
MICROPOLIS USERS GROUP

MUG Newsletter t 12 - July 1981

MORE ON THE FMT FUNCTION

by Burks A. Smith of DATASMITH
Box 8036, Shawnee Mission, KS 66208

Over the past few months, several members have
written in with tips on using the Micropolis FMT
function, so perhaps it is time to put all of the
various uses of FMT in one place for the benefit on
everyone.

All versions of BASIC that are even moderately
powerful have some means of formatting output,
because it is the only way that numbers can be
printed in a right-justified manner, among other
things. The FMT function is the Micropolis
substitute for the PRINT USING statement in other
BASICs, but is unique in that it offers tremendous
versatility. Like PRINT USING, FMT formats numeric
values according to a "picture" contained in a
string variable or constant. The "picture" is
simply a string of characters which represent the
position of the decimal point, commas, dollar
signs, etc. in coded form. Thus:

In MICROSOFT BASIC, the statement:
PRINT USING "$$$1.fl";A

is equivalent to MICROPOLIS BASIC:
PRINT FMT(A,"$$$9V.99")

In the above example, both statements print the
value of A in a format which includes two decimal
places and a dollar sign that appears immediately
to the left of the most significant digit. The big
difference is that FMT is a general-purpose
function for converting numeric values to string
values while PRINT USING is useful only for the
PRINT statement. This may seem like a small
distinction on the surface, but is extremely
powerful. For example, if you are PRINTing a
report that is composed of several columns of
figures that require different formats, you only
need one PRINT statement with several different FMT
functions being printed on the same line. However,
if you were using another BASIC that only had the
PRINT USING statement, you would need a separate
statement for each column, because PRINT USING
applies the same "picture• string to every value
being printed with that statement.

The rules for the use of the FMT function appear in
section 5-20 of the MICROPOLIS manual, so I won't
repeat them here. Briefly, the "picture" string is
composed of various combinations of the characters
"9", "Z", "V", "$", "*",and •, 11

, which have
special meanings in the context of the FMT
function. The "9" is replaced by a digit in the
number to be formatted, or by a zero to make
leading zeros. The •zn is replaced by a digit in
the number to be formatted, or by a blank to
surpress leading zeros. "V" marks decimal point
alignment; notice that the period is not a special
formatting character, so it becomes part of the
formatted string wherever you put it (usually next
to the V).

The general-purpose nature of the FMT function
allows converting numeric values into formatted
strings in a useful variety of ways. For example:

For dates:

and

FMT(31581,"99-99-99")
returns "03-15-81"

FMT(31581,"Z9/99/99")
returns • 3/15/81"

(Continued on page 8)

RENEWAL TIME

This might be your last MUG newsletter. Take a
look at the date on the mailing label. If it reads
0781 then this is the end unless you renew your
membership. Cash rates: U.S., Canada, Mexico;
$18/year: Other, $25/year. Must be U.S. dollars.
VISA and MASTERCARD accepted at 104% of cash rates.

BASIC/S COMPILER

I imagine that most of you received the flier from
Systemation. It seems that it's here. Honest to
gosh. And does it ever look nice. What is IT?
Systemation's compiler, of course!

Actually, the system, known as BASIC/S, is
incorrectly referred to as just a compiler.
Compiling it does, and more. It edits, it error
checks, it debugs.

Let's walk through a programming session. You
enter BASIC/S by typing its name. Statements are
entered by using the edit mode of BASIC/S. So far,
everything is just like you're used to doing in
Micropolis BASIC.

The first difference you'll note is the power of
the edit mode. It is very similar to Systemation's
BEM program. Automatic line numbering, global
search, search and replace, paginated listings with
user defined headers - lots of new power if your
reference is using Micropolis BASIC.

Then comes the first surprise. You can't enter a
line with improper syntax. Try typing "FR" for
"FOR" or "MEXT" for "NEXT". No go. BASIC/S tests
each line as you type it and rejects syntactically
incorrect input. Now that's nice. Most systems
(every system in my experience) would make you save
the file, then run the compiler, which would then
tell you of the typing error.

Variable names can be any length. No longer do you
have to use "N$,A$,C$,Z for "NAME$,ADDRESS$,
CITYST$,ZIP". Just as you are accustomed to, the
names of real variables have no suffix, integers
have the % suffix, strings have the $. In fact, in
general (though not without exception) everything
is as you are accustomed to. All your current
programs should be easily convertable to BASIC/S.

When you have finished typing in your program, you
can compile it. Compiling, for those of you not
acquainted with it, is the total, one-time
translation for the English language type of
statements, which you can read efficiently, into
machine language, which the computer can read
efficiently.

The Micropolis BASIC interpreter does the same sort
of translation, but it does it as the program runs
- each and every time the program runs. It takes a
fair amount of time to do the translation. Having
the English language statements and the translator
in memory at the same time as the execution
routines also takes up a lot of memory space. This
time and space is saved when you compile the
"source" program into a "load" program.

The "load" program is executed under a part of
BASIC/S named RUN/S. RUN/S overlays MDOS but uses
RES. That's transparent to the user. Under MDOS
you type RUN/S "program name". The RUN/S module
loads; it loads and then executes the program, and
reloads MOOS when it's done.

For those of you who may want to develop software,
Systemation's policy on sale of object (load)
programs is interesting. Unlike Microsoft,
Systemation's policy has no royalty payments. No
bookkeeping of how many programs at what price. No
temptation to bend or break a hard-to-police rule -
which you know a lot of other people break.

(Continued on page 7)

J

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

PAGE 2

LANGUAGES

by Marc Lewis
PSC Box 55, APO NY 09611

I would like to address the subject of languages,
and re-open the can of worms that was opened about
30-odd years ago when high level languages (HLLs)
were first developed. In the December newsletter,
Jim Harden innocently asked about Pascal and BASIC.
I would like to comment on and add to Buzz's
answer.

Well, Virginia, there is no Santa Claus. Which is
another way of saying, there is no ONE perfect
language. BASIC comes close in a lot of ways.
Starting with BASIC, we have the "Basic Algebraic
Symbolic Interpreter Compiler" or "Beginner's
All-purpose Instruction Code", depending on which
page you look at in the dictionary (mine is the one
by Charles Sippl, which has both). Basic has been
with us for some 20-odd years, and my guess is that
Professors Kemeny and Kurtz wouldn't recognize
their brainchild now.

According to my aforementioned dictionary, BASIC
resembles Fortran II. That should give an idea
about its age. However, the keywords in the
acronym, whichever one you use, are
Basic/Beginner's, and All-purpose. BASIC was
designed with the specific intent of having a
language to teach programming in that was
reasonably simple, without requiring mental
gymnastics. It does this very well. BASIC has
come a long way. We have S-BASIC which looks like
Pascal, we have BASIC-80/MBASIC, which I consider
to be a masterpiece, since you can debug on-line,
then compile. We have BASIC-E, which is supposedly
free when you buy CP/M. We have North-star, IMSAI,
MITS, PolyMorphics AOO, Tiny BASIC, Extended Disk
BASIC, and hundreds more.

Buzz's comment that "All the hotshots that have
Pascal and FORTH still have BASIC" is true. Damned
right! Because you can't buy a major piece of
computer hardware these days without BASIC. A case
in point. My Computer Science "instructor" is a
senior programmer and wants a micro to play with at
home. Given his requirements, I was forced to
recommend the Apple. He wanted Fortran, color
graphics, voice synthesis and price tag under $5K.
To get all this, he is upset that not only does he
have to pay extra for Fortran, but has to get
Pascal to get Fortran and he gets a BASIC in ROM
and another on disk! Like I said, you can't hardly
buy a computer without it. That's why the hotshots
have it. That's not to say they use it, though.

BASIC is easy to use. I like it. It's also fun
sometimes. I have been learning Fortran on a
PDPll/03 system. It's a whole different world.
Fortran used to be THE language for programming,
and is still sort of a Rosetta Stone. A
professional programmer must have some familiarity
with it. The Cray-1 is programmable in Fortran IV
and Assembly ONLY. Fortran stinks for the way I
program. Most all of my programs are I/O
intensive, meaning I like chatty programs. This
tends to fall theough the cracks in the hundreds of
FORMAT statements I have to write all the time. I
even go so far as to test my logic in BASIC, on the
interpreter, before I code it in Fortran. There
are few languages that can outrun Fortran for
number-crunching, though. Fortran has its place.

My wife is a CPA, and wants to open her own
business when I get out of the Air Force. She will
need Cobol, if only to retain some compatibility
with the rest of the business world. Cobol's
strong point is its capability to handle enormous
volumes of output on a routine basis. BASIC can
handle it, but not as well as the specialized
routines in Cobol.

I recently watched an 18-year high-school kid write
a LIFE program in Apple Pascal in less than an
hour, and it works with no debugging needed. Try
that in BASIC. It's pretty slow, but it works.
Pascal was designed by "one of those computer

MUG NEWSLETTER 112 - JULY 1981

scientists•. He (Nikolaus Wirth) believes in his
brainchild. I don't care for it much, which
feeling is shared by a growing number of early
converts. Pascal is useful for writing algorithms
in but there is some question that it might not
have gotten the foothold it has without the boost
from UCSD.

FORTH has its ~roponents as well. Currently, it
also has the distinction of being the only other
HLL than BASIC to be available for MOOS, as opposed
to CP/M. Not being able to•even read it has caused
me some difficulty, but it has been getting enough
good press to make me curious enough to plunk down
$150 sometime in the near future. Imagine, an
interpreted language with the speed of a compiled
language! I swear I'm going to write a Fortran
interpreter someday •••

The last "language" I intend to mention is assembly
language. The nicest thing about assembly language
is that no matter what machine you are working on,
if the problem can be solved on a computer, you can
write the program in assembly language. That
tremendous power carries a bit of a difficulty with
it however. It tends to take longer to learn, to
write in, and to debug. Ya get whatcha pay for,
and there is no such thing as a free lunch.

This is not intended to especially espouse any
language in particular, but more with an eye to
expanding the horizons of probable newcomers to the
field, and to remind all those buyers of packaged
hardware and software (as opposed to phreaques like
me) that there is a huge world out there in
personal/home/small business computing. I don't
think there is any room in a group of people like
MUG for blindness to the capabilities of their very
expensive equipment. BASIC, like I said, is a good
beginner's language, because that's what it was
designed for.

I didn't mention other more specialized languages
like Pilot, which is very specifically a CAI
language. I didn't mention much about C or tiny c
(not a typo), which is apparently an easier to use
language than Pascal, while retaining most of its
characteristics. I didn't mention LISP (LISt
Processor), which is widely used for AI research,
as well as Microsoft's incredible MuMath/MuSimp
package.

There is much more out there than BASIC, and one of
the reasons I bought an S-100 system, followed by a
Micropolis disk subsystem is that I really want to
explore the world of programming. I have been
playing with BASIC for four years now. The only
difficulties I am having adjusting to Micropolis
BASIC are the LEFT$/RIGHT$/MID$ functions and all
the disk functions, because none of these were
available in the PolyMorphic BASIC AOO. I like
BASIC. I think it might just replace Fortran as the
computer Rosetta Stone if it hasn't already. But
it's not all there is to programming a computer.

O.K., Marc, You win. I didn't mean to try and
brainwash the members. Here are some options.

FORTH COMES TO MICROPOLIS

The FORTH language features the built-in advantages
of high speed execution, minimal memory require
ments and ability to store more data in less space
than other languages. Now ACROPOLIS has written a
special version of FORTH specifically for
Micropolis users.

A-FORTH operates as its own compiler allowing you
to compile directly from the keyboard as well as
source files on your disks. A-FORTH compiler
security traps errors by insuring all control
structures are completed within your program.

A-FORTH is an interactive language that allows
creating and testing programs right from the

MUG NEWSLETTER 112 - JULY 1981

keyboard without creating a disk file. This
user-oriented keyboard testing is interpretive in
nature to aid in debugging your program.

A-FORTH is a structured language so your programs
are more readable. It is completely extensible so
you can add your own commands to the language.

A-FORTH is up to 50+ times faster than Micropolis
Basic. Even faster execution (up to 600+ times) is
possible for time critical applications by using
A-FORTH's multi-level l\nguage feature to program
in assembler. A-FORTH also features an 8080/8085
macro-assembler that allows you to use any mixture
of A-FORTH and assembly code you want in a single
program. You can even use A-FORTH's macro-assem
bler to create a whole new set of instructions for
your machine. A-FORTH's macro-assembler contains
control structures for forward and backward
references and is provided in source form so you
can make your own modifications.

ACROPOLIS sponsors an A-FORTH contributors software
applications library and provides A-FORTH updates &
patches at no charge for one full year. Special
features are:

Supports system printer using standard MOOS
assigned statements

Enhanced disk procedures to reduce response &
compiling time & t of disk accesses

Physical disk support for disk diagnostics and
disk copy

Allows access to MOOS file directory
Can be set up for multiple tasks and users

A-FORTH is available on MICROPOLIS compatible
diskettes for $150.00. For more information write
or call; ACROPOLIS, 17453 Via Valencia, San
Lorenzo, CA 94580; (415) 276-6050. Does NOT
require CP/M.

Nevada COBOL is simple, easy to use and learn, and
very fast. It brings to you and your micro all the
power and simplicity of the most universal business
language of all - COBOL. It's ideal for use on
small computers with simple operating systems since
all the facilities you need are provided in a
single integrated package. All you need, in
addition to the Nevada COBOL compiler and Run Time
package is a text editor (one comes with CP/M) to
prepare the source program.

Compiling rate upto !OX faster than some major
competitors.

Requires approximately BK bytes exclusive of the
operating system and table space. Consists of
several overlays each executed in turn in the same
memory space.

"Two-pass": the source code is read while an
intermediate file is written, then the intermediate
file is read and the generated object code is
written.

Written in 8080 assembly language using minimal
memory (16K RAM).

Very fast. Generates in-line machine language
object code and subroutine calls (threaded code).

Handles functions such as arithmetic, string
manipulation and editing in addition to managing
sequential and relative files. Object code
generated by the compiler is NOT interprete~.

Ellis Computing supplies an easy to read COBOL
Reference Manual describing in detail how to write
a program, compile it, load it into memory and
execute it. Includes many examples and 10 complete
sample programs showing program to program linkage
as well as all file types.

COBOL contains English-like phraseology making it
easy to understand and learn. Unique error-finding

PAGE 3

messages are also in English, making programming
mistakes easy to detect and correct. The Big
surprise to most is that COBOL is as easy to learn,
if not easier to learn, than BASIC.

Designed with the most widely used facilities of
ANSI-74, Nevada COBOL delivers a broad band of
computational power, fast compile and run time, yet
consumes only a minimum of 16K RAM. A growing
number of Nevada COBOL professional customers are
developing COBOL application object code programs
for sale to third parties. Unlike many competi
tors, Ellis Computing allows sale and distribution
of such software developments on a royalty-free
basis.

Nevada COBOL is available from Ellis Computing, 600
4lst Ave, San Francisco, CA 94121, (415) 751-1522
for $99.95 on MOD II! Requires CP/M.

CP/M TECHNICAL ~

by S. Tattersall, ITT
London Road, Harlow, Essex, England CM179NA

A PHANTOM SUBMIT COMMAND - ~~~

The SUBMIT Transient command is used to perform
indirect command line processing, or batch style
processing. To use this feature a file has to be
created using ED, or any other ASCII output editor,
consisting of CP/M command lines, e.g.

RUN PROGRAM
DIR A:
PIP B:=A:*.DAT

The file created must have a file extension of SUB.

When SUBMIT BATCHPG is entered on the console the
file BATCHPG.SUB is read from the disk and con
verted into command lines by SUBMIT.COM. A
temporary file is created named $$$.SUB containing
these command lines, e.g.

OA 52 55 4E 20 50 52 4F 47 52 41 40 00 24
I R U N P R 0 G R A M I $
I Command line I
Length of command line I

End of command line

This temporary file is executed, on warm start, by
CCP: executing and removing one command line at a
time. A '.SUB' file may call another '.SUB' file
enabling the chaining of command line files, e.g.

RUN PROGRAM
DIR A:
PIP B:=A:*.DAT
SUBMIT BATCH

If when, say, a CBASIC program needs to alter the
$$$.SUB file during processing, a simple routine
can be inserted into the CBASIC program to allow
this to occur.

COMMAND.LINE$="SUBMIT BATCHPG"
LEN.COMMAND%=LEN(COMMAND.LINE$)
CREATE "$$$.SUB" AS 1
PRINT USING "&"9Ji#CHR$(LEN.COMMAND%)+COMMAND\

.LINE$+CHR$ co•/'$"
CLOSE 1 t
STOP

This routine is use(ul for running CBASIC menu
programs which requt· e- different mixtures of CBASIC
and machine level p grams, depending on the option
chosen. - . , _

If a $$$.SUB file is present on the disk it will be
automatically executed on warm start whether, or
not, a SUBMIT command was used to create it.

I

PAGE 4

READING DIR FROM BASIC

by Ed Burkhardt.
Box 97, Mequon, WI 53092

The two programs listed below are an attempt to
answer Ken Findlay's problem. They may not be
exactly what he had in mind, but may find some use
as a general utility for those members using a
memory mapped video terminal. I haven't been able
to determine if this approach is possible with a
serial terminal, such as my Visual 200, but will
continue to play around and may come up with
something of merit.

The principle is to write the DIR directory to the
screen and then read it back off the screen. The
first listing sorts the directory and lists it back
to the screen. If you want to print a label for
your disk jacket, replace lines 400-420 with the
secono set of lines numbered 400-500. Be careful
of the backslash, "'", in lines 250 and 350 (and
460 of the print code). It's a"'", not a"/".

Title: DISKMENU

10 ! DIRECTORY - PROGRAM TO READ DISK DIRECT

20

30
40
41
50
60
70
80
90

100
110
120

130
140
150

160
170
180
190
200
210
220
230

240
250
260
270
280
290
300

310
320
330
340
350
360

370

380
390
4no

410

420

ORY AND PLACE INTO A SORTED ARRAY. PROGR
AMS MAY THEN BE RUN FROM A MENU SELECTION

ARRANGED FOR SOL-20 TERMINAL WITH VIDE
0 MAPPED MEMORY.

By ~. G. Burkhardt - Box 97 - Mequon, W
I - 53092

THE NEXT THREE LINES SET VARIABLES
WHICH A.RE UNIQUE TO THE SOL.
REASSIGN THEM FOR YOUR SYSTEM.

A%=11: ! CLEAR SCREEN
8%=252: ! KEYBOARD DATA INPUT PORT
L%=16RCCOO: ! START OF VIDEO MEMORY

PRINT CHAR$(A%):! CLEAR SCREEN
PRINT:PRINT"THIS PROGRAM WILL TAKE SEVERA
L SECONDS TO READ A DISK DIRECTORY, STORE
IT INTO AN ARRAY AND SORT IT. PLEASE BE
PATIEN':'.":PRINT:INPUT" WHICH DRIVE IS TO
BE USED ";G$
DIM D$(80,10):K%=0:N%=0
PRINT CHA.R$ (A%): DISPLAY G$+": "+"DIR"
FORI%=L%TOL%+1024:J%=PEEK(I%):IF N%=1 GOT
0190

IFJ%<>32GOT0190
> NEXTI%

K%=K%-l:GOT0230
> IFJ%=32 N%=0:K%=K%+l:GOT0170

N%=l:D$(K%)=D$(K%)+CHAR$(J%)
GOT0170
! SORT FILES

>PRINT CHAR$(A%):PRINT:PRINT " SORTING
, PASS ";
M%=K%:H%=K%

> M%=M%\2:C=C+l:PRINTC;
IFM%=0 GOTO 350
J%=l:K%=H%-M%

> I%=J%
> L%=I%+M%:IFD$(I%)<D$(L%)THEN320

D$=D$(I%):D$(I%)=D$(L%):D$(L%)=D$:I%=I%-M
%:IFI%<1THEN320
GOT0290

> J%=J%+l:IFJ%>K%THEN250
GOT0280
! DISPLAY SORTED DIRECTORY

> H%=H%-l:L%=(H%)\4:IF4*~%<(H%)THENL%=L%+1
PRINTCHAR$(A%):PRINT:P~INT:FORI%=1TOL%:FO
RJ%=0T03:IF(I%+L%*J%)>(H%)GOT0380

PRINT TAB(l5*J%)CHAR$(I%+L%*J%+64
);"- ";D$(I%+L%*J%);

NEXTJ%:PRINT
NEXT I%
PRINT:PRINT TAB(20)"ENTER YOUR CHOICE:

> ~$=CHAR$(Jjl(B%)) :IFA$<';~"0RA$>CHAR$(H%+64
)THEN410
PLOADG G$+":"+D$(ASC(A$)-64)

MUG NEWSLETTER 112 - JULY 1981

Title: LABELS

400 1 REPLACEMENT CODE FOR PRINTING LABELS
410
420 PRINT:PRINT "PREPARE PRINTER FOR PRINTING

LABELS ":PRINT
430 INPUT " ENTER NAME OR NUMBER FOR DISK ID

ENTIFICATION: ";A$
440 OPEN 9 "*P"
450 PUT 9 TAB(l5)"**** DISK: ";A$;" ***

*":PUT 9
460 L%=(H%)\5:IF 5*L%<H% THEN L%=L%+1
470 FORI%=1TOL%:FORJ%=0T04:IF(L%*J%)>H%GOT049

0: 1 STARTING ARRY AT 1 ELIMINATES D$(0),
WHICH IS "DIR"

480 PUT 9 TAB(13*J%)D$(I%+J%*L%);
490 NE~TJ%:PUT 9
500 NEXT!%

BASIC PROGRAMMING

As discussed several months ago, it seems that
there are a lot of you who don't understand
programming, both in general, and in the specifics
of Micropolis BASIC. After discussing the
situation with a few of the MUG members, I've
decided to •teach" by developing a program, rather
than by going through BASIC a statement at a time.

This method has several advantages. First, the
concept of structured programming is addressed.
Somewhat tied to the structured programming is the
use of a Subroutine Library. Second, you end up
with a Mailing List program that you can use to
sell the services of your computer. Three, the
program uses two logical records per Micropolis
physical record. The algorithms necessary for
support of such a data structure are therefore
included. You should be able to expand the tech
nique to service 3, 4 or more logical records per
physical record.

This system is not meant to replace things like the
Bonjoel, CCA, or Land data base manager. This will
have a much more limited use. In fact, it is very
restricted.

This is one of the decisions a programmer must
make. Do you design a very restricted system that
is very efficient in processing or do you have a
versatile system that is relatively extravagent in
use of the operator's time and execution time. Ver
satile systems won't need reprogramming when new
data contains something different. A restrictive
system would. Versatile systems also take longer
to program in the first place.

I know this works for most mailing list applica
tions. Perhaps 75% of our data processing is done
by this set of programs, although there are many
variations of the print program. So you can make
money with this. Well, you can if you can type, or
are lucky enough, as in my case, to have Lynn, my
wife, and Tammy, my daughter, who do.

Next month we'll discuss the processing and data
requirements of a Mailing List system.

BASIC SPEEDUP TECHNIQUES

The slick magazines, in the last few months, have
had several articles which state that loops run
faster _if . .the -loop variable is integer, rather than
real. To see if this holds true for Micropolis
BASIC, I ran the following two routines.

05 ! REAL LOOP VARIABLE
10 FOR I=l TO 1000
20 NEXT I
30 END

Real Loop Variable execution time: 8.2 seconds
(SOL)

MUG NEWSLETTER #12 - JULY 1981

05 ! INTEGER LOOP VARIABLES
10 FOR I%=1 TO 1000
20 NEXT !%
30 END

Integer Loop Variable execution time: 6.1 seconds
(SOL) •

That calculates out to a 25% decrease in execution
time for the integer loop. Pretty impressive.

We've all heard of the ~nefi ts of crunching the
code. Does it work? To find out I ran the set of
programs again, but with the commands on one line.

lOFORI=lTOlOOO:NEX'l'l:END
Execution time: 7.7 ~ESonds (SOL)

lOFORI%=1TOlOOO:NEXTI%:END
Execution time: 5.7 seconds (SOL)

Indeed, both cases executed faster when crunched.

Although crunching always reduces memory require
ments, there are times when execution speed isn't
increased. I have a print routine for the S/W
Vendors Directory that runs at the same speed,
whether crunched or uncrunched. There must be some
instructions that like to see blanks.

S/W AVAILABLE

BANKING

by Steven Guralnick
375 S Mayfair Ave, Daly City, CA 94015 • About six months ago I joined "'1,JG for the principal

purpose of making some connectF'bns for software.
My time as a lawyer is just too limited to try to
write application software for our office. The
editor of this illustrious publication referred me
to Gerry Lenz, 3231 Vinyard 142, Pleasanton CA,
94566, 415-846-8406.

So, I went to Gerry and I said that I needed a good
check ledger program. These were the specifica
•tions I gave him: that we be able to enter the
number for the check, the payee of the check, the
date of the check, the amount of the check and a
code number, the latter indicationg the account to
which the check should be charged. The program
must also account for deposits, by amount and data.
I also needed prompts, on payroll checks, for State
and Federal withholdings, FICA and State disability
insurance. When all that is taken care of, then
the program must furnish the following information:
(a) a complete printout of all checks input, or, at
the option of the user, checks for any given period
of month (s); (b) a breakdown of all the disburse
ment codes, for the same payment periods available
for check printouts, showing the amount of money
charged to each code and totalled; (c) an audit
trail so that the user can get ~ list of all checks
charged to a given code.

All that, plus friendliness by the program: i.e.,
good error trapping and clear screen prompting.

What Gerry has produced is a superb program. We
have been using it since January and it has
simplified our check ledgers to the point of being
trivial. You can enter checks drawn (and deposits)
very rapidly and I recommend this program without
qualification. The price is $75.00, including
shipping and tax. It runs under MOOS, and is
furnished for Mod II systems. It may be possible
to get a Mod I version.

It is always a pleasure to review application
software of this quality.

PAGE 5

LETTERS

Buzz,
I received Newsletter 19 and am once again properly
impressed. The new format is fantastic. Proper
size, presentable, and with type large enough for
even these tired old eyes. Each issue comes with
more and more useful information. I don't know how
you manage to do it, but I hope that the membership
appreciates your effort as much as I do.

The continuing effort to explain and implement
assembly language programing is a decided benefit
to those of us that have limited experience, but a
need to know as much as we can master, with limited
time. For a long time, I have been involved with
the TRS-80 users groups, and I really can appreci
ate the benefits of information exchange as
demonstrated by the contributors to the various
newsletters published by these groups. I am con
vinced that the communication between these members
have had a great deal to do with the phenominal
success of the TRS-80 Model I (despite the
indifference to the Tandy Corp.). These tutorials
are of great benefit to me, and the group as a
whole.

The tip on unused memory was of particular interest
to me, since I do a great deal of development work
on my Sol at home. After checkout, the programs
have to be converted to be used on my Vector at
work. Naturally, each has a different area of
memory set aside for storage of dates, constants,
etc. I haven't tried using 0000-006A yet, but I
will, soon.

I find it more convenient to store the date as
three consecutive bytes (MMDDYY). This allows me
to peek significant discrete values for use in
building arrays, or conditional branching. I use
the FMT function as:

D$=FM5(10000*PEEK(MEM1)+100*PEEK(MEM2))+PEEK(MEM3),
"ZZ-ZZ-ZZ")

Either method works fine.

Y/N ANSWERS - ANOTHER APPROACH:

I frequently employ the following code:

10 PRINT "ENTER YOUR ANSWER ";
20 A$=CHAR$(IN(X)) :IF A$<>"Y" AND A$<>"N"

GOTO 20
30 IF A$="N" GOTO 100
40 Yes answer routine goes here

100 ! No answer routine

'X', the port number is 252 for the Sol and 2 for
the Vector. Since a Serial ~ermina~ (Visual 200).p.·,;~.
is used with the Vector and is configured for MAR ~~
parity, I need to strip the 7th bit in order to u e
the CHAR$ function, and the code becomes: •

A$=CHAR$(IN(2)AND127)

The major disadvantage of this technique is that
the called port retains the data until another key
is depressed. A sequence of input queries as shown
above would receive the same answer repeatedly,
unless there were operation intervention between
questions. I get around this (if I have to) by
changing the nature of the question in order that
the answer varies from Y/N to 1/2 or A/B.

A FEW TIDBITS:

The archaic END statement - seldom used anymore by
contemporary Basics to terminate a program. Occa
sionaly, when breaking during the development of a
program, I add a highest line numbeP with a simple
END. After this I can write short reminder notes
to myself using even higher line numbers (no REM
necessary). Then, when I return to the program, I
list the end of the program and erase the lines as
I complete the little tasks assigned to myself:

l

• ·~.·

PAGE 6

10000 END
10001 Don't forget to test variable A in loop
10002 Clean up screen image in 1100-1160
10003 Do I need a SIZES statement?

Templates are available from a number of sources
that allow you to notch and punch the jackets of
your disks, permitting you to use both sides of the
disk (a hard cardboard home-made template and a
one-hole paper punch do the job nicely, thank you).
I am aware of two major objections to doing this.

1. The quality of the second surface is inferior
and will probably contain flaws. An engineer
with one of the major disk manufacturers (who
will thank me for not mentioning his company)
told me that each disk is certified. If the
surface being tested is unsatisfactory, the
disk is turned over and the disk is tested on
the opposite side. Owing to improved
manufacturing techniques, few disks fail
certification on the first try. An occassional
disk will be sold with a defective 'blind'
side, or a disk may pass the testing with the
untested side blemished. If this is the case,
the condition will probably be discovered while
formatting, and will certainly be found out by
using Systemation 'DVERIFY' or some other
similar utility.

2. The other objection deals with the 'pressure
pad' of the drive bearing on a surface
containing important data. The engineer
mentioned above assured me that this was of
little consequence. To my knowledge, I have
not lost any data this way in the past year and
a half.

I feel confident using two sides of a disk when the
disk is used only occasionally (backup, history,
program storage). When a disk is resident in my
drive for an extended period of time, and running,
I use only the primary surface.

Perhaps other members have observations about this.

BASIC REFERENCE BOOKS

Responding to the letter from Richard Herz - Dr.
David Lien's 'The BASIC Handbook' has some good
pointers on converting between the various Basics.
When I have some spare moments, I'll try to compile
a list of relationships between Micropolis and
Microsoft (the similarity of FORMAT and PRINT
USING, etc.). There is much to be said in praise
of either Basic but no question about the
superiority of Micropolis' file-handling
capabilities.

Ed Burkhardt, Dynacom Inc.
Box 97, Mequon, WI 53092

• Buzz,
I want to pass along a couple of things I did to my
DEVOUT & CBRK routines to make things a little
easier.

The DEVOUT routine is the one that handles the
output to the console device and the printer. One
of the things it does is change the BACKSPACE
character (08), into a BACKARROW character (5F).
This is probably considered necessary because the
output device might be a printer, but most systems
have CRT's as console devices so it is really un
necessary. By replacing the code between 599H and
5AOH with NOP'S, this feature is eliminated, and
pressing the BACKSPACE key simply backspaces the
curser (on any CRT I've ever seen). As strange as
it may seem, prelsing the DELETE or the BACKARROW
key does the same thing. The calling program must
change them into the BACKSPACE character before
sending them down.

As for the CBRK routine, it seemed a little clumsy
to me to use the CONTROL S to stop a fast scrolling
screen. The space bar is a much more convenient

MUG NEWSLETTER Jl2 - JULY 1981

target. Just change 5418 to 208 and it's done.
I'm not sure these changes apply to integrated
systems put out by other companies, but I'm sure
you would know more about that than me.

Mike Raney
Route 4, Box 115, Greenfield, IN 46140

•
I tried the changes out. My SOL already knows
about backspacing, but I put the mod in anyway. It
messed things up. I would therefore recommend that
you don't try this one unless you get the I I type
of thing on your screen when you backspace. w711,
you can try it. No harm done unless you SAVE it.

The spacebar mod worked fine and is a resonable
system modification, as far as I can see.

For those of you not familiar with this sort of
system modification, here's what you do. Make a
DISKCOPY of some disk that has RES and MDOS on it.
It will aid the testing if it has lots of
additional files on it. Don't ever make system
mods on a prime disk until you're sure everything
works.

Put the duplicate disk in drive-0. Type FILES and
press the CONTROL key and the S key at the same
time. This should stop the display of the files.
Pressing any other key starts the display up again.

Now type the following information. The ">" is
printed by the system, you type the rest, each line
concluded with a RETURN.

>ENTR 541
>20/

See appendix page E-5 for a listing of the code you
are modifing. Now type FILES again. This time
press the SPACE bar after the display starts. It
should stop. As befor~, pressing any other key
starts it back up. CONTROL S will have no effect.

If you like what you have you can save the new
system by doing the following. Again, the ">• is
from the system and there is a RETURN typed after
each line.

>TYPE "RES" 0
>SCRATCH "RES"
>SAVE "RES" 2Bl 1598 3

Now reset your computer and reboot from your newly
generated system. If it comes up with MOOS you're
in great shape. Try the FILES and the SPACE bar
again. If you want to have this be your "normal"
system, you'll have to copy your new RES to every
disk that RES is on. The easiest way to do it is
to boot up under your new system. Now (1) Remove
that disk; (2) Put a disk that you want to modify
in drive-0; (3) Repeat the set of three commands
(TYPE,SCRATCH,SAVE) from above, and; (4) Go back to
step (1).

For the backspace mod, type the following:

>ENTR 599
>OO 00 00 00 00 00 00 00/

If you use to get the I I format, you should now
just get the curser moved left one position. If,
after testing, you want to save it, do it exactly
the same way as above (TYPE,SCRATCH,SAVE). See
appendix page E-7 for a listing of the code you are
modifing.

As long as we're discussing system mods, I'll
mention another thing. I recommend that you keep a
journal when you play with your system. Log in
what you are doing. In this case, record the
current values of what is in the system code before
you change it. Then you can always go back and
rechange it if you want.

To see what is there, type the following:

>DUMP 541

MUG NEWSLETTER 112 - JULY 1981

The system will print (before or after):

OS41 13
or

OS41 20

Type:

>DUMP S99 SAO

The system will print (before or after):

OS99 FE OB C2 Al 05 OE SF
OSAO 00

or
OS99 00 00 00 00 00 00 00
OSAO 00

Record these values in your log.

NEED FOR UTILITIES ----
Buzz,
Enclosed is my check for another years subscription
to the User's Newsletter. I think that I got
something out of every issue. Keep up the good
work - it is appreciated. with so many terminal
configurations, it seems an impossible task to find
some standard but it looks like you are closing in.

I have some thoughts to share on the directions
that I would like to go next year. There seems to
be any number of Payroll, depreciation schedules
and DBMS, etc., for Micropolis, but with the
exception of Systemation, Inc., I haven't seen many
utilites to aid the programmer. Some of the
utilites that I would like to see are listed below:

A very useful enhancement would be a Control P
On/Off for the printer. This feature is
implemented in CP/M 2.2 and I find it to be very
convenient. The Assign and Put statement, although
powerful, are very clumsy for debugging and
testing.

A screen oriented editor would be a great addition
to Micropolis Basic. global search and replace -
forward and reverse scrolling would provide a
"video window" into the listing. Optional
pagination would make this a very good programming
tool.

And finally, a screen dump to the printer would be
a valuable addition to these utilites. Many times
I have wanted a hard copy of part of a listing or
the results of run of debugging. This routine is a
simple Control D on my other computer, a COMPAL,
but I haven't been able to configure one for the
Vector Graphic.

I am sure that we have the talent in the MUG to
write these routines. I am certainly willing to
help in any way that I can but I lack the expertise
in assmbly language to do it myself.

Gene Riding
2227 Chicago St., San Diego CA 92110

Buzz,
I agree with some of your comments of MOOS over
CP/M. I find program loading much faster in MOOS
and the system documentation is much better.
Assembler level programming is much easier and
faster in MOOS.

Micropolis BASIC has some limitations which I
personally do not like, such as: fixed length
allocated to records in a direct access file (250
bytes), and slow screen display.

My main dislike about MOOS is the lack of some form
of "PIP". Transfering multiple files from one disk
to another is very tedious. Also, the MOOS editor,
although reasonable for program development, is not

PAGE 7

screen based (I use WORDMASTER).

s. Tattersall, Standard Telecommunication Labs
London Rd, Harlow, Essex, England CM17 9NA

CLASSIFIED

MICROPOLIS Mod I Subsystem
2 drives, software, cables, controller. New, used
only in prototype system for photos. Drives
require power supply. List price $1140. First
$600 takes all. Micropolis manual $40 extra. CP/M
1.4 and CBASIC for Mod I new sealed, $SO for both.

MICROPOLIS Controllers Model 1071 new $290 each.

VISA or M/C ok.

iPEX INTERNATIONAL INC.
16140 Valerio St., Van Nuys, CA 91406 213/781-0020

SYSTEMATION COMPILER (cont.)

However, an end user must have the RUN/S module to
execute the load module. RUN/S, by itself, costs
$40. If all our vendor members buy BASIC/S and
then offer new, compiled versions of their
accounting, data base management, etc., programs -
all we would have to buy is RUN/S and we could use
them all.

To answer a few questions I have received - BASIC/S
is a true compiler, not a pseudo-code interpreter
like CBASIC. The RUN/S module provides all the
system interfaces and library routines (such as the
trig functions). There is no LINKing required.
Both LOGe and LOGlO are implemented. Numeric
ranges and precisions are the same as Micropolis
BASIC -

Integers: -49,000,000,000,000,000,000 to
+50,000,000,000,000,000,000

Real lE-61 to 1E61

with a 20 digit precision available. (Do you
realize that IBM-360s only have a 6 to 8 digit
single precision, 12 to 16 digit double precision?)

There are a few new tidbits in BASIC/S. BCD
arithmetic will do away with those rounding errors
in your accounting programs (you can't represent
0.10 in binary arithmetic). There is an IF •. THEN
•. ELSE structure which will allow us to do away
with some GOTOs and make our programming more
structured. There is a TAB(x[,y]) structure which
enables absolute cursor addressing. PRINT
TAB(lO,lO):"MUG" will print MUG, starting at column
10, line 10, of your screen (or printer).

Bad points? Oh, there are a few. You have to have
the THEN in IF statements. If you now write

IF A=B C=D

it must be changed to
IF A=B THEN C=D.

You must have a space after key words. You can't
write the above statement as

IFA=BTHENC=D.

This allows the use of key words in variable names.
You wouldn't be able to title a variable
RECORDSIZE, because RECORD and SIZE are key words.

Yup - all in all, seems pretty nice. Next month,
I'll discuss the results of some specific
translation from Micropolis BASIC to BASIC/S.

PAGE 8

FMT FUNCTION - (Continued from page 1)

For social security numbers:
FMT(512489135,"999-99-9999") returns "512-48-9135"

This use of FMT allows storage of certain commonly
used numbers in a packed form and easy conversion
to the familiar format at will. Notice that the
numeric value is always right-justified in the
format "picture", and remember that variables can
be substituted for the constants in the above
examples for both the numerics and string values.

Another handy use of FMT is the substitution of a
variable drive number in a string containing a file
name. Suppose 0% is a variable containg a valid
drive number, and F$ is a valid file name on that
drive. With this information, you can write:

OPEN 1 FMT(0%,"9:")+F$

The FMT function in this case returns a single
digit followed by a colon, to which the file name
is concantenated by the plus sign, and the whole
statement evaluates to a valid OPEN operation. In
some cases you can even write:

OPEN 1 FMT(0%,"9:FILENAME")

FILENAME is the actual name of a file and 0% is is
drive number, so the FMT function returns a drive
number and the FILENAME together. This use of FMT
is somewhat dangerous, however, since you must make
sure that the file name does not contain any of the
meaningful FMT characters such as "Z" or "9". If
it did, the numeric would be substituted within the
file name itself. While this might be disasterous
if you were trying to substitute a drive number,
there might be instances where the substitution of
a numeric in the body of a string would be useful.

MUG NEWSLETTER 112 - JULY 1981

The FMT function truncates numeric amounts at the
last position indicated by the string "picture".
If rounded values are desired, this characteristic
can be used to advantage. By simply adding half a
unit of the least significant position, FMT will
return a string representing a rounded value. For
example, to print the value of A to two decimal
places with all smaller decimals dropped, you would
write:

PRINT FMT(A,"ZZ9V.99")

But to round to the nearest hundreth use:

PRINT FMT(A+.005,"ZZ9V.99")

Either way, the thousandths position is dropped,
but in the second example there will be a carry
into the hundreths if the thousandths are equal to
or greater than .005 because we are adding half a
hundreth.

FMT is one of the most powerful features of our
language and using it to greatest utility depends
on an intimate knowledge of how it works. If you
aren't too familiar with its properties, &it down
at your computer and experiment with it. Learning
to use a programming language is like learning any
other language. Not everything you need to know is
in the book and you have to speak it and try it out
to become fluent. One nice thing about computers
is they don't get insulted and are infinitely
patient. The worst that can happen is a SYNTAX
error or a wrong answer. Unlike TV and movie
computers, there is no way you can cause smoke to
pour out through the use of software.

Published Monthly by the MUG
Subscription rates:

FIRST CLASS MAIL

MICROPOLIS USERS GROUP

Buzz Rudow, Editor
604 Springwood Circle
Huntsville AL 35803

(205) 883-2621

U.S., Canada, Mexico; $18/year: Other, $25/year

FIRST CLASS MAIL

FIRST CLASS MAIL

