
May 1998 • $11.50
Vol. 4 No. 5

IN THIS ISSUE

1
Make a shell script mail you
a summary

3
An introduction to awk

7
PERL of the Internet

9
Mullithreaded programming
in UNIX

11
Changing the tiUe bar of an
xterm window

13
Turning the File Manager into
your command center

Visit our Web site at

h TipJ~.& techniques for users of SunSoft Solaris

Make a shell script mail you
a summary
by Marco C. Mason

I f you often run shell scripts un­
attended, such as in the back­
ground, or via the at command,

you may find that it would be help­
ful if you could get a summary of
their operation. In this article, we'll
show you how to make a shell script
mail you a summary. Using this
technique, you'll be able to run your
shell scripts, content in the knowl­
edge that when you want to check
the results, you can simply look at
your mail.

Sending a message
with mail
As you probably know, you can send
mail to someone by using the ma i l
command. To do so, you give the
ma i l command the recipient list on
the command line, and it accepts a
mail message via standard input.
Once the command finds the end of
the input stream, it mails the text to
the specified recipients.

Therefore, to have a shell mail us
a summary report, we must provide
two things: an appropriate recipient
list and a message body. Fortunately,
both of these are easy to obtain. We'll
use your user name as the recipient
list and the output of your command
list as the message body.

The recipient list
Who is interested in the results of
your script file? Presumably, only
you. Therefore, in your script file,
you can send a message to your­
self with the command

S ma i l myname

where myname is your user name.
However, this technique has

one slight disadvantage. If you
give a copy of your script to oth­
ers, they must edit it to send the
results to their own mailboxes, or
you'll get their reports.

Fortunately, there's a better
solution. Rather than hard-code
your user name into the recipient
list, we'll extract your user name
from the environment. If you've
ever executed the set command
and looked at all the environment
variables, you may have noticed
the one named LOGNAME, which the
shell set to your user name. All
you need to do in your script is
use the LOGNAME environment vari­
able as the recipient, so whoever
runs the script gets the report. You
can do so like this:

S mail S{LOGNAME}

ZIFF· DAVIS
a SOFTBAN K

company

INSIDE:~
so~4BJS. "'!!Iui.lp

Inside Safaris (ISSN 1081-3314) is published monthly by
The Cobb Group.

Prices
U.S
Outside U.S

....... $115/yr($11.50each)
$135/yr ($16.95 each)

Phone and Fax
US toll free (800) 223-8720
Local (502) 493-3300
Customer Relations fax (502) 491-8050
Editorial Department fax (502) 491-4200

Address
Send your tips, special requests, and other correspondence to

The Editor, Inside Safaris
9420 Bunsen Parkway, Suite 300
Louisville, KY 40220
Internet: inside_solaris@zd.com.

For subscriptions, fulfillment questions, and requests for group
subscriptions, address your letters to

Customer Relations
9420 Bunsen Parkway, Suite 300
Louisvi lle, KY 40220
Internet: cobb_customer_relations@zd.com

Staff
Editor-in-Chief John Gowin
Contributing Editors Al Alexander

Marco C. Mason
August Mohr

Brian Schaffner
Print Designer Margueriete Winburn
Editors Karen S. Shields

Joan McKim
Michael E. Jones

Publications Coordinator Linda Recktenwald
Product Group Manager Michael Stephens
Circulation Manager .. Mike Schroeder
Publisher Jon Pyles

Back Issues
To order back issues, call Customer Relations at (800) 223-
8720. Back issues cost $11.50 each, $16.95 outside the US.
We accept MasterCard, Visa, or American Express.

Postmaster
Periodicals postage paid in Louisville, KY.
Postmaster: Send address changes to

Inside Safaris
P.O. Box 35160
Louisville, KY 40232

Copyright
Copyright <Cl 1998 The Cobb Group, a division of Ziff-Davis Inc.
The Cobb Group, its logo, and the Ziff-Davis logo are registered
trademarks of Ziff-Davis Inc. All rights reserved. Reproduction in
whole or in part in any form or medium without express written
permission of Ziff-Davis is prohibited. The Cobb Group reserves
the right, with respect to submissions, to revise, republ ish , and
authorize its readers to use the tips submitted for personal and
commercial use. Information furnished in this newsletter ls
believed to be accurate and reliable; however, no responsibility
is assumed for inaccuracies or for the information's use.

Inside Safaris is a trademark of Ziff-Davis Inc. Sun,
Sun Microsystems, the Sun logo, SunSoft, the SunSoft logo,
Solaris, SunOS, Sunlnstall, OpenBoot, OpenWindows,
DeskSet, ONC, and NFS are trademarks or registered trade­
marks of Sun Microsystems, Inc. UNIX and OPEN LOOK are
registered trademarks of UNIX System Laboratories, Inc. Other
brand and product names are trademarks or registered trade­
marks of their respective holders.

a May1898

The message body
Now that we've properly addressed
our summary report, all we need to
do is send the ma i l command the
body of the message. If your report
consists merely of a mention that
the script has run, you can get away
with something simple like this:

mail S{LOGNAME} <<!
The test script executed normally.

We use a here document to feed
a message body to the ma i l com­
mand. One problem with this tech­
nique is that you have to know all
the reports that you want to send at
the time you run your script. That's
usually not the case.

Normally you'll want to see
all the output of your script in the
mail message. That way, you can
examine the output for anything
unexpected. As you probably sus­
pect, if you have a single command,
you can simply pipe its output to
the ma i l command. For example,
if you want to find a list of all the
files named core in your home di­
rectory and below, you might use
the command

s find - -name core -print I mail
•S{LOGNAME}

If you have multiple commands
to execute in your script, what do
you do? You could try creating a
temporary file and appending the
output of each command to it.
Then, after you mail the results to
yourself, you can remove the tem­
porary file. For example, suppose
you want a listing of the contents
of your .dt/Trash and .wastebasket
directories. You could create the
file like this:

s ls -/.di/Trash >/Imp/test
S ls -/.wastebasket >>/Imp/test
S mail S{LOGNAME} </Imp/test
S rm /!mp/test

The first line creates the file
/tmp/test and fills it with the list of

files in your .dt/Trash directory. The
second line appends the listing of
your . wastebasket directory to it. The
third line mails the resulting file to
you, and the fourth line deletes the
temporary file.

However, this technique has
two drawbacks: First, you must cre­
ate a temporary file that won't be
used by some other process. Sec­
ond, you must be sure to clean up
the file when you're finished.

Another way you can find the
list of files is to create a shell script
that contains the list of files you
want to execute. Then you can re­
direct the output of that shell script
to the mail command. For our ex­
ample, we could create a shell script
that does both directory operations
with the lines

ls -/ .dt/Trash
ls -/ .wastebasket

Assuming our shell script is named
test, we can execute it like this:

S test I ma i l S { LOGNAME}

This technique works very well.
However, for very simple jobs, it
may be too much work. A good
method for small command lists is
to tell the shell to execute your list
of commands in a subshell. Then
you can pipe the output of your
subshell to the ma i 1 command. In
effect, it's the same as the technique
we just showed you, but you don't
need to explicitly create a shell
script in a file.

With this technique you just put
your command list in parentheses,
with the pipe symbol outside the
parentheses. You can separate your
commands with semicolons or
newlines. You can process the same
example in either of two ways:

S (ls /; ls -) I mail S{LOGNAME}

or

s (ls
> ls -) I mail S{LOGNAME}

Capturing error output
So far, we've shown you only how to mail the
standard output of a command to yourself.
Once you try this technique, you may find that
parts of the output you're used to seeing on the
console don't arrive in your mail message. This
happens because many programs print normal
results on the standard output stream, also
known as stdout, and errors on the standard
error stream, known as stderr.

You may be interested in both the normal
output of your commands and the error output.
If this is the case, then you must know which
shell you're using when you execute your
script. If you're using the C shell, you can pipe
both the stdout and stderr output to the ma i 1
command like this:

$ cmd I& mail S{LOGNAME}

All we did was use the I & operator, which
tells the C shell to pipe the stderr stream along
with the stdout stream. If you're using the
Bourne or Korn shell, it's a little more difficult:
These shells don't provide the I & operator.

However, you can do the job by telling the
shell to redirect the stderr stream to the same
place as stdout. Then you can pipe the resulting
output to the ma i 1 command.

You can merge the stderr and stdout streams
by using the I/ 0 redirection command 2>& 1,

• ' • - ••' .~ I fl ~ 1 J
' '. . . ' .

UNIX POWER TOOLS

which tells the shell to take the output of
stream 2 and send it to the same place as
stream 1. Since stream 2 is the stderr stream
and stream 1 is the stdout stream, this com­
mand does exactly what we want.

Now we're ready to put it together.
Please note that we must use the 1/0 redirec­
tion command that merges the standard error
stream to the standard output stream before
the pipe (I) symbol, because the pipe symbol
separates different sections of the command. If
we put the 1/0 command after the pipe sym­
bol, we'd be telling the shell to take any error
output from ma i l and send it to the standard
output. Our completed command line is

S cmd 2>& 1 I ma i l S{ LOGNAME}

Conclusion
If you're as busy as most people, then you
may find this trick a time-saver. It's nice to
be able to run your scripts and programs
knowing that you can examine the results at
your leisure rather than watching for the
output before it scrolls off the screen. An­
other benefit is that since the summary is
in your mailbox, rather than just on your
screen, you can elect to print it, forward a
copy to someone else, or just ignore it until
you need to look at it again. •!•

An introduction to awk
by August Mohr and Marco C. Mason

T he awk language is a powerful part of the
UNIX system. This language allows you
to do many things that would otherwise

require you to write a C program. In fact, it's
often used for prototyping programs to test
ideas before converting them to C or another
compiled language. If you're wondering about
the funky name, it comes from the initials of its
authors: Aho, Weinberger, and Kernighan.

If you've never used awk, this article may
inspire you to try it. If you've used only its de­
fault output capabilities, we'll give a starting

htta:l!www.cabb.cam/sun

point for taking fuller advantage of this power­
ful tool. Be sure to read the man page for more
information on awk's capabilities.

Despite the power, awk programs can be
amazingly simple-especially when compared
with the equivalent C programs. This simplic­
ity comes in part from awk's ability to make as­
sumptions about the format of its input that a
generic programming language can't. awk pre­
sumes that its input is ASCII text, that the input
can be organized into lines or records, and that
the records can be organized into fields.

Inside Solaria

S ls -C
TT_DB
bin
cdrom

Simple idioms, complex tasks
The simplicity possible with awk allows you to
use it within pipelines for such tasks as extract­
ing fields from a line of input. Here's an example
of a common idiom used in shell scripts. By de­
fault, awk will use a blank space in an input line
(spaces and tabs) to separate fields of non-blank
characters. The following awk command will
print the first field of every line in the file test:

$ awk '{ print $1 }' test

The quoted part of the command line tells
awk what to do with the file test. In this case, it
tells awk to print the first field in each line.

The command we just showed you illus­
trates the basic structure of an awk command. The
part in quotes specifies a list of action statements
telling awk what to do, and the part after the
quotes specifies the list of filenames to process.

Records and fields
When awk processes a file, it reads it line by line.
Each line is considered to be a record and is
treated by itself. Each record is a collection of
fields, separated by white space.

In your action statements, you can refer to
a field by the construct Sn, where n is the field
number you're interested in. In an awk program,
you may have multiple action statements, each
in the form

pattern { action

where you can omit either the pattern or the
action part. If you omit the pattern part, awk
executes the specified action on every line. In our
example, we omitted the pattern part and used
just the action part, which simply prints the first
field in the record.

Let's try it out. First, go to your root direc­
tory, type ls -C, and examine your output:

dev export lib
devices home mnt
etc kernel net

opt sbi n usr xfn
platform shlib var xxx
proc Imp vol

Now, if we pipe the output of the ls -C com­
mand to our example awk command, we should
see the following result:

$ ls -C : awk '{ print S1 }'
TT_DB
bin
cdrom

~

For each line, awk reads the record, splits it into
fields, and prints the first field .

Pattern matching
The pattern part of an action statement tells
awk when to execute the action. If the pattern
doesn't match, then awk doesn't execute the
corresponding action in curly braces.

If you want to operate only on lines that
contain a particular string, you can use the syn­
tax !xi to represent the string, where xis the
string you're looking for. Thus, if you wanted
to print out each line that contained the word
Solaris, you could use the action statement:

/Solari s/ { print }

The awk program has two special patterns
that make report writing easier. These are the
BEG! N and END patterns. The action for the BEG! N
pattern is automatically run before awk reads
any records. The action for END is run after awk
processes the last record.

Variables and mathematics
In order for you to do some serious processing,
awk allows you to create variables and do math­
ematics. If you want, you can perform calcula­
tions with values found in a specific field. To
create a variable, simply assign it a value, like
this:

var = 5

Here, we've assigned the value 5 to the variable
var. You can treat the fields as numeric values
and access them in your calculations.

The awk program provides you with many
mathematical operators, such as addition (+),
subtraction (-), multiplication (*), and division
(/). Putting together what we've learned so
far, you could add all the numbers in a column
like so:

awk 'BEGIN { total=0 } { total += $1 } END {
•print "Total=". total }' test

As you can see in this example, there are
three action statements. The first has a pattern
of BEGIN, and we use it to set a variable named
total to 0. The second doesn't have a pattern, so
it's executed for every line; this action statement
adds the value of the first column to total. The
third action statement has an END pattern, so awk
executes the statement after awk's processed all

the records. In this case, the last action state­
ment prints total, which at this point contains
the total of all values found in the first column
in the file test.

Decisions and looping
We've already shown how you can execute a
pattern based on a decision: Using a pattern
like /Solari s I tells awk to process the action
statement only if the word Solaris is found in
the record. However, awk provides much more
sophisticated decision-making capability.

You can use an if statement to execute a
statement if a certain condition is met. To do so,
you use the syntax

if (condition)
s tmt 1

else
s tmt2

Thus, if the specified condition is true, the if
statement executes the statement labeled stmtl.
On the other hand, if the statement is false, the
if statement executes the statement labeled
stmt2. It will execute one or the other statement,
but not both. Please note that the else and
stmt2 part of the i f statement are optional. For
example, the statement

if (var== 2)
print "Var equals 2"

prints "Var equals 2" if, and only if, the value
of var is 2. Otherwise, it does nothing. Pretty
simple, isn't it?

One of the looping constructs is known as a
while loop. This construction looks like this:

while (condition)
stmt

When you get to the wh i le statement, awk
checks the condition. If it's true, then it ex­
ecutes the statements tmt. Then awk executes
the while statement again. Thus, as long as the
condition is true, the statement will be repeat­
edly executed. For example, if you execute the
statement

wh i le (var > 2)
var -= 1

when var is 10, then awk will notice that the
condition is true. Then it will subtract one from
var, leaving it at 9. Then awk will execute the
while statement again leaving var set to 8. awk
will repeatedly execute the wh i le statement

...... _., , __ --- '-··-

until finally awk subtracts one from var, and
var is less than 2. Then awk stops processing
the wh i le statement and goes on to the next
statement.

Compound statements
As you may have noticed, a single statement in
awhile loop isn't terribly useful. There's just
enough room for you to change the variable on
which your condition is based. You don't really
have enough room to do any other work.

As you may expect, there's a way around
this: awk provides compound statements. In
other words, awk allows you to treat an arbi­
trarily large number of statements as a single
statement by enclosing them in a pair of curly
braces and separating them with semicolons(;).
You can put a compound statement anywhere
you're allowed to place a statement. As an ex­
ample, let's take our while loop and let it print
the value of var as it executes. Go ahead and
type in the following command:

awk 'BEGIN { var=10; while (var>2) { print
•var; var -= 1 } }'

When you press [Enter], you'll see a col­
umn of digits from 10 to 3. You won't see a
prompt, however. The awk program is waiting
for records to process. Since we didn't specify
an input file, the program waits for you to en­
ter the records from the keyboard. Simply press
[Ctrl]D to tell awk that there aren't any more
records.

A simple sample
As a real example of the power of awk, we'll
create a script that will print the amount of
disk space on your machine in megabytes and
show the total amount of space you've used.
To do so, we'll take the output of the d f -k
command, which is close to what we want,
convert the values from lK blocks to mega­
bytes, and format the output into multiple
columns with headers.

Let's look at the output we get from the
d f -k command, shown in Figure A on the next
page. In manipulating this input with awk, we'll
look at several useful features of the language.
First, the input fields are separated by any
amount of white space (spaces or tabs). The
output of d f -k will always have white space
separating the fields.

The script we'll use to manipulate and dis­
play these values is shown in Figure B. Please

---------lmtidP. lnlAllitt

Figure A

Termln(IJ

~lndow {dlt Qptlorn

s df -k
Fi l esystem kbytes used avai l capacity
/dev/dsk/cOtOdOsO 2125981 394698 1518693 21%
/p roc O O 0 0%
fd 0 0 0 0%
swap 35380 428 34952 2%
/vol / dev /ds k/c0t6d0/so la r i s_ 2_5_x86/s 2

II
267664 -1 0 100%

/vol / dev/dsk/c0 t6d0/ so l a ri s_2_ 5_x86/s0
15560 12436 1584 89%

$

Mounted on
I
/p roc
/dev/fd
/ trnp

/cd rorn/sol a r i s_2_5_x86/s 2

/ cd rorn/sol ari s_2_5_x86/ s0

HtlD]

This is an example of output from the df -k command. It shows disk usage for
mounted file systems in 1 K blocks.

Figure B
1) #!/bi n/ksh
2) #Based on df -k, show disk usage in megabytes .
3) PATH=/bin:/usr/bin
4) df -k I awk -e '
5) # Print the column headers
6) BEGIN {
7) printf "%-18s%8s%8s%5s%8s%s\n","File", "Max","Used",

•"Used", "Free", "Mount"
8) printf "%-18s%8s%8s%5s%8s %s\n","System","MByte",

9)
10)
11)

}

•"MByte", "%", "MByte", "Dir"
TotalM = TotalUsedM = 0

12) #Process each line of df -k output
13) NR >= 2 {
14) Fi leSys=S1; MaxK=S2; UsedK=S3; FreeK=S4; MntPt=S6
15) #Ignore unmounted partitions, i.e., those with 0 byte size.
16) if (MaxK > 0) {
17) #If the filename is too long, print it on its own line
18) if (length(Fi leSys) < 19)
19) printf "%-18s", FileSys
20) else
21) printf "%s\n%18s", Fi leSys,
22) #Volume is mounted, display stats
23) MaxM = MaxK/1024; UsedM=UsedK/1024; FreeM=FreeK/1024;
24) UsedPct = UsedK·100/MaxK;
25) printf "%8.2f%8.2f%5.1f%8.2f %s\n", MaxM, UsedM, UsedPct,

26)
27)
28)
29)
30)

•FreeM, MntPt
#Accumulate totals
TotalM += MaxM; TotalUsed += UsedM
}

31) #Print the ending summary
32) END {
33) print "---------------------------------"
34) printf "Total disk space : %8.21 MBytes\n", TotalM
35) i f (Tot a lM > 0)
36) printf" Percent in use: %5.1f%%\n", TotalUsed•100/

37)
38) '

•TotalM

The dfv script uses awk to calculate and format a table of the megabytes used on
all mounted file systems.

II May1998

note that the line numbers are just for refer­
ence, they're not part of the script.

Line 14 of Figure B shows how we can
assign these field values to variables. Note
that assigning them to variables is for clarity
and ease-of-use only; we can make calcula­
tions and output using the field-number
variables directly. Also note that line 16
checks to see if we might divide by 0 (this
could occur if a file system listed in /etc/
vfstab isn't mounted). If MaxK is zero, we
won't process the line any further. Lines 23,
24, 27, and 36 of the dfu script show how we
can use variables in calculations and how to
assign those values to new variables.

The overall structure of this awk program
consists of three action statements. The first,
beginning on line 6, uses the BEGIN pattern to
specify the actions we want to perform be­
fore any input lines are read or processed. In
this case, we're printing our header and ze­
roing out our TotalM and Tota/Used variables.

The pattern that selects the second and
subsequent lines uses the built-in NR vari­
able, which contains the count of the current
input record or line. Here, if the NR variable
is 2 or larger, we process the action state­
ment. This has the effect of skipping the first
line output by the d f -k command, which is
a column header, as you can see in Figure A.
The last action statement, starting on line 32,
simply prints the total amount of disk space
and the percent used.

Formatting with printf
We use the pr i n t f commands in lines 7 and
8 to format our column headers. In line 25,
we use another pr i n t f statement to display
the results of our calculations. In the print f
commands, a pattern beginning with a
percent sign(%) describes the formatting
of each field. After defining the output
pattern, the print f routine substitutes the
input values into the pattern in the order
they appear.

In the header commands, each field is
defined as some number of string (s) charac­
ters. The minus sign (-) preceding the first
and last fields indicates that the field will
print left-justified instead of the default,
right-justified. Therefore, the format string
%8s specifies a right-justified string that takes
eight columns.

In lines 7 and 8, we described all fields
using the s character, and we gave all input

values as character strings. In line 25, only
the first and last fields are strings; the rest are
either base-10 (decimal) numbers (d) or floating
point numbers (f).

As with the string values, the number
given is the number of character places in the
output format. For floating point fields, the
number to the left of the period indicates the
total width of the output field, while the num­
ber to the right of the period indicates how
many of those characters should be reserved
for digits to the right of the decimal point. We
used the same field widths in our column
headers as our numeric output to keep our
columns aligned.

Note the print f statement in line 36. All
the text appearing outside of a field definition
is printed literally. In this case, awk will print
"Percent in use : "followed by a number five
digits wide (one digit after the decimal point),
followed by a% symbol. Note that we had to
use two % symbols to get a single one, since the
% symbol tells print f to start a field definition.
Figure C shows what the output of the dfv
script looks like on one of our machines.

Conclusion
We didn't show you everything about awk. It's
too big and complex a language. We do hope
that we got your curiosity going, though. The
basics are pretty easy to learn, and you can use

PERL DI the Internet
by Brian Schaffner

Are you building a Web server for your
office? If so, you'll need to make a lot of
decisions about your content on the

World Wide Web and how you present it for
both external and internal users.

The Web seems to evolve more every day.
Interactive Web-page design is one of the hot­
test areas of evolution on the Internet. There
are many tools you can use to manage and ma­
nipulate a user's experience at your Web pages.
In this article, we'll look at PERL (Practical Ex­
traction and Report Language), a useful tool for
CGI (Common Gateway Interface) scripts.

ltffn•//111n11n111 l'nltlt l'ntn/011n

Figure C

'
· ~lndow [dlt QJ:•tlons - - iietp

:
I $. /dfv

File Max Used Used Free Mount
System MByte MByte % MByt e Di r
/dev/dsk/cOtOdOsO 2076 . 15 385 . 44 18 . 6 1483 .11 I
swap 43. 91 0.15 0 . 3 43 . 77 /tmp
/vol /dev/dsk/c0t6d0/so l ari s_2_ 5_x86/s2

261. 39 -0.00 -0 . 0 0 . 00 /cd rom/solari s_2_5_x86/s2
/vol /dev /ds k/c0 t 6d0/so la ri s_2_ 5_x86/s0

15 . 20 12 . 14 79 . 9 1. 5 5 /cdrom/sol a r i s_2_ 5_x86/s0

Tota l disk space : 2396 . 65 MBytes

Percent in use : 16 . 6%
s I

This is the output of the dfv script in Figure B when applied to the same
file systems as shown in Figure A.

them to do some fairly complex jobs. As we
mentioned, you'll want to read the man page to
get some more detail on awk . If you'd like some
more detailed information on the awk language,
you might want to refer to the following books:

The A WK Programming Language
Alfred V. Aho, Brian W. Kernighan, & Peter J.
Weinberger
Addison-Wesley Pub. Co., 1988
ISBN 0-201-07981-X

sed &awk
Dale Dougherty
O'Reilly & Associates, Inc., 1990
ISBN 0-937175-59-5 •:•

Overview
PERL is an easy-to-use programming language
for creating compact programs. Much of the in­
formation exchanged on the Internet is in some
sort of text format. Even VRML (Virtual Reality
Modeling Language) files are sent as text de­
scriptions. PERL is a good tool for Internet pro­
gramming because it can extract and create re­
ports from text-based data sets (such as VRML
files and Web pages).

We'll begin by looking at one of the easiest
topics in PERL-its data typing or lack thereof.
Next, we'll talk about PERL's extensive set of

________ ln1ide Sola~i1

i"

,,

r.
..J
'

functions for matching patterns in text strings.
Finally, we'll show you how PERL makes it easy
to use files for both input and output.

PERL types
PERL, unlike C++ and PASCAL, doesn't require
that you strictly typecast your variables. In
PERL, a variable can just as easily contain text
or integer values. There are essentially four ba­
sic data types in PERL: handles, scalar variables,
integer-indexed arrays, and string-indexed
arrays, as shown in Table A.

A handle data type lets you access files and
directories. (We won't go into detail about
handles in this article.)

Scalar variables hold numeric or string val­
ues. An example of a scalar value assignment
would be

Smyscalar ="Hello!";

This assigns the value He l lo! to the variable
Smysca l ar. Notice that the scalar variable begins
with a dollar sign. All scalar variables are
prefixed with a dollar sign, which tells PERL
that the value is a scalar value.

Arrays are sets, or lists, of scalar values.
Integer-indexed arrays have a subscript, or in­
dex, value that is an integer. An example of an
integer-indexed array would be

@myarray = ('one' , 'two', 'three', 'four');

This array assigns the values one, two, three,
and four to the array @myarray. Notice the@
prefix for the array. When you refer to an entire
list of values, you use the @prefix. If you want
to use only a single value from an array, you
use the s prefix to designate the value as a
scalar value, such as

Smynewsca lar = @myarray[1];

This statement assigns the value found in
@myarray at index 1 (the value two, because

Scalar variables

Integer-indexed

~r~ays :z n = _;
String-indexed
arrays

II May1998

Values such as strings or integers

A list of scalar values with an integer
index

A list of scalar values with a string
index

array indexes start at 0, not 1) to the scalar
variable Smynewsca la r.

String-indexed, or associative, arrays are
similar to integer-indexed arrays. The difference
is that integer-indexed arrays are automatically
indexed. With string-indexed arrays, you must
explicitly assign index values for each item in
the array. An example of a string-indexed array
would be

%threewishes = ('first', 'new car', 'second',
'new house', ' third', 'three more wishes');

This statement assigns three items to the
array called %threewi shes. The first item value
is new car and its associated index value is
first. Notice the percent sign in front of the ar­
ray name. String-indexed arrays carry the per­
cent prefix. As with integer-indexed arrays, you
still use a dollar sign when using a single item
from the list. However, you use braces (curly
brackets) instead of square brackets to enclose
index values. For example, the following state­
ment assigns the value of the second item of the
%threewi shes array to a new scalar variable:

Snewsca lar = Sthreewi shes{' second'};

A real matchmaker
While PERL data types are easy to use and
flexible, the real beauty of PERL lies in its built­
in library of pattern-matching functions. The
latest release of PERL (version 5.1) includes
more than 30 functions for matching patterns
in text strings.

The basic PERL matching function provides
incredible flexibility. We'll call this basic match­
ing function ml/because its structure is based
on those characters. As an example of this func­
tion, let's test whether the string "Subject:
IMPORTANT! This is urgent." contains the word
IMPORTANT (in all uppercase letters). To do
this, we'll use the code

Smystring ="Subject: IMPORTANT! This is
urgent.";
s_ = Smystring;
if (m/(.•)IMPORTANT(.•)/) {

print "The word IMPORTANT was found.";

else {
print "The word IMPORTANT was not found.";

The first part of the code simply assigns a
value to a scalar variable and then stores the
value of the scalar variable to s_, which can be
thought of as the default variable for many

(

PERL functions, including text-matching func­
tions. Next, the line

if (m/(,.)IMPORTANT(.•)/) {

controls the actual matching. The ml defines ev­
erything between it and the next I as the match
string. The first part of the match string is a
wild card (. *). PERL uses the dot as its wild
card, which matches any character except
a new-line character. The asterisk means that
the preceding character can occur zero or more
times. Next comes the word we're searching
for, and the search string is rounded off with
another wild card.

You can use many more parameters for
matching patterns in strings. PERL supports
parameters for matching digits, new-line
characters, tabs, spaces, or any other ASCII
character.

The ins and outs of PERL
PERL's tremendous text-matching features are
equaled by its easy-to-use stream-based input/
output system. PERL, by default, uses three
standard streams: one for input, one for output,
and one for data. The standard input, STDIN, is
the keyboard. The standard output, STDOUT,
is the monitor. The standard erro1~ STDERR, is
also the monitor.

You can easily redirect the STDIN and
STDOUT streams at files from the command
line using the < and > operators. The < operator
points to a file (or device) that PERL will use as
the standard input stream. For instance, suppose
you have a PERL program named TEST.PL. You

want to run TEST.PL using standard input ar­
guments from a file named input.dat. To do this,
you'd use the following code:

perl test.pl < input.dat

If you wanted to direct the output of TEST.PL
to your printer (plugged into the LPTl: printer
port), you'd use the following code:

perl test.pl < input.dat > lpt1:

You can just as easily point the output to a
filename.

Notes
PERL is an interpreted language, meaning that
the PERL program must interpret each line of
code before your computer can use it. This is
different from compiled programs, which run
on a computer without an interpreter. Large
programs run faster and more efficiently if
they're first compiled. Since PERL programs
aren't compiled, it's a good idea to keep them
small and manageable so you can run them
with a reasonable degree of efficiency.

Conclusion
In this article, we've given you a brief over­
view of PERL and what it can do. While PERL
may at first seem frightening to those not
familiar with UNIX programming, it offers
tremendous usability once you become accus­
tomed to its syntax. By using PERL, you can
easily create programs for text input and out­
put, such as CGI scripts for World Wide Web
applications. •!•

Multithreaded programming in UNIX
by Marco C. Mason

Uke many system administrators, you probab­
y have to write small utility programs from
time to time. However, most of the programs

we write tend to be simple single-threaded pro­
grams. That's why we were particularly inter­
ested to find the book Programming with UNIX
Threads at our local bookstore.

If you've ever wanted to write a program
that could do multiple things at the same time,

or were just curious about how it's done, then
you may want to investigate this book. Pro­
gramming with UNIX Threads assumes that
you're a proficient C programmer. It doesn't
waste any trees giving you an introduction to
pointers or hex numbers. Instead, it immedi­
ately jumps into the meat of programming
with threads. The first two chapters cover the
theory behind UNIX threads and how they

________ Inside Sola~is

Figure A

work. Chapter 3 shows how to convert the
theory into practice. After reading this far,
we were able to create the program threads.c,
shown in Figure A.

As you can see, this program doesn't really
do much of anything. When you compile and
run it, it simply starts a separate thread for each
command-line argument. When we create each
thread, we give it a random number of itera­
tions to process. These threads simply go to
sleep for a random amount of time, decrement
their iteration count, and when the count reaches
zero, terminate. Figure B shows an example of
this program after we executed it with the pa­
rameters Apple, Orange, and Banana.

You can start to do some work with multi­
threaded programs after reading only three
chapters. However, if your programs use threads

that share some data areas, as we do in our
demonstration program, you have to be careful.
If you don't find a way to share the data safely,
then one thread could corrupt data that's being
used by another thread.

Chapters 4 through 10 address synchroni­
zation, which allows multiple threads to coordi­
nate their efforts. The author presents several
chapters on synchronization for two primary
reasons: Each chapter presents a different stan­
dard synchronization method, so you may as
well get used to these methods. Second, each
method has its own strengths and weaknesses.
You should explore them all so that you can
select the one that best suits the problem.

The book also covers communications be­
tween the threads, via explicit signals as well
as the synchronization techniques mentioned

#include <stdio.h>
#include <string.h>
#include <Stdlib . h>
#include <pthread.h>
#include <Unistd.h>

int i, flActThr;

struct tagThread
{
pthread_t
char
int
};

pthDscr;
•pcName;

iCount;

I• Thread descriptor •I
I• Thread's name •I
I• Iteration count •/

typedef struct tagThread Thread;

I• Sleep for a few seconds, print a message, update the
** loop count, and exit when loop count is 0.
** inp: pvArg - Pointer to the Thread structure
*'
void •pvThreadProcess(void •pvArg

{

Thread •pThis = (Thread•)pvArg;
while (pThis->iCount)

{
sleep(rand()/2650);
printl("%s: %d passes lelt\n" , pThis->pcName,

pThi s->iCount--);

pri nil("%s: completed\n", pThi s->pcName);
pthread_exi 1(0);
}

I• Create a thread for each command-line argument, and
** then wait for them all to terminate.
** inp: argc - # args (# threads to create)
** argv - arg list (thread names)

*' int main(int argc, char •argv[l)
{

I• Create an arra y to hold thread descriptors •I
Thread ••ppThread s = (Thread••)

cal loc(argc, sizeol(Thread•));
ii (!ppThreads)

{
puts("Can't al locate RAM, sorry!");
exit(EXIT_FAILURE);
}

I• Let's start a thread named for each argument •I
for (i=1; i<argc ; i++)

{

I• Allocate a Thread descriptor •I
Thread •pThrea d=malloc(sizeol(Thread));
ppThreads[i l = 0;
if (!pThread) continue;

I• initialize t he thread's data fields •I
pThread->pcName = strdup(argv[i I);
ii (!pThread->pcName) continue;
pThread->iCoun t = rand() % 5 + 1;

I• Start the thread •/
if (!pthread_create(&pThread->pthDscr, NULL,

pvThreadProcess , (void•)pThread))
pp Threads[i l = pThread;

I• Check for acti ve threads every 5 seconds •I
do {

sleep(5);
for (i = llAc tThr = 0; i<argc; i++)

if (ppThre ads[i l)
1 lActThr := ppThreads[i l->iCount;

}while (flAc tT hr);
puts("All threads complete.");

This program demonstrates just how simple multithreaded programming can be. a May1998

previously. It also discusses scheduling and
priorities to help you understand how UNIX
decides what thread will execute next.

At the end of the book, the author wraps all
these concepts into a demonstration program,
ADAM. He intends ADAM to be a framework
on which you can build larger multitasking ap­
plications. However, ADAM is interesting on its
own as an example of just how the concepts of
the book fit together.

One aspect of the book that you'll really
like is that it's full of examples and notes. When­
ever a concept is presented, you can expect to
see an example of it in use within a few pages.
If you want to learn about multithreaded pro­
gramming in UNIX, reading Programming with
UNIX Threads is a must. •!•

Programming with UNIX Threads by Charles J.
Northrup, John Wiley & Sons, Inc., ISBN 0-471-
13751-0

Figure B

l-1 Terminal · -, • Ii
II ~in dow fdit Qptions !.:!.elp

gee threads . c -1 pthread
. /a . out Apple Orange Banana
Banana : 4 passes left
Apple : 4 passes left
Apple : 3 passes left
Banana : 3 passes left
Orange : 4 passes left
Banana : 2 passes 1 eft
Orange : 3 passes 1 eft
Apple : 2 passes left
Banana : 1 passes 1 eft
Banana : completed
Orange : 2 passes left
Apple : 1 passes left
Apple : completed
Orange : 1 passes left 1.

Orange : completed
All threads complete . I:
I c;

Our demonstration program interleaves
execution of three separate threads.

Changing the title bar of an xterm window
by Marco C. Mason

If you use Open Windows, you've probably
had lots of Command Tool and Shell Tool
windows open at the same time. If you have

enough of them on the screen, you can get
pretty confused. The more windows you have
open, the less of each window you can see
before they overlap. Which one are you using
for which project? Figure A shows the windows
overlapping with only the title bars showing.

As you can see, all the title bars show the
same information: shelltool - /bin/ksh. The
title bar is supposed to be informative, but it's
telling us only that it's a Shell Tool window
running /bin/ksh. The Command Tool and Shell
Tool programs, among others, both use an
xterm window for 1/0. In this article, we'll
show you how to change the title bar for an
xterm window to anything else you want.

Changing the text of an
xterm window
It turns out that an xterm window treats the
title bar and the normal window area as two

Figure A

While it's handy to
have the ability to use
multiple windows to
do your job, it can be
confusing.

different windows. The xterm provides a
special character sequence you can use to put
text in the alternate window (i.e., the title bar)
and another character sequence to tell the xterm
when to go back to the original window.

The sequence of characters you use to tell
the xterm to start putting text in the title bar is
[Esc],], then 1. You then may send it the text
you want on the title bar. When you're fin­
ished, send the xterm an [Esc] character fol­
lowed by\.

_______ Inside Solal!i

For example, if you use Open Windows, then
you can start a Shell Tool and type the follow­
ing command:

$ echo '"[J lNew Tit lebar Text'[\\"

When you press the [Esc] key, the xterm win­
dow displays'[. Also, the shell interprets
the \ character as an escape, which tells it to
treat the next character as if it had no special
meaning. In order to send the \ character to
the echo command, you need to use two\
characters: The first tells it the next character
has no special meaning; the second is the
character itself.

A quick shell script
Actually remembering and typing the appro­
priate escape sequences is no great hardship.
However, it's simpler to make a shell script
do the job for you. The shell script WinName,
shown in Figure B, name's a window for you.

Keep in mind that'[is the [Esc] key, not
the keys [Ctrl] and[. If you're using vi to enter
the shell script, just press [Ctrl]V before press­
ing the [Esc] key to enter it. One last note: We're
comparing the TERM environment variable to
sun-cmd because the termcaps entry for an xterm
is sun-cmd.

Figure B

if [STERM = "sun-cmd"]; then
echo '"[]l" S1 "'[\\"

else

f i

echo "Sorry, you can only use this in a
•sun-cmd window"

This short shell script will change the title bar in a sun-cmd
(i.e., xterm) window.

Are you a good tipper?
Do you have any great Solaris tips that you've
discovered? If so, send them our way! If we
use your tip, it will appear on our weekly
online ZDTips service. (Visit www.zdtips.com
to check out all our available tip services.) We
may also publish it here in Inside Solaris. Your
byline will appear with the tip, along with
your E-mail and/ or Web addresses.

lfl-~ay 1998

If you use this script, you won't have to re­
member the escape sequences, and you won't
have any problems if you mistype something. If
you mistype the [Esc]\ part, for example, you'll
lose some of your output from successive com­
mands, as the output will go to the title bar.
However, the xterm doesn't actually change the
title bar until it receives the [Esc]\ character se­
quence, so you won't see a change.

Once you enter the shell script, don't forget
to make it executable with the command

$ chmod +x WinName

When you use this script, keep this in mind: If
you want spaces in your text, enclose the new
window title in quotes. Otherwise this script
will set the window title to the first word only.

Conclusion
Remember the ugly screen shown in Figure A?
Figure C shows the same screen, but with infor­
mative title bars. You can use this technique to
put any information in the title bar of your xterm
windows. Once you do so, you'll find it much
easier to locate the window you want, since the
title bar now describes the window. •!•

Figure C

~ Print Admln
.,

$.!1 Svstem Watch L
$.!J CIC++ develonment "1

$ <j UserAdmln 1
$.!1 telnet-Cobb J

;; $.!J shelltool - /bln/ksh
-.

= $. /Wi nName "Window name'1J . ""
"" =

It's much easier to find the window you want when
the title bars have useful information in them.

Send your tips to inside_solaris@zd.com,
fax them to "Solaris tips" at (502) 491-4200, or
mail them to

Inside Solaris
The Cobb Group
9420 Bunsen Parkway, Suite 300
Louisville, KY 40220

Turning the File Manager into your
command center
by Al Alexander

M any System administrators make a basic
mistake about the users of their systems.
They believe that most users enjoy

working with the obscure intricacies of Solaris
as much as they themselves do. It often comes
as a shock when they discover that some users
are more interested in completing their work
than in working on the computer. These users
rightly believe that their other work is more im­
portant than learning the syntax and command­
line options of various Solaris commands.

If you're one of these administrators, you
can become an overnight hero when you learn
this lesson. Instead of forcing your users to
learn the command-line secrets of Solaris, you
can find an easier way to bring the power of
UNIX to them. One way you can do this is by
transforming the seemingly innocent File Man­
ager into a powerful, flexible command center.

Once you make this change, your users will
have the ability to run a wide variety of UNIX
commands from the File Manager without
worrying about any obscure calling conven­
tions. They can, for example, run their CAD
and finite-element analysis (FEA) applications,
run personal tape backups, manipulate custom
batch queues, etc.- all from the confines of the
File Manager.

This relatively low-technology solution
brings home an important lesson in system ad­
ministration: No matter how cool and interestc
ing you find the new technologies, the users
you support often don't care. It's not vital that
you solve every problem with a flashy applica­
tion. To most users, a simple, reliable way to do
their jobs is what's important. In other words,
they're looking for a way to make things work
better so they'll be more productive.

In this article, we'll show you how you can
extend the File Manager by adding new com­
mands, which allows your system's users to
do all their work from within the File Manager.
Your endeavors may endear you to your users
enough so that you receive that coveted "Most
Valuable Employee of the Month" award
you've been wanting.

httn~l/www_r.nhh_r.nml!mn

Why use the File Manager?
The beauty of the File Manager approach is
that for most end users, using a computer
system is a file-oriented endeavor. All day long,
users open, close, create, copy, delete, modify,
and print files (or documents, if you prefer).

If only you could make the File Manager
perform other tasks, you'd have the perfect file­
oriented tool for your users. Wouldn't it be
great if you could simply select a set of files,
select Fax, and have the File Manager ask you
for the fax number to send the files to?

Obviously, we wouldn't tantalize you with­
out telling you how to accomplish the task, so
let's get down to business. First, you need to
know that this trick works with the default File
Manager used by Open Windows, but not with
the CDE version of File Manager.

Please note that if your users run CDE,
then you can customize their environment in
other ways to do similar tasks. However, we
won't cover those techniques in this article. You
can still use our technique, if you want, by run­
ning the Open Windows version of File Man­
ager under CDE. To do so, you should execute
the program /usr /openwin/binlfilemgr.

Locating the custom
commands menu
Solaris' File Manager for Open Windows lets
you create your own commands with the sup­
port of the Custom Commands option. Once
you've defined them, custom commands are
available to users through the File menu. You
can see this in operation by starting the File
Manager, clicking the File menu button, and
selecting the Custom Commands option. The
resulting list shows you which custom com­
mands you currently have configured for your
system. The default application available from
the custom commands menu is a UNIX Shell.

In Figure A on the next page, we've created
a sample menu to show you some of the things
you can do with the Custom Commands op­
tion. As you see, you can add a large variety of

Inside Solaris _.. -------=---=~-• ..:•

commands. Please note that the UNIX Shell...
entry is always on the Custom Command menu.
If you invoke this option, it simply opens a Shell
Tool window for you. Now let's see how to cre­
ate our own custom commands.

Adding a custom command
It's very simple to add custom commands to the
File Manager. We'll demonstrate the process by
creating a command that will allow users to print
one or more files to a printer named Accounting.

To begin, start the File Manager. Then click
the Edit button, and select Properties ... from the
Edit menu. When you do so, you'll see the FM:
Properties dialog box. At the top of the dialog

Figure A

------- Applications ----------
CAD Application

f i!llifffl E-Mail Application
Open " 0 Lotus 123
Open in Editor Netscape Internet Browser

Create Document submit Job to Batch Queue for Analysis
Create Folder A N Word Perfuct
Duplicate --------- Printing --------­

Show Printer Queues
Print One P Fax Selected File(s)
Print.. Send Flie(s) to ACCOUNTING Printer

Send tile(s) to ENGIHEER ING-101 Printer
Find ... F Send tile(s) to ENGI NEERING-102 Printer
Information... Send flle(s) to SALES Printer
Remote Copy, ..

:::J;~~l!W.MtffiM.llmiKt _u_Nr_x_sh_e_li_ ... _________ ___,

This sample
C tied. «I' .:!·)UUY
Format Floppy ...
Rename Floppy ... menu shows the

flexibility available
when you use the
Custom Commands
option.

Figure B

,.,
--

Comments ...
Quit File Manager

Catejlory: "'1 Custom Commands

FM: Properties

Type in command to be listed 1n the Custom Commands menu

UNIX Command: ---- --
Menu Label: ------ -------

CustotY'I Commands Menu Items:

l~ -~- - - --··-
Prompt Window: 2::J N;;J;

Prompt:

Output Window: ~ N~1
~ _$av~ as Defaults Reset)

Add Item)

]~
~

You can create new commands for File Manager with the FM: Properties
dialog box.

11111 _M_ay_1~9_98~~~~~~~~~......i

box, you'll see a dropdown menu labelled Cat­
egories. Click the down arrow and select Cus­
tom Commands. When you do so, the FM:
Properties dialog box should look like the one
shown in Figure B.

You'll use this screen to define your new
custom commands. Next, we'll describe all the
items in this dialog box and simultaneously
build our new custom print command.

Choosing a command
The first field on the Custom Command section
of the FM: Properties dialog box is the UNIX
Command field. You use this field to enter the
command you want the custom command to
execute. You may enter any command or script
file in this field, along with any parameters you
want to use.

Let's begin with our new print command.
Normally, when you want to print files to the
Accounting printer, you execute the command

lp - dAccounting Filelist

replacing Fi l el is t with the list of files you
want to print. Similarly, if you want to print on
a special form, you'd add the form name with
the -f option. That's simple enough. But where
do we get the list of files?

The $FILE token
The File Manager defines a special token,
named SF ILE, that you use to access the list of
currently selected files . To do so, you simply
add the SFILE token in the UNIX Command
field in the position where you want the file list
to appear. When the File Manager executes
your custom command, it will replace the SFILE
token with the entire list of files you've selected.

The SARG token
Please note that the File Manager provides
another token for your custom commands:
the SARG token. The File Manager allows you
to prompt the user for special options for
your custom command, as we'll discuss in the
"Prompting The User" section. When you use
the SARG token, the File Manager replaces it with
the user's response before it executes the custom
command.

For our new print command, we'll simply
replace Fi leli st with SFILE. In addition, since
the user may want some special print options,
we'll add the SARG token to allow this. To get
started, click on the UNIX Command field to
select it. Now type the command you want to

execute. Since we want our custom command
to print a file to the Accounting printer, with
the possibility of incorporating some options,
we'll enter the command

lp SARG -dAccounting SFILE

Now suppose the user highlighted two files
named list.c and list.hand then invoked this
custom command. Let's also suppose that the
File Manager prompted the user for extra op­
tions, and the user replied -fLEGAL. In this case,
the File Manager would replace the SF ILE token
with list.c list.h, then replace the SARG token with
-fLEGAL, and execute the command as follows:

lp -fLEGAL -dAccounting list.c list.h

Remember that the SF ILE and SARG tokens
are case-sensitive. If you use any lowercase let­
ters, the File Manager won't recognize them.
For example, if you use SF i le instead of SF I LE,
then the custom command we set up will try to
print a file named $File, no matter what files
you've selected.

Since the File Manager is file-oriented, it
expects custom commands to have an em­
bedded SF ILE token. If you haven't placed the
SFILE token in your custom command, or if
you've misspelled it, the File Manager will alert
you with the message box shown in Figure C
when you click the Add Item button.

If you don't intend for your custom com­
mand to use the SFILE token, just press the Ap­
ply button. If you want the File Manager to add
SF ILE to the end of your custom command,
press the Add SF! LE button. Otherwise, pr~ss
the Cancel button and fix any problems with
your custom command.

Naming your custom command
Now that we've told the File Manager what the
custom command should do, we need to give it
a label so the user can find it. The File Manager
provides the Menu Label field to allow you to
give your custom command a name. To do this,
click on the Menu Label field and enter the
command name; in this case, we'll enter Print
to Accounting.

Prompting the user
While discussing the SARG token, we alluded to
the fact that you can have the File Manager
prompt the user for more information when the
user executes the custom command. You can
use this feature by setting the Prompt Window

htta:!/www.cobb.com/sun

Figure C

If you want this command to operate on the f1Je(s)
you've selected you must include the word $FILE 1n
your command where the filename should appear

You can ~nore this warning and apply the command as
you wrote 1t; cancel the Apply. or have $FILE automatically

appended to the end of your command

~ Add $FILE)~.

Figure D

Prir1t iO-Accountin&

Printer Options:.__ _______ _ _

If you create a custom
command without
including the $FILE
token, the File Manager
alerts you with this
dialog box.

Your custom commands can
tell the File Manager to prompt
the user for further information
on a command.

field to Yes, then entering the prompt text you
want the user to see in the Prompt field.

When the user executes a custom com­
mand that has a prompt, the File Manager will
create a new window to prompt the user with
your custom prompt string. Then the File Man­
ager will replace the SARG token with the text
you enter and the SF ILE token (if present) with
the list of selected files. Finally, the File Man­
ager will execute the custom command.

In our example, we used the SARG token in
our custom command, so we should prompt
the user for some additional information. To do
so, set the Prompt Window field to Yes, then in
the Prompt field, enter Printer Options to allow
the user to specify any additional printer op­
tions for the job. When the user executes this
custom command, the File Manager will
present the Print To Accounting dialog box
shown in Figure D .

The output window
For many of your custom commands, you may
choose to display the output of the UNIX com­
mand. You can do so by setting the Output
Window field to Yes in the FM: Properties dia­
log box. Then, any output from the UNIX com­
mand will appear in a separate window that
resembles a Shell Tool window. To close the
output window, select it (typically by clicking
the mouse inside the window) and press the
[Return] key.

For our example command, we don't use
the output window. So, click the No button

Inside Solaris

PERIODICALS MAIL
************~******3-DIGZT ~SD

~ J 99 --- -SunSoft Technical Support

(800) 786-7638
CLiNTdN TOWNSH1P MX ~B03S-~218

1.1 •• 11 •• 1.11, , ••• 11 •• 1.1 •• 1,,1,.1,1 ••• 111;.1 •• 1.1 •• 1.1.,1.1.1
Please include account number from label with any correspondence.

Figure E

1~019

Cut I
Copy

~~-De lete

next to the Output Window field to ensure that
we don't accidentally open one.

However, when you're creating a custom
command and it's giving you trouble, you may
want to use the output window as a debugging
aid. Many UNIX commands emit error mes­
sages when they fail. If you turn on the output
window, you'll be able to see any error mes­
sages your custom command generates when it
tries to run. So remember, if your custom com­
mand fails, turn on the output window and ex­
amine any output it may provide.

Adding your custom command
to the menu
When you create your custom command, you
need to add it to the Custom Commands Menu
Items box. To do so, click the Add Item button
along the right side of the dialog box.

Adding the custom command to the Cus­
tom Commands Menu Items box doesn't tell
the File Manager to begin using your new cus­
tom command. To use these custom commands
in the current File Manager session, you must
press the Apply button, which tells the File
Manager to forget any custom commands it
previously stored and load new ones from the
Custom Commands Menu Items box.

If you click the Save As Defaults button,
you're telling the File Manager to save these
custom commands in a special file. From now
on, each time you start the File Manager, it
will load your custom commands. If you don't

Before
After
Top
Bottom

click the Save As Defaults button, then
the next time you start the File Manager,
it will reuse the previous set of custom
commands.

You can remove and
change the order of the
Custom Commands
menu with the Edit
pulldown menu.

Since we want to use our new cus­
tom command immediately, go ahead and
press the Apply button. We also want to
save the command for future File Man­
ager sessions, so press the Save As De­
faults button, too. If you're the cautious
type, you may want to press the Apply
button, then test your custom command
before actually saving it permanently.

II May1998

At this point, your new print command
should now be available from the Custom Com­
mands submenu on the File menu. To check
this, click the File button to pull down the File
menu, then select the Custom Commands op­
tion. When you do so, you should see the menu
label Print to Accounting.

To use your new command, first select a
file (or files), then select the Print to Accounting
item. When you do so, the File Manager will
prompt you with the dialog box shown in Fig­
ure D . Once you respond and press the Run
button, File Manager will send the selected files
with the specified options to the Accounting
printer.

Changing your custom
command list
Take another look at Figure B. See the Edit button
to the right of the Custom Commands Menu
Items list box? This pulldown menu allows you to
delete and rearrange items in the Custom Com­
mands Menu Items list box. This menu provides
the options Cut, Copy, Paste, and Delete. The
Paste submenu provides four variations: Before,
After, Top, and Bottom, as you can see in Figure
E. You can use these options just as you'd imag­
ine. The Paste submenu lets you decide where to
paste any custom command.

Please note that you should use these edit
options sparingly. It was our experience on
all the systems on which we tried these
options that the File Manager would easily
crash if we overused these options.

Conclusion
Creating custom commands lets you turn your
File Manager into a useful command center for
your users. Once modified, the File Manager
can become the end users' primary interface to
the computer system and network, allowing
them to launch UNIX commands, custom
utilities, and complete applications from one
location. •:•

-R~'\ Printed in the USA.
~\- This journal is printed on recyclable paper.

