
T A N D E M

SYSTEMS REVIEW

BOO Software

Data Communications

Workstations

Peripherals

Technical Paper

Editor's Note

I'd like to thank the many individuals and
groups within Tandem that worked together
to create this special issue. Some worked
many extra hours to complete the articles
and ensure their timely publication. Special
thanks to: Mala Chandra, Joanne Danforth,
Jim Eakin, Hank Hugeback, Kent Madsen,
Sarah Rood, Carol Schaffer, Dick Thomas,
Ann Whitesell, the 25 authors, the entire
Illustration and Typesetting groups, and the
technical reviewers in the Field Productivity
Programs, Hardware Development, Instal­
lability, Large Systems Support, Product
Management, Product Marketing, Software
Development, and Systems Support groups.

Carolyn Turnbull White

Syntax notation used in this publication.
Notation

UPPERCASE
LETTERS
lowercase
letters

Brackets []

Braces { }

Ellipses.

Ellipses
preceded by
a comma,.

Correction:

Meaning

Represent keywords and reserved words.

Represent variable entries supplied by the user.

Enclose optional syntax items.

Enclose required syntax items.

Follow syntax items that can be repeated any
number of times.

Follow syntax items that can be repeated any
number of times and require a comma to
separate each repetition.

BASE24, an electronic funds transfer sys­
tem, was mentioned in the article, "Using
FOX to Move a Fault-tolerant Application,"
published in the February 1985 issue of
the Tandem Systems Review. BASE24 is a
software product offered by Applied Com­
munications, Inc. (not Advanced Communi­
cations, Inc., as stated). The product has a
multinodal, expandable structure analogous
to Tandem's hardware structure and is
designed for fail-safe, 24-hour processing
seven days a week.

Volume I, Number 2, June 1985

Editor
Carolyn Turnbull White

Technical Advisors
Mala Chandra
Dick Thomas

Associate Editors
Kent Madsen
Ann Whitesell
Assistant Editor
Sarah Rood

Art Director
Terri Hill

Designers
Joanne Danforth
Carol Schaffer

Production and Layout
Laurie Menden
Gayle Richardson
Tandem Illustration Group
Cover Art
Stephen Stavast
Typesetting
Tandem Typesetting Group
The Tandem Systems Review is
published by Tandem Computers
Incorporated.
Purpose: The Tandem Systems
Review publishes technical in forma­
tion about Tandem software releases
and products. Its purpose is to help
programmer-analysts who use our
computer systems to plan for, install,
use, and tune Tandem products.

Subscription additions and changes:
Subscriptions are free. To add names
or make corrections to the distribu­
tion data base, requests within the
U.S. should be sent to Tandem
Computers Incorporated, Sales
Administration, 19191 Vallco
Parkway, Cupertino, CA 95014.
Requests outside the U.S. should be
sent to the local Tandem sales ofjfr:e.

Comments: The editor welcomes
suggestions for content and format.
Please send them to the Tandem
Systems Review, 1309 So. Mary
Avenue, Sunnyvale, CA 94087.

Copyright ~, 1985 by Tandem
Computers Incorporated. All rights
reserved.

No part of this document may be
reproduced in any form, including
photocopying or translation to
another language, without the prior
written consent of Tandem Com­
puters Incorporated.

The following are trademarks or
servicemark" of Tandem Computers
Incorporated: BINDER,
CROSSREf; DDL, DYNABUS,
DYNAMITE, EDIT, ENABLE,
ENCOMPASS, ENFORM,
ENSCRIBE, EXCHANGE,
EXPAND, EXT, FAXLINK, FOX,
GUARDIAN, GUARDIAN 90,
INSPECT, NonStop, NonStop II,
NonStop I+, PATHWAY, PCFOR­
MAT, TAL, Tandem, TMF,
TRANSFER, T-TEXT, TXP, XRAY.

IBM, IBM PC, and PC-DOS are
trademarks of International Business
Machines Corporation. MS-DOS
and OW-BASIC are trademarks of
Microsoft Corporation. Lotus 1-2-3
is a trademark of Lotus Develop­
ment Corporation. dBASE U is a
trademark of Ashton-Tate. Motorola
is a registered trademark of
Motorola, Inc.

coRPOR/\11: T A N D E M
INFORMA 110N CENTER

SYSTEMS REVIEW

2

114

127

144

152

BOO Software
Highlights of the BOO Software Release

Data-base Software

DP2 Highlights

DP2's Efficient Use of Cache

DP2 Key-sequenced Files

Improvements in TMF

DP2 Performance

A Comparison of the BOO
DPl and DP2 Disc Processes

Operating System

Increased Code Space

New GUARDIAN 90 Timekeeping Facilities

New Process-timing Features

Writing a Command Interpreter

The Tandem Global Update Protocol

Changes in FOX

Improved Performance for BACKUP2 and RESTORE2

VIEWSYS: An On-line System-resource Monitor

Introducing TMDS, Tandem's New
On-line Diagnostic System

Manuals and Courses
BOO Software Manuals

New Software Courses

Data Communications
SNAX/HLS: An Overview

Workstations
The DYNAMITE Workstation: An Overview

An Introduction to DYNAMITE Workstation Host
Integration

Peripherals
The VS Disc Storage Facility: Setting
a New Standard for On-line Disc Storage

Introducing the 3207 Tape Controller

Technical Paper
Robustness to Crash in a Distributed Data Base:
A Nonshared-memory Multiprocessor Approach

2

9
14

19

25
33

44

46

54
64

68
74

86
89

94

98

106

109

114

127

135

144

146

152

2

Highlights of the
BOO Software Release

andem' s BOO software runs
on NonStop II, Nonstop
TXP, and NonStop EXT
systems. Many new prod­
ucts and enhancements to
existing products make up
the release. This article

highlights the major ones, including those
listed below:

New products

Disc Process 2 (DP2)
EXCHANGE/SNA

Tandem Maintenance and Diagnostic
System TMDS)

Enhanced or changed products

ATP6100 Asynchronous Terminal Process

BASIC

COBOL

FORTRAN

FOX 6700 Fiber Optic Extension
GUARDIAN 90 operating system

ENABLE program generator

EXPAND networking software

PATHWAY transaction processing system

Program Development Tools (PDT)

Transaction Application Language (TAL)

Transaction Monitoring Facility (TMF)

TRANSFER and TRANSFER/MAIL

With the BOO software release, Tandem
has completed a new, more powerful version
of the GUARDIAN operating system. To
emphasize this milestone, the operating sys­
tem software, including DP2, has a new

name: GUARDIAN 90. This new version of
the operating system yields a significant
improvement in on-line transaction pro­
cessing performance in a TMF environment.
The GUARDIAN 90 operating system is
upwardly compatible with previous releases
of the software, allowing users to migrate to
it without rewriting their applications. 1

Data-base Software
Disc Process 2 (DP2)
DP2 is the new GUARDIAN 90 disc process
for NonStop II, NonStop TXP, and
NonStop EXT systems. (It is not available
for NonStop 1+ systems.) The job of both
DP2 and DPI is to manage data and hard­
ware within Tandem disc subsystems. Both
disc processes implement the various
ENSCRIBE file types, manage the space on
discs, and manage the controllers and paths
to the discs.

DP2, however, is a complete redesign and
reimplementation of the disc process, aimed
at achieving improved performance,
throughput, recoverability, reliability, main­
tainability, and extensibility. All discs and
disc controllers for NonStop II, TXP, and
EXT systems are supported by DP2. TMF,
the file system, and many utilities have been
appropriately modified and enhanced in
connection with its development.

-- - -- -- - -- - - - --

1The only exceptions to this arc applications that modify the environment
(ENV) register and privileged applications that access the Destination Control
Table (DCT). These applications must be modified to accommodate the
expanded user and system code space, as stated in following sections.

TANDEM SYSTEMS REVIEW JUNE 1985

To achieve the goals mentioned above for
DP2, developers have changed the basic file
structure. Thus, those user files on which
DP2 is to be used must be changed from
DPl format to DP2 format. New utilities are
provided for this purpose. Other architec­
tural changes have been made to integrate
the TMF and DP2 subsystems, resulting in
increased performance in the TMF
environment.

Note: Because of the changes in the struc­
ture of files, programs that open structured
files in unstructured mode must be modified
if DP2 is to be used with them. See the
ENSCRIBE Programming Manual for the
details of the new block structure.

ENABLE Program Generator
The BOO release includes major enhance­
men ts to ENABLE. ENABLE can now gener­
ate applications that access multiple files
organized in a hierarchical fashion.

Another new feature is its ability to dis­
play and update multiple records within a
file. Optionally, ENABLE can display this
information in tabular format.

Finally, ENABLE makes the process of
designing screens more flexible. Users can
suppress different fields from the screen
display for security purposes and can rear­
range the layout of fields on the screen.

For a discussion of these new capabilities,
see Chapman and Zimmerman, 1985.

PATHWAY Transaction Processing System
The BOO release of PATHWAY includes a new
version of the Screen COBOL compiler. This
new compiler runs only on NonStop II,
TXP, and EXT systems because it takes
advantage of extended memory. By using
extended memory features, the new compiler
permits a significant increase in the number
of symbols allowed in Screen COBOL run
units.

Several new command options are
available:

• AUTORESTART, a new optional parameter,
allows the PATHWAY system to restart termi­
nals, TCPs, and servers automatically when
abnormal errors are encountered.

• An exclamation mark(!) has been added
to the SHUTDOWN command as an optional

parameter. It is the equivalent of a STOP
TERM *, followed by a STOP TCP *, fol­
lowed by a SHUTDOWN.

• An ERRORS command has been added to
PATHCOM to allow errors to be tolerated in
IN/OBEY file processing.

• The INFO command now has an optional
keyword, OBEYFORM, which formats the
output as a syntactically correct PATHCOM
command with the proper SET < entity
type> prefix. One use of this option is to
create new cold-start obey files after exten­
sive modifications to an existing PATHWAY
configuration.

• A new CONTROL PATHMON and CON­
TROL TCP command has been added to
allow changing of object descriptions while
the objects are active.

• New PRIMARY and SWITCH commands
aid in the load balancing of a PATHWAY
system.

PATHWAY now supports double-width
screen sizes for Tandem 6520 and 6530 ter­
minals, and it recognizes the BREAK key on
conversational terminals. Also, it is now
permissible for Screen COBOL programs of
different terminal types to call each other.

Transaction Monitoring Facility (TMF)
BOO includes significant enhancements to
TMF in the areas of recovery, fault tolerance,
and operational flexibility.

TMF now includes autorollback, a fast
mechanism for recovering a data base that is
protected by TMF. Autorollback starts auto­
matically at TMF start-up time and operates
on all audited and logically inconsistent
files. It does not require the mounting of
tapes, and no operator intervention is
needed once recovery is under way.

Thanks to autorollback, the loss of a disc­
process pair no longer causes a TMF crash.
If both processors are lost, all active trans­
actions that the disc process might have
been working on are aborted. When the pro­
cessors are subsequently reloaded, auto­
rollback recovers the volume. (For more
detail on autorollback, see Pong, 1985.)

JUNE 1985 T A N D E M S Y S T E M S R E V I E W

BOO Software

3

BOO Software

4

TMF has several new features that provide
greater operational flexibility:

• A new command has been added to
TMFCOM to allow the user to add one or
more volumes to the set of volumes that are
up for TMF. This command might be used if
the volumes were down at START TMF time,
if they went down while TMF was running,
or if they failed to start earlier.

• Audit-trail-file, extent-size, and MAX­
FILES parameters can be altered while TMF
is stopped, and new volumes can be added
to a TMF configuration without reinitializ­
ing TMF.

A significant portion of TMF has been
rewritten in conjunction with the develop­
ment of DP2, and many of the new TMF
features, including volume reintegration and
autorollback, are available with DPl as well.

TRANSFER and TRANSFER/MAIL
Changes or new features in the TRANSFER
delivery system and T /MAIL include:

• Increased user friendliness and perfor­
mance for T /MAIL.

• Support for T-TEXT.

■ Support for FAXLINK.

• A Queue Manager for queuing items to
agents.

■ A repair facility for TRANSFER data
bases.

• Dated item "unsave."

■ Ordered folders.

■ Return codes from agents.

• Staged item deletion.

The Operating System
User and System Code Space
In GUARDIAN 90, user-code, user-library,
and system-library spaces have been
enlarged. This change permits larger pro­
grams to run and allows large programs
written for other vendors' systems to migrate
more easily to Tandem systems.

User-code and user-library spaces can
each now contain up to 16 code segments of
128K bytes each for a total of 32 segments
of user code (4M bytes). In addition, 33
system-code segments (4.125M bytes) can be
provided, 32 of which are available for the
system library and one for system code. In
connection with this expansion, internal and
external changes have been made to
BINDER, TAL, FORTRAN, DEBUG, LOBUG,
INSPECT, XRAY, CRUNCH, and SYSGEN.

To accommodate these enhancements,
application programs that modify the stack
marker ENV Register must be modified,
as must privileged programs that access
the Destination Control Table, or DCT
(including user-written 1/0 processes). All
other programs run successfully under
GUARDIAN 90 without recompilation.

FOX Protocol
Changes to operating-system software asso­
ciated with the 6700 Fiber Optic Extension
(FOX) provide automatic ring-topology gen­
eration, automatic path management, and
support for on-line diagnostics. These
changes require that all nodes in a FOX
ring be upgraded to the GUARDIAN 90
operating system simultaneously if FOX
communications are to be maintained.
(This is explained further in a later
section and in the accompanying article,
"Changes in FOX.")

TANDEM SYSTEMS REVIEW• JUNE 1985

New Tandem Maintenance and
Diagnostic System (TMDS)
TMDS provides a foundation for integrated,
on-line fault diagnostics for the hardware
components of Tandem systems. This first
release includes a FOX diagnostic subsystem.
Other products will be added in subsequent
releases. Major features of this release are a
centralized, diagnostic command interpreter
with extensive "help" facilities, a diagnostic
resource monitor, and automatic logging of
hardware faults.

Command Interpreter (COMINT)
Several features have been added to enhance
the Command Interpreter (COMINT):

• A HELP command is now available to aid
users in the proper use of COMINT.

• Users can now control system access
during start-up through a SYSGEN­
defined input file to the start-up command
interpreter.

• COMINT now runs as a nonprivileged pro­
cess. Its privileged functions are imple­
mented as procedures that can be called or
processes that can be run. Also, password
management, system logon, and the infor­
mation passed to a $CMON process have
been enhanced.

• The manner in which start-up messages
are handled is different. Consult the Softdoc
for details.

System Timing
Time services have been enhanced to
include:

■ Automatic Daylight Savings Time (DST)
adjustments.

■ Improved process timing.

■ Julian date conversions.

■ Timestamps based on Greenwich Mean
Time (GMT).

Other system-time enhancements include
CPU clock-rate averaging, clock-rate adjust­
ments, and a callable procedure to set sys­
tem clocks. This procedure makes it easier
to keep accurate time when external clocks
(e.g., that of the U.S. government radio
station, WWV) are used.

Also, four-word, microsecond-resolution
timestamps are now available, in addition to
the old three-word timestamps. The GMT
timestamps and new time-conversion rou­
tines are all based on the new four-word
timestamp.

Other GUARDIAN 90 Enhancements
SYSGEN can now process configurations
with a greater number of named entities
(devices and named processes).

The performance of RELOAD has been
improved, and thus, systems can be started
more quickly.

The OCT has been moved to extended
memory and has been increased in size.
Also, it is now accessed via a hashing algo­
rithm, which improves speed. New
GUARDIAN 90 procedures have been pro­
vided to access the OCT.

Processes can now be started in parallel in
any processor. This, combined with the
enhancements to RELOAD, improves system
start-up time dramatically. However, appli­
cations that previously serialized their
nowait process initializations by directing
them all to the same CPU can no longer rely
upon that method of serialization.

Data Communications
ATP6100
Software is included in this release to sup­
port asynchronous point-to-point communi­
cations with the 6100 Communications
Subsystem. Included in ATP6100 is support
for both Line Interface Unit 1 (LlUl) and
the new LIU4.

EXCHANGE/SNA
The new EXCHANGE/SNA is a logical and
compatible extension to the EXCHANGE
communications subsystem for handling
SNA RJE communications. Basically, it
provides an emulation of an IBM 3777-3
Multiple Logical Unit (MLU) Data Entry
Subsystem, interfacing primarily to IBM
operating systems that support JES2
and JES3.

JUNE 1985 TANDEM SYSTEMS REVIEW

BOO Software

5

BOO Software

6

EXPAND
A new network-access interface now
improves communications between EXPAND
and "network service-provider processes"
(e.g., X25AM and FOX). The handling of
X.25 Switched Virtual Circuits (SVCs) has
been enhanced to include:

■ Auto-establishment and take-down with­
out operator intervention.

■ Auto-recovery from SVC loss.

■ SVC take-down and reestablishment dur­
ing inactive periods, without an interruption
of the EXPAND "session."

Languages
Transaction Application Language (TAL)
TAL supports the increased code space now
available with the GUARDIAN 90 operating
system. A program produced by a single
compilation can have up to 16 code segments
of up to 128K bytes each. No one procedure
can exceed 64K bytes of code.

COBOL
COBOL (T9251) for NonStop"'' systems is
validated at the Federal Information Pro­
cessing Standards (FIPS) high level. It is
upwardly compatible with the original
COBOL compiler (T9201), which is now
available only for NonStop l+ systems. The
original compiler is validated at the
FIPS low-intermediate level.

COBOL supports the increased code space
now available with GUARDIAN 90. Code
space available to an individual program
unit can be as large as 128K bytes. A run
unit can occupy up to 16 code segments,
each containing 128K bytes. Data items
greater than 32K bytes are permitted.

COBOL programs can use the sequential
block-buffering provided by ENSCRIBE.

The CALL identifier and CANCEL identi­
fier statements have been implemented (e.g.,
"CALL program-ID" where program-ID is a
variable in working storage).

Additional SORT /MERGE features have
been implemented, including:

■ Sort/merge to/from a blocked tape.

■ Sort/merge to/from a multireel tape file.

■ Sort/merge to/from multifile tapes.

■ Sort/merge by a user-specified collating
sequence.

FORTRAN
FORTRAN now allows users to define large
COMMON blocks that reside in extended
memory, providing 128M bytes of data stor­
age. FORTRAN programs can have up to 16
code segments of up to 128K bytes each.
(GUARDIAN 90 support is implicit.)

BASIC
Most GUARDIAN 90 procedures can be
called directly with the new CALL state­
ment. The standard CROSSREF utility is used
to produce cross-reference listings. The
floating-point arithmetic package is auto­
matically used if present on the system.

Program Development Tools (PDT)
PDT products provide the necessary support
for increased code and library space.
INSPECT and DEBUG have been changed to
allow references to all 16 code segments in
user-code and user-library spaces.

Notes on Installation, Conversion,
and Tuning
System managers and application program­
mers at sites planning to migrate to the BOO
Limited Customer Distribution should be
aware of the following considerations.

TANDEM SYSTEMS REVIEW JUNE 1985

Installation

Procedure. Users running A20 (and later)
software releases can upgrade using the
standard INSTALL procedure. Special proce­
dures must be followed to upgrade from
releases earlier than A20. See the Softdoc for
details.

FOX Ring Upgrades. All nodes on an exist­
ing FOX ring must be upgraded to the
GUARDIAN 90 operating system simultane­
ously. If this is not possible for some reason,
then the nodes on the ring that cannot be
upgraded must be removed from the ring,
and if communications with the other nodes
are still required, they must be made via
EXPAND.

DP2 File-conversion Utilities. With DP2, the
format of structured files has changed but
the disc format has not. This feature allows
greater flexibility for TMF. Conversion utili­
ties are provided.

Conversion

Programs that Modify the ENV Register.
Any programs that ran on previous releases
and modify the ENV register saved in the
stack marker do not run with GUARDIAN 90.
The CODEY utility on the GUARD2 DSV
identifies any object files that require modi­
fication and recompilation of their source
because they address L-1 directly.

It does not identify those programs that
modify the saved ENV register via indirect,
relocatable, or absolute addressing, nor does
it identify those programs that use PUSH,
SETL CODE sequences to effect the modifica­
tion. CODEY has a complete "help" file,
and unless restricted by the start-up mes­
sage, it searches all volumes and subvolumes
for offending code.

Changes to ERROR 70 and STARTUP
Messages. The manner in which COMINT
handles ERROR 70 and STARTUP messages
has changed. Refer to the Softdoc for
details. The old mechanism generates an
error message, but still works and should not
negatively affect users. In a future release,
the old mechanism will be removed.

Product Dependencies. A table of product
interdependencies can be found in the Soft­
doc Highlights file. TAL programs should
source in the proper EXTDECS in order to
run successfully. If necessary (i.e., if the
code was last compiled with A03 software),
the proper EXTDECS should be retrieved
from backup tape.

COBOL Compiling Considerations. COBOL
allows "compile-time binding." Basically,
the compiler detects a CLIBOBJ file in its
subvol and directs BINDER to resolve exter­
nal references from the CLIBOBJ file before
forming the run-time library. At run time the
SYSTEMMONITOR resolves all other external
references from LIB and system code.

Any old versions of modules in CLIBOBJ
that violate GUARDIAN 90 addressing rules
for extended code space prevent the success­
ful execution of run-time libraries that were
with that CLIBOBJ. Therefore, users should
first recompile (if necessary), or remove
CLIBOBJ and then recompile all the COBOL
run-time libraries affected.

Privileged Processes that Access the DCT.
Privileged processes that update the DCT do
not run under GUARDIAN 90. A conversion
checklist is available from your Tandem ana­
lyst for any user-written privileged processes.
Privileged code should be carefully reviewed
against this document.

More ENFORM Reserved Words. The list of
ENFORM reserved words has grown, which
may cause unpredictable results when
ENFORM queries are recompiled. Record
names, file-name components, and section
names that are the same as any question­
mark (?) command keyword cause a syntax
error message to be issued for the? ASSIGN,
? ATTACH, ?COMPILE, ?EXECUTE, ?OUT,
?RUN, ?SHOW, and ?SOURCE commands.
This affects only these commands.

The only solution for this syntax error is
to change the name of the record, file, or
section. For records, opening another record
as a copy of the conflicting one and then
using the new name suffices.

JUNE 1985 • TANDEM SYSTEMS REVIEW

BOO Software

7

BOO Software

8

FUP INFO Output Modified. FUP INFO out­
put has been expanded. Any application
that depends on the output format should be
reviewed and changed if necessary. An
interim version of FUP that runs under
GUARDIAN 90 but produces its output in the
old format is available from Tandem ana­
lysts. This version will be supported for a
limited time only, to permit customers to
make an orderly transition to the new,
enhanced format.

Capacity Planning and Tuning

More Pages Locked. Tests have shown that
the GUARDIAN 90 operating system locks
between 20 and 35 pages more than A20 or
A06 GUARDIAN (depending on the configu­
ration). (Note that as these tests did not
include DP2, they do not reflect the addi­
tional pages locked when it is used.)

XRAY PRES PAGES and PRES PAGESM. The
fields PRES PAGES and PRES PAGESM are
not recorded with this release of the XRAY
performance measurement tool. They will be
added in a future release.

Other Sources of BOO Information
More information about the products dis­
cussed in this article is available elsewhere
in this issue, in the appropriate software
manuals, and in the BOO Software Documen­
tation (Softdoc) included on the Site Update
Tape (SUT). Users needing even more infor­
mation should contact their Tandem
analysts.

Acknowledgments
The authors would like to thank the many software developers
and product managers who contributed information to this
article.

References
Chapman, B. and Zimmerman, J. I 985. The ENABLE Pro­
gram Generator for Multifile Applications. Tandem Systems
Review. vol. I, no. I. Tandem Computers Incorporated.

Pong, M. 1985. TMF Autorollback: A New Recovery Feature.
Tandem Systems Review. vol. I, no. I. Tandem Computers
Incorporated.

Tandem Software Documentation. I 985. BOO Site Update Tape
(SUT). Tandem Computers Incorporated.

Tandem software manuals for the BOO software release. 1985.
Tandem Computers Incorporated.

-- -

Kevin Coughlin has been a systems analyst in the lnstallability
and Quality group for the past year. He joined Tandem's Soft­
ware Education Department three years ago as an instructor for
the GUARDIAN Internals II course, bringing with him 12 years of
experience with the products of other mainframe vendors.
Before joining Tandem, he was a service-bureau programmer, a
vendor representative, and a field analyst focusing on price/
performance issues.

Robert Montevaldo is the systems product manager responsible
for the BOO software release. He joined Tandem in September
1980 as a product manager for Tandem's 6530 terminal and later
became the product manager for the Nonstop TXP system.
Robert has over 15 years of experience in the computer industry_

T A N O E M SYSTEMS REVIEW J U N E I 9 8 5

he new optional disc pro­
cess for Tandem systems,
DP2, comprises a complete
redesign and reimplemen­
tation of the earlier
Tandem disc process, DPl.
The design changes were

made to improve performance, throughput,
recoverabil_itr,. reliability, maintainability,
and extens1b1hty. The new disc process sup­
ports all disc controllers and discs for
Tandem Nonstop Il, NonStop TXP, and
NonStop EXT systems.

DP2's job is to manage data and hardware
within the disc subsystems. It implements
ENSCRIBE file types, manages the space on
discs, and manages the controllers and paths
to the discs.

The new disc process is accompanied by
appropriately modified and enhanced utili­
ties and File System. As the file structure
has been changed for DP2, a new utility is
provided with it to convert files from DPl to
DP2 format.

Other architectural changes have been
made to integrate the Transaction Monitor­
ing Facility (TMF) and DP2 subsystems
resulting in increased performance in the
TMF environment.

DP2 handles takeover, crash recovery, and
rollforward consistently, in that it physically
backs out incomplete requests. Checkpoint­
ing for DP2 is analogous to auditing to the
backup process. While DPl checkpoints
enough information to the backup to carry
for_ward the interrupted updates, DP2 check­
points enough information to the backup
process so that the backup can back out any
mterrupted multistep updates. This tech­
nique considerably reduces the number of
messages sent to the backup process.

DP2 Highlights

Performance and Throughput
Improvement
DP2 allows multiple processes to control a
disc volume. The new disc process consists
of a group of single-threaded disc processes
each having its own data space. The numbe;
of disc processes in a group is specifiable at
SYSGEN. (The default is three; the maxi­
mum is eight.)

DP2_allows for overlapping CPU set-up
execution and better utilization of the disc
cache in memory. A request to the disc that
requires physical 1/0 can now overlap with
a request that is satisfied by a cache hit.
Parallel execution also provides the opportu­
nity for sequencing I/0 requests for seek
optimization.

A new attribute for open files, BUF­
FERED, allows write requests for audited
and nonaudited files to be buffered in the
disc-process cache rather than being forced
to disc at each request. At file creation the
default is to buffer audited files and not to
buffer nonaudited files. The BUFFERED
option provides a substantial performance
improvement for applications that write
sequentially to a file and for those using
audited files in general.

The BUFFERED attribute can be altered/
examined via a SETMODE call. In addition,
the BUFFERED attribute has a file-label
default used to select buffered writes for a
nonaudited file without requiring the addi­
tion of a SETMODE call to the applications
that access the file.

JUNE 1985 TANDEM SYSTEMS REVIEW 9

Data-base Software

10

Other performance improvement features
include the following:

■ The number and size of checkpoints per
data-base update sequence have been
reduced.

■ Auditing is more efficient and reduces the
number of writes at commit.

■ Audit checkpoint records are optionally
compressed, reducing CPU and memory
cycles, as well as audit-trail consumption.

■ At the disc-driver level, the next-queued
EI0 is issued when the completion of the last
EI0 is handled. This results in higher device
utilization and faster response times.

■ Independent read requests may be satis­
fied concurrently by parallel reads issued
against a mirrored pair. (This is only possi­
ble if there is a path to each half of the mir­
rored pair through a separate controller.)

■ The selection of the disc drive (primary or
mirror) used to satisfy a read request is now
based on minimum seek cost. This should
minimize head movement and improve
response times. (Rotational delays are not
accounted for in this algorithm.)

■ When 3107 controllers are used, DP2 can
perform data transfers up to 30K bytes in
length in a single disc-transfer operation.
This facility is available only to utilities sup­
plied by Tandem, such as BACKUP2,
REST0RE2, FUP DUP, and TMF TAPE. (Note
that when a logical volume is controlled by
a pair of disc controllers, both controllers
must be 3107s for DP2 to support this
feature.)

Recoverability Improvement
The structural integrity of nonaudited key­
sequenced files and the volume directory is
protected by a volume-resident "undo
area." Before a multiblock update (e.g.,
B-tree block split or collapse) is begun, a
highly compacted encoding of the intended
steps is written to the undo area in one 1/0.

Using this undo area, the disc process backs
out any multiblock operations that were
interrupted by a double failure (e.g., failure
of the primary and backup disc-process
CPUs). This processing takes place automat­
ically when the volume is brought up. The
structural integrity of audited files is pro­
tected by TMF.

When a DP2 disc-process group is idle for
a sufficient period of time, a new algorithm
is invoked to flush dirty cache buffers
(including dirty File Control Blocks, or
FCBs) until the next user request is received.
This helps minimize the risk of data loss
and/ or the recovery effort required should a
system failure occur. In addition, if the disc
is still idle when all dirty cache buffers have
been flushed, DP2 periodically updates the
volume-label timestamp. This facilitates
early detection of hardware failures as well
as providing a more accurate timestamp for
use in detecting inconsistent mirrors.

Other Features and Changes
The following features are also included in
DP2:

■ The maximum record size of the directory
and key-sequenced files is limited only by
the usable block size (whereas DPl limits the
maximum record size to half the usable
block size).

■ The directory, the free-space table, and
nonpartitioned files are dynamically extend­
able. The directory can now have up to 987
extents. The maximum number of extents
for a nonpartitioned file is dynamically
alterable and is limited by the space remain­
ing in the file label after the altemate-key­
file information is recorded. This allows for
over 900 extents in most instances.

■ Block sizes are limited to power-of-two
multiples of the sector size (512, 1024, 2048,
or 4096 bytes). For example, 3K-byte blocks
are not supported by DP2.

■ Index and data blocks in a DP2 key­
sequenced file must be the same size. This
restriction was introduced to simplify cache
management for key-sequenced files.

TANDEM SYSTEMS REVIEW• JUNE 1985

Finally, the following file attributes have
been added:

■ BUFFERED, as described above, controls
the use of write-through cache on a per­
OPEN basis. A file-label default may also be
set for each file.

■ ACCESSTYPE specifies the type of access
the user intends to use, allowing the disc
process to optimize cache management
appropriately. ACCESSTYPE values include
system-managed (the default), which allows
the disc process to determine the best buf­
fering techniques; random-access, which
puts the blocks on an LRU (least recently
used) list in the cache; sequential-access,
which protects the disc process from filling
up the cache with blocks that will not be
used again; and direct-JIG, which allows
exclusive or protected read-only openers to
bypass the cache for unstructured accesses.

• AUDITCOMPRESS specifies for a particu­
lar file that DP2 is to produce a representa­
tion of the change to the record (rather than
an image of the entire record). It then puts
the smaller of the change information or the
record image in the audit record or check­
point message.

Compatibility and Conversion
Between DP2 and DPl
The use of DP2 should not require changes
to existing applications; however, several
DP2 features (such as buffered cache, file
ACCESSTYPE, and AUDITCOMPRESS)
require user action to enable and/ or tune
them. This action is described in the
ENSCRIBE Programming Manual.

The volume label, the directory, and the
internal structure of structured files on a
DP2 volume are all different from those on a
DPl volume. This requires that a DPl vol­
ume be converted to the DP2 format.
Programs that access structured and
unstructured files in the ordinary ways
should not encounter any incompatibilities
due to DP2. On the other hand, programs
that read structured files with unstructured
access will find that the block structure has
changed.

The new BACKUP2 and RESTORE2 utili­
ties support automatic conversions so that a
backup tape from a DPl volume can be
restored to a DP2 volume and vice versa. As
RESTORE2 can read tapes created by
BACKUP, it can be used to convert any file.
The File Utility Program (FUP) DUP com­
mand also performs the necessary conver­
sions, based on the source and destination
volume types.

The File Conversion Program (FCP) is
provided to convert multiple files and mul­
tiple volumes in parallel. It was designed to
convert volumes faster than BACKUP2 and
RESTORE2 by making the conversions disc
to disc. When FCP is used, all files and vol­
umes must be on the local node.

FCP converts to and from DPl and DP2,
allowing a site to return to a DPl volume
if necessary. The conversion takes about
90 minutes for 240M bytes of data. (The
conversion may be slower if most of the files
are key-sequenced. Also, this time does not
include the time to do a PUP REVIVE on the
other half of the mirror.) The converted file
may require more space than the original as
a result of the DPl block size being changed
to meet the DP2 size rules (power-of-two
multiples) and bit-map blocks being added
(used for free-space allocation in structured
files).

Within a single node, a system can con­
tain both DPl and DP2 volumes, with cer­
tain restrictions. All volumes configured for
a controller must be of one type or the other.
Also, if a volume is configured with a pri­
mary and a backup controller, all volumes
configured for both controllers must be of
the same disc-process type.

All partitions of a file must be of the
same disc-process type. If a file has alter­
nate keys, the primary file and the alternate­
key files must all be of the same disc-process
type. Unstructured access to a structured
DP2 file from another node that is running
an earlier (pre-BOO) version of the File Sys­
tem is prohibited.

JUNE 1985 TANDEM SYSTEMS REVIEW

Data-base Software

11

Data-base Software

12

DP2 unstructured files are transparently
blocked with one of four valid DP2 block
sizes (512, 1024, 2048, or 4096 bytes, the
default). This transparent block size, known
as BUFFERSIZE, is the transfer size used
against an unstructured file.

While BUFFERSIZE does not change
the maximum unstructured transfer
(4096 bytes), multiple I/Os may be per­
formed to satisfy a user's request, depending
on the BUFFERSIZE chosen. For example, if
the BUFFER SIZE were 512 bytes, and a
request were made to read 4096 bytes, at
least eight transfers (each 512 bytes long)
would be made. More than eight transfers
would occur, in this instance, if the
requested transfer did not start on a
BUFFERSIZE boundary.

DP2's performance with unstructured files
is best when requested transfers begin on
BUFFERSIZE boundaries and are integral
multiples of the BUFFERSIZE.

DP2 and TMF
One of the design goals for DP2 was to pro­
vide support for quick crash-open file recov­
ery after a system crash. This new form of
crash recovery, called autorollback, is done
"in place" and requires no file or audit
dumps to be loaded, as is required by the
rollforward process.

Autorollback is initiated automatically as
part of TMF start-up processing. No tapes
need be mounted; all data needed to per­
form autorollback is kept on disc. The gran­
ularity of autorollback is an audited volume.

TMF on-line dump and rollforward both
run much faster on DP2 because the data
transfer for DP2 is physical rather than logi­
cal, as it is for DP 1. Since autorollback han­
dles double CPU failure, on-line dumps and
rollforward should only be required for
recovery from media failure.

DP2 implements a buffered cache that
obeys the write-ahead-audit protocol. Before
writing a modified data block to disc, the
cache manager makes sure that the audit
records for the updates to that block have
been written to the audit-file disc. DP2 gen­
erates physical audit records based on block
changes rather than generating logical audit
records as DPI does. This allows DP2
autorollback to recover the physical integrity
of files, while DPI cannot recover files
crashed in the middle of block splits.

DP2 implements a control-point mecha­
nism that limits the length of the audit trail
to be processed during the "redo" phase of
autorollback. The control-point mechanism
enables autorollback to find, in each audit
trail, a redo start point, such that the
changes for all the redo audit records that
precede the redo start point are guaranteed
to be reflected in the corresponding data-file
blocks on disc at the time of the crash.

BOO TMF software supports either a DPI or
DP2 configuration, but not a mixed configu­
ration. When TMF is used, to make the tran­
sition from DPI to DP2 (or vice versa), all
volumes to be configured for TMF (including
audit-trail volumes) must be converted to
the same type (DPI or DP2) and an INITIAL­
IZE TMF must be used to purge all configu­
ration and catalog information.

T A N D E M S Y S T E M S R E V I E W JUNE 1985

When a DP2 system is configured for
TMF, audit trails cannot be configured on
volumes that are to contain audited files.
That is, volumes can contain either audited
files or audit trails, but not both. This
restriction was made to eliminate possible
deadlocks with the new write-ahead-audit
protocol and to make the DP2 software more
reliable.

The DPl Monitor Audit Trail contains
only commit records. Within a DP2 configu­
ration, however, the TMF command pro­
cessor (TMFCOM) allows users to direct
data-audit records to a Master Audit Trail,
which contains both commit and data-audit
records. By allowing all or most of the audit
to be directed to the Master Audit Trail,
DP2 reduces the number of writes required
for a transaction commit, thereby increasing
transaction throughput.

A new TMFCOM ENABLE VOLUMES com­
mand has been added to allow the manual
initiation of the DP2 autorollback process.

Conclusion
DP2 provides substantial performance, reli­
ability, and flexibility improvements over the
current disc process. Particularly for TMF,
performance and recovery speed are dramat­
ically improved, allowing TMF to be used
more effectively, with much larger data
bases and higher-performance transaction­
processing applications than before. DP2
also provides substantial performance
improvements for applications that use buf­
fered cache.

Utilities such as BACKUP2, RESTORE2,
and REVIVE are much faster with DP2 and
3107 controllers. DP2 provides double fault
tolerance by protecting the structural integ­
rity of files. Finally, DP2 provides compati­
bility in a network since it can coexist with
DPl on a system or in a network.

More detailed information can be found
in the accompanying DP2 articles, the Soft­
doc, and the appropriate software manuals.

Acknowledgments
The authors would like to thank the DP2 software developers
for information used in this article. Special thanks to Mike
Kenrich, who wrote the external specification.

Kay Carlyle, formerly the DP2 Product Manager, has recently
become the manager of a Software Development data-base
group. She joined Tandem in June 1981 as a regional data-base
specialist in Falls Church, Virginia, after spending seven years in
product management and development. She has a B.A. in Math­
ematics from the University of Kansas and Masters Degrees in
both Computer Science and Business Administration from
Arizona State University.

Larry McGowan joined Tandem in November 1983 as the DP2
Software Development Manager. He has over 20 years experi­
ence in operating-system development and management. Larry
has a B.S. in Mathematics from the University of Washington.

JUNE 1985 T A N D E M S Y S T E M S R E V I E W

Data-base Software

13

14

DP2's Efficient Use of Cache

ith the BOO release,
Disc Process 1

~ (DPI) has been
-------jw-----.- enhanced to use
---~ buffered cache

-------'---------------~
memory for audited
files. In the new

Disc Process 2 (DP2), the use and manage­
ment of cache is even more efficient. Also,
DP2 makes it easy to examine and change
the configuration of cache to meet varying
processing loads.

This article briefly describes:

■ How DPI and DP2 use cache.
■ How DP2 cache can be configured.
■ How DP2 handles files.
■ How DP2 manages cache.

■ How DP2 cache-performance is reported.

For more information on buffered cache and
DP2 performance, see the accompanying
article, "DP2 Performance," by Jim
Enright.

How DPl and DP2 Use Cache

Write-through and Buffered Cache
By caching the most frequently used data so
that it can be quickly accessed, a disc pro­
cess makes efficient use of memory. When
the disc process uses buffered cache (as
opposed to write-through cache), it uses
memory even more efficiently.

Using write-through cache, a disc process
stores blocks of data in cache (where they
are available to satisfy read requests quickly)
but immediately writes to disc data blocks in
which any data has been changed by a write
or update request.

Using buffered cache, a disc process can
leave the changed (or dirtied 1) data blocks in
cache for a period of time. In this way, it
may be able to schedule the physical write
for a time when it is not processing user
requests. By delaying the write to disc, it
may also reduce the number of physical
writes it has to perform, as several records in
the same block may be changed before the
write takes place.

Versions of DPI released before the BOO
software release use write-through cache
only. BOO DPI has been enhanced to use buf­
fered cache for audited files. The new DP2
uses buffered cache for audited files, by
default, and, in addition, it allows users to
decide whether unaudited files are to use
buffered cache or write-through cache, or to
bypass cache entirely. Table 1 summarizes
these differences.

DPl and DP2 Cache-block Sizes
Disc-process cache is a pool of memory
buffers containing images of disc blocks.
DPI (BOO and earlier versions) uses one large
cache that contains data and index blocks of
various sizes as well as audit-trail informa­
tion. Valid DPI block sizes are 512, 1024,
1536, 2048, 2560, 3072, 3584, and4096
bytes.

DP2 uses a separate buffer for each size of
cache block and a separate area for audit
blocks. It uses only four cache-block sizes:
512 bytes (sector size), 1024 (lK) bytes,
2048 (2K) bytes, and 4096 (4K) bytes (maxi­
mum transfer size).

'With buffered cache, when a record in a cache block is added, deleted, or
modified, the block is considered "dirty." It is "cleaned" or "flushed" when
the disc process writes it to disc.

TANDEM SYSTEMS REVIEW• JUNE 1985

Table 1.
Comparison of cache use by three versions of the disc process.

Cache buffer sizes (in bytes)

Internal space management

Dynamic configuration

Performance analysis tools

Access modes

Type of search made by internal
cache-search algorithm

Ability to have buffered,
unaudited files

Types of cache write for
unaudited files

Types of cache write for
audited files

Type of cache read

Autorollback recovery

Maximum number of disc
processes accessing a volume
at one time

SYSGEN parameters

Buffer-size selection for
unstructured files

Pre-BOO DP1

512, 1024, 1536,
2048, 2560, 3072,
3584,4096

Single buffer area for cache
and audit

None

XRAY

Least-recently used (LRU)

Binary

None

Write-through

Write-through

Buffered

None

One

WRITETHRUCACHE
CACHEPAGES

None

Hashing vs. Binary-search Algorithm
DP2 uses a hash-code access to determine
which blocks are in cache. DPl uses a less
efficient binary search to determine this.

Configuring Cache
With DPl, users can specify cache size only
at SYSGEN. To change cache size, they must
perform a SYSGEN and cold load the system.
Also, the only tool available with DPl for
examining cache performance is the XRAY
performance measurement tool.

When DP2 Cache Can Be Configured
DP2 is much more versatile at cache configu­
ration and management. Users can specify
the size of each of the four cache buffers at
these times:

■ When labelling the volume, with the
Peripheral Utility Program (PUP) command
LABEL.

■ When setting up the SYSGEN configura­
tion file for system volumes, in the ALL­
PROCESSORS section with the keyword
SYSTEM_ VOLUME_CACHE_SIZES.

J U N E I 9 8 5 T A N D E M

BOO DP1 DP2

512, 1024, 1536, 512, 1024,
2048,4096 2048, 2560, 3072,

3584,4096

Single buffer area for cache Separate buffer area for each size of
cache block and separate area for
audit blocks

and audit

None Performed with PUP SETCACHE

XRAY XRAY

LRU

PUP LISTCACHE

LRU
Sequential
Direct 1/0
System-managed

Binary Hash

None Specified with FUP SET, ALTER
BUFFERED

Write-through Write-through or buffered

Buffered Buffered (default)
Write-through (not recommended)

Buffered Buffered

Part of Transaction Monitoring
Facility (TMF)

Part of TMF

One One to eight (default is three)

WRITETHRUCACHE
CACHEPAGES

SYSTEM_ VOLUME_CACHE_SIZES

None Specified with FUP SET, ALTER
BUFFERSIZE

■ While the system is running, with the new
PUP SETCACHE and LISTCACHE com­
mands. (LISTCACHE is used to examine the
cache configuration first.)

Any DP2 cache size not configured with
SYSGEN or PUP LABEL defaults to 16
blocks.

A DP2 Configuration Example
The command syntax allows the user to
specify cache size as the number of bytes or
as a multiple of 1024 bytes, where .SK repre­
sents 512 (decimal) bytes, lK represents
1024 bytes, 2K represents 2048 bytes, and
4K represents 4096 bytes.

To set cache on volume $DATA to 16 512-
byte cache blocks and 128 4096-byte cache
blocks, and leave the number of lK-byte and
2K-byte cache blocks the same, the user
would use the following commands:

PUP SETCACHE $DATA, .5K = 16,4K = 128

or

PUP SETCACHE $DATA, 512 = 16,4096 = 128

SYSTEMS REVIEW

Data-base Software

15

Data-base Software

16

Internal Cache-setting Algorithm
While users can request a certain number of
cache blocks, an internal cache-setting algo­
rithm ensures that there is enough cache for
DP2 to do certain critical operations and
that space is not wasted. There must always
be room for at least two cache blocks for
some complicated operations, such as block
splits of a key-sequenced file.

Since each process in the group can be
working on a different block-split operation,
each disc process in a disc-process group
must have a minimum of two blocks for
each of the four block sizes for which it has
buffers. Thus, if there are three processes in
the DP2 disc-process group, even if the user
were to request only one cache block for
each of the four block sizes, the internal
algorithm would calculate a minimum of six
blocks in cache for each of the four block
sizes.

DP2 also allocates cache in multiples of
pages, so all cache allocations are rounded
up to the next whole page to avoid wasting
memory. A request for six 512-byte blocks,
for example, is rounded up to eight blocks
or two pages. The maximum number of
cache buffers that can be allocated for DP2
cache is 8191.

How DP2 Handles Files
As mentioned earlier, A06 DPI uses write­
through cache for both audited and unau­
dited files, while BOO DPI uses it for
unaudited files only. Also, BOO DPI requires
audited files to use buffered cache, while in
DP2 this is the default setting of a user
option.

For more information about BOO TMF
and DP2, see the accompanying article,
"Improvements in TMF," by Tony
Lemberger.

When Does DP2 Write Buffered Blocks
to Disc?
When DP2 updates a record in a buffered­
cache block, it waits for one of the following
conditions to occur before writing the block
to disc:

■ Any opener closes the file.

■ A control point is processed. (For more
information about control-point processing,
see Pong, 1985.)

■ The user requests a flush (SETMODE 95).

■ No more blocks are free and the block is
the least recently used.

■ The disc process is idle and cache is
cleaned.

■ The user changes the cache configuration
with the PUP SETCACHE command.

Unaudited, Buffered Files and CPU Failure
If a disc-process takeover occurs as the
result of a CPU failure and the file has been
opened with a sync depth of zero, or if a
volume is brought down incorrectly, all of
the unflushed updates made to an unau­
dited, buffered file are lost. The application
is returned a new error code, FEDATALOSS
(122), with the next operation on that file.

How DP2 Manages Cache
DPI manages cache blocks on a least­
recently used (LRU) basis. New access modes
enable DP2 to use cache more effectively.
The access modes can be defined either pro­
grammatically by users (with a call to
SETMODE) or determined by the system,
based on actual usage. The access modes are
described below:

■ Sequential access reuses the same cache
buffer. It is useful for sequential-batch­
processing applications in which the data in
the buffer is not likely to be needed again.

■ Random access uses an LRU algorithm for
selecting cache buffers. It ensures that fre­
quently accessed disc blocks are in cache.
This is the same method used by DPI.

TANDEM SYSTEMS REVIEW JUNE 1985

■ System-managed access determines
whether to use sequential or random access
based on actual file usage.

■ Direct l/0 access bypasses cache.

How DP2 Cache Performance
Is Reported
There are two ways to examine DP2 cache
performance. The DISC and DISCOPEN com­
mands can be used with XRAYSCAN, just as
they're used for DPI. Also, the new PUP
LISTCACHE command can be used. In gen­
eral, XRAY reports rates and LISTCACHE
reports percentages, although some of the
same statistics are reported by both.

New XRAY Counters
New counters have been added to the XRAY
DISCOPEN and DISC reports to track disc­
cache usage. They were added for both DPl
and DP2, but as DPl and DP2 manage cache
differently, they use some of the counters
differently. A complete description of the
XRAY counters can be found in the XRAY
User's Manual.

Sample DISC Report
A sample of the DISC report for a single DP2
disc process and a controller appears in Fig­
ure 1. Four sets of cache counters are pro­
vided, one for each DP2 cache-block group.
(For example, CHIT0, or cache hit 0, is the

Figure 1

average number of cache hits per second for
the cache that contains 512-byte blocks.)
The counters represented include:

Counter
name

CH!Tn RATE

MISSn RATE

CFLTn RATE

ABFNn RATE

CBKSnALLOC

CBKSn DIRTY

MAXSn DIRTY

Counter

Number of cache hits per
second

Number of cache misses per
second

Number of cache faults per
second

Number of audit-buffer forces
per second

Total number of cache blocks
allocated

Average number of dirty cache
blocks

Maximum number of dirty
cache blocks

Some counter names end in a number
(0-3) that indicates the block size of the
cache-block group. This number is some­
times called the cache ID. The four cache IDs
and the block sizes they represent are:

Cache ID

0
1
2
3

Block size
of cache group

512
1024
2048
4096

$SYSTEM LDEV 4 PID 0,7 CTL 1 UNIT O DP2 FEB 5 08:31:00 FOR 130

4.21 % .277# 3.00# 13.3 1.90% 1.59% .718% 3.08 1.41 1.02 .648

.015 16.0# .254 .030 16.0#

1.00# .324 1.84 16.0# 1.00#

11.0 .640 16.0# . 718# 2.00# .030

JUNE 1985 TANDEM SYSTEMS REVIEW

Data-base Software

Figure 1.

Sample output from the
XRAY DISC report,
generated with the
TABLE OFF command.
Blank fields indicate a
value of zero. (The report
has been edited to fit this
space).

17

Data-base Software

Figure 2

DATE: JAN 9 1984, 11 :33
CACHE STATISTICS: $DATA
COUNTERS INITIALIZED :JAN 91984, 11:00
ELAPSED TIME: :33
CACHE BLOCK SIZE: 512 1024 2048 4096

BLOCKS REQUESTED: 40 40 40 40
BLOCKS ALLOCATED: 40 40 40 40
BLOCKS DIRTY: 0% 0% 0% 0%

CACHE READ HITS: 84% 88% 7% 70%
CACHE READ FAULTS : 0% 0% 0% 0%
CACHE READ MISSES: 16% 12% 93% 30%

CACHE WRITES: 26% 21% 3% 44%
CACHE WRITE HITS: 16% 0% 0% 0%

CACHE CALLS: 7458 1545 4435 62208
AUDIT FORCES: 0 0 0 0

BYTES ALLOCATED TO CACHE: 300K WRITES/CONTROL POINT 0.00

Figure 2.

Sample output from the
PUP LISTCACHE
command, generated with
the STAT option.

New PUP LISTCACHE Command
The PUP LISTCACHE command, with the
STATISTICS option, shows more clearly some
of the information reported by XRAY. A
sample PUP LISTCACHE report is shown in
Figure 2. The GUARDIAN Operating System
Utilities Reference Manual describes the
report in detail.

The CACHE WRITE HITS information
reported by the PUP LISTCACHE command
represents the percentage of time the block
was found dirty in cache when a write was
performed. This gives an indication of the
number of writes saved by the use of buf­
fered cache. The XRAY CWHIT RATE
(cache-write hit rate) in the DISCOPEN
report gives the same information on a per­
file basis.

Two useful TMF statistics in the LIST­
CACHE report are the number of audit
forces and the number of writes per control
point. AUDIT FORCES represents the number
of times an audit trail had to be written to
permit a data block to be written. A high
value usually indicates insufficient cache
memory. A similar statistic, ABFn RATE, is
in the XRAY DISC report.

WRITES/CONTROL POINT represents the
number of writes forced by control-point
processing. In a system that is properly
tuned and not overloaded, this counter
should be zero.

Conclusion
The use of buffered cache is an important
part of both BOO DPI and DP2. DP2
improves on this basic enhancement by man­
aging cache much more efficiently than DP I.
DP2 also allows users to configure cache use
for a particular application's needs. Finally,
DP2 makes more information about cache
utilization available, allowing users to adjust
the use and size of cache to accommodate a
variety of work loads.

References
Pong, Michael. 1985. TMF Autorollback: A New Recovery
Feature. Tandem Systems Review. vol. I, no. I. Tandem Com­
puters Incorporated.

Acknowledgments
The original design for DP2 was created by Andrea Borr and
Franco Putzolu. The author would like to thank all of the DP2
developers for helping him to understand DP2. Thanks also go
to Dick Thomas and Jim Tate for their help in preparing this
article.

Ted Schachter joined Tandem in May 1983. He is a member of
the Field Productivity Programs group and is currently providing
technical support for DP2 by teaching Beta classes. Before
joining Tandem, Ted spent nine years as a real-time systems
programmer. He has an M.A. in math from the University of
Denver.

18 TANDEM SYSTEMS REVIEW JUNE 1985

~---- he design of Disc Process 2
(DP2) has introduced sev-
eral changes in the struc­
ture and processing of
key-sequenced files. This

1----- article explains some of the
______ new features resulting from
these changes. It is intended for the technical
reader who is already familiar with the file
structures of Disc Process 1 (DPl).

Differences Between DPl and DP2
The main differences between DPl and DP2
key-sequenced files are outlined below:

1. DP2 blocks have a new header that can be
used to distinguish a key-sequenced block
from a relative or entry-sequenced block.
While the block header for DPl is the
same for all blocks, the DP2 header is dif­
ferent for each block type. It contains
information identifying the type of block
and its relative position in the file, and an
internal timestamp for the last update,
called the Volume Sequence Number
(VSN). The header varies in size depend­
ing on the type of structured block.

2. DP2 data blocks have forward and back­
ward pointers, while DPl data blocks con­
tain only forward pointers. (The File
System in the BOO release, however, uses
only forward pointers.)

DP2 Key-sequenced Files

3. DP2 block pointers contain relative sector
numbers (RSNs) that are 3 bytes long in
place of the 4-byte relative-byte addresses
(RBAs) used by DPl.

4. DP2 data records can be larger than one­
half the block size. DPl requires that a
block be able to contain at least two
records, but DP2 uses a new block-split
algorithm that makes it possible to relax
this restriction.

5. DP2 locates free blocks by using bit maps
rather than by chaining blocks in a "free
list" as DPl does. DP2 can detect bit-map
errors and correct them, while DPl can­
not repair the free-list chain when it
breaks.

6. To simplify space allocation within files,
DP2 requires index and data blocks in the
same file to be of the same size, while
DPl permits them to be of different sizes.

7. There are no forward (horizontal)
pointers in DP2 index blocks. These
pointers are present in DPl, but are never
used by it or by the File System.

JUNE 1985 • TANDEM SYSTEMS REVIEW 19

Data-base Software

Consistency
Consistency refers to the state of a data base
after a failure. There are three kinds of con­
sistency: structural, file, and data-base. The
DP2 design, together with the closely inte­
grated features provided by TMF, ensures all
three.

Structural Consistency
Structural consistency applies to key­
sequenced files that can break during the
addition or deletion of a record as the result
of a block split or block collapse. A key­
sequenced file has structural consistency if
the index pointers point to the correct blocks
and if the forward and backward pointers in
data blocks are consistent. If a failure
occurs during a multiblock update, DP2
undoes any partial changes that have been
made.

File Consistency
If a file has only structural consistency, its
internal pointers are always consistent, but
updates to the data may be lost. File consis­
tency means that no updates are lost.

Data-base Consistency
File consistency and structural consistency
may exist, but data-base consistency may be
lacking because not all the file updates for a
transaction are completed. A transaction
can update multiple blocks in multiple files.
TMF provides data-base consistency for
audited files.

Block Structure of Files
DPl key-sequenced files consist of index and
data blocks that are either in use or are on a
free list. These blocks can be of different
sizes, but they have the same block format.

DP2 key-sequenced files consist of index
blocks, bit-map blocks, data blocks, and
free blocks. The headers of the different
blocks are illustrated in Figure 1.

VSNs are internal timestamps used by DP2
to help implement the write-ahead-audit
protocol autorollback recovery, and rollfor­
ward rec~very used by the Transaction Mon­
itoring Facility (TMF). DP2 also uses VSNs
when processing records in the "undo" area,
an area used to ensure the structural consis­
tency of unaudited DP2 key-sequenced files.

Block Splits
Block splits occur when the disc process tries
to add a record to a block when there is not
enough room. In the most complex case, the
insertion of a new data record can cause the
split of a data block, index blocks, and the
root block. The DPl algorithm is imple­
mented so that splits are handled recursively,
starting at the data level. .

DPl splits data blocks and then sphts
index blocks when necessary. DP2, on the
other hand, looks ahead to see if an index­
block split will be necessary and divides a
complex split operation into a sequence of
simpler split operations.

DPl requires records in key-sequenced
files to be less than one-half the size of the
block so that the insertion of a record results
in no more than two data blocks after the
record is inserted (via a block split). DP2
relaxes this restriction: insertion of a large
record can result in three data blocks after
the record is inserted. Within DP2, all oper­
ations on a key-sequenced file are classified
as either simple or complex.

Simple vs. Complex Split Operations
Simple operations are reads or writes on one
disc block. Complex operations are write
operations that modify two or more blocks,
such as block splits, block collapses, inser­
tions of the first record in an empty file, and
deletions of the last remaining record in a
file.

-20 ______________ T_A_N_D_E--M--S-Y_S_T_E_~M~S-~R~E~V~~I-E~=W-~•~J~U~N~E~~I~9 8 5

Figure 1

Relative
byte DP2 key-sequenced

address index and free block

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

DP2 key-sequenced
data block

A block split occurs when an attempt to
insert or update a record in a data or index
block requires the block to be split into mul­
tiple blocks because the inserted/updated
record does not fit in the original block. A
block collapse occurs when the last record of
a data or index block is deleted, causing the
block to be freed. The insertion of the first
record in an empty file causes the formatting
of three blocks (bit map, index root, and
data block). The deletion of the last and only
record causes the resetting of the end-of-file
(EOF) pointer and the number-of-levels
fields in the file label.

DP2 bit-map
block

DP1 index
and data blocks

Block-split Decomposition
The DP2 block-split algorithm breaks up a
complex split operation into a number of
simpler operations. In general, a DP2 split is
implemented as a sequence of internal oper­
ations, each of which (1) creates only one
new block (affects only one level) and
(2) ensures that consistency is maintained
after the operation is completed. The DP2
split algorithm is more costly in disc activity
than the DPl recursive method only if the
split of an index block occurs. The DP2 split
algorithm, together with the recovery proce­
dures provided by the undo area, auditing,
and checkpointing, ensure that a file always
has structural consistency.

JUNE 1985 TANDEM SYSTEMS REVIEW

Data-base Software

Figure 1.

The block headers for
DPJ and DP2 key­
sequenced Jiles. The first
14 bytes of the DP2 block
header are common to
relative, entry-sequenced,
and key-sequenced Jiles.
In the first byte of the
header is an "eye
catcher": a "greater
than" symbol(>). The
relative sector number
(RSN) in the next 3 bytes
numbers all the blocks in
a file. The "Flags" word
contains information
about the type of file,
type of block, and level of
index.

21

Data-base Software

Figure 2.

The structure of a file
before a block split.

Figure 3.

The structure of the file
in Figure 2 after the split
of block B2 into blocks B2
and B4.

22

Figure 2

Figure 3

Data-block Split

Root-level
index block

Data blocks

Root-level
index block

Data blocks

Figure 2 depicts the structure of a sample
DP2 file, and Figure 3 shows the file's struc­
ture after a block split. The steps involved in
splitting the block are outlined below.

If there is not enough room to insert
record R into block B2, a new block, B4,
must be created. Half of the records are
moved from B2 to B4, and then record R is
inserted into block B2. In this example, it is
assumed that the record is inserted into
block B2 rather than block B4 (depending on
the primary key, however, the record could
have been inserted into either).

Before the split begins, it is necessary to
verify that there is room in the parent index
block for another record. If there is no
room, one (or more) index-block splits must
be done before proceeding.

Free Blocks and Bit Maps
The disc process finds a free block by scan­
ning the bit maps that are stored in the bit­
map blocks. DP2 attempts to find space for
a new block "near" the block being split by
beginning the bit-map search "near" the old
block. Each bit in the bit map represents one
block in the file. If the bit is set, the block is
in use.

When the disc process finds a bit in the
bit map that is not set, it reads the corre­
sponding block header, whose status infor­
mation indicates whether or not the block is
indeed free. If the block is free, the disc pro­
cess proceeds with the block split. If the
block is not free, the disc process correctly
sets the bit in the bit map and the search
continues with the block indicated by the
next free bit.

This bit-map search replaces the linked
list of free blocks used by DP I. If the linked
list breaks, DPI cannot add new blocks to
the file. If there are bits in the DP2 bit-map
block that should be set but are not, how­
ever, DP2 is able to correct the situation as it
is detected.

The Steps in Splitting a Block
The following steps are involved in splitting
block B2:

1. Allocate block B4; move half of the
records in B2 to B4.

2. Update the back pointer in B3 so that it
points to B4 (instead of B2).

3. Insert a pointer record in the parent index
block, Bl.

4. Insert record R in B2, update the number
of records in the header, and update the
forward pointer to point to B4 (rather
than B3).

Three-way Split
In DP2, a data block may have to be split
into three blocks when a long record is
inserted or updated and its position is not at
the beginning or end of the block. For exam­
ple, assume that the block size is 512 bytes

TANDEM SYSTEMS REVIEW• JUNE 1985

Data-base Software
----------------------------- -----------

and a data block contains two records, RI
and R2, each 200 bytes long. The inserted
record R has a length of 400 bytes, and its
point of insertion is between RI and R2.
The three-way split is implemented as a
sequence of two-way split operations, each
of which preserves file consistency. The steps
involved are:

1. Split the block into two blocks, at the
point at which the new record is to be
inserted or in front of the record that is to
be updated.

2. Now the position of the inserted or
updated record is at the beginning or end
of the block, so only a two-way split is
needed to complete the operation.

Index-block Split
An index-block split is similar to a data­
block split except that index blocks, unlike
data blocks, do not have horizontal
pointers. Figure 4 shows the structure of a
file before an index-block split, and Figure 5
shows the structure of the file afterward.

For record R to be inserted into B4, B4
must be split, requiring that a new index
record be inserted into B2. Before B4 is
split, B2 must also be split so that there is
enough room to insert the new index record.
To have enough room for the new index
record, block B8 must be added and half of
the records must be moved from B2 to B8.

The following steps are involved in split­
ting block B2.

1. Allocate block B8; move half the records
in B2 to B8. (Because this is an index
block, there is no back pointer.)

2. Insert into the parent index block, Bl, a
record pointing to B8.

3. Truncate B2. (Change the number of
records in the block.)

4. Insert record R in block B4, causing a
block split, as described above.

DP2 Block-split Algorithm
The undo area is a small, preallocated area
on a volume that is reusable for every
request resulting in a multiblock update. The
block-split algorithm used by DP2 allows it
to write the undo area to ensure the consis­
tency of unaudited, key-sequenced files and
the directory.

Figure 4

Figure 5

81

__ __JI ._I--~

82 B7

83-B4 B5-B6

B2

~
B3 --

B1

I ! I
B8 87

~ ~ ~
B4 --- B5 -- BS

Figure 4.

The structure of a file
that has two index levels.

Before a multiblock update to an unau­
dited, key-sequenced file or the directory,
DP2 writes into the undo area the informa­
tion needed to undo the operation, in case
the operation fails to complete. File consis­
tency exists only if the operation is write­
through or audited; otherwise, only
structural consistency exists, and some data
may be lost.

JUNE 1985 TANDEM SYSTEMS REVIEW

Root-level
index block

Level·1
index blocks

Data blocks

Root-level
index block

Level-1
index blocks

Data blocks

Figure 5.

The structure of the file
in Figure 4 after the split
of index block B2 into
blocks B2 and B8.

23

Data-base Software

24

Table 1.
Source and level of consistency for DP2 files following (a) a takeover after the failure of the primary disc pro­
cess' CPU and (b) a recovery from a multiple-CPU failure.

(a) Consistency following takeover after
failure of primary disc process· CPU

(b) Consistency following recovery alter
multiple-CPU failure

Source Level Source Level

Audited files

Unaudited. buffered' files with sync depth > O

Unaudited,· "fered' files with sync depth - 0

Unaudited' write-through files with sync depth > 0

Unaudited write-through' 2 files with sync depth - O

Auditing

Checkpointing

Undo area

Checkpointing

Undo area

Data-base

File

Structural

File

File

Auditing Data-base

Undo area Structural'

Undo area Structural

Undo area File

Undo area File

Directory write-through tiles with sync depth > O Undo area File Undo area File

'For unaudited key-sequenced files, DP2 always uses file-label refresh even it the user specifies no refresh with the FUP SET command. This is
to ensure that there is structural consistency following a system crash
'For unaudited buffered tiles, unflushed updates may be lost. It a CPU failure causes the data loss, the application is returned FEDATALOSS
(1_222:._lt F~ATHD()_WNJ201_) is _retu_r_ned._the_ us~ is_res1J_onsi_ble_for_retrr1ng_the_l_astop~at~n:_ _ _

For unaudited files with a sync depth
greater than zero, the information in the
undo area is checkpointed to the backup.
(Setting the sync depth to zero is a way of
turning off checkpointing in unaudited
files.) When a takeover occurs, the backup
disc process uses this information to undo
incomplete multiblock updates and restore
structural consistency.

TMF also takes advantage of the DP2
block-split algorithm when the primary disc
process sends physical undo information to
the audit disc process for audited files. The
audit disc process writes this information to
the audit trail for use by autorollback and
rollforward recovery.

The DPl audit trail contains only logical
information, requiring a rollforward to
recover from an incomplete multiblock
update. The DP2 audit trail contains the
physical undo information required to
restore the structural consistency of a file;
DP2 autorollback uses this physical informa­
tion to restore the file.

Table 1 summarizes DP2 file consistency
after (a) a takeover resulting from a failure
of the primary disc process' CPU and (b) a
recovery from a multiple-CPU failure.

Conclusion
DP2 has introduced changes in the structures
and processing of key-sequenced files. The
new key-sequenced block format, together
with the block-split algorithm and the undo
area, increase the reliability and functional­
ity of key-sequenced files.

Acknowledgments
The author would like to thank all the DP2 developers for their
help. Franco Putzolu was particularly helpful in explaining key­
sequenced files. The reviewers of this article, especially Jim
Tate, also deserve thanks for their comments and suggestions,
as does Dick Thomas for the final revision.

----------- --

Ted Schachter wrote this article, the article entitled, "DP2's
Efficient Use of Cache," and the chart entitled, "A Comparison
of the BOO DP1 and DP2 Disc Processes."

T A N D E M SYSTEMS REVIEW J U N E I 9 8 5

he BOO software release
introduces many changes
in the Transaction Moni­
toring Facility (TMF). This
article provides an over­
view of the most signifi­
cant ones, including:

• Autorollback recovery. This mechanism
brings a data base back to a consistent state
much more rapidly than the existing rollfor­
ward recovery mechanism (and without
operator intervention). Autorollback recov­
ery is possible because TMF now guarantees
that audit information needed to perform
recovery operations resides on disc.

■ Disc Process 2 (DP2) Implementation.
The new, high-performance disc process is
designed to streamline accesses to disc vol­
umes. The impact of TMF on disc-process
performance has been reduced significantly
as a result of this implementation.

■ Disc-volume flexibility. TMF now pro­
vides users with much more flexibility in
starting disc volumes. Selected volumes can
be started initially and others activated later.
Also, it is now possible to specify that a
volume be available for nonaudited pro­
cessing but unavailable for audited
processing.

Improvements in TMF

• Improved crash protection for TMF. With
the BOO release, even the loss of the CPUs in
which a disc-process pair resides does not
generally result in a TMF crash.

■ Restartable TMF processes. The loss of the
backout or auditdump process no longer
results in a TMF shutdown, because now
these processes are automatically restarted
when necessary.

This article provides information on all of
the above. Ref er to the TMF Sof tdoc for
more details and for information on other
changes to TMF software.

Autorollback Recovery
Before the BOO release, there was only one
way of recovering a data base that had been
contaminated as a result of a catastrophic
failure: rollforward recovery. BOO TMF offers
an additional method of recovery, autoroll­
back, which is far more efficient. Rollfor­
ward recovery is now required only in the
case of media failures that actually destroy
the data base.

JUNE 1985 TANDEM SYSTEMS REVIEW 25

Data-base Software

Figure 1.

Before the BOO software
release, a change to an
audited file resulted in the
data-base change being
written immediately to
disc (write-through­
cache). The audit that
was generated as a result
of this change was buf­
fered in the memory of
the disc process (audit
buffer).

Figure 2.

Before BOO, the failure of
a disc-process pair before
the end of a transaction
destroyed the audit that
was generated by the
change to the audited file.
To restore data-base
consistency, the change to
the data base had to be
backed out. Because the
audit was lost as a result
of the failure, rolljorward
recovery was required.

26

Figure 1

Audit buffer
(in disc-process

Figure 2

memory)

Before
image
AAA

After
image
BBB

Audit buffer
(in disc-process

memory)

Pre•BOO
DP1

(backup) l Write-through cache

Data-base
BBB file

~ ·~ l Write-through cache

Data-base
BBB file

To understand why autorollback has been
so long in coming, it is important to note
that Disc Process 1 (DPl) implemented a
write-through-cache algorithm until the BOO
release. With this algorithm, every file
change was immediately written to disc,
and, when updates were made to TMF

audited files, the disc process buffered the
before/after images of all changes made.
(This audit information was written to disc
during ENDTRANSACTI0N processing.)

Figure 1 shows the contents of an audit
buffer generated by a change to an audited
file. The original record in the data-base file
was AAA, and it was changed to BBB. As
explained above, A06 DPl writes the change
to the data-base file and buffers the before
and after images for the change. Thus, if the
disc-process pair controlling the data volume
fails before the transaction ends, data-base
changes that have been made (as part of the

uncompleted transaction) have to be backed
out to restore the logical consistency of the
data base.

As shown in Figure 2, however, the audit
information needed to back out the changes
to the data base has been lost as a result of
the failure of the disc-process pair. Thus,
there is no recourse but to restore a known
good copy of the data base and audit trails
(from dump tapes) and use rollforward to
recover.

If all the audit information needed to
recover the data base were on disc, a fast
recovery mechanism could be implemented
that would make use of the existing data
base. If the disc process could guarantee that
all audit information generated while servic­
ing audited requests was indeed recorded on
disc, that audit information could be used to
redo completed transactions. Uncommitted
transactions, however, might or might not
have audit information recorded in the audit
trail.

If audit information were recorded on disc
for these transactions, that data could be
used to undo their effects in the event of a
failure. The only way to ensure that such
information is available on disc in the event
of a failure is to require that it be written to
disc before any data-base update associated
with it. The scheme that ensures that audit
information is on disc before the associated
data-base updates is referred to as a write­
ahead-audit protocol.

The most straightforward way of imple­
menting a write-ahead-audit protocol is to
force a write to the audit trail before the
physical 1/0 to the data base is performed.
However, the performance implications of
an extra disc 1/0 for each write to the data
base make this approach unworkable.
Clearly, another solution must be found.

BOO TMF uses buffered cache to implement
a write-ahead-audit protocol. Unless data
blocks are buffered, audit cannot be buf­
fered. Thus, when an application issues a
logical 1/0, the data is not immediately writ­
ten to disc. It is buffered in cache, and it
remains there until after the audit informa­
tion reaches disc. This approach to imple­
menting a write-ahead-audit protocol is
attractive because it allows applications to
access updated blocks in cache, resulting in
a savings in physical 1/0.

TANDEM SYSTEMS REVIEW JUNE 1985

As a result of this change, a fast autoroll­
back recovery mechanism can be imple­
mented efficiently. Autorollback recovers the
data base first by reading the audit trail for­
ward (reapplying completed transactions)
and then by reading the audit trail in reverse
(backing out data-base updates associated
with uncompleted transactions).

To perform an autorollback recovery,
users start up TMF after the crash, and then
TMF's Transaction Monitor Process (TMP)
determines whether a recovery is needed.
The existing copy of the data base is used,
and all necessary audit-trail files are on disc.
This alleviates the need for operators to
mount tapes.

As explained above, autorollback reads
the audit trail forward to the end and reap­
plies all changes made to the data base. This
is called the redo phase. After all changes
have been reapplied, any data-base changes
made by transactions that were uncommit­
ted at the time of the failure are backed out.
This phase is called the undo phase.

During the undo phase, autorollback
reads the audit trail in reverse, starting at
the end. This phase ends when all changes
made by transactions that were active at the
time of the failure have been backed out. At
the end of the undo phase, the data base has
been restored to a logically consistent state,
and application processing can begin. For
more information about autorollback recov­
ery, see Pong, 1985.

TMF is now capable of supporting either
DPl volumes or DP2 volumes, and TMF
autorollback recovery is available for either
DPl or DP2. 1 However, the format of the
audit trails, the format of many internal
messages, and the behavior of TMF differs
significantly for DPl and DP2. Thus, there
are many incompatibilities that preclude the
audited operation of a DPl volume and a
DP2 volume at the same time. Users must
specify which disc process is to be used for
auditing when they initialize and configure
TMF.

• In the rest of this article, unless specifically labelled as 800 or A06, the term
DP/ refers to both releases of DP I.

DP2 Implementation
DP2 is a new, high-performance disc process
for Tandem systems. In this section, some
of the differences in using TMF with DPl
and DP2 are discussed and then the perfor­
mance improvements offered by DP2 are
described.

DP2 vs. DPl
As explained above, there are a number of
differences between DPl and DP2 audit
trails, and TMF itself operates differently in
a DP2 environment.

Volumes Containing Audit Irails. Any DP2
disc volume may hold unaudited files. How­
ever, when a DP2 volume holds an audit
trail, it may not hold audited files. This
restriction stems from the very active role
that DP2 plays in the movement of audit
information to disc. In DPI, the audit trail is
a simple unstructured file into which each
of the auditing disc processes performs inde­
pendent writes. In DP2, the disc process that
owns the audit trail acts as a collector, buf­
fering the contributions of many other audit­
ing disc processes. These contributions are
then written into the audit trail together. A
single DP2 process does not act both as a
collector and an audit generator.

Audit Irails. DPI audit trails are different
from DP2 audit trails. With DPI, TMF
makes use of the Monitor and Disc Process
Audit Trails. The Monitor Audit Trail is
used to hold the commit and abort records
for completed transactions. The Disc Pro­
cess Audit Trail holds the before and after
images of changes made to audited files.

DP2 makes use of the Master Audit Trail,
which holds commit and abort records as
well as the before and after images of
audited changes.

Performance Improvements
DP2 is much faster than DPI. This is espe­
cially true when the files being updated are
TMF files. A number of changes have been
made in checkpointing and auditing strate­
gies to achieve this. Also, the design of DP2
allows it to perform physical disc 1/0 while
at the same time accessing data blocks
in cache or performing other 1/0 set-up
operations.

JUNE I985 TANDEM SYSTEMS REVIEW

Data-base Software

27

Data-base Software

28

Reduced Checkpointing. DPl incorporates
the idea that any operation in progress at
the time of the failure of the primary disc
process should be carried forward to com­
pletion by the backup disc process. This idea
leads inevitably to incremental check­
pointing. That is, the primary disc pro-
cess informs its backup of every step of an
operation that changes a file. As a result,
a single READUPDATELOCK­
WRITEUPDATEUNLOCK sequence generates
five checkpoint messages. If a failure of the
primary disc process occurs, the backup has
all the information it needs to continue the
current operations to completion.

DP2 uses an entirely different approach.
All operations in progress at the time of a
failure are backed out (including TMF trans­
actions being processed by the primary disc
process at the time of its failure). Thus, the
DP2 design allows for deferred checkpoint­
ing. This reduces the total number of check­
points needed per READUPDATELOCK­
WRITEUPDATEUNLOCK sequence to a max­
imum of two messages for an entire transac­
tion, regardless of the number of physical
I/Os or lock requests made by the transac­
tion. The primary disc process needs only to
inform the backup of the new transaction
initially. If a failure of the primary disc
process occurs, the backup takes over
and knows which transactions are active.
Those transactions can then be aborted and
backed out.

Because the primary disc process does not
tell its backup about all the work it is per­
forming on audited files, DP2 spends much
less time checkpointing. Only two check­
points per transaction are required. Also, if
the CPU in which the primary disc process is
running fails, the backup disc process has
no idea what the primary was doing.

The primary may have processed some
requests on behalf of these transactions and
promised to make some changes to the data
base, which actually got no further than the
primary's buffers. Those buffers are now
gone, and consequently, the backup disc pro­
cess cannot fulfill the failed primary's prom­
ises (because it doesn't know what they
were). Thus, it aborts every active transac­
tion that the primary had worked on. This
ensures that the failed primary's promises
don't harm the data base.

DP2's higher performance in an on-line
environment has a cost. Recovering from
CPU failures takes a little longer.

Overlapped Disc and CPU Processing. DP2
has been implemented in process groups,
which consist of from one to eight disc pro­
cesses, all of which work together to control
a single disc volume. While one disc process
in the group is in the process of performing
physical I/0, another can be servicing a
request by accessing data already in cache or
performing other I/0 set-up operations. This
is a major performance advantage.

Also, DP2's use of buffered cache helps to
reduce the total number of physical I/Os
required. (For more detail on the advantages
of using buffered cache, see the accompany­
ing article, "DP2's Efficient Use of Cache,"
by Ted Schachter.)

Fewer Audit-trail I/Os. With DPI, whenever
a transaction is in Phase One of abort or
commit processing, each disc process that
participated in the transaction must flush its
audit to its associated Disc Process Audit
Trail. This flush results in a physical I/0 to
the audit-trail. The DPl disc process control­
ling the audit-trail volume has no knowledge
of TMF audit trails.

Thus, the requests of each disc process are
treated by the audit-trail disc process simply
as a write to an unstructured file; there is
one physical I/0 for each disc process that
participated in the transaction. In addition
to the I/0 performed to the Disc Process
Audit Trail, a physical I/0 is performed to
the Monitor Audit Trail to write either the
commit or abort record for every
transaction.

TANDEM SYSTEMS REVIEW• JUNE 1985

With DP2, the disc process controlling the
Master Audit Trail volume is aware of the
audit-trail files. This doesn't change the
requirement that each disc process that par­
ticipated in a transaction flush its audit at
Phase One abort or commit. However, it
does mean that the Master Audit Trail disc
process does not have to write each audit
buffer to the audit trail immediately.
Instead, it can buffer the audit from all the
disc processes, and then, when the commit
or abort record is written to the Master
Audit Trail, append that record to the audit
buffers already present in memory. Thus, all
the audit information can be written with
one physical I/O.

With DP2, the use of the Master Audit
Trail to hold both before and after images as
well as commit and abort records eliminates
a great deal of extra physical I/O to the
Monitor Audit Trail performed by DPI.
Also, as just explained, the know ledge pos­
sessed by the Master Audit Trail disc process
of the audit-trail files allows the buffering of
audit information sent by many different
disc processes and thus reduces dramatically
the number of physical I/Os required.

Disc Volume Flexibility
With A06 TMF, a disc volume was considered
either "up" for processing or "down."
There was no intermediate state (e.g., that
of being active for nonaudited processing
and, at the same time, unavailable for
audited work).

With BOO, a disc volume can be in one of
three different states:

• Down (e.g., in response to an operator's
PUP DOWN command).

• Up (i.e., accessible for nonaudited pro­
cessing but not for audited processing).

• Up for TMF(i.e., TMF has been started
and audited work can be performed).

Changes to TMF were required to support
the new intermediate state. The following
sections examine this new flexibility.

Selected Volumes Can Be Started
New syntax has been added to the START
TMF command, allowing the user to specify
the set of disc volumes that are to be started.
Only those volumes specified will be able to
perform audited work. This means that users
also need a mechanism that allows them to
start separately any volumes that were omit­
ted from the set of volumes specified in the
START TMF command.

ENABLE VOLUMES Command
To fulfill the need described above, an
ENABLE VOLUMES command has been
added to TMFCOM. It allows users to add
one or more volumes to the set of volumes
that are up for TMF. The ENABLE VOLUMES
command can be used to bring up any of the
following:

• Volumes that were not requested at START
TMF.

• Volumes whose CPUs were down at START
TMF time.

• Volumes that went down while TMF was
running.

• Volumes that failed to start earlier.

ENABLE VOLUMES initiates autorollback
for any of the volumes that may require
recovery. If autorollback is incapable of
recovering the volume, a message is dis­
played on the operator's console. The opera­
tor should then rectify the problem and issue
another ENABLE VOLUMES command.

The ENABLE VOLUMES command
includes syntax to specify a set of volumes
that should be enabled. This syntax is identi­
cal to that used with the START TMF com­
mand. Only the disc volumes specified in
the command are enabled.

Down Volume Reintegration
If a disc volume goes down while it is up for
TMF, it is possible to reintegrate the volume
into TMF. This is accomplished by including
the volume in the specified set of volumes
for an ENABLE VOLUMES command.

JUNE 198S T A N D E M S Y S T E M S R E V 1 E W

Data-base Software

29

Data-base Software

30

When reintegrating such a volume, TMF
examines all of the transactions that have
worked on the volume. It must guarantee
that all of these transactions are ended or
aborted before the volume is enabled (to
ensure that transaction backout and auto­
rollback don't interfere with each other by
working on the same records while undoing
a transaction).

If an ENABLE VOLUMES command is
received, the disc process looks to see if any
old transactions (left over from before it
went down) are still around. If any still
exist, the disc process rejects the attempt to
bring the volume up for TMF, and an Error 2
is returned. When these transactions are
gone, the ENABLE VOLUMES command can
be retried.

Adding New Volumes
With A06 TMF, the addition of new disc vol­
umes to the system requires an initialization
of TMF.

With BOO, TMF makes use of a new file
called VOLINFO. This file contains a list of
all the volumes that are known to TMF.
Should a new volume be added, the next
START TMF command simply appends the
new volume's name to the end of the
VOLINFO file. The volume will then be
enabled for TMF processing.

There are two restrictions on volumes that
are not present when TMF is started:

• _First, the volume must have been present,
with that name, at some execution of START
TMF. (This puts the name into the VOLINFO
file.)

• Second, the volume's LDEV number must
not change during a TMF session. For exam­
ple, if $DATA was LDEV 6 and it has to be
changed to LDEV 7, TMF must be stopped
and then started again.

TMF Crashes
When a disc process does some work on
behalf of a transaction, it must mark that
transaction in such a way as to indicate that
the transaction has audit information in the
disc process' buffers. This marking is then
used to determine which disc processes
must flush their audit to end the transaction
successfully.

TMF records which disc processes have
audit to flush within the two CPUs that con­
tain the disc process, eliminating the need to
tell other CPUs.

When the two CPUs in which a disc­
process pair are running fail (or, if only one
was up, when it fails), TMF has no idea
which transactions may have audit in the
now lost disc-process buffers. Before BOO,
TMF simply gave up under these conditions,
declaring a TMF crash. This forced the
user to cold load the system and perform a
rollforward.

BOO TMF still doesn't know which transac­
tions might be in trouble in this situation,
but if it can abort every transaction that
might possibly have audit in the lost disc
process' buffers, it can still ensure the cor­
rectness of the data base.

When TMF wants to end a transaction,
each of the disc processes flushes the audit
for that transaction to disc. When the last
unflushed process in a particular CPU has
flushed its audit to disc, a message that the
disc process' CPU has finished flushing is
sent to the BEGINTRANSACTION CPU.

If both CPUs in which a disc-process pair
is running are lost, TMF needs to know
whether any audit information has been lost.
If the last CPU to fail has sent to the BEGIN­
TRANSACTION CPU the message that the
disc process' CPU is flushed, no audit has
been lost. If that message hasn't been
received, the transaction must be aborted
because some audit may have been lost.

TANDEM SYSTEMS REVIEW• JUNE 1985

It should be noted that flushing occurs
only while the transaction is ending (or
aborting). Active transactions are not
flushed; therefore, when TMF detects that
the second CPU of a disc-process pair has
failed, it marks every transaction on the
system (with very few exceptions) as
aborting.

Exception 1: DP2's Master Audit Trail
Above, the flushing of the audit to disc and
TMF's management of the knowledge of
who flushed was discussed. For DPI, the
audit must be on disc before the disc is con­
sidered flushed. For DP2, however, any audit
is considered flushed when it has been sent
to the DP2 disc process that owns the Master
Audit Trail.

Now, suppose that some audit has been
sent to this DP2 collector. Normally, the
commit record must be written to the end of
the audit buffer. It is then written to disc. If
the DP2 collector's CPUs are lost, whether
the data audit or commit record reached the
disc is unknown.

This poses a problem. If the data audit
was lost, a commit record must not now be
written. If the commit record has arrived at
disc, the transaction must not now be
aborted. The only way out of this dilemma
is to look into the audit trail. If the commit
record did reach the disc, the transaction
committed. If not, the transaction aborted.

Since A06 TMF has no mechanism for
handling this, when the dilemma arises, the
BOO release forces a TMF crash, requiring a
cold load and the execution of autorollback
on every volume. Hence, on DP2 systems
only, the loss of the CPU pair containing the
Master Audit Trail's disc process causes a
TMF crash.

Exception 2: The TMP
The TMP maintains many coordination
functions, such as audit-trail management
and TMF process management. Because of
this, the loss of the TMP pair's CPUs causes
a TMF crash.

This restriction is not serious. The TMP
pair is placed by SYSGEN into the same
CPUs as the operator process. While it is
possible to SYSGEN a system in which the
operator process is not placed in the same
pair of CPUs as $SYSTEM, this configura­
tion would make cold loading difficult and,
hence, is not a serious option. This implies
that the TMP resides in the same pair of
CPUs as $SYSTEM.

Restartable TMF Processes
Before the BOO software release, the TMP was
the custodian of three processes: backout,
TMFTAPE, and catalog. The BOO release has
added autorollback to this list.

The A06 release had backout, TMFTAPE,
and catalog functioning as process pairs.
Backout and TMFTAPE would sometimes
fail, which would cause TMF to attempt to
stop TMF because the processes were gone.

With BOO, backout, TMFTAPE, and auto­
rollback are not process pairs, but single
processes. If the TMP sends a request to one
of them, and they are gone, the TMP merely
restarts them. Both the primary and backup
TMP keep the current incarnation of the pro­
cess open. If the TMP finds it necessary to
restart one of these processes, it issues a
message stating that the process was
restarted.

JUNE 1985 TANDEM SYSTEMS REVIEW

Data-base Software

31

Data-base Software
--------- ------ ---- --- --- -- ---- -----------------

32

The catalog process is still implemented as
a process pair for two reasons:

■ It maintains information across requests
that would be lost in a restart.

■ There wasn't a problem with the catalog
failing to survive.

Should the catalog process pair fail, the
TMP stops TMF. To recover from this situa­
tion, the operator can simply issue a START
TMF command.

Conclusion
Several additional changes besides those
mentioned in this article are also a part of
BOO TMF. They relate to:

■ TMP start-up and shutdown processing.

■ Audit-trail management.

■ New error messages.

■ New TMF control files.

For details on the above changes, refer to the
TMF Sof tdoc.

References
Pong, M. 1985. TMF Autorollback: A New Recovery Feature.
Tandem Systems Review. vol. I, no. I. Tandem Computers
Incorporated.

Acknowledgments
The author wishes to thank Pat Helland for his ideas, com­
ments, and encouragement, all of which helped a great deal in
the writing of this article.

Tony Lemberger is a senior systems analyst in the Large Sys­
tems Support group. In his four years at Tandem, he has been
involved in application-design consulting, system performance,
software education, and, most recently, research and support for
DP2.

T A N D E M SYSTEMS REVIEW J U N E I 9 8 5

he performance of Disc
Process 2 (DP2) is signifi­
cantly better than that of
the A06 version of Disc
Process 1 (DP I). This
article presents several
types of DP2 performance

data, as well as a performance comparison
of A06 DPI and BOO DP2. It discusses some
of the new features responsible for the per­
formance improvements and then describes
specific performance results from several
tests. 1

Performance Features
The following new features of the disc pro­
cess (listed in order of their impact) have
improved its performance dramatically:

1. Writes can now be buffered in cache
memory for both nonaudited and audited
disc files.

2. Multiple disc processes can now service
requests for a single volume.

3. "Bulk-1/0" service is now used by
GUARDIAN 90 operating system utilities
for sequential and "bulk" processing.

-- - -- -- --- -- -- - -- - - --

'This article discusses the A06 version of DP I only. For brevity, A06 DP I is
referred to simply as DP! throughout the rest of the article.

DP2 Performance

Another feature of the BOO release that has
helped to significantly improve the perfor­
mance of the disc process is the enhanced
implementation of the Transaction Monitor­
ing Facility (TMF).

Finally, three other new features are
indirectly related to performance:

1. Users can examine and configure disc
cache size on-line.

2. To ensure the integrity of the data resid­
ing on disc volumes, DP2 uses an "undo"
area to keep information about the struc­
tural changes to the volumes until the
changes have been completed.

3. Disc-volume labels are refreshed (rewrit­
ten) every 30 seconds when nothing has
been written to or read from those vol­
umes during that period.

All of these new features are discussed
below.

Buffered Cache
Buffered cache, the opposite of write­
through cache, provides a tremendous per­
formance advantage to applications that
write and update disc files. All applications
audited by TMF can take advantage of this
new feature.

JUNF 1985 TANDEM SYSTEMS REVIEW 33

Data-base Software

34

For unaudited applications, the applica­
tion itself must provide the data base with
protection from failure and concurrency
problems. To provide protection from pro­
cessor failures of the primary disc process,
TMF employs a write-ahead-audit protocol.
This protocol, implemented in the disc pro­
cess, ensures that the audit trail is written
before the transaction commit is accepted.
A06 TMF does not use the write-ahead-audit
protocol.

It is worth noting that, in most cases, TMF
audit-trail writes are done serially to
mirrored-disc drives; a write to one disc
drive completes before the write to the mir­
ror is requested. This is true even when the
disc has been SYSGENed in a parallel or
simultaneous write configuration.

As would be expected, buffering can dra­
matically reduce the number of physical
writes required to a disc volume. The most
improvement is realized when an audited
cache-resident file is buffered; that is, when
sufficient cache is configured for the entire
file to fit into the disc cache. Most data
bases are too big to fit entirely in cache,
however. The cache blocks are written to disc
either in "spare time" (as decided by the
disc process) or when the file is closed.

There is another means by which buffered
writes are sent to disc. At selected intervals
(currently every five minutes) a search is
made through the disc cache for cache blocks
that have been updated but not written to
disc (dirty blocks). When a dirty block is
found, it is marked for writing to disc during
the next interval. If a block is found to
already have this mark, it is immediately
written to disc.

The reason for this "mark, then write"
mechanism is to prevent a wholesale cache
write, which could have a serious impact on
requests to the disc volume. If a large cache
were configured, say IM byte or 2M bytes,
several hundred writes would be required to
flush out dirty blocks. With this method
most updates can be made in spare moments
between the five-minute control-point peri­
ods, and fewer writes are required at
control-point time.

Most of the physical I/0 savings realized
from buffering are essentially free of addi­
tional system cost. Reads previously made
from cache memory can now be followed by
writes to the identical cache-memory loca­
tions. This saves a physical disc I/0 or two
writes when mirrored discs are used.

Multiple Disc Processes
DP2 provides the capability of multiple (one
to eight) primary and backup disc processes
per logical volume. It permits some disc pro­
cesses in the disc-process group to prepare
requests to the disc while other requests to
the disc or cache are being serviced by other
disc processes. This allows higher utilization
of the disc hardware and disc cache. When
physical reading is required (for a cache-read
miss or a bulk I/0 transfer) on a mirrored
volume, eachof the discs in the pair can pro­
vide a separate access path to files on the
volume simultaneously.

Bulk 1/0
The new bulk-1/0 features of DP2 allow
Tandem utilities to transfer up to 30K bytes
with a single request to the disc process. The
utilities that use this feature are the File
Conversion Utility (FCP), BACKUP2,
RESTORE2, and the File Utility Program
(FUP). TMF on-line dumps also use this
interface to transfer up to 8K bytes of data
per request.

TANDEM SYSTEMS REVIEW• JUNE 1985

With bulk 1/0, the disc process bypasses
cache to save time and avoid "swamping"
the disc cache with blocks that will probably
not be reused. In addition, the 3107 disc
controller can request up to 30K bytes of
data from the controller in a single request.
For the 3106 controller, the disc driver
issues several 4K requests from which the
30K bytes are assembled and, upon comple­
tion, the disc process gives a single response
of 30K bytes to the application.

DPl does not support the bulk-transfer
capability of the 3107 controller. In DP 1, a
single request to the disc process can only
provide 4K bytes of data.

TMF Changes
DP2 provides a tremendous savings in the
resources required by TMF. Most of the sav­
ings result from reduction in the number of
disc I/Os required to audit a transaction.
This and other enhancements provide a
major reduction in CPU busy rates per
transaction.

One change in TMF for DP2 is the use of
the write-ahead-audit protocol mentioned
earlier. This method allows the data base to
be restored after a crash by removing incom­
plete transactions (autorollback) rather than
redoing all transactions from a previous on­
line dump (rollforward).

A single audit trail can now provide full
TMF functionality, whereas DPl requires two
separate TMF audit trails, one for commit
records (the Monitor Audit Trail) and
another for before and after images of the
data-base records (the Data Audit Trail). In
most cases a single mirrored physical write is
all that is required to complete the auditing
process.

Audit trails can also be compressed in
DP2 to further reduce the amount of data
checkpointed and written to the audit trail.
With compression, only the changed por­
tions of records are logged. A new con­
straint enforced by DP2 is that a volume
cannot contain both audit trails and
audited files.

DP2 combines the construction of audit­
ing and checkpoint messages, which reduces
the number and size of these messages
significantly.

Finally, TMF autorollback provides recov­
ery of an audited file by correcting inconsis­
tencies rather than reconstructing the data
base a transaction at a time. When TMF is
restarted after a failure, an autorollback is
automatically performed.

Improved Data Integrity
While data integrity may not be considered
an attribute of performance, it does have a
significant impact on it. First, DP2 main­
tains an undo area. Here, operations, which
if not completed could result in a structural
problem for the volume, are written before
the file/directory is updated. If a failure
occurs, the operation can be undone and
attempted later.

Another DP2 feature that ensures data
integrity is the rewriting of disc volume
labels every 30 seconds, if no other read or
write requests have been issued to the disc
within that time.

On-line Configuration
Users of DP2 can configure cache and exam­
ine cache performance data on-line, without
using the XRAY performance measurement
tool. DP2's cache-management scheme pro­
vides four fixed lengths for cache blocks.
The available sizes are 512, 1024, 2048, or
4096 bytes per block.

The number of blocks for each size can be
configured through an interface in the
Peripheral Utility Program (PUP). PUP
reports current cache performance for tun­
ing. This fixed-length management scheme,
with separate buffers for each block size,
prevents fragmentation of the cache. The
user now must configure four separate
caches per volume to suit the application's
distribution and access of file blocks.

JUNE 1985 T A N D E M S Y S T E M S R E V I E W

Data-base Software

35

Data-base Software

Figure 1.

Configuration for the
BACKUP2and
RESTORE2 tests.
A four-processor
Nonstop TXP system
used two 3107 disc
controllers to access a
single mirrored disc
drive configured for
parallel writes. It used a
TRIDENT tape drive and
controller combination to
read and write the 6250
bpi tape during the tests.

Figure 2

350

300

'C 250
C:
0

" Cl>
200 U)

ai
C.
U) 150 Cl>

~
lo:: 100

50

0

Figure 1

BACKUP2 and RESTORE2 Performance

32-byte burst 128- 32-byte burst 128-

A large (25M-byte) file, having one thou­
sand page extents was written from disc to
tape and then restored from tape to disc.
Measurements were made with XRAY to
confirm the results obtained. This was done
first with DP 1, under the A06 version of the
GUARDIAN operating system, with the
BACKUP and RESTORE utilities. The same
operation was then performed with DP2,
under GUARDIAN 90, with BACKUP2 and
RESTORE2. The TAPEBLOCKSIZE parameter
was used with BACKUP2, and 30K-byte
blocks were written to tape by DP2.

Figure 2.

Data rates for A06
BACKUP and RESTORE
and BOO BACKUP2 and
RESTORE2. A 25M-byte
file with one thousand
page extents was written
from disc to tape and then
restored from tape to
disc.

36

byte burst byte burst

Backup Restore

Results of Performance Tests
The results of three major tests are reported
here:
1. A backup and restore operation.
2. A sequential-copy operation.
3. An on-line transaction-processing (OLTP)

application.

For each, the work load is described first;
then a description of the configuration is
provided; and finally, the results of the test
are given and observations are made.

Identical hardware was used for both
tests. Figure 1 shows that the configuration
consisted of a four-processor Nonstop TXP
system using two 3107 disc controllers to
access a single mirrored disc drive config­
ured for parallel writes. A TRIDENT tape
drive and controller combination was used
to read and write the 6250 bpi (bits-per­
inch) tape during the tests.

In Figure 2, the per-second data rate for
writing and reading back the tape are shown.
The data rates relate directly to the amount
of time taken to read and write the data to
the tape drive. See the accompanying article,
"Improved Performance for BACKUP2 and
RESTORE2," by Anil Khatri, for more infor­
mation on BACKUP2 and RESTORE2 per­
formance. The bulk-1/O interface to DP2
and the algorithm changes in BACKUP2 and

TANDEM SYSTEMS REVIEW JUNE 1985

RESTORE2 are responsible for most of
the performance improvement. The
bulk-1/O interface avoids copying the data
unnecessarily.

While BACKUP can write only 540M bytes
of data to tape in an hour, BACKUP2 can
write 1047M bytes of data to tape in the
same amount of time. Similarly, while
RESTORE can write only 234M bytes of data
to disc in an hour, RESTORE2 can write
1033M bytes in that amount of time.

Sequential-copy Performance
For the sequential-copy application, a lO0K­
byte file was copied from one file to another
on the same disc. This was done from a pro­
gram written in the Transaction Application
Language {TAL). A single extent was used
for each file. All DP2 tests were run with
buffered-cache writes. (As mentioned ear­
lier, buffered cache is not available in DPI.)
A single mirrored volume contained both
files. Sequential block-buffering was used
for reads.

Results for three versions of this applica­
tion are presented here. The first version
used unstructured access to the file. For this
version, 25 blocks of 4K bytes were read and
written to move the 100K bytes. For the two
versions using structured access, one thou­
sand 100-byte records were read and then
written to move the 100K bytes.

Identical hardware was used for all tests.
Figure 3 shows that the configuration con­
sisted of a four-processor Nonstop TXP
system using two 3106 disc controllers to
access a single mirrored disc drive config­
ured for parallel writes.

The results in Figure 4 show the elapsed
time to copy the file. In the unstructured
test, DP2 showed a 10% improvement in
elapsed time over DPI. This modest
improvement can be explained by the fact
that unstructured access is very efficient
under DPI and, therefore, difficult to
improve upon.

Figure 3

Figure 4

{l 30
C
0 u
,1l 20

10

0

· t.flrror ·
disc

\\ /
$,,~

·~ mmtro11er

Unstructured

JUNE 1985 T A N D E M S Y S T E M S R E V I E W

Structured

Data-base Software

Figure 3.

Configuration for the
sequential-copy tests.
A four-processor
Nonstop TXP system
used two 3106 disc
controllers to access a
single mirrored disc drive
configured for parallel
writes.

Structured w/TMF

Figure 4.

The elapsed time required
for AO6 DPJ and BOO
DP2 to copy JOO bytes
sequentially from one file
to another on the same
disc.

37

Data-base Software

38

Table 1.

The elapsed time required by A06 DP1 and BOO DP2
to copy 100 bytes sequentially from one file to
another on the same disc.

AO6 DP1 BOO DP2

Unstructured access
Read only .7 .7
Read and write' 2.2 2.0

Read and write with TMF 3.8 4.1

Structured access
Read only 4.3 40

Read and write' ' 31.0 7.8

Read and write with TMF'' 43.5 9.4

'Buffered cache was used for all DP2 write tests.
'Sequential block-buffering was used for all structured file tests.

In the first structured test, DP2 reduced
the elapsed time by 75%, to a factor of four.
This is due primarily to the effect of buf­
fering and, to a lesser extent, to more effi­
cient checkpointing. In the second
structured test, in which TMF was used, a
still more significant performance gain was
observed: the elapsed time was reduced from
43.5 seconds to 9.4 seconds. The increased
efficiency of TMF auditing and checkpoint­
ing are the primary reason for this improve­
ment. Table 1 shows the full sequence of all
the file operations.

OLTP Performance with TMF
The performance of a large retail-banking
application that used the full ENCOMPASS
line of application-development products
was tested. A Screen COBOL (SCOBOL)
requester was used by the Terminal Control
Process (TCP), a part of the PATHWAY
transaction-processing system. The TCP sent
requests to a server written in COBOL. All
TCPs and disc processes were run as fault­
tolerant processes.

All application files were audited by TMF.
The ENCORE stress-test generator was used
to simulate 500 terminals submitting trans­
actions. XRAY was used to collect perfor­
mance data. ENCORE provided response
time and transaction-rate data. The
ENFORM relational query language was used
to process the performance data. The trans­
action flow is outlined below:

Requester flow

Accept 100 bytes.
Perform "depending on" algorithm.
Begin TMF transaction.

Send 100 bytes to server with
100-byte reply.

Perform 10 move statements.
Perform 10 if statements.
Perform 10 simple calculations.

End TMF transaction.
Display 100 bytes.

Server flow

Read 100 bytes from TCP.
READ Account file (random, not cached).
UPDATE Account file.
WRITE History file (sequential, cached).
READ Teller file (random, cached).
UPDATE Teller file.
READ Branch file (random, cached).
UPDATE Branch file.
Send 100-byte reply to TCP.

Data-base Description. The application data
base in this test consisted of over 1 OOM bytes
of application data in four files. Three of
the application data-base files were accessed
randomly. The fourth file, an entry­
sequenced log, was written sequentially,
one record for each transaction. All three
structured-file types were used. Table 2
contains a complete description of each
application file.

TANDEM SYSTEMS REVIEW JUNE 1985

Data-base Software
---- --- ------------------------~ -----------------------

Table 2.
Description of the data-base files used in the
OLTP tests.

Record
size Number of Type of Other

File type Name (bytes) records access Information
Key- Account 100 1,000,000 Random Key-
sequenced sequenced,

not cached

Relative Branch 100 100 Random Cached

Relative Teller 100 500 Random Cached

Entry- History 50 1 per trans- Sequential
sequenced action

System Description. In Figure 5 is a dia­
gram of a processor pair. The system con­
sisted of NonStop TXP processors with
4M bytes of memory each. There were four
3106 disc controllers per processor pair. Six­
teen disc drives were used to make eight
mirrored volumes. Five hundred simulated
terminals were equally distributed on the
system.

Process Layout. Processes were evenly dis­
tributed to balance the processing load. Two
disc volumes were "primaried" in each CPU.
An equal number of TCPs per CPU were
used (five for DPl and three for DP2). The
TCP configuration under DP2 was changed
to provide additional memory for the disc
processes. Approximately 100 pages of
memory were saved by reducing the number
of TCPs in a CPU. Three DP2 disc processes
per volume (the default) were SYSGENed.
Simulators and servers were evenly
distributed.

Performance Results. The number of physi­
cal I/Os required to complete a transaction
was reduced by 12.3 with DP2. In the test,
18.9 disc I/Os were required by DPl, while
only 6.6 disc I/Os were required by DP2 for
the same transaction. This is a 65% reduc­
tion in total disc I/Os.

The amount of CPU time required per
transaction was reduced by 25 OJo for DP2.

In the test, the DP2 system required a
1 0OJo increase in the total amount of memory
over that required by the DPl system. (Disc
caches were not included in this figure. If
users increase cache sizes, this increase
would be in addition to the 1 0OJo increase
required by DP2.)

All disc caches were between 64K bytes
and 128K bytes. For both the DPl and DP2
systems, adequate cache was provided.

Figure 5

3106
Disc controller

/1/ \~
Primary

diSc
Mirror
diSc

Primary
disc

3106
Disc controller

3106
Disc controller

/1/ \~
~

qi$¢
Mi{iioi'
diSc·

3106
Disc controller

Figure 5.

A processor pair. In the
on-line transaction­
processing (OLTP) tests,
the system consisted of
Nonstop TXP processor
pairs with 4M bytes of
memory in each
processor. There were

JUNE 1985 T A N D E M S Y S T E M S R E V I E W

Nonstop
TXP
processor

Mirror
disc

Mio-Pr
diSc

four 3106 disc controllers
per processor pair.
Sixteen disc drives were
used to make eight
mirrored volumes. Five
hundred simulated
terminals were equally
distributed on the system.

39

Data-base Software

Figure 6.

Response time vs.
throughput for the OLTP
application. The test
application, patterned on
a large retail-banking
application, used the full
ENCOMPASS line of
application-development
products, including TMF.
The data base consisted
of over JO0M bytes in
four files; three were
accessed randomly, and
one was written
sequentially. All three
structured-file types were
used. Processes were
evenly distributed to
balance the load.

40

Figure 6

3.5

3.0

2.5

(I) 2.0 "0
C
0 u ., 1.5 <I)

1.0

0.5

0.0
0 2 4 6 8 10 12

Transactions per second

Response Time and Throughput. Response
time and throughput improvements are pre­
sented in Figure 6. For applications with a
particularly stringent response-time require­
ment, DP2 offers a significant reduction. In
the test, at six transactions per second (for
95% of the transactions processed), DP2
provided a response time of . 75 seconds,
while, at the same transaction rate, DPl
yielded a response time of 1.25 seconds.

A more interesting and meaningful obser­
vation can be made by comparing the work
load that the system can process at nearly
identical response times. If a 1.25-second
response time is required for 95% of the
transactions, A06 DPl provides six transac­
tions per second (TPS). DP2 can deliver
10.2 TPS at this same response time. This is
a throughput improvement of approximately
1.7 times, when identical hardware is used.
The improvement is similar at higher and
somewhat lower transaction rates and for
average response times.

TIO Reduction. The TMF audit-trail write
activity has the most dramatic reduction of
I/Os per transaction. Where DPl required
nine audit writes to three files, DP2 required
two writes to a single file (i.e., a single write
to a mirrored disc). This I/O reduction, in
combination with the buffering of the appli­
cation data base (three mirrored writes to
cached files or six I/Os), accounts for the
reduction in disc-busy time per transaction
of 130 ms. DPl required 300 disc ms per
transaction, DP2 only 170 ms.

Decrease in Messages. More efficient check­
pointing of messages to the backup disc pro­
cess, audit disc process (ADP), and backup
ADP is the reason for the balance of the
CPU-busy reduction. The decrease in mes­
sage traffic had many other side effects as
well.

Since the dispatcher is responsible for the
sending portion of an interprocess commu­
nication (IPC), a reduction in dispatches per
transaction was measured. The dispatches
per transaction were reduced from 367 to
222 (40%) as a direct result of the overall
reduction of 3. 7 to 1 in message bytes per
transaction. The disc process experienced
a 5 to 1 reduction in message bytes per
transaction.

TANDEM SYSTEMS REVIEW JUNE 1985

Table 3 shows the message traffic in more
detail. DP2 sends one-half as many messages
as DP 1 ; furthermore, the remaining mes­
sages are one-half their previous size.
(These figures were obtained without audit
compression.)

Interrupts. Interrupts serve many purposes;
one of these is the completion of interprocess
communications via BUSRECEIVE inter­
rupts, and another is the processing of previ­
ously requested EXECUTE 1/0 (EI0) requests
to and from the channel. Because of the
reduction in disc 1/0 and message traffic,
CPU time spent processing interrupts has
been reduced by 33%. A breakdown of
CPU time for both DP2 and DPI appears in
Figure 7.

Surprises and Items of Interest. System bal­
ancing and tuning with DP2 was quickly
accomplished. Whereas with DPI, resource
consumption depended upon many physical
file characteristics, DP2 displayed a "generic
access" pattern. Thus, in DP2, an access was
simply an access. A sequential or random
write to a cached file required approxi­
mately equivalent resources. This made disc­
process balancing with DP2 easy.

Figure 7

160

140

120

100
(/)

E
::, 80
c..
(.)

60

40

20

0
Disc process Interrupts TCP

Processes and files were carefully bal­
anced in the tests for both DPI and DP2.
Substantial balancing and rebalancing (such
as tuning cache, moving processes to less
busy CPUs, and moving files to less busy
discs) is normally required to gain maxi­
mum system performance, but with DP2,
only the initial balancing after installation
was necessary.

The first DP2 benchmark showed all
processor-busy times within 2% of each
other. The last benchmark, with a CPU-busy
of 90%, showed a response time of less than
three seconds for 95% of the transactions,
and the CPU-busy was still balanced
within 3%.

Table 3.

Number of messages and message bytes dispatched
per transaction in the OLTP tests.

Messages Message bytes
per transaction per transaction

AO6 DP1 BOO DP2 AO6 DP1 BOO DP2
Disc process 87 36 54.771 10.120

TCP 8 8 4.364 4,562

Servers 8 8 913 912

Replay (simulator) 3 3 677 721

Remainder 1 1 362 272

Total 108 56 61,088 16,587

Server Replay TMF

JUNE 1985 T A N D E M S Y S T E M S R E V I E W

Data-base Software

Figure 7.

A breakdown of CPU
time for A06 DPJ and
BOO DP2, as measured in
the OLTP application
tests. TMF was used with
both disc processes.

41

Data-base Software

42

The throughput improvement of 1. 7 times
for equivalent response times measured for
DP2 can be attributed to several factors. As
shown in Figure 6, at a three-second
response time (for 95% of the transactions)
the average CPU-busy for DPl was 75%. As
a result of cache buffering and disc-process
multithreading, DP2 operated in excess of
90% utilization and still delivered the same
response times. This ability to operate at
higher CPU utilizations, coupled with the
decreased CPU requirements per transac­
tion, explains the improvements measured
for DP2.

In other tests, configured with three DP2
disc processes on a single volume, two inter­
esting observations were made. When physi­
cal access was required to retrieve records
from disc, three disc processes could swamp
the disc with requests. When cache access
was provided, these three disc processes
could swamp the CPU with requests. It
should also be noted that the number of
requests per second that could be satisfied
under these conditions improved from 1.3 to
7.5 times, depending on the file type and
access mode.

Use of a single audit trail improves the
performance of most applications as long as
!he entire audit-trail write (per transaction)
1s less than 4K bytes. For applications
requiring more than 4K bytes of before and
after images and commit records, audit
compression may shrink the audit buffer
down to less than 4K bytes per transaction.
This 4K-byte boundary is important because
the entire buffer is written for each transac­
tion commit. When more than 4K bytes
must be written for each transaction, an
auxiliary audit trail should be configured on
a separate volume. (Also, auxiliary audit
trails should be configured if parallel recov­
ery is desired.)

Configuration Issues
For most applications running on NonStop
TXP processors, three DP2 disc processes
fully utilize the disc and CPU hardware.
When buffering is fully utilized, process­
balancing provides maximum system
throughput. File balancing (in accordance
with the new physical-access requirements of
the system) is also required to improve
throughput.

As DP2 uses buffered cache for writes,
small to medium files that are randomly
accessed should now be entirely cached, and
adequate cache should be configured for
them.

Also, in general, larger caches for all files
should be provided. There are two reasons
for this. One is that writes can now be
"hits" in cache. In DPl, a physical write
would have been required to flush the write,
no matter how large a cache was configured.
The second reason is that the additional disc
servers provide more access to the cache

' making a larger cache more useful. The
enhancements to PUP mentioned earlier
make it easy to configure and measure larger
caches on-line. (Note that when cache is
reconfigured, it is flushed.)

Also, cache can be more effectively uti­
lized when multiple servers are used. The
same is true of disc drives when more appli­
cation files are placed on a disc volume.

Application Issues
The performance of many different types of
user application will improve with DP2.
Applications that will benefit most are those
that write sequentially and use buffered
cache. Those that write randomly and use
buffered cache will also benefit greatly.

Any application audited by TMF will
experience major performance improve­
ments, and those requiring periodic backups
or restorations will find the amount of time
these require to be dramatically reduced.

TANDEM SYSTEMS REVIEW• JUNE 1985

The performance of read-intensive applica­
tions that use mirrored-disc and multi­
threaded requests will improve, since the
mirror copy can now service a separate read
request.

Applications that will benefit least from
DP2 are those that cannot use any of its new
features. If an application does not use TMF
or buffered cache, has only one request out­
standing to a volume at one time, or is
already CPU-bound, its performance should
not be significantly improved with DP2.
Even for this type of application, however,
reliability and recoverability are improved
with DP2.

Future Work
DP2 performance in many different modes
of operation has been examined. As per­
formance studies continue, more will be
learned about DP2's operational characteris­
tics. Some of the performance areas being
studied are:
1. BOO DPl vs. DP2 performance.
2. DP2 performance on OLTP applications

that do not use TMF.
3. DP2 performance on the Nonstop II

processor.
4. The time and resources required by File

System atoms (basic units of work).

5. Audit-trail compression and its effects on
CPU-busy, message traffic, and audit trail
size.

Also, as more user applications convert to
DP2, more data about its performance will
be available for analysis.

Conclusion
DP2 performance is substantially improved
over that of A06 DP 1, as a result of the sig­
nificant improvements in its implementa­
tion. Applications using DP2 with BOO TMF
will realize tremendous savings in disc I/0.
Those applications using cached or sequen­
tial writes will see a dramatic reduction in
disc I/0.

In the tests described in this article, less
CPU time was required by DP2 for equal
work. With DP2, fewer messages are sent,
fewer CPU interrupts are generated, and
more CPU time is available for use. Also,
BACKUP2, RESTORE2, and FUP provide
substantial performance gains. These
improvements in performance are accompa­
nied by the improved reliability, recoverabil­
ity, and functionality provided by DP2.

Acknowledgments
Much of the information in this article was derived from over
six months of performance measurement and analysis by the
Performance Analysis and Measurement group in Software
Development. The members of the group are Pat Beadles, Anil
Khatri, Dennis Markt, Praful Shah, Susan Truong, and the
author. Many other groups contributed information as well.

Jim Enright, Manager of the Performance Analysis and Measure­
ment group in Software Development, joined Tandem in August
1983. His group has recently been involved in testing and analyz­
ing the performance of DP1 and DP2, along with that of other
Tandem software and hardware products.

JUNE 1985 T A N D E M S Y S T E M S R E V I E W

Data-base Software

43

44

A Comparison of the BOO
DPl and DP2 Disc Processes1

Maximum extents per file:
Nonpartitioned

Partitioned

Maximum number of
partitions

Number of directory extents

Largest extent

Legal block sizes

Block-header length:
Relative

Entry-sequenced

Key-sequenced data

Key-sequenced index

Bit-map blocks (Relative,
key-sequenced)

Maximum number of
records in a block (N)
for different record
lengths3

DPl

16

16 x the number of
partitions

16

1

65535 pages,
134,215,680 bytes

512, 1024, 1536,
2048, 2560, 3072,
3 5 84, 4096 bytes

l 20 bytes

Do not exist

N = (B-22)/(R + 2)
where
B = block length
T = record length

'A more detailed version of this chart appears in the ENSCR/BE Programming Manual, Part No. 82583 AOO.

2In DP2, extent and alternate-key information share the same storage.

3The maximum number of records in any block is 511.

DP2

Variable (more than 16)2

16 x the number of
partitions

16

978

65535 pages
(includes bit maps not
available for data storage)

512, 1024, 2048,
4096 bytes

) 20 bytes

30 bytes

24 bytes

18 bytes

N = B-X/(R + 2)
where
X = 22 for relative files
X = 22 for entry-sequenced
X = 32 for key-sequenced

TANDEM SYSTEMS REVIEW• JUNE 1985

Maximum record length
(Block size = 4096):
Relative

Entry-sequenced

Key-sequenced

Unstructured

Controllers

Key-sequenced index and
data blocks

Lock search

Audited files and
audit-trail files

Audit-trail file contents

Cache

DPt

l 4072 bytes

2035 bytes

4096 bytes

3106

3107 (treated like
3106)

May be different sizes

Sequential search
on locks by file

Audited files and
audit-trail files
may exist on the
same volume

Monitor Audit Trail:
Commit and abort
records

Data Audit Trail:
Data records

Binary search

Not dynamic

Write-through,
buffered for
audited files

LRU Access Mode

DP2

l 4072 bytes

4062 bytes

4096 bytes

3106

3107 (long transfers)

Must be the same size

Hash-code access to
lock table

Audit-trail files
cannot exist on the
same volume as audited
files

Master Audit Trail:
Commit, abort, and
data records

Optional Auxiliary
Audit Trails:
Data records

Hash-code access

Dynamic

Buffered option

LRU, sequential,
direct 1/0 access
modes

JUNE 1985 • TANDEM SYSTEMS REVIEW

Data-base Software

45

Increased Code Space

Figure 1.

A user process consists
of user-code space (UC),
user-library space (UL),
and a user-data
segment (UD).

Figure 1

User-code space (UC)

46

.... andem NonStop II,
NonStop TXP, and

--- Nonstop EXT systems
were originally designed

--- with a limit of 64K words
t----- of user code and 64K

words of user-library code
(128K words in total) per process. With the
BOO software release, this limit has increased
to 2M bytes for user code and 2M bytes
for user-library code (4M bytes total) per
process. Also, system-code area has been
expanded from 128K words to
4.125M bytes.

These enhancements were added in
response to user requests for more user-code
space and in response to the need for
system-code expansion. They are an integral
part of the GUARDIAN 90 operating system
and are not an optional product. DEBUG,
INSPECT, and BINDER are the only products
in which the user interface has been changed
as a result of the enhancements.

User-library space (UL) User-data segment (UD)

Users having programs that require more
code space will find creating and managing
multisegment program files very simple. File
creation and maintenance for programs with
single-segment files have not changed.
Multisegment program files are just an
extension of single-segment program files.

User Code and Library Code
A running process consists of compiled
instructions in code space in memory that
manipulate data contained within a separate
data segment in memory. Code for a process
consists of user-code space (UC) and
optional user-library space (UL). The user­
code space contains the code from the pro­
gram file and the user-library space contains
the code from the library file specified in the
RUN command. Figure 1 illustrates this.

In the GUARDIAN 90 release, user-code
space and user-library space have been
increased from one 64K-word segment each
(i.e., 128K words of total code per process)
to up to sixteen 64K-word segments each.
That makes 2M bytes (1024K words) of
user-code space and 2M bytes (1024K
words) of user-library space, adding up to
4M bytes (2048K words) of total code space
per process.

As illustrated in Figure 2, each of the 16
segments in the user-code space or user­
library space is defined by a space identifier
or SPACEID. The SPACEID is made up of an
identifier (UC for user code or UL for user
library) and an octal index number in the
range of %0 to % 17. For example, a
SPACEID of UC.4 specifies segment %4 in
the user-code space.

TANDEM SYSTEMS REVIEW• JUNE 1985

Each segment within a code space consists
of sections of compiled source code called
code blocks. Some code blocks are limited to
32K words because of language restrictions.
Code blocks cannot cross segment bounda­
ries. Each language defines code blocks and
their sizes differently.

COBOL defines a code block as the main
program or a subprogram. The maximum
size of a code block is now 64K words, mak­
ing this the maximum size of a main pro­
gram or a subprogram. (A20 COBOL is
limited to a code block of 32K words.)

FORTRAN also defines a code block as a
main program or subprogram, but it calls
them program units. The maximum size of a
FORTRAN code block is 32K words.

TAL defines a code block as a procedure.
The maximum size for a TAL code block is
32K words.

Considerations for
Multisegment Programs

The code-space enhancements do not affect
the designing of application programs. The
only change is that now more code blocks
can be added to a program file. General
rules for creating multisegment-program
files are discussed below; they apply to all
languages.

Code-block Location
Multiple code blocks can reside in the same
segment as long as the total size is less than
64K words.

Code blocks that are frequently called
should reside within the same segment as the
calling code block. Arranging code blocks
with this in mind increases the performance
of the application (see the section called
"Performance") .

Operating System

Figure 2

User-code space (UC)

00.17

User-library space (UL)

Ut..17

User-data segment (UD)

00.1
IJ<lO

P-relative Code Arrays

UL.1
Ut.,O

~ tlOde&-..
~

Two guidelines exist for handling P-relative
code arrays in multisegment program files:

• Each global P-relative code array is repli­
cated in every segment that contains a refer­
ence to the array by BINDER. Code-space
requirements should be evaluated with this
in mind.

• The passing of code arrays in a call to
another code block is not supported; how­
ever, existing single-segment programs will
continue to work.

Maximum Code-block Size
As mentioned earlier, the maximum size for
code blocks is different for each language.
For FORTRAN and TAL, it is now 32K
words; for COBOL it is 64K words.

Code-block Names
The names of code blocks cannot be the
same within a multisegment program.

~­
···~~

Figure 2.

With multisegment
program files, the
user-code space and
user-library space can
contain up to 2M bytes
of code (sixteen
64K- word code
segments) each.

JUNE 1985 • TANDEM SYSTEMS REVIEW 47

Operating System

Figure 3

ENTRY POINT MAP BY NAME

SP PEP ElASE LIMIT ENTRY

17 002 001000 174627 001403
16 002 001000 174627 001403
15 002 001000 174627 001403
14 002 001000 174627 001403
13 002 001000 174627 001403
12 002 001000 174627 001403
11 002 001000 174627 001403
10 002 001000 174627 001403
07 002 001000 174627 001403
06 002 001000 174630 001403
05 002 001000 174630 001403
04 002 001000 17 4630 001403
03 002 J01000 174630 001403
02 002 001000 174630 001403
01 002 001000 174630 001403
00 002 001000 174630 001403
17 003 174630 174702 174640

~------ The segment number in octal

ATTRS

M

NAME

SPACESA
SPACESB
SPACESC
SPACESD
SPACESE
SPACESF
SPACESG
SPACESH
SPACES!
SPACESJ
SPACESK
SPACESL
SPACESM
SPACESN
SPACESO
SPACESP
T16UC

BINDER - OBJECT FILE BIND - T9621 BOO - (28JAN85) SYSTEM \ TEST
Object file name is $DISC1 .COBTESTRUNUNIT

Figure 3.

Number of Binder errors ~ 0
Number of Binder warnings ~ 0
Primary data ~ 16 words
Secondary data ~ 11527 words
Code area size ~ 1008 pages ------ Number of pages required
Resident code size ~ 0 pages for the code
Data area size ~ 35 pages
Number of code segments ~ 16 segments - Number of segments used

COBOL - T9251 BOO - (28 JAN 85)
The object file is executable only on a Nonstop rr processor
Number of COBOL errors ~ 0
Number of COBOL warnings ~ 0
Number of source lines read ~ 27570
Maximum symbol table size ~ 4480 words
Elapsed time - 0 31 39

The compiler listing of
this multisegment
program file contains
16 segments. Each
subprogram, SPACESB
through SPACESP,
resides in its own
segment and consumes
approximately 63.895

words (decimal) of each
segment. Subprogram
SPACEA also contains
the main code block,
T16UC, which
consumes 63,938 words
(decimal) of segment
%17.

CURRENTSPACE Procedure
A program can determine which segment it
is currently executing by calling the new pro­
cedure CURRENTSPACE. This procedure
returns the stack-marker environment (ENV)
register and an ASCII version of the
SPACEID. The syntax for this procedure is:

CALL CURRENTSPACE (<ASCII-space-id>);

ASCII-space-id contains an ASCII string in
the form of <space> . < # > where
<space> equals UC, UL, SC, or SL, and
< # > equals the octal segment number in
ASCII characters. < Spaceid > is an integer
that contains the SPACEID in ENV register
format, as follows:

SPACEID Bit(s)

ENV. <4>
ENV.<7>
ENV. < 11 : 15 >

Library bit
System-code bit
SPACEID bits

Example of a Multisegment Program File
Figure 3 contains an example of a multiseg­
ment program file created by COBOL. The
source code for the main program and all
subprograms were contained in one EDIT
file. The command COBOL/IN < edit file>,
OUT $S.#LP/ was used to compile the source
and produce the compiler and BINDER
reports.

The total size of the code area is 1008
pages or 2.064M bytes, contained in 16 seg­
ments. In the BINDER report, "Entry Point
Map by Name," the segment in which a code
block resides is shown under the heading
"SP." (The segment numbers listed are in
octal.)

Calling Subprograms and
System Procedures
A nonprivileged process' view of virtual
memory is divided into six short-address
spaces (SASs). The SASs contain the current
executing user-process environment and part
of the operating-system environment. They
are defined in Figure 4.

48 T A N D E M SYSTEMS REVIEW J U N E I 9 8 5

Operating System

Figure 4 Before a process can execute, the mini­
mum number of required pages of the user­
code segment and user-data segment are
placed into the appropriate SAS. The user­
library segment is mapped only if the user
has specified a library file and it is refer­
enced (via an XCAL). System data and sys­
tem code are always mapped (because each
is contained in a single segment). In
GUARDIAN 90, the system library has been
expanded to two segments (SL.0 and SL. I).

User-data System-data User-code System-code User-library System-library

When a compiler calls a code block that
resides within the same segment, it generates
an internal-procedure reference (PCAL)
instruction. When it calls a code block out­
side of its segment, it generates an external­
procedure reference {XCAL) instruction.

Executing an XCAL instruction for a code
block that is not mapped takes longer than it
does for one that is mapped. In order for
code to execute, it must be mapped into one
of the SASs. If a code block in uc.o were to
call a code block in a UC segment other than
UC.0 (e.g., UC.I through UC.I7) or in an
unmapped UL or SL segment, the call would
take longer than it would if the called code
block resided in UC.0 or if the UL or SL seg­
ment were mapped.

For example, if the called code block
resided in UC. I, UC. I would first have to be
mapped into SAS 2 (overwriting uc.o with
UC.I). Once SAS 2 contained the code for
UC. I, the called code would execute. On the
return to UC.0, UC.0 would have to be
remapped into SAS 2. This would obviously
require more time than that required for
uc.o to call a code block that was already
mapped in an SAS (e.g., UL, SC, or SL).

Performance
The performance of an application can be
affected by the placement of code blocks
within segments in a multisegment program.
The general rule for the placement of code
blocks within segments is: code blocks that
frequently call each other should be placed
in the same segment.

segment segment segment segment
(UD) (SD) (UC) (SC)

64K 64K 64K 64K

SASO SAS 1 SAS2 SAS3

To illustrate the effect of code-block
placement on the performance of the
Nonstop II and Nonstop TXP processors,
two TAL programs with nearly identical code
were written. The only difference between
the two was that the main program and sub­
program of the first program (PROGA) were
contained in the same segment (requiring
only a PCAL instruction) and the main pro­
gram and subprogram of the second pro­
gram (PROGB) were placed in different
segments (necessitating an XCAL
instruction).

Because PROGB's subprogram resided in a
different segment, segment switching in
SAS 2 occurred between the main program
and the subprogram (creating a longer exe­
cution time). Each program ran alone, pass­
ing no parameters, and the called
subprogram contained no code, causing an
immediate return to the main program. The
code for the two programs was as follows:

Main loop

Call TIME(timeI);
while count
< 50000D do begin

count:= count+ ID;
call subprog"test;
end;

call TIME(time2);

Subprogram

PROC SUBPROG"TEST;
begin end;

JUNE 1985 TANDEM SYSTEMS REVIEW

segment segment
(UL) (SL)

64K 64K

SAS4 SAS5

Figure 4.

For a nonprivileged
process, virtual
memory is divided into
six short-address
spaces (SASs). The user
process can execute
code within UC, UL,
SC, or SL spaces. The
code can manipulate
data in the UD or SD
segments.

49

Operating System

50

Table 1.
Execution time for internal-procedure (PCAL) and
external-procedure (XCAL) reference instructions for
two TAL programs running under GUARDIAN 90.

Nonstop II processor

Program

PROGA

Type of
call

PCAL

Execution time

Microseconds
per call

16.0

Calls
per second

62,000

PROGB XCAL 51.0 19,500

Nonstop TXP processor

Program

PROGA

PROGB

Type of
call

PCAL

XCAL

Execution time

Microseconds
percall

5.4

100

Calls
per second

185,000

96,000

The performance timings for the execution
of PROGA and PROGB on the Nonstop II
and Nonstop TXP processors are reported
in Table 1.

The results for both processors show that
an XCAL instruction takes longer to execute
than a PCAL instruction. Programmers
concerned about the increased execution
time caused by inefficient code-block
placement should use BINDER to place code
blocks that frequently call each other within
the same segment.

Note that the Nonstop TXP processor
executes PCAL and XCAL instructions faster
than the Nonstop II processor. This is
mainly because the Nonstop TXP processor
maps segments differently in the SASs.
Further information about this can be found
in the System Description Manual for
Nonstop systems, in the section entitled,
"Addressing and Memory Access."

Binding a Multisegment
Program File
A multisegment program file can be built by
default during compilation (the compiler
invokes BINDER) or manually by using
BINDER to place the code blocks within the
appropriate segments.

Below are a few considerations for using
BINDER with multisegment program files:

• The main code block (COBOL, TAL, or
FORTRAN main program) does not have to
reside within the first segment.

• An unused segment cannot reside between
two used segments (e.g., segment 2 cannot
contain code blocks if segment O contains
code blocks but segment 1 is empty).

• The STRIP command is not allowed on a
multisegment program file. To produce a
multisegment program file without symbols,
the compiler directive ?NOSYMBOLS must
be used or the SYMBOLS OFF parameter
must be specified with the BINDER SET
command.

Figure 5 contains an example of a COBOL
application in which the code blocks have
been arranged to maximize performance.
A diagram of the code-block arrangement is
shown in Figure 6.

The program consists of six code blocks,
one main program and five subprograms,
SUBl through SUB5. SUB3 is called
frequently from the main program, SUB2
usually calls SUB5, and SUBl and SUB4 are
called only when errors occur. Each of the
six code blocks are 25K words in length. For
maximum performance, MAIN and SUB3
should reside in the same segment, SUB2
should reside with SUB5, and SUBl and SUB4
can reside anywhere.

TANDEM SYSTEMS REVIEW• JUNE 1985

Compatibility

The use of multisegment program files
has introduced one incompatibility:
NonStop l+ programs using procedure
labels that were compiled with a pre-E08
compiler do not execute on Nonstop II,
TXP, or EXT systems.

Procedure labels are a third mechanism
for calling external or internal code blocks.
They are coded in this way:

STACK @ <code-block-name>;
CODE (DPCL);

The first line loads the code block's
address into the register stack (register A).
Register A now contains a procedure label.
The second line makes a dynamic procedure
call. Control is transferred to the code block
specified in the register stack.

When the above code is compiled on a
pre-E08 Nonstop l+ compiler, the STACK
operation of the code-block name does not
generate a set-code-map (SCMP) instruction.
Because of this, the procedure label is not in
proper form and does not execute correctly
on a NonStop II, TXP, or EXT system.
Both BOO and pre-BOO NonStop II, TXP, or
EXT compilers automatically generate
SCMP instructions after the STACK
code-block-name operation.

The following Nonstop 1 + programs
compiled with a pre-E08 compiler are not
transportable to BOO Nonstop II, TXP, or
EXT systems without being recompiled by a
BOO/E08 compiler:

■ FORTRAN and TAL programs containing
external-procedure labels.

■ FORTRAN and TAL programs containing
internal procedure labels used as a user
library or programs combined with other
program files to create a multisegment
program file.

■ COBOL programs that have had the
pre-BOO COBOL run-time library bound into
the program file.

Figure 5

Figure 6

Figure 5.

Operating System

BINDER - OBJECT FILE BIND - T9621 BOO - (28JAN85) SYSTEM \ TEST

------- Adding code in segment O (default)
@ADD CODE* FROM MAIN
@ADD CODE * FROM SUB3
@ADD SPACE ------- Advances to segment 1
@ADD CODE * FROM SUB2
@ADD CODE * FROM SUBS
@ADD SPACE ------- Advances to segment 2
@ADD CODE* FROM SUB1
@ADD CODE * FROM SUB4
@BUILD PROGFILE

ENTRY POINT MAP BY NAME

SP

00
02
01
00
02
01

PEP

002
002
002
003
003
003

BASE

000006
000006
000006
060656
060656
060656

LIMIT

060656
060656
060656
141526
141526
141526

User-code space (UC)

MAIN SUB2 SUB1

SUB/3 SUB5

UC.O UC.1 UC.2

ENTRY ATTRS

000570 M
000327
000327
000327
000327
000327

User-data segment (UD)

GIObaldata

Looaldata

Figure 6.

NAME

MAIN
SUB1
SUB2
SUB3
SUB4
SUBS

The ADD SPACE
command is used to
increment the segment
number in which code
blocks are added. The

BINDER "Entry Point
Map by Name" report
shows where each code
block was placed.

A diagram of the
example COBOL
application in Figure 5.

JUNE 1985 T A N D E M S Y S T E M S R E V I E W 51

Operating System

52

The transportability of multisegment
program files is restricted in the following
way:

■ Multisegment program and library files do
not execute on a NonStop 1+ system. They
fail with an Illegal Program File Format
error message at run time.

■ The condition code (CC) and register
pointer (RP) fields of the ENV register in the
stack marker now contain the encoded space
identifier. Therefore, any program that reads
the CC or RP from the stack-marker ENV
register must be recoded to obtain those
values from the hardware ENV register.
(Trap handlers, the only exception to this
rule, are discussed in the following section.)

The BOO TAL compiler reports warning
messages when it detects an equivalence to
L [-1] (the location of the saved ENV register
in the stack marker) in the declaration of
variables.

■ TAL programs that contain private trap
handlers (by calling ARMTRAP) may have to
be modified. Trap handlers also require that
the stack be one word larger.

Compatibility problems within existing
program files can be detected with CODEY, a
program supplied with the BOO release.
CODEY is a utility that detects programs that
inspect or modify the cc or RP bits in the
stack-marker copy of the ENV. It searches
program files for references to variables at
L [-1] and displays a warning if the cc or RP
(bits 10-15) are used. Any warnings reported
should be closely examined to determine if
the use of the ENV works correctly on a BOO
system.

CODEY has the option of checking one
file, a subvolume, or all program files on a
volume. It also has the ability of dumping
selected code or displaying procedure names
within a program file. CODEY can be run
from $<volume> .GUARD2.CODEY. Docu­
mentation is on $<volume> .GUARD2.
CODEYDOC. The HELP command within
CODEY is also useful.

Trap Handlers
DEBUG is the default trap handler for all
processes; however, a program can run with
a private trap handler by calling ARMTRAP,
as follows:

Call ARMTRAP (< traphndlr-addr >,
< trapstack-addr >);

In multisegment program files, the call to
ARMTRAP to initially arm a trap handler
must be in the same segment as the trap
handler code. A simple way to insure this is
to put the call to ARMTRAP in the
trap-handler procedure:

PROC arm "'the"'traphndlr;
BEGIN

ENTRY trap"handler; !Entered here to initially
set up the trap handler.

CALL ARMTRAP(@trap "handler,

RETURN;
trap "handler:

$LMIN(LASTADDR,%77777)
- 350);

END; !arm"'the"'traphndlr

Existing trap handlers work on BOO
NonStop systems unchanged. A trap
handler might need to be modified to run
on these systems only if the programmer
wants to access the SPACEID located at
L[-5] in the trap handler's stack. The
pseudomarker for the trap handler is
allocated as follows:

Trap-handler
pseudo marker

Li[-6]
Li[-5]

Li[-4]
Li[-3]
Li[-2]
Li[-1]

Allocation

< trapstack-addr >
Stack marker ENV with
SPACID at trap
Mask register
S at the time of trap
P at the time of trap
Hardware ENV at the time of
trap

Li[0] L at the time of trap
Li[+ 1]:Li[+ 8] Registers (RO through R7)

TANDEM SYSTEMS REVIEW• JUNE 1 9 8 S

Because one word was added to the
pseudomarker in the trap handler's stack,
the amount of space available to the trap
handler is reduced by one word. This has an
impact only on those programs that allocate
exactly the number of words necessary in the
trap handler's stack.

To insure that a trap handler can execute
on all systems, the word referenced by
<trapstack-addr> must not be used.

DEBUG, INSPECT, and XRAY
DEBUG, the operating-system debugging
facility, has been enhanced to support
multisegment program files.

INSPECT, the interactive symbolic
debugger, also handles multisegment
program files. A low-level-command syntax
has been extended to allow references to
specific segments within the user-code and
user-library spaces. The high-level syntax is
unchanged. References to code blocks are
mapped to the correct user-code or
user-library segment.

The XRAY performance measurement tool
has been changed to adapt procedure- or
code-range measurement to user-code or
user-library spaces. All existing key words
except SYSTEM LIBRARY CODE MAP are
accepted. New key words allow the
measurement of a specific segment within
the user-code or user-library space.

SYSGEN
The system-code area now consists of up to
32 segments in the system-library space and
one segment in the system-code space.
GUARDIAN 90 has used only three segments
of the possible 33 segments: SC.0, SL.0, and
SL. I. The number of segments required will
change with each release of the operating
system.

In earlier versions of GUARDIAN,
SYSGEN builds one work file for each of the
two system-code spaces, SYSGEND and
SYSGENE. SYSGEN (using BINDER) now

builds as many work files as necessary to
contain all of the system procedures. The
single system-code segment (SC.0) is built in
the work file SYSCOD00. The system-library
segments (SL.0 - SL.37) are built in the work
files SYSLIB00 through SYSLIB37.

SYSGEN builds the system code and
library segments from the object files named
in TANDEM "SYSTEM "LIBRARY "FILES in
the CONFAUX file. SYSGEN uses the order of
the object files in this list to determine the
segment to which the code should be added
(SL.0 or SL.I). The most frequently
referenced procedures are in object files at
the front of the list; infrequently called
procedures are at the end of the list. With
infrequently called procedures located in
SL. I, the number of map switches is
minimized since SL.0 is usually mapped.

Conclusion
The support of multisegment programs in
the GUARDIAN 90 operating system has
greatly increased the maximum size of a
program (to 4M bytes). This new capability
obviates the need to break up large
applications into several processes that must
communicate via the Message System.

The enhancement to the GUARDIAN 90
operating system is a standard one,
preserving the forward compatibility of
existing applications. The implementation
has minimal impact on the way users
currently create and maintain applications,
requiring little user education.

Acknowledgments
Dennis Aiello, Marsha Brewer, Mala Chandra, Jeff Lichtman,
Don Meyer, Bob Montevaldo, Carl Niehaus, and Ann Whitesell
provided valuable review comments. A special thanks to Cindy
Sidaris who provided technical expertise and was largely
responsible for this article.

Arthur Jordan has supported the GUARDIAN operating
system in the Corporate Support Services group since 1983.

JUNE 198S TANDEM SYSTEMS REVIEW

Operating System

53

54

New GUARDIAN 90
Timekeeping Facilities

xtensive enhancements
to the timekeeping
services offered by the

~~----- GUARDIAN 90 operating
system have been added in
the BOO software release. 1

These features include:

■ Four-word, microsecond-resolution time­
stamps based on the Julian date (GMT).

■ CPU clock-rate averaging.

■ Clock-rate adjustment.

■ Automatic Daylight Savings Time (DST)
adjustments.

■ Julian-date conversion routines.

• A callable procedure to set system clocks.

• An optional IN file for the cold-load
Command Interpreter.

This article discusses these new timekeeping
features and the rationale behind them.

1The new process-timing features of the BOO release arc not part of the
GUARDIAN 90 timekeeping facilities, and thus, are not discussed here. See
the article, "New Process-timing Features," by Sun ii Sharma, for a discussion
of this feature.

Terminology
Knowledge of the following definitions is
helpful for understanding the discussion:

■ Greenwich Mean Time {GMT) is the pop­
ular name for UTC, Coordinated Universal
Time.

■ Local Standard Time {LST) is GMT
adjusted by the time-zone difference for the
local time zone. It does not include DST.

■ Local Civil Time (LCT) is Local Standard
Time, including the adjustment for DST.

■ Daylight Savings Time (DST), also Sum­
mer Time, is a system that extends the
amount of daylight in the evenings by
advancing the civil time. Usually, but not
always, this is done periodically in hour
increments. In the United States, DST begins
at 2:00 A.M. on the last Sunday in April and
ends at 3 :00 A.M. (DST) on the last Sunday in
October. The United States advances the
time by one hour.

■ Julian Day Number (JDN} is the integral
number of days since B.C. 4713 January 1,
according to the Julian proleptic calendar.
The formal definition of the JDN states that
the JDN starts at noon, Greenwich. For sim­
plicity, the GUARDIAN 90 timekeeping fea­
tures assume the JDN starts at midnight
local or Greenwich time, depending on the
base of the timestamp.

■ Gregorian Calendar is the common civil
calendar. It was instituted in 1582 by Pope
Gregory xm. It has been adopted by and is
in use as the civil calendar of almost all
countries.

TANDEM SYSTEMS REVIEW• JUNE 1985

In addition, the following terms are used
in this article:

• GUARDIAN 90 timekeeping facilities refers
to one or all of the enhanced timekeeping
features provided in the BOO release of
GUARDIAN 90. It does not refer to a system
process; there is no single GUARDIAN 90
timekeeping process.

• Three- word times tamp or old times tamp
refers to the three-word timestamp used
by the TIME and CONTIME procedures.
This timestamp represents the number of
centiseconds (.01 second) since 00:00
December 31, 1974.

• Julian_ timestamp, four-word timestamp,
or new t1mestamp refers to the four-word
microsecond-resolution timestamp based 'on
t?e Julian Date that is provided by the new
timekeeping facilities. Its value represents
the number of microseconds since s.c. 4713
January 1, 12:00 (Julian proleptic calendar)
GMI '

Motivation for the New Facilities

As Tandem's software products and cus­
tomer applications have become more
sophisticated, and particularly as networks
have been implemented across continents
and around the world, a need has evolved
for more extensive timekeeping facilities
!han those offered by the GUARDIAN operat­
mg_sy~tem. The GUARDIAN 90 timekeeping
fac1ht1es are Tandem's response to this need.

The new four-word timestamps, in addi­
tion to providing greater resolution are eas­
ier to manipulate. Computations u;ing the
new timestamps are performed simply by
treati~~ the timestamps as decimal (quad)
quant1t1es.

Applications can now enjoy the support
of GMT, conversion to and from Local Civil
Time or Local Standard Time, automatic
correction of Local Civil Time for Daylight
Savings Time adjustments, and the ability to
determine the local time at other nodes.

. A procedure to set the system clock pro­
vides for the interrogation of an external
clock and the setting of system time accord­
ingly. It may be used simply to avoid having
an operator initialize the system time after a
cold load. Electronic clocks that monitor
government broadcasts of standard time
(WWV in the United States) are available. 2

Use of such a clock provides a method for
synchronizing the system clocks of geo­
graphically distributed Tandem systems.

Compatibility with Existing Facilities
The GUARDIAN 90 timekeeping facilities are
upwardly compatible; no changes are neces­
sary to existing programs that use earlier
GUARDIAN timekeeping facilities.

Support of Existing Procedures
The existing GUARDIAN TIMESTAMP and
CONTIME procedures (which use the old
three-word timestamp) and the TIME proce­
dure will continue to be supported.

Use of the RCLK Instruction
The RCLK instruction returns a four-word
integer, representing the number of micro­
seconds that have elapsed since 00:00
December 31, 1974. Some programs attempt
to use this instruction for elapsed-time mea­
s_urements. This method is potentially unre­
liable, as processes are subject to
interruption, unless they are privileged and
running under interruption. Users are
encouraged to employ the new BOO process­
timing facilities, specifically the procedure
MYPROCESSTIME, instead of using RCLK.

2WWV are the ~all letters of the U.S. governme~t--;-;d-io st;t-ion. Thi~ statio~--­
broadcasts the time, both in an audio message and in binary representation.

JUNE 1985 T A N D E M S Y S T E M S R E V I E W

Operating System

55

Operating System

Figure 1

New JULIANTIMESTAMP
Procedure
One of the key additions to the timekeeping
facilities is the JULIANTIMESTAMP proce­
dure. It returns a four-word, microsecond­
resolution timestamp based on the Julian
date (GMT). The external declaration for
this procedure is defined in Figure 1.

FIXED PROC JULIANTIMESTAMP (TYPE, TUID) EXTENSIBLE, CALLABLE;
INT TYPE;
INT .TUID;
EXTERNAL;

FIXED PROC COMPUTETIMESTAMP (DATE"N"TIME, ERRORMASK) EXTENSIBLE;
INT .DATE"N"TIME;
INT .ERRORMASK; ! Optional, Returned
EXTERNAL;

Figure 1.

The external declarations
for the new procedures
JULIANTIMESTAMP
and COMPUTETIME­
STAMP.

TYPE is an optional parameter; if sup­
plied, it indicates which timestamp the caller
is requesting:

Type

0
1
2

Julian timestamp returned

Current GMT (default)
System load GMT
SYSGENGMT

TUID is also an optional parameter; if it
is supplied, a "time-update ID" is returned
in TUID. The ID can be used with the proce­
dure SETSYSTEMCLOCK, described later.
The time-update ID is used internally for
consistency checking; it has no external use.
(The timestamp base conversion provided by
the new timekeeping facilities is described
later.)

--- -- ----- --~

Clock Adjustments
The new timekeeping systems differ signifi­
cantly from previous GUARDIAN systems in
how clocks are set and synchronized, how
the user obtains and interprets timestamps,
and how processes can obtain clock­
adjustment information.

Clock Setting
A20 GUARDIAN provides only one (nonprivi­
leged) method for setting system clocks: the
Command Interpreter (CI) command SET­
TIME. GUARDIAN 90 timekeeping facilities
include a callable procedure, SETSYSTEM­
CLOCK. Also, the SETTIME command has
been enhanced to allow an additional field
with which the user can specify the time
base, GMT or LCT. The SETSYSTEMCLOCK
procedure sets the system clock only if called
by a process running under the SUPER group
ID. Similarly, the SETTIME command can be
executed only by SUPER group users.

Clock Averaging
A20 GUARDIAN systems synchronize the
system clock in the CPUs within a system by
making forward adjustments of the slower
clocks. This has the effect of having the sys­
tem time follow the fastest clock in the sys­
tem. Since one expects a normal distribution
of clock rates around the nominal, one
expects this method to result in fast-running
system clocks. 3

In the GUARDIAN 90 timekeeping systems,
the clocks of the various CPUs in a given
system are averaged. The result should be
system-clock rates much closer to nominal,
especially in systems with a large number of
CPUs.

Clock-rate Adjustment
The new timekeeping systems provide a user­
callable procedure, SETSYSTEMCLOCK, to
set and/or adjust the system clocks. If the
system time is set, a SETTIME message is
sent to system processes and those user pro­
cesses that have requested "new" system
messages via MONITORNEW. These pro­
cesses can then respond appropriately to the
setting of the clock.

3Norninal mean~ that which is named, the named value, the value used for
de5ign purpose~. For example, crystals used in crystal-controlled electronic
oscillators are designated as having a certain nominal frequency and precision,
e.g., 180 MHz± .01 %. The nominal clock rate of most clocks is one -second
per 5econd.

56 TANDEM SYSTEMS REVIEW JUNE 1985

If the requested time change is small, i.e.,
less than two minutes, the timekeeping
facilities may decide to temporarily adjust
the clock rates to achieve the same result.
Adjustment of clock rates is transparent to
all processes.

Users who have an external clock will find
this feature useful. A process can poll the
external clock at regular intervals (every
hour, for example), and call SETSYSTEM­
CLOCK to synchronize the system clocks
with the external clock. Presumably, the
clocks will differ very little, and the new
timekeeping facilities will adjust the system
clocks rather than reset them.

Daylight Savings Time Adjustment
A20 GUARDIAN timekeeping systems require
the system operator to set the system clock.
Most sites set their clocks to the Local Civil
Time, and when a Daylight Savings Time
transition occurs, it is necessary for someone
to remember to use SETTIME and reset the
system clocks.

With the GUARDIAN 90 timekeeping facil­
ities, the system can be configured to auto­
matically apply the DST correction, by using
either the standard U.S. 1966 rules or a table
of arbitrary DST transitions defined by the
user.

The Local Civil Time, which includes any
DST adjustments in effect, can be retrieved
via the CONVERTTIMESTAMP procedure.
(The results of an RCLK instruction executed
in the vicinity of a DST change are unpre­
dictable, however. RCLK's result is adjusted
for the DST transition by the SYSTEM
MONITOR soon after the DST change. It is
not possible to guarantee exact correspon­
dence to the microsecond.)

SETTIME Message Format
Five words have been added to the SETTIME
(message type -10) system message to allow
processes to determine the magnitude of and
reason for a time change. The words added
are:

< sysmsg > [2] FOR 4 = signed change in micro­
seconds {FIXED integer).

<sysmsg> [6] = reason

The reason codes are:

0 Initial SETTIME, GMT & local changed
1 Subsequent SETTIME, GMT & local changed
2 DST change, local only changed.

Time and Date Conversion
Procedures

Time-conversion Procedures
The new timekeeping facilities provide users
of the GUARDIAN 90 operating system with
three conversion routines for manipulating
Julian timestamps. The first computes a
Julian timestamp from an integer array rep­
resenting the date and time. The second con­
verts a Julian timestamp to an integer array
representing the date and time. The third
routine converts Julian timestamps from
GMT to local time or vice versa.

The first two procedures reference an inte­
ger array that represents the date and time.
The array has eight elements containing:

Element Contents

Element[0] Gregorian year (1984, 1985, ...)
Element[l] Gregorian month (1-12)
Element[2] Gregorian day of month (1-31)
Element[3] Hour of the day (0-23)
Element[4] Minute of the hour (0-59)
Element[5] Second of the minute (0-59)
Element[6] Millisecond of the second (0-999)
Element[7] Microsecond of the millisecond

(0-999)

Note that the range of the year is restricted:
1 <= Year <= 4000.

COMPUTET/MESTAMP Procedure. This
procedure (see Figure 1) computes a Julian
timestamp from an integer array that repre­
sents a Gregorian date and the time of day.

DATE "'N "'TIME is a required parameter
supplied by the caller; it is an array of eight
elements containing the year, month, day,
etc., as described above.

ERRORMASK is an optional parameter. If
supplied, COMPUTETIMESTAMP checks
each element of DATE "'N "'TIME for validity
and sets a bit corresponding to each element
of DATE"'N"'TIME that was out of range;
e.g., ERRORMASK = %100000 means the
year was out of range.

JUNE 1985 TANDEM SYSTEMS REVIEW

Operating System

57

Operating System

58

INTERPRETTIMESTAMP Procedure. This
procedure (see Figure 2) converts a Julian
timestamp to an array of integers represent­
ing the same Gregorian date and time of day.
In addition, it returns (as its value) the
32-bit Julian day number.

JULIAN ATIMESTAMP is a required
parameter supplied by the caller; it should
contain a valid Julian timestamp.

DATEAN~IME is an array of eight ele­
ments containing the year, month, day, etc.,
as described above. It is returned by
INTERPRETTIMESTAMP and contains the
equivalent of the JULIAN ATIMESTAMP
value.

The value returned by the procedure is the
Julian day number of the Julian timestamp.

CONVERTTIMESTAMP Procedure. This
procedure converts a Julian timestamp to or
from a local Julian timestamp at any acces­
sible node in the network. The external de­
claration is given in Figure 2.

JULIANATIMESTAMP is a required
parameter supplied by the caller; it should
contain a valid Julian timestamp.

DIRECTION is a parameter optionally sup­
plied by the caller. It specifies which conver­
sion is requested and may take the following
values:

Value Conversion

0 GMT to LCT (default)
1 GMT to LST
2 LCT to GMT
3 LST to GMT

NODE is an optional parameter supplied
by the caller. It is used to specify the node
for which the conversion is requested; it
defaults to the local node.

ERROR is an optional parameter. If it is
supplied, CONVERTTIMESTAMP returns the
following values:

Value

-2
-1
0
1
2

>2

Error

Impossible LCT
Ambiguous LCT
OK
DST Range in doubt
DST Table not loaded
FS error to NODE

CONVERTTIMESTAMP returns a Julian
timestamp in the requested base.

Julian-date Conversion Procedures
The new timekeeping facilities provide users
of GUARDIAN 90 with two conversion rou­
tines for converting from Gregorian calendar
dates to Julian day number and vice versa.

COMPUTEJULIANDAYNO Procedure. This
procedure computes the Julian day number
from a Gregorian calendar date on or after
01 January 0001. The Gregorian calendar
date must be valid. The external declaration
of the procedure is given in Figure 2.

YEAR, MONTH, and DAY are required
parameters and contain the Gregorian year,
month, and day of month, respectively.

ERROR is an optional parameter. If sup­
plied, COMPUTEJULIANDAYNO checks each
element of DATEANATIME for validity and
sets a bit corresponding to the parameter
whose value was out of range. Bit 0 indicates
YEAR was out of range, bit 1 corresponds to
MONTH, and bit 2 to DAY.

COMPUTEJULIANDAYNO returns a Julian
day number.

INTERPRET JULIANDAYNO Procedure. This
procedure (see Figure 2) converts a Julian
day number to the year, month, and day in
the Gregorian calendar. The Julian day num­
ber must be greater than 1, 721, 119
(00 March 0000).

JULIANDAYNO is initialized by the caller;
it should contain a valid Julian day number.

YEAR, MONTH, and DAY are used by
INTERPRET JULIANDAYNO to return the
equivalent Gregorian year, month, and day
respectively.

TANDEM SYSTEMS REVIEW• JUNE 1985

Setting the System Clocks
The GUARDIAN 90 timekeeping facilities
provide two methods of setting the system
clocks. The SETTIME command for the CI
has been modified, and a new callable pro­
cedure, SETSYSTEMCLOCK, has been added
to the system libraries.

SETTIME Command
An optional field, the timebase, has been
added to the SETTIME command of the CI.
The valid values are GMT, LCT, and LST.
They may be upper, lower, or mixed case.
The default continues to be LCT.

Two new error messages have been added:
Ambiguous Time Specification and Impos­
sible Time Specified. These messages are
output if the LCT time specified is ambigu­
ous or impossible because of a DST transi­
tion. (In U.S. areas where DST is used, 02:30
on the last Sunday in April is impossible
and 2:30 on the last Sunday in October is
ambiguous.)

In addition, users can specify the time to
the second, e.g.:

SETTIME 10 Aug 1984, 12:13:14 GMT

SETSYSTEMCLOCK Procedure
The new SETSYSTEMCLOCK procedure (see
Figure 2) allows the SUPER group or privi­
leged caller to change the system clock.

JULIANGMT is supplied by the caller. It
contains the GMT, in JULIANTIMESTAMP
form, to which the system clock is to be set.

MODE is supplied by the caller. It
describes the mode and source:

Value Mode Source

0 Absolute GMT Operator input
1 Absolute GMT Hardware clock
2 Relative GMT Operator input
3 Relative GMT Hardware clock

The relative mode implies that the param­
eter JULIANGMT contains a microsecond
correction, not an actual timestamp. This is
useful for very precise time synchronization
with a hardware clock or for a moderately
precise method of operator time adjustment.

Operating System

Figure 2

INT(32) PROC INTERPRETTIMESTAMP (JULIANATIMESTAMP, DATEANATIME);
FIXED JULIANATIMESTAMP;
INT .DATEANATIME;
EXTERNAL;

FIXED PROC CONVERTTIMESTAMP (JULIANATIMESTAMP, DIRECTION, NODE, ERROR)
EXTENSIBLE, CALLABLE;

FIXED JULIANATIMESTAMP;
INT DIRECTION;
INT NODE;
INT .ERROR;
EXTERNAL;

INT(32) PROC COMPUTEJULIANDAYNO (YEAR, MONTH, DAY, ERROR) EXTENSIBLE;
INT YEAR;
INT MONTH;
INT DAY;
INT .ERROR;
EXTERNAL;

PROC INTERPRETJULIANDAYNO (JULIANDAYNO, YEAR, MONTH, DAY);
INT(32) JULIANDAYNO;
INT .YEAR;
INT .MONTH;
INT .DAY;
EXTERNAL;

PROC SETSYSTEMCLOCK (JULIANGMT, MODE, TUID) EXTENSIBLE, CALLABLE;
FIXED JU LIANG MT;
INT MODE;
INT TUID;
EXTERNAL;

TUID is optional. If supplied by the caller,
it should contain a time update ID obtained
by calling JULIANTIMESTAMP. TUID is rec­
ommended when modes 2 and 3 are used to
avoid conflicting changes. The resulting con­
dition codes imply:

Code

>

<

Meaning

TUID mismatch; retry after
redetermining relative error.
Time set as requested.
Insufficient capability.

Figure 2.

The external declarations
for the new procedures
INTERPRETTIMESTAMP,
CONVERTTIMESTAMP,
COMPUTEJUL/AN­
DAYNO, and SET-
S YSTEMCLOCK.

JUNE 1985 TANDEM SYSTEMS REVIEW 59

Operating System

Figure 3

Daylight Savings Time
Considerations
The new timekeeping facilities require
knowledge of Daylight Savings Time transi­
tions for the system's location. This infor­
mation allows them to compute the Local
Civil Time from GMT and vice versa. For
example, if an operator cold loads the sys­
tem and does a SETTIME using the Local
Civil Time, the system calculates GMT.

One of three options can be specified at
SYSGEN: NONE, TABLE, or USA66. They are
described below:

Option

NONE

USA66

TABLE

Effect

DST is not observed at the system's
location.
The rules used in the United States
since the adoption of the Uniform Time
Act of 1966 are to be followed.
A table of DST transitions are to be
loaded at system-cold-load time.

DST Table Loading Procedure
The new facilities include the callable proce­
dure ADDDSTTRANSITION (see Figure 3)
that allows the SUPER group caller to add an
entry to the DST Transition table.

PROC ADDDSTTRANSITION (LOWGMT, HIGHGMT, OFFSET) EXTENSIBLE, CALLABLE;
FIXED LOW GMT;
FIXED HIGHGMT;
INT OFFSET;
EXTERNAL;

Figure 3.

The external declaration
for the new procedure
ADDDSTTRANSITION.

LOWGMT contains a Julian timestamp
that is the GMT when OFFSET is first appli­
cable.

HIGHGMT contains a Julian timestamp
that is the GMT when OFFSET is no longer
applicable.

OFFSET contains the difference in seconds
between Local Civil Time and Local Stand­
ard Time (LCT = LST + OFFSET).

The DST Table must be loaded in time
sequence and with no gaps; i.e., except for
the first call, the LOWGMT of each call must
be the same as the HIGHGMT of the previous
call. Thus, many calls have an OFFSET
parameter of zero.

The DST table must be initialized with at
least one DST transition that is less than the
current date and time, and at least two DST
transitions that are greater than the current
date and time. If this is not done before the
SETTIME is entered, the error message
Incorrect Daylight Savings Time Conversion
is displayed when the SETTIME is entered.

Note that CONVERTTIMESTAMP assumes
that transitions are separated by one day or
more.

ADDDSTTRANSITION Command
A new command, ADDDSTTRANSITION,
has been added to the CI to allow SUPER
group users to add entries to the DST Tran­
sition Table. The syntax of the new com­
mand is shown in Figure 4. The limits and
sequence restrictions for the ADDDSTTRAN­
SITION procedure also apply for this
command.

SYSGEN Changes

Three new clauses have been added to the
ALL PROCESSORS paragraph of the SYSGEN
input:

■ INITIAL_COMINT_INFILE (Optional)

■ TIME_ZONE_OFFSET (Required)

■ DAYLIGHT _SAVINGS_ TIME (Required)

60 TANDEM SYSTEMS REVIEW• JUNE 1985

Cold-load Command Interpreter
IN File
An optional input file specified at SYSGEN
has been added for the initial (start-up)
Command Interpreter. If this option is spec­
ified in the SYSGEN input, the file must
exist. It is copied to the SYSnn subvolume
and named CIINFILE. The syntax of the
clause is:

INITIAL_COMINT _INFILE <filename>

Sites having an external clock that choose
to use the CI IN file option can automate all
of the system-restart activity. After the cold
load is complete, the CI IN file is executed
by the cold-load CI, running under the
SUPER.SUPER user ID.

The CI IN file typically performs the fol­
lowing activities:

1. Sets the system time by executing a pro­
gram that reads the external clock and
sets system time. A sample program,
SCLOCK, is provided. It is recommended
that the system clock be set before
any other activity is started, only to
ensure that other processes retrieve valid
timestamps.

2. Performs various system start-up func­
tions, such as starting the spooler, start­
ing Command Interpreters, and perhaps
starting the Transaction Monitoring
Facility (TMF) and the PATHWAY trans­
action processing system.

3. Starts another CI on the Operations and
Services Processor (OSP). This is because
the initial cold-load CI terminates when it
has finished reading the CI IN file.

Note that using a CI IN file does not leave
a CI running and logged on under
SUPER. SUPER, as is the case when the CI IN
file configuration option is not used.

Operating System

Figure 4

ADDDSTTRANSITION <start-date-time>, <stop-date-time>,< offset>

<Start-date-time> is the beginning of the period when
<offset> is applicable and <stop-date-time> is the end
of the period when <offset> is applicable. The format
of <start-date-time> and <stop-date-time> is:

{ <month-name> <day>} <year>, <hour>:<min>[:<sec>] {GMT}
{ <day> <month-name> } { LST }

<offset> is the difference between standard time and
Daylight Savings time and is of the form:

[+] <hour>:<min>
[- l

Note that <offset> must be between - 8:59 and + 8:59.

Examples
ADDDSTTRANSITION 28 OCT 1984, 02:00 LST, 28 APR 1985, 02:00 LST, + 0:00

ADDDSTTRANSITION 28 APR 1985, 02:00 LST, 27 OCT 1985, 02:00 LST, + 1 :00

ADDDSTTRANSITION 27 OCT 1985, 02:00 LST, 27 APR 1986, 02:00 LST, + 0:00

LST Offset from GMT
The GUARDIAN 90 timekeeping facilities
require that the specification of the off set of
LST from GMT be made in hours and min­
utes. The offset must be specified in the
ALLPROCESSORS clause as

TIME_ZONE_OFFSET + hh:mm

or

TIME_ZONE_OFFSET - hh:mm

where hh is an unsigned integer less than 24
and mm is an unsigned integer less than 60.
The following are some examples:

Offset as specified in
ALLPROCESSORS clause

TIME_ZONE_OFFSET + 01 :00
TIME_ZONE_OFFSET + 05:30
TIME_ZONE_OFFSET + 09:00
TIME_ZONE_OFFSET - 08:00
TIME_ZONE_OFFSET - 05 :00

City

Paris
Bombay
Tokyo
San Francisco
New York

Figure 4.

The syntax of the new
ADDDSTTRANS/TJON
command for the
Command Interpreter.
This command allows
SUPER group users to
add entries to the DST
Transition Table.

JUNE 1985 T A N D E M S Y S T E M S R E V I E W 61

Operating System

62

Daylight Savings Time Selection
With the new facilities, the selection of one
of three options for Daylight Savings Time
is required: none, a table-driven method, or
the rules followed in the United States since
1966. As other algorithmic rules are
required, the appropriate options will be
added.

The new clause to the ALLPROCESSORS
paragraph is:

DAYLIGHT_SAVINGS_TIME { NONE IUSA66 I
TABLE}

Command Interpreter Changes
The new timekeeping facilities have affected
the Command Interpreter in four areas:

■ An additional field in the SETTIME com­
mand has been added.

■ The ability to specify the initial Cl's input
file has been added.

■ A new command to add an entry to the
DST Transition Table has been added.

■ Command execution is now restricted
before the first SETTIME.

All but the last modification have already
been discussed.

The initial (cold-load) CI executes only
ADDDSTRANSITION, SETTIME, and HELP
commands until the first SETTIME com­
mand has been entered successfully. Other
commands result in the message, Please Set
System Time. If the system was configured
with an initial CI IN file (using the
INITIAL_COMINT _INFILE SYSGEN parame­
ter), however, there is no restriction on com­
mands executed from the IN file. This
allows the IN file to start a process that
communicates with an external clock and
then calls SETSYSTEMCLOCK to set the sys­
tem time.

Sample External Clock
Reading Process
TAL source code for a sample user process
that reads an external clock is supplied with
GUARDIAN 90. This program, SCLOCK,
reads the external clock and sets the system
clock immediately, every five minutes, and
whenever a CPU is powered on.

Benefits of the New Facilities
The new timekeeping facilities significantly
enhance the timekeeping services of
GUARDIAN 90 in several areas.

Application Design
The use of GMT timestamps facilitates the
design of applications in a geographically
distributed network. Procedures that con­
vert timestamps between GMT, LST, and
LCT, on both local and remote nodes, as
well as being aware of Daylight Savings
Time, simplify the design of global-network
applications.

TANDEM SYSTEMS REVIEW• JUNE 1985

The enhancements to the SETTIME mes­
sage permit applications to detect when and
why the system clock was reset and deter­
mine the magnitude of the change.

The microsecond resolution of Julian
timestamps makes them more useful for
identification of events. If two events occur
within .01 second, the old TIMESTAMP pro­
cedure might have returned the same value
to both, making the timestamp useless for
determining the sequence of events.

Programming
Four-word Julian timestamps and Julian
date conversion routines simplify program­
ming tasks that involve timekeeping.

System Management
Automatic adjustment for Daylight Savings
Time changes eliminates the need for an
operator to do a SETTIME when these
changes occur, reducing potential operator
errors.

The ability to read an external clock and
set system time completely eliminates the
possibility of the operator's making an error
when setting the system time. Users that
have an external clock and choose to use the
CI IN file option can automate all system
restart activity.

Finally, the new algorithm for CPU
clock-rate averaging should provide more
accurate system times than those provided
by previous releases.

Conclusion
GUARDIAN 90 timekeeping services contrib­
ute significantly to the effectiveness of
Tandem systems for applications that require
accurate timekeeping and for geographically
distributed networks.

Acknowledgments
Glenn Peterson is responsible for the design, documentation,
and initial implementation of the GUARDIAN 90 timekeeping
facilities.

--- - -------

Eric Nellen joined Tandem in February 1979 as a member of the
Software Quality Assurance group. He designed and imple­
mented the first Tandem terminal simulator, which was used for
QA testing and benchmarks. He has worked in operating sys­
tems development for several years and is currently a member of
the OS Kernel group.

JUNE 1985 TANDEM SYSTEMS REVIEW

Operating System

63

64

New Process-timing Features

he GUARDIAN 90 operating
system incorporates greatly
enhanced features for pro­
cess timing. 1 Earlier ver­
sions of GUARDIAN pro­
vide two facilities for pro­
cess timing: the XRAY

performance measurement tool and the
procedure SETLOOPTIMER. Both have
shortcomings:

■ XRAY is cumbersome to use, and the over­
head of starting an XRAY measurement is
not justified for small measurements such as
obtaining the execution time of a single pro­
cess. Moreover, XRAY does not have a pro­
grammatic interface.

■ SETLOOPTIMER, a programmatic inter­
face, is designed only for detecting loops in
a program. In addition, in earlier versions of
GUARDIAN, the SETLOOPTIMER mecha­
nism includes interrupt time and is inaccu­
rate due to rounding errors.

- --------

'This article describes the GUARDIAN 90 features that can be used to time
individual processes. New GUARDIAN 90 features for maintaining the system
date and time of day are described in an accompanying article, "New
GUARDIAN 90 Timekeeping Facilities," by Eric Nellen.
2In this article process time signifies the length of time during which the pro­
cess executes on the processor. It does not include the time taken by software­
interrupt handlers to process interrupts that occur while the process is running.
The unit of measure for process time is microseconds.

GUARDIAN 90 provides process-timing
facilities in addition to XRAY and vastly
improves the accuracy of the SETLOOPTI­
MER mechanism. Process-execution time is
now a fundamental part of the process state.
This permits the following additional func­
tionality:

■ Any process can query the operating sys­
tem for the process time of any process,
including its own. 2

■ A process can specify that it be notified
via a system message when it has executed
for a certain amount of time.

■ Some processor-utilization statistics
(amount of time spent by the processor exe­
cuting processes, servicing interrupts, and
remaining in the idle state) can be obtained.

■ Accuracy of the SETLOOPTIMER mecha­
nism has been improved because interrupt­
servicing time is excluded and microsecond
resolution is used.

User Interface
The following procedures are now available
for the timing of processes: SETLOOPTIMER,
SIGNALTIMEOUT, SIGNALPROCESSTIME­
OUT, MYPROCESSTIME, and PROCESSTIME.
In addition, a new procedure called CPU­
TIMES is available to provide utilization
statistics for a processor. (See the System
Procedure Calls Reference Manual for
details).

TANDEM SYSTEMS REVIEW JUNE 1985

The functions of the procedures are
briefly described below:

■ SETLOOPTIMER now sets a timer that is
based on process time. When the timer times
out, it triggers a process-loop-timeout trap
(trap number 4). Control then transfers to
the user trap handler (if specified) or to
DEBUG/INSPECT.

• SIGNALTIMEOUTsets an elapsed-time
timer. When the timer times out, a system
message (see the System Messages Manual)
is queued on the $RECEIVE queue of the
process (see the System Procedure Calls Ref­
erence Manual). The functionality and the
underlying mechanism for this procedure
have not changed in GUARDIAN 90.

• SIGNALPROCESSTIMEOUT, a new proce­
dure, is similar to SIGNALTIMEOUT but is
based on process time instead of elapsed
time. It sets a process-time timer. When the
timer times out, a system message is queued
on the $RECEIVE queue of the process.

• MYPROCESSTIME, a new procedure, gives
the process time (in microseconds) of the
calling process.

■ PROCESSTIME, a new procedure, gives
the process time (in microseconds) of any
process in the network that runs on a system
operating under GUARDIAN 90. The proce­
dure PROCESSINFO can also be used to
obtain the process time of a process.

■ CPUTIMES, a new procedure, gives the
following processor utilization statistics (in
microseconds, since the last processor load)
of any processor in the network that is oper­
ating under GUARDIAN 90: the amount of
time since the processor loaded and the
amount of time spent by the processor exe­
cuting processes, servicing interrupts, and
remaining in the idle state.

Implementation
The GUARDIAN 90 kernel and data struc­
tures maintain accurate process-execution
time as an intrinsic part of the process state.
They incorporate an internal facility to
cause an event to occur, based on the

amount of process-execution time that has
passed. This facility is used to support the
following:

■ SETLOOPTIMER procedure (whose corre­
sponding event is to cause a trap after a
specified amount of process-execution
time).

• SIGNALPROCESSTIMEOUT procedure
(whose corresponding event is to cause a
system message to be queued on the
$RECEIVE queue of the calling process after
the process has executed for a specified
amount of time).

■ Process-priority adjustment mechanism.

The facility may also be used in the
future to support additional capabilities. For
example, the parent process could request
the operating system to notify it when a spe­
cific child process has executed for a certain
amount of time. (This feature is not present
in GUARDIAN 90 currently but is an example
of something that could now be easily
implemented.)

Each process has a 32-bit counter
(referred to in this article as PCBPTIMER)
that is part of the process state. When a pro­
cess is inactive, PCBPTIMER is stored in the
field PCBPTIMER in the Process Control
Block (PCB) for the process. (The layout for
the PCB is given in the GUARDIAN 90 file
DPCTL, listed in CDECLARE.) When the
process is dispatched, the dispatcher uses the
new Set Process Time (SPT) instruction to
give PCBPTIMER to the firmware. The
cached firmware value, which represents
the current value of PCBPTIMER, can be
read via the new Read Process Time (RPT)
instruction. The SPT and RPT instructions
are defined in the System Description
Manual.

JUNE 1985 T A N D E M S Y S T E M S R E V I E W

Operating System

65

Operating System

66

PCBPTIMER accumulates process­
execution time as the process executes and is
adjusted for any processor time used by soft­
ware interrupt handlers. If PCBPTIMER
overflows from a positive to a negative num­
ber, a process-timeout dispatcher interrupt
occurs.

Every time the dispatcher deactivates a
process, the dispatcher accumulates the
elapsed process time for the last dispatch to
a quad-word counter {PCBXPTIME) in the
Process Control Block Extension (PCBX) for
the process. The dispatcher also accumulates
the elapsed process time to a quad-word
counter called SUMPROCESSBUSY in the
system data segment. This counter contains
the total processor time spent in executing
processes. (The elapsed process time is the
difference between the cached value of
PCBPTIMER and the saved value in the
PCBPTIMER field in the PCB.) The dis­
patcher also saves the cached value of PCBP­
TIMER in the field PCBPTIMER of the PCB
for the process.

Thus, the purposes of PCBPTIMER are to
cause a dispatcher interrupt after a specified
amount of process-execution time and to
track elapsed process time in a dispatch. The
purpose of PCBXPTIME is to accumulate
process-execution time as the process exe­
cutes. It will overflow only if the process
executes for over .29 million years.

The unit of measure for both counters is
microseconds. At any instant, the process
time of the process is given by the sum of the
PCBPTIMER and PCBXPTIME. When the
process is active, PCBPTIMER is cached in
a processor register and can be accessed
via the new instructions; otherwise, the
PCBPTIMER is stored in the PCB field
PCBPTIMER.

Each process has a doubly-linked list,
called the process-time list {PTL), composed
of process-time-list elements (PTLEs). A
PTLE contains the process time at which the
process should time out. The list header of
the PTL is a field in the PCBX. The PTLEs
are listed in order of increasing process-time
value. Two PTLEs, one for process-priority
adjustment and one for the SETLOOPTIMER
procedure, are allocated in the PCBX. PTLEs
for use by SIGNALPROCESSTIMEOUT are
allocated out of the PTLE table, which is in
the same absolute segment as the PCBXs.

For a process-timeout dispatcher inter­
rupt, the dispatcher (1) processes each PTLE
that has timed out, (2) deletes the PTLE
from the PTL, and (3) takes action based on
the event indicated by the PTLE type:

■ If the PTLE was set by a call to SETLOOP­
TIMER, a trap #4 is signaled.

■ If the PTLE was set by a call to SIGNAL­
PROCESSTIMEOUT, a system message is
queued on the $RECEIVE queue of the pro­
cess. This message indicates to the process
that the timer set by a call to SIGNALPRO­
CESSTIMEOUT has timed out.

■ If the PTLE is for system-loop timing, the
dispatcher adjusts the priority of the process
and requeues the PTLE on the PTL with a
time value of the current process time of the
process plus two seconds (the time when the
priority is to be adjusted next).

The dispatcher then initializes the 32-bit
counter {PCBPTIMER) so that it will over­
flow when the current leading PTLE in the
PTL times out, and then it dispatches the
process.

IDLEPROCESS executes on the processor
when there is no process on the ready list.
Although IDLEPROCESS is actually a
pseudoprocess because it does not have a
PCB and other resources allocated to it, the
processor maintains execution time for it
because the firmware views it as a process.
The PCBPTIMER and PCBXPTIME entries
for IDLEPROCESS are allocated in the
system-data segment. These entries and the
SUMPROCESSBUSY counter are used to sup­
port the CPUTIMES procedures.

Applications

SETLOOPTIMER can be used to { 1) detect
whether or not the process is looping,
(2) perform a certain set of operations
(defined in the user trap handler) after the
process has executed for a specified amount
of time, and (3) perform a set of operations
periodically by having the user trap handler
always call SETLOOPTIMER before returning
to the interrupted operation.

TANDEM SYSTEMS REVIEW• JUNE 1985

SIGNALTIMEOUT can be used for schedul­
ing real-time operations since it notifies a
process when a certain amount of real time
has elapsed.

SIGNALPROCESSTIMEOUT can be used
for scheduling operations based on the
amount of time the process has executed. It
queues a system message on the process'
$RECEIVE queue to notify that process after
it has executed for a specified amount of
time. The process can call the procedure
READ to read the message whenever it wants
to. (SETLOOPTIMER can also be used for
this purpose; however, it causes a trap that
interrupts the process and immediately
transfers control to the trap handler.)

MYPROCESSTIME can be used by a pro­
cess to monitor its activity and to determine
the time spent by the process in performing
various operations. For example, a Com­
mand Interpreter could print the time it took
to execute the last command before prompt­
ing for the next command.

PROCESSTIME can be used to (1) monitor
the activity of any process running on a
GUARDIAN 90 system in the network,
(2) detect a looping process, and (3) detect
whether or not a process is a recent invoca­
tion of the program after an old invocation
died, especially if the recent invocation has
the same Process ID (PID) as the old process
and the same name. (For unnamed pro­
cesses, the timestamp form of the PID can be
used for assigning a process a unique PID).
See the GUARDIAN Operating System Pro­
grammer's Guide for information on process
names.

CPUTIMES can be used to display a pro­
cessor's utilization. This would help in bal­
ancing the load across the processors in the
system. For example, a high interrupt-busy
time in a processor might indicate that a
great deal of 1/0 was being done through
that processor. PEEK can be used to confirm
this.

The information obtained from the above
routines may indicate whether or not the
substantial capabilities of XRAY should be
used for a performance evaluation of the
system or of a process that is a heavy user of
processor time.

Conclusion
The process-timing features of the
GUARDIAN 90 operating system are a signifi­
cant enhancement. Process-execution time is
maintained with microsecond resolution and
interrupt-processing time is excluded. Proce­
dures are provided to retrieve the process
time of processes and to enable a process to
be notified when it has executed for a speci­
fied amount of time. Also, the accuracy of
the SETLOOPTIMER has been greatly
improved. Finally, a procedure is now avail­
able for retrieving processor-utilization
characteristics.

References
GUARDIAN Operating System Programmer's Guide. Part no.
82357 A00. Tandem Computers Incorporated.

System Messages Manual. Part no. 82409 A00. Tandem Com­
puters Incorporated.

System Procedure Calls Reference Manual. Part no. 82359 A00.
Tandem Computers Incorporated.

Acknowledgments
The basic ideas for the GUARDIAN 90 process-timing enhance­
ments were conceived by Richard Carr. The author would like to
thank Richard for his suggestions during the implementation
phase, Gary Campbell and Richard Harris for making the
firmware changes, and last but not least, Heidi Kuehn for
greatly improving the readability of this article.

Sunil Sharma joined Tandem in August 1983 as a software
developer in the Operating Systems group. He has an M.S. in
Computer Engineering from Rensselaer Polytechnic Institute in
Troy, New York.

JUNE 1985 T A N D E M S Y S T E M S R E V I E W

Operating System

67

68

Writing a
Command Interpreter

.. Iii
andem has received many
requests to extend the
capabilities of its com-
mand interpreter, COMINT.
These requests have been
for a variety of capabili­
ties, including:

• Additional commands.

• Changes in the syntax and/ or functional­
ity of existing commands.

• A history buff er of previous commands
(for their reexecution or later examination).

• Macro substitution within commands.

• Assignment of commands to function
keys.

Custom Command Interpreters
It is not possible to implement these new
features while maintaining the compatibility
between old and new versions of COMINT,
however. Also, the need or desire for these
new capabilities varies from customer to
customer. Therefore, users requiring special
features should consider developing their
own command interpreters. In fact, several
users have already written their own.

One drawback to most of the command
interpreters written by users so far, however,
is that they are nonprivileged and, thus, do
not have the full functionality of COMINT

(until now a privileged process). 1 Their
command interpreters cannot modify the
USERID file, or take a bus dump, for exam­
ple. Until now, these users had to switch
from their custom command interpreters to
COMINT when they needed to execute a
privileged function.

New Nonprivileged COMINT

With the GUARDIAN 90 operating system,
COMINT no longer contains privileged code
and does not have to be FUP licensed.
COMINT's privileged processing has been
moved into new system-library procedures,
existing system procedures have been modi­
fied, and new privileged server programs
have been written. COMINT now invokes
these new procedures or server programs to
execute privileged functions.

Users can now take advantage of these
new procedures and server programs to
develop their own custom command inter­
preters, complete with all the functionality
of Tandem's COMINT.

The following sections:
• Present an overview of the flow of control
in COMINT.

• Explain how to get a sample skeletal com­
mand interpreter that can be expanded and
customized as needed.

• Describe COMINT (including its nowait
operations and new server programs) in
detail.

1 A privileged process has direct access to the internal structures or privileged
procedures of the operating system. Nonprivileged processes do not. (They
cannot cause halts.) Nonprivileged programs do not need to be modified and/
or recompiled when the internal structures and privileged procedures of the
operating system change.

TANDEM SYSTEMS REVIEW JUNE 1985

Flow of Control
C0MINT was designed as a transaction­
oriented process. It does the following:

1. Gets the transaction (command).

2. Deciphers the command and applies user
constraints (e.g., checks to see if a user
can issue the ADDUSER command).

3. Invokes the appropriate procedures or
dispatches the proper program (C0MINT
server, Tandem subsystem, or user­
developed program) to complete the pro­
cessing of each command.

Figure 1 charts this flow of control.
All command interpreters should have a

top-level controlling procedure. C0MINT's
version of this procedure, C0MMAND­
INTERPRETER, loops continuously on calls
to read and process each command.

Command interpreters should also have a
centralized procedure for getting com­
mands. C0MINT's PROMPT contains code
for reading from a terminal, a disc file, or
another process.

Finally, C0MINT has a separate proce­
dure, PR0CESSC0MMAND, to process each
command, although this is not required of
all command interpreters. PROCESS­
COMMAND does some initial parsing and
validation checking and then invokes the
appropriate procedure or program. It is then
the responsibility of each procedure or pro­
gram to fully parse and validate the com­
mand string or RUN parameter string before
processing the command.

Simple Command Interpreter
A simple command interpreter that recog­
nizes the EXIT, TIME, and WHO commands
is available on tape from your Tandem
analyst.

Note that, although the sample command
interpreter was written in TAL, command
interpreters can be written in any language.
It is advisable, however, to develop the com­
mand interpreter in a language that provides
easy access to GUARDIAN 90 system proce­
dures, as it is through these procedures that
the command interpreter will do most of its
work.

Operating System

Figure 1

.COMWdif~Tl!A

PROO!i:SSOOMMANO

~ ~
Process.

I I

Nowait Operations
Perhaps the most difficult aspect of develop­
ing a command interpreter is the handling of
its operations in a "nowait" manner. One of
the design goals of a command interpreter is
that it be able to respond to messages and
maintain a fault-tolerant configuration
while:

■ Prompting for a command.

■ Communicating with another process.

■ Waiting for a process to terminate.

■ Writing to its OUT file.

To accomplish this, all the above operations
must be done in a nowait manner, thus
requiring the command interpreter to be a
multithreaded process.

C0MINT's solution to the problem is to
perform all the above as nowait operations
and to have one centralized procedure to
wait for completion of these operations.
This procedure calls AWAITI0 with a file
number of -1 so that AWAITI0 returns when
any outstanding 1/0 request completes. The
centralized procedure then determines which
1/0 has completed and does the proper
processing.

Figure 1.

The flow of control in
COMINT. COMMAND­
INTERPRETER, the
main procedure, calls
PROMPT to get a com­
mand. This command is
then passed to PRO­
CESSCOMMAND which
calls/runs the appropriate
procedure(s)lprogram to
process the command.
(The dotted lines indicate
additional procedures/
programs that process
other commands.)

JUNE 1985 TANDEM SYSTEMS REVIEW 69

Operating System

70

For example, after starting a new process,
COMINT opens the process in a nowait man­
ner. COMINT then calls a procedure to wait
for the completion of the OPEN before send­
ing the start-up message. If the user presses
the BREAK key before the open completes,
AWAITIO completes on $RECEIVE before
completing on the OPEN. This causes
COMINT to cancel the open request and ter­
minate the start-up sequence.

COMINT Server Programs
Although major changes were made to make
COMINT nonprivileged, externally little has
been changed. All the commands from the
previous version of COMINT are still availa­
ble and perform the same function. Inter­
nally, however, the following commands now
invoke the corresponding COMINT server
programs:

Command

ADDUSER
{X\Y} BUS{DOWNjUP}
DEFAULT
DELUSER
PASSWORD
RECEIVED UMP
RELOAD
REMOTE PASSWORD
USERS

Server program

ADDUSER
BUSCMD
DEFAULT
DELUSER
PASSWORD
RCVDUMP
RELOAD
RPASSWRD
USERS

When these programs are run from a user­
written command interpreter or from
COMINT, the following rules apply:

■ All of the server programs should reside
on the same subvolume as the command
interpreter. (For user-written command
interpreters this is not necessary, but for
COMINT it is.)

■ All server programs must be FUP licensed
to run because they contain privileged code.

■ The server programs cannot be run
remotely because they contain code to pre­
vent execution by remote users.

■ All RUN options are allowed, except that
NOWAIT should not be used with any of the
server programs (as the results of running
the servers would be unknown).

COMINT Commands
In Table 1, all of the commands recognized
by COMINT are listed. For each, the func­
tion of and the GUARDIAN 90 procedures or
COMINT server programs invoked by the
procedure are given. (Procedures used to
parse and validate command parameters are
not included in the list.)

Although the list of COMINT commands
is extensive, user-written command inter­
preters need not implement every command.
It may be best to leave out the rarely used
commands such as ADDUSER, BUSCMD,
DELUSER, and SETTIME. These can then be
issued from a running COMINT.

Note that if an error occurs at any point
while the command is being processed, the
command is aborted and PROMPT is called.

Note also that command strings not rec­
ognized as valid COMINT commands are
treated as implicit RUN commands. For a
description of COMINT's commands, refer
to the GUARDIAN Operating System Utili­
ties Reference Manual. For a description of
each GUARDIAN 90 procedure, refer to the
System Procedure Calls Reference Manual.

Conclusion
With the GUARDIAN 90 operating system,
all of COMINT's privileged functions have
been incorporated within the system or sup­
plied in separate programs. Users can now
develop their own command interpreters
with all the functionality of COMINT and
add extra features tailored to their needs.

References
GUARDIAN Operating System Utilities Reference Manual.
Part no. 82403 A00. Tandem Computers Incorporated.

System Procedure Calls Reference Manual. Part no. 82359 A00.
Tandem Computers Incorporated.

David Wong joined Tandem in April 1981, beginning work on
automated release products, such as INSTALL, FACTRLSE, and
CUSTRLSE. He has since transferred to the Operating Systems
group where he worked on COM INT and is now working on low­
level kernel code. David received a B.S. in Physics in 1974 and an
M.S. in Applied Mathematics in 1978, both from Santa Clara
University. Before joining Tandem, he did contract work for
various research projects, including Pioneer 10 and 11 data
reduction, IRAS telescope simulation, and airborne data
acquisition.

TANDEM SYSTEMS REVIEW JUNE 1985

Table 1.

The commands recognized by COM INT, the procedures they use, and the functions of the commands.
COMINT command

ACTIVATE

ADDDSTTRANSITION

ADDUSER

ALTPRI

ASSIGN

BACKUPCPU

BUSCMD

CLEAR

COMMENT

CREATE

DEBUG

DEFAULT

DELUSER

EXIT

FC

FILES

HELP

INITTERM

LIGHTS

LOGOFF

J lJ N E

Procedures it uses

ACTIVATE PROCESS

ADDDSTTRANSITION,
COM PUTETI M ESTAM P,
CONVERTTIMESTAMP

ADDUSER

ALTERPRIORITY,
PROCESSINFO

CHECKOPEN,
CHECKPOINT,
GETCRTPID,
NEWPROCESS,
PROGRAM FILENAME,
STOP,
SWAPFILENAME

BUSCMD

CREATE

DEBUG,
DEBUG PROCESS,
GETCRTPID,
LOOKUPPROCESSNAME,
MYTERM

DEFAULT

DELUSER

GETREMOTECRTPID,
GETSYSTEMNAME,
MYPID,
STOP

FIXSTRING

NEXTFILENAME

SETMODE

SEND LIGHTS

CHECKPOINT,
CONTROL,
SETMODE,
STOP

Functions of the command

1 Parse and validate the name or < cpu ,pin> of the process to activate.
2. Call ACTIVATEPROCESS on the process.

1 Parse and validate the limits and offset of the Daylight Savings Time period
2. Call COMPUTETIMESTAMP to convert limits into Julian microseconds.
3. Call CONVERTTIMESTAMP to convert limits to Greenwich Mean Time.
4. Call ADDDSTTRANSITION to add the period to the Daylight Savings Time

table

Cause the ADD USER server program to run. Pass ADD USER command
parameters directly as a RUN parameter string to the ADDUSER process.

1. Parse and validate the name or < cpu,pin > of the process whose priority is to
be changed.

2 Call PROCESSINFO for information to be sent to $CMON to log/validate the
ALTPRI request.

3. Call ALTERPRIORITY to change the priority of the process

1. Parse and validate the new ASSIGN.
2. Save the information in the ASSIGN data buffer on COMINT's data stack.

1 Check for a backup CPU number
2. If no CPU number is given, call STOP to stop COMINT's backup
3. If CPU number is given, call GETCRTPID, PROGRAM FILENAME, and

SWAPFILENAME to get COMINT's process name, object-file name, and swap
volume so that NEWPROCESS can start the backup.

4 If the backup is successfully started, call CHECKOPEN and CHECKPOINT to
synchronize the backup.

Cause the BUSCMD server program to run. Pass command parameters directly
as a RUN parameter string to the BUSCMD process.

1 Parse and validate the ASSIGN(s)/PARAM(s) to clear.
2. Delete the ASSIGN(s)/PARAM(s) from their data buffer(s) on COMINT's data

stack.

Ignored by COM INT COM INT prompts for the next command.

1. Parse and validate the name of the file to be created.
2. Call CREATE to create the file.

Parse and validate the name or < cpu,pin > of the process to be debugged.
2. If the TERM parameter is entered without a terminal name, call MYTERM to

get the name of the current home terminal.
3. If a process name was specified, call LOOKUPPROCESSNAME to find the

primary process.
4. Call GETCRTPID, if the current command is being debugged, call DEBUG;

otherwise, call DEBUGPROCESS to debug the specified process.

Cause the DEFAULT server program to be run. Pass the command parameters
directly as a RUN parameter string to the DEFAULT process.

Cause the DELUSER server program to be run. Pass the command parameters
directly as a RUN parameter string to the DELUSER process.

1 Call MYPID, GETREMOTECRTPID, and GETSYSTEMNAME to format a
termination confirmation prompt.

2. Call STOP to stop COM INT (primary and backup).

Display the old command and prompt for modifications.
2 Call FIXSTRING to update the old command
3. Process the new command.

Parse and validate the name of the subvolume containing the files to be
listed.

2. Repeatedly call NEXTFILENAME, to get the list of files in the specified
subvolume.

Parse and validate the name of the command for which "help" information is
to be displayed.

2. Display the help message for the specified command.

If the input device was a terminal, call SETMODE function 28 to reset it.

1. Parse and validate the new lights parameters.
2. Call SENDLIGHTS to reset the lights with the new parameters.

1 Print any user messages which have been sent to COMINT.
2. Notify $CMON of a logoff and close $CMON.
3. Clear local buffers and call CHECKPOINT to synchronize the backup.
4. Simulate the TIME command to display the time.
5. If the input device was a terminal, call SETMODE function 28 to reset it.
6 If the input device was a terminal, call CONTROL request 12 on the input

terminal to disconnect.
7. If this was a remote COM INT, call STOP to stop the primary and backup
8. If the input device was a terminal, call CONTROL request 11 on the input

terminal to request a reconnect.

Continued on next page.

9 8 5 T A N D E M SYSTEMS R E V E W

Operating System

71

Operating System

72

Table 1. (Continued)

The commands recognized by COM INT, the procedures they use, and the functions of the commands.
COMINT command

LOGON

O[BEY]

PARAM

PASSWORD

PAUSE

PMSG

PPD

PURGE

RCVDUMP

RECEIVED UMP

RELOAD

REMOTEPASSWORD

RENAME

RPASSWRD

[RUN[D]]

Procedures it uses

CHECKPOINT,
VERIFYUSER

EDITREADINIT,
OPEN

PASSWORD

GETPPDENTRY,
GETSYSTEMNAME

PURGE

RCVDUMP

RCVDUMP

RELOAD

RPASSWRD

CLOSE,
OPEN,
RENAME

RPASSWRD

CLOSE,
NEWPROCESS,
OPEN,
WRITE,
WRITEREAD

T A N D E M

Functions of the command

If necessary, prompt for and then parse and validate the user name and
password.

2. Call VERIFYUSER to log on.
3. If the user was previously logged on, notify $CMON of an implicit logoff.

4. Check with $CMON to see if logons are allowed.

5. Call CHECKPOINT to synchronize the backup

6. Display the logon banner.
7. Simulate the TIME command to display the time.

1 Parse and validate the new input file.
2. Call OPEN to gain access to this new file.
3. If the new input file 1s an EDIT file, call EDITREADINIT on it.

1 Parse and validate the new PARAM.
2. Save the information in the PARAM data buffer on COMINT's data stack.

Cause the PASSWORD server program to run. Pass the command parameters
directly as a RUN parameter string to the PASSWORD process.

1 Parse and validate the name or <cpu,pin> of the process on which COM INT
is to wait.

2. Post a read on $RECEIVE and wait for a completion (STOP or ABEND)
message on the specified process

Parse and validate the "on-off" flag.
2. Set the internal PMSG flag accordingly.

1. Parse and validate the name or < cpu,pin > of the process for which the
directory is to be displayed.

2 Call GETPPDENTRY on the specified process, or, if no process was specified,
on all named processes.

3. Call GETSYSTEMNAME to convert system numbers to names and then
display the results.

Loop through the list of file names, parsing, validating, and calling PURGE on
each one.

Cause the RCVDUMP server program to run. Pass the command parameters
directly as a RUN parameter string to the RCVDUMP process.

1. Parse and validate the dump parameters.
2. Reformat the parameters into a RUN parameter string for the RCVDUMP

process.
3. Run the RCVDUMP server program.

Cause the the RELOAD server program to run. Pass the.command parameters
directly as a RUN parameter string to the RELOAD process.

Cause the RPASSWRD server program to run. Pass the command parameters
directly as a RUN parameter string to the RPASSWRD process

1. Parse and validate the old and new names of the file.
2. Call OPEN to access the file.
3 Call RENAME to rename the file.
4. Call CLOSE on the file

Causes the RPASSWRD server program to run. Pass the command parameters
directly as a RUN parameter string to the RPASSWRD process.

1 Parse and validate the program name and RUN options.
2. Set up the parameters for and call NEWPROCESS to start the specified

program.
3. Call OPEN (nowait) to access the new process.
4. Call WRITEREAD (nowait) to send the start-up message.
5. If requested, call WRITE (nowait) to send the ASSIGN messages.
6. If requested, call WRITE (nowait) to send the PARAM message.
7. Call CLOSE on the new process.
8. If this is a waited run, post a read on $RECEIVE to wait for this process to

complete.

Continued on next page.

SYSTEMS R E V E W U N E 9 8 S

Table 1. (Concluded)

The commands recognized by COMINT, the procedures they use, and the functions of the commands.
COMINT command

SET

SETTIME

SHOW

STATUS

STOP

SUSPEND

SWITCH

SYSTEM

SYSTIMES

TIME

USERS

VOLUME

WAKEUP

WHO

XBUSDOWN,
XBUSUP,
YBUSDOWN,
YBUSUP

Procedures it uses

COMPUTETIMESTAMP,
CONVERTTIMESTAMP,
SETSYSTEMCLOCK

CONVERTPROCESSTIME,
GETSYSTEMNAME,
PROCESS INFO,
USERIDTOUSERNAME

STOP

SUSPEN DPROCESS

CHECKSWITCH

CONVERTTIMESTAMP,
INTERPRETTIMESTAMP,
JULIANTIMESTAMP

CONVERTTIMESTAMP,
INTERPRETTIMESTAMP,
JULIANTIMESTAMP

USERS

PROCESSFILESECURITY,
VERIFYUSER

GETSYSTEMNAME,
MYPID,
PROCESS INFO

BUSCMD

Functions of the command

1. Parse and validate the INSPECT parameters.

2. Save the INSPECT parameters in internal flags

1. Parse and validate the current time.

2. Call COMPUTETIMESTAMP to convert the specified time into Julian
microseconds.

3. Call CONVERTTIMESTAMP to convert the specified time to Greenwich
Mean Time.

4. Call SETSYSTEMCLOCK to set the new time.

1 Parse and validate the INSPECT flag(s) whose state is to be displayed.
2. Display the state of the INSPECT flag(s).

1. Parse and validate the name or < cpu,pin > of the process or CPUs for which
the status is to be displayed.

2. Get the search criteria.

3. If a process is specified, call PROCESSINFO on it with the search criteria.

4 If one or more CPUs are specified, call PROCESSINFO with the search
criteria on every process in the CPU.

5. Call GETSYSTEMNAME to convert system numbers to names.
6. Call USERIDTOUSERNAME to convert user IDs to user names.

7. Call CONVERTPROCESSTIME to convert process time to hours, minutes,
seconds, and milliseconds.

8. Display the status information.

1 Parse and validate the name or < cpu,pin > of the process to be stopped.

2. Call STOP to stop the specified process.

1 Parse and validate the name or < cpu,pin > of the process to be suspended.

2. Call SUSPENDPROCESS on the process.

Call CHECKSWITCH to switch the roles of the primary and backup
command-interpreter processes.

1 Parse and validate the name of the new default system.
2. Save the new default system name.

1. Call JULIANTIMESTAMP to get the current Greenwich Mean Time and
cold-load time.

2. Call CONVERTTIMESTAMP to convert the times to Local Civil Time.
3 Call lNTERPRETTIMESTAMP to convert the times to year, month, day, etc.
4. Display the times.

1 Call JULIANTIMESTAMP to get the current Greenwich Mean Time (GMT).
2. Call CONVERTTIMESTAMP to convert GMT to Local Civil Time (LCT).
3. Call lNTERPRETTIMESTAMP to convert LCT to year, month, day, etc.

4. Display the date and time.

Cause the running of the USERS server program. Pass the command
parameters directly as a RUN parameter string to the USERS process.

1. Parse and validate the new default volume, subvolume, and/or file security.

2. Call VERIFYUSER to get the omitted values
3. Reset COMINT's internal default volume and subvolume.
4. Call PROCESSFILESECURITY to change the security for file creation.

1. Parse and validate the wakeup on-off flag.

2. Save the WAKEUP on-off flag.

Call PROCESSINFO on MYPID to get the CRTPID, process ID, home terminal,
and system number

2. Call GETSYSTEMNAME to convert the system number to the system name.
3. Display the WHO information.

1. Reformat the parameters into a RUN parameter string for the BUSCMD
process.

2. Run the BUSCMD server program.

J U N E I 9 8 5 T A N D E M SYSTEMS R E V E W

Operating System

73

74

The Tandem
Global Update Protocol

he Tandem Global Update
Protocol is an efficient
mechanism for synchroniz­
ing and broadcasting
updates to a collection of
independent CPUs. It guar­
antees atomic updates to

replicated information in a system without
shared memory. Information consistency is
preserved despite any number of CPU
failures.

Consistency in the Tandem
System
Tandem's approach to fault tolerance and
ease of expansion is based upon independent
CPUs in coordinated operation. Correct
operation of applications requires a consis­
tent view of key system components. For
example, access to an 1/0 device depends on
locating the process responsible for the
device, which depends on a consistent
description of the device-process mapping.

In many multiple-CPU systems, consis­
tency is achieved through shared memory,
but in a Tandem system, the absence of
shared memory is a fundamental aspect of
the system design. Shared memory is
avoided for fault tolerance, expandability,
and simplicity.

One might ensure consistency by central­
izing information in a single CPU; this is a
useful method when the information is not
accessed too often and when the system has
some capability to recover from the loss of
the CPU. In order to achieve single-fault
tolerance, the information can be replicated
in a second CPU.

In the Tandem system, the goal is to main­
tain consistent copies of various system
information in all CPUs. Such information
is accessed frequently, but infrequently
updated. Through this approach, both bet­
ter performance and some measure of multi­
fault tolerance, particularly at the lowest
level (kernel) of the operating system, can be
achieved.

Consistency of an update to information
replicated in every CPU depends upon
atomicity (see Gray, 1978). As applied to the
Tandem system, an atomic update operation
has the following characteristics:

1. The update is completed within some
maximum time boundary.

2. Either every CPU is successfully updated
or no CPU is updated.

3. The updates occur serially; if the same
data is updated several times, the results
are the same in all CPUs.

Replicated Information
In many cases, the Tandem system does cen­
tralize system information. For example, a
data-base file or record is locked by record­
ing the lock information in a single location:
the disc process for that file or record.

TANDEM SYSTEMS REVIEW• JUNE 1985

The system information that is of interest
in this article is that which is replicated in
every CPU. Examples of this information
include:

1. Device-process mapping. To access a ter­
minal, a file on a disc, or a communica­
tions line, for example, a program must
communicate with the process responsible
for that device. In every CPU, the operat­
ing system maintains a system table, the
Destination Control Table (DCT), that
contains the name of each I/0 device and
the process(es) that control the device.

A device is often referred to by its rela­
tive location in the DCT, so a given device
name must occupy the same location in
the DCT of every CPU.

2. Process pairs. The process pair is a basic
building block of fault tolerance on a
Tandem system. Each fault-tolerant sys­
tem process or user application is a pair
of processes, the primary and the backup,
which reside on different CPUs. The DCT
contains the name of each process pair
and location of each process in a pair.
Each change in the system, such as a pro­
cess creation or stop, CPU failure or
reload, or a "switch" of function
between primary and backup processes,
causes an update to the DCT.

3. Notification of process failure. Although
a process pair is single-fault-tolerant,
multiple faults can cause the process pair
to fail. For multifault tolerance, the pro­
cess' ancestor must be notified when the
process is no longer executing. When the
ancestor-descendent relationship is repli­
cated in every CPU, ancestor notification
is guaranteed even in the presence of mul­
tiple CPU failures.

4. System messages. Various system events
(e.g., CPU ups and downs and time-of­
day changes) are logged in a system-status
buffer in every CPU. It is important that
entries in this buffer be in the same order
in all CPUs, so updates to the status
buffer must be atomic.

5. Time of day. The current time of day
should agree closely in all CPUs. Any
operation to change the time of day must
be atomic.

6. Process-reload coordination. Multiple
CPUs can be reloaded in parallel (by one
or more RELOAD programs), but a criti­
cal section of each reload must be per­
formed serially and atomically. This is
performed by notifying each CPU when
this operation is about to occur; notifica­
tion must be atomic.

Global Updates
Replicated system information must be
changed only by broadcasting an update to
every CPU. This operation is referred to as a
global update.

A typical situation requiring a global
update is the creation of a named process.
To make the process name known through­
out the system, the operating system must
allocate an entry in the Destination Control
Table (DCT) of every CPU and place the
name and process identifier in the entry.
Since a process may be referred to by its
relative location in the DCT, the process
name must occupy the same relative location
in the DCT in every CPU.

It is possible for two or more CPUs to
attempt to create processes with the same
name; all but one of these attempts must fail
with a Name Already Exists error. Thus, the
global update must be atomic, so that the
update attempts occur in the same order on
all CPUs.

In the past, global-update operations on
the DCT were required to be single-fault­
tolerant. Experience has shown that some
critical operations, especially those that
affect overall system consistency, should be
multifault-tolerant if possible. Thus, it is
important that the DCT (as well as other
information replicated in every CPU) remain
consistent despite any number of CPU or
bus failures.

Although the interprocessor bus is fast
and does not constitute a bottleneck, the
global-update operation should use a mini­
mal number of messages. DCT updates are
not very frequent, but that might not be the
case for some future use of the global-update
mechanism.

JUNE 1985 TANDEM SYSTEMS REVIEW

Operating System

75

Operating System

76

This article describes the method used in
the GUARDIAN 90 operating system to
update replicated system information by
broadcasting an update to all CPUs. The
following sections introduce those facilities
of the Message System that are important to
the discussion of global updates. For a more
detailed description of the Message System,
see Chandra, 1985.

GUARDIAN 90 Message System
The GUARDIAN 90 Message System manages
traffic across the Interprocessor Buses, a
pair of lO0M-bit/second transfer media that
connects all CPUs in a single Tandem sys­
tem. Using a pair of these buses, any CPU
can transfer a message to any other CPU at
speeds approaching the speed of a memory­
to-memory transfer within a CPU. Various
levels of protocol to control message flow
cause the effective transfer rate to be some­
what less than the raw bus speed, so the con­
servation of messages is an important factor
in system performance.

Three types of message are supported by
the Message System: the interprocess mes­
sage, the PIO message, and the unsequenced
packet. Each has different levels of protocol,
and therefore, each has a different cost.

The interprocess message is the most gen­
eral form of communication, supporting a
full requester-server protocol in which a
requester process sends a variable-length
request to a server process and receives a
variable-length reply. A process may be
sending many interprocess messages at one
time.

In order to provide fault tolerance and to
manage resources effectively, a total of nine
control packets, data blocks, and acknowl­
edgments may be transmitted for each full
message; in addition, as many as five pro­
cess dispatches are required.

The PIO message allows a process to com­
municate with the GUARDIAN 90 kernel of
some CPU. This message has a fixed size,
and the only reply is a simple ACK/NACK
acknowledgment. A process may send only
one PIO message at a time and must wait for
its completion, but such messages usually
require a very small time to be processed
and acknowledged. Within the receiving
CPU, mutual exclusion of PIO messages is
guaranteed; the CPU must complete pro­
cessing of one PIO message before it can
receive another one.

The unsequenced packet is a simple mes­
sage consisting of one physical bus packet. It
is used to acknowledge the receipt of other
messages and for "I'm Alive" messages (see
below). The unsequenced packet requires no
explicit acknowledgment.

The Message System guarantees delivery
of both interprocess messages and PIO mes­
sages. An unacknowledged message is
retried until it is acknowledged or until the
receiving CPU is declared down.

Message Broadcasting
The GUARDIAN 90 operating system con­
tains a new Message System facility, the N+ 1
Broadcast, that allows a process to request
that up to N+l PIO messages (where N is the
number of CPUs in the system) be sent by
the Message System kernel.

When a process wishes to send an N+ 1
Broadcast, it specifies a starting CPU. The
PIO message is sent to each CPU in a prede­
termined order (see below), including the
CPU that is sending the message. Finally, the
message is again sent to the starting CPU.

While the messages are being sent, the
process must wait and has no control over
the operation. In particular, it may not can­
cel the operation before it is completed. The
only action that prevents the messages from
being sent is the failure of either the sending
or receiving CPU.

When the message is complete, a set of
N+l acknowledgment codes (ACKs or
NACKs) are returned to the originating pro­
cess. As described below, the N+l Broadcast
facility also performs a few special oper­
ations that are required for sending global
updates.

TANDEM SYSTEMS REVIEW JUNE 1985

Although "broadcasting" often implies
sending messages to all CPUs at once, the
N+ I Broadcast is actually a serial operation
that appears to the sending process as an
atomic operation. Unless the CPU to which
the message is being sent is declared down,
each PIO message must be accepted and
acknowledged before it is sent to the next
CPU. This serialization is required to pro­
vide fault tolerance of the Global Update
Protocol.

The N+ 1 Broadcast is more efficient than
normal messages. With the latter, two pro­
cesses would be dispatched for each mes­
sage. With the N+l Broadcast, each receiv­
ing CPU accepts and acknowledges each
message in an interrupt routine. The sending
CPU receives each acknowledgment and
immediately sends the next message from
an interrupt routine. Entering an interrupt
routine suspends execution of other pro­
cessing, but does not cause expensive pro­
cess switching.

Processor-status Consistency
A fundamental basis for guaranteeing con­
sistency in the Tandem system is that all
operating (or "up") CPUs must agree as to
which CPUs are up. This is referred to as
processor-status consistency. Each CPU
maintains a list of other CPUs that are con­
sidered to be up. The system's processor
status is consistent if every up CPU has an
identical list of "up CPUs." Processor-status
consistency is achieved through the Message
System's "I'm Alive" protocol. Once a sec­
ond, each up CPU in a system sends an unse­
quenced "I'm Alive" message to every other
up CPU. Every two seconds, each CPU
brings down every CPU from which it has
not received an "I'm Alive" message in the
last two-second interval.

Since a CPU never sends an "I'm Alive"
message to a CPU that it considers down,
this simple protocol ensures symmetry.
Except during a short period following a
CPU failure, any two CPUs have identical
status information about each other; either
each considers the other to be up or each
thinks the other is down.

Once a CPU has been declared down by
the system, it must be reloaded in order to
rejoin the system as an up CPU.

Although it is expected that processor
status may be inconsistent for a few seconds,
the system eventually achieves a consistent
state. The short period of inconsistency is an
important consideration when global
updates are performed atomically.

Overview of the Global
Update Protocol

The Global Update Protocol {GLUP) is
Tandem's multifault-tolerant mechanism by
which an atomic update can be broadcast to
every CPU in an efficient manner. GLUP
components include state information main­
tained in each CPU, a standard global­
update message format, and a set of rules
that specify how global updates should be
processed and what steps should be taken
when failures occur.

A primary element of the GLUP state is
the identity of a unique CPU, known as the
locker. As is described below, all CPUs must
agree as to which CPU is the locker.

The fundamental operation of the GLUP is
to use the N+ I Broadcast mechanism to send
the same global-update message to every
CPU. The first message is always sent to the
locker, which ensures that only one global
update is in progress at any time. The locker
either allows the update to proceed or noti­
fies the sender that an update "collision"
has occurred. A collision terminates the
broadcast; the sender must retry the update.

If the update is allowed to proceed, the
message is sent to every other CPU and,
finally, it is sent once more to the locker. The
locker recognizes the second copy of the
update as notification that the update is
complete.

JUNE 1985 T A N D E M S Y S T E M S R E V I E W

Operating System

77

Operating System
------------~----------------------------

Figure 1.

GLUP-order, the order of
CPUs for a global update.
This order begins with the
GLUP-Locker and
includes each CPU. The
sequence is L, L+l, L+2,
... , N-1, 0, ... , L-1,
where L is the number of
the locker CPU and N is
the number of CPUs.

78

The following sections explore various
aspects of the GLUP, including how consis­
tency is maintained when (1) multiple send­
ers attempt an update at the same time,
(2) one or more CPUs fail during an update,
and (3) a CPU is reloaded and must be syn­
chronized with the other CPUs.

Technical Description
The GLUP state consists of the following
elements:

1. A designated CPU, known as the GLUP­
Locker, to coordinate global updates.
The first-loaded CPU is the initial locker.
It remains the locker until it fails; the
remaining CPUs then select a new locker,
as described below.

2. A well-defined ordering of all CPUs,
known as the GLUP-Order. This order
must begin with the GLUP-Locker and
include each other CPU exactly once. Any
ordering would do, but for simplicity, the
chosen sequence is the natural ordering:
L, L+l, L+2, ... , N-1, 0, ... , L-1

where L is the number of the locker CPU
and N is the number of CPUs. GLUP­
Order is illustrated in Figure 1 .

Figure 1

CPU 0 CPU 1 CPU2

3. In each CPU, a one~word semaphore,
GLUP-Lock, which contains either -1, to
indicate that the update lock is not held,
or a process ID (PID), to indicate that the
lock is currently held by that process.

The value of GLUP-Lock in the locker
CPU determines whether the update lock
is held. The GLUP-Locks in the other
CPUs are, however, essential for recovery
of failures.

4. In each CPU, a one-word GLUP sequence
number, GLUP-Seq. Whenever the GLUP­
Lock is not held (in the GLUP-Locker
CPU), all CPUs have identical GLUP­
Seqs. During an update, each CPU that
receives and processes the update message
increments its GLUP-Seq by 1.

5. In each CPU, a small array, GLUP­
Update, that contains the last update pro­
cessed by the CPU. This is simply a copy
of the PIO message that was sent by the
updating CPU.

A standard update message contains four
elements:
1. The process ID of the updating process.

2. A "lock bit," to distinguish a "locking
update" from a nonlocking update.

3. A GLUP-Seq copied from the sending
CPU.

CPU 3 CPU4 CPU 5

2 3

'J

TANDEM SYSTEMS REVIEW• JUNE 1985

4. A fixed-length array containing a descrip­
tion of the update; the format of this
array depends on the type of update.

The update message is a special type of the
PIO message described above. The GLUP
state and the sending of an update message
are illustrated in Figure 2.

Standard Update Sequence
The normal steps (in the absence of failures)
for performing a global update are:

I. A process (in the "sending" CPU) con­
structs a message containing an update
and a GLUP-Seq copied from the sending
CPU. The message is given to the sending
CPU's Message System as an N+l Broad­
cast. The process is blocked.

2. The sending CPU sends the update mes­
sage to the locker CPU. This first message
of an N+l Broadcast is marked as a "lock­
ing update" message.

3. The locker CPU examines the GLUP­
Lock. If the semaphore is already held,
the message is simply NACKed; the N+l
Broadcast is terminated in the sending
CPU and the sending process is notified.
Typically, the process delays for one hun­
dredth of a second and reattempts the
update.

4. The locker compares the GLUP-Seq in the
message with its own GLUP-Seq. If they
do not match, the message is NACKed,
which also terminates the broadcast.
Finally, the locker ensures that the update
is a locking update; a nonlocking update
is also NACKed.

5. The locker CPU sets the sending process'
PID in the GLUP-Lock, increments its
GLUP-Seq by 1, and saves the update
message in its GLUP-Update storage. It
then processes the update and ACKs the
message.

Figure 2

6. The sender CPU sends a nonlocking
update to every other CPU in GLUP­
Order. When the update is received, each
CPU sets the sending process' PID in the
GLUP-Lock, increments its GLUP-Seq by
1, and saves the update message in its
GLUP-Update storage. It then processes
the update and ACKs the message.

7. Finally, the sender sends a nonlocking
update message, recognized as the
update-termination message, to the locker.
The locker stores -1 (meaning unlocked)
in GLUP-Lock and ACKs the message.

8. The originating process is unblocked and
allowed to execute. The update is
complete.

JUNE 1985 • TANDEM SYSTEMS REVIEW

Operating System

Figure 2.

The GLUP state and the
sending of an update
message. The message
consists of the process ID
of the sending process,
the "lock bit" which
distinguishes a locking
update from a nonlocking
update, a GLUP-Seq
copied from the sending
CPU, and a fixed-length
array containing a
description of the update.

79

Operating System

Figure 3.

The message flow for
updating a 4-CPU sys­
tem. Message I is the
locking update sent to the
locker CPU. If it is
NACKed, the update is
terminated and must be
retried; otherwise, Mes­
sages 2, 3, and 4 are sent
to update the other
CPUs. Note that the
sender CPU updates itself
in GLUP-Order. Finally,
Message 5, a nonlocking
update, is sent to the
locker to signal the end of
the update.

Figure 3

4

80

The message flow for updating a four­
CPU system is illustrated in Figure 3. Mes­
sage 1 is the locking update that is sent to
the locker CPU. If it is NACKed, the update
is terminated and must be retried; other­
wise, messages 2, 3, and 4 are sent to update
the other CPUs. Note that the sender CPU
updates itself in OLUP-Order. Finally, Mes­
sage 5, a nonlocking update, is sent to the
locker to signal the end of the update.

Global-update Sequence Number
The global-update sequence number has a
number of important uses; primarily, it
eliminates the need for a semaphore when a
shared-data update depends upon the cur­
rent value of the shared data.

Any process that wishes to make such an
update performs the following sequence:

1. Copy the local CPU's OLUP-Seq.

2. Construct an update description that may
be a function of the current state of
shared data.

3. Instruct the Message System to broadcast
the update, including the copied
OLUP-Seq.

4. If the update fails due to a colliding
update, go to step 1.

I J
ACK

Locking update

Nonlocking updates

For each possible OLUP-Seq, one and
only one global update succeeds. Further­
more, successful updates are processed in
the numerical order of their OLUP-Seq.
Thus, the shared data could not have
changed between the time the OLUP-Seq was
copied and the time the global update was
processed in each CPU.

This method eliminates the need for the
process to obtain the OLUP-Lock semaphore
before it constructs an update based on the
current value of shared data. It sharply
reduces the time that any global semaphore
is held and eliminates the opportunity for a
process to obtain a semaphore and "forget"
to release it.

This method also eliminates the possibil­
ity of deadlock on the OLUP-Lock sema­
phore when a failure requires a change in the
system configuration before processes can be
executed. Such failures can require a global
update; if some process holds the OLUP­
Lock, a deadlock occurs. In the past, dead­
locks were avoided only through very careful
analysis of asynchronous events and exhaus­
tive testing to discover the errors in the
analysis.

The OLUP-Seq is also used to detect and
discard duplicate updates. Some updates,
such as "advance the system clock by n
microseconds," must be applied exactly
once in every CPU. Various failures cause the
latest update to be re-sent to ensure that
every CPU receives it, but those CPUs that
have already received the update detect the
sequence mismatch and ignore the duplicate.

CPU Failures and
Global-update Consistency

CPU failure is the most common cause of
difficulty in maintaining the consistency of
global updates. If a sending CPU were to fail
after updating a subset of the CPUs, the
remaining CPUs would be inconsistent with
the updated CPUs. If a locker CPU were to
fail while an update were in progress, the
system would lose its ability to prevent con­
current updates to shared data.

TANDEM SYSTEMS REVIEW• JUNE 1985

Sender CPU Failure
Recovery from a sender CPU failure is the
responsibility of the locker CPU. If a CPU
failure is detected by the locker, it checks the
GLUP-Lock. If it is not held (i.e., is -1), then
there is no update in progress and no recov­
ery is necessary.

If the GLUP-Lock contains the PID of a
process that was running in the failing CPU:

1. The locker constructs an update message
from the saved message in GLUP-Update
and the current GLUP-Seq minus 1.

2. The locker uses the N+l Broadcast to
resend the message to all CPUs. The first
locking update message is not re-sent
because this message was already pro­
cessed by the locker.

3. Those CPUs that processed the update
before the sending CPU failed reject the
global update because the GLUP-Seqs do
not match. The remaining CPUs accept
and process the update.

4. Finally, the locker sends the update to
itself and the message is recognized as an
update termination, resetting GLUP-Lock
to -1 and allowing other global updates to
be processed.

Thus, once an update message is accepted by
the locker CPU, it is "committed" and is
sent to every up CPU at least once unless,
possibly, the locker CPU fails.

Figure 4a illustrates the failure of a sender
CPU (CPU 3) after it has updated both the
locker and another CPU (CPUs 1 and 2). In
Figure 4b, the locker resends the update to
all up CPUs. The update is discarded by
CPU 2 because it has already received it.
CPU O accepts the update, and the locker
CPU releases the GLUP-Lock when it receives
the update.

Failure of the Locker CPU
When the locker CPU fails, the failure is
detected in every other CPU at different
times, but eventually all remaining CPUs
detect the failure. Each CPU chooses the
new locker to be the CPU following the
failed locker in GLUP-Order.

Figure 4

(a)

(b)

update is accepted

__ This update releases
the GLUP-Lock

The new locker realizes that it must take
over from the old locker. When it does so:

1. The new locker's GLUP-Lock is set to the
process ID of the last update that it pro­
cessed, preventing any new updates from
being accepted. Since the new locker CPU
cannot examine the old locker's GLUP­
Lock, it cannot tell if the last update was
completed or not. The simplest way to
ensure that the last update was completed
is to send it once more.

2. The new locker reconstructs the last
update it received using the saved GLUP­
Update and the current OLUP-Seq
minus 1.

3. The new locker performs an N+l Broad­
cast to the up CPUs. Any CPUs that had
not received the last update accept and
process it; the others reject it.

JUNE 1985 T A N D E M S Y S T E M S R E V I E W

Operating System

Locking updates

Nonlocking updates

Figure 4.

(a) CPU 3 dies after
updating both the locker
and another CPU (CPUs
1 and 2). (b) The locker
CPU resends the last
update to all up CPUs.
CPU 2 discards the
update because it has
already received it.
CPU O accepts the update
and the locker CPU
releases the GLUP-Lock
when it receives the
update.

81

Operating System

Figure 5

(a)

(b)

Figure 5.

(a) The locker CPU dies
after CPUs 1, 2, and 3
have received an update
from CPU 3. (b) The new
locker (CPU 2) resends
the last update to all up
CPUs. CPU 3 ignores the

82

4. When the last message of the broadcast is
re-sent to the new locker, it resets the
GLUP-Lock semaphore to -1. New
updates can now be accepted by the new
locker.

Since the new locker is always the next
CPU in GLUP-Order following the old
locker, no CPU other than the old locker has
received any update that has not been
received by the new locker.

ACK

3

__l One of these
updates is ignored

update because it is a
duplicate of the previous
update. CPU O accepts
either Message 2 from
CPU 2 or Message 4 from
CPU 3, depending on
which arrives first; it then

1

r This update
/ is ignored

Locking updates

Nonlocking updates

ignores the other message.
When the new locker
sends Message 3 to
itself, it releases the
GLUP-Lock.

When the new locker broadcasts the last
update, the originating CPU may still be
sending the update. Updates from the new
locker may overtake updates from the origi­
nal sender; some of the sender's updates may
get NACKed due to mismatching GLUP-Seqs
and duplicate updates. Thus, the sender
ignores NACKs to broadcast messages other
than the locking-update message. Once the
sender is through broadcasting, the update
has been completed.

On the other hand, other CPUs may send
locking updates to the new locker before the
new locker discovers the old locker is down.
These updates are terminated immediately,
because any CPU NACKs a locking update if
it doesn't consider itself to be the locker. The
updating processes continue to retry their
updates until the new locker discovers its
true identity, resends the last update, and
permits new updates to be processed.

Figure 5a illustrates the failure of the
locker CPU after CPUs 1, 2, and 3 have
received an update from CPU 3. In
Figure 5b, the new locker {CPU 2) resends
the last update to all up CPUs. CPU 3
ignores the update because it is a duplicate
of the previous update. CPU O accepts either
Message 2 from CPU 2 or Message 4 from
CPU 3, depending on which arrives first; it
then ignores the other message. When the
new locker sends Message 3 to itself, it
releases the GLUP-Lock.

Failure of Another CPU
If a CPU other than the sender or the locker
fails, the update proceeds normally. The
Message System either succeeds or fails to
transmit the update to the failing CPU, but
in either case, it continues to send the update
to all other CPUs.

Multiple CPU Failures
The most interesting cases of multiple CPU
failure are (1) concurrent failure of the
sender and locker and (2) concurrent failure
of the current locker and the CPU that
should become the new locker. The remain­
ing cases are simply dealt with and are left as
an exercise for the reader.

TANDEM SYSTEMS REVIEW JUNE 1985

Operating System
-- - -- --------------------~------------------------

In the event of a concurrent failure of the
sender and locker, if the sender fails before it
has successfully updated the locker, the
update does not succeed because no up CPU
ever accepts the update. If the sender fails
after it has updated the locker, the locker
knows about the update and tries to resend it
to the remaining CPUs. If the update is
received by the CPU that will become the
new locker, either from the original sender or
by the locker when the sender fails, the
update commits; when the old locker fails,
the new locker resends the last update to all
other CPUs. If both the sender and old
locker fail before either of them send the
update to the new locker, the update is con­
fined to down CPUs and might as well have
not happened.

The concurrent failure of an old and new
locker is simply handled because updates are
always sent in GLUP-Order and CPUs
become the locker in GLUP-Order. The CPU
next in order following the new locker
becomes the locker, and if the sending CPU
(or one of the locker CPUs following the fail­
ure of the sending CPU) updates this CPU
before it takes over as the new locker, the
update commits; otherwise, no up CPU is
updated.

Failures of three or more CPUs are easily
broken down into the previously described
cases. The essential rules are:

1. If the sender CPU does not fail, the
update is successful.

2. If the sender CPU fails, the update is suc­
cessful if it is transmitted to a CPU that
becomes the locker and does not fail;
otherwise, the update is confined only to
down CPUs and has no effect on the rest
of the system.

Reloading and Synchronizing a Down CPU
In the Tandem system, a down CPU is
reloaded in the following manner:

1. The CPU is reset and placed in a state to
receive a memory image across the inter­
processor bus.

2. A RELOAD process is executed in an up
CPU, which sends a memory image of the
GUARDIAN 90 kernel and some special
processes to the down CPU. It also sends
a message to every other CPU notifying it
to expect the down CPU to come up.

3. The RELOAD program notifies the CPU to
begin executing; its Message System is
activated to send "I'm Alive" messages
and to receive other messages, particu­
larly global updates. Every other CPU
recognizes that the down CPU is now up
and begins to exchange "I'm Alive" mes­
sages with it.

4. The RELOAD program sends some addi­
tional shared data messages (e.g., the
DCT) to synchronize the reloaded CPU
with the system. When the CPU is fully
synchronized, it starts executing
processes.

When a down CPU is reloaded, operations
must be carefully sequenced to ensure that
the CPU has exact copies of all shared data
and that no significant updates are missed
during the synchronization phase.

The reloading strategy used in the
GUARDIAN 90 operating system assumes
that (1) the copying of shared data from the
reloading CPU to the reloaded CPU is an
operation that can be retried and (2) shared­
data copy operations require less time than
the typical time between global updates.

----··--------- -----------------------------------

JUNE !98S T A N D E M S Y S T E M S R E V I E W 83

Operating System

84

In the sending (reloading) CPU, the
RELOAD process performs the following
operations:
1. It obtains a copy of the current

GLUP-Seq.

2. It sends shared-data copy messages to the
reloaded CPU. These are not global­
update messages and are not subject to
the GLUP processing described above.

3. It sends a global update to all CPUs
(including the reloaded CPU) that con­
tains the copied GLUP-Seq and the
update operation code to make the shared
data valid.

4. If the global update fails due to an
expired GLUP-Seq or update collision, it
returns to step 1.

In the reloaded CPU, the GUARDIAN 90
kernel performs the following operations:

1. If a normal global update is received, it
consults a local flag, shared data is valid.
This flag is not set when the CPU is
reloaded; if it is still not set, the kernel
discards the global update but ACKs it as
if it were acceptable.

2. If a shared-data copy message is received
from the RELOAD process, the CPU stores
the shared data in the proper table. The
CPU must be prepared to receive dupli­
cate shared-data copy messages and can­
cel the effect of all such duplicates except
the last.

3. When the make-shared-data-valid update
is received, the CPU sets the shared-data­
is-valid flag and processes all subsequent
global updates in a normal fashion. Note
that it is the responsibility of the RELOAD
program (by using a global update) to
determine that the reloaded CPU has
received the current replicated data.

---- ------

Basically, the shared-data copy operation
is protected by the GLUP-Seq mechanism.
No global updates can occur between the
beginning of the shared-data copy and
receipt of the make-shared-data-valid update
in the reloaded CPU. At that time, the repli­
cated data in the reloading CPU and the
reloaded CPU agree and are kept in agree­
ment by the standard global-update
mechanism.

If the amount of replicated data is too
large, then it will be necessary to divide the
shared data into sections, and each section
will require its own shared-data-is-valid flag
and make-shared-data-valid global-update
operation.

One must be careful that the CPU being
reloaded does not reference shared data
before it is validly copied from the reloaded
CPU. In GUARDIAN 90, this is easily accom­
plished by disabling process dispatching
until all shared data is valid.

Finally, if some other CPU dies during a
reload operation, the CPU being reloaded
kills itself unless all of its shared-data-is­
valid flags have been set.

Performance
Figure 6 compares the performance of the
DCT update operation for both the A20
GUARDIAN and BOO GUARDIAN 90 operat­
ing systems. The A20 version obtains a
global semaphore before sending the update
to every CPU. In a single-CPU system, no
messages are required to obtain the sema­
phore, so its performance is equivalent to
that of GUARDIAN 90. In a multiple-CPU
system, obtaining the semaphore causes the
fixed overhead of A20 GUARDIAN to be
much greater than that of GUARDIAN 90.

TANDEM SYSTEMS REVIEW• JUNE 1985

Conclusion
The GUARDIAN 90 operating system incor­
porates a new algorithm for updating repli­
cated data in a distributed system with no
shared memory. This algorithm is very effi­
cient and provides consistency and atomicity
despite any number of CPU or link failures.
This algorithm performs considerably better
than a conventional, semaphore-based algo­
rithm that survives only a limited number of
failures.

References
Chandra, M. 1985. The GUARDIAN Operating System and
How to Design for It. Tandem Systems Review. vol. 1, no. 1.
Tandem Computers Incorporated.

Gray, J. N. 1978. Notes on Data Base Operating Systems. In
Operating Systems-An Advanced Course, eds. R. Bayer, et
al., pp. 393-481. Springer-Verlag.

Acknowledgments
Wendy Bartlett made many suggestions that improved this
article immeasurably; her efforts are deeply appreciated.

Richard Carr is the staff technical consultant for the
T16 Systems group in Software Development. Since joining
Tandem in 1981, he has designed and implemented SYSGEN2,
the Nonstop II memory manager, DSAP, DCOM, and the
GUARDIAN facilities described in this article. Before coming to
Tandem, Richard was associated with Stanford University. As a
staff member, he designed and implemented the time-sharing
system for the university's large-scale IBM computers, as well as
the interactive FORTRAN compiler for that system. He also
obtained a Masters and Ph.D. in Computer Science from
Stanford.

J U N E l 9 8 5 T A N D E M

Figure 6

.,
:a
t
:::,

Figure 6.

A comparison of the
elapsed time for a global
update on the A20
GUARDIAN and BOO
GUARDIAN 90 operat­
ing systems. The A20
version obtains a global

2 3 4 5

Number of CPUs

semaphore before sending
the update to every CPU.
In a single-CPU system,
no messages are required
to obtain the semaphore,
so its performance is
equivalent to that of

SYSTEMS REVIEW

6

Operating System

7 8

GUARDIAN 90. In a
multiple-CPU system,
obtaining the semaphore
causes the fixed overhead
of A20 GUARDIAN to
be much greater than that
of GUARDIAN 90.

85

86

Changes in FOX

he low-level handshaking
protocols used by the
6700 Fiber Optic Exten­
sion (FOX) have been com­
pletely reimplemented in
the BOO software release to
provide better monitoring

of available paths to different clusters. As
the changes make BOO FOX incompatible
with the A06 and A20 versions of the
GUARDIAN operating system, it is necessary
for users to upgrade all of the systems on a
FOX ring to GUARDIAN 90 (BOO release) at
the same time. (Future modifications to FOX
will remain compatibile with GUARDIAN 90.)

This article describes some of the features
of the new FOX protocols and their effect on
FOX users.

FOX Handshaking Protocols

The software that controls the operation of
a FOX ring includes the !PB monitor pro­
cess, EXPAND line handlers, and the
Message System. The interprocessor bus
(IPB) monitor processes in the various sys­
tems in a ring communicate with one
another using low-level handshaking proto­
cols. The network line handlers on A06 and
A20 GUARDIAN/EXPAND systems also com­
municate using handshaking protocols.
These protocols are used to establish a net­
work connection between FOX systems.

Original Protocols
The original (A06 and A20) protocols do not
consider any characteristics of the underly­
ing physical hardware of a system, such as
the bus controllers and the ring topology.
The information available to the !PB moni­
tor process and FOX line handlers do not
permit the software to deduce the layout of
the FOX ring. These protocols are adequate
to establish a network connection, but they
do not permit the localization of failing
components when hardware failures occur,
especially for rings with more than two or
three systems or for rings with systems phys­
ically far apart.

New Protocols
The BOO protocols provide a better model of
the ring configuration of a FOX network to
aid in the diagnosis of problems and also to
provide better recovery from errors. Each
!PB monitor process monitors all four paths
(X LEFT, X RIGHT, y LEFT, and y RIGHT)
and maintains a view of the FOX ring con­
sisting of an ordered list of all systems that
are up on each path. Since a FOX ring con­
figuration may change as clusters are cold
loaded or taken down, each !PB monitor
process builds up the view dynamically from
the information exchanged by the low-level
protocols.

Each !PB monitor also monitors the bus
controllers and the FOX links for errors. The
bus-controller microcode makes information
available to the IPB monitor about the status
of the links and error counts. The !PB moni­
tor uses this information to determine
whether the link is usable or not. For exam­
ple, if it detects a link that is cross-wired

TANDEM SYSTEMS REVIEW• JUNE !98'i

(from the x bus to the Y bus) or if certain
error counts (such as that for dropped pack­
ets) exceed a certain threshold, it declares
the link unusable. When this happens, the
information is propagated over the entire
FOX ring so that no more message traffic is
sent on the bad link, minimizing error
resends.

This :nechanism also enables a link to be
removed from service for maintenance or to
insert a new system onto the ring without
causing an excessive number of errors and
resends at other systems on the ring. The IPB
monitor process also automatically declares
the link to be usable if the error condition
disappears; for example, if the cross-wired
link is rewired properly. The error informa­
tion is also made available to users through
Communications Management Interface
(CMI) status-display commands.

An additional benefit of the logical-ring
configuration information is that the Mes­
sage System attempts to use the path with
the smallest number of intervening systems
for message communications.

TMDS FOX Diagnostic Subsystem
BOO FOX also supports the Tandem Mainte­
nance and Diagnostic System (TMDS). The
FOX diagnostic subsystem allows a Tandem
customer engineer (CE) to take a bus con­
troller (LBU) out of service and diagnose
errors, using downloadable microdiagnos­
tics. Normal message traffic continues
through the other controller. This is useful
in localizing hardware faults.

Need for Simultaneous
Upgrade to GUARDIAN 90
The most important effect of the new proto­
cols on FOX users is that, in order to use
FOX with GUARDIAN 90, all systems on the
ring must be upgraded to GUARDIAN 90
simultaneously. This is necessary because the
new protocols are incompatible with the old
ones. As explained above, the information
exchanged in BOO FOX is much more elabo­
rate than that exchanged in A06 and A20
FOX. Also, the new protocols now require
the cooperation of other IPB monitors.

Direct-connect EXPAND Line Handlers
Users who do not wish to upgrade all sys­
tems to GUARDIAN 90 simultaneously can
use other communications lines (e.g., direct­
connect EXPAND line handlers) to maintain
communications until the complete upgrade
is made.

Leaving BOO EXPAND Line Handlers Down
A GUARDIAN 90 system cannot commu­
nicate over a FOX ring with an A06 or
A20 GUARDIAN system. Similarly, a
GUARDIAN 90 system cannot communicate
with another GUARDIAN 90 system if the
two are separated from each other on the
FOX ring by an A06 or A20 GUARDIAN
cluster. 1

If the EXPAND line handlers in the
GUARDIAN 90 systems on a ring are not
brought up (with the Peripheral Utility Pro­
gram, PUP), however, GUARDIAN systems
can use the FOX ring to communicate with
each other. This works even if these clusters
are separated from each other by
GUARDIAN 90 clusters. Similarly, if the
GUARDIAN 90 systems on a ring are adja­
cent to one another (i.e., there are no inter­
vening GUARDIAN systems) and the
EXPAND line handlers at the GUARDIAN
systems are not brought up with PUP, the
GUARDIAN 90 systems can communicate
over the FOX ring.

Users can thus use the ring in a limited
fashion before they have upgraded all sys­
tems to the GUARDIAN 90 operating system.
Caution is recommended to users who do
this, however, since unpredictable results can
occur if both GUARDIAN/EXPAND and
GUARDIAN 90/EXPAND line handlers are
brought up with PUP simultaneously. Users
should also note that some CMI display
information may be spurious if a ring con­
tains both GUARDIAN 90 and GUARDIAN
operating systems.

1 In the re')! ofthi~ °'ection, GUARDJA,'\/i.., "'ynonomou-, \\.ith A06/A20
GUARDIA.IV.

JUNE llJKS TANDEM SYSTEMS REVIEW

Operating System

87

Operating System

88

Other External Changes
Other external changes in the BOO release of
FOX include changes to SYSGEN modifiers
for the IPB monitor and the FOX line han­
dlers, and changes to CMI commands and
displays. The SYSGEN modifiers have been
changed to delete certain modifiers for the
line handler that are specific to FOX (e.g.,
NEXTSYSCLUSTER).

The CMI commands and displays are
modified to include the new information
available to the IPB monitor process. For
example, the CMI command STATUS
SUBNET now displays an ordered view of the
ring from the local system on each bus and
direction, as well as an indication of whether
the ring is continuous or there is a break. If
the ring is broken, the reason for the break
is also displayed (e.g., DOWNED BY OPER­
ATOR). This information is useful to oper­
ations and service personnel.

Conclusion
The new FOX protocols make the FOX ring
easier to diagnose and maintain. Error han­
dling and recovery are also improved. These
protocols can now be enhanced in future
releases while their compatibility with the
GUARDIAN 90 operating system is main­
tained. The implementation of these proto­
cols results in an incompatibility between
A06 and A20 GUARDIAN and GUARDIAN 90,
but this one-time incompatibility is justified
by the extended functionality and future
expandability of FOX.

Acknowledgments
The author would like to acknowledge Rich Larson's help in
designing the BOO FOX protocols.

Nitin Donde joined Tandem in July 1982. He works in the Oper­
ating Systems group in Software Development. Nitin has an
M.S. in Computer Science from the University of Wisconsin in
Madison.

TANDEM SYSTEMS REVIEW JUNE 198:i

ew high-performance
versions of the BACKUP
and RESTORE programs
are available as part of

- the GUARDIAN 90 operat­
ing system. BACKUP2 is
used to copy disc files

onto magnetic tape; RESTORE2 is used to
return those files to disc.

BACKUP2 and RESTORE2 handle both
DPI and DP2 files, but their significant per­
formance improvements are most evident
with the latter. Still available, BACKUP and
RESTORE handle only DPI files.

The performance improvements achieved
with BACKUP2 and RESTORE2 are a result
of:

1. Improved software (DP2, BACKUP2, and
RESTORE2).

2. Improved hardware (3107 disc controller).

3. Improved microcode (3206 tape
controller).

Results of performance tests show that
BACKUP2 performs up to 2.5 times faster on
DP2 files than BACKUP performs on DPI
files. RESTORE2 (on DP2 files) is up to 4.5
times faster than RESTORE (on DPI files).
Also, using an improved algorithm,
RESTORE2 performs up to 1 .6 times faster
on DPI files than RESTORE does. BACKUP2
and BACKUP have identical performance on
DP I files. These results are illustrated in
Figure 1 a and b.

Improved Performance
for BACKUP2 and RESTORE2

This article discusses the performance
analyses made on BACKUP, RESTORE,
BACKUP2, and RESTORE2 and quantifies the
improvements resulting from each of the
hardware and software features mentioned
above. It ends with a mention of areas for
possible future improvement.

Figure 1 Figure 1.

"C
C:
0 u
Cl)
II)

t;;
Q.

II)
Cl)

~
:.::

"C
C:
0 u
Cl)
II)

t;;
Q.

"' Cl)
>,
.c
:.::

(a)

400

300

200

100

0

(b)

400

300

200

100

0

BACKUP

RESTORE

BACKUP2

RESTORE2

(a) Performance compar­
ison of backup oper­
ations on large files.
BACKUP was run on
DP1 files, and
BACKUP2 was run
first on DP1 and then
on DP2 files. (b) The
same comparison for
restore operations.

JUNE 1985 TANDEM SYSTEMS REVIEW 89

Operating System
--- ----

BACKUP2 Performance

Backing up a disc file involves:

1. Opening the file.

2. Writing the file label to tape.

3. Copying the contents of the file to tape.

4. Closing the file.

The performance analysis of BACKUP was
restricted to the backing up of large files, as
that is the area in which the greatest improve­
ment could be made. Also, for the purposes
of this performance study, the backup pro­
cessing was considered to be the copying of
the contents of the disc file to tape. The over­
head associated with opening and closing
files was not measured.

Dump-loop Algorithm
The dump loop is the code within BACKUP
that is responsible for copying the file con­
tents. The algorithm it uses (minus the
details of loop termination and buffer man­
agement) can be described as follows:

LOOP

READ(Discfile, Buffer, Wait);

AWAITIO(Tape);

! Compute tape record checksum for "Buffer".

WRITE(Tape, Buffer, Nowait);

ENDLOOP;

The performance analysis was based on a
comparison of the time required to read a
block of data from disc and the time needed
to write the same data block to tape. Since
DPl disc reads (and writes) are limited to
4K bytes, eight disc reads were required to
fill a 30K-byte tape record.

The BACKUP dump-loop algorithm can be
viewed as a combination of two semi­
independent processing loops, the
DISC"LOOP and the TAPE"LOOP. The
DISC"LOOP consists of all the processing
required to get a data block (which was to
be written to tape) from the disc; the
TAPE "LOOP comprises the processing
between two tape writes. These loops operate
at different speeds and are synchronized by
the AWAITIO procedure.

For the DISC"LOOP, it was assumed that
the "nowait" tape write would be completed
when AWAITIO was called. The DISC"LOOP
time would be its best-case time.

The DISC"LOOP consists of the "wait"
disc read and other components that are
executed serially with it in the dump loop.
These other components are the processing
time required by AWAITIO, the checksum
calculation of the tape record, and the nowait
tape write call (but not the time required by
the tape process to write the record).

Similarly, for the TAPE "LOOP, it was
assumed that the disc read would be
finished before the tape write finished. The
TAPE"LOOP consists of the nowait tape write
call, the time required by the tape process to
complete the tape write, the processing time
required by AWAITIO, and the checksum cal­
culation of the tape record.

Software measurements for various com­
ponents of the disc and tape loops, along
with calculated timings for the channel, disc,
and tape hardware, were used to obtain the
times required to execute the disc and the
tape loops for 30K-byte blocks. With a
TRIDENT tape drive, 3106 disc controller,
4104 disc drives, NonStop TXP processors,
and BOO software, the time required to
execute the DISC"LOOP was 211.7 ms and
the time to execute the TAPE"LOOP was
125.4 ms.

For BACKUP, since the DISC"LOOP takes
more time to process a block than the
TAPE"LOOP, the rate at which the data can
be backed up is determined by the rate at
which the DISC"LOOP can get data from
the disc. It took 211. 7 ms to process one
30K-byte block; therefore, the predicted

---~----------- ------------------

90 TANDEM SYSTEMS REVIEW JUNE 19X'i

backup data rate was 145,000 bytes/second.
This compared favorably with the measured
data rate of 140,000 bytes/second, validating
the model of the backup operation used in
the test.

DP2 BULKIO
From the foregoing analysis, it was clear that
the DISC"LOOP needed to be improved to
speed up backup processing. The dump-loop
algorithm was examined, and it was noted
that, although the tape record was written
with one File System write, the disc record
was read with eight reads. One obvious way
to speed up the DISC"LOOP would be to
change the algorithm to use only one disc
read for every iteration of the dump loop.
BACKUP2 was designed to do this by making
use of the DP2 BULKIO feature, which allows
DP2 files to be read and written in 30K-byte
record sizes.

In addition to allowing large record sizes
to be read and written, DP2 BULKIO provides
fast sequential data access. The DP2 disc
process bypasses cache when it is performing
DP2 BULKIO. It is assumed that the number
of cache hits would be too low for DP2
BULKIO to justify the performance penalty
of searching cache.

Also, the File System does not buffer DP2
BULKIO records. For normal reads and
writes, the File System sends and receives
records from temporary buffers in its private
data space. For DP2 BULKIO, the File System
sends and receives records directly from the
program's data space, eliminating the time
required to copy the data into its own
buffers. (Programs that use DP2 BULKIO
must be privileged and must obey certain
system rules.)

Note that both the DISC"LOOP and the
TAPE"LOOP include time to compute the
tape-record checksum. With DP2, this check­
sum calculation can be eliminated, however,
because DP2 computes the checksum of every
sector it reads. For BULKREAD, it combines
the checksums of all the sectors read and
passes the resulting checksum back. Thus,
the checksum returned by BULKREAD to
BACKUP2 speeds up both the DISC"LOOP
and the TAPE "LOOP.

With the DP2 BULKIO feature, the
DISC"LOOP time was 170.5 ms and the
TAPE"LOOP time remained 125.4 ms. This
made the backup speed 180,000 bytes/
second, providing approximately a 30%
improvement.

Note that even with DP2 BULKIO, the
DISC"LOOP time was longer than the
TAPE"LOOP time; hence, the DISC"LOOP
time needed to be reduced even further for
better performance.

Longer Transfers
An analysis of the different components of
the DISC"LOOP showed that a long time was
spent in getting the data from the disc to the
processor's memory. Also, although the use
of DP2 BULKIO reduced the number of logi­
cal reads of the disc file from eight to one
for every tape block write, it still took eight
disc accesses to get the data for one tape
record from the disc. The amount of time
required for each disc access had the follow­
ing components:

1. Seek time, the amount of time required to
get the disc head to the correct cylinder. It
is usually zero for backup, since the data
is read sequentially from disc.

2. Latency time, the amount of time spent
waiting for the correct sector to be posi­
tioned under the disc head.

3. Data-transfer time, the amount of time
required to transfer the data from disc to
the disc-controller buffer.

4. Channel time, the amount of time
required to burst the data from the con­
troller buffer to the processor over the
channel.

An analysis of the components revealed
that the amount of time required to access
data from disc could be reduced considerably
by reducing the number of accesses required
to get 30K bytes from disc. If the number
were reduced from eight to one, the latency
time for seven accesses would be eliminated.

JUNF 19K'i TANDEM SYSTEMS RFVIFW

Operating System

91

Operating System
------------ --- ---- -------------------------- ------- --

92

It was possible to do this with the longer
transfer capability of the 3107 disc controller.
DP2 uses this capability when performing
BULKIOs. With a 3107 controller, the
DISC"LOOP took 112.4 ms, making it
faster than the TAPE"LOOP. This meant
the backup speed, now determined by
the TAPE"LOOP time, was 243,000
bytes/ second.

Larger Channel Bursts
The bottleneck had shifted from the
DISC"LOOP to the TAPE"LOOP, requiring a
reduction in the time taken by the latter. An
examination of the components of the
TAPE"LOOP revealed that 78% of the
TAPE"LOOP time was consumed by hardware
components, in transferring the data from
the CPU to the tape-controller buffer and
writing the tape record to tape.

The time required to transfer the data
from the processor to the tape controller
could be reduced considerably by transfer­
ring the data in larger bursts, since the tape
controller uses 16-word bursts and has a
large hold-off time after every burst. A chan­
nel burst size of 128 words resulted in a
TAPE"LOOP time of 78.5 ms while the disc
time remained at 112.4 ms, making the
backup speed 273,000 bytes/second.

Redesign of the Dump Loop
The bottleneck had shifted back to the
DISC"LOOP. Measurements showed the disc
drive to be idle about half the time, when
any of the following occurred:

1. The record was sent from the disc process
to BACKUP.

2. The previous tape write was awaited.

3. The record was written to tape.

4. The next disc read request was sent to the
disc process.

5. The disc process prepared the read
request.

DISC"LOOP throughput would improve if
the next read request were queued at the disc
process when the current read finished. This
would allow steps 2 and 3 to proceed in
parallel with steps 4 and 5. In BACKUP2, the
dump loop was redesigned to accomplish
this.

BACKUP2 opens the file twice and issues
nowait disc reads on both OPENS. (It is nec­
essary to open the file twice, as only one
nowait operation can be outstanding against
a disc-file OPEN at one time.) A nowait read
is always outstanding on one of the OPENs
for the next record while the current record
is awaited and used. The BACKUP2 DP2
dump-loop algorithm is as follows:

BULKREAD(Discfilel, Buffer!, Nowait);

LOOP

BULKREAD(Discfile2, Buffer2, Nowait);

AWAI TIO(Disc file I)

AWAITIO(Tape);

WRITE(Tape, Buffer!, Nowait);

BULKREAD(Discfilel, Buffer!, Nowait);

AWAITIO(Discfile2)

AWAITIO(Tape);

WRITE(Tape, Buffer2, Nowait);

ENDLOOP;

With this new dump-loop algorithm,
the DISC"LOOP time for BACKUP2 is 83.3 ms
and the TAPE"LOOP time remains 78.5 ms,
making the expected backup speed
369,000 bytes/second. The measured
throughput is 351,000 bytes/second, which
is near the predicted throughput.

RESTORE2 Performance

Restoring a disc file involves:

1. Reading its tape-file label.

2. Purging the old disc file (if necessary).

3. Creating the file.

4. Opening the file.

5. Preallocating its extents.

6. Copying the contents of the file from tape
to disc.

7. Closing the file.

As with the BACKUP2 measurements, the
RESTORE2 measurements were restricted to
large files, and the overhead associated with
such operations as purging, creating, and
opening was not included.

TANDEM SYSTEMS REVIEW JUNE 198:i

Dump-loop Algorithm
The RESTORE dump-loop algorithm is as
follows:

LOOP

READ(Tape, Buffer, Wait);

! Verify tape record checksum.
AWAITIO(Discfile);

WRITE(Discfile, Buffer, Nowait);

ENDLOOP;

Redesign of Dump Loop
Because of the DPI 4K-byte limitation, the
nowait write of a 30K-byte record in this
dump loop consists of seven wait disc writes
and only one nowait write. This limits
RESTORE' s performance, as described below.

The RESTORE dump loop is essentially the
BACKUP dump loop with the roles of the
tape and disc file reversed. Measurements
showed, however, that DPI BACKUP is over
twice as fast as DPI RESTORE (140,000
bytes/second vs. 65,000 bytes/second). The
difference was commonly attributed to the
longer amount of time required for a disc
WRITE (especially if the drive were mirrored)
than for a disc read.

Measurements showed that parallel
mirrored-disc writes took only 43% longer
than disc reads. A major part of the differ­
ence in speed between BACKUP and
RESTORE was attributable to the seven wait
disc writes that were executed serially with
the wait tape read (and, thus, were part of
the TAPE"'LOOP).

RESTORE2's dump loop was redesigned to
perform a nowait tape read in addition to
performing the last disc write as a nowait
write. This improved the performance of
RESTORE2 62 0Jo over that of RESTORE
with DPI.

DP2 BULKIO, Longer Transfers, and Larger
Channel Bursts
RESTORE2 takes advantage of DP2 BULKIO.
It uses one nowait write for a 30K-byte
record, thus eliminating the seven waited
4K-byte writes required with DPI. With the
longer transfers of the 3107 disc controller
and the larger bursts of the TRIDENT tape
controller, the data can now be restored at
290,000 bytes/second, resulting in a 346%
improvement over the performance of
RESTORE.

Conclusion

The use of DP2 BULKIO, longer data transfers
available with the 3107 disc controller, larger
channel bursts available with the TRIDENT
tape controller, and the redesign of the
BACKUP and RESTORE dump loops have
resulted in significantly improved perform­
ance for the new GUARDIAN II BACKUP2
and RESTORE2 programs.

The performance of these two programs
can be improved even further with improve­
ments to the microcode and software.
Enhancements under consideration for future
releases include larger channel bursts on the
3107 controller and further improvements to
the RESTORE2 algorithm.

Acknowledgments
The authors would like to thank to Jim Enright, Jim Gray,
Praful Shah, Andrea Borr, Mitch Butler, Tim Hallock, Franco
Putzolu, Pat Beadles, Dennis Markt, Susan Troung, Larry
McGowan, Peter Oleinick, and Gil Siegel for their help in
collecting the BACKUP2 and RESTORE2 performance informa­
tion and for reviewing this article.

Anil Khatri is a member of the Performance group in Software
Development. Before joining Tandem in 1983, he obtained a B.S.
in Electrical Engineering from the Indian Institute of Technology
at Kanpur and an M.S. in Computer Science from the University
of Maryland.

Matt Mccline joined Tandem Software Development in Septem­
ber 1982. At that time, he enhanced and maintained the File
Utility Program (FUP), Peripheral Utility Program (PUP), and
BACKUP and RESTORE utilities. In the past year, he worked on
BACKUP2 and RESTORE2. Recently, he began working in the
Transaction Monitoring Facility (TMF) group. Matt has a B.S. in
Electrical Engineering and Computer Science from U.C. Berkeley.

JUNE 1985 TANDEM SYSTEMS REVIEW

Operating System

93

94

VIEWSYS: An On-line
System-resource Monitor

___ new Tandem utility pro­
gram, VIEWSYS, now
allows users to monitor
system resources while

- their system is running.
VIEWSYS displays the

_______ percentage used of
selected resources in bar-graph form on a
Tandem 6520 or 6530 terminal. Users can
display a variety of screens showing the
usage of one resource across all processors
in a system or all resources within a set of
processors. Users define which processors in
a system are to be monitored.

VIEWSYS is useful as a first-cut system­
balancing tool because it provides a dynamic
view into the system while applications are
running. It is especially helpful for monitor­
ing the effects of program or file relocation.
This article provides a brief overview of the
functions and commands available with
VIEWSYS.

System Monitoring

To assure the best performance possible
from its systems, Tandem has made available
a number of balancing and tuning tools. At
one end of the spectrum is XRAY, a very
detailed performance-analysis tool. An
XRAY measurement is taken on an active
system, and the subsequent output is studied
to determine bottlenecks or imbalances
within that system. Although users can view
XRAY output as it makes the measurements ,
common practice is to interpret the results
after the measurement so that the process of
viewing the output has no effect on the sta­
tistics gathered.

At the other end of the spectrum are the
lights on the processor panel, which users
can view to obtain statistics on processor
performance. From the command interpreter
(COMINT), users can issue the LIGHTS ON
command to cause the percentage of pro­
cessors busy to be displayed by the panel
lights. Lights one through ten indicate the
percentage of time that that processor was
not idle during the polling period (generally
one second); each light indicates 10 percent.

TANDEM SYSTEMS REVIEW• JUNE !985

PEEK is another utility for monitoring
processor performance. It reports statistical
information about GUARDIAN and
GUARDIAN 90 control blocks, pools, and
physical memory. PEEK produces single or
multiple "snapshots" containing current
and maximum resource use within a speci­
fied processor. Its maximum counters, ini­
tialized with the PEEK INIT command,
report the maximum use of those resources
over time. For statistics such as page faults,
users can generate a "snapshot" at a known
time, generate another "snapshot" later, and
determine average use during the elapsed
time.

The need for a utility that monitors and
displays current resource usage on-line led to
the creation of VIEWSYS. Intended as an
addition to the above tools, it reports a sub­
set of the statistics they provide, in a graphi­
cal, interactive, on-line fashion. VIEWSYS is
available for NonStop II, TXP, and EXT
systems running the GUARDIAN 90 operating
system.

Support

VIEWSYS is an economically priced, limited­
support software product. There is no local
Tandem office support for this product;
instead, users can submit questions or prob­
lems by filling out the form in the back of
the VIEWSYS manual and mailing it directly
to Tandem headquarters. Generally, a reply
to a query is returned within two weeks.

VIEWSYS is an added-value utility that
has no potential impact on the operating
system or user applications and therefore
does not require locally based systems­
analyst support. Offering the product with
this limited support permits Tandem to offer
it at an attractive price.

Customers contractually agree to the sup­
port terms and are licensed to use VIEWSYS
for a one-time fee. VIEWSYS is part of the
Bnn software-release series, but there is no
guarantee that it will be part of subsequent
release series.

Program Function
VIEWSYS is designed to dynamically reflect
system-resource use. Users can view the cur­
rent or maximum allocation of control
blocks, system pools, and physical memory.
Information is available on page-fault rates,
CPU-busy rates, dispatch rates, disc-I/0
rates, and interprocessor send-busy rates.
Processor queues and page-fault queues are
displayed.

Users can display the HELP screen (shown
in Figure 1) by pressing a function key. This
screen displays function-key assignments
and the current attributes of the VIEWSYS
program. Users can select individual
resources with unshifted function keys and
individual processors with shifted function
keys. They can alter other VIEWSYS pro­
gram attributes with special function keys.

Figure 1

JUNE 1985 T A N D E M S Y S T E M S R E V I E W

Operating System

Figure 1.

The VIEWSYS HELP
screen. Users control the
running program by press­
ing function keys. The top
section shows the keys
used to control program
attributes. The center
section lists the entities
reported by the program
and the function keys
depressed to select the
entities. The bottom
section depicts the current
program attributes.

95

Operating System

Figure 2.

VIEWSYS command
syntax. Users issue key­
word commands to deter­
mine the program
attributes. They can set
the items highlighted in
gray at run time or during
program execution with
function keys.

96

Table 1.

Entities 111~asure_cJ__t:iy VIEWSYS.
Name Meaning

CPUBUSY The percentage of time a processor is not idle
during the polling period (processor-busy +
interrupt-busy time)

CPUOUEUE The average number of processes on the ready
list during the polling period (processes that are
ready to run).

PAGEFAULT The average number of page faults that occurred.
per second, during the polling period

---- -- -

MEMOUEUE The average number of processes awaiting
page-fault servicing during the polling period

- ---

DISPATCH The average number of dispatches, per second,
during the polling period

SEND BUSY The percentage of time during the polling period
that a send was being performed within a
processor.

CACHE HITS

DISCIO

The average number of disc-cache hits, per
second, during the polling period

The average number of disc I/Os, per second,
during the polling period

-- ---

PCB

LOCKEDMEM

SYSPOOL

MAPPOOL

LCB

The number of Process Control Blocks allocated
at the time the processor is polled.

------- ------ ----

The number of pages of physical memory that are
locked at the time the processor is polled

--- -- ----- -- - --

The number of pages of SYSPOOL allocated at
the time the processor is polled

- -

The number of pages of MAPPOOL allocated at
the time the processor is polled.

----- - ---

The number of Link Control Blocks allocated at the
time the processor is polled.

TLE

BPT

The number of Time List Elements allocated at the
time the processor is polled

---------- - --

The number of break points allocated at the time
the processor is polled.

Figure 2

VIEWSYS [/ <run-option> [, <run-option] ... /]
[<command> [; <command>] ...]

<run-option> is one of:

NAME [$<process-name>]
CPU <cpu-number>
PRI <priority>

<command> is one of:

BACKUPCPU < cpu-number >

CPU SETS <number>

DELAY <number-seconds>

EXITAFTER <number>

FUNCTION KEYS { ON I OFF}

MULTITYPE { ON I OFF}

NUMCPUS <number>

RESERVELCBS { ON I OFF }

SWITCHBACK { ON I OFF}

UNSTOPPABLE { ON I OFF }

UPCPUS { ON I OFF }

USERCPUS <cpu-number> [<cpu-number>] ...

Measurement Techniques
Table 1 shows the entities measured by
VIEWSYS. The values displayed are taken
from GUARDIAN 90 counters also used by
XRAY and PEEK. VIEWSYS does not alter
any of these counters and, therefore, can be
run concurrently with these programs. More
than one VIEWSYS program can run
concurrently on a system.

Using VIEWSYS
The three standard run options for VIEWSYS
are: NAME, CPU, and PRI. Following the
run options, optional commands can be
entered to configure VIEWSYS (see Fig-
ure 2). The run commands allow users to
specify program attributes such as the
processors to be monitored (USERCPUS I 2
3), the initial display format (DISPLAY
CPUBUSY), the polling period in seconds
(DELAY 5), and whether to rotate from
display to display (ROTATION ON).

Once VIEWSYS is running, its attributes
can be altered with function keys. In Fig­
ure 2, attributes that can be set with both
run-time commands and function keys are
highlighted in gray.

Current/maximum Mode
When first started, VIEWSYS reports current
usage. This is the percentage and amount of
each resource in use during that polling
period; each display reflects the average use
since the last display.

Users can press a function key to alter the
display to maximum mode. For this mode,
internal maximum counters are kept for
each resource in each processor being
monitored. When users select maximum
mode, VIEWSYS displays the highest
percentage and amount of each resource
recorded. These counters are initialized
when the process starts, and users can also
initialize at any time by pressing a function
key. This allows them to reset the
maximums at a recorded time and then
display the maximum values occurring since
that time. This can be useful in finding
under-utilized resources.

T A N D E M SYSTEMS REVIEW J U N E I 9 8 5

ROTATION and ROTATECPUS Commands
Users can set the program to rotate through
all possible display types by setting
ROTATION ON. Setting it ON causes the
sequential display of all processors being
monitored. Setting it OFF causes the
currently selected display to be repeated.
Function keys are used as toggles to alter the
state of these two attributes.

Bar-graph Percentages
Figure 3 shows the screen display generated
by the USERCPUS command. Nine of the
percentages reported are based on the actual
configured amounts of the resource. System­
pool sizes are determined at system genera­
tion (SYSGEN) time, as are the number of
control blocks allocated. These amounts are
used to determine the percentage used.
CPUBUSY and SENDBUSY percentages are
determined by dividing the busy time by the
total elapsed time.

Six entities have no absolute maximums,
so maximums have been established for
them for use by VIEWSYS. Table 2 lists
these maximums for the NonStop II and
NonStop TXP processors. The values have
been selected so that the display of a high
percentage indicates potential problems
resulting from contention for processor
resources. Because of the faster processing
speed of the Nonstop TXP processor, the
estimated maximums for its dispatch and
disc 1/0 rates are set higher than those for
the Nonstop II processor.

Conclusion
VIEWSYS extends the capability of Tandem's
system-monitoring facilities by providing
flexible, real-time, graphical displays of
system-resource usage. It is useful for both
locating problems and balancing resource
use within a system.

- -

Dale Montgomery is an account analyst in the Seattle district.
When he wrote this article a few months ago, he was a staff
analyst for the Field Productivity Programs group in Sunnyvale.
His previous duties al Tandem included instructing both System
Management and GUARDIAN Operating System courses and
programming in the Tandem Application Language (TAL).

Figure 3

Figure 3.

A screen generated by the
VIEWSYS USERCPUS
command. The bars
represent percentages of

Table 2.

utilization. The numbers
to the right of the bars
represent either the aver­
age number of control

Values for entities used as maximums in VIEWSYS. 1

CPU queue

Page-fault rate
- --- - -

Memory queue

Nonstop II
processor

10

25
6

Dispatch rate 400
-- - ---- - - --- -- -- --

Cache-hit rate 100
-- - - - --- --- - -

Disc-1/0 rate 50

'Number in queue or number per second.

Nonstop TXP
processor

10

25
- -- -

6

800

100

100

JUNE 198"> T A N D E M S Y S T E M S R E V I E W

Operating System

36
44:J
17t!

4.
110
. '6

1

blocks, memory pages,
etc., or the rate (per
second) of page f au/ts,
cache hits, etc.

97

98

Introducing TMDS,
Tandem's New
On-line Diagnostic System

he Tandem Maintenance
and Diagnostic System
(TMDS), a new diagnostic
software system for
Tandem hardware, is avail­
able in the BOO release. The
FOX diagnostic, a TMDS

subsystem for diagnosing problems with the
6700 Fiber Optic Extension (FOX), is also
available.

TMDS aids Tandem customer engineers
(CEs) and users in many ways. To CEs,
TMDS provides a uniform interface to its
diagnostic subsystems and an extensive
"help" facility for using these diagnostics.
The diagnostics themselves provide a safe
on-line mechanism for finding and repairing
broken hardware. TMDS can run concur­
rently with user applications, causing fewer
interruptions in system activity. System
managers who have TMDS running on their
systems will find that less time is now
required by CEs to determine the location
and causes of hardware faults.

System-management considerations for
installing and running TMDS software are
minimal. The installation instructions, in a
step-by-step format, are included in the
TMDS software documentation (Softdoc). It
is important that system managers install
TMDS as soon as possible, instead of waiting
until a CE needs to use it. As described in
this article, two processes ($ZENO and
$ZLOG) should be running at all times.

For Tandem users interested in diagnos­
tics, the rest of this article describes the
design of TMDS and the facilities it provides
for Tandem CEs. A brief description of the
FOX diagnostic is included as an example of
a TMDS application. The article concludes
with a discussion of potential enhancements
to TMDS.

On-line Diagnostics
for Fault-tolerant Systems
On-line diagnostics are important to the
smooth and uninterrupted functioning of
fault-tolerant systems. Users of Tandem
systems demand high availability of their
applications. Having to curtail all or even a
portion of their normal activity to analyze a
failure presents a major hardship to their
operations staff.

The need for concurrent execution of
diagnostics and user applications places sev­
eral restrictions on on-line diagnostics. The

TANDEM SYSTEMS REVIEW• JUNE 1985

diagnostics must not usurp any computer
resource, from CPU cycles to disc-access
paths, without good reason and user permis­
sion. In addition, the running of these diag­
nostics must not compromise data security:
control must be given only to authorized
users.

Fault-tolerant machines ease the diagnos­
tic task. In these machines, normal system
activity continues even after a hardware
component fails. The faulty component
freezes its state, allowing diagnostics to
search for the cause of the fault.

To find the fault, on-line diagnostics must
have support from hardware controllers.
When possible, fault detection and fault
isolation should occur in the hardware, firm­
ware, or software where the fault occurs.
Many times, the location of the fault is
known at the controller level and should
simply be reported to the user. On-line diag­
nostic systems must support a method of
getting this information to the user.

Other faults, such as disc retries, may not
stop a system from continuing, but informa­
tion about their causes can be lost when the
system continues. In any case, pertinent
information about faults must be stored for
future reference by diagnostics.

The TMDS Approach
The design goals for TMDS were to:

■ Support diagnostics that allow a CE to
diagnose hardware in the shortest possible
time while not interfering with normal sys­
tem activity.

■ Decrease the time required by a CE to
learn how to use a new or infrequently used
diagnostic.

■ Minimize the potential for CE diagnostic
errors and provide a mechanism for explain­
ing the errors that do occur.

■ Create a facility that records information
about unexpected hardware faults, provid­
ing the CE with all information relevant to a
particular failure.

The design of TMDS includes the follow­
ing features associated with these goals:

■ Utilization of hardware and firmware
features that allow diagnostics to test one
part or path of the hardware while leaving
the other parts available for normal system
activity.

■ Testing that identifies the correct field­
replaceable unit (FRU) to be replaced.

■ A standard command interpreter for all
TMDS diagnostics that provides consistent
syntax and extensive help for all TMDS
commands.

■ A mechanism that stores information on
abnormal events that occur during the sys­
tem's activity. This information is accessible
both by the CE and, more importantly, by
the diagnostic code, to determine the cause
of the problem, and, in certain cases, the
action required to fix it.

■ Use of NonStop processes and fault­
tolerant Tandem hardware to insure that
TMDS is always available. If any component
of a Tandem system or network fails, the
system continues and a CE can use TMDS to
diagnose the faulty hardware. In addition,
TMDS ensures that diagnostics cannot leave
a device in a diagnostic state.

Implementation
TMDS, by itself, does no direct diagnostic
work. This is done by its diagnostic subsys­
tems and the CEs that use them. It provides
the CEs with a single, powerful, consistent
command interpreter for all diagnostics that
run under the TMDS umbrella.

TMDS is designed to handle two types of
activity. The first is activity requested by the
CE through diagnostic commands. The sec­
ond is the activity initiated when TMDS is
notified of a failure in the system.

JUNE 1985 T A N D E M S Y S T E M S R E V I E W

Operating System

99

Operating System

Figure 1

2 -- 3

Figure 1.

Components of TMDS. A
diagnostic command is
entered by the CE with
the end-user interj ace
(EU!) and is verified
against the vocabulary.
Next the resource

100

Diagnostics Run by the CE
Figure 1 shows the interaction of the TMDS
components initiated when a CE uses TMDS.
The components are described below.

End-user Interface. The end-user interface
(EUI) is the TMDS process started by a CE. It
is a general-purpose command interpreter,
which, as a front end to all TMDS diagnostic
subsystems, guarantees that diagnostic com­
mands have a consistent syntax.

The commands consist of a command
name and optional parameters. A parameter
has two parts: an optional name and a man­
datory value. For example, the following are
valid commands in TMDS:

TMDS > TEST LBU x, TESTNAME all
TMDS > TEST x, all

where TEST is the command name, LBU and
TESTNAME are parameter names, and x and
all are parameter values. (TMDS > is the
TMDS prompt.)

TMDS resource manager
and scheduler

t. l· TMDS
command j interpreter

6

J1 I 7

User

manager and scheduler
($ZENO) starts the
application monitor (AM)
in which the command
is executed. Then
the test microcode is
downloaded into the

9 --11

i 10

device and the test is run.
The resource manager is
a Nonstop process pair
that returns resources
allocated during diagnos­
tic work to their initial
state if an error occurs.

A benefit of the two-part parameters used
in TMDS is that a parameter's name can be
given in any position in the command. The
following example, which has its parameters
specified in a different order from that of
the first example above, is also valid:

TMDS > TEST TESTNAME all, LBU x

Another benefit of two-part parameters is
that a default parameter can be set. In
TMDS, it is possible to specify that all com­
mands having the parameter PARM are to
have the value VALUE for that parameter.
This mechanism is useful when a parameter
is used frequently in several different
commands or in the repetition of a single
command.

The command DEFAULT is used to estab­
lish this relationship. The name of the
parameter in the DEFAULT command is the
parameter name to be defaulted; the value is
the default value. For example,

TMDS > DEFAULT LBU x

associates the parameter name LBU to the
value x. After this DEFAULT command is
issued, the LBU parameter defaults to the
value x for all commands that use that
parameter unless the user specifies a value
for LBU on the command line. The following
example is now equivalent to the first exam­
ple given above:

TMDS > TEST TESTNAME all

The EUI also presents a unified "help"
facility for all diagnostics. There are two
ways to obtain help information in TMDS.
Use of the help operator, ?, is one way. Any­
where in a command line, the help operator
can be used to ask, "What are my options?"
For example, if CEs cannot remember the
values for the LBU parameter in the TEST
command, they can use the help operator to
obtain this information as shown in the fol­
lowing example:

TMDS > TEST LBU ?

TANDEM SYSTEMS REVIEW JUNE 1985

If they cannot remember the name or val­
ues of the second parameter for TEST, they
can type ? in the second parameter location
to get this information:

TMDS > TEST LBU x, ?

If the help operator is used in place of the
command name, a list of all available com­
mands is displayed. The help operator is
best applied to obtain a particular piece of
information.

The HELP command and the ERROR com­
mand can also be used to get assistance in
issuing commands and analyzing errors. The
HELP command supplies information in
many areas, including general information,
rules, and commands for TMDS, and general
information about the FOX diagnostic.

For each of these areas, specific informa­
tion on many subjects is available. One can
get help on entering commands by asking
for the rules about a general command:

TMDS > HELP RULES command-entry

One can get an overview of the commands
available to diagnose FOX hardware by ask­
ing for the FOX overview:

TMDS > HELP FOX overview

Typing HELP without any parameters dis­
plays an introduction to TMDS. Included is
assistance on all aspects of HELP. One can
always find the complete details of any par­
ticular command by typing:

TMDS > HELP COMMAND <command-name>

or

TMDS> HELP <command-name>

The ERROR command explains error mes­
sages. All TMDS errors are printed in this
format:

****FOX999: Example FOX error message

The number of asterisks (one to four) indi­
cates the severity of the error. The asterisks
are followed by an error identifier (in this
example, FOX999) and a short description of
the error.

A more complete description of the error
can be obtained by using the ERROR com­
mand with the error identifier as a parame­
ter. For the above error, one would enter the
following to get a description of the error:

TMDS> ERROR FOX999

Vocabulary. When Tandem developers create
a TMDS diagnostic subsystem, they define its
commands in the TMDS vocabulary, a data
base for information about command
names, command parameters, and the loca­
tion of the diagnostic code that executes a
particular command. When the CE enters a
command, the EUI asks the vocabulary to
validate the command. The command is
compared with the information stored in the
vocabulary, and if it was incorrectly or
incompletely specified, the EUI displays an
explanation of the error. If the command is
valid, the information associated with that
command is used to run the command.

Commands for a particular hardware
device are grouped together within the
vocabulary into subsystems and can only be
used within that subsystem. For example,
the FOX TEST command for testing FOX
hardware can only be started in the FOX
subsystem. TEST commands for other hard­
ware devices are available in other subsys­
tems. The commands provided by the EUI
can be executed in all subsystems.

TMDS provides two ways to switch
between subsystems. The first is to specify
the subsystem on the TMDS run line. The
command sequence below starts TMDS in the
FOX subsystem where all FOX commands
can be run:

:TMDS FOX

The other way to switch to a different sub­
system is to use the SWITCHTO command:

TMDS > SWITCHTO fox

Resource Manager and Scheduler ($ZENO).
When a resource is being diagnosed, it
should not be available to normal users or
other diagnostics; if it were, the diagnostic
might act unpredictably. To eliminate con­
tention for the resource being diagnosed, the
resource is always allocated to a diagnostic
before it is used. Once the allocation is
made, the diagnostic can be run. When it
completes, the resource must be deallocated.
(For the FOX hardware, allocation consists
of putting the hardware into the diagnose
state; deallocation returns the device to the
stopped or started state.)

JUNE 1985 TANDEM SYSTEMS REVIEW

Operating System

101

Operating System

102

The device must be deallocated regardless
of whether the diagnostic succeeds or fails.
If a diagnostic ends abnormally, the TMDS
resource manager and scheduler ($ZENO)
makes the required deallocation. $ZENO
handles all allocation and deallocation of
resources.

$ZENO is a licensed NonStop process pair.
It can recover from any single hardware fail­
ure. If a diagnostic process stops prema­
turely, $ZENO stops all associated diagnostic
work on that resource and restores the
resource to a known state (e.g., the stopped
state with the standard microcode loaded.)
The CE can then restart testing. $ZENO must
run at all times for TMDS to work.

$ZENO also handles all TMDS process
creation. In later releases of TMDS, this may
include the ability to schedule TMDS com­
mands to run at a particular time.

Application Monitors. TMDS runs all diag­
nostics separately from the EUI. Each of
these processes is called an application
monitor (AM). An AM consists of TAL
procedures.

When a command is validated, the name
of the AM and the procedure that imple­
ments the command (as stored in the vocab­
ulary) are returned to the EUI. The AM is
created, the parameters of the command are
passed to this AM process as a parameter
stack stored on the AM's stack, and the
specified procedure is called. The mecha­
nism used to pass parameters to a procedure
in a different process is called a remote­
procedure call.

Executing the diagnostic as a process sep­
arate from the EUI has the advantage that, if
a diagnostic ends abnormally for any rea­
son, the EUI remains unaffected, allowing
the CE to continue. This advantage would be
outweighed by the disadvantage of having to
create and communicate with an AM every
time a command is run if it were not for the
remote-procedure call that handles this
work. The remote-procedure call mechanism
uses $ZENO to save information on AMs. In
this way, AMs can be reused, thus minimiz­
ing the number created.

The procedure name to execute, the values
for the parameters for that procedure, and
the AM where that procedure's code can be
found must be supplied to the remote­
procedure-call mechanism. This mechanism
creates the stack frame (identical to that
created by the TAL compiler when a normal
procedure call is made) by using BINDER
information about the specified procedure
call. This stack frame is sent (via a standard
GUARDIAN 90 message) to the remote­
procedure-call mechanism in the AM where
the specified procedure is to be run. In this
AM, the remote-procedure-call mechanism
receives the stack frame and adds it to the
stack. A call is then made to the appropriate
procedure.

Standard utility procedures bound into
every AM simplify the allocating of
resources, formatting of text output, and
printing and formatting of standard errors.
Only one copy of these procedures need be
present in an AM for all commands in an
AM to use them. Having these utility rou­
tines common throughout all device diag­
nostics creates coherence and consistency,
thus making it easier for the CE to trouble­
shoot problems.

AMs also provide a convenient way of
securing diagnostics. As it is unacceptable to
allow just any user to run a diagnostic,
TMDS uses GUARDIAN 90 operating-system
security to limit diagnostic use. The object
code of the EUI and the AM associated with
a diagnostic command can be secured so
that only a certain set of users can run a
particular diagnostic. (For example, while
the FOX STATUS command can be executed
by anyone, only SUPER.CE can execute the
TEST command.) The system administrator
controls access to these diagnostics through
the allocation of user passwords.

Executing a TMDS Command. The follow­
ing is an example of what happens when a
TMDS command is executed. In this exam­
ple, a FOX LBU has encountered an error
and the CE uses TMDS to diagnose it. The
CE starts TMDS in the FOX subsystem,
obtains help on the TEST command, and
tests the interprocessor-controller (IPC)
board in LBU X by looping it through the
appropriate microcode test five times.

TANDEM SYSTEMS REVIEW JUNE 1985

First, the CE runs the FOX diagnostic:

:TMDSFOX

TMDS responds with:

Welcome to Tandem's Maintenance and Diagnostic
System ...

The CE asks for help on the TEST command:

TMDS > HELP test

TMDS responds with an explanation of the
TEST command:

The TEST command downloads and runs micro­
coded diagnostics in the FOX LBU. The TEST com­
mand has ...

Before running the TEST command, the CE
defaults the LBU parameter so that the TEST
command will test LBU X. (This parameter
now need not be specified in any further
commands.) The CE enters:

TMDS> DEFAULT LBU x

Then, the CE uses the TEST command:

TMDS > TEST TESTNAME ipc, LOOP 5,
DETAIL on

As is illustrated in Figure 1, first the EUI
checks the syntax of the command entered
at the terminal (1). Command and parame­
ter names in TMDS consist of an alphanu­
meric sequence of 36 characters or less.
Since this command has a command name
and parameter names that look valid to the
EUI, the command is passed to the vocabu­
lary (2) for a semantics check.

The vocabulary checks the FOX subsystem
for a command named TEST (3). It fills the
defaults set by the user and checks each
parameter to see that the TEST command
has a specified or defaulted value for that
parameter. The vocabulary also checks the
value of each parameter against its accept­
able range of values. If the EUI check or
vocabulary check fails, a message explaining
the error is displayed and the EUI reprompts
the CE.

In this example, the command validation
succeeds, causing the EUI to make a remote
procedure call to $ZENO (4) to have it start
the appropriate AM that implements the
TEST command (5). The appropriate proce­
dure in the AM is then called (6) with the
parameter values x, ipc, 5, and on.

The TEST command first tries to allocate
LBU X through $ZENO (8). If the LBU were
already being diagnosed, the allocation
would fail, and $ZENO would inform the CE
(via the AM) that someone else was already
diagnosing that LBU (7).

In this example, the allocation succeeds,
and a check of LBUs X and Y is made to
verify that bringing down LBU X wouldn't
isolate the system. As the system would be
isolated if LBU X were down, the CE is
warned (7) and confirmation for continuing
the test is requested.

The CE confirms that the test should con­
tinue. The LBU is stopped, and the micro­
code that implements the IPC test is
downloaded into it (9, 10). All errors found
while the FOX microcode is downloaded and
executed are displayed for the CE (11, 7).

When the diagnostic completes, the LBU
is returned (deallocated) (8) to either the
stopped or started state as specified by the
CE. If the diagnostic ends abnormally for
any reason, $ZENO returns the LBU to the
stopped state.

TMDS Activity Initiated Automatically
When a device fails during normal system
activity, it is important to be able to save
information about the failure for later exam­
ination. Figure 2 shows the TMDS compo­
nents that save this information; their
interaction is described below.

Figure 2

1
Hardware - 1/0

process
2 3

- Messenger -

JUNE 1985 TANDEM SYSTEMS REVIEW

Operating System

Figure 2.

In addition to perform­
ing diagnostic activity
initiated by the CE,
TMDS records and
stores information
about unexpected hard­
ware failures for later
examination. The infor­
mation is passed from
an 1/0 process to the
TMDS logger and is
stored in an event log.

$ZLOG

Event
log

TMDS
Logger

103

104

Table 1.

Syntax for the FOX TEST command.
Parameter

LBU
TESTNAME
LOOP
SYSTEM
DETAIL

Values

{XI y}
<testname>
< loop>
<system>
{ ON I OFF}

Default

(None, a parameter is required)
ALL. (All tests are run)
Once
The local system
OFF. (No detailed output is printed)

In TMDS, an event is any occurrence about
which information must be retained for
examination by a CE or diagnostic. An
occurrence of a hardware error and the run­
ning of a test are both considered to be
events. All information about an event is
encapsulated in an event signature (ES), a
standard, variable-length message.

An 1/0 process that detects an error (1)
uses procedures supplied by TMDS to create
an event signature. To send this information
to TMDS, the 1/0 process passes the ES to
the GUARDIAN 90 operating system messen­
ger process (2) via a procedure call. The 1/0
process then continues execution.

The messenger process implements the
communications protocol needed to pass the
event signature to the TMDS logger process,
$ZLOG (3); for example, it handles path
retries when necessary. This minimizes the
overhead the 1/0 process incurs when send­
ing messages.

The TMDS logger receives the event signa­
tures and stores them in a TMDS event log
(4). They can be retrieved by the TMDS com­
mands FIND (used to view event signatures
in the event log) and PURGE (used to delete
event signatures).

The logger is a nonprivileged NonStop
process pair. It should be run at all times
to gather as much fault information as
possible.

The FOX Subsystem

The FOX diagnostic is used in diagnosing
FOX hardware faults. It has four commands:
REPAIR REVUPDATE, STATUS, and TEST.
Descrip~ions of these commands are availa­
ble from the TMDS HELP facility. The
parameters for the TEST command, th~ir
possible values, and their defaults are hsted
in Table 1.

As the previous example has shown, the
FOX diagnostic's TEST command is used to
download microcode tests into the FOX LBU
once that LBU is in the stopped state. Tests
for each FOX board are available; a list
of TEST names is available in the HELP
information.

Note that the TEST command uses the
TMDS two-part notation. Each parameter
has a name (e.g., DETAIL) and a set of
allowable values (e.g., ON or OFF). This
feature allows the CE to enter the DETAIL
parameter in the third position instead of
the fifth position where it is defined to be.
(See the TEST command used in the previous
example.)

The TEST parameters are used for other
FOX commands as well. Common parameter
names allow CEs to default a parameter for
a number of commands in a subsystem.

Figure 3 is an example of the infon~ation
displayed with the TEST command. F1~st:
the TEST command prints a header (wlthm a
box) that summarizes the command the CE
specified, including the estimated amount of
time it will take the command to complete.
After the header, short error messages are
displayed; in Figure 3, the messages are for
errors FOX400, FOX450, and FOX402. The
TEST command finishes with a summary of
the tests run and errors returned.

In Figure 3, the CE requests more co_~­
plete information about the er_ror cond1t1on
displayed as ***FOX450 and fmds that the
error message identifies the board that prob­
ably caused the error. The CE can now
replace that board and try the TEST com­
mand again.

TMDSToday
The FOX diagnostic subsystem is a good
example of the power and function_ality of
TMDS because it uses TMDS extensively. All
command interaction is managed by TMDS.

FOX diagnostics use the abilities of $ZENO
to allocate and deallocate the FOX hardware.
The FOX diagnostics and the EUI both use
the remote-procedure-call mechanism to
minimize the work involved in starting AMs.

TANDEM SYSTEMS RFYIFW J U N E I 9 8 5

Operating System
------------- ·---

Future Enhancements
Future changes in TMDS will focus on three
major areas: simplifying the CE' s use of
TMDS, adding new diagnostic functionality,
and providing fault analysis.

Command entry to TMDS can be made
easier. An optional menu interface to TMDS
is under consideration. Also, a method of
having TMDS request command parameters
(instead of requiring the user to supply them
with the command name) is being examined.
As more commands are added to TMDS, this
would keep command entry uncomplicated
and straightforward.

Commands for maintaining hardware
(not just diagnosing problems) may be
included in future TMDS releases. With this
type of command, a hardware device could
be checked periodically to verify that it is in
running order. Scheduling maintenance
commands to run at a particular time might
be supported, allowing the CE to pinpoint a
problem area before a problem occurs.

Also, a fault analyzer might be developed
to monitor the event log. When possible, the
fault analyzer would determine the solution
to a problem when it occurred. This could
provide the CE with much useful informa­
tion. The analyzer could include an alarm
that would alert the CE at CE headquarters
of failures at a user site.

Most importantly, TMDS will be used for
all future Tandem diagnostics. Diagnostics
specifications have been proposed for discs
and CPUs, as well as other subsystems.

References
Tandem Maintenance and Diagnostic System Reference Manual.
Part no. 82386 AOO. Tandem Computers Incorporated.

Acknowledgments
The author would like to thank Brenda Troisi, Rikki Wester­
schulte, and Tom Mathieson. Without their help, this article
could not have been written.

Jim Troisi joined Tandem in September 1982 as a software
designer. Since then, he has worked on the design and imple­
mentation of TMDS. Before working for Tandem, Jim was a
graduate student at the Massachusetts Institute of Technology.

J U N E 1 9 8 5 T A N D E M

Figure 3

CO:MMANO . lfft'UT INF-ORMA"flON

U!U : X
TESTNAt.1€; !11C
LOOt> ... :• 1 TtM~
SYSTEM : · \LABS.
Time for i relit set ltetatloo ;,., 0!02: 41
Teits Wifltomptete at abottt 16:20:3lt{i>r wlien 8REAl<ill.hitf,

FOX400: Ta,t set pass n11mbl!f 1 S1art11d at 11:18:12. · ·
•uFOX450: Test error 1?~111 rll(lduk! lPCl>IAGaf 3,1 .. FRUS:

FOX402; TEST llE$,UlTtifSUMMARY FOO SYSTEM \l~f33, L8U i<:

Figure 3.

The output of the
TEST command can
include information
about a number of
errors. To conserve
space, short messages
about each error
are displayed. When

the ERROR command
is entered for any of
the error messages,
a more detailed
explanation of the error
message is displayed.
In this example, the
ERROR command was

SYSTEMS REVIEW

entered for FOX450.
(The commands entered
by the CE are repre­
sented in bold type.
FRU stands for field­
replaceable unit.)

106

BOO Software Manuals

ith the BOO release,
Software Publica­
tions offers you a
new manual set:
85 software man­
uals sporting a new
design, presenting

information in a new format, and represent­
ing the continuing efforts of the writers, edi­
tors, designers, and staff to produce a
quality product.

The manual covers are now black, dis­
playing the new Tandem logo and a stripe of
color to represent the manual library to
which they belong.

To better aid users, Software Publications
has produced separate user's guides and
reference manuals for many of the Tandem
products it supports. The Operating System
writers have reworked much of the
GUARDIAN 90 information, moving system
messages, utilities, and procedure calls into
separate manuals.

The Languages writers have reorganized
the EXTENDED BASIC and COBOL reference
manuals. They've added examples, a second
color to highlight sample programs, and
even more system information to improve
the new EXTENDED BASIC and COBOL
user's guides and reference manuals.

For new system users, there is the TGAL
tutorial. Experienced TAL programmers have
a revised TAL manual. There are also new
reference manuals for users of the PATHWAY
transaction-processing system and Screen
COBOL.

You'll find many more additions and
improvements to the software manuals.
Table 1 lists the title, part number and ver­
sion, and status of all the software manuals
pertaining to the BOO software release.

-- ----

Sunny Olds was a lead editor for Software Publications when
she wrote this article. She coordinated editorial efforts for the
BOO Software Release, edited the Languages and Operating
System libraries, and authored the March 1985 Catalog of Soft­
ware Publications and Related Products.

TANDEM SYSTEMS REVIEW JUNE 198:i

Manuals and Courses

Table 1.

BOO software manuals (Nonstop II, TXP, and EXT systems).
Part no. Part no.
and and

Tille version Status Title version Status

Operating system

GUARDIAN Operating System System Description Manual 82507 A00 New edition
Pocket Guide 82506 A00 New manual

System Management Manual 82069 A00 New manual
GUARDIAN Operating System

System Messages Manual 82409 A00 New manual Programmer's Guide 82357 A00 New manual

GUARDIAN Operating System System Operator's Guide 82401 A00 New manual

User's Guide 82396 A00 New manual System Procedure Calls Reference

GUARDIAN Operating System Manual 82359 A00 New manual

Utilities Reference Manual 82403 A00 New manual Tandem Maintenance and Diagnostic

Introduction to Tandem Computer System Reference Manual 82386 A00 New manual

Systems 82503 ADO New edition XRAY User's Manual 82078 D00 Updated

Spooler Programmer's Guide 82394 ADO New manual

Tools and utilities

BINDER Manual 82514 ADO New edition INSPECT Interactive Symbolic

CROSSREF Manual 82516 A00 New edition
Debugger User's Guide 82315 ADO Unchanged

DEBUG Manual 82598 A00 New edIt1on
SORT/MERGE User's Guide 82091 ADO Unchanged

EDIT Manual 82079 BOO Unchanged
TGAL Manual 82526 A00 New edition

ENTRY Screen Formatter Operating
Tools and Utilities Pocket Guide 82504 A00 New edition

and Programming Manual 82020 A00 Unchanged UPDATE/XREF Manual 82080 BOO Unchanged

ENTRY520 Screen Formatter
Operating and Programming Manual 82053 A00 Unchanged

Languages

COBOL Pocket Guide 82575 ADO New edition FORTRAN Pocket Guide 82577 ADO New edItIon

COBOL Reference Manual, Interim Supplement to the
Volume 1 82589 A00 New manual FORTRAN 77 Reference Manual 82436 A00 Supplement

COBOL Reference Manual, MUMPS Pocket Guide 82578 ADO New ed1t1on
Volume 2 82590 ADO New manual MUMPS Reference Manual 82542 ADO New edition
COBOL User's Guide 82389 A00 New manual

TAL Pocket Guide 82376 ADO New manual
EXTENDED BASIC Pocket Guide 82379 ADO New manual

Tandem FORTRAN 77 Reference
EXTENDED BASIC Reference Manual 82030 A00 Unchanged
Manual 82580 A00 New edition

Transaction Application Language
EXTENDED BASIC User's Guide 82385 A00 New manual (TAL) Reference Manual 82581 ADO New edition

Data management

Data Definition Language (DDL) PATHAID Reference Manual 82428 ADO New manual
Reference Manual 82534 ADO New edition

PATHWAY SCREEN COBOL
Data Management Pocket Guide 82302 DOD Unchanged Reference Manual 82424 A00 New manual

ENABLE Reference Manual 82560 ADO New edition PATHWAY System Management

ENABLE User's Guide 82571 ADO New edition
Reference Manual 82365 ADO New manual

ENCORE User's Guide 82350 A00 Unchanged
Transaction Monitoring Facility
(TM F) Reference Manual 82541 ADO New edition

ENFORM Reference Manual 82348 BOO Updated Transaction Monitoring Facility
ENFORM User's Guide 82349 BOO Updated (TMF) System Management and

ENSCRIBE Programming Manual 82583 ADO New edition
Operations Guide 82543 A00 New edition

Introduction to ENFORM 82313 BOO Unchanged
TRANSFER Delivery System
Management and Administration

Introduction to PATHWAY 82339 A00 New manual Guide 82522 A00 New edition

Introduction to the Transaction TRANSFER Delivery System
Monitoring Facility (TMF) 82528 A00 New edition Programming Guide 82525 ADO New edition

Introduction to TRANSFER Delivery TRANSFER/MAIL User's Guide 82599 ADO New edItIon

System 82323 coo Unchanged

Continued next page

U N E 9 8 5 T A N D E M SYSTEMS R E V E W 107

Manuals and Courses

Table 1. (Concluded)

BOO software manuals (Nonstop II, TXP, and EXT systems).
Part no. Part no.
and and

Title version Status Title version Status

Data communications

6100 ADCCP Programming Manual 82411 ADO New manual EXCHANGE Reference Manual 82568 ADO New edition

6100 MPS-B Programming Manual 82413 A00 New manual EXPAND Reference Manual 82370 A00 New manual

6100 BSC Programming Manual 82412 ADO New manual Introduction to Tandem Data

6100 TINET Programming Manual 82414 ADO New manual Communications 82511 A00 New edition

Communications Management
Introduction to the Tandem 6100

Interface (CMI) Operator"s Guide 82544 ADO New edition Communications Subsystem (CSS) 82373 ADO Unchanged

Communications Utility Program Reference Manual for ATP6100 and

(CUP) Reference Manual 82430 ADO New manual
Non-6100 Terminal/Printer Processes 82435 ADO New manual

CP6100 1/0 Process Programming
SNAX Programming and Network

Manual 82410 ADO New manual
Management 82596 ADO New edition

Dev1ce-Spec1fic Access
SNAX Reference Summary 82591 ADO New manual

Method-AM3270/TR3271 82432 A00 New manual Tandem Hyper Link (THL) Reference

Device-Specific Access
Manual 82056 A00 Unchanged

Method-AM6520 82433 ADO New manual Tandem-to-IBM Link (TIL) Reference

ENVOY Byte-Oriented Protocols
Manual for IBM Users 82050 BOO Unchanged

Reference Manual 82582 ADO New edition Tandem-to-IBM Link (TIL) Reference

ENVOYACP Bit-Oriented Protocols
Manual for Tandem Users 82055 BOO Unchanged

Reference Manual 82588 A00 New edition X.25 Access Method-X25AM 82431 ADO New manual

Terminals

6VI Voice Input Option for 653X Getting to Know TTEXT 82655 A00 New manual
Terminal Family Installation and

Model 6820 Terminal Cluster
Operation Guide 82671 ADO New manual

Concentrator (TCC)-lnstallation
6530 Alternate Input Option and Operation Guide 82651 BOO Unchanged
Installation and Operation Guide 82652 ADO Unchanged

Printer Option for 6530
6530 Video Monitor Option Terminal-Installation and Operation
Installation and Operation Guide 82653 A00 Unchanged Guide 82650 A01 Unchanged

653X Integrated Options Installation T-TEXT User's Manual 82656 A00 New manual
and Operation Guide 82677 ADO New manual

Video Display Units Programming
653X Multi-Page Terminal Installation Manual 82047 A00 Unchanged
and Operation Guide 82508 A00 New edition Video Display Units Operating Guide 82048 A00 Unchanged
653X Multi-Page Word Processing Option for 653X
Terminal-Programmer"s Guide 82310 BOO Unchanged

Installation and Operation Guide 82654 A00 New manual
EM3270 Option for 653X
Family-User's Guide 82668 A00 Unchanged

DYNAMITE 654X workstation

654X Workstation-GW-BASIC 654X Workstation-MS-DOS
User's Guide 82664 ADO New manual User's Guide 82661 A00 New manual

654X Workstation-Information 654X Workstation-Operations
Xchange Facility 82669 A00 New manual Guide 82658 A00 New manual

654X Workstation-Macro 654X Workstation-PCFORMAT
Assembler Programmer's Guide 82662 ADO New manual User's Guide 82679 ADO New manual

654X Workstation-MS-DOS 654X Workstation-Technical
Programmer's Guide 82660 A00 New manual Reference 82665 A00 New manual

Supplemental publications

Catalog of Software Publications Master Index for the Nonstop
and Related Products 82552 A00 New edition Systems 82586 A00 New edition

108 T A N D E M SYSTEMS R E V E W U N E 9 8 S

andem's Corporate Educa­
tion Group has added
eight interesting new
courses to its software edu­
cation curriculum. It has
also revised and improved
the PATHWAY course, one

of the most popular software classes.
The new courses offered in 1985 are

described below. Following their descrip­
tions is a list of all Tandem Education
Centers.

As more new courses are offered through­
out the year, information about them will be
made available. To obtain course informa­
tion, enroll, or order any self-paced course,
contact your Tandem sales representative or
your nearest Tandem Education Center.

PATHWAY (38404-B00)
The popular PATHWAY course for applica­
tion developers has been improved. The new
class still covers all the topics described in
the Software Education Catalog, and it
contains the following new material:

• Use of the INSPECT symbolic debugger to
isolate problems.

• Stress testing and tuning applications.

• More comprehensive labs so that each
student develops a complete working
PATHWAY system.

New Software Courses

DP1-DP2 Conversion Course
(38449-A00)
This five-day course provides a description
of the differences between Disc Process 1
(DPI) and Disc Process 2 (DP2), and a
description of the new features of DP2. Top­
ics include conversion issues and strategies,
new features of the Transaction Monitoring
System (TMF), and DP2 support tools.

At the end of the course students will be
able to plan for a conversion of a system
from DPI to DP2, do the appropriate
SYSGENs in order to implement the conver­
sion, and be able to configure and test a
DP2-TMF system.

Audience
The course is designed for analysts and sys­
tem managers who will be supporting a DP2
installation.

Prerequisites
A working knowledge of TMF and experi­
ence as a system manager are required.

Multifile ENABLE - Self-paced
(38455-A00)
This is an intensive independent study course
to familiarize analysts and programmers
with the newest version of the ENABLE pro­
gram generator. Students will learn the dif­
ferences between single and multifile
ENABLE, the ENABLE syntax, its capabili­
ties, and how to integrate programs gener­
ated by ENABLE into a unified PATHWAY

JUNE 1985 TANDEM SYSTEMS REVIEW 109

Manuals and Courses

110

environment. The course provides an in­
depth look at the generated Screen COBOL
code and the benefits of making easy (and
not so easy) code changes with EDIT. The
material also reviews the ENABLE skeleton
command language, alteration of the skele­
ton file, and use of the SET BOX FLAG
command.

Audience
This course is designed for programmers and
application developers who will be generat­
ing interactive applications with ENABLE.

Prerequisites
A knowledge of FUP, EDIT, DDL, and
PATHWAY would be beneficial.

TRANSFER (38440-A00)
This five-day course covers installation and
programming of TRANSFER, Tandem's
delivery system for staged information dis­
tribution. Topics include: processes that
comprise the TRANSFER environment,
installation procedures, and programming
clients and agents. Lab sessions supplement
classroom lectures and provide hands-on
practice.

Audience
This course is intended for system adminis­
trators and application programmers. The
modular design of the course permits each
group to attend that portion of the class rele­
vant to its job functions.

Prerequisitc!s
Prerequisites include:

■ Concepts and Facilities (38401)

■ PATHWAY (38404)

■ Transactilon Monitoring Facility (38413)

■ System Resource Management (38411 or
38419). Thils is a prerequisite for system
administrators.

TAL Syntax - Self-paced
(38433-A00)
This independent-study course covers the
fundamentals of TAL (Tandem's systems
programming language) syntax structure
and use. Topics include: data types and
expressions, statements, addressing proce­
dures and parameter passing, program
organization, debugging programs with
INSPECT, and the TAL programmatic inter­
face to the GUARDIAN operating system.

Audience
This course is designed for systems program­
mers, application developers, system opera­
tors, or anyone involved in writing programs
in a high-level systems language. It is recom­
mended as a prerequisite to the TAL Pro­
gramming course for people with no
previous experience of block-structured
languages.

Prerequisites
The prerequisites include:

■ Knowledge of at least one other program­
ming language.

■ Familiarity with Tandem EDIT.

■ Completion of the Concepts and Facilities
course. (This would be helpful, but is not
mandatory.)

T-TEXT - Self-paced (38456-A00)
This self-paced tutorial course complements
the T-TEXT User's Manual by providing
hands-on instruction in the basics of docu­
ment preparation using Tandem's word
processing software. The course can be com­
pleted in just two or three hours.

Ten lessons step the user through the most
commonly used T-TEXT functions. The
T-TEXT menus are explained, along with the
options available from each menu. Also
included is a handy quick-reference guide on
T-TEXT commands.

Audience
This course is aimed at nontechnical person­
nel who use word processing in their jobs.

Prerequisites
There are no prerequisites for this course.

TANDEM SYSTEMS REVIEW JUNE 1985

An Introduction to SNAX -
Self-paced (38438-AOO)

Tandem's System Network Architecture
Communications Services (SNAX) enables
SNA devices and host computers to commu­
nicate and share applications with Tandem
systems and EXPAND networks. This self­
paced course introduces SNAX and how it
relates to the IBM environment.

Students learn how to perform a SYSGEN
to set up an SNA environment, how to use
CMI to alter the SNAX environment, and
how to perform first-level troubleshooting.

Audience
This course is intended for system managers,
operators, analysts, data communications
specialists, and anyone who needs to set
up or maintain a SNAX application. The
course does not teach or assume a know­
ledge of SNA.

Prerequisites
The only prerequisite is an ability to perform
a SYSGEN.

6100 Communications
Subsystem Primer -
Self-paced (38441-A00)
This is an intensive independent-study
course which introduces the 6100 subsystem
to system operators and system managers.
Students learn the required components of
SYSGEN and a naming convention.

This course provides a comprehensive
overview of CMI/CMP as they relate to the
6100, an overview of system-management
procedures, and the use of DIAG6100 as a
system management tool. The material also
provides an overview of TRACE and
PTRACE functions, and a detailed overview
of the 6100 hardware.

Audience
This course is intended for system operators
and system managers.

Prerequisites
There are no prerequisites.

Introduction to the DYNAMITE
Workstation - Self-paced (9405)
This self-paced tutorial course includes a
getting-started booklet and a floppy disc. It
allows students to learn about and experi­
ment with the DYNAMITE 654X workstation
in an interactive, protected environment.

Topics include: the DYNAMITE keyboard,
starting DYNAMITE, an introduction to the
Microsoft Disk Operating System (MS-DOS),
how to name files, how to use the 6530 ter­
minal emulator, and how to enter and exit
BASIC. The course takes about two hours.

Audience
This tutorial is designed for nontechnical
users who have had no previous experience
with a personal computer.

Prerequisites
There are no prerequisites.

Marilyn Janow is the Manager of Corporate Education Services.
She is responsible for publication of software and hardware
training courses and education administration. She is also
responsible for producing education catalogs, schedules, and
brochures about Tandem training; supporting special education
requirements for certain customer projects; and administering
the Alliance coupon program for software houses. Marilyn
transferred to the Corporate Education group in September 1982
and has been with Tandem since April 1981.

JUNE 1985 T A N D E M S Y S T E M S R E V I E W

Manuals and Courses

111

Manuals and Courses

112

Tandeml Worldwide Education Centers
United States
Arizona
3300 N. Central, Suite 700
Phoenix, AZ 85012
(602) 264-2206

California
6160 Bristol Parkway
Culver City, CA 90230
(213) 417-3922

2820 San Tomas Expressway
Santa Clara., CA 95051
(408) 970-4324

1309 South Mary Avenue
Sunnyvale, CA 94087
(408) 730-3700

Colorado
5300 DTC Parkway
Englewood, CO 80111
(303) 779-6766

Florida
1408 N. Westshore, Suite 804
Tampa, FL 33607
(813) 877-7466

Georgia
100 Galleria Parkway, Suite 680
Atlanta, GA 30339
(404) 951-0199

Illinois
Hamilton Lakes
500 Park Blvd., Suite 1400
Itasca, IL 60143
(312) 773-1750

Massachusetts
7 Wells Avenue
Newton, MA 02159
(617) 964-6500

Michigan
3001 State Street, Suite 1010
Ann Arbor, MI 48104
(313) 622-2200

32540 Schoolcraft Avenue
Livonia, Mll 48150
(313) 425-4110

Minnesota
3050 Metro Drive, Suite 205
Minneapolis, MN 55420
(612) 854-5441

New Jersey
777 Terrace Avenue, Second Floor
Hasbrouck Heights, NJ 07604
(201) 288-6050

New York
One Penn Plaza, Suite 4334
250 W. 34th Street
New York, NY 10119
(212) 760-8440

Pennsylvania
Commerce Court Office Building
4 Station Square, 7th Floor
Pittsburgh, PA 15219
(412) 562-0262

Texas
4225 Wingren, Suite 100
Irving, TX 75062
(214) 257-9744

Virginia
12100 Sunrise Valley Drive
Reston, VA 22091
(703) 476-3154

Washington
14711 NE 29th Place, Suite 100
Bellevue, WA 98007
(206) 881-8636

Washington, D. C.
5201 Leesburg Pike, Suite 700
Falls Church, VA 22041-3280
(703) 379-7900

International
Australia
3 Bowen Crescent
Melbourne, Victoria 3004
011-61-3-267-1577

22 Atchinson Street
St. Leonards, Sydney, NSW 2065
011-61-2-438-4566

Belgium
Louizalaan 306-310
1050 Brussels
011-32-2-6487330

TANDEM SYSTEMS REVIEW• JUNE I 9 8 5

Canada
7270 Woodbine Avenue, Second Floor
Markham, Ontario L3R-4B9
(416) 475-8222

6500 Route Trans-Canadienne
St. Laurent, Quebec H4T 1X4
(514) 342-6711

Denmark
Helgeshoj Alle 55
DK-2630 Taastrup
011-452-5252-88

England
Tandem House, Mendy Street
High Wycombe, Buckinghamshire
HP112NZ
011-44-494-21277

France
2 - 4 Rue Victor Noir
92200 Neuilly Sur Seine, Paris
Ol 1-33-1-738-29-29

Germany
Geschaeftsstelle Duesseldorf
Heinrich-Hertz-Strasse 2
4010 Hilden
Ol 1-49-2103-572-100
011-49-2103-572-101

Berner Strasse 34
6000 Frankfurt/Main 56
11-49-69-50003-0

Hong Kong
448 Wing On Plaza
Tsim Sha Tsui East, Kowloon
011-852-3-7218136

Italy
Viale del Ghisallo, 20
20151 Milano
011-39-2-3087386

Japan
Yasukuni Kudan Minimi Bldg.,
3rd Floor
2-13-14 Kudan Minami, Chiyoda-Ku
Tokyo 102
03-237-9531

Netherlands
"Plus Point"
Jupiterstraat 146-3
2132 HG Hoofdorp
02503-30294

New Zealand
Level 20, Williams City Centre
Boulcott Street, Wellington
011-644-723286

Norway
0. H. Bangsvei 51
N-1322 Hoevik
2-123330

Sweden
Norgegatan 1
Box 1254
S-163 13 Spaanga
011-46-8-7507540

Switzerland
Zweierstrasse 138
8036 Zuerich
011-41-1-461-3025

Distributors
Finland
OyDavaAB
Box 458
00101 Helsinki 10
011-358-0-42021

Mexico
Tandem Computers de Mexico,
S.A. de C.V.
Ave. Juarez No. 14-2 piso
06050 Mexico, D.F.
(905) 585-8688

Philippines
Mini Systems, Inc.
LBH Building, 4th Floor
1431 A. Mabini Street
Ermita, Metro Manila
722-27316
Taiwan
Syscom Computer Engineering Co.
9th Floor
53 Jen Ai Road, Sec. 3
Taipei, Taiwan, R.O.C. iso
(02) 7731302-9

JUNE 1985 • TANDEM SYSTEMS REVIEW

Manuals and Courses

113

114

SNAX/HLS: An Overview

significant addition to
--- SNAX (Tandem's fault­

tolerant interface to the
Systems Network Archi­
tecture, SNA), is availa­
ble with the BOO software
release. This is SNAX

High Level Support (SNAX/HLS), an easy­
to-use interface that allows programmers
with little knowledge of SNA to develop
SNA-related applications on Tandem net­
works. SNAX/HLS dramatically reduces the
time required to develop such applications.

This article describes the design and
implementation of the SNAX/HLS system.
Topics include:

• The components of the SNAX/HLS
system.

• The SNA capabilities it supports.

• Its potential applications.

• An application benchmark employing
SNAX/HLS.

This information is intended for technical
managers, application programmers, sys­
tems analysts, and others who need an over­
view of SNAX/HLS capabilities. Readers are
assumed to have a general understanding of
SNA, IBM SNA products, and SNAX. Infor­
mation on IBM SNA products and devices,
SNAX, and SNAX/HLS is available in the
references listed at the end of the article. 1

'In the interest of brevity, HLS is used in place ofSNAXJiJLS throughout the
remainder of the article except when the product's full name is appropriate.

Design Goals

With the introduction of SNAX, Tandem
systems acquired the ability to communicate
directly with SNA software products, such
as the Information Management System
{IMS), and SNA devices, such as the IBM
3624. SNAX is unique within the industry in
providing both a gateway to SNA software
products and SNA device support on a CPU
that is not IBM-compatible.

SNAX offers two application interfaces:

• The SNA3270 interface, a high-level inter­
face connecting the Command Interpreter
and Spooler subsystems with SNA display
stations and printers.

• The SNALU interface, a general-purpose,
low-level interface similar to the application
interface of IBM's Virtual Telecommunica­
tions Access Method (VTAM). The SNALU
interface was designed to function as the
base interface for new SNAX products as
well as to provide the basic framework for
specialized offerings from Tandem software
houses.

SNAX also supports SNA Session
Passthrough, a feature that permits SNA
devices attached to a Tandem network to
access SNA application programs resident in
an IBM host without changes to or repro­
gramming of the application.

The SNA327O interface and SNAX
Passthrough gained quick acceptance by
Tandem customers. Many Tandem installa­
tions worldwide use them.

Tandem users and software houses also
saw the generality of the SNALU interface as
a positive feature. Using SNALU, applica­
tions could control the flow of SNA messages

TANDEM SYSTEMS REVIEW• JUNE 198,

and acknowledgments and could send and
process special SNA commands, making the
interface well suited for custom applica­
tions. SNALU application development
required that programmers be highly knowl­
edgeable in SNA message formats and proto­
cols, however, making program development
for simple business applications complex.

HLS was developed to fill the need for a
high-level addition to the SNALU interface
for generic business applications. Its design
resulted directly from meetings between
Tandem developers and users of Tandem
systems. The design goals were:

■ High-level support for SNA communica­
tions. HLS was to handle all aspects of SNA
protocols and formats. The programmer
interface was to be simple and easily under­
stood by applications programmers with
little knowledge of SNA or SNAX. The SNA
protocol had to be consistent with the pub­
lished standards on SNA communications
architecture.

■ Consistent interface to the PATHWAY sys­
tem and other environments. HLS was to
support an interface that allowed both those
applications based on the PATHWAY transac­
tion processing system and those not based
on it to take full advantage of SNAX
capabilities.

■ Support for SNA gateways and SNA
devices. HLS was to support logical sessions
to IBM subsystems (e.g., IMS) as well as
advanced IBM devices (e.g., the 4700, 3624,
and 3650).

■ A full complement of control and support
tools. HLS was to provide easy-to-use utili­
ties to configure, control, and trace the
operational environment. Significant inter­
est in a prototyping/simulation tool was
also expressed.

Implementation
HLS is a system of processes that addresses
the product requirements stated above. The
implementation of HLS takes full advantage
of Tandem products such as the PATHWAY
system and the ENABLE program generator
to provide high-level SNA communications.

The HLS process is implemented as an
intermediate process between the user appli­
cation and the SNALU interface of SNAX.
This makes the power of the SNALU inter­
face available to programmers while shield­
ing them from the SNA complexities of the
interface. Figure 1 illustrates a conceptual
overview of HLS in a Tandem network
environment.

Verbs
HLS implements an application interface
that is independent of requester language. A
set of verbs at the interface level handles all
SNA communications functions requested by
the application. The verbs, in essence, make
up the high-level application language.

An HLS verb is merely a formatted mes­
sage from the application program that
describes to HLS the function to be per­
formed on behalf of the application. Specifi­
cally, it is a set of indicator fields that
precede optional user data. The indicator

Figure 1

NimSlot) ll, Uf►, or EXT sys1em

PATHWAY
Requester
(SCOBOL)

'-

HLSCOM

HLS

Requester
(TAL/COBOL)

/

SNAX

EXPAND

SNA devices SNA gateways
(36XX, 47XX) (IMS, CICS)

Figure 1.

The SNAX!HLS
environment in a
Tandem network. HLS
supports both those
applications based on
the PATHWAY
transaction processing

system and those not
based on it. The
requesters can be
located anywhere in
the Tandem network.
HLS also supports
commands from the

JUNE 1985 TANDEM SYSTEMS REVIEW

Data Communications

~P 1+, ll, TXP,
or IXT tystem

Requester

command and status
processor HLSCOM.
The HLS process must
execute on a Tandem
NonStop II or TXP
processor.

115

Data Communications

Figure 2

6

Figure 2.

The processing of a
verb that sends a
request to the session
partner and receives a
reply. FIG and LIC are
SNA indicators relat-

116

fields can be: either verb requests (requesting
the function to be performed) or verb modi­
fiers (modifying the action of the verb). To
ensure that HLS functions in a PATHWAY
environment, the indicators are always byte
values, typically Y or N, and not bit masks.

Each verb is associated with a reply. The
verb reply is a formatted message from HLS
to the application program that indicates the
result or status of the verb request. Verb
replies can also contain indicator fields and
optional data. The most important field of
the verb reply is the RETURN-CODE field.
The RETURN-CODE is a generalized mecha­
nism for standard error and status reporting,
much like the condition code or file error in
the Tandem operating systems.

Since verbs elicit a two-way message
between the requester and HLS, the
operating-system call WRITEREAD is used
for message delivery. Any Tandem language
that supports the equivalent of WRITEREAD
can communicate to HLS. Currently, all lan­
guages supplied by Tandem support WRITE­
READ or its equivalent.

ing to message-chain
element groupings. FIS
and LIS are SNA indi­
cators relating to
message-segment
element groupings.

3

4
FIS
us

FIS

LIS

+ RSP is an SNA
acknowledgment. The
processing steps are
described in detail in
the text.

To ensure that HLS would be readily
accepted and easily used by applications
programmers, considerable attention was
paid to the naming conventions for the verb
requests and modifiers. SNA communica­
tions are replete with arcane constructs such
as brackets, chains, and request shutdown
sequences, and much of the difficulty in
understanding SNA has stemmed from this
jargon. Most of these constructs relate
directly to important and easily understand­
able concerns of transaction processing,
however: brackets are uninterruptable units
of work (i.e., transactions), chains are logi­
cal messages, and request shutdown
sequences are orderly terminations of com­
munications. HLS, whenever possible, uses
the most understandable and meaningful
name for each verb modifier. For example:

• When a bracket is in progress, HLS sets
the indicator TRANSACTION-IN-PROGESS
to Y.

• If a complete chain is received from the
session partner, HLS sets the indicator
MESSAGE-COMPLETE to Y.

• Whenever programmers wish to terminate
the session in an orderly fashion, they
invoke the PREPARE-TO-CLOSE verb.

The Verb Message Sequence
The HLS system was designed to be effi­
cient. A single request from an HLS applica­
tion can send a transaction to the session
partner as well as receive the reply. Figure 2
illustrates this as follows:

1. The requester delivers a "message" (i.e.,
a verb request with data) to HLS for
transmission to the session partner.

2. HLS formats the message into appropriate
SNA message units (chain elements), han­
dles required aspects of SNA protocol,
and delivers each chain element to SNAX
with a SNAX header.

3. SNAX formats each chain element into
the appropriate Synchronous Data Link
Control (SDLC) frames, handles SDLC
addressing, and transmits each frame on
the data link.

TANDEM SYSTEMS REVIEW JUNE 1985

4. SNAX receives a series of SDLC frames
constituting the session partner's reply.
SNAX assembles these frames into chain
elements and delivers them to HLS.

5. HLS receives chain elements from SNAX,
assembles the chain elements into a logi­
cal message, and delivers an SNA
acknowledgment to the session partner,
if required.

6. The HLS requester receives a verb reply
consisting of a "message" (i.e., a verb
reply with data).

Compatibility with SNA Environments
HLS supports a wide range of SNA commu­
nications environments, including the
following:

• FM and TS profiles 2, 3, 4, and 7.

■ Multiple RU chains managed by HLS or
the user.

• Half-duplex flip-flop and contention
send/receive mode.

■ Full-duplex send/receive mode.

• Immediate and delayed request mode.

• Bracket support under both termination
rules.

■ Primary-to-secondary and secondary-to­
primary pacing.

• MAXRU up to 4096 bytes.

■ LU types 0, 1, 2, 3, 4, and 7.

■ Pipeline LUs.

HLS has been implemented in strict
accordance with the architectural specifica­
tions of SNA, as documented in the SNA
Format and Protocol Reference Manual. Its
internal usage checks and state machines are
equivalent to those documented in the Pro­
tocol Reference Manual for SNA, ensuring
that HLS state interpretations match exactly
those provided by IBM. Figure 3 illustrates
the similarity between HLS source code and
published SNA documentation.

Figure 3

Finite state machine

SNA

STATE NAMES­
INPUTS

R,RQ,-CANCEL, BC,EC
R,RQ,-CANCEL, BC,-EC
R,RQ,-CANCEL,-BC, EC
R,RQ,-CANCEL,-BC,-EC

R,RQ, CANCEL

S,-RSP,TO_CURRENT _CHAI
- ----------

N

'RESET'/* FROM DFC_RESE T */

OUTPUT FUNCTION
CODE

-

BETC
01

--
-

2
>(R)
>(R)

>(R)

-

-

INC
02

>(R)
>(R)
1
-

1

3

1

Data Communications

PURGE
03

>(R)
>(R)
1

1

1

R RECEIVE_CHECK_SENSE = X'2002' /* CHAINING ERROR */

END FSM_CHAIN_RCV;

SNAX/HLS

INT CHAIN"RCv_"_ = 'P': =J __ _

r----- STATE NAMES----
. INPUTS

R,RQ,-CANCEL, BC,EC
R,RQ,-CANCEL, BC,-EC
R,RQ,-CANCEL,-BC, EC
R,RQ,-CANCEL,-BC,-EC

BETC
01

1
2
1 + R
1+R

1+R
--

INC PURGE I

02 03rl
2+R 3+ R
2+ R 3+ R ,
1 1
2 3

--

3 3

l
[

. OUTP~FUNCTION --- -- ---1
CODE _l__
-- ----- ---- -- -------------,

L_ R RECEIVE_ CHECK_ SENSE= X'2002' /* CHAINING ERROR * /

];

Figure 3.

A finite state machine
(FSM) as specified for
SNA (documented in
the SNA Format and
Protocol Reference
Manual) and as imple­
mented in SNAX!HLS.
(The punctuation of the
HLS code has been
modified slightly to fit
the figure format.) An

- -- ------

FSM is used in SNA to
"remember" past
events and control the
operation of SNA pro­
cesses. The memory of
the FSM is its current
state (the current state
maps to one of the
FSM's columns). When
presented with an
input (shown on rows)

the FSM produces a
new current state and
output (shown at the
intersection of the
input row and current
state column). The
striking similarity
between the two
FSMs ensures that
SNAX/HLS correctly
enforces SNA protocol.

JUNE 1985 TANDEM SYSTEMS REVIEW 117

Data Communications

118

Table 1.

SNAX/HLS verbs.
Verb Function

Session establishment and termination

OPEN-SESSION

PREPARE-TO-CLOSE

CLOSE-SESSION

Data transfer

Establishes communications with the
session partner.

Performs an orderly session shut­
down

Performs a forced session close.

SEND-DATA Sends data to the session partner.

RECEIVE-DATA Retrieves data from user"s receive
queue.

SEND-AND-RECEIVE-DATA Sends data to the session partner and
then queues a RECEIVE-DATA verb.

Status request

REQUEST-SEND-STATE Requests permission to send data
(used only in half-duplex flows).

SEND-STATUS Sends an SNA LUSTATUS to session
partner.

RECEIVE-CONTROL Queries the top element of the receive
queue.

Utility

CONVERT-ERROR-CODE

GET-ATTRIBUTES

SET-ATTRIBUTES

Converts hexadecimal fields to display
format and decodes SNA sense codes
into English messages.

Obtains profile and BIND information.

Sets profile options dynamically

It is important to note that while HLS
eliminates SNA communications protocol
from the application program, it does not
eliminate data presentation and formatting
requirements. Message formats are the
responsibility of the HLS application. In
other words, SNA/RJE (LU Type 1) support
is possible under HLS, but users must format
the data buffer with appropriate SNA Char­
acter String (SCS) control codes before trans­
mission. Similarly, word-processing support
(LU Type 4) is supported under HLS, but the
user is responsible for the format require­
ments for the device.

System Components
HLS Process
The HLS process is a multithreaded TAL
process that acts as an interface between the
HLS application and the SNAX SNALU inter­
face. Its primary activity is to perform verb
requests and produce verb replies. Typically,
verb requests result in one or more SNA mes­
sages flowing to the session partner on
behalf of the HLS application. HLS also pro­
vides a message queue for each application.
Incoming messages are buffered by the HLS
process if the application does not have an
outstanding verb.

HLS verbs do the following:

• Establish communications with a session
partner.

• Manage the transmission and reception
of data.

• Terminate communications with a session
partner.

Table 1 lists the verbs supported by the HLS
process.

HLS also supports a "command" inter­
face. Using command-interface verbs, a user
process can programmatically control and
inspect the HLS operating environment.
Command-interface verb replies contain bit
masks and are primarily intended for appli­
cations written in TAL.

Finally, HLS has been designed as a
generic, self-configuring system applicable
to a wide range of SNA environments. HLS
always examines the session-establishing
SNA message termed the BIND. The BIND
contains a variety of option fields that detail
the specifics of a given logical communica­
tions channel between two session partners.
If the BIND is within the range of acceptable
values to HLS, internal control blocks are
customized automatically to fit the specifics
of the current session.

·-----·-------------------~

TANDEM SYSTEMS REVIEW JUNE 1985

Resource Definition Table (ROT)
The Resource Definition Table (RDT)
describes the characteristics of the HLS envi­
ronment. It is a table wherein all session
profile information, SNA message formats,
and global data are stored. At HLS initiali­
zation, the RDT is opened and read into an
extended data segment. While this means
that every HLS process has the complete
RDT in virtual memory, the size of the RDT
is relatively small (less than 2K bytes) for
most configurations. The RDT in virtual
memory can be dynamically replaced with­
out requiring the HLS process to be stopped
or affecting active sessions.

When HLS receives an OPEN-SESSION
request from the application program, the
profile section of the RDT is scanned for the
specified profile name. Pointers in the pro­
file point to the location of special SNA mes­
sages that are used to establish the session.
The application programmer need only
know the profile name to specify the details
of the SNA session.

The RDT is an unstructured file produced
via the "compilation" of an ENSCRIBE file
called RDTKSFLE. The maintenance of the
RDTKSFLE is performed by a set of pro­
grams supplied with HLS that are generated
by ENABLE. Thus, the PATHWAY system and
the ENABLE program generator are required
for the user to use the standard RDT mainte­
nance system.

HLS is delivered with a sample
RDTKSFLE, containing several useful pro­
file, BIND, and INITSELF records. The user
is free to install the sample RDTKSFLE or
create a null RDTKSFLE and add only those
records needed for planned applications.

HLSCOM Process
HLS provides a command interface to user
processes. A standard command process,
HLSCOM, is delivered with the product.
Users are also free to design their own com­
mand processes using the verbs available
with the command interface.

HLSCOM is designed to support a wide
range of commands suitable for operator
control, error recovery, and system tuning.
Optionally, HLSCOM can configure trace
files for HLS traces. HLSCOM supports
"wild-card" name constructs so that com­
mands can affect:

1. A single LU.

2. All LUs on a given SNAX line.

3. All LUs running under an HLS process.

Table 2 lists the HLSCOM commands.

Table 2.

HLS command processor (HLSCOM) commands.
Command Function

ABEND Abends current SNAX/HLS process.

ABORT Aborts one or more sessions.

ASSUME Sets default line name.

CMDVOL Sets defaults for file-name expansion in commands

EXIT Exits current obey file or program

FC Fixes last command line of current input file.

HELP Displays help 1nformat1on.

INFO Returns session configuration information.

LISTOPENS Lists all process openers for specified session(s).

OBEY Reads commands from specified file.

OBEYVOL Sets defaults for expansion of obey file names.

OPEN Specifies name of current HLS process.

PEEK Shows current SNAX/HLS process information

QMSG Broadcasts message to selected HLS applications.

SHOW Shows current CMDVOL and OBEYVOL settings.

STATUS

SWITCH

TRACE

Returns session-status information.

Dynamically replaces the current RDT in virtual
storage.

Configures, starts, and stops session tracing. (Indi­
vidual LUs can be traced.)

J ll r-,; E I 9 8 5 TANDEM SYSTEMS REVIEW

Data Communications

119

Data Communications

Figure 4

Figure 4

A sample INFO,
DETAIL screen from
HLSCOM. The
operator requests
information for all L Us
(*. *! with this INFO

Figure 5

120

command, although the
information for only
one LU is shown in this
figure. The session ID,
the LU name, and all
critical session-profile

information is
displayed. Note also
that all relevant BIND
fields are displayed.

HLS supports extensive SNA-protocol
state interpretation with the DETAIL option
of the STATUS and INFO commands. Using
DETAIL, users involved in systems program­
ming and technical support can examine
each state machine and major control block
of an HLS process. Figure 4 illustrates a
sample INFO command. All critical configu­
ration information is displayed for the
session.

Because on-line inspection of SNA state
information is critical to rapid problem iso­
lation and determination, the STATUS com­
mand is provided to display the current state
of the HLS session. Figure 5 contains a sam­
ple of the information displayed by the
STATUS command. In this particular sample,
the HLS application is sending a message to
its session partner (the current verb is SEND­
DATA), and the HLS application is blocked,
waiting for message acknowledgment from
the session partner (the current status is
RSP _WAIT). This type of display greatly
accelerates problem resolution.

Application Prototyping and Simulation
Using the Application Prototyping and Sim­
ulation (APS) system, applications program­
mers can interactively execute verb requests
and immediately see verb replies. Using this
feature, programmers can create a prototype
of an application in minutes without writing
any code. They can easily simulate error
recovery, message contention, and verb exe­
cution conditions.

Figure 5.

A sample STATUS,
DETAIL screen. The
operator requests infor­
mation from all L Us
(*. *) with this STATUS
command, although
only one LU is shown
here. Note that the
current verb for the
HLS application is
SEND-DATA (shown
in the Verb Code
field) and completion
of the verb is blocked:
SNAX/HLS is waiting

for message acknowl­
edgment from the ses­
sion partner (shown in
the Status field). The
state information sec­
tion displays the status
of all SNA protocol
control blocks. The
control information
shows the value of
various counters (e.g.,
Msg _ Queue is the num­
ber of messages queued
for the application).

TANDEM SYSTEMS REVIEW JUNE 1985

APS is also a useful educational tool. Pro­
grammers unfamiliar with HLS can be
shown verb dynamics in a few hours of
instruction.

APS is a Screen COBOL requester, present­
ing one screen per verb request. The APS
user merely selects the function key repre­
senting the verb to be executed, fills in the
verb indicators, directs APS to send the verb
to an HLS process, and observes the result.

APS includes extensive display fields to
help identify errors and problems. It inter­
prets SNA sense codes in both hexadecimal
notation and English. The display fields are
quite useful for learning the HLS system.
Figure 6 represents an APS screen after an
OPEN-SESSION failure has occurred. The
SNA sense code for the failure (hex 0801) is
automatically decoded to message text
(Resource Not Available). With this feature,
problem resolution can begin immediately;
the programmer does not have to decode the
sense code by using one of several SNA
manuals.

HLS Trace Analysis Process
The HLS Trace Analysis Process (HLSTAP)
allows the user to format and display trace
information in a meaningful, high-level for­
mat. First, the user configures trace require­
ments using HLSCOM. Four levels of trace
information can be configured:

l. Verb input and output. At this level, a
trace of all verb requests into HLS and all
verb replies out of HLS can be config­
ured. This trace is intended for use in
determining application-program
problems.

2. LU service calls. At this level, a trace of
internal scheduling events that HLS exe­
cutes on behalf of the user can be config­
ured. This is, in essence, a "dispatcher"
trace and is intended for HLS internal­
problem determination.

Data Communications

Figure 6

T9089A24 SNA.X/HLS Application Prototyping and Simulation (APS) System 290CT84

Open Session Request

m:_o

Profile:

l'fj;Jel111e
l!:.

Seru:I seq Rev. seq
._!)_. ~

Be1urn ~e: 1-0
SySttrll err9r: 2049

IJ*et'fl)r:
f!~ry"A/JtiDII;
Send ~1111111:$;ritl:
!!mv ~oon~nQ:
l\~pHcatiOI! Name:

Request complete

Open Session Reply

.F«l-S~&SfqN•l'~J,~R~
iilES.O!J FlCE !'ill)T AVJlll.A!!lE

NolPimiib1~

f1 F2 F3 f4 F5 F6 f7 F8 F9 flO fn f12 Ft3 f14. F15 F16
OS PC cs. RC RO Si SD ss SI! &A . ·. M SENll PIii-iT MORERSET mr

Figure 6.

A screenfrom anAPS
session in which a
session failure
occurred. The top half
of the screen shows the
OPEN-SESSION verb
parameters supplied by
the user. The bottom
half of the screen shows
the verb reply from

HLS. Note that the
return code is
RC-SESSION-FAIL URE.
The system error field
shows the reason for
the session failure. A
negative response from
the session partner was
received, indicating
that the session

3. Data flow control (DFC}. At this level, a
trace of "before and after" DFC finite
state machines can be configured during
the course of message processing. This is
intended for HLS internal-problem
determination.

4. SNALU I/O. At this level, a trace of mes­
sages to and from SNAX can be
configured.

partner could not be
contacted (RESOURCE
NOT AVAILABLE).
The retry-action field
provides information on
whether the
OPEN-SESSION verb
is retryable; in this
instance no verb retry
is possible.

JUNE 1985 TANDEM SYSTEMS REVIEW 121

Data Communications

Figure 7

SNAX/HLSTAP -T9089A24 - (290CT84)

> > > > > > DFC"RESET

LU Name $SNAl#LU1

,record 00001 19Dec84,09:24 29 31 < < < < < <

Session ID. 1

------------------------------- SI ale I nformat1on -- ------------------------- - ---

Session Active Bracket lnb Send/ Rev lnb_Rcv
Data Traffic Active Bkt_Ctl_S Reset SR_Ctl_S Reset
Shutdown Reset Bkt_Ctl_R Reset SR_Ctl_R Reset
Chain_Senc Betc Charn_Rcv Betc QEC_Rcv
EBCO_Send Reset EBCD_Rcv Reset QEC_Send

----------- -------------------- Bind Information -------------------------------

--- Profiles --- Protocols --- -- MaxRus -- --- Pacing
FM Profile 03 Prtmary A1 Send 1024 Send_Window
TS Profile 03 Secondary AO Receive 1024 Rcv_Wrndow

Common 0380

------------------------------ Session Parameters ------------------------------
DFC_BID_RCV Allowed DFC_QEC_RCV Not allowed SC_CLEAR Allowed
DFC_BID_SEND Not allowed DFC_QEC_SEND Not allowed SC_RQR Not allowed
DFC_BIS_RCV Not allowed DFC_RELQ_RCV Not allowed SC_SDT Allowed
DFC_BIS_SEND Not allowed DFC_RELQ_SEND Not allowed SC_STSN Not allowed
DFC_CANCEL_RCV Allowed DFC_RSHUTD_RCV Not allowed SC_CRV Not allowed
DFC_CANCEL_SEND Allowed DFC_RSHUTD_SEND Allowed
DFC_CHASE_RCV Allowed DFC-SBI_RCV Not allowed
DFC_CHASE_SEND Allowed DFC_SBI_SEND Not allowed
DFC_LUSTAT_RCV Not allowed DFC_SHUTC_RCV Not allowed
DFC_LUSTALSEND Allowed DFC_SHUTC_SEND Allowed
DFC_QC_RCV Not allowed DFC_SHUTD_RCV Allowed
DFC_QG_SEND Not allowed DFC_SHUTD_SENO Not allowed
DFC_RTR_RCV Not allowed DFC_SIG_RCV Allowed
DFC_RTR_SEND Allowed DFC_SIG_SEND Allowed
USING_BRACKETS Yes THIS_HALF _SESSION_RO_MODE Immediate
FIRST _SPEAKER Yes PARTNER_HALF _SESSIDN_RQ_MODE Immediate

LU Name· $SNAT#LU 1

record 00002,19Dec84,09·24 29 85 < < < < < <

Session ID

Verb Reply Open_Session

---- Indicators ----­
Return_Code·
System_Error
User_Error
Retry _Action
Send_Seq_No·
Rcv_Seq_No:

0
0000
0000

0
0
0

(RC-OK)

(NOT APPLICABLE)

Application P3IDHBNO

Figure 7.

Two records from a
SNAX!HLS trace file,
formatted with
HLSTAP. The first
record (record 1) shows
the initialization of
session control blocks
for LU $SNAT.#LU1.
The State Information
section shows the ini­
tial settings for SNA
control flows. The Bind
Information section
shows the values of the
session-establishing
SNA message (i.e., the

BIND message). The
Session Parameters
section shows which
types of SNA message
SNAX/HLS is allowed
to send and receive
under the rules of the
current session. The
second record shows
the completion of an
OPEN-SESSION verb
for the same LU. Note
that all verb reply
indicators are format­
ted by HLSTAP.

Once the trace of selected LUs is com­
plete, the user can stop the trace and begin
analysis with HLSTAP. HLSTAP allows indi­
vidual LUs or groups of LUs to be selected
for processing. Formatted displays decode
all verb indicators, the session BIND, DFC
states, SNA request/response headers, and
user data. Several convenience commands
are also included in HLSTAP. Figure 7 repre­
sents a page from a sample HLSTAP report.

Potential Applications
HLS was designed to function in a wide
range of environments, including SNA
device support, SNA gateway applications,
selective passthrough applications, and
"intelligent-networking" applications. The
following is a description of how HLS fits
into each environment.

Device-support applications
In this type of application, an SNA device is
connected to a Tandem application (e.g., the
PATHWAY transaction processing system).
SNAX includes native support for IBM 327X
display devices and 328X printers. The HLS
system adds support for the following IBM
products:

■ 3600 Financial System.
■ 3624 Financial System.
■ 3630 Plant Communications System.

• 3640 Manufacturing System.
■ 3650 Retail Store System.
■ 3660 Supermarket System.
• 3680 Programmable Store System.
■ 3767 Communications Terminal.
• 3770 Data Entry System.
■ 4700 Financial System.
■ 5520 Information Display System.

■ 6670 Information Distributor.
■ 8100 Information System.
■ Series/1 General Purpose DP System.
■ Series/32 General Purpose DP System.
■ Series/34 General Purpose DP System.
■ Series/36 General Purpose DP System.
■ Series/38 General Purpose DP System.

122 T A N D E M SYSTEMS REVIEW J lJ N E I 9 8 5

This SNA device support allows the business
application to reap the benefits of the
Tandem system (i.e., availability, expand­
ability, and programmability) while still
making use of the SNA terminal or device.

It is important to note that HLS provides
only the SNA support for these devices. Spe­
cific device control and data formatting is
the responsibility of the HLS application.

Gateway Applications
Gateway applications are processes resident
011 a Tandem system that are in communica­
tion with a foreign computer /network. HLS
provides an easy-to-use interface for
Tandem applications to communicate with
the following SNA applications:

■ Customer Information Control System
(CICS).
■ Host Command Facility (HCF).

■ Information Management System (IMS).

■ Job Entry System 2 (JES2).

■ Job Entry System 3 {JES3).

■ Network Communications Control Facil­
ity {NCCF).

■ Network Routing Facility {NRF).

■ Time Sharing Option (TSO).

In gateway-application environments,
HLS provides SNA protocol support for
applications running on Tandem systems.
In such environments, Tandem transaction
processes can have on-line access to data
located on the IBM system and vice versa.
In other words, each system can function as
a data-base "server" for the other. Critical
data bases can be located on the Tandem
system for fast, reliable access while batch­
processed data can be located on the IBM
system. Thus, neither system need be iso­
lated from the data bases.

Often SNA device-support applications
are closely integrated with SNA gateway
applications. For example, in a shared
automated-teller (ATM) network, Tandem
systems could support a network of SNA
ATMs using the device-support features of
HLS. The routing of ATM transactions would
be done by Tandem applications, and trans­
action delivery to SNA hosts would be sup­
ported by the gateway SNA features of HLS.

Gateway sessions to the Network Routing
Facility (NRF) deserve special mention. NRF
is an IBM software product that runs in an
SNA front-end processor (e.g., the 3725). It
allows transactions to be routed through an
SNA network with no IBM host-application
involvement. HLS supports NRF sessions, an
example of which is given in the next
section.

Selective Transaction-passthrough
Applications
SNA gateway support can also involve aver­
sion of transaction processing termed selec­
tive passthrough. In this type of application,
the critical data bases are strategically
located on Tandem and IBM computers.
HLS applications provide the gateway access
to the IBM systems. Transaction programs
on the Tandem system control the device
(Tandem, SNA, or other) and route requests
for data to the appropriate source. Terminal
operators are unaware of the location of
data and/or programs. The demonstration
of HLS in October 1984 to the International
Tandem Users' Group (ITUG) in Orlando,
Florida, featured selective transaction
passthrough. In it, terminal operators could
retrieve and update records on either a
Tandem ENCOMPASS or an IBM CICS
data base.

Intelligent-network Applications
Although the term intelligent network is
ambigvous, there is a consensus that an
intelligent network provides, between
diverse terminals and hosts, an interface
that contains value-added network func­
tions. HLS provides the SNA gateway and
SNA device support this type of endeavor
requires. For example, one HLS user is sup­
porting custom X.25 terminals with a net­
work of Tandem processors. The user
employs HLS to connect the terminals to
TSO running in IBM SNA hosts. In essence,
the HLS application bridges the gap between
the SNA application in the IBM host and
foreign X. 25 terminals.

JUNE 1985 TANDEM SYSTEMS REVIEW

Data Communications

123

Data Communications

Figure 8.

A schematic diagram
of the elements in the
retailer's network as
simulated in the bench­
mark. SNA and non­
SNA point-of-sale (POS)
devices are concen­
trated by IBM Series/1
minicomputers at retail
store locations. Tandem
systems running SNAX
and HLS connect to the
SNA backbone network
and perform credit
authorizations for
customers.

124

SNAX/HLS in an
Application Benchmark
SNAX/HLS was used in an application
benchmark of a large retail credit­
authorization system. The section below
describes the HLS design used in the bench­
mark and the HLS performance results.

The user had a large SNA network in place
and requested a demonstration of Tandem's
SNA transaction-processing capabilities
before undertaking full-scale application
development.

Credit transactions from point-of-sale
(POS) devices were to be concentrated by
IBM Series/ 1 minicomputers at the store
level. Credit-card transactions from the
store's POS devices were to be routed
through the SNA network to the Tandem
systems for credit authorization or rejection.

NRF was selected to route transactions
between the Tandem systems and the
Series/1 computers. It provides transaction
switching with no IBM host-program
involvement. NRF also supports transaction
pipelining, permitting the transactions from
several POS devices to be multiplexed to the
Tandem application through a single LU in
the Series/ 1. Figure 8 shows the elements of
the planned network.

The PATHWAY transaction processing sys­
tem was selected to control and support
credit-authorization processing on the
Tandem system. Using HLS, PATHWAY pro­
grams were to accept transactions from NRF,
perform credit processing, and reply to NRF
with approval or rejection.

The detailed design focused on three
major aspects of the HLS application: ses­
sion establishment, data transfer, and ses­
sion termination. Session establishment and
termination were straightforward. The
OPEN-SESSION and CLOSE-SESSION verbs
were to be used to start and stop SNA com­
munications. The data transfer phase was to
use an initial "priming" RECEIVE-DATA
verb to acquire the first transaction, fol­
lowed by a SEND-AND-RECEIVE-DATA verb
to reply to the first transaction (the SEND
portion of the verb) and prepare for a new
transaction (the RECEIVE portion of the
verb). The SEND-AND-RECEIVE-DATA verb
was to be used in this fashion to minimize
the number of interprocess messages
between the HLS application and the HLS
process.

A summary diagram of the application
logic is presented in Figure 9. (In the dia­
gram, the verb structures have been simpli­
fied to enhance clarity. More information
about HLS verbs can be found in the docu­
mentation accompanying the software.)

Figure 9 represents the following dialogue
and actions:

1. The application issues the OPEN-SESSION
verb, which defines the SNAX LU name to
be used for session communication. The
PROFILE field of this verb points to an
entry in the RDT that specifies the session
parameters. The PIPELINE=YES option
field indicates to HLS that the LU is to be
handled in a pipeline manner.

The execution of the OPEN-SESSION
verb causes HLS to send a special SNA
message, INITSELF. The INITSELF mes­
sage requests NRF to establish a session
(i.e., send the SNA BIND message). After
the session is established, HLS completes
the OPEN-SESSION verb with RETURN­
CODE= OK (i.e., the session was success­
fully established).

TANDEM SYSTEMS REVIEW• JUNE I <J 8 5

Figure 9

SNAX/HLS application

2

3

4

2. The application issues a RECEIVE-DATA
verb to accept the first transaction. HLS
the~ accepts a transaction from NRF,
delivers SNA acknowledgment if neces­
sary, and completes the RECEIVE-DATA
verb with DATA-TYPE-RECEIVED=
PARTNER-DATA to indicate the source of
the message.

3. The application now enters its main pro­
cessing loop, continuing the processing
until the session is ended or the applica­
tion is terminated.

First, the transaction is subjected to
credit processing. Next the application
issues a SEND-AND-RECEIVE-DATA verb.
The SEND portion of the verb sends the
transaction reply to NRF for transmission

SNAX/HLS NRF

to the requesting terminal. The RECEIVE
portion of the verb accepts the next trans­
action for processing.

4. When the HLS application wishes toter­
minate the session, it issues the CLOSE­
SESSION verb. This verb causes HLS to
send the SNA message TERMSELF to NRF.
The session is ended when the SNA
UNBIND message from NRF is received
by HLS.

The credit authorization system described
above was constructed by CICS application
programmers using Tandem program­
development tools. The system was sub­
jected to extensive tests by the Telepro­
cessing Network Simulator {TPNS),

JUNE 1985 T A N D E M S Y S T E M S R E V I E W

Data Communications

Figure 9.

An overview of the
SNAX!HLS processing
logic for the benchmark
credit-authorization
application. Verbs have
been simplified for
clarity. There are four
major steps: (1) the
establishment of a
session between the
SNAX/HLS application
and NRF, IBM's Net­
work Routing Facility,
(2) an initial ''priming"
RECEIVE-DATA to
obtain the first transac­
tion, (3) an iterative
loop of credit process­
ing and execution of a
send/receive verb, and
(4) termination of the
session with NRF Verb
execution is described
in detail in the text.

125

Data Communications

126

an IBM software product. TPNS testing
showed that SNA sessions could be estab­
lished between IBM processors and Tandem
systems and that the HLS application cor­
rectly processed SNA pipeline transactions.

The system was subjected to a significant
performance benchmark. Along with the
transaction-throughput and response-time
measurements, some SNAX/HLS measure­
ments were taken. Based on measurements
made with the XRAY performance­
measurement tool, the cost of a SEND­
AND-RECEIVE-DATA verb in a pipeline
environment was calculated at 11 ms per
transaction on the Non Stop TXP processor. 2

This figure can be interpreted in the follow­
ing ways:

• A Nonstop TXP processor is capable of
processing almost 100 SEND-AND-RECEIVE­
DATA verbs per second in the environment
measured.

• HLS processing overhead is very small.
The measurement above was obtained from
a system of 32 Nonstop TXP processors, at
120 transactions per second. At the mea­
sured rate, only 4.1 percent of the total
processing power of the system was con­
sumed by HLS verb processing.

'The CPU millisecond figure was obtained by summing the CPU BUSY figures
for aUHLS processes, dividing the sum by 100 to yield total processing time,
and, finally, d1v1dmg by the transaction rate per second.

3 ln ~ddition t? t_he references listed, several Tandem software manuals (or
sections of ex1stmg manuals) on SNAX/HLS will be published. Refer to these
when they become available.

Conclusions
SNAX/HLS brings the power of Tandem
on-line transaction processing to SNA
networks. Tandem users can use the features
of SNAX/HLS to support advanced SNA
terminals and/ or communicate to IBM SNA
subsystems. Critical data bases and applica­
tions can now be positioned where business
needs dictate.

SNAX/HLS support tools such as the APS
system bring application programmers up to
speed rapidly, allowing applications to be
developed in a minimum amount of time. In
a production environment, tools such as
HLSCOM and HLSTAP assist in rapid prob­
lem isolation, determination, and resolution.

With SNAX/HLS, Tandem solutions to
critical business problems can be more easily
designed, developed, and maintained in an
SNA environment.

References'
Kirk, D. 1984. A SNAX Passthrough Tutorial. Tandem Jour­
nal. vol. 2, no. 2. Tandem Computers Incorporated.

SNAX Programming and Network Management. Part no.
82326 AOO. Tandem Computers Incorporated.

Systems Network Architecture - Sessions between Logical
Units. GC20-1868. IBM Corporation.

Systems Network Architecture Concepts and Products. GC30-
3072. IBM Corporation.

Systems Network Architecture Format and Protocol Reference
Manual: Architecture Logic.SC30-3112. IBM Corporation.

Watson, L. and Madsen, K. 1984. Capacity Planning for
Tandem Computer Systems. Tandem Application Monograph
Series. Part no. 83904. Tandem Computers Incorporated.

Acknowledgments
The author would like to thank Allen Maxwell and Dick Kline
for their painstaking reviews and constructive comments on this
article.

Steven E. Saltwick is an advisory analyst on the South Central
Regional Staff in Dallas, Texas. Since joining Tandem in 1982,
Steve has supported major accounts in the Dallas District and
the South Central Region. He was a member of the group respon­
sible for the design and implementation of SNAX/HLS. He is
currently a member of Tandem's Intelligent Network Task Force.
Before joining Tandem, he was a systems engineer and SNA
developer for another computer vendor.

T A N D E M SYSTEMS REVIEW J U N E 1 9 8 S

esigned as an integrated
part of the Tandem sys­
tem, the DYNAMITE 654X
workstation combines the
local processing capability
of a personal computer
and the capabilities of the

Tandem 653X terminal. This allows Tandem
users to use their Tandem system, transfer
information to and from the system and
their workstations, and use the workstations
locally, taking advantage of the business
software currently available for personal
computers.

Standard Software and Hardware
Components
The workstation comes in two models: the
6541 workstation, which includes two disk­
ette drives, and the 6546 workstation, which
includes one diskette drive and one 1 OM­
byte Winchester (hard) disc. Both models
include all of the following standard soft­
ware and hardware components:

■ MS-DOS operating system (Microsoft).
■ GW-BASIC language.
■ 653X terminal-emulation software.
■ 256K-byte memory.
■ 8086 processor (8 MHz).

The DYNAMITE Workstation:

■ 26 function keys (IBM PC and
Tandem 653X).

■ 12-inch monitor.
■ Low-profile keyboard.
■ Tilt-and-swivel terminal base.
■ Serial printer interface.

An Overview

■ RS-232-C, RS-422, or Tandem current-loop
communications ports.
■ Audio speaker.
■ Power-up diagnostics.

Options
Several product options are also available to
complement the workstation. First, a new,
low-cost printer (available in two models)
can be used either as a screen printer or as
an output device for local applications. Both
printer models have two switch-selectable
print formats: normal 9 x 9 format or the
near letter-quality 18 x 17 dot-matrix for­
mat. The models are:

■ Model 5540, a serial-matrix printer that
prints 80 columns at 158 cps, when the 9 x
9 matrix is selected (94 cps, when the 18 x
17 format is selected).

■ Model 5541, a serial-matrix printer that
prints 132 columns at 158 cps, when the
9 x 9 matrix is selected (94 cps, when the
18 x 17 format is selected) .

. ~----- ---------~ ------------

JUNF 1985 TANDEM SYSTEMS REVIEW 127

Workstatiom

Figure 1.

The hardware compo­
nents of the DYNAMITE
workstation. The elec­
tronics module can be
placed away from the rest
of the components to save
desk space.

Figure 1

128

12 ·inch monitor with
tilt-and-swivel
terminal base

Electronics
module

A second option is the bit-mapped graph­
ics board that runs third-party, IBM­
compatible graphics, offering high
resolution and a mouse interface.

Finally, two system-integration software
packages, the Information Xchange Facility
(IXF) and PCFORMAT, are also available.
IXF software transfers information between
system and local files. PCFORMAT converts
Tandem system files to one of several for­
mats used by third-party PC software.

Features
The DYNAMITE workstation enhances the
on-line information capabilities of Tandem
systems. Its benefits for the Tandem user
include:

■ Economy. The workstation provides the
user with several information tools in one:
(1) An on-line 653X transaction terminal,
(2) a personal computer, (3) a 3270 terminal,
when the optional EM3270 software is used,
(4) a graphics terminal, when the graphics
option is used, and (5) a word-processing
terminal, when third-party software is used.

■ IBM PC compatibility. Most IBM PC
applications can be run on the DYNAMITE
workstation.

■ Modular, ergonomic design. The electron­
ics module can be placed off the work space
to save space, and the terminal can be
swiveled and tilted.

6541 Model: Dual-floppy drive
6546 Model: Winchester (hard) drive

and floppy drive

Low-profile keyboard

■ High-resolution graphics. The DYNAMITE
workstation provides 800 x 300 resolution
(in pixels).

■ Display of both alphanumerics and
graphics on a standard video screen. Unlike
some personal computers and workstations,
it does not require a separate graphics
terminal.

■ Third-party software that performs signif­
icantly faster than other third-party emula­
tion software (up to ten times faster for
some operations). Also, the DYNAMITE
workstation third-party software is designed
to work with future, as well as existing,
Tandem software.

Hardware Components
The DYNAMITE 6546 workstation is shown
in Figure 1. Both Model 6546 and Model
6541 have a 12-inch monitor, electronics
module, keyboard, and disc module. The
difference is in their disc drives: the 6541
disc module contains two diskette drives,
each having a capacity of 360K bytes, while
the 6546 disc module contains one diskette
drive and one lOM-byte Winchester disc.

Figure 2 illustrates the basic components
and three option-board slots of the electron­
ics modules for the two models. For both
models, the upper slot of the electronics
module contains the controller board,
including the following:

■ Processor.

■ Monitor interface (display controller).

■ Keyboard interface.

■ 128K bytes of memory.

■ Communications interface.

■ Serial printer interface.

■ Bus interface to the additional options.

The middle slot contains a disc controller
board (either the dual-floppy controller for
the Model 6541 or the floppy/hard disc con­
troller for the Model 6546). This board con­
trols disc drives and contains another 128K
bytes of memory. If the user needs more
than 256K bytes of memory, additional

TANDEM SYSTEMS REVIEW• JllNF 1985

memory can be added to this board in
blocks of 128K bytes. There is room for
three more blocks of memory (384K bytes),
for a maximum workstation memory size of
640K bytes.

The bottom slot is available for option
boards. Currently, the only option boards
available are the multifunction board and
the graphics board. 1 The multifunction
board contains:

1. An IBM parallel printer port used with
IBM-compatible printers.

2. An IBM serial port used with third-party
communication packages.

3. A real-time clock (battery-backed).

The graphics option board contains all the
capabilities of the multifunction board in
addition to graphics.

Note that options currently used with the
653X terminal family (i.e., the alternate­
input and voice options) are not compatible
with the DYNAMITE workstation. The main
reason for this is that the architecture of the
6530 is based on the 280 chip while that of
the DYNAMITE workstation is based on
the 8086.

Compatibility with the IBM PC
The DYNAMITE workstation is compatible
with applications written to run on MS-DOS
or IBM's PC-DOS operating systems. Appli­
cations written within the constraints of the
MS-DOS or PC-DOS system are hardware­
independent and compatible. Most popular
third-party applications follow these con­
straints and, thus, run on the DYNAMITE
workstation. If software has been written
to address specific hardware attributes of
the PC, it may not be compatible with the
workstation.

~h~ A IO (or later) release of the firmware and software is required for both
option boards.

Figure 2

DYNAMITE
electronics module / Main controller board

- Disc controller board
~ (floppy or hard)

Graphics/multi-function
board

Levels of Compatibility
The article, "How Compatible is Compati­
ble?" (Cook, 1983), describes seven levels
of compatibility for the IBM PC. Below is a
brief description of these levels and infor­
mation about the compatibility of the
DYNAMITE workstation at each level. (Note
that as the level number increases, the degree
of compatibility also increases.)

Level 1: Media compatibility. This is the
ability to read and write discs in the format
used by the IBM PC. A disc formatted on
the PC can be read and written to on the
DYNAMITE workstation and vice versa.

Level 2: Processor compatibility. This is
instruction-set compatibility (8088, 8086,
80188, and 80186 chips). Although the
instruction set of the DYNAMITE work­
station is compatible with that of the PC,
the processor clocks of the PC and the work­
station differ. The PC processor has a
4. 77 MHz clock while the workstation has
an 8. 00 MHz clock. This means that pro­
grams that implement processor-based tim­
ing loops on the PC may not work on the
DYNAMITE workstation. If, however, the
timing loop is based on the counter timer
(the same for both systems), the program
should work.

JUNE 1985 TANDEM SYSTEMS REVIEW

Workstations

Figure 2.

Board slots in the elec­
tronics module of the
DYNAMITE worksta­
tion. The main controller
board contains the pro­
cessor, monitor interj ace,
keyboard interface, 128K
bytes of memory, commu­
nications interj ace, serial
printer interj ace, and bus
interface to the options.
The disc controller board
contains the controller for
the floppy diskette or
hard disc drives and
another 128K bytes of
memory. The bottom slot
is for option boards.
Currently the multifunc­
tion and graphics boards
are available.

129

Workstations

130

Table 1.

Compatibility of the DYNAMITE workstation with the
IBM PC.
DYNAMITE workstation
component

Processor instruction set

Processor clock

Operating system

Option boards

Character set and keyboard

Video display, superset

System architecture

Compatible
with IBM PC?

Yes

No

Yes

No

Yes
(plug-compatible)

Yes

Yes
(partially)

Level 3: Operating-system compatibility.
This means compatibility with MS-DOS or
other popular PC operating systems. The
DYNAMITE workstation is compatible with
MS-DOS. Tandem has licensed MS-DOS
(version 2.11), which has external
commands equivalent to those of the IBM
PC, compatible function calls, identical
file-protection schemes, and equivalent
run-time libraries.

Level 4: Option-board compatibility. This
level refers to the use of PC option boards.
PC option boards cannot be used in the
DYNAMITE workstation. Hardware options
for DYNAMITE workstation electronics
modules are designed and provided by
Tandem. Tandem does, however, provide
some functionally equivalent options (e.g.,
the graphics board, which is compatible with
the IBM optional graphics board). The
workstation graphics board can be run in
monochrome or color mode. Third-party
software packages that directly access
monochrome or color display hardware
should work on the DYNAMITE workstation.

Level 5: Character-set and keyboard
compatibility. This level of compatibility
requires that the product use the same 256
display codes and the same keys used by the
PC. The DYNAMITE workstation has a
compatible keyboard; in addition, it has
other function keys for 653X terminal
emulation.

Level 6: Video compatibility. This level of
compatibility requires that the video
interface used by the PC be used, including
memory mapping and controller addresses.
The DYNAMITE workstation's video inter­
face is compatible with that of the IBM PC.

The character-display controller on the
processor board is compatible with the IBM
monochrome alphanumeric graphics, and it
has color capability for alphanumeric and
bit-mapped color graphics.

Level 7: System compatibility. This means
duplication of the entire PC architecture,
including random-access memory (RAM),
read-only memory (ROM), I/0 addresses,
and the PC Basic Input/Output System
(BIOS). The system compatibilities and
incompatibilities of the DYNAMITE worksta­
tion with the IBM PC are listed in Table 1.

The DYNAMITE workstation is partially
compatible with the PC at this level. It uses
the same interrupt system, direct-memory­
access (DMA) system, and timer counter. In
addition, the key 1/0 addresses are the same
as those for the PC (including the addresses
for the keyboard, display, and diskette).
Finally, the memory of the DYNAMITE
workstation has the same layout as that of
the PC.

The portions of the DYNAMITE worksta­
tion system architecture that differ from the
PC include, for example, the system bus, the
processor clock, and the soft-configuration
menu stored in nonvolatile RAM (the PC
uses dip switches).

Input/ Output Compatibility
A brief discussion of the IBM PC software
called BIOS would be helpful before examin­
ing compatibility further. BIOS is contained
in ROM. Its primary function is to handle
low-level aspects of 1/0 (such as interrupts)
to the display controller, floppy, hard disc,
keyboard, and printer on behalf of an appli­
cation. To state this in a different way, an
application can make calls to BIOS to per­
form 1/0, and BIOS handles all direct com­
munications to the device.

Using BIOS, the application does not have
to know the physical characteristics of a
device. It simply passes the data to BIOS,
which knows the device's physical character­
istics and how to communicate with it. As
long as the application's calls to BIOS remain
consistent, the application is able to access
the device, regardless of changes in the hard­
ware interface.

TANDEM SYSTEMS REVIEW .JUNE 1985

As a general rule, if a workstation's BIOS
is compatible with PC BIOS, a third-party
application accessing the hardware through
BIOS should run successfully on both units.
Note that, for an application to run success­
fully, the interface between the application
and BIOS must be the same, while the inter­
face between BIOS and the device can be
different. For example, while the PC printer
interface is parallel, the printer interface for
the DYNAMITE workstation is serial. As long
as a third-party package calls BIOS to use the
printer, however, the printer interface works.

The Tandem serial printer port, therefore,
is equivalent to the IBM parallel port when
BIOS is used. Third-party configuration
instructions for serial printers should only be
followed when a serial printer is attached to
the IBM PC COMI or COM2 serial ports.

A PC application can, however, bypass
the BIOS and access the hardware directly.
The DYNAMITE workstation was designed
so that its key hardware elements (the dis­
play controller, diskette, and keyboard) are
compatible with those of the IBM PC.
Applications that access these components
directly should run successfully on the
DYNAMITE workstation. 2

Table 2 lists the software products that
have been tested on the DYNAMITE worksta­
tion and have run successfully. This list is by
no means exhaustive. More applications are
scheduled for testing. (Note that the list is
not a commitment from Tandem to warrant
or support the software.)

DYNAMITE Workstations in the
Tandem Environment
While the DYNAMITE workstation provides
local processing and is compatible with the
IBM PC, it is much more than a personal
computer. The basic product includes all the
hardware and software necessary to commu­
nicate with a Tandem system.

Included in the basic product is Tandem
653X terminal emulation for both conversa­
tional mode and block mode, in an asyn­
chronous, TERMPROCESS environment. The

2Support for an IBM hardware-compatible serial communications port and
parallel printer port is planned for the DYNAMITE workstation multifunction
and graphics board.

Table 2.

Third-party software products that have been tested
successfully on the DYNAMITE workstation.
Application Vendor
Wordstar MicroPro

Think Tank Living Videotext

SuperCalc 2 Sorcim

VisiCalc IV Software Arts

Lotus 1-2-3 Lotus Development

Multi Plan Microsoft

Symphony Lotus Development

R BASE 4000 Microrim

dBASE II Ashton-Tate

dBASE Ill Ashton-Tate

EasyWriter (1.1) Info Unlimited

Vis1Word VisiCorp

WORD Microsoft

Displaywriter 2 IBM

Multimate Multimate Intl.

Framework Ashton-Tate

Managing Business with Lotus 1-2-3 Lotus Development

EDIX Text Processor Emerging Technology

Harvard Project Manager Harvard Software

IBM Personal Editor IBM Corporation

Microsoft Macro Assembler (1.25) Microsoft

Norton Utilities Peter Norton

PC Tutor (for MS-DOS 2.0) Comprehensive SW

PFS:FILE Software Publishing

PFSWRITE Software Publishing

Prokey Rosesoft

Sidekick Borland SW

PC Master Courseware

Dow Jones Reporter Dow Jones Software

Verbatim Disk Analyzer Verbatim

Copy II PC Central Point SW

VEDIT CompuView

CPM/86 Operating System Digital Research

Concurrent CPM/86 Digital Research

Turbo Pascal (2.0) Borland SW

Lattice C Compiler (2.0) Lattice Corp.

workstation can be attached to any port
already configured for an asynchronous
653X terminal, and it can be used in any
manner appropriate for that terminal. (More
detailed information about DYNAMITE host
integration is given in the accompanying
article by Stan Kosinski.)

EM3270
Communication with an IBM 3270
application via a DYNAMITE workstation
can be accomplished using EM3270 software
(not included in the basic product). This
requires the 6530 emulation software (a
standard software component).

JUNE 1985 T A N D E M S Y S T E M S R E V I E W

Workstations

131

Figure 3.

File transfer between a
Tandem system and a
DYNAMITE workstation
with the Information
Xchange Facility (IXF).
(The communications
control system is to a set
of software components
on the workstation that
provide a high-level,
software interface to the
data-communications
hardware.)

132

Information Xchange Facility
The Information Xchange Facility (IXF),
which is used for file transfer, is also
available at an additional cost. With it, both
ASCII and binary files can be transferred
between the Tandem system and DYNAMITE
workstations. File transfer is useful for data
integrity (copying the workstation data to a
mirrored volume for safety) and for security
(copying a file to the host and purging it
from the floppy).

IXF is easy to use. To transfer files one
follows these steps:

1. Boot MS-DOS.

2. Start 653X emulation.

3. Log on to COM INT.

4. Return to MS-DOS.

5. Initiate file transfer with the MS-DOS
external command.

Note that, to accomplish the file transfer,
software executes on both the DYNAMITE
workstation and the host system. (See
Figure 3.)

Figure 3

IXF provides:

■ Powerful line-oriented commands to
direct operations.

■ Command origination from the command
line or from a file.

■ Sophisticated pattern matching for file
names on the DYNAMITE workstation and
the host.

■ Multiple file transfers with one command.

■ A full set of options for customized
tailoring.

■ A sophisticated communications protocol
for data integrity.

■ Process-to-process communications
between the host and workstation
applications.

■ A protocol that is transparent to
applications.

■ Translation of nongraphic data.

File Transfer with IXF

DYNAMITE Workstation Tandem Host

TANDEM SYSTEMS REVIEW JUNE 1985

PCFORMAT
Finally, an even greater degree of integration
can be achieved between the DYNAMITE
workstation and the Tandem host with
PCFORMAT, a data-extraction utility.
PCFORMAT runs on any Tandem host,
accepts data from any Tandem file, and
converts the data into any of these IBM PC
formats: DIF (Data Interchange Format),
SYLK (Symbolic Link), BASIC, and ASCII.

Once converted, the file can be
downloaded to the workstation with IXF.
The downloaded file can then be accessed by
any PC program that recognizes the format.
This process is illustrated in Figure 4.

Input to PCFORMAT is typically a file
described by the Tandem Data Definition
Language (DDL). The input file can be
unstructured, entry-sequenced, relative, or
key-sequenced.

End-user Support
Tandem provides end-user support for the
DYNAMITE workstation via its Customer
Assistance Center (CAC) in Austin, Texas,
and the Customer Focal Point (CFP)
employee at the customer site. Figure 5
shows the relationship between the CAC,
CFP, and end user.

Customer Assistance Center (CAC)
The CAC is a source of information,
expertise, and assistance to workstation
users for problems for which the users can
find no solution in the product manuals and
educational materials.

Assistance provided by the CAC includes:

■ Hardware and software trouble-shooting.
■ Problem isolation and resolution.
■ Operational assistance.
■ Information about product use.

The CAC maintains a data base of known
problems, customer calls, commonly asked
questions, and third-party software that has
been tested and run successfully on the
DYNAMITE workstation. With its expert
staff, data base, testing program, and
support facilities, its goal is to ensure that
users of the DYNAMITE workstation are
fully supported.

Figure 4

Tandem host environment

IBM PC environment

Figure 4.

Data extraction with
PCFORMAT.
PCFORMAT runs on any
data from any Tandem
file, and converts the data

into a format usable by
IBM PC programs. File
types can be unstructured,
entry-sequenced, relative,
and key-sequenced.

Customer Focal Point (CFP) Employee
Instead of individual end users calling the
CAC directly, customers choose at least one
end-user employee to be Tandem's CFP. The
CFP is the liaison between Tandem and the
customer for all support needs for the
DYNAMITE workstation.

JUNE 198S TANDEM SYSTEMS REVIEW

Workstations

Formats for PC disc Jiles
include DIP, SYLK,
BASIC, and ASCII.

133

Workstations

Figure 5.

The relationship between
Tandem's Customer
Assistance Center (CAC),
Customer Focal Point
(CFP) employee, and end
users of the DYNAMITE
workstation. The CFP is
the liaison between the
end user and the Tandem
CAC. Large customer
sites may have more than
one CFP.

134

Figure 5

End user

Customer Focal Point (CFP)
employee

When an end user comes to the CFP with
a workstation question or problem that does
not require the expertise of the CAC, the CFP
is responsible for answering the question or
solving the problem. When expert help is
required, the CFP contacts the CAC via a
toll-free 800 telephone number, and the CAC
provides the assistance needed. The CFP
then communicates the information or solu­
tion to the end user.

Software Supported by the CAC
Note that, while Tandem CAC support ana­
lysts have a working knowledge of the popu­
lar third-party software that runs success­
fully on the workstation, they do not sup­
port this software. Their function is to sup­
port the hardware and software supplied
with the DYNAMITE 654X workstation. If
they find that a user's problem results from
a problem in third-party software, they refer
the CFP to the appropriate vendor.

Conclusion
The DYNAMITE 654X workstation is several
information tools in one. It provides
Tandem users with a single-vendor solution
for connecting microcomputers with a main­
frame system. It has many features, includ­
ing high-resolution graphics; high
performance; fast access; compatibility with
the IBM PC; a modular, ergonomic design;
and popular third-party software.

The DYNAMITE workstation can:

■ Emulate the Tandem 653X terminal.

• Execute PCFORMAT to convert data from
Tandem host format to IBM PC format.

■ Transfer files between a Tandem system
and the local environment with IXF.

■ Communicate with IBM 3270 applica­
tions with EM3270.

■ Run third-party business software for
personal computers.

All of these capabilities make it an excellent
business tool for users of Tandem systems.

Tandem has a continuing commitment to
integrate workstations into its systems.
Future products and enhancements are
planned to further automate the sharing of
host and workstation information.

References
Cook, S. 1983. How Compatible is Compatible? PC World.
vol. I, no. I.

654X Workstation-PCFORMAT User's Guide. Part no. 82679
A00. Tandem Computers Incorporated.

Ginny Smith is a senior systems analyst in the Data Communi­
cations group of Software Education, where she develops
courses for customers and systems analysts. Before this, she
specialized in Tandem terminal products in the Large Systems
Support group. During that time, one of her contributions was
the support strategy for the DYNAMITE workstation. She joined
Tandem in October 1980 as an instructor and course developer
for Tandem Application Language (TAL) and GUARDIAN operat­
ing system courses. Before joining Tandem, Ginny was a sys­
tems engineer for another mainframe vendor.

TANDEM SYSTEMS REVIEW JUNE 1985

.... remendous advances in
microelectronics during the
1970s have come to frui­
tion in the '80s. Digital
watches, video games, and
even automobiles with syn­
thesized voice warnings are

now commonplace. Perhaps the most excit­
ing development has been that of the per­
sonal computer. Its rapid proliferation, both
at home and in the workplace, has brought
an entire society into the computer age
almost overnight. This revolution prompted
Time magazine to select the computer
recently as its first nonhuman "Man of
the Year."

Few institutions have remained untouched
by the PC revolution, least of all the infor­
mation industry. Large, centralized
machines are giving way to smaller com­
puters, located in individual offices and
homes. We are witnessing an Industrial Rev­
olution in reverse.

The personal computer has allowed end
users to design and custom-tailor applica­
tions to meet their unique needs. Such
machines increase productivity because they
need not be shared with other users. How­
ever, the speed with which personal com­
puters have proliferated has created some
problems as well.

An Introduction to
DYNAMITE Workstation

Host Integration

In business, government, and education,
personal computers are largely isolated,
cut off from important applications and
information resources still resident on main­
frames. Many data bases cannot be distrib­
uted. (They may be too large to install on
every personal computer that needs access.
Also, the nature of the application may
make distribution difficult, if not impos­
sible, because of data-base consistency
problems.)

PC users have difficulty exchanging infor­
mation with one another, and they long for
the convenience of mainframe-based elec­
tronic mail systems. They also need access
to expensive peripherals, such as laser
printers, which cannot practically be
attached to every personal computer.
Finally, personal computers cannot provide
the peace of mind that comes with fault­
tolerant file storage.

JUNE 1985 TANDEM SYSTEMS REVIEW 135

Workstations

Figure 1.

Host access through
the EM6530 terminal
emulator.

Figure 1

136

DYNAMITE workstation
running EM6530

The Tandem DYNAMITE 654X workstation
was designed from the beginning to provide
users not only with substantial local com­
puting power, but also with full access to
existing Tandem mainframes. This flexibil­
ity allows a business to take advantage of
the possibilities presented by personal com­
puting without abandoning the substantial
investment already made in host applica­
tions, data bases, and hardware.

The EM6530 Terminal Emulator
The first important element in the
DYNAMITE host-integration package is the
6530 terminal emulator, EM6530. As shown
in Figure 1, EM6530 is a program residing on
the DYNAMITE workstation that can trans­
form the workstation into a 6530 terminal.
This emulation capability allows the work­
station to access all facilities associated with
the local Tandem mainframe, including the
ENCOMPASS data-base system, TRANSFER
delivery system, and the EXPAND network to
which the mainframe is attached. Data
residing in the host network may, of course,
be accessed just as easily by other
DYNAMITE workstations equipped with the
EM6530 program.

Data-base Format Conversion
The EM6530 terminal emulator is very useful
because it provides access to a Tandem host.
Its ability to move information from the host
environment to the workstation environment
(and vice versa) is very limited, however.
Information to be sent to the host must be
entered manually while the workstation is
operating as a terminal. Information from
the host may be displayed, but it cannot be
stored permanently at the workstation (for
access and manipulation later, when the
workstation is operating in a stand-alone
mode). These limitations not only prevent
information coming from the mainframe
from being processed locally (e.g., by a
spreadsheet program), but they also prevent
the output of a workstation program from
being entered into the host environment so
that it can be accessed by other workstation
users.

Thus, the next element in our DYNAMITE
host integration package is a facility that
allows the host to transfer information in
bulk to the workstation so that the worksta­
tion can process that information locally.
Such a transfer is not as easy to effect as one
might think. One big problem is the fact
that the format of data-base files on a
Tandem mainframe is quite different from
that of the files used by third-party pro­
grams that run on the DYNAMITE
workstation.

The Tandem PCFORMAT program solves
the data-base-format transformation prob­
lem. PCFORMAT is a host-resident program
that can convert Tandem data-base files into
files that are structured so as to be usable
with common third-party PC programs.
yarious conversion formats can be specified,
mcluding:

■ ASCII. This format, typically used by
word-processing programs, consists of text
lines separated by carriage return/linefeed
couplets.

• BASIC. This format is compatible with the
INPUT statement in BASIC. It may also be
used by such third-party programs as
Lotus 1-2-3 and dBASE II.

T A N D E M S Y S T E M S R E V I E W JUNE 1985

• DIF (Data Interchange Format). This for­
mat is used by third-party programs such as
Lotus 1-2-3 and VisiCalc.

• SYLK (Symbolic Link). This format is
used by certain Microsoft programs.

The use of the PCFORMAT program is
illustrated in Figure 2. The terminal emula­
tor program, EM6530, can be used first to
access the host. Then, the PCFORMAT pro­
gram is invoked. It uses the DDL data dic­
tionary to establish the proper format for the
records, thus eliminating the need for a sep­
arate user specification. The output of the
PCFORMAT program is an unstructured host
file in one of the above-mentioned formats.

If there is a need to convert a restricted
set of data-base records (for example, those
for all the married employees in an employee
data base), the ENFORM program can be
used to extract them from the data base
before the PCFORMAT program is run.

The Information Xchange Facility

Once the information is in a format suitable
for workstation processing, the problem
becomes one of access. To solve the prob­
lem, Tandem has developed the Information
Xchange Facility (IXF) program. IXF allows
a user to transfer files between a DYNAMITE
workstation and a Tandem mainframe over
asynchronous communications links
(TERMPROCESS) or X.25 via an X.3 PAD
(packet assembler/disassembler). IXF
features:

• Powerful, line-oriented commands, which
can come either from the command line or a
command file.
• Sophisticated pattern matching, which
can be used to restrict file searches.

• The ability to move multiple files to the
same or different locations with one
command.
• A rich set of options for tailoring
commands.

Workstations

Figure 2

- TERMPROCESS - PCFORMAT

DYNAMITE
workstation

running
EM6530

Converted
file

Data•base
record

file

Data-base
dictionary

files

• A sophisticated communications protocol,
which not only ensures end-to-end integrity,
but also increases the information-transfer
rate by condensing streams of duplicate
characters.

• The ability to transfer files directly
between devices. For example, a disc file on
a Tandem system may be printed directly
on a printer attached to a DYNAMITE
workstation.
• The ability to transfer binary (8-bit) and
communications control characters.
• Data compression to increase the transfer
rate.

• Automatic conversion of EDIT files to text
files when they are moved to a workstation
(and vice versa).

• The ability to print workstation files con­
taining workstation-printer control charac­
ters on a Tandem system printer.

Figure 2.

Data-base conversion
with PCFORMAT.

JUNE 1985 T A N D E M S Y S T E M S R E V I E W 137

Workstations

Figure 3.

The Information
Xchange Facility (IXF).

138

Figure 3

DYNAMITE workstation

IXFEXE

IXF Components
As shown in Figure 3, the Information
Xchange Facility consists of two compo­
nents: the workstation portion (IXF.EXE)
and a host portion ($SYSTEM.SYSTEM.IXF).
For security, IXF always requires that
transfer operations be initiated from the
workstation. The workstation portion of IXF
processes most of each command and, by
user option, initiates the host portion to
commence the transfer. Errors that occur at
either end are automatically reported to the
other end (and therefore to the user).

Three commands are currently supported:
GET, PUT, and PRINT. These commands are
discussed in more detail below.

GET Command. The IXF GET command is
used to import files or data from the host to
a workstation. The general format of the
GET command is:
GET [(option [, ...])] Tandem_filelist

AS DOS_filename [, ...]
where Tandem_filelist is a list of Tandem
file names separated by commas, and
DOS_filename is an MS-DOS file name.

User
application

l

Each of the Tandem file names may desig­
nate a disc file, a process, or a device
located anywhere within the host system to
which the workstation is attached (or within
the network to which the host system is
attached). The Tandem files are read sequen­
tially to the end-of-file (EOF) and written to
the workstation device or disc file specified.
Note that IXF allows a host process to be
specified. This process might be a user­
written preprocessor that tailors the infor­
mation to be transferred. For example, such
a process might be programmed to fetch
from a personnel data base only records for
employees with children.

All disc files are read according to their
structure. That is, unstructured files are
read unstructured, EDIT files (code 101) are
read as EDIT files, and ENSCRIBE files are
read as structured files. This default can be
overridden by means of the BINARY option
(described below). Also, by default, every
file is read with a record size of 13 2 bytes.
Thus, in structured files with record sizes
longer than 132 bytes, records are truncated
unless the default is overridden by means of
the REC option.

TANDEM SYSTEMS REVIEW• JUNE 1985

In the command syntax outlined above,
users can insert pattern-matching or "wild­
card" characters into the name of any disc
file in the Tandem file list, and IXF will use
them to select specific files from a larger set.
The characters used are either an asterisk (*)
or a question mark(?), where an asterisk
signifies zero or more characters and a ques­
tion mark signifies exactly one character.

For example, assume that a subvolume on
the host system contains the following files
and that those file names containing the
letter C followed by at least one character
are employees' "children files":

co
EMPA
EMPB
EMPC
EMPD
EMPClDEP
EMPC2TMP
EMPTITLE
SMRHLPC3

Under these circumstances, if users
wanted to transfer only the children files to
the workstation, they could give *C?* as the
file name, and in response to that designa­
tion, IXF would select those files that con­
tain a c (followed by at least one character)
anywhere in the name. Thus, the files co,
EMPC 1 DEP, EMPC2TMP, and SMRHLPC3
would be selected. (File EMPC would not be
selected because the question mark in the
file-name designation indicates that the C
must be followed by another character.)

There are many different ways of combin­
ing wild-card characters. The result is a very
powerful file-selection tool. Also, since the
syntactic group
Tandem_filelist AS DOS_filename

can be repeated any number of times, a vir­
tually limitless transfer of information can
be effected with one command. All IXF
commands apply the default volume and
subvolume (when necessary) to Tandem file
names, and likewise, they apply the current
directory to DYNAMITE file names.

Another feature of IXF is automatic file­
name mapping. Mapping occurs when an
asterisk is specified as the file-name part of
the DOS file name, as in A:*.DAT, B:*, or *.
In response to the above DOS file-name des­
ignations, the Tandem file name would be
used as the DOS file name. For example,
if A: *.DAT were given as the DOS file name
in the wild-card example above, the result­
ing DOS files would be A:CO.DAT,
A:EMPClDEP.DAT, A:EMPC2TMP.DAT, and
A:SMRHLPC3.DAT.

Yet another mapping feature is the ability
to preserve DOS file-name extensions. As
will be explained in connection with the PUT
command, DOS file-name extensions are
normally appended to the end of the DOS
file name to form the Tandem file name
when mapping is requested. These exten­
sions may then be extracted during GET
operations by specifying a file-name exten­
sion consisting entirely of question marks.
For example, if one wanted to move the
EMPA, EMPB, EMPC, and EMPD files men­
tioned above, one could use the command,
GET EMP? AS *.?

which would result in the DOS files EMP.A,
EMP.B, EMP.C, and EMP.D.

Options associated with the GET com­
mand are: BINARY, PURGE, REC, and WAIT.
The BINARY option overrides the structured
reading of structured files. As a result, EDIT
and ENSCRIBE files are read and transferred
"unstructured." Note that the BINARY
option does not control the type of data
transferred, but rather the manner in which
structured files are read.

The PURGE option allows IXF to purge
files when it must overwrite existing ones.
The REC option is used to specify the input
record size.

JUNE 1985 T A N D E M S Y S T E M S R E V I E W

Workstations

139

Workstations

140

Perhaps most interesting is the WAIT
option, which allows the transfer to be
delayed until the host portion of IXF is initi­
ated separately. This option could be used if
workstation users wanted to have files that
were updated during overnight administra­
tive processing transferred to their worksta­
tions when they were ready. To make this
happen, they could simply run IXF before
leaving for the evening, specifying the
appropriate GET command with the WAIT
option. Then, when the host files have been
updated, the host portion of IXF could be
automatically invoked by the host applica­
tion that updated the files.

If the workstation IXF initiation were
included as part of a "batch" file, it would
even be possible to post-process the trans­
ferred information automatically on the
workstation, where it could be ready for
immediate use when the user returned the
next morning. The asynchronous initiation
of the host portion of IXF is discussed later
in this article.

PUT Command. The IXF PUT command is
used to export files or data from the work­
station to the host. The general format of
the PUT command is:
PUT [(option [, ...])] DOS_filelist

AS Tandem_filename [, ...]

where DOS_filelist is a list of MS-DOS
file names separated by commas, and
Tandem_filename is a single Tandem file
name.

Each of the DOS file names may designate
a disc file or device on the workstation. The
Tandem file name may specify a disc file, a
process, or a device. Each DOS file is read
sequentially to the EOF and written to the
Tandem file specified. Since a process may
be specified by the Tandem file name, a
user-provided post-processor could be writ­
ten under that name to custom-tailor the
transferred information. For example, such
a process might be programmed to update a
data base automatically in response to the
file transfer.

If the destination file specifies a disc file,
an EDIT file is created by default, since there
is no file code associated with DOS disc
files. Note that when writing EDIT files, IXF
automatically resets the high-order bit of
each byte, interprets and discards some con­
trol characters, and simply discards the
remaining control characters. Also, trailing
blanks in each record are discarded. Thus,
data will probably be lost if a user transfers
a nontext file without invoking the BINARY
option (described below).

Horizontal tab characters are treated spe­
cially, however. By default, a tab stop is set
every eight characters. When a horizontal
tab character is encountered, blanks are
inserted up to the next tab stop.

Carriage return/linefeed couplets are also
treated specially and interpreted as record
separators. This means that IXF will not
start a new EDIT file record until a record
separator is encountered. Since EDIT files
are limited to 255-byte records, truncation
may occur. Also, trailing blanks are deleted
from EDIT files, which means that DOS text
files that are sent to the host and retrieved
will not compare if they originally contained
trailing blanks in any records. To avoid the
EDIT file characteristics or to move nontext
information, the users should invoke the
BINARY option (described below).

To select a group of files for transfer from
the workstation to the host, users can use
pattern-matching or "wild-card" characters.
As in the GET command, these characters
are either an asterisk or a question mark,
where the asterisk denotes zero or more char­
acters and the question mark denotes exactly
one character. However, DOS-style pattern
matching is used, which means that the
workstation interprets these characters some­
what differently than the host did. In partic­
ular, it is important to realize that when a
question mark is used at the end of a file
name designation, the question mark will
also match zero characters.

TANDEM SYSTEMS REVIEW JUNE 1985

The following example illustrates the dif­
ferences between DOS and host pattern
matching. Assume that a directory on the
workstation contains the following files:
C.DAT
CO.DAT
COMP.TXT
EMP.A
EMP.B
EMP.C
EMP.D
EMPClDEP.DAT
EMPC2TMP. DAT
EMPTITLE
SMRHLPC3. DAT

In such a case, the pattern C?. * would
select both CO.DAT and C.DAT (but it would
not select COMP.TXT). The pattern matches
C.DAT because the question mark matches to
zero characters in that case. A question
mark only maps characters to zero when it is
at the end of a file-name part (e.g., C?.DAT
or C. ?). Thus, COM?P. TXT would not select
COMP. TXT from the above files.

Also, the pattern *C?*, illustrated in the
GET command example, could not be used
with the PUT command, because the asterisk
may only be used as the last character in a
pattern with DOS-style pattern matching.
The pattern C?*. * would select C.DAT,
CO.DAT, and COMP.TXT.(C*. * would also
select the same files). The pattern *.DAT
could be used to select all files that have an
extension of DAT. As with the GET com­
mand, the syntactic group of
DOS_filelist AS Tandem_filename

can be repeated any number of times.
The PUT command also provides file­

name mapping. Mapping occurs when
an asterisk is specified as the file-name
part of the Tandem file name (for
example, $VOLUME.SUBVOL. *, SUB VOL.*,
or simply *). In each case, the DOS file­
name extension (if any) is appended to the
DOS file name (after the DOS file name has
been truncated as needed to preserve the
extension and yet produce an eight­
character Tandem file name). For example,
a seven-character file name with a two­
character extension (EMPFILE.DB) would be
truncated to form the eight-character name
(EMPFILDB).

When the preservation of file-name exten­
sions is not desired, it may be suppressed
with the use of the NOEXTS option described
below. The combination of differences in
pattern matching and possible truncation of
DOS file names means that careful thought
should be given to file-naming conventions
with an eye to simple transitions between
DOS and Tandem file names.

The available options for the PUT com­
mand include BINARY, NOEXTS, NOTABS,
PURGE, REC, TABS, and WAIT.

The BINARY option causes an odd­
unstructured file to be created when the host
destination is a disc file. Odd-unstructured
is used to avoid adding data when odd
record lengths or the amount of information
transferred results in an odd byte count.
BINARY also causes all control characters to
be ignored and simply passed through.

The NOEXTS option inhibits the concate­
nation of file-name extensions when host
names are formed. In the above example,
EMPFILE.DB would then be formed
as EMPFILE.

NOTABS inhibits horizontal-tab-character
interpretation. Horizontal tabs are simply
stripped out (except with the BINARY
option).

The PURGE, REC, and WAIT options are
identical in function to the corresponding
options associated with the GET command,
except that REC also affects the output
(host) record size.

The TABS option provides for the selection
of tab-stop locations.

PRINT Command. The IXF PRINT com­
mand is similar to the PUT command,
except that it is tailored for printing files.
The general format of the PRINT
command is:
PRINT [(option [, ...])] DOS_filelist

TO Tandem_filename [, ...]

where DOS_filelist is a list of MS-DOS
file names separated by commas, and
Tandem_filename is a single Tandem file
name.

JUNE 1985 TANDEM SYSTEMS REVIEW

Workstations

141

Workstations

142

Each of the DOS file names may designate
a disc file or device on the workstation. The
Tandem file name is restricted to either a
process or device. Each DOS file is read
sequentially until the EOF and written to the
Tandem file specified. The control charac­
ters (form feed, backspace, carriage return,
and linefeed) are interpreted as printer con­
trol characters in the same way they would
be interpreted by a printer attached to a
workstation. In addition, horizontal tab
characters are interpreted (or, optionally,
ignored) in the same way they are interpreted
by the PUT command.

Pattern matching to direct the file search
is available and is identical in its functions
and restrictions to that described for the
PUT command. File-name mapping is also
allowed and works just as it did with the
PUT command. File-name mapping can be
useful for tagging files sent to a spooler pro­
cess with the source file name. For example,
the command
PRINT Pl.LST, P2.LST, P3.LST, P4.LST

TO $S. #HOLD.*

would cause the names $S.#HOLD.PILST,
$S.#HOLD.P2LST, etc., to be formed. These
names would show up in the JOB command
of PERUSE.

The available options for the PRINT com­
mand include NOEXTS, NOSKIP, NOTABS,
TABS, and WAIT. The NOEXTS, NOTABS,
TABS, and WAIT options are identical in
function to the corresponding PUT options.

The NOSKIP option causes a SETMODE 5
to be performed (see the GUARDIAN Operat­
ing System Programmer's Guide). Essen­
tially, this option inhibits the automatic
form feed at the bottom of each page, pro­
vided the printer carriage-control tape is set
up properly. This option is useful for print­
ing many documents produced by third­
party programs that do not expect
automatic form feed.

Running IXF
IXF must be initiated from the workstation
(i.e., by an external command). The work­
station must be connected to a Tandem host
through an asynchronous connection using
TERMPROCESS. The host must be in conver­
sational mode, and it must be running a

command interpreter (COMINT). IXF
attempts to solicit a prompt from COMINT
and, when it is successful, attempts to initi­
ate the host portion of IXF (if the WAIT
option is not being used).

Once the host portion is running, it
switches into its information-exchange pro­
tocol to transfer data. When contact is suc­
cessfully made with the host IXF, a banner
containing the host version is displayed.
Following that are displays of the files cop­
ied or any error messages. If an existing file
is overwritten, a "purge" message is dis­
played, along with the file name.

If the WAIT option is invoked, the host
portion of IXF must be initiated separately.
This can be performed from a different ter­
minal (or DYNAMITE workstation running
EM6530) connected to the host and running
a Command Interpreter. The device name of
the DYNAMITE workstation must be passed
as a parameter (for example, IXF $TNT01).
The OUT file is used for error messages, and
it may be any disc file, process, or device
(e.g., IXF /OUT IXFLOG/ $TNT01).

The host portion of IXF can also be initi­
ated by any process running on the host. All
that is required is to call NEWPROCESS and
pass a "start-up" message to IXF containing
the information required in the output-file­
name and parameter-string fields.

The destination for error messages should
be specified as the output file name, and the
device name of the DYNAMITE workstation
waiting for the host should be in the parame­
ter string (terminated with a null byte). If
the home terminal of the process initiating
IXF is the same as the DYNAMITE worksta­
tion, however, the key word REMOTE should
be used in place of the device name in the
parameter string. The output file name
passed in the start-up message may be the
process that is doing the NEWPROCESS call.

The format of the start-up message is
described in the GUARDIAN Operating
System Programmer's Guide. The
NEWPROCESS procedure, process control,
and interprocess communications are also
described in detail in this manual. Remem­
ber that the workstation portion of IXF must
always be initiated first (with the WAIT
option).

TANDEM SYSTEMS REVIEW• JUNE 1985

Regardless of the manner in which IXF is
initiated, its status may be checked at the
workstation by typing CONTROL-Q (hold the
CTRL key down and press Q). The resulting
display gives information on the number of
packets exchanged and communications
errors encountered. A normal exchange
causes the number of packets to steadily
increase.

An occasional communications error is no
cause for alarm, as the automatic detection
and retry mechanisms of IXF recover from
nearly all error conditions. If, however, a
very high number of errors is noted, or if
IXF terminates with an EXCEEDED RETRIES
error, this may indicate that the communica­
tions link is broken or sufficiently error­
prone that an exchange is difficult or
impossible. In such cases, it is best to retry
the exchange a few times to see if the prob­
lem persists. Dial-up modem connections
are particularly susceptible to poor line con­
ditions. Often, hanging up and redialing
resolves the problem.

When IXF is exchanging information with
a process on the host, the host process must
function as a server. That is, IXF calls the
GUARDIAN routine OPEN to open the server
process as a file. The server process receives
an OPEN system message through its
$RECEIVE file and must reply to it with the
GUARDIAN REPLY routine. The server pro­
cess must also expect to receive 1/0 requests
through its $RECEIVE file, interpret them,
perhaps perform other l/0 or computation,
and respond to the requests. To terminate a
GET function from a server process, the pro­
cess should respond to a READ request with
an EOF indication (File System error 1).

When IXF is finished, it severs the connec­
tion to the server process with a CLOSE sys­
tem message. In the case of a PUT function,
the CLOSE message is the only indication the
server receives to mark the termination of
the exchange. Note that the server process
may be the object of multiple exchanges and
so should be prepared to handle multiple
OPEN-l/0-CLOSE sessions. For example,

multiple exchanges would occur to process
$SRVR1 with the following IXF command
issued at a DYNAMITE workstation:
PUT EMPTITLE,SMRHLPC3.DAT

AS $SRVR1.#PUT.*

Full details on interprocess communications
and $RECEIVE file handling can be found in
the GUARDIAN Operating System Program­
mer's Guide.

Conclusion
The DYNAMITE workstation host-integration
package closes many of the gaps between
workstations and host systems. The EM6530
terminal emulator allows workstation users
to see host data and interact with other host
users. The PCFORMAT file-conversion utility
allows host data bases to be converted into a
form more acceptable to workstation soft­
ware packages. Finally, the Information
Xchange Facility provides the means to effi­
ciently exchange data between host and
workstation and, with user-written pre- and
post-processing programs, can be tailored to
many different applications. In short, the
DYNAMITE workstation can provide the best
of both worlds: efficient, personal, local
computing with quick access to powerful,
centralized, and fault-tolerant mainframe
computing.

References
GUARDIAN Operating System Programmer's Guide. Part no.
82357 AOO. Tandem Computers Incorporated.

654X Workstation-Information Xchange Facility. Part no.
82669 AOO. Tandem Computers Incorporated.

654X Workstation-Operations Guide. Part no. 82658 AOO.
Tandem Computers Incorporated.

654X Workstation-PCFORMAT User's Guide. Part no. 82679
AOO. Tandem Computers Incorporated.

Stan Kosinski has an M.S. in Electrical Engineering from the
University of California. Currently, he is a member of the
DYNAMITE development staff in Austin, Texas, where he deve_l­
oped the Information Xchange Facility. Since joining Tandem in

December 1980, he has worked on a variety of projects, including
the development of the ENCOFlE stress-test generator. Before
joining Tandem, Stan spent ten years working in the areas of
performance prediction and analysis, computer hardware and
software architectures, operating systems, and data
communications.

JUNE 1985 T A N D E M S Y S T E M S R E V I E W

Workstations

143

144

The V8 Disc Storage Facility:
Setting a New Standard
for On-line Disc Storage

n January 15, Tandem
introduced the V8 Disc
Storage Facility. The V8
uses a unique new pack­
aging design to optimize
disc performance for
high-volume on-line

transaction-processing applications. It pro­
vides both large storage capacity and high
throughput by packaging eight 168M-byte
disc drives in a single cabinet (see Figure 1).
This adds up to a total of 1.30 bytes for
storing large amounts of information with
the added benefit of eight actuators for high
performance.

The V8 speeds data access by minimizing
disc-access time and queuing. This makes
the cost per disc access per second lower
(and the number of transactions serviced per
second higher) than that obtained with
standard disc-storage facilities.

The VS provides parallel paths to data
through multiple actuators. When a file is
partitioned across eight discs (and overlap­
ping seeks are accounted for), eight 1/0
requests can be serviced simultaneously.
When a file resides on one disc volume of a
conventional disc, concurrent disc accesses
must be queued and serviced separately,
resulting in slower response time and
reduced system throughput.

The average seek time per drive for the VS
is only 20 ms, which, when added to latency,
gives an average time-to-data of only 28 ms.

To ensure data availability, disc mirroring
on the VS allows duplicate data to be stored
on an independent disc drive so it can be
accessed even if one drive should fail. Since
the VS contains multiple disc drives and
two power cords, one for each of four
drives, mirrored discs can reside in the same
cabinet.

The VS sets new standards of reliability
with very high mean time between failure
for both the disc drive and the power supply.
The sealed head and disc assemblies of the
Winchester drives require no preventive
maintenance.

TANDEM SYSTEMS REVIEW• JUNE 1985

When service is required, the V8's field­
replaceable drives and power supplies result
in fast and efficient service. Since each drive
has its own power supply, a malfunction in
one does not shut down the others. On-line
service also allows a unit to be replaced with
no interruption to current operations.

The high reliability and easy serviceability
of the V8 result in a significantly lower cost
of ownership and higher system availability
for users. Even if a drive without a mirror
fails, only a small part of the data base
becomes unavailable, whereas a failure in a
conventional disc drive results in a substan­
tial loss of data.

The V8's unique design packs eight disc
drives in a cabinet that occupies only ten
square feet of floor space (including service
clearance), making it the most efficient user
of computer-room space in the industry. It
stores 134M bytes per square foot, com­
pared to 1 OOM bytes per square foot for
units with a comparable storage capacity.
Even more significantly, it houses eight actu­
ators in ten square feet of floor space, mak­
ing it five times more space-efficient than
competitive drives.

Consistent with Tandem's system modu­
larity, the V8 Disc Storage Facility is offered
with four, six, or eight drives. Additional
Winchester drives can be added in incre­
ments of two to a maximum of eight per
cabinet. Expansion is easy because each
drive is a separate plug-in unit that can be
quickly added on-line. Price/performance is
optimal since users need only buy the capac­
ity they need when they need it.

- ---------------

Mary Ann Whiteman is a product marketing manager for data
base and peripheral products. She joined Tandem in October
1984 and, since then, has coordinated the announcement pro­
grams for the V8 Disc Storage Facility and DP2. Before joining
Tandem, she worked in application development, systems
engineering, and product marketing/management for data-base,
communications, and other software products. Mary Ann has a
B.A. in Mathematics from Douglas College of Rutgers University
and is currently working on an M.B.A. degree at Santa Clara
University.

Figure 1

JUNE 1985 TANDEM SYSTEMS REVIEW

Peripherals

Figure 1.

By packaging eight disc
drives in a single cabi­
net, the VB provides
the large capacity and
high throughput
needed for high-volume
on-line transaction­
processing applications.

145

Figure 1

146

Introducing the
3207 Tape Controller

T161/O0--

T161/O1-

he 3207 Tape Controller is
-----'- a new-generation I/0 con­
___ troller designed to provide
___ complete data integrity for

any single-point fault and
t-------- to locate faults as a part of

______ its normal operating
sequence. Its features include:

■ Lock-stepped microprocessors.

■ A fully protected internal bus.

■ Firmware containing embedded fault­
isolation sequences in the operational code
and power-on diagnostic sequences.

■ Loop-back checking in the device
interface.

■ Self-checking logic in state machines,
counters, registers, and other logic elements.

Protected
internal bus

Address: parity
Data: parity

Control: dual-rail

For this new, more complex design, the
number of basic controller gates has
increased by at least 30% and the number of
interconnects by at least 20% over those of
its predecessor. Even with this complexity,
power consumption and real estate remain
low and reliability high.

These seemingly conflicting design goals
were met by the use of state-of-the-art VLSI
gate-array technology. Most of the logic in
the 3207 Tape Controller is packed into ten
gate-array modules; the rest is contained in
approximately 190 conventional MSI/SSI
chips, memory, and two Motorola 68000
microprocessors. In terms of basic complex­
ity, this is equivalent to approximately
30,000 gates (excluding microprocessors and
memory).

Functional Description
A Tandem data-base I/0 controller controls
the transfer of data between a mass storage
device and one of two I/0 channels. The
3207 Tape Controller supports two 45- or
125-ips (inches-per-second) NRZI/PE tape
drives. The concepts and design methodolo­
gies used are easily adaptable to other con­
troller designs. Figure 1 shows a block
diagram of the 3207 Tape Controller.

Figure 1.

A functional block dia­
gram of the 3207 Tape
Controller. The four
primary logic groups of
the 3207 are the micro­
processors and their

checking logic, a pro­
tected internal bus, a
dual-ported Tandem 110
controller channel inter­
face, and a device format­
ter and interface.

TANDEM SYSTEMS REVIEW JUNE 1985

One of the design requirements for the
3207 Tape Controller was the use of off-the­
shelf microprocessors. The Motorola 68000
microprocessor was chosen because it has
these characteristics:

1. A 16-bit data bus, allowing word­
oriented architecture for data transfers.

2. A powerful instruction set suited to a
high-level-language implementation of
the firm ware.

3. Built-in protection to separate memory
spaces (code vs. data or supervisory vs.
user) based on external function-control
pins.

4. A powerful error-exception capability
using an error-exception input pin.

5. Existing in-house program-development
tools for firmware, based on the Tandem
Programming Language (TPL).

Off-the-shelf microprocessors seldom
implement built-in fault-detection circuits,
and the MC68000 is no exception. To pro­
vide fault detection, the 3207 Tape Control­
ler uses two of the MC68000 processors in
lock-stepped mode. This allows it to isolate
faults simply and accurately by localizing
them in time and place. It checks the data
bus, the address bus, the control strobes for
data read/write, the interrupt lines, and the
bus-arbitration lines independently, on each
bus cycle. This approach is a comprehensive
one, differing from any other known method
of lock stepping.

The Motorola 68000 microprocessor is a
16-bit processor (externally) with 24 address
lines. The strobe lines it uses for memory­
mapped 1/0 reads and writes are AS*, UDS*,
LDS*, DTACK*, and R/W*. It uses the arbi­
tration lines, BR*, BG*, and BGACK*, for
direct-memory-access (DMA) activities. It
supports seven levels of interrupts by using
IPL0*, IPLI *, and IPL2*.

The MC68000 also has a RESET* line and
two other lines, BERR * and HALT*, which
are very effectively used in the 3207 Tape
Controller for fault detection on the lines
mentioned above. The architecture of the
3207 is closely coupled with the firmware to
process data from the error-detection logic.

The two types of error processing used by
the 3207 Tape Controller are:

1. Lock-stepping MC68000s and associated
logic. The primary motive in this archi­
tecture is to create a protected, modified
M C68000 bus and perform data transfers
on it. This is accomplished by using two
MC68000s and self-checking logic. Any
miscompare between the two M C68000s
or any error in the associated self­
checking logic is considered fatal and the
processor is halted.

2. Acting as an interface to the protected
internal bus. If the two MC68000s lock
step without errors and the associated
checking logic functions normally, the
internal bus is good. Memory-mapped
registers and other logic that make up the
interface to the internal bus may detect
errors caused, for example, by faults in
internal logic, interface buffers, and
printed wiring.

The checking logic for such faults is
part of the external circuitry (particularly
the VLSI module), and such errors are
reported to the microprocessors. They
process these errors as nonfatal ones and
enter into a diagnostic mode of exception
processing to locate the faults. These
faults can be accurately located more
than 90% of the time.

Definitions
In this article, the terms check and test are
used frequently. In order to understand the
context in which these terms are used, the
following definitions are provided:

■ Error. A condition in observable output
that is abnormal for normal input at the time
of observation.

■ Fault. An abnormal condition in a physi­
cal element of a logic circuit.

■ Check. To detect faults made through the
observation of errors. In highly checkable
circuits, every physical fault should result in
abnormal output for some normal input.

■ Test. To locate faults. (The input need not
necessarily be normal.)

JUNE 1985 TANDEM SYSTEMS REVIEW

Peripherals

147

Peripherals

Figure 2

Figure 3

Halt ~!;)
~t

Address I
bus (true)

Fatal
address

error

I Address
bus (complement)

ParilY
-~~or

Address] Protected
bus internal-address
parity bus -

---+---------- Other
dual-rail
fatal errors

Dual-rail fatal-address-error signals

Data I
bus (true) __ _

Upper-by!]/
lower-byte
parities -

Protected
internal-data
bus

---+---------- Other
dual-rail
fatal errors

Dual-rail fatal-data-error signals

Protected Address Bus
Figure 2 shows the implementation of the
protected address bus. The address lines
from the MC68000 called the true processor
are buffered with noninverting buffers,
while the address lines from the other
MC68000, called the complement processor,
are buffered with inverting buffers. The
3207 Tape Controller's checking logic uses
morphic-reduction circuits to check these
two sets of address lines.

This checking logic produces a pair of
signals called Fatal Address Errors. These
signals are gated along with other fatal
errors (explained later). The output of this
logic appears on a pair of Fatal Error lines,
which are respectively connected to the halt
lines of the two processors. Then, if an
address mismatch occurs, the processors are
halted. All address errors are detected on
the same bus cycle and are considered fatal,
causing a halt on the following bus cycle.

The checked true or complement address
lines are used to generate odd parity across
the address bus. The true address bits, with
an odd-parity bit, constitute the internal
address bus of the controller. All the other
peripheral circuits are designed to check
parity on the address bus with every read
and write. These address-parity errors are
considered nonfatal and are processed by the
microprocessor as exceptions in order to
locate the faulty circuit.

Protected Data Bus

The comparison of true and complement
data buses with true and complement micro­
processors is similar to the address compari­
son described in the previous section. All
data miscompares between the microproces­
sors, and errors from the associated check­
ing logic are considered fatal. Figure 3
contains a diagram of a protected data bus.

Figure 2.

Implementation of the
protected address bus.

Figure 3.

Implementation of a
protected data bus.

148 T A N D E M S Y S T E M S R E V I E W JUNE 1985

The checked data-bus lines are used to
generate a lower-byte, even-data-parity bit
and an upper-byte, even-parity bit. Two
data-parity bits are used both to improve the
detection of data errors and to allow for
byte or word operations on data.

All I/0-mapped registers check for correct
data parity while being written to and report
errors back to the microprocessor on the
same bus cycle. Also, an external parity­
checking circuit monitors the data bus for
errors during reads by the microprocessor
and reports the errors to the microprocessor
on the same bus cycle. The data-parity
errors are treated as nonfatal errors, and the
firmware processes them on an exception
basis to locate the faulty circuit.

Dual-railed Control Strobes

Five control strobes (AS*, UDS*, LDS*,
DTACK*, and R/W*) are related to data
reads and writes from each microprocessor.
The two copies of each of these signals
should be synchronous within the tolerance
limits of the two microprocessors. These
control lines are compared through the use
of self-checkers; any miscomparison is con­
sidered fatal.

The independent checking of the control
strobes, one of the unique features of the
3207 Tape Controller's lock-stepping design,
achieves these design goals:

1. Isolation of errors to the control bus. This
makes it easy to troubleshoot during
faulty controller operation.

2. Prevention of error propagation. The
context under which the error occurred is
saved. This is an important aid to locat­
ing transient and intermittent error
conditions.

3. Ability to disable the lock-step circuit.
This allows for the isolation of the failing
microprocessor and the debugging of the
design and code with an in-circuit
emulator.

The checking of the control strobes pre­
sented several design challenges. Even
though both microprocessors are timed with
the same clock, one of the processors may be
operating at the minimum delay specifica­
tion while the other operates at the maxi­
mum delay specification because of process
variations in parts fabrication.

The effect of the difference in delay on
data reads and writes is to necessitate more
stringent set-up and hold margins. Modified
strobes are generated to take care of the new
stringent timing requirement for reads and
writes. The generation itself is done in a self­
checking manner and is dual-railed. All
these challenges are met in the 3207 Tape
Controller by unique circuit-implementation
techniques.

All peripheral circuits that have an inter­
face to these modified control strobes are
designed so that they check these lines on a
read or write. Any error detected is reported
to the microprocessor for nonfatal exception
processing.

Protection Techniques Used
in Interrupt Handling
Three interrupt lines exist for each proces­
sor, making seven levels of interrupt possi­
ble. All the interrupt lines are dual-railed,
a unique feature of the lock-stepping
technique.

Interrupts to the processors are normally
considered asynchronous. When two micro­
processors receive asynchronous interrupts
caused by tolerance differences in set-up
times, one of the processors may see the
interrupt and respond, while the other may
not. This can result in address, data, or
control-strobe errors. To eliminate this
possibility, all interrupts are handled
synchronously, and each interrupt signal is
dual-railed and handled independently by
each processor. The only types of error that
can result in an address, data, or control
error are transient or permanent faults in the
interrupt lines themselves.

JUNE 1985 T A N D E M S Y S T E M S R E V I E W

Peripherals

149

Peripherals

150

Protection Techniques Used
in Bus Arbitration and DMA
There are three bus-arbitration lines in the
MC68000 microprocessor. They are Bus
Request, Bus Grant, and Bus Grant
Acknowledge. The first and the last are
input to the microprocessor; the second is
output from it. The DMA controller is
designed so that dual-railed bus-request and
bus-grant-acknowledge signals are given
independently to the two processors, and
bus-grant signals received from both proces­
sors are checked. Bus-request and bus-grant­
acknowlege signals are synchronized with
the processor clock.

The OMA-controller state machine is
duplicated and checked on every state­
machine clock cycle. DMA address genera­
tion is protected by parity-predicted binary
counters. Any error detected in any of the
logic described above is logged into an inter­
nal register and forces the DMA machine
into an error state. When an error state
occurs, the DMA gives up the bus.

During DMA, the data bus is also moni­
tored by an independent parity-checking
circuit, and any error is logged into a regis­
ter. After the operation completes, the
microprocessor reads the DMA status and
data-parity status to see if the DMA com­
pleted normally. This helps isolate the fault
quickly and minimizes the chance of con­
taminating massive blocks of data. DMA
handshake lines that have faults are handled
through a time-out mechanism by which the
bus is forced back to the microprocessor.

Checking and Testing of
Gate-array Modules
Earlier sections of this article outlined
various aspects of checking in both the
3207 Tape Controller and the micropro­
cessor, and summarized how a protected
internal bus is produced. This section sum­
marizes the checking circuits needed in the
peripheral circuitry to check both the inter­
nal bus and other logic dependent on the
function of each circuit.

The three major functional blocks in this
controller are:

1. The processing element, consisting of two
MC68000 microprocessors, a DMA gate­
array module, and a Processor Support
Module (PSM) containing the self­
checking and strobe-generation circuits.

2. The channel interface, consisting of logic
for dual-channel ports. Each port con­
tains a port-register module (PRM), a
port-control module (PCM), and conven­
tional MSI buffer chips.

3. The device interface, consisting of inter­
face and formatter circuits to support two
45- or 125-ips NRZI/PE tape drives,
phase-locked loop circuits, tape interface
buffers, and the following four gate-array
modules:
a. Formatter timing module (FTM).
b. Write formatter module (WFM).
c. Read control module (RCM).
d. Read formatter module (RFM).

Checking Techniques Used in
3207 Gate Arrays
The checking techniques used by the Inter­
nal Bus Interface include the following:
■ Address parity check on data reads
and writes.
■ Data parity check on writes.
■ Control strobe check on reads and writes.

Those for the T16 Channel Interface
include:
■ Sequence check on T-Bus (done with a
sequence detector).
■ Parity-predict protection on all counters.
■ Parity-predict protection on state
machines.
■ D MA-handshake-interlock monitoring.

Finally, those for the Device Interface
include:
■ Parity-predict protection on state
machines.
■ Parity-predict protection on counters
and registers.
■ Loop-back capability for device-interface
signals, used by firmware for in-line testing.

TANDEM SYSTEMS REVIEW• JUNE 1985

Testing Techniques Used in
3207 Gate Arrays
The two primary testing techniques used
with the 3207 Tape Controller are:

I. Scan. The internal registers of five of the
gate arrays can be scanned. The scanning
technique is primarily used to test gate
arrays at the component level.

2. Read/write. Storage elements that cannot
be scanned can be written and read back
by the microprocessors over the internal
bus. Read-only status registers can be
initialized with master reset.

Other standard testability practices, such as
the ability to clock from external sources
and soft pull-up/pull-down, have also been
adopted.

Checkability and Testability
Coverage in VLSI Modules
Table 1 shows checkability and testability
coverage in the VLSI modules of the
3207 Tape Controller. The coverage is
expressed as the percentage of the total
number of gates used in the design that are
checkable or testable.

Hardware self-checking is defined as the
ability of the chip to detect an error in nor­
mal operation that results in one or more of
the following actions by the chip:

1. An error flag is set in an internal register.

2. To locate the fault, the bus-error line is
pulled active for error-exception process­
ing by the M C68000s.

3. The halt line is pulled active to freeze the
microprocessors, indicating fatal errors.

Table 1.

Checkability and testability in 3207 Tape Controller
VLSI modules.

Testability of Hardware Storage Elements sell• Stuck-node
Chip Scan Read Write checking coverage

PRM 0% 100% 100% 95% 100%

PCM 10% 90% 30% 80% 100%

DMA 0% 95% 95% 100% 99%

PSM 30% 70% 50% 95% 96%

FTM 20% 100% 100% 95% 98%

WFM 100% 100% 40% 100% 99%

RFM 100% 0% 0% 100% 97%

RCM 100% 100% 12% 100% 96%

Conclusion

The development of the 3207 Tape Control­
ler is a pioneering effort in the design and
implementation of VLSI-based products. By
using VLSI technology, the design engineers
were able to use the complex design tech­
niques required to improve the data-integrity
and fault-isolation capabilities of the basic
I/0 controller without incurring the penal­
ties of reduced reliability, increased real
estate, and power consumption that would
have accompanied similar efforts a few years
ago. Many of the techniques outlined in this
article will also be used in future Tandem
products.

Acknowledgments
The 3207 Tape Controller was primarily developed by four
design engineers, including the author. The author wishes to
acknowledge the contributions made by the other members of
the design team: Ed Rhodes, Albert Lui, and Mark Walker.

- - --

Sri Chandran is a member of the Hardware Engineering group.
He is the leader of the 3207 Tape Controller development project.

JUNE 1985 TANDEM SYSTEMS REVIEW

Peripherals

151

152

Robustness to Crash
in a Distributed Data Base:
A Nonshared-memory
Multiprocessor Approach

ince attention first turned to
the problem of data-base
recovery following system
crash, computer architectures
have undergone considerable
evolution. One direction such
evolution has taken is toward

fault-tolerant, highly available, distributed
data-base systems. One such architecture is
characterized by a single system composed
of multiple independent processors, each
with its own memory. This paper examines
the inadequacy of both the traditional defi­
nition of system crash and the conventional
approaches to crash recovery for this archi­
tecture. It describes an approach to recovery
from failures that takes advantage of the
multiple independent processor memories
and avoids system restart in many cases. 1

'Copyright iJ by The VLDB--Endowment. This paper originally appeared in the
Proceedings of the Tenrh International Conference on Very Large Data Bases,
August 1984. It is republished here in its entirety with the permi-;sion of The
VLDB Endowment.

Introduction
With the emergence of on-line update in
transaction-processing applications, log­
based data-base-recovery techniques have
evolved to provide robustness to crash or
system failure. Log-based crash-recovery
techniques have received considerable atten­
tion in the literature [4,6,8,9, 10].

The strategies adopted by the proponents
of these techniques fall into two basic cate­
gories. Both postulate the existence of two
types of memory [4]:

1. Main memory, which is volatile, hence
does not survive system failure.

2. Secondary storage, which is stable or non­
volatile, hence usually survives system
failure.

In the first strategy, a transaction writes
an intentions list rather than updating data­
base pages in real time. The application of a
transaction's intended updates to the actual
data-base pages is deferred until transaction
commit, at which time the transaction's
intentions list is written to a secondary stor­
age log, following which the updates are
applied to the actual data-base pages. If a
failure occurs during the application of the
intentions list, the recovery procedure con­
sists of restarting the application of the
intentions list from the beginning. This tech­
nique has been described by Lampson and
Sturgis in [8].

TANDEM SYSTEMS REVIEW JUNE 1985

In the second strategy, a transaction
effects its data-base updates in real time, but
a so-called write-ahead-log protocol governs
the migration of the updated data-base
pages from a memory buffer pool to second­
ary storage. According to this protocol,
described by Gray in [4], no updated data
page is permitted to be written to secondary
storage before the log records describing the
updates to that page have been written to the
secondary-storage log. At commit time,
transaction recoverability is achieved by
forcing to stable storage all log records
related to the committing transaction.

Using either of the above strategies, data­
base recovery following a crash is character­
ized by having recourse to the log stored on
secondary storage in order to ensure that
committed transactions are applied and
uncommitted transactions are removed from
the data base. A difference between the two
strategies lies in the type of log information
required for crash recovery. In the case of
deferred update, only redo information need
be logged. In the case of real-time update
with write-ahead log, both undo and redo
information must be logged [5].

Reexamination of the Term Crash
Central to the strategies used in the conven­
tional approaches to crash recovery is the
definition of a crash or system failure as the
loss of the contents of main memory [9].
The inadequacy of this definition of system
failure becomes evident when applied to a
nonshared-memory multiprocessor architec­
ture. The concept of main memory as a
unique and shared resource constituting a
single point of failure is inappropriate for
multicomputer systems. In a system archi­
tecture in which multiple independent pro­
cessors, each with its own memory, are con­
nected to form a single system or node via
interprocessor buses or local area network,
the use of the term crash to denote an all-or­
nothing state of the system loses its validity.

The term becomes even less meaningful
when applied to a long-haul network consist­
ing of multiple shared-memory nodes, or
even of multiple multicomputer nodes. Such
configurations raise the possibility of partial
crashes caused by individual processor fail­
ures within a node or caused by node fail­
ures within a network. A fault-tolerant
system design may allow certain failures
within a node to be handled without requir­
ing system restart. If a partial failure does
not require system restart, neither should it
require full data-base restart. However, the
problem of the total failure or crash of a
multicomputer node still remains and must
be handled.

A corollary to the generalization of the
concept of crash is the generalization of the
concept of crash recovery. If, as in the above
definition, secondary storage is viewed as
the only storage that survives failures, then
crash recovery must be based on a
secondary-storage log and system restart is
required.

If, on the other hand, a processor failure
does not imply the failure of other pro­
cessors, then recovery techniques not requir­
ing system restart or recourse to secondary
storage are possible. If a portion of the
"log" were copied from the memory of one
processor to that of another during normal
processing, and one of these processors sur­
vived the failure of the other, recovery from
the partial system failure could be effected
using the log information from the memory
of a surviving processor while system oper­
ation continued "on-line."

Tandem Computers has implemented a
multiprocessor architecture using the above
concepts. The next section presents a brief
description of Tandem's system architecture
in order to motivate a more general
approach to identifying and recovering from
both partial and total system failures. Sub­
sequent sections define robustness to single
and multiple processor failures in a Tandem
system. A discussion of Tandem's imple­
mentation of fault tolerance and the evolu­
tion of its design follows.

JUNE 1985 T A N D E M S Y S T E M S R E V I E W

Technical Paper

153

Technical Paper

Figure 1

,-------r-------r-------r--- DYNABUS

directly accessible from two processors.
Disc-volume availability, despite media fail­
ures, is provided by optional duplication, or
mirroring, of drives.

Figure 1.

OYNAeUS COl'ltrol

Mainprooe$$0r

Memory

lfO~

- ~
r1

Oise Oise

~ r-1 - Olsc
controller

Tandem hardware
architecture. A system
cons is ts of from 1 to 16
processor modules,
each with its own mem­
ory, interconnected
via the duplexed
DYNABUS. The
hardware configuration
provides redundant
paths to the
peripherals.

154

-

-

.___

.Oise
COl'ltrotler

Architectural Overview

Processor
modules

The hardware architecture of a Tandem
system is described in [7]. Il~ustr~ted in
Figure 1, it is based on multiple mdependent
processors that are interconnected by dual
high-speed buses to form a single system
(node). The goals of the architecture are
fault tolerance, high availability, and modu­
larity. Hardware redundancy is provided
such that the failure of a single module does
not disable any other module or disable any
intermodule communication.

Normally, all components are active in
processing the work load. W~e~ a compo­
nent fails, however, the remammg system
components automatically take over the
work load of the failed component. Each of
the (up to 16) processors in a system has its
own power supply, memory, and 1/0 chan­
nel. Memory has battery backup power
capable of saving system state _for several
hours in the event of power failure. Each
1/0 controller is connected to the 1/0 chan­
nels of two processors, and each 1/0 device,
such as a disc drive, may be connected to
two controllers. A given disc volume is

System resources are managed by a
message-based operating system, described
in [1]. The Message System, a component of
the operating system, provides communica­
tion between processes executing in the same
or different processors, making the distribu­
tion of hardware components transparent to
processes. Through its Message and File
Systems, the operating system makes the
multicomputer structure appear as a unified
multiprocessor to higher levels of software. 2

Built on this architecture is a distributed
data-management and transaction­
management system called ENCOMPASS.
Described in [3], ENCOMPASS allows data
to be distributed across multiple processors
and discs within a single node, or even
within multiple nodes of a Tandem long­
haul network. It supports the transaction
concept [5] in this distributed environment.
The transaction concept is implemented by
means of a log and real-time (as opposed to
deferred) update. Transactions can span
multiple discs (connected to multiple pro­
cessors) within the same node or on multiple
nodes of a Tandem long-haul network.

Updates to a file may or may not be pro­
tected by transaction auditing, depending on
the value of the file attribute called audited.
(Henceforth, the terms log/logging and audit
trail/auditing will be used interchangeably).

ENCOMPASS supports three kinds of
structured file organization: (1) key­
sequenced, (2) relative-record, and (3) entry­
sequenced. A key-sequenced file is organized
as a B-tree on the primary key field. All
three file organizations can have alternate
keys. Alternate keys are implemented as sep­
arate key-sequenced files that "point" to.
primary file records via a field that contams
the value of the primary key. Alternate key
files and the primary files that they index
can reside on separate disc volumes. Parti­
tioning files, by primary-key value range,
across multiple disc volumes (possibly on
multiple nodes) is also supported.

2 For-~ore information on the Message Sy,;;tem, see Mala Chandra's article,
"The GUARDIAN Message System and How to Design for It," in the Tandem
Systems Review, vol. I, no. 1, February 1985.

T A N D E M S Y S T E M S R E V I F W J ll N F I 9 8 S

Technical Paper

Figure 2

- Baekup
User f)rOCessor

process
Checkpoint

Disc messages Disc
process process

Memory Memory

One of the basic implementation compo­
nents of ENCOMPASS is a process that acts
as a server for files on a particular disc vol­
ume. This process, designated the disc pro­
cess, is an example of an 1/0 process pair
[2]. An 1/0 process pair is a mechanism that
provides fault-tolerant systemwide access to
1/0 devices. It consists of two cooperating
processes that run in the two processors
physically connected to a particular 1/0
device.

buffer pool buffer pool

One of these processes, designated the
primary process, controls the 1/0 device,
handling all requests to perform 1/0 on the
device. The other process, designated the
backup process, functions as a standby,
ready to take over control of the device in
case of failure of the primary path to the
device. The processor in which the primary
1/0 process resides is an integral constituent
of the primary path to the device. Should the
primary's processor crash, the backup pro­
cess must have information sufficient to
take over control of the device. This critical
information is sent from the primary process
to the backup process during the course of
normal processing in the form of so-called
checkpoint messages.

The process pair that controls a disc vol­
ume is called the disc-process pair, or simply
the disc process. Its primary and backup
members run in the "primary" and
"backup" processors for the disc volume,
respectively. The disc process has an active
rather than a passive backup process. The
term active backup process refers to the fact
that the information the backup process
receives via checkpoint messages drives its
execution control flow. This is in contrast to
a possible alternative design in which the
backup process passively receives copies of
recently dirtied portions of the primary pro­
cess' memory. The active backup concept is
central to the design of single-fault toler­
ance, as described below. Figure 2 illustrates
the concept.

From the point of view of a given disc
process, a file is a single partition of an
ENCOMPASS "file" (if, indeed, the latter is
partitioned). Partitions of key-sequenced
primary data files and of alternate key files
look alike to the disc process: each is struc­
tured as a single B-tree. The higher-level
concept of a file with partitions and/ or
alternate keys is implemented by the File

Ql$0
~t

~ ~
Pt:i~· fAirror

diSG . !'.Ilse

7 r
ooti°lr.

System. The File System is a set of user­
callable procedures that execute in the envi­
ronment of the user process. These
procedures (e.g., OPEN, READ, KEYPOSI­
TION, LOCKREC, WRITE, etc.) accomplish
an operation by sending one or more request
messages to the appropriate disc process(es).
In a requester-server model, the invoker of
the File System is the requester and the disc
processes are the servers.

The primary interface to the disc process
is record-oriented, although a block-oriented
interface is also provided. Most update
requests result in the updating of a single
record within a single block of a given file.
In the case of key-sequenced files, however,
the possibility that a single request message
from the File System could cause a B-tree
split or collapse means that the request may
be executed as a series of micro-update
steps. Since an incomplete series of micro­
update steps leaves a file structurally incon­
sistent, robustness to crash requires a
method of assuring its atomicity. This atom­
icity is provided for both audited and non­
audited files, but the means differ, as
explained later.

JUNE 198:i T A N D E M S Y S T E M S R E V I E W

Figure 2.

The hardware configu­
ration for a disc-process
pair. In the primary and
backup processors are
the primary and backup
disc processes for a
mirrored disc volume.
The primary disc pro­
cess performs I/Os to
move pages to and from
its memory buffer pool.
Reads go to the disc
closest to the cylinder;
writes go to both discs.
The backup disc pro­
cess maintains the
backup buffer pool,
based on checkpoint
messages received from
the primary disc
process.

155

Technical Paper

Failure Modes
The system architecture described supports
fault tolerance for a variety of failure modes
other than processor crash. Fault tolerance
extends from failures of single hardware
components (discs, 1/0 channels, 1/0 con­
trollers) to failures of system or application
software (programmatic processor halt, user
process error, transaction abort). The cur­
rent discussion, however, will be limited to
failures that result in the loss to a single
multiprocessor node of one or more of its
constituent processors. Loss in this context
means the invalidation of everything stored
in the failed processor's memory. This could
actually be caused by the failure of any
hardware or software component associated
with that processor.

The failure model supported can be char­
acterized as fail fast. Consistency checks are
an integral part of the system hardware and
software. If such a check fails, the bad com­
ponent is halted. This approach makes fail­
ures "clean" and makes it unlikely that a
failed component would contaminate other
components [2,5].

Definition of Robustness
to Single-processor Failure
The failure of a single processor in the
described environment results in the
takeover of its functions by the remaining
processors. In particular, the failure of a
primary disc process' processor results in the
takeover of its function by the backup disc
process' processor. If the failed processor
contained other primary disc processes with
different backup processors, the failed pro­
cessor might have its work taken over by
several other processors.

The disc process is designed to provide
robustness to single-processor failure. This
robustness is implemented by means of
(1) checkpoint messages sent from the pri­
mary process to the backup process during
normal processing and (2) a takeover algo­
rithm described later.

The following elements constitute robust­
ness to single-processor failure:

1. "Sessions" between the disc process and
requesters calling the File System survive
the failure of the disc process' primary
processor. Thus, any file open before
takeover still appears open after the
takeover.

When updates are not protected by
transaction auditing (i.e., updates to non­
audited files), a mechanism of tagging
messages between the File System and the
disc process with sequence numbers can
optionally be used to guarantee that a
request message is never lost during the
takeover and that a nonidempotent oper­
ation is never duplicated [2].

When updates are protected by trans­
action auditing (i.e., updates to audited
files), the file-open session survives the
takeover, but updates executed under that
open by a given transaction survive the
takeover if and only if that transaction
committed before the takeover.

The tolerance of sessions to single­
processor failure obviates the need to
perform system restart in the event of
such a failure. For nonaudited files, the
takeover is transparent to the caller of the
File System. For audited files, the
takeover is not transparent to the caller of
the transaction management system (since
transactions may be aborted), but higher­
level software makes the abort and restart
of such a transaction transparent to the
end user [3].

2. The structural integrity of both audited
and nonaudited files on the volume is
guaranteed. Thus, if the primary's pro­
cessor fails in the middle of performing a
series of micro-update steps to a file,
takeover processing restores the file's
structure to a consistent state by backing
out the steps performed before the failure.

3. The transactional consistency of the data
base as a whole is guaranteed. Thus, if a
transaction that was uncommitted at the
time of takeover had updated audited
files on the failed primary disc process'
volume, takeover processing aborts the
transaction and backs out its changes
everywhere (on other volumes on this or
other nodes). It should be noted that

--~-----~-----------------------------~---- -- ------

156 TANDEM SYSTEMS REVIEW JUNE 1985

transaction backout does not include
undoing a completed B-tree index oper­
ation. In this sense, transaction backout is
logical rather than physical.

Definition of Robustness
to Disc-process-pair Crash
A disc-process-pair crash is defin~d as the
simultaneous failure of both its primary and
backup processors. The crash of a disc pro­
cess pair and the failure of its primary and
backup processors are viewed as equivalent
because the disc process is an integral part
of the operating system, and, as such,
becomes operational whenever the the pro­
cessor is restarted. Conversely, whenever a
disc-process primary or backup process
detects an internal consistency-check fail­
ure, it halts its processor in accordance with
the fail-fast principle. While such a measure
might be deemed Draconian in a conven­
tional architecture, this aspect of the design
is predicated on the principle that system
availability is not compromised by the loss
of a single processor.

The underlying assumption is that pro­
cessors fail independently and that the pri­
mary and backup disc processes have inde­
pendent failure modes. Of course, this
assumption would be invalidated by the
presence of a "hard" (i.e., nontiming­
dependent) algorithmic bug present in code
that would inevitably be executed by either
member of the process pair. The elimination
of such bugs has not proven to be an
impractical goal, however. This might not be
so were the primary and backup processors
running in lockstep, or were the backup pro­
cess passively receiving copies of recently
dirtied portions of the primary process'
memory.

When a disc-process pair crashes, the situ­
ation is similar to the state described earlier
as the crash of a shared-memory system.
Information stored in memory (in this case
the memories of both primary and backup
processors) is lost. Any method of recovery
must resort to secondary storage. Further­
more, since "sessions" between the crashed
disc-process pair and requesters calling the
File System have been broken, there is the
operational requirement of "restart." The
analogy between the elements of robustness

to single-processor failure and robustness to
disc-process-pair crash is as follows:

1. "Sessions" between the disc process and
requesters calling the File System do not
survive the disc-process-pair crash.

2. The structural integrity of both audited
and nonaudited files on the volume is
guaranteed. Thus, if the disc-process pair
crashes in the middle of performing a
series of micro-update steps to a file,
crash recovery restores the file's structure
to a consistent state.

3. The transactional consistency of the data
base as a whole is guaranteed. Thus, if a
transaction that was uncommitted at the
time of the disc-process-pair crash had
updated audited files on the crashed disc­
process pair's volume, crash recovery
backs out that transaction's changes
everywhere (on other volumes on this or
other nodes).

Conversely, if a transaction that was
committed at the time of the disc­
process-pair crash had updated audited
files on the crashed disc-process pair's
volume, but those updates were still in
memory buffers (rather than reflected
in the corresponding data-base pages on
secondary storage) at the time of the
crash, crash recovery retrieves those
updates (from the log) and applies them
to the data-base pages on secondary
storage.

As in the case of the single-processor
failure, transaction backout does not
undo completed B-tree index operations.

Evolution of the Disc-process Design
The above description reflects a rearchi­
tecture of the disc process. The goals of the
new design were to provide quick recovery
from disc-process-pair crash and less costly
tolerance of single-processor failure. The old
disc process provided robustness to single­
processor failure as described above. How­
ever the old implementation of single­
processor-failure tolerance made a trade-off
in favor of fast takeover recovery from
single-processor failure at the expense of
long recovery in the event of disc-process­
pair crash.

JUNE 198S TANDEM SYSTEMS REVIEW

Technical Paper

157

Technical Paper

158

The only method of recovery from disc­
process-pair crash was the time-consuming
technique of reloading previously archived
copies of audited data-base files and "roll­
ing forward" these files to a state of transac­
tional consistency by the application of
after-images from the audit trail. The dura­
tion of volume unavailability implied by this
procedure was justified by the assumption
that double-processor failure is rare. In fact,
however, double failures are more common
than would be predicted by consideration of
hardware mean time between failures. Most
processor failures are in fact caused by soft­
ware bugs or operational errors.

Two characteristics of the original design
dictated the "roll forward" approach to
crash recovery and tolerated single-processor
failure at the expense of extra disc I/Os and
extra checkpoint messages during normal
processing. These were as follows:

1. The decision to synchronously write
through to disc all updated data-base
pages rather than buffering them in
memory.

2. The technique of incremental checkpoint­
ing (sending messages from primary to
backup disc process during normal pro­
cessing), which provided the backup pro­
cess with the information needed in the
event of the primary processor's failure to
carry forward any interrupted series of
micro-update steps and to continue for­
ward processing on transactions active on
the disc volume.

Write-through cache was originally con­
ceived as a means of simplifying the imple­
mention of single-processor-failure
tolerance. However it made the write-ahead-­
log protocol [4] infeasible because unaccept­
able performance would result if every
data-base update resulted in two writes:
first, the before-image log necessary for
undo in case of failure; second, the modified
data-base page. The absence of write-ahead
log made the fast crash-recovery technique
of in-place rollback of crashed transactions
impossible. Writing through every data-base
update also had negative implications for
throughput and response time. Rather than
allowing the "piggy-backing" of several in­
memory modifications on the same I/0, it
meant that each time a page was "dirtied"

in memory, it would be written out synchro­
nously (while the application process
waited).

Incremental checkpointing is necessary if
the backup process is to be prepared (in the
event of the primary processor's failure at
any instant) to carry forward an interrupted
series of micro-update steps or an inter­
rupted transaction. In the rearchitected disc
process, the approach to takeover is to pro­
vide the backup process with enough infor­
mation to enable it to back out rather than
to carry forward any interrupted series of
micro-update steps, and to abort rather than
to continue processing forward any transac­
tion active on the disc volume. With this
approach, deferred checkpointing is possi­
ble. According to this technique, the in­
formation that would have been sent as syn­
chronous, incremental checkpoint messages
in the old architecture is instead buffered on
the primary process' side and sent as a batch
at such times as transaction commit.

This technique reduces considerably the
cost of single-processor-failure tolerance in
terms of number of messages. In particular,
it saves sending checkpoint messages that
inform the backup process of memory-only
changes in the primary's processor that will
not reach secondary storage and will be
backed out anyway in case of takeover. An
example of such a change is a buffer dirtied
in memory by a transaction that has not yet
committed and for which the audit has not
yet been forced. The backup process need
have no knowledge of such a change since
the transaction that caused it will be aborted
and backed out (globally) in case the pri­
mary disc process' processor fails.

In explaining the takeover algorithm used
by the new disc process to recover from
single-processor failure, it is useful to draw
an analogy between the use of log records by
conventional crash-recovery algorithms [4]
and the use of checkpoint records during
takeover processing. Checkpointing for the
new disc process is analogous to logging to
the backup process. Audit and checkpoint
records have a common format; for this rea­
son, they are known as audit/checkpoint
records. A typical audit/checkpoint record
contains identification of the file, page
number within file, record number within
page, and the before and after content of the
changed record. A version number of the

TANDEM SYSTEMS REVIEW• JUNE 1985

change is stored in both the page header and
the audit/ checkpoint record to provide
idempotence during recovery.

Just as conventional log-based crash­
recovery algorithms use the redo information
in the log to bring the data-base pages up-to­
date with the information that had been
logged by the time the system crashed, so the
takeover algorithm uses the redo informa­
tion from checkpoint records received to
bring the backup process' memory-buffer
pool up-to-date with the information that
had been checkpointed by the time the pri­
mary's processor failed. Similarly, just as
conventional crash recovery proceeds to use
logged undo information to back out incom­
plete requests and uncommitted transac­
tions, so the takeover algorithm uses
checkpointed undo information to back out
any incomplete series of micro-update steps.

At this point, the takeover algorithm ter­
minates and the former backup process
begins operation as a primary process by
accepting new request messages. Uncommit­
ted transactions have not yet been recov­
ered, however. Any partially completed
series of micro-update steps belonging to an
uncommitted transaction has been backed
out, and the transaction is prevented from
continuing forward processing, but at the
completion of takeover such a transaction's
updates have not yet been backed out. Locks
needed for backout are still held, however.

Such a transaction will eventually be
backed out by means of logically compensat­
ing disc-process request messages sent by the
backout process, a system process that
extracts the information needed for such
requests from the log. The logically compen­
sating operations requested by the backout
process are made idempotent by tolerating a
"record not found" condition when deleting
a record (compensating for an insert) or a
"duplicate key" condition when inserting a
record (compensating for a delete). Com­
pensating update operations are automati­
cally idempotent.

Crash Recovery for the
Rearchitected Disc Process
The new disc process uses separate mecha­
nisms to provide robustness to disc-process­
pair crash for nonaudited and audited files.
As previously stated, robustness to crash for

nonaudited files implies the restoration of
structural integrity. For audited files, on the
other hand, it implies not only the restora­
tion of structural integrity to individual
audited files, but, in addition, the guarantee
of transactional consistency for the data
base as a whole.

In the case of nonaudited files, updates
are not protected by transaction auditing.
However, loss of structural integrity due to a
series of micro-update steps being inter­
rupted by disc-process-pair crash is pre­
vented by use of the so-called undo area on
the disc volume. This is a small preallocated
area on the volume that is reuseable for every
request. Before a series of micro-update
steps on a nonaudited file (e.g., B-tree block
split) is begun, a highly compacted encoding
of the intended steps is written to the undo
area using one 1/0. Then if the disc-process
pair crashes before the operation completes,
this undo information is used to back out the
incomplete operation when the volume's
processors are restarted.

The algorithm used to recover audited
files from disc-process-pair crash is summa­
rized below. It is analogous to typical data­
base crash-recovery algorithms used for
conventional architectures [4].

Following disc-process-pair crash, users
first restart the volume's primary and
backup processors. They then initiate the
autorollback process. Autorollback obtains
a list of those audited files on the crashed
volume that were open for write access at
crash time. These are the files that are recov­
ered from the log. Log processing during
crash recovery consists of a forward and a
backward pass.

The forward pass begins at the redo start
point. This is a location in the log before
which all logged updates (redo images) are
guaranteed to be reflected in the data base.
Existence of such a point within a short dis­
tance of the end of the log is guaranteed by
the periodic execution by each volume's disc
process of control points. At each control
point, currently dirty buffers are flagged.
During any spare time between control
points, flagged buffers are written out. At
the occurrence of the next control point, any
flagged buffers not yet written are forced
out and newly dirtied buffers are flagged.
(Other systems term this mechanism a
checkpoint; see [6]). The locations in the log

JUNE 1985 TANDEM SYSTEMS REVIEW

Technical Paper

159

Technical Papet

160

of the latest two control-point records are
remembered at a known place on the disc
volume.

When recovering a given crashed disc vol­
ume, autorollback finds that volume's redo
start point by obtaining the pointer to its
next-to-last control point. When recovering
a set of crashed volumes, autorollback starts
its forward pass of the log at the earliest
redo start point for any of the crashed vol­
umes. Autorollback then sends to the disc
process of a crashed volume all redo log
records it finds from that volume's redo
start point through the end of the log.

After the redo phase, the backward pass
begins. Reading the log backwards from the
end, autorollback sends to the appropriate
disc process those undo log records that rep­
resent incomplete series of micro-update
steps. When all of the changes represented
by these log records have been physically
undone, all audited files open on the crashed
volume(s) will have been restored to a state
of structural integrity.

During the same backward pass,
autorollback sends to the appropriate disc
process those undo log records that represent
logical operations on data blocks (e.g.,
record insert, modify, or delete) that were
executed by transactions uncommitted at
crash time. When all of the changes repre­
sented by these log records have been logi­
cally backed out (i.e., using compensating
operations at disc-process-request level),
global transactional integrity will have been
achieved.

Conclusion
The concepts of crash and crash recovery
have been seen to require generalization in
order to find applicability to a nonshared­
memory multiprocessor architecture, in
which some processors may survive the crash
of other processors in the system. The archi­
tecture of the Tandem computer system was
described as a case in point. A technique of
logging to another processor's memory that
tolerates single-processor failure and obvi­
ates the need to perform system restart was
described. An analogy was drawn between
the technique used in a Tandem system to
recover from a single-processor failure and
conventional crash-recovery techniques that
rely on a secondary-storage-resident log.

References
I. Bartlett, J. F. 1978. A "Nonstop" Operating System. In

Proceedings of the Eleventh Hawaii International Confer­
ence on System Sciences.

2. . 1981. A Nonstop Kernel. In Proceedings of
the Eighth Symposium on Operating System Principles,
ACM.

3. Borr, A. J. 198 I. Transaction Monitoring in ENCOMPASS:
Reliable Distributed Transaction Processing. In Proceedings
of the Seventh International Conference on Very Large Data
Bases, September 1981. Republished as Tandem TR 81.2.

4. Gray, J. N. 1978. Notes on Data-base Operating Systems.
IBM Research Report, RJ 2188.

5. _ ___ _ _ . 1981. The Transaction Concept: Virtues and
Limitations. In Proceedings of the Seventh International
Conference on Very Large Data Bases, September 1981.
Republished as Tandem TR 81.1.

6. Gray, J. N., et al. 1979. The Recovery Manager of a Data
Management System. IBM Research Report, RJ 2623.

7. Katzman, J. A. 1978. A Fault-tolerant Computing System.
In Proceedings of the Eleventh Hawaii International Con­
ference on System Sciences.

8. Lampson, B., and Sturgis, H. E. 1976. Crash Recovery in a
Distributed Data Storage System. Xerox Palo Alto
Research Center. Also appears in Lecture Notes in Com­
puter Science: Distributed Systems - Architecture and
Implementation. ed. B. W. Lampson. vol. 105. 1981.
Springer-Verlag.

9. Menasce, D. A., and Landes, 0. E. 1980. On the Design of
a Reliable Storage Component for Distributed Data-base
Management Systems. In Proceedings of the Sixth Interna­
tional Conference on Very Large Data Bases, October 1980.

10. Verhofstad, J. S. M. 1978. Recovery Techniques for Data­
base Systems. Computer Surveys. vol. 10, no. 2.

Acknowledgments
Many of the ideas incorporated into the new disc-process design
were originated by Franco Putzolu. Thanks are due to Jim
Gray, Chris Duke, and John Nauman for editorial suggestions
whose implementation improved the presentation of this
material.

Andrea Borr has worked on the design and development of the
ENCOMPASS products EN FORM and TMF, and on the new
GUARDIAN 90 disc process, DP2, since she joined Tandem in
1978. She is currently engaged in a project associated with DP2.
Before joining Tandem, she spent 8 ½ years as a software devel­
oper and field analyst for two other mainframe vendors. Andrea
holds a Bachelor's Degree in Mathematics from the University of
Chicago and a Master's Degree in Computer Science from the
University of Wisconsin. She was also a doctoral candidate at
Stanford University.

T A N D E M SYSTEMS REVIEW J U N E 1 9 8 5

TANDEM PUBLICATIONS ORDER FORM

The Tandem Systems Review and the Tandem Application Monograph Series are combined in
one subscription. Use this form to subscribe, change a subscription, and order back copies.

For requests within the U.S., send this
form to:

Tandem Computers Incorporated
Sales Administration
19191 Vallco Parkway
Cupertino, CA 95014-2599

For requests outside the U.S., send this form
to your local Tandem sales office.

Check the appropriate box(es):

D New subscription(# of copies desired_ _)
D Subscription change(# of copies desired_ _)
D Request for back copies. (Shipment subject to

availability.)

Print your current address here:

ADDRESS

ATTENTION

PHONE NUMBER (U.S.)

If your address has changed, print the old
one here:

ADDRESS

ATTENTION

PHONE NUMBER (U.S.)

To order back copies, write the number of
copies next to the title(s) below.

o~~1cs~fls Tandem Journal
Part No. 83930, Vol. 1, No. 1, Fall 1983

Part No. 83931, Vol. 2, No. 1, Winter 1984

Part No. 83932, Vol. 2, No. 2, Spring 1984

___ Part No. 83933, Vol. 2, No. 3, Summer 1984

Tandem Systems Review
___ Part No. 83934, Vol. 1, No. 1, February 1985

___ Part No. 83935, Vol. 1, No. 2, June 1985

Tandem Application Monograph
Series

___ Part No. 83907, Designing a Network-Based
Transaction-Processing System, April 1982,
SEDS-002

Part No. 83900, Developing TMF-Protected
Application Software, March 1983, AM-005

Part No. 83901, Designing a Tandem/Word
Processor Interface, March 1983, AM-006

Part No. 83902, Integrating Corporate Infor­
mation Systems: The Intelligent-Network
Strategy, March 1983, AM-007

Part No. 83903, Application Data Base Design
in a Tandem Environment, August 1983

Part No. 83904, Capacity Planning for Tandem
Computer Systems, October 1984

TANDEM EMPLOYEES: PLEASE ORDER YOUR COPIES THROUGH YOUR MARKETING LITERATURE COORDINATOR.

06/85

~TANDEMCOMPUTERS

Part No. 83935 400096 06/85 Printed in USA

