configuration is recommended for the
NonStop I+ system. This configuration's reduced level of fault tolerance must
be taken into consideration. The parallel write configuration is safer and should
probably be used in the interest of data integrity. It also conserves system data
space,

REVIEW DECEMBER 1 9 8 6

Regardless of system type, if disk activity is
minimal, parallel writes are the sensible
choice.

The effect of the configurations on batch
work was not investigated. Also, note that a
model application was tested: a real system
environment must be thoroughly analyzed
before the appropriate configuration can be
selected for it.

The appropriate disk configuration for a
system is not always as easily determined as
those for the systems illustrated. For example,
suppose that four mirrored volumes shared a
single disk controller pair (unlike the example
having two pairs of controllers). Would it be
best to configure for parallel writes and have
all four volumes primaried out of the same
processor, or would it be best to configure for
serial writes and primary two volumes out of
each of the two processors? If, indeed, four
busy volumes shared the same controller pair,
the best solution would be to add another pair
of disk controllers and configure the disk with
the configuration in Figure 9. Again, it is very
important to diagram the configuration when
new disks are added to an existing system or
when a system is being reconfigured.

Finally, this article does not address how
paths are switched during certain failure con­
ditions. It is imperative that system managers
be able to recognize component failures
quickly and redirect paths as necessary to
maintain the desired system performance.

Acknowledgments
The author would like to thank the following people: Jack
Mauger, manager of the Performance Support Group, for the
opportunity to make this study; Jim Meyerson and Richard
Vnuk for their description of the model application; Roberta
Henderson for creating Table I; the reviewers of the article­
especially Art Sheehan, for the wisdom and thoroughness of his
comments; and Dick Thomas for his assistance with the later
revisions.

Scott Sitler, a senior staff analyst, joined Tandem six years ago.
Originally, Scott was a member of Corporate Software Educa­
tion, where he taught System Resource Management for the
Nonstop and Nonstop II systems and a course on the XRAY
performance analysis tool. He also developed the two-week
System Resource Management II course, which emphasized
system performance and XRAY. Two years ago Scott joined the
Performance Support Group as a benchmark coordinator. He
works on customer benchmarks, new product performance
testing, and various other special projects.

DECEMBER I 9 8 6 TANDEM

Disk and Tape Subsystems
--~. -

Table 5.
Tests results for the Nonstop 1+, Nonstop II, and Nonstop TXP processors.

Average 90%
response response Average CPU Terminal

Transactions lime lime utilization think lime
Configuration per second (seconds) (seconds) (percent) (seconds)

Nonstop 1+ processor running DP1

Serial writes 4.46 1.69 2.62 76.9 7
3.80 1.34 2.03 65.2 9
3.25 1.15 1.70 55.5 11
2.51 0.97 1.35 42.7 15

Parallel writes 3.95 2.88 4.85 80.8 7
3.64 1.86 3.12 71.2 9
3.21 1.42 2.37 60.3 11
2.48 1.06 1.65 44.8 15

Nonstop II processor running DP2

Serial writes 6.78 1.38 2.29 76.8 16
5.22 0.90 1.36 58.6 22
4.20 0.77 1.10 46.5 28
3.29 0.69 0.93 36.5 36

Parallel writes 6.77 1.44 2.45 75.0 16
5.20 0.89 1.37 57.9 22
4.17 0.73 1.08 46.0 28
3.28 0.66 0.91 36.0 36

Nonstop TXP processor running DP2

Serial writes 17.30 0.85 1.27 77.6 6
13.96 0.55 0.80 61.4 8
11.48 0.47 0.63 49.9 10

8.32 0.39 0.50 35.7 14

Parallel writes 17.55 0.77 1.19 76.3 6
13.99 0.54 0.74 60.4 8
11.50 0.41 0.56 48.5 10
8.34 0.35 0.45 35.1 14

SYSTEMS REVIEW 91

92

Getting Optimum Performance
from Tandem Tape Systems

ape performance on Tandem
systems has improved dra­
matically in the last two
years. Users can now back
up their disk files to tape 2 .4
times faster than they could
with A06 software, and they

can restore tape files to disk 4.3 times faster.
These improvements have been achieved
through:

• Improved hardware (the 5106 and 5130 tape
drives, 3206 and 3208 tape controllers, 3107
disk controller, and Nonstop TXP processor).

• Improved software (Disc Process 2, or DP2,
and improved versions of the BACKUP and
RESTORE utilities).

• Improved microcode for the 3206 controller.

The purpose of this article is to help Tandem
users get the best performance from their cur­
rent tape systems. It presents techniques to
effectively use tape hardware and software.
Performance metrics for BACKUP and
RESTORE are presented to illustrate the effect
of these techniques. (Note that this article is
not intended to be a repository of performance
information for different tape applications
such as backup, restoration, and Transaction
Monitoring Facility, or TMF, on-line dumps.)

Performance Metric
It is difficult to choose a good measure of tape
performance. Tape is used in various applica­
tions, usually in conjunction with other
media, such as disks. On Tandem systems,
tape is used to back up disk files, restore
backed up files to disk, perform TMF on-line
dumps, dump TMF audit trails, and perform a
variety of other tasks. The fact that it is used
with other media and performs such a variety
of tasks presents two problems for quantifying
tape performance.

First, the performance of the tape system is
tied to the performance of the disk system. A
low-performance disk system degrades the
performance of even the best available tape
system. Although the rate at which the data
can be written from a process to tape is impor­
tant, users are more interested in the perfor­
mance of their applications.

Second, tape system performance varies
with the workload. Backup and restoration are
typically run on idle machines. On the other
hand, TMF on-line dumps are usually run
concurrently with transaction processing
workloads. Thus, the performance of a tape
system in one application might not be a good
indicator of its effectiveness in others.

The metrics used in this article to quantify
tape performance are:

• Throughput, or the rate (in Kbytes per sec­
ond) at which disk data can be backed up and
restored. Throughput is the natural choice for
measuring performance because it determines
the time required to back up or restore a disk
volume.

TANDEM SYSTEMS REVIEW DECEMBER !986

• Processor usage per Kbyte of data backed
up and restored. Processor usage is important
when applications contend for processor time.
The less processor time used, the better the
tape system performs in the presence of other
work.

BACKUP and RESTORE are useful to exam­
ine because they are used frequently and are
seldom affected by disk performance. Also,
the stand-alone test results for these utilities
are very similar to actual production perfor­
mance, as users normally run BACKUP and
RESTORE at times when the system is lightly
loaded.

This article presents techniques to improve
the performance of a wide variety of tape
applications. These techniques improve tape
performance by reducing the time required to
(1) process the tape read/write requests and
(2) transfer the data from the process request­
ing tape I/0 to the GUARDIAN tape process.
BACKUP and RESTORE throughput and pro­
cessor usage are used to illustrate the effect of
these techniques in certain cases, i.e., when
the requesters are BACKUP and RESTORE
processes.

Components of Tape Processing
Techniques to improve tape performance are
aimed at eliminating bottlenecks in the soft­
ware and hardware components of the tape
system. Knowing how data is written to and
read from the tape helps in understanding why
these techniques work. The following is a sim­
plified explanation of the steps involved in
executing a tape write request:

l. Initialization. The GUARDIAN tape process
controlling the tape device receives a mes­
sage to write a tape block. The tape process
calls a GUARDIAN Message System proce­
dure to move the data record from the
buffer of the requesting process to its own
buffer (Chandra, 1985). The time required
to get the data is proportional to the size of
the tape record.

2. Channel transfer. The tape process issues a
command to the tape controller to write the
data record. The tape controller then trans­
fers the data record from the tape process
buffer to its own buffer. The data is trans­
ferred over the 1/0 channel in small pack­
ets (typically 16 words) called bursts. After
receiving each burst, the tape controller

waits for a small duration, called the ho/d­
off time, before requesting the next burst.
The time required for channel transfer is a
function of the size of the data record, the
hold-off time, and the burst length.

3. Tape write. After the entire data record has
been transferred to its buffer, the tape con­
troller issues a write command to the for­
matter. The formatter writes the data
record to tape. The time required for the
formatter to write the data record depends
upon the hardware characteristics of the
drive (such as tape speed), the data record
size, and the tape recording density.

4. Completion. The controller notifies the
tape process that the data record has been
written to tape. The tape process then
returns the completion status to the
requester.

A request to read data from tape works
similarly. The tape process issues a command
to the tape controller to read the next record,
causing the formatter to read the record from
the tape into the controller's buffer. From the
controller, the data record is transferred to the
tape process buffer in bursts over the 1/0
channel. The tape process then completes the
read operation by moving the data record to
the requester using a GUARDIAN Message
System procedure.

The time required to execute steps 1 through
4 above determines tape system performance.
For example, if these steps take 56 ms for a
28-Kbyte tape record, the tape system could
deliver a throughput of 500 Kbytes per second.
If a faster tape drive reduced this time to
40 ms, the resulting tape throughput would be
700 Kbytes per second.

Hence, the performance of a tape system
can be improved by reducing the time required
to execute these steps. The following sections
present ways to achieve this reduction.

Requester Bottlenecks
Several factors can be responsible for unsatis­
factory tape performance. Before investing in
new tape hardware, determine if factors other
than the tape system are responsible for low
tape throughput. Some of these factors might

DECEMBER I 9 8 6 TANDEM SYSTEMS REVIEW

Disk and Tape Subsystems

93

Disk and Tape Subsystems
-- ---~-------·------

Figure 1.

Effect of file size on
throughput. The volume
mode of BACKUP and
RESTORE improves
throughput.

Figure 2.

Effect of file size on
processor usage. The
volume mode of
BACKUP and
RESTORE decreases
processor usage.

Figure 1

Figure 2

'g
o 375

&
gl 300

l
:fl 225 .s
~ 150
.c
Cl)
:,

~ 75
J-

o

1
~ 20
a.
~ 16
C.

1/5
5 12
~

f 8
:,

o 4

~ a.

0 200 400 600 800 1000

File size (Kbytes)

200 400 600 800 1000

File size (Kbytes)

be slower processors such as the Nonstop 1+
and NonStop II, lower performance disk con­
trollers such as the 3106, and old software.
(Simply switching from DPl to DP2 can
improve performance substantially.)

The tape system can write the data only as
fast as the application provides data to it.
Backing up and restoring small files is an
example in which throughput is largely inde­
pendent of tape system performance. Figure 1
charts BACKUP and RESTORE throughput as
a function of the average file size, both in
standard mode and using the VOLUME option.
(The VOLUME option backs up an entire vol­
ume at a time.)

As the figure shows, for an average file size
of 32 Kbytes, BACKUP operates at 65 Kbytes
per second and RESTORE at 22 Kbytes per
second if run in standard mode. BACKUP and
RESTORE are slow because of overhead asso­
ciated with opening, closing, and creating disk
files.

Because the VOLUME option allows
BACKUP and RESTORE to bypass File System
processing, it can provide very high through­
put, as shown in Figure 1. For an average file
size of 32 Kbytes, using the VOLUME option
improves BACKUP throughput by a factor of 4
and RESTORE throughput by a factor of 8. In
Figure 2, the VOLUME option is shown to
reduce processor usage by a factor of 3 for
BACKUP and a factor of 5 for RESTORE.

One limitation of using the VOLUME option
is that it does not allow the backup and resto­
ration of individual files, but only an entire
volume. This is not a problem if volumes are
backed up frequently but restored infre­
quently. To restore less than the entire volume,
the image of the entire volume must be
restored to a scratch disk and the necessary
files transferred to the desired location. Here
the inconvenience of retrieving particular files
is outweighed by the time saved for backups.
(RESTORE performance is not a big problem
in this case; a 240-Mbyte disk can be restored
in 22 minutes.)

Note that if only a few small files need to
be backed up and restored frequently, the
VOLUME option may not be a suitable alter­
native. A faster tape system would not
improve throughput here either, because the
requester processes (BACKUP and RESTORE)
are responsible for low throughput.

The next sections investigate ways to
improve tape performance when the tape sys­
tem limits throughput.

Tape Recording Density and Data
Record Size
Recording Density
The 5106 tape drive can write data in three
densities. In the NRZI format, the data is
recorded at 800 bits per inch (bpi) on the tape;
the corresponding bit densities for PE and
GCR formats are 1600 bpi and 6250 bpi,
respectively. Since the tape speed is constant
(125 inches per second) in all these modes,
writing data in NRZI format takes seven times
longer than writing it in GCR format. Hence,

94 TANDEM SYSTEMS REVIEW DECEMBER 1986

using higher density usually improves per­
formance. Changing from PE to OCR format
can double throughput in some instances.

To use OCR format, the Tandem system
must have the proper hardware: Nonstop TXP
or VLX processors, 5106 or 5130 tape drives,
and the 3107 disk controller. To specify OCR
format, set the density option on the drive to
OCR or use the density option of BACKUP.

Higher recording densities, in addition to
increasing throughput, result in better utiliza­
tion of the tape itself. The OCR format allows
the same tape to store up to four times the data
it can store with PE format and seven times the
data it can store with NRZI.

Tape Record Size
BACKUP writes data to tape as data records.
It allows users to specify a tape data-record
size between 2 Kbytes and 30 Kbytes (in incre­
ments of 2 Kbytes). Records are separated by
interrecord gaps. RESTORE reads these tape
records to construct the disk file.

Figure 3 shows BACKUP and RESTORE
throughput as a function of the tape record
size. Changing the tape record size from
2 Kbytes to 28 Kbytes doubles throughput.
Figure 4 shows that this change reduces the
processor usage by a factor of 3.

BACKUP uses a default record size of
8 Kbytes for Nonstop systems (Nonstop II,
NonStop TXP, and NonStop VLX processors)
and 2 Kbytes for NonStop l+ systems. The
record size used by BACKUP can be specified
with the BLOCKSIZE parameter. RESTORE
uses the block size recorded on the tape. Back­
ing up with larger block sizes can increase
throughput substantially.

Why does the record size affect the through­
put and the processor usage so significantly?
The following are a few reasons.

Larger Messages. Larger messages are faster
and more efficient. The size of messages used
by BACKUP, RESTORE, the disk process, and
the tape process to transfer data to each other
is equal to the tape record size. Since larger
messages take proportionately less time and
fewer processor cycles to transfer the same
amount of data, the initialization of tape write
and the completion of tape read take less time.
This reduces the time required to process the
tape 1/0 and increases throughput.

Faster Tape Write/Read. The 5106 tape drive
stops after it reads or writes every record and
takes about 4 ms to start again. Recording at
OCR density, the 5106 takes about 6.6 ms to

Figure 3

Figure 4

'g
8 300

i
2 225
E
~
:, 150
C.
.c
0)

:, 75 e
F

2
>,
.c
~
en
E
a.

10.0 ~
C.

~ 7.5
C
0
~
Q)

5.0
0)

"' <J)
2.5 :,

0
<J)
<J)

0 Q)

~ a.

6 12 18 24 30

Tape data-record size (Kbytes)

0 6 12 18 24 30

Tape data-record size (Kbytes)

write a 2-Kbyte tape record (including the
start/stop times). The corresponding time for
a 28-Kbyte tape record is 40.7 ms. Hence the
tape write time per Kbyte is 3. 3 ms for the
2-Kbyte record and 1.5 ms for the 28-Kbyte
record. Thus larger tape record sizes cause the
tape write time to decrease by a factor of 2,
increasing throughput. Tape reads improve for
similar reasons.

More Efficient Disk Access. BACKUP and
RESTORE use the tape record size as the data
block size for accessing the disk. Larger tape
records make each disk access more efficient
by reducing the average disk latency time to

D E C E M B E R I 9 8 6 TANDEM SYSTEMS REVIEW

Disk and Tape Subsystems

Figure 3.

Effect of tape data­
record size on through­
put. Larger tape blocks
improve throughput.

Figure 4.

Effect of tape data­
record size on processor
usage. Larger tape blocks
reduce processor usage.

95

Qisk and Tape Subsystems

Figure 5.

Effect of tape data­
record size on tape
capacity. Larger tape
records increase storage
capacity.

Figure 6.

Effect of channel burst
size on throughput.
Larger channel bursts
increase throughput.

96

Figure 5

c
Q)

e
Q)

Bo
C:
0

~
.!::!
:E
:::,

c ·c:;

"' C.

"' 0
Q)
C.
~

Figure 6

'g I 400
<f)

.l!l 300

f
:::i 200
C.
.c
Cl
:::i 100 e
j:=

0

100

75

50

25

0
0 6 12 18 24 30

Record size (Kbytes)

16 words 16 words Burst
64 words 64 words size

BACKUP RESTORE

access the same amount of data (Khatri and
McCline, 1985). Increased disk throughput
also causes the tape throughput to go up,
because the disk is really the bottleneck for
smaller block sizes.

Large tape records, in addition to increas­
ing throughput, allow the same tape to store
more data. Figure 5 shows the capacity of a
GCR tape as a function of the record size.
Increasing the tape record size from 2 Kbytes
to 28 Kbytes almost doubles tape capacity.
This is because, for 2-Kbyte tape records,
the tape length required to store the data
(0.33 inches) is almost equal to the interrecord
gap (0.3 inches). Hence half the tape contains
gaps and the other half contains data. For
28-Kbyte tape records, the interrecord gaps
are negligible compared to the amount of tape
the records use. Thus, the medium is almost
fully utilized.

Channel Burst Size
Channel transfer time is a significant compo­
nent of the time required to write a tape
record. As described earlier, data transfer over
the 1/0 channel occurs in bursts separated by
a hold-off period. This is necessary because
multiple devices share the 1/0 channel; the
hold-off period allows other devices to access
the channel between bursts of tape data.

Transferring data over the channel in bursts
takes substantially longer than continuously
transferring the same data. Also, a small burst
size increases the time required to process each
tape 1/0 and degrades throughput. One way to
minimize this problem is to transfer data over
the channel in larger bursts. The default burst
size for the 3206 controller is 16 words. This
can be increased to 64 words by using the
optional 3206 controller microcode available
with the B-series software releases.

Figure 6 compares throughput obtained
with 64-word bursts and 16-word bursts. As
shown, 64-word bursts improve BACKUP per­
formance 1.4 times and RESTORE perfor­
mance 1. 7 times.

Larger channel bursts may cause problems
on heavily loaded channels with attached con­
trollers that are not fully buffered. This is
because larger bursts lock out other devices
sharing the same channel for longer durations.
On partially buffered controllers, this addi­
tional delay may cause data overruns and
underruns. Before using larger bursts, use the
GUARDIAN STRESS program (run with
INSTALL or SYSGEN) to determine if these
bursts would cause the system to malfunction.
Larger bursts should only be used if the
STRESS analysis indicates that it is safe to use
them. (Note that larger bursts do not cause the
system to malfunction if the channels con­
nected to the 5106 controller using these bursts
are connected to fully buffered controllers
only. See the System Management Manual.)

Configuration Considerations
BACKUP and RESTORE operations involve
three processes: the disk process, the tape
process, and the BACKUP or RESTORE pro­
cess. Users have very little control over the
location of the disk and tape processes: they
must run in the processors to which the disk
and tape are connected. The BACKUP and
RESTORE processes can be placed in any pro­
cessor, however, using the CPU parameter in

TANDEM SYSTEMS REVIEW DECEMBER I 9 8 6

the RUN command. This section examines
how the locations of these processes affect
throughput and processor usage.

Since there are three processes, the following
configurations are possible:

I. The disk, tape, and application (i.e.,
BACKUP or RESTORE) processes are all in
the same processor. (Note that it might not
be possible to use this configuration if the
disk and tape are not connected to the same
processor.)

2. The disk, tape, and application processes
are all in different processors.

3. The disk and tape processes are in different
processors. The application process is in the
same processor as the tape process.

4. The disk and tape processes are in different
processors. The application process is in the
same processor as the disk process.

5. The disk and tape processes are in the same
processor. The application process is in a
different processor.

Why does the relative location of processes
affect throughput and processor usage?

First, all the processes involved in BACKUP
and RESTORE operations communicate with
each other via messages. The time and the
processor cycles required to send these mes­
sages depend on the location of the sending
~nd receiving processes: messages to a process
m the same processor usually require less time
and processor cycles than messages to a pro­
cess in a different processor. The time required
to send messages affects the throughput; the
processor cycles used affect the processor
usage.

Second, only one process can run in a pro­
cessor at any time. Hence, when more pro­
cesses are located in the same processor, they
take more time to perform the same operations
because of processor contention. For example,
BACKUP or RESTORE performs poorly in the
first configuration listed above because con -
tention degrades throughput even though mes­
sages are cheaper and faster.

Figure 7 compares BACKUP throughput for
the five configurations, and Figure 8 com­
pares the corresponding processor usage. Con­
figuration 3 (BACKUP and tape processes in
the same processor) yields the maximum
throughput. This is because it reduces the time
required by the BACKUP process to send a
message to the tape process, increasing tape
throughput.

DECEMBER I 9 8 6 T A N D E M

Figure 7

u
C

§ 400

~
2
>,
.0

~

300

:i 200
0.
.c
OJ 2 100
.c
I--

Figure 8

0
2 3 4

2

Configuration

3

Configuration

4

5

5

Configuration 1, although the option with
the lowest processor usage, yields lower
throughput because of increased processor
contention. Configuration 2 is the most
expensive in terms of processor cycles but has
the minimum contention, hence does better
than 1 and 5. Configuration 4 results in lower
throughput than 2 and 3 because the BACKUP
process takes more time to send messages to
the tape process than in 3 and there is more
processor contention in the disk process CPU
than in 2. Configuration 5 results in the lowest
throughput because messages between the disk
process and BACKUP take more time.

Configuration 3 is the best option because it
results in the highest throughput and uses a
reasonable number of processor cycles.

SYSTEMS REVIEW

_ ____Ei_sk and Tape Subsystems

Figure 7.

Effect of configuration
on BACKUP throughput.
To maximize throughput,
the tape process should
be in the same processor
as BACKUP and the disk
process in a different
processor.

Figure 8.

Effect of corifiguration
on BACKUP processor
usage. Processor usage is
minimized when the
disk, tape, and BACKUP
processes run in the same
processor.

97

Disk and Tape Subsystems

Figure 9.

Effect of configuration
on RESTORE through­
put. RESTORE through­
put is maximized by
having the disk process
in the same processor as
the RESTORE process
and the tape process in a
different processor.

Figure 10.

Effect of configuration
on RESTORE processor
usage. Processor usage is
minimized when the disk,
tape, and RESTORE
processes run in the same
processor.

98

Figure 9

'o
C

8 4
&
c/j

2 3
E
~
-s 2
Q.
.c
Ol
::,

e
.c
f--

0

Figure 10

CJ
Q.)~ 4
Ol~ e,--

"'"' ::i E 3
~ a. m~
(lJ Q. 2
C) 0
2 U)
Q. C

~1

0

2 3 4 5

Configuration

2 3 4 5

Configuration

Figures 9 and 10 compare RESTORE
throughput and processor usage for the config­
urations mentioned above. Note that configu­
ration 3, which offers the best BACKUP
performance, results in the lowest RESTORE
throughput. This is because RESTORE has
only one NOWAIT write outstanding against
the disk file at any time, causing the disk write
throughput to limit the RESTORE data rate
(Khatri and McCline, 1984). Placing the
RESTORE process in the same processor as the
tape process causes messages from the
RESTORE process to the disk process to take
longer, resulting in still lower disk throughput.
This also decreases the RESTORE data rate.

Throughput for configuration 5 is also low
because the RESTORE process is not in the
same CPU as the disk process and there is con­
tention in the disk process CPU. Note that the
data rates and processor usage for the other
configurations are very similar to each other.

TANDEM SYSTEMS

Clearly, for optimum throughput, the tape
process should not be in the same processor as
the RESTORE or disk process. All other con­
figurations yield similar throughput, although
keeping the RESTORE process in the same
processor as the disk process maximizes
throughput.

Future Performance
Tandem is committed to improving tape perfor­
mance. Planned changes to the GUARDIAN 90
operating system and the tape hardware will
push tape performance to new heights in
future software releases.

Conclusions
Several factors could be responsible for unsat­
isfactory tape performance. Before investing
in new tape hardware, determine if the tape
system is really at fault. If the tape system is
responsible for the poor throughput of the
application, upgrading the tape hardware and
following these suggestions will improve the
performance of the tape system:

■ Use the GCR recording format to increase
tape throughput and storage capacity.

■ Use the largest possible tape record size.
Larger records result in higher throughput and
consume fewer processor cycles.

■ Fora 5106 tape drive, use STRESS to deter­
mine if a 64-word burst size is safe for the
channel configuration. If it is, use the optional
microcode to improve tape performance.
■ Experiment with the placement of applica­
tion processes. When using BACKUP, keep the
BACKUP and tape processes in the same pro­
cessor. When using RESTORE, keep the
RESTORE and disk processes in the same
processor.

References
Chandra, M. 1985. The GUARDIAN Message System and How
to Design for It. Tandem Systems Review. Vol. I, No. I. Part
no. 83934. Tandem Computers Incorporated.

Khatri, A., and McCline, M. 1985. Improved Performance for
BACKUP2 and RESTORE2. Tandem Systems Review. Vol. I,
No. 2. Part no. 83935. Tandem Computers Incorporated.

Anil Khatri joined Tandem in November 1983 after obtaining a
Masters in Computer Science from the University of Maryland,
College Park. After modeling Tandem hardware and software
subsystems for two years, he is now developing capacity plan­
ning products for Nonstop systems.

REVIEW DECEMBER 1 9 8 6

-- his article is about Wells
Fargo Bank's Retail Delivery
System (RDS), with emphasis
on a major on-line transac­
tion processing (OLTP)
benchmark done coopera­
tively by Tandem and Wells

Fargo. It is divided into four sections.
The first section is an overview, which

includes a summary of the entire article.
The second section describes Wells Fargo

Bank's approach to retail banking today in
the context of deregulation and California's
banking environment.

The third section describes RDS, Wells
Fargo's retail transaction processing on
Tandem Nonstop systems and establishes why
the benchmark results are important to Wells
Fargo.

The fourth section contains in-depth techni­
cal information on a series of benchmarks
performed jointly by Tandem and Wells Fargo,
including a description of the software and
hardware environment and details on the
results obtained.

Overview
Goals
As deregulation changes the traditional way
that banks have generated revenue, competi­
tion in retail banking has become intense,
especially among the five largest California
banks. Wells Fargo Bank, already a leader in
the size, account penetration, and availability
of its own ATM network, has established a
formidable plan for maintaining its position

Performance Measurements of
an ATM Network Application

into the 1990s. Two key goals of this plan are
rapid growth without interruption of services
and the lowest cost per transaction in the
industry. To help achieve the goals, a project
was initiated to develop RDS. RDS is an appli­
cation environment running on Tandem
Nonstop systems for performing retail trans­
action processing. Currently, RDS supports
ATMs and shared debit-card networks. RDS
makes use of Tandem's standard products
whenever possible, thus avoiding some of the
costs of building and maintaining in-house
expertise in favor of that provided by Tandem.

Benchmarks
Tandem recognized the opportunity to
enhance the performance of its products by
using the classic OLTP environment that RDS
represented. From the latter part of 1985 to the
summer of 1986, several OLTP performance
benchmarks were carried out as part of a joint
project between Wells Fargo and Tandem. The
purpose of these benchmarks was to test and
measure the new RDS software developed to
run the Express Stop ATM network. The
results demonstrated that a full-function retail
banking application can achieve excellent
response time and high throughput, even at
high levels of CPU utilization. The tests also
revealed significant performance improve­
ments in the B30 release of the GUARDIAN 90
operating system and the new Nonstop VLX
processor over the BIO and B20 releases and the
Nonstop TXP system.

---------------- -

DECEMBER 1986 TANDEM SYSTEMS REVIEW 99

Customer Profile

Figure 1

1/0
",--5----

-(1) Request-- -6--'

-+(2) Reply--·
application 1/0

. -(3)Status- " . ..,___ 1--

Figure 1.

Benchmark transaction.
The RDS ATM transac­
tion comprises three
steps: (I) a message from
the ATM identifying the
customer and the trans­
action requested, (2) a
response from the appli­
cation indicating whether
or not the transaction
has been authorized, and
(3) a status message from
the ATM which informs
the application of the
transaction's outcome.
A typical RDS ATM
transaction requires
11 disk I/Os, as well as
2 I/Os to the security
module to handle per­
sonal identification num­
ber (PIN) authorization.

100

--1-

The benchmarks first used an application
prototype and later the real application as it
was designed for production. Both the proto­
type and real application implemented a three­
step ATM transaction (Figure 1). A mix of
transaction types was used, the most common
being a simple cash withdrawal.

The application benchmark results, summa­
rized in Table 1, are significant in that the
transaction measured is used today by a major
bank to perform real business functions. The
RDS transaction provides at least twice the
functionality of the more commonly measured
"debit-credit" transaction (also known as
ETl). 1 This stems from the fact that RDS
requires an average of 11 I/Os to the debit­
credit benchmark's 7, uses a more complex
communications protocol, and implements a
three-step versus a two-step transaction. 2

1Thc "debit-credit" transaction refers to the transaction standard defined in
"A Measure of Transaction Processing Power.'' Datamation, April I, 1985.

2The number of logical file I/Os for the debit-credit transaction was based on
the number reported by the performance group at Tandem responsible for the
debit-credit benchmarks.

TANDEM SYSTEMS

The RDS benchmark was performed at a
facility built to model an ATM network envi­
ronment. The results were calculated from
measurements of real applications configured
in a production-like environment, rather than
from modeling or extrapolation. To accom­
plish this, the application on the system under
test communicated with ATM simulators run­
ning on a remote terminal emulator system
using 100 communications lines and modem
eliminators. The ATM simulator, designed to
simulate the IBM 3624 ATM used in the current
Wells Fargo network, was so effective that it
functioned without modification when tested
against the current production Express Stop
application software.

Another distinguishing factor of the RDS
application was the use of a large number of
standard Tandem software products:

• GUARDIAN 90 operating system, B30 soft­
ware release.
• GUARDIAN Disc Process 2 (DP2).
• Transaction Monitoring Facility (TMF).
• PATHWAY Terminal Control Process 2
(TCP2).

• PATHWAY Intelligent Device Support (IDS).

• EXPAND™ Fiber Optic Extension (FOX).

• SNA Access Method (SNALU).
• SNA High Level Support (HLS).

Products with special modifications to
improve throughput or response time were
avoided in favor of the supportability of off­
the-shelf subsystems and tools supplied by
Tandem.

Results
An objective of the benchmark was to deter­
mine how high the CPU utilization could be
driven while maintaining response-time goals.
In previous tests of host data-base applica­
tions, the maximum steady-state utilization
that had been achieved before queuing
resulted in degraded response time was in the
600Jo-700Jo range. This utilization limit, or
"Q factor," made unusable a sizable portion
of the overall CPU capacity (Blake, 1979).
However, during the benchmark, it was
discovered that a properly configured
Nonstop TXP or Nonstop VLX system with

REVIEW DECEMBER I 9 8 6

DP2 could run well above 70% CPU utilization
before experiencing performance degradation.
Due to improvements in the GUARDIAN 90
operating system, this upper limit was
extended to more than 85% with NonStop TXP
processors and greater than 95% with the
Nonstop VLX processor.

As of the B30 release of GUARDIAN 90, an
improvement in the Message System inter­
process message protocol reduced the CPU
dispatches needed to send a message. This
resulted in fewer CPU cycles per transaction
and greatly reduced the system overhead por­
tion of total processor usage.

The benchmark revealed that at higher
transaction rates, CPU utilization per transac­
tion actually decreased. Project performance
analysts attribute this improvement to efficien­
cies of scale in the disk and communications
access methods. Specifically, the disk process,
DP2, performs fewer physical I/Os per trans­
action, and SNAX, less polling per 1/0.

Retail Banking at Wells Fargo
The Banking Environment Now and
in the Future
Banking is very different from what it was
20 years ago. As a result of deregulation,
demands and pressures on banks for more
products and services have increased, and their
earning power is no longer defined by regula­
tions. Financial services are now provided
within the structures of large conglomerates
such as Merrill Lynch, American Express, and
Sears. Money market funds and insurance
companies also offer investment services that
have taken customers away from the tradi­
tional bank.

Competition for customers is fierce and
banks must broaden their products and ser­
vices to be successful. They must also be
aggressive in marketing their products and
services in a timely and cost-effective manner.
To compete more effectively in a deregulated
environment, banks must take advantage of
new technological advances and continue to
automate banking services. Banks need auto­
mation to reduce the cost of transactions and
to serve customers quickly and efficiently.

Customer Profile

Table 1.
Summary of Wells Fargo RDS ATM application benchmark results.

Nonstop TXP Nonstop TXP
prototype application

Number of CPUs 6 6

Transaction rate per system 10.8 12.0
(transactions per second)

Transaction rate per CPU 1.8 2.0
(transactions per second)

Average host response time 1.2 1.8
(seconds)

CPU utilization' 78% 95%

'Highest CPU utilization achieved before response time degraded.

From current projections, the U.S. banking
industry is expected to change dramatically by
1990. The total number of banks will fall
from 15,000 to 9600, with the reduction being
in small and medium banks. Large banks
(assets over $1 billion), however, will increase
from 230 to 290. This consolidation will
involve over half of the banks in merger activi­
ties. Point-of-sale debit cards will gain more
acceptance-up to 20% of households will
participate. ATMs will have a greater share of
deposit and withdrawal transactions than will
human tellers, and banks' major form of reve­
nue (interest income) will decrease by almost
10% (Arthur Andersen & Co., 1983).

Wells Fargo and California Banking
As deregulation creates an environment in
which the larger banks have the greatest
chance of survival and success, the presence of
many billion dollar banks in California makes
it a particularly competitive location. At the
end of 1985, California's five largest banks

Nonstop VLX
application

4

12.0

3.0

0.9

97%

D E C E M B E R 1 9 8 6 TANDEM SYSTEMS REVIEW 101

Customer Profile
- - - -

Table 2.
Size and profitability of California's five largest banks, ranked by total
assets (as of December 1985, except when noted).

Earnings per share, Return on
first quarter average

Total assets Assets Deposits assets,'
Bank (billions) rank' rank' 1986 1985 1985

Bank of America $106.1 2 0.31 0.63 0.41

Security Pacific $ 44.8 8 5 1.11 1.00 0.61

Wells Fargo' $ 23.5 12 7 2.25 1.95 0.68

First Interstate' $ 20.6 14 8 1.71 1.57 0.67

Crocker' $ 19.0 16 10 0.08

'Rank among U.S. commercial banks.

'Rank among U.S. commercial banks by total domestic deposits.

'A common measure of a bank's profitability.

'These figures precede the Wells Fargo-Crocker merger in June 1986.

'All figures for First Interstate of California except earnings per share, which are for First Interstate
BanCorp.

102

represented 5 of the 16 largest U. s. banks
(Table 2) and together owned 5 of the 11 larg­
est proprietary ATM networks (Table 3). By
domestic deposits, California banks lead the
nation by an even greater margin with 5 of the
10 largest U.S. banks.

Wells Fargo has distinguished itself among
the state's five largest banks not only by com­
mon measures of profitability, but also
through its dramatic growth. The recent
acquisition of Crocker Bank, the largest bank
buyout in U.S. history, not only puts Wells
Fargo close to Security Pacific in size, but
increases its competitive position significantly
in the southern part of the state.

Banking studies cite retail services as a key
to success in the new deregulated banking
world because of their role in keeping and
attracting depositors. Evidence of Wells
Fargo's success in this area is reflected in the
phenomenal customer acceptance of its debit­
card networks, particularly the Express Stop
ATM network. The ATM's key role in the
bank's overall strategy is shown in the size of
the network relative to the size of the overall
bank. With the Crocker buyout, Wells Fargo
became the ninth largest bank in the United
States as measured by total assets. But it
operates the second largest proprietary ATM
network. 3

·1Wells Fargo ranks as the ninth largest U.S. bank with $38.9bitUon ~assets as­
of June 30, 1986. Sec note 2 on Table 3 regarding the ATM network size
ranking of number two.

T A N D E M SYSTEMS

The strongest evidence of the ATM net­
work's popularity with Wells Fargo's cus­
tomers is shown in the usage statistics: Wells
Fargo announced that by the end of 1985, 66%
of its demand deposit account customers
(DDAs-commonly known as checking
accounts) showed card activity within the
month. These results are no accident, as Wells
Fargo has implemented incentive plans for
both tellers and branch managers that encour­
age non-card-using customers to use the
ATMs. While the apparent conflict of interest
between a teller and an ATM might seem to
limit this plan, in fact it hasn't. Wells Fargo's
customers use their cards mostly for after­
hours banking: 70% of Express Stop's trans­
actions are done outside banking hours (EFT
Report, 1985).

Availability
ATM specialists and bank marketing personnel
have different explanations for the success of
ATM networks. Most agree, however, that
availability is at least a large component of
that success. Among Californians, the expec­
tation of cash accessibility is extremely high.
For cash to be accessible means that the ATM
be conveniently located for consumers and
that it be in a condition to dispense money. An
example of this is the visible frustration of a
hopeful moviegoer who drives several miles to
the nearest ATM only minutes before the show
is to start, discovering too late that the ATM is
not operational.

Accessibility of ATMs to customers can be
viewed from three perspectives: the opera­
tional state of the ATM itself as a device, the
availability of the host application system, and
the availability of the host from any given site.
Exceptional measures have been taken by
Wells Fargo to achieve high host and site
availability so that the customer does not lose
basic accessibility to his or her account even if
a single ATM is not operational. Beyond the
24-hour operation of the network, Express
Stop includes a minimum of two ATMs on
separate communications lines at 80% of all
its locations. This provides a level of fault­
tolerant communications in addition to the
built-in fault tolerance of the Tandem host.
Each of the lines in a pair is attached to a
separate controller, which is in turn on a sepa­
rate CPU. In this way, if any single CPU, con­
troller, modem, phone line, or ATM fails, the
site still has an operational ATM.

REVIEW DECEMBER I 9 K 6

For the year 1985, availability for all ATMs
ranged between 94% and 96%, whereas the
availability at any given site ranged from 98%
to 99%. These figures are based on a 24-hour
network operation, which means that all
scheduled and unscheduled ATM maintenance,
problems with phone lines or modems, and
host downtime (less than 0.1 %) cause an aver­
age site to be unavailable for no more than 1.7
to 3. 3 hours per week. Put another way, cus­
tomers who use their ATM card once a week
would be turned away at a site not more than
once a year. An example of what these mea­
sures mean to customers occurred in Northern
California in the winter of 1985. A flood
caused over 100 ATMs to be down, but only
two sites lost all ATMs.

The Retail Delivery System
RDS: A Strategy for High Performance at
Low Cost
In order to maintain a high level of availabil­
ity while meeting the demand for increased
retail services, Wells Fargo conceived of RDS.
It was intended to provide:

■ Data and transaction integrity.

■ Continued high availability (including disas­
ter recovery).

■ Nondisruptive growth with unit cost
decreases.

■ Ability to introduce new products, services,
and devices.

The existing Express Stop network, running
on two Tandem Nonstop TXP systems, did
not provide the structure and flexibility to
achieve reduced cost and the high volumes
expected in the 1990s. Without a reliance on
standard products, support would continue to
require specialized skills that are difficult and
expensive to obtain. New services would have
to fit into the existing design. The new RDS
architecture was to be a delivery system to
support retail outlets. Its characteristics would
include:

■ Hardware and software growth without
rewriting code.
■ High level of vendor support.
■ Application development in industry lan­
guages (e.g., COBOL).

DECEMBER I 9 8 6 T A N D F. M

Customer Profile
- -- - ---

Table 3.

ATM network statistics for California's five largest banks (ranked by number
of on-line ATMs). 1

Number of on-line ATMs Percent
U.S. Card base' Transactions active

Bank December 1984 December 1985 rank' (millions) per month' DDA'

Bank of America 1027 1330 3.9 13.0 (as of NA
September
1985)

Wells Fargo 719 783 3 1.3 6.3 66%

Security Pacific 516 613 7 1.4 4.7 54%

Crocker 379 415 9 1.0 3.0 53%
(as of
March
1986)

First Interstate 357 357 11 2.0 3.9 40%

'Figures that differ from EFT Bank Network News figures were confirmed by the respective banks.

'Rank by size of proprietary ATM network as of December 1985. Although First Interstate is listed as
number two in EFT Network News, they confirmed that their "Day and Night Teller" network is a
shared network, connected through CIRRUS and other regional switches. The second largest
proprietary ATM network in the United States was actually owned by First Texas Savings. Their
"MoneyMaker" network had 791 ATMs on-line as of September 1985. However, if Wells Fargo and
Crocker had been combined as of that time, they would have had 1163. With the merger complete,
Wells Fargo is well established in the number two spot.

'Number of debit cards issued for use on each bank's ATM network. The card base, or number of
debit cards that are authorized to use the ATM network, can be misleading as some banks give
ATM cards more freely than others. It is generally agreed that the best measure of success for the
ATM network is percentage of DDA (checking) accounts with card activity (see footnote 5).

'Number of transactions against card base for the month of December 1985.

'Percentage of DDA accounts with any card activity as of December 1985. "DDA accounts with
card activity" is often interpreted differently by the various banks. In all cases reported here, it
indicates the percentage of active accounts in a month.

■ Streamlined network operations.

■ Ability to move transaction processing
resources closer to the customer in order to
reduce communication costs.

Real Cost of a Transaction
If the objective of RDS were reduced to a sin­
gle statement, it would be to achieve the lowest
cost per transaction in the industry and yet be
able to accommodate increased volume and
service levels. On the surface these goals
appear ambitious and even incompatible.
When the real cost of a transaction is exam­
ined, however, a different picture emerges.
The cost of a transaction is more than the cost
of the processing power required to complete
it. A complete "invoice" would include some
hidden costs, including the costs of:

■ Development (design and implementation).

■ Ongoing maintenance (complexity).

■ Added enhancements or new functions.

■ Increased volume (or transaction types).

■ Hardware to process transactions.
■ Hardware and software failures.

SYSTEMS REVIEW 103

Customer Profile

Figure 2

Account
data base

Shared
POS ~

network ~

Shared
ATM ~

network ~

Figure 2.

ATM

RDS software architec­
ture. Both business and
network management
applications use the RDS
facilities and Tandem
standard software to
perform their tasks,
Adding new applications
is simplified by the lay­
ered architecture.

104

Account data base
of record

lBM l'li>st.

~
Gf!eratl!lg e~~ll~.~tem.~~s

Operational/interface tools

.. ~,!S~~ysi~

Business
applications

Event
management

Configuration
management

Network
management
applications

..... -< -~ .~.

11
Availability,
capacity,
reports etc.

Configuration
data base

Event
data base

RDS
operations

The selection of Tandem hardware and soft­
ware and the ambitious RDS goals make more
sense when viewed in the above light. The
Tandem system continues to provide the high
availability Express Stop is known for, and it
allows for cost-effective growth by increasing
capacity in manageable increments. It also
provides the basis for high performance and
low-cost support through use of Tandem's
standard OLTP software products, and it
results in basic data integrity without the need
for user-written recovery routines (TMF).

RDS Architecture
RDS is a set of hardware, software, policies,
and procedures to deliver retail bank products
and services. The RDS architecture defines a
framework for long-term growth to meet the

T A N D E M SYSTEMS

needs of current and future applications. The
architecture can be viewed as a collection of
concentric frames, each providing a different
set of functions. As Figure 2 shows, the outer
layers are vendor-supported system processes
and tools, whereas the inner two layers are
customer-developed applications and support
subsystems. A benefit of this modular
approach is the shielding of the application
developer from much of the device- and
system-level programming. Additionally, ven­
dor enhancements and performance improve­
ments should not require change to the
application programs .

RDS addresses two major functions: pro­
cessing retail business transactions and man­
aging and operating the network. A different
set of modules from each RDS layer is invoked
during the execution of any application. For
example, a directly attached ATM connects to
the RDS host through the SNAX access method
of the system process layer. SNAX/HLS of the
interface tools layer provides more communi­
cations services, such as session management.
Transaction threads are managed by the
PATHWAY IDS subsystem of the operational/
interface tools layer. Device-specific charac­
teristics, such as the formatting of ATM
messages, are handled by the RDS support
subsystem, network device management
(NDM). The Express Stop application is then
concerned mostly with updating account bal­
ances, authorizing withdrawal amounts, and
logging transactions.

Other business functions will be added,
including debit transactions from sources
other than directly attached ATMs. For exam­
ple, a transaction may be received by RDS
from a travelling Wells Fargo customer access­
ing his or her account through an ATM on a
shared network, such as MasterTeller. In this
case, a different access method (ENVOY™) and
interface tool (General Device Support, or
GDS) will be invoked, while the same business
application code, Express Stop, will perform
the business function. In a similar way, point­
of-sale transactions may be received from the
INTERLINK network and executed by the
same Express Stop application as simply
another debit transaction.

Thus, other business support applications
can be added with minimal impact to the RDS
support subsystems, making new services a
realistic and cost-effective part of Wells
Fargo's strategy for growth in retail systems.

REVIEW DECEMBER I Y 8 6

A different set of applications exists to
ensure the availability of the system and
devices. For example, the Problem Analysis
and Resolution (PAR) subsystem notifies oper­
ators of potential problems, attempts to
resolve the problem automatically, and recom­
mends steps to be taken to close the problem.
Like the business applications, this system's
application relies on the outer layers, espe­
cially configuration and event management,
to carry out its tasks.

For example, an ATM exists within the over­
all system as a collection of various software
and hardware elements. From different view­
points, it has different "aliases." A customer
reporting a problem might refer to the ATM by
its geographical location (e.g., the ATM on the
corner of Market and Fourth). Bank personnel
track ATMs by branch numbers (Accounting
Units), and the phone company knows the
same device by a circuit and drop number. To
the systems analyst, it is related to the control­
ler and port number, the SNA logical and
physical unit number, and the PATHWAY ter­
minal name. A problem with an ATM can
cause event messages to be generated by many
elements in the system. Configuration man­
agement manages the complex set of aliases
and their relationships so that PAR can relate
messages about a single problem when they
come from different sources.

Tandem's Commitment to RDS
Because RDS represents a classic example of
an OLTP application, Tandem has worked
closely with Wells Fargo to judge how well the
standard products perform under real-world
conditions. From this experience, certain
functional deficiencies and performance flaws
became apparent in parts of the Tandem sys­
tem. Tandem Software Development
responded by making the needed enhance­
ments to current products and by using RDS
requirements to improve the design of prod­
ucts still being defined. These products and
enhancements will be the foundation for RDS
and all like OLTP applications, now, and in the
future. Some of them are listed below:

• Network Systems Management (NSM) Pro­
grammatic Interface allows for integrated
command and control of Tandem and user
subsystems.

DECEMBER I 9 8 6 T A N D E M

• Event Management System (EMS) supports
high-volume event handling, safe storage of
events, and filtering on events and event
distribution.
• Tandem Application Command Language
(TACL) includes support for both NSM and
EMS, as well as data structures and PATHWAY
server capability.

• GDS allows users to customize interfaces
between non-SNA devices or networks and
PATHWAY /IDS.
• PATHWAY includes IDS message section
enhancements for support of ATMs, CON­
TROL 26 for prevention of data loss on a can­
cel to HLS, variable timeouts on ACCEPT,
bit-mapped fields for ATM control, and unso­
licited message handling.
■ DP2 has undergone performance improve­
ments and TMF supports an increased number
of transactions per CPU.

• FOX provides for high bandwidth network
communications.
• SNAX improvements reduce the cost of poll­
ing with 6204 controllers and prevent resource
depletion in high stress situations. Communi­
cations network management information
is also available via a new programmatic
interface.

• SNAX/HLS includes a large-message option
for the ATM session BIND, operations access
to the application, and documented user exits.

Stressing the Application and
Measuring Performance
Because of the scope of RDS (24 hours, more
than 1100 ATMs, all new software), Wells
Fargo saw the requirement for a facility that
would allow real-world stressing and measure­
ments. Tandem saw the opportunity to evalu­
ate and potentially improve the performance
of its products in a classic yet stressful OLTP
environment. Thus, a joint Tandem and
Wells Fargo project, code-named Hold-up,
was created.

SYSTEMS REVIEW

Customer Profile

105

Customer Profile

Figure 3.

RDS benchmark config­
uration. The benchmark
systems used up to JOO
physical lines and
modems which resulted
in an ATM configuration
larger than the produc­
tion Express Stop before
the Crocker buyout.

106

Figure 3

Log
server

Authorization - Security
server server

DP2/TMF

Log
server

~
TCP

/t
HLS

t
7 mirrored volumes
on each system

account data base,
audit trails, system,

configuration data base,
programs etc.

SNAX

50 sync
lines

Hold-up consisted of a large hardware facil­
ity and analysts from both Tandem and Wells
Fargo. The charter of the project team was to
ensure that RDS achieved the highest possible
level of performance. This would be accom­
plished by measuring and evaluating the RDS
application under various stress conditions,
recommending changes to Wells Fargo's RDS
developers, and forwarding vendor product
problems to Tandem's Software Development.
Hold-up was built on the premise that the
measure of a system's performance is not
limited to throughput or response time, but
can be defined as meeting the following
requirements:

T A N D E M S Y S T E M S

50 sync
lines

3 volumes
programs,
configurations, etc.

■ Transaction and data integrity.

• Required throughput.
• Required response time.
• Required functionality.
■ Easy maintenance and enhancement.
• Flexibility for expandability and
deployment.
• Required availability.
• Time-critical recoveries and starts.

With this expanded definition of perfor­
mance, Hold-up personnel established a num­
ber of tests to be run, including product inte­
gration tests, volume tests, start-up tests, and
failure tests. To achieve throughput and
response-time goals, a series of benchmarks
were performed. A detailed description of the
benchmarks and their results follow.

REVIEW DECEMBER I 9 8 o

Figure 4

'

AT M1 ATM10

I

AT M11 ATM20

.

I

AT M81 ATM90

I

AT M91 ATM100

The RDS Benchmarks
The Benchmark Configuration
The Hold-up facility was set up to mirror
the Express Stop ATM network envisioned
over the next few years. The number of
ATMs, for example, was set 25% higher
than existed at Hold-up's inception (before
Cracker's network was merged). For the proto­
type measurements, two host nodes were used
to drive 1000 simulated ATMs. Most of the
application benchmark runs used only one
node (500 ATMs), as the difference in CPU
time per transaction was limited to an easily
identified amount attributable to network
transactions. Figure 3 describes the configura­
tion for the NonStop TXP application bench­
mark. The NonStop VLX system measurements
were run on a four-processor single-node con­
figuration which replicated the peripheral
subsystems of the NonStop TXP system config­
uration to the extent possible.

Some of the relevant communications char­
acteristics were as follows:

■ Line speed was 2400 bps, full duplex.

■ Average addresses on the poll list were 10.
■ Poll interval was 2 seconds.
■ The SNA primary and secondary response
protocol was definite response mode.
■ Average bytes per message: transaction
request was 57, transaction reply was 167,
ATM status was 30. Each message was followed
by a 9-byte SNA response.

D E C E M B E R I 9 8 6 T A N D E M

Business
$SNA1 - $HLS1~ {oo,~,

class
,''1

10f'1 h

$SNA2 - $HLS2___/
LOG
server
class

Business
$SNA9 - $HLS9 ~ { se=, class

'm1'15
$SNA10 - $HLS10__/

LOG
server
class

The driver, or remote terminal emulator, was
an eight-processor Nonstop TXP system con­
nected by 100 lines with 2400-bps modem
eliminators. The entire system was dedicated
to simulating the behavior of 1000 IBM 3624
SNA ATMs (500 for single-host node tests).
Each host system ran 50 SNAX line handlers,
one for each of the multidrop ATM lines. Each
line supported an average of ten ATMs, though
the mix reflected the real Express Stop ATM
network and ranged from 8 to 15.

The decision of how many ATMs to have on
a line was made depending on the transaction
submission rate for a given set of ATMs. Since
each ATM is a single SNA physical unit, or PU
(the 3624 does not support multiple logical
units per PU), supporting more than 13 ATMs
on a line was found to create response-time
delays due to the length of the poll list and the
time to service other ATMs.

For ease of configuration a one-to-one cor­
respondence was made between a SNAX line
and an HLS process (Figure 4). Had the need
arisen, the number of HLS processes could
have been reduced to decrease the memory
usage and the number of process control
blocks as HLS can easily handle more than ten
terminals per process.

SYSTEMS REVIEW

Customer Profile

Figure 4.

Mapping of PATHWAY,
HLS, and SNAX.

107

Customer Profile

Figure 5.

The RDS ATM with­
drawal transaction.
Logical control of the
transaction is exercised
by the application resid­
ing within the PATHWAY
TCP. Because SNAX,
SNAX/HLS, DP2, TMF,
and TERMPROCESS
are all employed during
the life of a transaction,
a minimum of 23 inter­
process communications
(!PCs) are required.
However, the steps in the
shaded box to the right
(transaction logging) do
not contribute to the
user-perceived response
time.

108

Figure 5

Transaction
authorization

Five PATHWAY environments with five Ter­
minal Control Processes (TCPs) each were
configured for the Nonstop TXP application
benchmark, resulting in 25 TCPs total. Each
TCP controlled 20 ATMs. For a given with­
drawal transaction, a requester could access
two servers (plus one follow-on server) and
the servers eight files (see tuning section on
page 112).

T A N D E M SYSTEMS

Transaction
logging

What Is the ATM Transaction?

IBM 3624

6204 Bit synch

SNAX

SNAX/HLS

PATHWAY /TCP

PATHWAY
servers

The RDS application provides for a variety of
transactions to be performed on an IBM 3624
ATM: cash withdrawals from multiple
accounts including multiple checking, savings,
and MasterCard/VISA accounts; quick with­
drawal from checking; deposits to multiple
accounts; transfers; loan and credit card pay­
ments; and balance inquiries. Figure 5 repre­
sents a typical withdrawal transaction.

The transaction request is gathered at the
ATM. A sequence number is generated by the
ATM, retained in nonvolatile memory, and the
request (with debit card information) is passed
along to the host.

REVIEW DECEMBER I 9 8 6

Figure 6

Total CPU time

System overhead

Send Interrupt
busy busy

SNAX

The RDS application receives the request
and starts a TMF transaction. The appropriate
business application server is called so that
account information is read and/or written
and the transaction sequence number is saved
in the recovery file.

The application delivers the reply to the
ATM and waits for the status message. The
ATM pays out money, "commits" to the
transaction, and replies (sequenced) to the
application.

Upon receipt of a "committed" transaction,
the log server writes a transaction journal entry
and updates the ATM cash settlement file. The
application ends the TMF transaction.

Although Figure 5 outlines a withdrawal
transaction, measurements given below are for
an "average" transaction where the transac­
tion mix is:

■ 50% withdrawal transactions with 11 disk
I/Os.

■ 25% deposit transactions with 9 disk I/Os.
■ 5% transfer transactions with 14 disk I/Os.
• 20% inquiry transactions with 7 disk I/Os.

What Was Measured?
Because of the period of time in which the
benchmarks were performed, two different
measurement tools were used. For the pro­
totype measurements XRAY was used;
whereas by the time the application was ready,
MEASURE had been released. The elements
measured are shown in Figure 6.

All processes

I
I

System

"T"
DP2/TMF Others TCP

I
User
processes

I
HLS Servers Others

In Figure 6, system overhead is calculated
as the difference between total CPU time and
all processes, since interrupt busy and send
busy are overlapping counters. Note also the
specific processes represented by the following
elements:

■ SNAX represents the SNAX line handler, not
including the SNAX controlling process,
$SSCP.
• DP2/TMFrepresents the aggregate of all disk
processes, both SYSTEM and DATA BASE vol­
umes, and the TMF Monitor Process.

• Others (under system processes) represents
GUARDIAN 90 system processes such as the
MONITOR process, IPB process, FOX line han­
dler, and the MEASURE control processes.

■ TCP represents PATHWAY TCP processes,
thus SCREEN COBOL requester activity.
■ HLS represents all HLS processes.
• Servers represents all user-written processes,
both business and user facilities.
• Others (under user processes) represents any
other process such as COMINT, CMP, and
PATHMON.

DECEMBER 1 9 8 6 TANDEM SYSTEMS REVIEW

Customer Profile

Figure 6.

Measurement entities.
The CPU time to execute
a transaction can be
broken into distinct
elements, allowing the
analyst to pinpoint differ­
ent processes or subsys­
tems as they increase or
decrease their share of
the total CPU cost. In
most cases, over 50% of
the cost of the RDS
transaction was attribut­
able to the TCP and disk
processes.

109

Customer Profile

Figure 7

Test 1
810

Test 2
810

Test3
830

Total Nonstop TXP milliseconds

System overhead
(includes all other processes and XRAY)

SNAX/HLS processes

SNAX line handlers
PATHWAY TCP

TM F / disk processes
Application servers

5~ 494 435

Test4
830
419

1,: .,,..~
-- 54 ·51 1.\?2 • . 1~$ 1- . 13~

112 -- 11.7.• 38 •37 •.. 34 34

Average response time (seconds)

95% transaction response time (seconds)

CPU transactions/second

Total CPU utilization

NA
NA

1.3

17%

1.0

<3•0

1.5

74'¾·

1;2; 2.3

<3.0 <!S,!S

Ul •2A.·
7$% $&%

Figure 7.

Results of RDS proto­
type benchmark. During
the course of the bench­
mark, the cost of the
prototype transaction
was reduced from 590 to
419 CPU ms. The bulk
of this 30% reduction
came from enhancements
to the GUARDIAN 90
Message System (system
overhead), SNAX, and
the disk processes.

110

Calculating Performance: Response Time,
Throughput, and Transaction Resource
In the RDS benchmark, one purpose of the
measurements was to determine the through­
put obtainable with proper application design
and system tuning, while maintaining response­
time goals and without unnecessarily sacrific­
ing application functionality. To understand
the results obtained, the terms response time,
throughput, and transaction resource require
some definition.

In general, response time is a measurement
of how long a user has to wait between enter­
ing a transaction and first seeing a response at
the terminal. Traditionally, this amount of
time is broken into two parts: communications
and host time. Availability of response-time
information was a requirement of RDS so that
network implementors would know that cus­
tomer service goals were being met. For the
final application, HLS user exits were written
to calculate a portion of the host response

T A N D E M SYSTEMS

time. Since the start time was from the point
that a transaction request was sent to the
PATHWAY SCREEN COBOL requester and the
stop time was the point that a SCREEN
COBOL reply was received by HLS, this
response-time figure is more accurately
described as application response time.

Host or application response time is only
useful in a performance evaluation when
viewed in conjunction with throughput (i.e.,
the number of transactions that a CPU can
~:>rocess per second). This is because a change
1~ the transaction rate may affect the response
time. For example, if the transaction rate is
too high, queuing may cause the response time
to degrade. Adding more CPUs may reduce
the response time but also make the applica­
tion unnecessarily costly. Balancing and tun­
ing are necessary to find the proper balance
between throughput and response time.

Although throughput and response time are
related in this key way, what is considered a
transaction in response-time measurements
may be viewed differently in throughput cal­
culations. The throughput must incorporate
the cost of the total transaction, whereas the
response time may, by design, refer only to a
portion of the total life of the transaction.
Such is the case with the RDS response-time
measurements. Since the customer could delay
an unpredictable amount of time before the
status would be sent, the processing of this
third step of the transaction is not included
in the response time, yet is included in
the throughput as part of the cost of a
transaction.

For this benchmark, transaction resource
was calculated by dividing the total cost in
CPU milliseconds by the number of transac­
tions completed during the measured period.
For example, in a test period of ten seconds
(10,000 ms) with two CPUs running at 60%,
a total of 12,000 ms of CPU time or

'
2(0.60 * 10,000) = 12,000 ms,

would be taken to execute the transactions. If
30 transactions were completed during the test
window, one could say that it takes 12,000 ms
divided by 30 transactions, or 400 CPU ms, to
perform a transaction.

REVIEW DECEMBER I 9 8 6

Knowing the resource cost of a transaction
allows one to calculate the potential through­
put at a given CPU utilization. For example,
at 60% utilization, a single CPU has 600 ms
available. Since the transaction takes 400 ms
to execute, the throughput achieved would be
1. 5 transactions per second per CPU. In a real
measurement, the number should match the
total number of transactions (e.g., 30) divided
by the total period of the test (10 seconds)
divided by the number of CPUs (2).

Results of the Prototype Application
Benchmark
While the software targeted for production
was still in development, a prototype applica­
tion that supported the same RDS transaction
was used for the initial benchmark. The
benchmark consisted of a series of tests using
consecutive B-series GUARDIAN 90 software
releases. This was done to isolate which prod­
uct changes or enhancements were contribut­
ing either positively or negatively to the overall
performance and cost of a transaction. A
comparison of the key test results is shown in
Figure 7.

Test 1: BIO. This was the initial measurement
using the RDS prototype software and Tandem
products available as of the BIO release. The
cost attributed to SNAX (152 ms) was viewed
with some alarm. After investigation it turned
out to be the polling overhead when running at
low transaction-per-line rates. To confirm
this, a special test outside of the benchmark
was run using the 6100 controller and the fig­
ure was reduced to about 20 ms. This led to
an investigation of the SNAX 6204 polling
algorithm.

Test 2: BIO. In this second test, a significant
decrease in the cost per transaction for SNAX
line handlers was the result of the inclusion of
a preliminary version of a future B-series
release for 6204 SNAX, which included an
enhanced polling algorithm. This was particu­
larly beneficial in configurations such as Wells
Fargo's where the transaction rate for any
given device (polled station) was low enough
to cause relatively high polling overhead per
transaction. The result was a decrease to
55 ms of almost 100 ms, or 16% for the overall
transaction. 4

- -- ---- -- --- -

~The SNAX cost per transaction varied according to lhc transaction rate per
line, which for Tes! 2 was an average of 0.18 transaction-; per second per line.

DECEMBER I 9 k 6 T A N D E M

The full two-node configuration was tested
in this run. An increase in CPU ms attribut­
able to TMF, about 7 ms, was the result of
network transactions being performed.

The increase of 13 ms for the PATHWAY
TCP reflects application changes for added
functionality. For future measurements of the
prototype, the application was frozen.

Tests 3 and 4: B30. The final benchmarks of
the prototype application using B30 software
produced a new low of 435 ms per transaction
for the Nonstop TXP. The dramatic improve­
ment realized in the system overhead figure
was the result of B30 Message System stream­
lining. The interprocess message protocol was
enhanced to use a "fast select" method of
passing buffers between the Linker and Lis­
tener (see Dave Kinkade's article in this issue,
"Performance Changes to the GUARDIAN 90
Message System"). The decrease in messages
reduced the dispatch rate per transaction, and
thus CPU Interrupt and Send Busy time.

Software developers suggest that the signifi­
cant drop in utilization attributed to TMF and
DP2 was partially due to the "boxcar" effect,
whereby messages are batched together before
being transmitted by TMF. In previous
releases, TMF transmitted records one at a
time. Additionally, changes were made to the
cache management algorithms which may have
reduced the cost of flushing cache to disk.

SYSTEMS REVIEW

Customer Proji"le

111

Customer Profile

A significant reduction in the number of
I/Os required for a network transaction saved
about 8 ms of the TMF cost per transaction.

During Test 4, while trying to reach two
transactions per second per CPU, the CPU
utilization went well above 80%, demonstrat­
ing that far higher CPU utilization could be
achieved than had been shown in earlier tests.
When the transaction rate was raised to the
point at which CPU utilization reached 88%,
queuing started to become a negative factor
and response time degraded (2.3 seconds
average).

The most interesting finding of the proto­
type tests was the reduction in CPU cost per
transaction when running at higher transac-

tion rates. For exam­

Running the benchmark
on Nonstop VLX

versus Nonstop TXP
processors, the same
application took exactly
one-third less CPU time to

ple, a Nonstop TXP
system prototype
transaction cost
435 ms at 78% utili­
zation, but only
419 ms at 88% utili­
zation. Performance
analysts feel this was
largely the result of
the behavior of two
products: DP2 and
SNAX. In high trans­
action environments,

execute a transaction.
DP2 performs fewer physical I/Os per transac­
tion since more writes to cache would be made
in the fixed period between physical I/Os to
disk. A higher message rate also means that
SNAX transmits and receives more messages,
thus reducing the amount of time spent in idle
polling.

Tuning Improves Throughput
When the BIO benchmark was first run with
the full system load of 1000 ATMs (500 per
node), the original cost per transaction was
significantly higher than is shown in Figure 7.
Configuration tuning was found to reduce the
cost per transaction by 35 to 40 ms. The
major factor turned out to be the location of
processes that had a high rate of interprocess
communication between each other. SNAX
and HLS, for example, send at least six mes­
sages to each other for each transaction.
Therefore, to keep the message system over­
head to a minimum, HLS and SNAX pairs
were placed in the same CPU.

Another method found to reduce file system
overhead was the clustering of records that
were accessed during a single transaction on
the same volume. In this way, TMF would send
fewer interprocess messages to the disk pro­
cesses, fewer interprocess messages from those
disk processes to the TMF audit disk process,
and fewer checkpoints between disk processes
at each ENDTRANSACTION. (All records of
the transaction would be originating from
fewer disk volumes.) Effectively, this gives the
user implicit control over the number of TMF
IPCs attributed to a transaction.

A third step taken to improve throughput
involved the allocation of disk cache. With the
release of DP2 and its buffered cache memory,
physical I/Os have been reduced since changed
data blocks can now remain in memory
(cache) for longer periods of time (Schachter,
1985). In fact, performance specialists can
actually control the number of physical I/Os,
or flushes of changed data blocks, by setting
cache large enough to accommodate the num­
ber of data blocks that will be changed in the
given period between automatic DP2 control
points. Since the disk processes write all
changed pages to disk at these control points
anyway, throughput will be improved if during
the intervals the data block is accessible in
cache rather than on disk.

For the RDS application, the optimum allo­
cation turned out to be 1.6 Mbytes of cache
per disk volume. This was sufficient to con­
tain all of the index blocks for the key­
sequenced files on a volume and the maximum
number of data blocks that would be updated
between the DP2 control points, i.e., when
"dirty" pages are flushed to disk.

112 TANDEM SYSTEMS REVIEW• DECEMBER 1986

It was also determined that, for this applica­
tion, the optimum block size was 2048 bytes.
Other block sizes tended to drive the controller
and disk busy rates higher.

It should be noted that the above informa­
tion does not constitute a tuning recommen­
dation. The actions taken by Wells Fargo
took into consideration their unique set of
requirements and may not be suitable for all
applications.

Results of the "Real" Application Benchmark
When the benchmarks were run using the
actual ATM application, as planned for use in
the production Express Stop network, the
CPU cost for a transaction was higher than
for the prototype. The 13% increase, nearly
60 ms, resulted from increased complexity and
functionality in the application.

When the benchmark was run on
Nonstop VLX instead of Nonstop TXP pro­
cessors, the same application took exactly one­
third less CPU time to execute a transaction
(Table 4). This was evidenced by the four­
processor Nonstop VLX system completing
the same number of transactions as a six­
processor NonStop TXP system.

RDS and Debit-credit Benchmark Results
The most widely publicized measures of sys­
tem performance for OLTP applications have
been benchmarks using the standard "debit­
credit" transaction. In fact, this has been the
method used to rate the Nonstop TXP system
as a 4.5-transaction-per-second CPU. The
Wells Fargo benchmark achieved transaction
rates far less than this, yet it was a major
achievement in that the RDS application per­
forms real business functions for one of the
leading retail banks in the country. The debit­
credit transaction is, by design, an artificial
transaction. Its relative simplicity makes it
ideal for comparing the performance of
unlike systems, not for modeling business
applications.

As Table 5 shows, an RDS transaction is
about three times as costly in CPU time as the
debit-credit transaction. By analyzing the ele­
ments of the two transactions, the reasons for
the cost difference are better understood.

DECEMBER 1 9 8 6 T A N D E M

Table 4.

Results of the RDS application benchmark.
Nonstop
TXP B30 Percent
application transaction

Total system milliseconds 491
System overhead 74 15%
TM F/disk processes 104 20%
SNAX line handlers 49 11%
PATHWAY TCP 154 32%
H LS processes 49 9%
Application servers 54 11%
Other processes 7 2%

Average response time (seconds) 1.3

95% transaction response time <2.8

CPU transactions/second 2.0

Total CPU utilization 96%

The debit-credit transaction is run using the
X.25 protocol. X.25 is a protocol most com­
monly used for Public Data Network access,
in which a typical transaction is inquiry­
response. Wells Fargo chose to employ the
SNA protocol because of the wide use it enjoys
in OLTP environments and because of the
potential functionality it provides for data
integrity and network management.

An example of how this choice adds to the
cost of an RDS transaction can be seen in
RDS's use of the SNA definite response mode
for both the primary and secondary logical
units. (The IBM 3624 operates only in definite
response mode.) For each of the three steps in
the transaction, an SNA positive response
(9 bytes) is sent. This doubles the number of
messages sent between the ATM and the host.

Table 5.

Cost and performance comparison of the
debit-credit vs. RDS application.

CPUs
CPU milliseconds/transaction
Transaction rate
Transactions/second/CPU
CPU utilization

Average response time (seconds)

97% transaction response time

ET1
Nonstop
TXP

4
160

22.7
5.7
91%

1.5

<4.1

SYSTEMS REVIEW

RDS
Nonstop
TXP

6
491
12.0
2.0
96%

1.3

<3.5

Customer Profile

Nonstop
VLX B30 Percent
application transaction

328
39 12%
66 20%
35 11%

115 35%
32 10%
37 11%

4 1%

0.9

<2.1

3.0

97%

113

Customer Profile

114

Significantly higher file 1/0 is performed in
the RDS application than in the debit-credit
transaction. This is due to the requirement for:

■ Geographic independence of the card from
the node.
• Multiple accounts linked to a single card.
• Posting of balance changes to the memo
account (not on-line posting).
• Maintainance of daily limits on cards.

■ Key-sequenced transaction log for random
access and manageability of multiple logs.
■ Reliable message delivery to ATM (e.g.,
recovery of three-step transaction and recov­
ery from double failure).

Not only does this high level of functionality
significantly increase disk activity, but the
front-end application processing (formatting
and decision making) is increased, costing
more CPU cycles for the TCP.

Finally, the RDS benchmark closely mod­
elled the load variations experienced in a real­
world network. Specifically, transaction
arrival rates varied from one line to the next
and transactions resulted in "uneven" access
of disk volumes. The debit-credit benchmark,
on the other hand, does not vary the arrival
rate from a given terminal, and access of disk
volumes is evenly distributed.

Conclusion
The Retail Delivery System comprises a func­
tional application and operations environment
for running a retail network in the rapidly
changing and highly competitive banking
world. The special cooperation between ven­
dor and user in the design and testing of RDS
made the RDS benchmark a milestone for both
Tandem and Wells Fargo. Because of the num­
ber of standard software products used, it

T A N D E M SYSTEMS

demonstrated that Tandem systems provide ar
ideal environment for developing high volume
large network, OLTP applications that perforn
real business functions. By addressing the
total cost of a transaction, Wells Fargo
ensured that their critical business application
will continue to meet the competitive demand:
of the 1990s without sacrificing their high
availability and performance standards. Wher
calculated to include the cost of ongoing main
tenance, growth and high volume, and failure
then the Wells Fargo RDS application run on
Tandem systems may well provide the lowest­
cost, high-function transaction in the industn
today.

References
Anon, et al. 1985. A Measure of Transaction Processing Powe
Datamation. Vol. 31, No. 7.

Arthur Andersen & Co. 1983. New Dimensions in Banking:
Managing the Strategic Position. Bank Administration Institut,

Bank Network News. 1985. 1986 EFT Network Data Book.
September 26.

Blake, R. 1979. Tailor: A Simple Model That Works. 1979
Conference on Simulation, Measurement and Modeling of
Computer Systems. ACM. Boulder, Colorado.

Dow Jones. 1985-1986. Dow Jones News Retrieval.

EFT Report. 1985. Newsletter of Electronic Funds Transfer.
Phillips Publishing, Inc. Vol. 8, No. 7.

Schachter, T. 1985. DP2's Efficient Use of Cache. Tandem
Systems Review. Vol. 1, No. 2.

The 1000 Largest U.S. Banks. 1986. Sheshunoff and
Company, Inc.

Acknowledgments
A large part of the technical material in this article is derived
from work done by Wells Fargo personnel. Special credit goes
to Scott Alexander of Wells Fargo who provided most of the
measurements and analysis. The authors also wish to thank Pe
Homan and Jim Gray for use of their comments made while
performing an RDS data-base review and for their excellent
suggestions upon reviewing this article.

Nick Cabell joined Tandem in March 1980 as a data communica
tions course developer and instructor. In April 1983, he became
manager of the Marketing Technical Support Data Communica­
tions Group. Since October 1984, he has been with the Wells
Fargo project providing support in the areas of SNA and
communications.

Duncan Mackie joined Tandem in San Mateo as a senior sys­
tems analyst in April 1980. He became branch systems managE
of the Silicon Valley Branch in February 1981 and district sys­
tems manager of the Silicon Valley District in September 1981.
He transferred to the Wells Fargo Project in October 1984, wher
he is currently the project manager.

REVIEW DECEMBER I 9 8

TANDEM PUBLICATIONS ORDER FORM

The Tandem Systems Review and the Tandem Application Monograph Series are combined
in one free subscription. Use this form to subscribe, change a subscription, and order back
copies.

For requests within the U.S. , send this
form to:

Tandem Computers Incorporated
Tandem Systems Review
1309 South Mary Avenue, MS 5-04
Sunnyvale, CA 94087

For requests outside the U.S., send this form
to your local Tandem sales office.

Check the appropriate box(es):

D New subscription (# of copies desired-~~
D Subscription change(# of copies desired-~~
D Request for back copies. (Shipment subject to

availability.)

Print your current address here:

ADDRESS

ATTENTION

PHONE NUMBER (U.S.)

If your address has changed, print the old
one here:

ADDRESS

ATTENTION

PHONE NUMBER (U.S.)

To order back copies, write the number of
copies next to the title(s) below.

Part No. 83930, Vol. 1, No. l, Fall 1983

___ Part No. 83931, Vol. 2, No. 1, Winter 1984

___ Part No. 83932, Vol. 2, No. 2, Spring 1984

___ Part No. 83933, Vol. 2, No. 3, Summer 1984

Tandem Systems Review

___ Part No. 83935, Vol. 1, No. 2, June 1985

___ Part No. 83936, Vol. 2, No. 1, February 1986

___ Part No. 83937, Vol. 2, No. 2, June 1986

___ Part No. 83938, Vol. 2, No. 3, December 1986

Tandem Application Monograph
Series

___ Part No. 83900, Developing TMF-Protected
Application Software, March 1983, AM-005

___ Part No. 83901, Designing a Tandem/Word
Processor Interface, March 1983, AM-006

Part No. 83902, Integrating Corporate Infor­
mation Systems: The Intelligent-Network
Strategy, March 1983, AM-007

___ Part No. 83903, Application Data Base Design
in a Tandem Environment, August 1983

Part No. 83904, Capacity Planning for Tandem
Computer Systems, October 1984

Part No. 83905, Sociable Systems: A Look at
the Tandem Corporate Network, May 1985

Part No. 83906, Transaction Processing on the
Tandem NonStop Computer: Requestor/Server
Structures, January 1982, SEDS-001

___ Part No. 83907, Designing a-Network-Based
Transaction-Processing System, April 1982,
SEDS-002

Part No. 83908, A Close Look at PATHWAY,
June 1982, SEDS-003

Part No. 83909, A Multi-Function Network
for Business Automation, May 1982, SEDS-004

TANDEM EMPLOYEES: PLEASE ORDER YOUR COPIES THROUGH YOUR MARKETING LITERATURE COORDINATOR.

12/86

-1'TANDEMCOMPUTERS

Part No. 83938 400100 12186 Printed in USA

