
Volume 6, Number 9 • September 2000
www.elementkjournals.com/sun

us $11.00

Tips & Techniques for users of Sun Solaris

Porting applications between
NT and UNIX
by Clayton E. Crooks II

W
ith so many companies using a
mixed computing environment,
it's becoming increasingly dif

ficult to develop software for a single
platform. As a result, many developers
are choosing to develop applications for
multiple environments. This may take the
Operating System (OS) decision out of the
equation, but developing applications for
multiple environments can be a very cost
ly and time-consuming process.

A number of proprietary GUI and ap
plication builder products support both
NT and UNIX, and you can use these
exclusively in a project if your goal is
to develop an entirely new application.
However, if you have an application that

Windows Applications

! i
Win32API

MainWin

MFC, DCOM,
ATL, Winlnet,

Common Controls,
and Common Dialogs

! i

(~ __ U_N_IX __ ~)

already runs in one environment, you
probably don't want to start over com
pletely, so you're left with a decision to
port your application to the other OS.

NT to UNIX
A seemingly unending list of problems
occurs when porting applications from
one environment to the other, and the
process of going from NT to UNIX is not
immune to these difficulties. However, a
software application called MainWin
XDE (XDE is an acronym for eXtended
Development Environment) from Main
soft Corporation (www.mainsoft.com)
makes this difficult process manageable,
and is almost a necessity for porting NT

applications to UNIX. Their ap
proach to this challenge is shown
in Figure A.

The tool has undergone sever
al changes, and the latest release
is outstanding. With help from
several million lines of Windows
NT source code, which was ob
tained from Microsoft, several
new features have pushed this
product to the head of the class.
The Mainsoft and Microsoft rela
tionship is key to this software,
and both sides have benefited
tremendously from their part-

Figure A: Mainsoft uses an implementation of the win32
Al5! on UNIX.

nership. Mainsoft obviously ben
efits from the Microsoft source
code and knowledge, but the

In this issue

Porting applications
between NT and UNIX

Squid basics

Sniff your own networks
with tcpdump

Distributed computing
with CORSA and Java

Quick Tips:
• Send output and errors

where you want

• Use type to find
commands and learn
more about them

•Why making copies of
UNIX CDs doesn't work

~ ~ elementk
JOURNALS

relationship is far from one-sided. In fact, Mi
crosoft used Main Win to port Internet Explorer
4.0 to UNIX.

MainWin functionality
With the support of the new source code, develop
ers can now incorporate Microsoft functionality,
such as Distributed COM and National Language
Support. MainWin also supports the latest release
of MFC and the Windows NT Shell. Controls such
as Internet Explorer 4.0 common, common di
alogs, and an NT edit control are also available.

MainWin features a full set of the Windows
API, including support for structure exception
handling, asynchronous procedure call APis,
Windows NT 4.0 memory management, and shell
32 libraries. Mainsoft has also ported Microsoft's
window manager to the UNIX world, which re
sults in a genuine Windows NT look and feel.

COM and ActiveX support
One of the biggest problems when porting NT ap
plications to UNIX is the lack of support for COM
objects. The newest release of Main Win has allevi
ated this problem. It now includes the ActiveX
Template Library, which is designed to allow de
velopers to create compact and reusable COM ob
jects. Previously, a developer would have had to
rewrite every COM or ActiveX-based component
for use in UNIX environments. This was the sin
gle biggest headache for developers porting NT
applications to UNIX, and it has been eliminated
completely by Main Win.

With the release of a newly revamped version of
its NT-to-UNIX porting tool, Mainsoft Corporation
hopes to offer an entire solution for IS managers
charged with bringing Windows NT applications to
UNIX platforms such as Sun Solaris, SGI IRIX, and
HP-UX. While many outstanding features exist, the
single biggest advantage is that developers can
leverage Windows NT development standards like
ActiveX on any supported UNIX platform.

UNIX to NT
The NuTCRACKER package is an excellent solu
tion for the reverse objective, porting applications
from UNIX to NT. Mortice Kern Systems Inc.
(www.mks.com) purchased NuTCRACKER from
DataFocus, and it appears that the move has taken
NuTCRACKER to the next level. MKS already had
an excellent product called MKS Toolkit, and com
bining the development package with it provides
a complete solution for UNIX-to-NT porting.

As we previously mentioned, Microsoft played
a role in the development of Main Win, so it should
come as no surprise that they would be involved

2 Inside Solaris

with the reverse application. The agreement, origi
nally between DataFocus and Microsoft, created a
set of Visual C ++ wizards that developers could
use to transform existing UNIX-based code into
32-bit COM components. Microsoft's help has
been acknowledged, but the technology they pro
vided to DataFocus has never been specified.

NuTCRACKER features
NuTCRACKER provides four different solutions
for UNIX/ T interoperability. The first two of
these solutions don't play a big role in the porting
of applications, which is what we're most interest
ed in. As a result, we'll only mention them briefly
so that we can move on to the last two.

The first solution is a set of UNIX shells and
hundreds of utilities that work under NT. For in
stance, instead of using di r at a command line,
you can use l s. The complete shells allow you to
perform shell scripting, including using any of the
provided utilities. The second is an interoperabili
ty tool, which allows you to easily move back and
forth between UNIX and NT environments.

Our primary focus for this article is on applica
tion development, which is the objective of the
last two solutions provided by NuTCRACKER.
The third solution provides 2,700 APis for porting
to NT's development platform from a number of
UNIX versions. The final aspect of NuTCRACK
ER is a set of conversion utilities that let you up
date legacy UNIX applications to take advantage
of current OS features. NuTCRACKER is lan
guage independent, so you can port code written
in C, C++, FORTRAN, Ada, and COBOL.

The Operating Environment (OE) that provides
the UNIX subsystem under Windows is the core
of NuTCRACKER. It has been constructed out of
a number of DLLs (Dynamically Linked Libraries)
and a service manager that handles the processes.
The OE has several options you can choose, in
cluding X servers from WRQ and SCO, XRT's
PDS, Wintif (provides Motif look and feel), Hum
mingbird's OpenGL, and a Telnet server.

Near perfection
NuTCRACKER is one of the few utilities of its
type (or of any type, for that matter) that does
everything it claims. While the software does have
a learning curve that can take weeks to master, it's
relatively painless to work with. NuTCRACKER is
well documented, and should be used by anyone
looking for a UNIX-to-NT solution.

Final thoughts
With the increase in mixed computing environ
ments, porting applications to NT or UNIX is

something that you'll definitely see more of in the
future. Depending on your needs, Main Win and
NuTCRACKER take most of the burden off the
porting process. Each of the packages has in
volved learning curves, but a few weeks of use
will make even a beginner comfortable with the
solutions they provide. In fact, once you have
struggled successfully through the process a few

Squid basics
by Alan Orndorff

W hen the World Wide Web was first cre
ated, it used a simple mechanism to
display Web pages. You pointed your

browser at a Web site, and your browser dis
played the page on your screen. In the early days,
this was more than sufficient. As time rolled on,
however, the number of Web pages, and the
number of people viewing those Web pages, ex
ploded. 56K modems weren't invented yet, and
access speeds were not what they are today. The
constant fetching and rendering of Web pages
takes bandwidth and many people using the
same corporate network to access the Web slows
down access times for everyone. Then came the
proxy server.

There are a variety of proxy servers available.
In this article, however, we're going to look at
Squid, which has proven to be very popular. It
also has the added bonus of being free. Before we
look at Squid, we'll give you a brief overview of
what a proxy server is.

Proxy server overview
Instead of your browser accessing the Web direct
ly, your Web browser now points to a proxy serv
er. It's then the job of the proxy server to fetch the
Web page for you and send the results back to
your browser. The proxy server also has its own
caching mechanism. When someone retrieves a
page from the Web, it's stored in the proxy serv
er's cache. When another person wants to access
the same Web site, the proxy server does not go to
the Web again to retrieve the same page, but in
stead sends the page from its cache. This con
serves precious Internet bandwidth and can save
substantial fees for large network pipes.

Proxy servers may sound like a great idea for
large corporations, but a corporation of any size
will benefit from using one. Some proxy servers

www.elementkjournals.com/sun

times, you'll find that porting simple applications
can take as little as a couple of hours. Obviously,
large applications will take a longer period of
time and will vary according to many different
variables. If you're ever confronted with the
process of porting applications, we believe you'll
find these solutions to be up to the challenge for
even the most difficult of situations . .;~

can also pre-load Web sites into their cache with
out anyone actually going to the Web site before
hand. This is a great time saver, as your proxy
server can cache a Web site at night, and then the
following day you can access it at your LAN's
speed without having to connect to the Internet.

Your Web browser has its own mechanism for
storing retrieved Web pages. The browser simply
keeps recently used Web files on your local hard
drive. But by using a proxy server, it's as if every
one is using the same cache.

Another function of a proxy server is access
control. You can easily restrict who can and can't
access the Web, as well as limiting access to certain
sites, or logging every site that a user accesses.

Despite this capability, everything on the Web
isn't cacheable. Forms or database lookups are
generally not cacheable. A Web page designer can
also mark any Web page as non-cacheable as well.
Further, all documents in the proxy's cache have
expiration dates. Many of the Web pages on the
Internet are not static and are in a constant state of
change. If the proxy server doesn't expire the
page, you may never know that the Web page has
changed. Generally speaking, a proxy server is
usually configured with two network interfaces.
One is used to service the internal network and
the other will point to a firewall or the Internet.

Getting Squid
You'll find Squid at www.squid-cache.org. If
you're currently running Solaris 8 with a full in
stallation, compiling Squid is straightforward. If
you're running an older version of Solaris, you'll
need to install PERL before compiling. You'll find
PERL at www.perl.com.

After you've downloaded Squid, unpack the
source by using gzip and tar. Then, type ./con fig
ure to start the process of compiling Squid. You

September 2000 3

may want to use ./configure -help to see the avail
able options, such as how to set up SNMP support.
Go through the list of options and select the ones
you want before compiling the proxy server.

After the configuration finishes, simply type
make and then make ins tat land you're ready to start
configuring your new proxy server. All files end
up in the /usr/local/squid directory hierarchy.

Server startup
In order to run Squid, you need to create the cache
directories. You do this by running the following
command:

/usr/local/squid/bin/squid -z

Once you've created the cache directories, you're
ready to start the Squid service. You can start the
service and watch its output on your term win
dow by running:

/usr/local/squid/bin/squid -d1

If you've properly configured Squid, you'll see
the line "Ready to Service Request." To start
Squid as a daemon, run it with no options.

When Squid starts, it spawns two processes. The
first is the parent process, and the second is the
child process. The job of the parent process is to en
sure that the child process is running. If the child
process exits, the parent process will restart it.

To stop Squid, run the following:

squid -k shutdown

The configuration file for Squid is squid.con£, and
the file is heavily commented, so configuring
Squid is relatively easy.

Basic parameters
There are some basic things you may want to
change in squid.con£ immediately. These are de
fined in Table A.

Note: Do not run Web servers, proxy servers,
or other services that are accessible to the Inter
net as root if you can help it.

Set up these services with the least user privi
lege that will allow them to run. Then if someone
does compromise the server, the damage will be
minimal.

Log files
When things are up and running and moving
along just fine, everyone is happy. But all things
break, and we' re here to fix them. Log files are an

4 Inside So/aris

important part of troubleshooting problems. In
Squid, some log files have to be included in the
./configure command, or they won't be available
to you. Some important log files are:

• cache_log. This log file contains the debug and
error messages that Squid generates. If you start
Squid with the -s option, a copy of certain mes
sages will be sent to syslog.

• access_log. If you want to know which sites
your end users are visiting, then take a look at
this file. As previously mentioned, this can be in
Squid native format or stored similar to a Web
server's log file. The native file format is pre
ferred for log analysis programs.

• swap.state. This file is a record of every cache
object written to the disk. It's read on server
startup to reload the cache. Removing this file
while Squid is running effectively tells Squid
that no objects are currently cached. If you
remove swap.state while Squid is running, you
can create a new one by running:

squid -k rotate

You can also tell Squid to shut down and it will
rewrite this file before it exits.

If you remove this file while Squid is stopped,
it will scan all of your cache_dir directories and
re-create the file. This can prolong the time need
ed to start Squid.

Rotation
If your log files are getting too big, rotate them be
fore archiving them. To rotate your log files, set
up a cron job or manually run:

squid -k rotate

You can also configure squid.con£ to rotate the log
files for you.

Cache manager
The Cache Manager is a cgi utility for displaying
statistics about the Squid process as it runs. Its
setup is covered in greater detail in the Squid FAQ.
By using the Cache Manager, you can view the sta
tistics of your Proxy Server through a Web page.

Access control
You can configure access control with Squid in
several ways. The first option is to set up user ac
counts and have users enter a username and pass
word before being allowed to use the proxy server
for outbound connections. Second, you can allow

Table A: Use these parameters in quid.cont to configure Squid

Parameter Descriptions
http_port

tcp_outgoing_
address

maximum_object_
size

cache_dir

cache_access_log

cache_ log

emulate_httpd_log

pid_fi lename

ftp_user

ftp_I ist_width

quick_abort_min,
quick_abort_max,
and quick_abort_pct

connect_ ti meou I

pconn_timeout

cache_mgr

cache_effective_
user and cache_
effective_group

Defaults to 3128. Other proxy servers default to 8080, but its assignment is up to
you. If you have a multi-homed machine, you can configure Squid to listen on
all interfaces or only on certain interfaces.

Sets the outgoing IP address that the proxy server will use to communicate to
the outside world.

Defaults to 4 MB and specifies the largest object size that the server will cache.
Remember, a proxy server caches more than just Web pages. It can also cache ftp
requests. Anything bigger than the value set here won't be cached.
Specifies where on the disk the cache files will be stored. This specifies the top
level directory for Squid's cache. You can specify multiple cache_di r directives
to split the cache among multiple slices or mount points. This directory must
pre-exist, as Squid will not create it. Make sure that the user account that you'll
run as Squid has access to these directories. If no cache_d i r is specified, Squid
defaults to I usr /local/ squid/ cache. You also set the size of the cache along with
the directory location.

Contains an entry for every http request.

Specifies where general information about the proxy server is stored.
Makes the log format similar to a Web server when you set this option to on.
Sets the filename where the process ID is written to; may be set to none.

Allows you to set the anonymous user ID that Squid will use when accessing an
anonymous ftp server.

Allows you to set the width of ftp listings that will appear on the user's screen.
Setting this value too low can make it hard to read directory listings.
Sets directives that help with handling impatient end users. When the end user
aborts a request, Squid checks these values to determine what to do next. If the
transfer has less than the qui ck_abort_mi n remaining (in KB), then the transfer
will finish. If it has more than the qui ck_abort_max remaining, then Squid aban
dons the retrieval of the Web page. If more than qui ck_abort_pct (percentage)
has completed, Squid finishs the transfer. Setting the value of quick_abort_min
to -1 can disable this function.

Indicates how much time Squid will wait for a connection to complete. If the
transfer of the Web page doesn't occur within this time frame, the connection
aborts.

Indicates the maximum time that a persistent idle connection will be allowed.
Indicates the email address that administrative alerts will be mailed to.
Allows you to set the username and group that you want the Squid process to
run as. If you start the process as root, it immediately switches to the values
specified here. Otherwise, it defaults to the username/ group that you are cur
rently running as.

anonymous access through the proxy server and
merely block traffic to certain sites. Your third op
tion is to simply set up the proxy server to allow
anyone to go anywhere. Finally, you can use a
combination of the above.

program returns either an "OK" or an "Err" to in
dicate access granted or access denied. To make
this process easier, a program is included with
Squid to do this for you. You can also have an
LDAP, SMB, mysql, PAM, or Radius authenticator
program validate usernames instead of the sup
plied program. All of this is discussed in detail at:

Setting up Squid to allow for usernames and
passwords is fairly straightforward. You simply
compile another program to take the username
and password entered by the end user, and the

www.elementkjournals.com/sun

home.iae.nl/users/ devet/squid/proxy _auth/

September 2000 5

Don't worry that the Web page is not very long.
You basically tell Squid which authentication pro
gram to use, where it stores its passwords, and
how many child processes will respond to user
name and password queries.

The next thing you need to be aware of is the ad
tags. The basic format of an ad tag is as follows:

acl aclname acltype string or
acl aclname acltype file

When using f i le, it should specify one item per
line. The term ac l, in the above code, is generic and
merely indicates what follows is the ac l rule. ac lname
is up to you and is used with the access/deny act
rules. ac l type is one of the following:

src/dst
ip-address/netmask or addr1-addr2/netmask

You can also specify my i p instead of s r c Ids t:

srcdomain/dstdomain
. too.com

srcdom_regex/dstdom_regex
[-i I regular expression

Listing A: The regular expressions used by Squid

time :
[day-abbriv) [h1 :m1-h2 :m21

S-Sunday
M-Monday
T-Tuesday
W-Wednesday
H-Thursday
F-Friday
Saturday

h1 :m1 < h2 :m2

url_regex
[-i I expression

urlpath_regex
[-i I expression

port
80 443 etc ...

my port
localhost port

pro to
HTTP FTP

method
GET POST

browser
[-i I Regular Expression

6 Inside Solaris

Note that regular expressions are case sensi
tive, unless you specify otherwise by including
the -i, as shown in Listing A.

Once you've defined your access control lists,
you need to do something with them. The next
items that you'll want to set up are the ht t p_acces s
rules. These are easy to set up and use the syntax
of the following:

http_access allowldeny [! Jaclname

For example, if you want to try to prevent your
employees from shopping online, you could de
fine the following access control rules:

acl all src 0.0 .0.0/0 .0.0.0
acl SSL_ports port 443

http_access deny SSL_ports
http_access allow all

This would create the ads SSL_p or ts and al l .
Any attempt to access port 443 would be denied,
but access to all other Web sites would be
allowed.

You should keep in mind two important points
while assigning ads and access entries:

• All elements of an ad entry are ORed together.

• All elements of an access entry are ANDed
together.

If you had the following defined, it would result
in no access:

acl ten src 10 .1.1.0
acl eleven src 11. 1. 1.0

http_access allow ten eleven

In order for someone to go through the proxy
server, he'd need to have an address on the
10.1.1.0 network and the 11.1.1.0 network. In order
to allow both networks to go through the proxy
server, you'd rewrite the http_access rules as:

http_access allow ten
http_access allow eleven

You'll find more examples on setting up ads in
the Squid FAQ or by reading the squid.con£ file.

httpd accelerator mode
You can also use proxy servers to speed up access to
your internal Web site. When someone points his
browser at your Web site, say www.example.com,

the request would go to the proxy server instead
of to your Web server. Then the Squid process
would decide whether to send the page to the end
user from its cache, or to forward the request on
to the real Web server.

Using such a setup, you could place your
proxy server outside of the corporate firewall and
have it make calls to your internal network
through firewalls. Another option would be to set
up Squid as the first machine inside of your fire
wall and have it send requests to your Web
servers. You should not set up a machine as both
an httpd accelerator and a proxy server.

To make Squid your first machine internally,
set your http_port in squid.con£ to port 80, the
same one your Web server would normally use.
Then, set httpd_accel_host to your Web server's
dns entry, and ht tpd_acce l_port to its port number.
If you' re using virtual hosting, be sure to set
httpd_accel_host virtual in your squid.con£ file. If
you really want to run in both httpd_accelerator
mode and proxy server mode, then add httpd_
accel_with_proxy on.

DNSSERVER
DNSSERVER is a process forked by Squid to re
solve IP addresses from domain names. Because
host lookups can block the main Squid pro
cess, these child processes are used to handle
IP resolution. We recommended having enough
DNSSERVER processes to handle your expected
load, or Squid will stop occasionally.

The ftp client
The ftp client included with Solaris won't go out
through a proxy server; however, some other
clients can be configured to go through them. A
couple of programs that you can configure to use
proxy servers are GNU's wget and Gnome's Mid
night Commander.

Blocking undesirable Web sites
Some corporations have very strict policies on
Web access, while others are less restrictive.
Blocking or not blocking sites is usually a corpo
rate-wide decision. Be aware that even if you do
block access to some sites, we've seen corporate
employees with laptops request modem lines and
connect to the Internet that way to avoid having
their accesses logged by a proxy server. The Squid
FAQ lists the following two sites to help you set
blocks to less desirable Web sites:

www.hklc.com/squidblock

www.snerpa.is/notendur/infilter/infilteren. phtml

Conclusion
We've looked at the basics that you may want to
consider while setting up Squid. To get a feel for
all of the features of Squid, you should take a run
through the Squid FAQ, as well as reading the
squid.con£ file. If you read through the FAQ you'll
find that paid support for Squid is available, as
well as a few other features of this program . .;~

Sniff your own netWorks
-~_,,

with tcpdump
by Boris Loza

A sniffer is any device, software, or hard
ware that listens to all packets traveling
along a network. Bad guys use sniffers to

breach your security by capturing and analyzing
all network traffic. Good guys use sniffers to pro
tect the network.

Today you can find many different types of this
software. Some sniffers are used by crackers, and
others by network administrators. Some sniffers
are free, and some are expensive. Further, some are
simple. There are companies who produce entire
suites of sniffer applications designed to diagnose

www.elementkjournals.com/sun

network problems. In this article, we'll show you
how to use a freely available sniffer-tcpdump.

About tcpdump
The tcpdump program was written by Van Jacob
son, Craig Leres, and Steven McCanne, all of the
Lawrence Berkeley Laboratory at the University
of California at Berkeley. Like any other sniffers,
tcpdump captures packets on the network by
placing a local interface in promiscuous mode.
Normally, your network interface will ignore any
pockets that aren't addressed to your system. By

September 2000 7

placing your interface in promiscuous mode, tcp
dump captures all packets, regardless of address,
and allows you to examine their headers. The tcp
dump program also allows you to extract particu
lar types of network traffic based on header
information.

Installing tcpdump
You can download tcpdump from ftp.ee.lbl.gov/
tcpdump.tar.Z. The latest tcpdump version found
here was 3.4. You can also download libpcap.tar.Z
from the same destination (ftp.ee.lbl.gov/). This
application is a system-independent interface for
user-level packet capture, and will be used in con
junction with tcpdump. You must install libpcap
first. After downloading files, type:

#zeal libpcap.tar .Z tar xvf -
#zeal tcpdump.tar .Z tar xvf -

Listing A: Sample output from tcpdump

#tcpdump
tcpdump : listening on hme0
11 :17 :36 .965387 192 . 168 . 10 .1.1028 > 192.168 .10.5 .700: udp 82

11 :17:42 .645580 pine. tree.com .34342 >birch . tree .com . telnet :

,,.5 1819099388:1819099388(0)
win 8760 <mss 1460> (OF)
11 :17 :50.011072 pine . tree.com> oak . tree.com: icmp : echo request (OF)

11 :17:50.011091 oak . tree .com> pine . tree .com : icmp : echo reply (OF)

11:17 :55.870599 arp who-has 192 . 168 .10.1tell192 .168 .10.55
Ac

Table A: Each record generated in our sample has the following fields

Field Data
Timestamp 11:17:36.965387
Source.Port >Dest.Port: 192.168.19.1.1028 > 192 .168.10 .5.790:
Protocol
Bytes of data

udp
82

Table B: tcpdump generates the following record for the TCP protocol

Times tamp 11: 17: 42. 645589
Source.Port> Dest.Port pine.tree.com.34342 >

Flags
Begin-Seq#:End-Seq#(Bytes)
Options

birch.tree.com.telnet:
s
1819999388:1819999388(9)
win 8769 <mss 1469> (OF)

This extracts the tcpdump and libpcap distri
butions. Then, go to the libpcap-0.4 directory and
read the INSTALL file . In most cases, it's enough
just to type ./configure followed by make install,
make ins tall-incl, and optionally make install-man.
Doing so installs libpcap and the manual entry.
Now you can go to the tcpdump-3.4 directory to
start building tcpdump. Type . /cont i gure and
build tcpdump by running make.

If everything builds okay, become root and
type make install and make install-man. Doing so
installs tcpdump and the manual pages. If you de
cide to install tcpdump in a directory other than
I usr /local I sbin, edit the BIND EST path in Make
file.in and run . /configure.

Tcpdump output format
Running tcpdump is easy. After you type tcpdump
at root, you'll see the output shown in Listing A.
You'll find that tcpdump generally produces one line
of output for each packet that it sees. For each con
nection, tcpdump will always display (except in very
special cases) a timestarnp, a source IP address, a
destination IP address, and some additional infor
mation about the packet (such as protocol and port
information). Further, tcpdump has a default stan
dard output based on the protocol. On the tcpdump
output in Listing A, we can see the UDP, TCP,
ICMP, and ARP protocol information.

Table A shows the descriptions of each field
shown in Listing A. In this example, tcpdump is
reporting traffic from host 192.168.10.1 on port
1028, to host 192.168.10.5 on port 700, using the
UDP protocol. The direction of the traffic is indi
cated by the greater than symbol (>) between the
source and destination address. The timestamp is
in the format of hour:minutes :seconds .mi ll ionth_of_
seconds. UDP packets may or may not have udp in
the output.

Table B shows the fields that are present for a
TCP packet. This is identical to the UDP record as
far as timestamp, source and destination host, and
port. What distinguishes the TCP format from the
others are the TCP flags, sequence numbers, ac
knowledgements, acknowledgement numbers,
and TCP options.

In this record, we see the flag SYN or S set follow
ing the destination port telnet. The SYN flag indicates
the beginning of a telnet session. Other possible
flags are P for PUSH that sends data, R - RESET that

Table C: tcpdump generates the following record for the ICMP protocol.

8 Inside Safaris

____ ...,
Timestamp Source > Destination: icmp: icmp Message
11:17:59.011972 pine.tree.com> oak.tree.com: icmp : echo request (OF)
11:17:59.011991 oak.tree.com> pine . tree.com: icmp: echo reply (OF)

aborts a connection, and F - FIN that terminates a
connection. If you see a period '.' in the flag field,
it simply means that none of the PUSH, RESET, SYN, or
FIN flags are set.

You'll see that 1819099388:1819099388 is the be
ginning:ending set of sequence numbers. The
ending sequence number is the sum of the initial
sequence number plus the number of TCP data
bytes sent in this segment (in this case 0, which is
why both numbers are equal).

Finally, there is a TCP options field. We see that
pine.tree.com is advertising a window size of
8760 bytes, a maximum segment size of 1460
bytes, and no fragmentation required (DF - Do
not Fragment option).

Table C shows a sample tcpdump ICMP output.
ICMP is the protocol used for error control and
message handling. There are many different types
of ICMP records that have different messages. In
the first ICMP record following the timestamp, we
can see the source pine.tree.com. Following the
greater than sign, we see the destination
oak.tree.com. Because ICMP doesn't use ports to
communicate like TCP and UDP, we won't see this
information. The ICMP message type that follows
the destination host in the first record is an ICMP
echo request or ping. In the second record, ICMP
message type is an ICMP message reply.

The last row of tcpdump output is the ARP re
quest. This shows the IP address of 192.168.10.55
as the target IP address and the 192.168.10.1 IP ad
dress as the sender IP address.

There are also command-line options for tcp
dump that will alter the default behavior, either
by collecting specified records, printing in a more
verbose mode, printing in hexadecimal, or writ
ing records as raw packets to a file instead of
printing as standard output. For all of tcpdump's
options, consult the tcpdump(l) man pages.

Filters for tcpdump
As we mentioned earlier, tcpdump allows you to
extract particular kinds of network traffic. The
basic syntax for a tcpdump filter is as follows:

<header>[<ollset>:<length>] <relation> <Value>

So, to use this filter to detect telnet traffic, you
can write the following:

#tcpdump tcp and dst port 23

The filter is tcp and dst port 23. Only those pack
ets that satisfy the filter requirements will be cap
tured. This filter selects those packets that have
protocol type TCP and destination port number

www.elementkjournals.com/sun

23. Since the telnet protocol uses port 23, this filter
selects telnet packets.

The filter syntax for tcpdump is very robust. You
can employ the filters to extract connections in
volving specific networks, hosts, and ports. The
simplest way to do this is to use the macros that
tcpdump supplies for <header>, such as src, dst,
host, net, and port. However, if you wish to specify
a range of networks, hosts, or ports, you need to
use relational operators in conjunction with the
individual header byte specifications. As an
example, you can specify all destination IP ad
dresses belonging to the range 172.16.0.0 -
172.31.255.255 by writing the following:

dst net 172 and (ip[171 > 15) and (ip[171 < 32)

This specifies the first octet and the range for
the second octet of the destination IP address. You
could alternatively specify the first octet of the
destination address by writing i p [16 l = 172, but
dst net 172 seems a bit more intuitive. Similarly,
you could specify the IP address range by writing:

(dst net 172 . 16 or dst net 172 .17 or dst net
172.18 or . . . or dst net 172.31)

However, this can quickly get cumbersome
when a large number of networks are involved.
Tcpdump accepts the regular relational operators
for <relation>: = < > <= >= ! = and the logical opera
tors: and, or, and not. Further, tcpdump accepts ei
ther hostnames or IP addresses, and either port
numbers or service names. Note that when you use
service names, and tcpdump understands the pro
tocol, both the port number and the protocol are
checked, instead of just checking the port number.

Let's create several filters. To capture all traffic
between pine.tree.com and oak.tree.com ma
chines for a telnet port, you can write:

#tcpdump host pine. tree.com and host oak . tree .com
and port telnet

Or just to detect telnet traffic with the following:

#tcpdump "tcp[2 :2l = 23"

This works because the destination port num
ber is two bytes, beginning at the second byte in
the TCP header. Telnet uses 23 / t c p for the server
port. We use single quotes to protect the square
brackets from being interpreted by the UNIX shell.

Following are some more examples:

• ICMP filter. This filter looks for all ICMP pack
ets that are not ping packets:

September 2000 9

#tcpdump "icmp and icmp[0] !=8 and icmp[0] != 0"

• r-utility filter. rlogin, rep. rsh. rdist and so
forth. It is wise to look for packets with r-utili
ties from unknown sites:

#tcpdump "ip and (tcp dst port 512 or
tcp dst port 513 or dst port 514)"

• Xll filter. This filter finds any Xll or Motif
traffic:

#tcpdump "tcp and (port 6000 or
port 6001 or port 6002)"

• Inbound SYNfilter. This filter monitors any
SYN connections to ports you are not expect
ing traffic on:

#tcpdump "tcp and (tcp[13l & 0x02 != 0) and
(tcp[131 & 0x10 = 0)and (not dst port 53) and

(not dst port 80)
and (not dst port 25) and (not dst port 21)"

As you can see from these examples, tcp
dump' s filters also allow the use of parentheses
and logical operators. But what if you decide to
implement a more complex filter? We've bor
rowed an example for Listing B from Intrusion
Detection: SHADOW Style, which is referenced at
the end of this article. This is a bad-events filter,
which will detect any packets that indicate suspi
cious activity warranting further attention.

Obviously, it isn't reasonable to type such com
plicated filters on the command line. You can save
such filters in a file and then read in by tcpdump
at runtime with the -F flag:

#tcpdump -F filterfi/e

To understand what the last filter does, you
have to master tcpdump and network protocols.
Read the man pages for tcpdump(l). There are
also a couple of excellent books about network
protocols for further reading, which you'll find
listed at the end of this article.

What to do with tcpdump?
First of all, tcpdump is a great utility for study
ing network protocols. For instance, Listing C
shows how you can use tcpdump to see and
analyze the setup phase of a TCP connection,
which is generally referred to as a three-way
handshake.

You'll find that tcpdump is an excellent net
work analyzing, troubleshooting, and debugging
tool. You can use it for troubleshooting and ana
lyzing TCP, DNS, NFS, PPP, RIP, AppleTalk, and
other network protocols. For example, to trou
bleshoot network problems, dump all activity oc
curring on an interface:

#tcpdump -i hme0 -vv

For RIP troubleshooting, you can use the fol
lowing filter:

Listing B: A bad-events filter that can detect potential network threats

#tcpdump "(tcp and (tcp[13] & 3 != 0) and ((dst port 143) or (dst port 111) or
(tcp[131 & 3 != 0 and tcp[13] & 0x10 = 0 and dst net 172.16 and dst port 1080) or (dst port 512 or dst
port 513 or dst port 514) or
((ip[191 = 0xff) and not (net 172.16/16 or net 192.168/16)) or
(ip[12 :4] = ip[16:4]))) or (not tcp and igrp and not dst port 520 and ((dst port 111) or (udp port 2049)
or ((ip[191 = 0xff) and not (net 172 .16/16 or net 192.168/16)) or (i p[12 :41 = ip[16 :41)))"

Listing C: Use the output from tcpdump to study how network protocols work

#tcpdump host pine . tree . com and host oak . tree.com and port telnet
tcpdump: listening on hme0
08:16 :48 .519576 pine . tree . com .33102 >oak. tree.com. telnet: S 2970775184:2
970775184(0) win 8760 <mss 1460> (OF)
08:16 :48.519602 oak. tree . com. telnet > pine. tree . com.33102 : S 3013029286 :3
013029286(0) ack 2970775185 win 8760 <mss 1460> (OF)
08:16 :48 .520242 pine.tree . com.33102 >oak . tree . com . telnet : . ack 1 win 8760 (OF)
08 :16:48 .522879 pine . tree . com .33102 >oak. tree .com. telnet : P 1 :28(27) ack 1 win 8760 (OF)
08 :16:48 .522913 oak . tree .com . telnet >pine. tree .com .33102 : . ack 28 win 8760 (OF)
08 :16:48 .540494 oak . tree . com . telnet >pine. tree.com.33102 : P 1:16(15) ack 28 win 8760 (OF)
·c

10 Inside Solaris

#tcpdump -i hme0 -s 1024 port routed

You can also use tcpdump to create a powerful, net
work-based Intrusion Detection System (IDS).
SHADOW, which was designed by the Na val Sur
face Warfare Center, Dahlgren Division, is one of
the first freely available toolkits based on tcp
dump for detecting intruders. Intrusion Detection:
SHADOW Style will guide you step by step in
building your own very robust network-based
IDS. You will also find many useful tcpdump fil
ters in this book.

Obviously, you can run tcpdump on your hosts
to detect network-based attacks, even without
building your own IDS. For example, to detect
teardrop attacks, you may use the following filter:

#tcpdump "udp and (ip[6:1] & 0x20 != 0)"

To detect IP packets where the source and des
tination addresses are equal (classic land attack),
you can use:

If you would like to understand more about pack
et filtering based on tcpdump and network at
tacks, the SANS Institute (www.sansstore.org)
offers excellent courses on this topic.

Conclusion
It's always a good idea to sniff your own networks
for any suspicious behavior. Based on our experi
ence, tcpdump is the right tool for the job. Working
with tcpdump will also allow you to understand in
detail the various network protocols.

If you periodically sniff your networks, you'll
be able to find the network bottleneck. You'll also
be able to identify bad-guy network attacks by
creating your own tcpdump-based IDS. -7~

Further reading
• Intrusion Detection: SHADOW Style. Stephen Northcutt

and the Intrusion Detection Team. SANS Institute
(www.sansstore.org).

• TCP/IP Illustrated, Volume I. Richard Stevens.

#tcpdump "ip[12:4l ip[16:4l" • Internetworking with TCP/IP, Volume I. Douglas E. Comer.

Distributed computing witli
CORBA and Java •·tm•M•> ftp.eleme-nt-kj-ou-rn-als.com/sun/sepOO

by Paul A. Watters

D istrib:ited syst~ms is one. of the fas~est
growing areas in enterprise computing
today. As the processing requirements

for modern applications can span continents, let
alone the globe, there has been a huge push to
enable cross-platform, language-independent
methods for exchanging data around the net
work. The Internet has also introduced new
application domains associated with business-to
business e-commerce, where defined operations
must be performed between sometimes distrust
ed hosts. Identification, authentication, and au
thorization clearly play a large role in allowing
clients and servers owned by different organiza
tions to communicate and exchange data safely
and effectively.

One method that has been developed to fa
cilitate this exchange of data is CORBA, or the
Common Object Request Broker Architecture,
developed by the Object Management Group
(OMG). CORBA is a cross-platform, language-in
dependent method of specifying and implement-

www.elementkjournals.com/sun

ing interfaces between two Object Request Bro
kers (ORBs). Although many C developers are fa
miliar with Sun's RPC (Remote Procedure Call)
software libraries, RPC was clearly focused on
client/ server operations, whereas CORBA appli
cations feature ORB-ORB transactions, which can
be client/ server or server I server in nature. ORBs
communicate with each other using the standard
Internet Inter-ORB Protocol (IIOP), which is im
plemented as a UDP service.

This feature makes CORBA particularly useful
for implementing many applications that involve
distributed financial transactions, for example,
which require distributed replication and data
element validation. The other major difference
between RPC and CORBA is that CORBA is ob
ject-oriented; it passes objects by reference be
tween ORBs, so that remote ORBs can update
data where necessary, without relying on a return
data type. This feature overcomes some of the
limitations in Java, since methods are invoked
with parameters passed by value.

September 2000 11

Since Java is now one of the dominant lan
guages for distributed computing, it's no surprise
that Java middleware developers have increasingly
favored CORBA over Java-specific remote invoca
tion methods, such as RMI. In fact, RMI can even
be implemented over IIOP, demonstrating the flex
ibility of CORBA services. Java and C++ develop
ers can also now easily write clients and servers
that can communicate with each other without the
need for non-standard, third-party libraries.

Choosing an ORB
If you're a Solaris application developer, you may
have read that developing applications using
CORBA is difficult. Alternatively, as an adminis
trator, you may be called upon to support CORBA
applications, without a clear explanation of the es
sential components of ORBs and client and server
components. Although the OMG has released the
CORBA API and some documentation through
their Web site at www.omg.org/, there's still a gap
between specification and implementation that
isn't always well explained in literature.

In this article, we'll develop a simple applica
tion that verifies a password and a username.
This simple process is found in virtually all dis
tributed applications that require authentica
tion. We'll also examine the deployment of the
client, the server, and the actual class and
method implementation required to support the
operation. The code for the example is included
in its entirety, meaning that you can type it in
and try it out! Or, if you prefer, download it
from our ftp site.

There are many ORBs currently available on
the market for Solaris, including freeware, refer
ence implementations, and several high-quality
commercial implementations. In this article, we'll
deploy both the client and server ORBs using
the VisiBroker ORB from Inprise Corporation
(www.inprise.com/) .

One of the advantages of VisiBroker is that it's
a complete development and deployment pack
age, providing support for developing both Java
and C ++ client and server applications on Solaris.
In addition, the ORB integrates completely with
other enterprise-level services, such as Enterprise
Java Bean (EJB) support and servlets. Thus, it's
feasible to deploy any n-tier-distributed applica
tion using a single package, which reduces main
tenance, overhead, and support costs.

Developing a distributed
Java application
Eight steps are involved in developing and de
ploying a CORBA application with Java. First,

12 Inside Solaris

specify the required modules and interfaces by
using the Interface Definition Language (IDL),
which is similar to C++. This includes parameter
definitions for methods that must be passed from
client to server (in), from server to client (out), and
in both directions (i nout). A special wrapper class
is required to pass simple types (such as int s),
whereas objects can be specified directly.

Second, generate the server skeleton and client
stubs from the IDL code by using the idl2java pro
gram supplied with VisiBroker. This generates a
series of files which are responsible for the mar
shalling of objects between client and server at
runtime, and which don't need to be modified by
the developer or deployer.

Next, implement all of the modules, interfaces,
classes and methods defined in IDL using Java.
Create a server in Java that initializes a server
ORB and defines its runtime characteristics.

Now, create a client in Java that initializes a
client ORB, contains the appropriate pointer to a
server ORB, and invokes methods on the remote
server. Then, compile all the class files for the
server, client, and implementation using vbjc. Fi
nally, start the server using vbj and execute the
client using vbj.

A user authentication sample
Let's discuss each step in detail. First, the IDL
code is used to define the interface between the
client and server. In fact, it's used to generate
client stubs and a server skeleton from which the
client and server can be implemented in Java. This
saves time and reduces errors due to coding and
type differences. In addition, you could use the
same IDL to develop a C++ server skeleton and a
Java client stub, or vice versa, so it's quite flexible
in operation.

Let's look at an interface definition (authenti
cate.idl) for a security module that performs user
name authentication. A single method is defined
that returns a success or failure code from the
server, and it passes two strings from the client to
the server: a username and a password. These
could be standard Solaris usernames and pass
words, although we haven't specified an eight
character limit here for the username and
password variables:

bash-2.03$ cat authenticate. idl
module security
{

interface Authenticate
{

string checkUsername
(

in string username,

in string password
);

};

};

That's all the code that's required on the IDL
front. From this simple interface definition, we
can generate a server skeleton and client stub for
it, by using the idl2java command:

bash-2 .03S idl2java authenticate.id!

This command creates a subdirectory from the
current directory that reflects the module name,
in this case security. Thus, if we examine the con
tents of security, we should be able to see both the
client stub and server skeleton, if there were no
idl2java syntax errors:

bash-2 .03$ ls security
_AuthenticateStub.java
Authenticate.java
AuthenticateHelper . java
AuthenticateHolder.java

AuthenticateOperations.java
AuthenticatePOA . java
AuthenticatePOATie.java

As you can see, each of the associated Java
source files has the name of the interface prefixed
(Authenticate), followed by a specific function
(e.g., Au then ti cat eHo l der defines any special holder
objects required to wrap data types which are de
clared out or inout). The developer and deployer
rarely have to edit these files, so it's best to focus
on implementing the interface, classes, and meth
ods defined in IDL.

With the single interface defined, we must cre
ate a Java source file called Authenticatelmpl.java,
which simply indicates that the files contain the
implementation of the Authenticate interface.
Further, we must define a single method check
Username, in accordance with our interface specifi
cation, in the class Au then ti ca te Imp l.

In this example, we've defined two private vari
ables that contain the target username and pass
word (president and Lincoln), but in a real
application, these would be retrieved from a rela
tional database by using the Java Database Con
nectivity Classes (JDBC), or EJBs. Here, if the
client's username and password match those
stored on the server, then a PASSWD_OK string is re
turned to the client, or a BAD_PASSWD string is re
turned. Obviously, the client should interpret these
strings in a sensible way. Listing A shows the code.

The next step involves writing a server, which
initializes the ORB on the server side. The key def
inition here is the Portable Object Adaptor (POA;
in this case securi ty_agent_poa), through which ob-

www.elementkjournals.com/sun

Listing A: Our client authentication implementation code

bash-2.03$ cat Authenticatelmpl.java
public class Authenticatelmpl extends security .AuthenticatePOA
{

private String _username="president" ;
private String _password="lincoln" ;

public String checkUsername(String username . String password)
{

if (username .equals(_username) && password .equals(_password))
{

return "PASSWD_OK";

else

return "BAD_PASSWD" ;

Listing B: The server process that handles authentication

bash-2 .03$ cat Server . java
import org .omg .PortableServer .•;

public class Server {
public static void main(String[J args) {
try {

org.omg.CORBA.ORB orb= org .omg .CORBA .ORB .i nit(args.null) ;
POA rootPOA =

POAHelper .narrow(orb.resolve_initial_references("RootPOA")) ;
org.omg.CORBA .Policy[J policies= {
rootPOA .create_lifespan_policy(LifespanPolicyValue .PERSISTENT)
);

POA myPOA = rootPOA .create_POA("security_agent_poa".
rootPOA. the_POAManager(). policies);

Authenticatelmpl securi tyServant = new Authenticatelmpl();
byte[l securityld = "Authenticate" .getBytes();
myPOA .activate_object_with_id(securityld . securityServant);
rootPOA . the_POAManager(). activate() ;
System .out .println(myPOA . servant_to_reference(securityServant) +

"is now available .");
orb.run() ;

I
catch (Exception e) {
e.printStackTrace();
I

jects are activated on the server. Thus, the client
that we develop later will also need to specify
which POA it intends to connect to. Let's examine
a standard server for our application in Listing B.

After implementing the server, the client is
straightforward; we initialize a client ORB, identify

September 2000 13

the name of the server POA (security_ agent_poa),
and pass the parameters for the remote method
that will be invoked (checkUsername(username, pass
word)). Obviously, we have to define user name and
password before invoking the remote method.
In this client, we interpret the returned string
as either indicating that the user's creden
tials were verified or were not verified, and
print an appropriate message. Listing C shows
the code.

Listing C: Our client that will access the server via CORBA

bash-2.03S cat Client . java
public class Client
(

public static void main(String[l args)
{

String message;
String username="president";
String password="lincoln";
try

{

org.omg.CORBA.ORB orb
or g . omg . CORBA. ORB . i n i t (a r gs , nu l l) ;

byte[l securityld = "Authenticate".getBytes();
security .Authenticate a =

security .AuthenticateHelper .bind(orb,
"/securi ty_agent_poa", securi tyld);
message=a.checkUsername(username,password);
if (message .equalslgnoreCase("PASSWD_OK"))
{

System.out . println("credentials authenticated");
}

else

System.out . println("unable to authenticate
•credentials");

catch (Exception ex)

System .err . println(ex);

Deploying a distributed
Java application
After creating the client, server, and implementa
tion source in Java, it's then time to compile
everything by using the vb j c command (VisiBro
ker for Java Compiler). In our case, we can type

bash-2.03S vbjc •.java security/• . java

and all of the appropriate class files should be
generated as shown in Listing D.

Start the server
If all of these steps have succeeded, then you can
attempt to start the server by using the vbj com
mand as follows:

bash-2 .03S vbj Server
Stub[repository_id=IDL:security/
Authenticate:1.0,key=Serviceld
[service=/security_agent_poa, id=
{12 bytes : [Al!u][t][h][e][n][t)
[i][c][a][t][el}ll is ready .

The module security and the interface Authenti
cate are now available on the server! Next, we can
attempt to execute the client, also by using the vbj
command. If the server isn't responding, you'll
get an exception:

bash-2.03S vbj Client
org.omg.CORBA .OBJECT_NOT_EXIST:

Could not locate the following POA:
poa name : /security_agent_poa

minor code : 0 completed: No

If the server is running, you should see the re
sponse:

bash-2 .03S vbj Client
credentials authenticated

Of course, if you change the password in Client.java
to be cl inion, you'll have the error message print
ed to the display.

Summary
In this article, we have examined a very simple
implementation of an authentication module in

Contacting Customer Relations
If you have questions or concerns about your subscription, you can contact our Customer Relations department by sending email to 1ournalsCg element-k com Vou can also

contact us by phone at (800) 223-8720 Be sure to include or have on hand your customer number when you contact us Doing so will help us to assist you quickly and easily

14 Inside Solaris

Java, as specified in CORBA IDL. Although the development and de
ployment stages involve eight discrete steps, the ability to pass objects
by reference between networked hosts is incredibly important to distrib
uted applications. Of course, we have only examined interfaces consist
ing of a single interface and a single method defined for a module; a
real-world module may contain several interfaces, each with multiple
methods. Although it's not currently possible to overload methods with
in a particular interface, CORBA, in general, is particularly well suited
to object-oriented application development on the enterprise Solaris
platform . .;~

Listing D: A// the files needed to implement our CORBA example

bash-2 .03S ls
authenticate.id!•
Client.java
Authenticatelmpl . java

bash-2.03$ ls security
_AuthenticateStub.class
_AuthenticateStub.java
Authenticate .cl ass
Authenticate.java
AuthenticateHelper .class
AuthenticateHelper . java
AuthenticateHolder .class

Further reading

Client .class
Server .j ava
security/

Server .cl ass
Authenticatelmpl.class

AuthenticateHolder . java
AuthenticateOperations.class
AuthenticateOperations . java
AuthenticatePOA .class
AuthenticatePOA .ja va
AuthenticatePOATie .class
AuthenticatePOATie.java

The OMG IDL/Java Language Mapping Specification describes the oper
ations that must be performed by a CORBA implementation in gen
erating client stubs and server skeletons from IDL. This information
can be very useful if you're trying to troubleshoot a specific imple
mentation. You'll find this specification at the OMG Web site at
www.omg.org/. A FAQ document about VisiBroker is also available
from the Inprise Web site at www.borland.com/visibroker.

About our contributors
Clayton E. Crooks II is a self-employed computer consultant living in Knoxville, Tenn.
He's married with one child. His hobbies include game development, 3-D modeling
and any athletic activity he can find time for.

Boris Loza holds a Ph.D. in computer science from Russia. He worked as a UNIX
administrator and developer for 10 years. Currently he is working for Fidelity Invest
ments Canada in the position of data security and capacity planner, doing IT security
for UNIX, Windows NT and Novell. He has a daughter Anna and enjoys read
ing computer and mystery books and watching movies. He can be reached at
Boris.Loza@FMR.com.

Alan Orndorff has been working with computers since 1990. He is using Solaris as a
platform for Lotus Notes and at home in his spare time. He currently lives in San Fran
cisco and can be reached at dwarf333@hotmail.com.

Paul A. Watters is the project manager at Neuroflex, where he's responsible for devel
oping natural language database systems in Java on the Solaris platform. He can be
reached at pwatters@mpce.mq.edu.au.

www.elementkjournals.com/sun

lnsiaff

==S===-.9Erl§:===
Inside Solaris (ISSN 1081·3314) is published monlhly by Element K Journals, a
division of Element K Press, 500 Canal View Boulevard, Rochester, NY 14624.

Customer Relations

US toll free (800) 223-8720
Outside of the US (716) 240·7301
Customer Relations fax (716) 214-2386

For subscriptions, fulfillment questions, and requests for group subscriptions,
address your letters to

Element K Journals Customer Relations
500 Canal View Boulevard
Rochester, NY 14623

Or contact Customer Relations via Internet email at journals@element-k.com.

Editorial

Editor.

Assistant Editor
Managing Editor ..
Copy Editors

Contributing Ednors .

.. Garrett Suhm

....................................... Jill Suhm
.. Michelle Rogers
..................... Rachel Krayer

Glenna Lechner
.. Clayton E. Crooks II

Boris Loza
Alan Orndorff

Paul A. Watters
Print Designer Rachel J. King
Cover and Content Design Melissa Ribaudo

You may address tips, special requests, and other correspondence to

The Editor, Inside Solaris
500 Canal View Boulevard
Rochester, NY 14623

Editorial Department fax (716) 272-0064

Or contact us via Internet email at inside_solaris@elementkjournals.com.

Sorry, but due to the volume of mail we receive, we can't always promise a
reply, allhough we do read every letter.

Element K Journals
General Manager Kelly Baptiste
Manager of Customer Relations Nicole Pate
Manager of Operations Cristal Haygood
Manager of Print Design Ian Caspersson
Manager of Product Marketing Mike Mayfield
Senior Product Marketing Manager Brian Cardona

Postmaster

Periodicals postage paid in Rochester, NY and additional mailing offices.

Postmaster: Send address changes to

Inside Solaris
P.O. Box 92880
Rochester, NY 14692

Copyright

© 2000, Element K Content LLC. All rights reserved. Reproduction in whole or
in part in any form or medium without express written permission of Element
K Content LLC is prohibited. Element K is a service mark of Element K LLC.
Inside Solaris is an independently produced publication of Element K Journals.
Element K Journals reserves the right, with respect to submissions, to revise,
republish, and authorize its readers to use the tips submitted for personal and
commercial use. For reprint information, please contact Copyright Clearing
Center, (978) 750-8400.

Inside Solaris is a trademark of Element K Journals. Sun, Sun Microsystems,
the Sun logo, SunSott, the SunSott logo, Solaris, SunOS, Sunlnstall, Open
Boot, OpenWindows, DeskSet, ONC, and NFS are trademarks or registered
trademarks of Sun Microsystems, Inc. Other brand and product names are
trademarks or registered trademarks of their respective companies.

Printed in the USA.

Price

Domestic................. $129/yr ($11 .00 each)
Outside US .. $149/yr ($13.00 each)

Our Canadian GST# is: R140496720. CPM# is: 1446703.
OST# is: 1018491237.

Back Issues

To order a back issue from the last six months, call Customer Relations at (800)
223-8720. Back issues cost $11.00 each, $13.00 outside the US. You can pay
with MasterCard, VISA, Discover, or American Express.

~~! !~~c~~~~·~i!ing to move, you can guarantee
uninterrupted service on your subscription by calling us at (800) 223-8720 and
giving us your new address. Or you can fax us your label with the appropriate
changes at (716) 214-2386. Our Customer Relations department is also
available via email at journals@element-k.com.

Coming up ...
• Setting up POP3

• Using ToolTalk

___ P_E_R_IO_D_IC_A_L_S_ M_A_l_L ___ 2096
r 11111ll11l1ll11u11111l1l11l 11l11l11111lll11l 11l 1l 11l1l11l1l1I

••••••••••*-J-DIGIT 480
C: 00002096 04101
RUDOLPH LIEDTKE
RJLSYSTEMS
33955 HARPER A VE
CLINTON TOWNSIIlP MI 48035-4218

18
42

~ ~

USPS ARMIN PST 881 APPROVED POLY Please include account number from label with any correspondence.

-'
etimes when problems occur, you' ll want

to airect the normal output of the command
stdout to one location, and the error output from
the command std err to another location.

As an example, suppose you're running an un
attended, custom, tape-backup utility at night.
Normally, you want to write the standard output
to one file, while writing the backup errors to a
separate file. You can easily accomplish that with
the following:

tape-backup > tape .out 2> tape .errs

Other times, usually when you're working in
teractively, you want to redirect both the standard
output stream and the standard error stream to
the same location. A good example of this is when

you're first creating a shell program and it's gen
erating a lot of errors in its output. In debug
mode, you may want to see the normal output of
the program and the debug output in the same
data stream. You could type this:

myscript I more

If you have a lot of output, the errors will go
right off your screen. Here's how to send the stan
dard output stream and standard error stream
into the more command together:

myscript 2>&1 I more

In this case, the normal output and error output
are both controlled by more, which is just what
you want.

Use type to find commands and learn more about them

W hen you type commands like cd, ls, whence,
pwd, and others, do you wonder where they

come from? Using the Korn shell' s type com
mand, it's easy to find out.

The type command is a great tool for learning
more about your system, and more about where
commands are coming from. A simple command
like the following:

type cd pwd ls who whence

Will yield the following results:

cd is a shell builtin
pwd is a shell builtin
ls is a tracked alias !or /bin/ls
who is a tracked alias !or /bin/who
whence is a shell built in

This tells you that the cd, pwd, and whence com
mands are built into the Korn shell, while ls and
who are commands that exist in the /bin directory.
This can help you when you're trying to under
stand where a program is coming from and why it
may or may not be working.

Why making copies of UNIX CDs doesn't work

D id you just buy a shiny new CD burner for
your PC and then try to make a copy of a

UNIX CD? It doesn't work since Windows (both
98 and NT) doesn't support ISO 9660 with Rock
Ridge extentions that are necessary to handle
UNIX file systems. Simply point your browser to:

ftp://tsx-11.mit.edu/pub/linux/packages/mkisofs/

You can retrieve the source for mkisofs here. This
program allows you to make an image of a UNIX
CD that can be read by commercial PC CD burning
packages such as Adaptec' s Easy CD Creator. *

16 Inside Solaris

