
March 1998 • $11.50
Vol. 4 No. 3

. IN THIS ISSUE · ·
I

1
Installing and using
Ghostscript

8
Inserting program output into
your documents with vi

7
An easy way to modify
1,000 files

11
Making your shell prompt
stand out

14
Running Wlbi on 24-bit video
displays

15
Attention Solaris x86 users!

16
Using du to determine the size
of a subdirectory tree

Visit our Web site at
http://www.cobb.com/sun

~T~~,c~BB GROUP "<I> ~

OLARIS~
Tips & techniques for users of SunSoft Solaris

Installing and using
Ghostscript
No matter what we do, we can

never get enough money into
our budgets, can we? On the

other hand, our users continually
demand more and more from us
system administrators. So how do
we solve this dilemma? Why, find
ways to economize, of course.

When we reviewed our budget,
we searched for ways to get a job
done at minimal cost. Two areas
in which we could economize re­
quired that we find a way to render
PostScript files . If we used a
PostScript-rendering program, we
could buy cheaper printers for some
applications. We could also use less­
expensive notebook computers.

Saving money with a
Postscript renderer
How do you save money with a
PostScript renderer? Sun puts its
documentation in PostScript, which
makes the documentation look good
when you view it with Answer Book,
and it also prints nicely. The down­
side is that if you want to print any
documentation, you'll need a printer
that understands PostScript. Also,
the AnswerBook depends on your X
server providing Display PostScript.

Printers with a built-in renderer
are normally more expensive than

ones without. So, if we could render
PostScript on the computer, rather
than making the printer do it, we
could use less-expensive printers
or printers with other features (such
as color).

If you're buying SPARC-based
laptops, the X server provided with
Solaris should support the display.
If you want to economize, you might
want to use Solaris x86 on Intel­
based laptops. If you do so, know
that Solaris' X server doesn't sup­
port all possible laptop displays.
For example, some Toshiba models
seem to be best-supported under
Solaris x86, while some other
brands aren't supported at all.

If you'd like a larger range of
laptop choices, you can use a differ­
ent X server for Solaris. XFree86 is a
popular X server u,s~d by the Linux
and FreeBSD corri.rt\unities. This
server supports many chipsets and
boards, so it may be able to give
you X on a laptop that's not sup­
ported by the Solaris X server.

As you've probably guessed,
XFree86 doesn't support Display
PostScript. Therefore, you can't view
the AnswerBook documentation on
your laptop. However, if you have a
PostScript renderer, you can view
your AnswerBook documentation­
without Display Postscript.

ZIFF-DAVIS
a SOFTBANK

com1~ny

INSIDE:~
SOLARIS.

or users of SunSofr Solans

Inside Safaris (ISSN 1081-3314) is published monthly by
The Cobb Group.

Prices
U.S. $115/yr ($11.50 each)
Outside U.S.... .. $135/yr ($16.95 each)

Phone and Fax
US toll free (800) 223-8720
Local (502) 493-3300
Customer Relations fax .
Editorial Department fax .
Editor-in-Chief ...

Address

(502) 491-8050
... . (502) 491 -4200

(502) 493-3204

Send your tips, special requests, and other correspondence to

The Editor, Inside So/aris
9420 Bunsen Parkway, Suite 300
Louisville, KY 40220
Internet: inside_solaris@zd.com.

For subscriptions, fulfillment questions, and requests for group
subscriptions, address your letters to

Customer Relations
9420 Bunsen Parkway, Suite 300
Louisville, KY 40220
Internet: cobb_customer_relations@zd.com

Staff
Editor-in-Chief Marco C. Mason
Contributing Editors Al Alexander
Print Designer .. Margueriete Winburn
Editors ... Karen S. Shields

Joan McKim
Michael E. Jones

Publications Coordinator Linda Recktenwald
Product Group Manager Michael Stephens
Circulation Manager .. Mike Schroeder
Publisher Jon Pyles

Back Issues
To order back issues, call Customer Relations at (800) 223-
8720. Back issues cost $11.50 each, $16.95 outside the US.
We accept MasterCard, Visa, or American Express.

Postmaster
Periodicals postage paid in Louisville, KY.
Postmaster: Send address changes to

Inside So/aris
P.O. Box 35160
Louisville, KY 40232

Copyright
Copyright C 1998 The Cobb Group, a division of Ziff-Davis Inc.
The Cobb Group, its logo, and the Ziff-Davis logo are registered
trademarks of Ziff-Davis Inc. All rights reserved. Reproduction in
whole or in part in any form or medium without express written
permission of Ziff-Davis is prohibited. The Cobb Group reserves
the right, with respect to submissions, to revise, republish, and
authorize its readers to use the tips submitted for personal and
commercial use. Information furn ished in this newsletter is
believed to be accurate and reliable; however, no responsibi lity
is assumed for inaccuracies or for the information's use.

Inside Safaris is a trademark of Ziff-Davis Inc. Sun,
Sun Microsystems, the Sun logo, SunSoft, the SunSoft logo,
Solaris, SunOS, Sun lnstall, OpenBoot, OpenWindows,
DeskSet, ONC, and NFS are trademarks or registered trade­
marks of Sun Microsystems, Inc. UNIX and OPEN LOOK are
registered trademarks of UNIX System Laboratories, Inc. Other
brand and product names are trademarks or registered trade­
marks of their respective holders.

II March 1998

What is a Postscript
renderer?
What is a PostScript renderer, any­
way? PostScript is actually a lan­
guage that describes the information
on a page. A PostScript-rendering
program is a program interpreter
that takes the PostScript program
and turns it into an image of the
page as an array of colored (if
you've enabled color) dots .

One disadvantage of running a
PostScript renderer on your host is
that rendering a PostScript page is a
CPU- and RAM-intensive process.
When you buy a PostScript printer,
you're letting the printer do all the
work, saving your CPU and RAM
for your computing tasks. For light
use, a renderer is usually accept­
able, but if you're thinking of using
the PostScript renderer often on a
heavily-loaded machine, you prob­
ably ought to go ahead and get a
PostScript printer.

Where do you get it?
By the title of the article, you've no
doubt surmised that we're going to
use Aladdin Ghostscript as our
PostScript-rendering package. Why
did we select it? Since economy was
our objective, the fact that Aladdin
Ghostscript is freely available on
the Internet was the deciding factor.

At the time of this writing, ver­
sion 5.10 is the latest and greatest
offering. You can get the latest
source code from the primary FTP
site ftp.cs.wisc.edu. in the /ghost/
aladdin/current directory. You can
find more information about
Ghostscript-as well as mirror FTP
sites-at www.cs.wisc.edu/-ghost.

You'll need to get the source
code archive for Ghostscript, the
font archive, and the code for the
JPEG, PNG, and zlib libraries. Our
visit to the FTP site went like this:

/work> ftp ftp.cs.wisc.edu
Connected to piglet .cs.wisc.edu.

• • •
User (piglet .cs .wisc.edu:(none)):
• anonymous

331 Guest login oK, send your
•complete e-mail address as password .
Password:

• • •
230 Guest login oK, access
•restrictions apply.
ft p> cd /ghost/aladdin/current
250 CWD command successful.
ftp> binary
200 Type set to I .
ftp> ls
200 PORT command successful.
150 Opening ASCII mode data
•connect io n for file list.
ghostscript-5 . te. tar.gz
ghostscripf-5 . tejpeg. tar.gz
ghostscript-5. te/ibpng . tar.gz
ghostscript-5. tezlib. tar.gz
ghostscript-fonts-other-5. 10 . tar .gz
ghostscripf-fonts-std-5 . te . tar .gz
ghostscript-5 . 10gnu.tar.gz
ghostscript-5. 10pc. tar . gz

• • •
ft p> get ghostscript-5. 10.tar.gz
ft p> get ghostscript-5. 10jpeg.tar.gz
ftp> get ghostscript-5. 10libpng. tar.gz
ft p> get ghostscript-5.10zlib.tar.gz
ft p> get ghostscript-fonts-std­
• 5.10. tar.gz
ft p> quit
221 goodbye.

We need only five of the files
(the ones we italicized). For a larger
selection of fonts, you can pick up
ghostscript-fonts-other-5 .10.tar.gz as
well, but Ghostscript will work fine
without the extra fonts.

How do you install it?
Now that you have the files, you
need to prepare them for use. First,
put them in a working directory so
they don't conflict with any files
already on your system.

Quick Tip: If you plan to down­
load software from the Internet
and build it, you'll probably want
to have a permanent work area
for just this purpose. Then, you
can work with the files in a stan­
dard location. When you're fin­
ished, just clean out your work
directory, and you're ready for the
next project. We have a small file
system mounted at /work for this .

From the file extensions, you can see that
the files are tar archives compressed with
GNU's gzi p. So, you must first expand the files
and use tar to create the directory trees. On
our system, we did it as shown in Figure A.
(If this command seems obscure, take a mo­
ment to read the article "An Easy Way to
Modify 1,000 Files" on page 7.)

Now we have the five tar files and five
directory trees. It's time to get to work. Let's
go into the gsS.10 subdirectory and prepare to
configure, compile, and install Ghostscript.

Building Ghostscript
Ghostscript runs on just about everything, so
it has several makefiles that govern the build
process. While we'll show you how to build
Ghostscript, you may want to read the file's
Readme for an overview of the system. Also
check out devices.txt to know which printers
Ghostscript supports, make.txt for information
about how you can build Ghostscript on each
different platform, and use.txt for information
about how to use Ghostscript once you've com­
piled and installed it.

We've already gone through the effort
of deciphering make.txt and installing Ghost­
script on Solaris. Now, we'll present a con­
densed procedure for building and installing
Ghostscript on your machine.

Which makefile should you use?
To configure, build, and install Ghostscript, you
must first decide which makefile to use. To do
this, you need to know how you're going to
compile it. If you'll use Sun's Visual Workshop
C++ or Workshop C/C++, you'll want to use
unixansi.mak. If you're using GNU gee, then
choose unix-gcc.mak. To make things simpler
later on, create a link from the makefile you
selected to the name makefile like this:

/work/gs5.10> ln -s unix-gee.mak makefile

In the next steps where we configure
Ghostscript, we'll modify one of the files from
which the makefile is built, then we'll rebuild
the makefile. If you selected unixansi.mak as
your makefile, go ahead and open ansihead.mak
in your favorite editor. If you selected unix­
gcc.mak, then open gcc-head.mak instead.

Check the third-party library paths
Ghostscript was written to use the JPEG, PNG,
and zlib libraries provided by other parties.

http://www.cobb.com/sun

Figure A
/work> for J in•; do
> gunzip SJ
> tar xf S{J%.•}
> done
/work> ls
fonts
ghostseript-5. 10 . tar
ghostseript-5.10jpeg.tar
ghostseript-5_10libpng_tar
ghostseript-5_10zlib_tar
ghostseript-fonts-std-5 . 10. tar

ghostseript-fonts-std-4_03_tar
gs5. 10
jpeg-6a
libpng-0.96
zlib-1.0.4
fonts

The first step in installing Ghostscript is to expand and extract the files.

Because they're not written by the Ghostscript
team, the libraries aren't all placed inside the
same tar file (the code in these libraries
changes independently of Ghostscript). But
Ghostscript needs them in order to compile, so
we must link these directories to the location
where Ghostscript expects to find them.

You can find out the names of the expected
subdirectories by locating the definitions of
the JSRCDIR, PSRCDIR, and ZSRCDIR macros. For
example, in version 5.10, these macros are
defined as

JSRCDIR=jpeg-6a
PSRCDIR=libpng
ZSRCDIR=zl ib

Please note that these macros aren't de­
fined right next to each other, so you'll have to
use your editor's search mechanism to find
each one. Referring back to the directory listing
shown in Figure A, you'll notice that the names
of the subdirectories containing the libraries
don't exactly match these names. We could just
link the existing directories to the names that
Ghostscript expects, like this:

/work/gs5 .1 0> ln -s .. /jpeg-6a jpeg-6a
/work/gs5 . 10> ln -s .. /libpng-0.96 libpng
/work/gs5 .10> ln -s . . /zlib-1 .0.4 zlib

Or, since we're in the editor, we can change the
macro definitions to point to the appropriate
directories, like this:

JSRCDIR= .. /jpeg-6a
PSRCDIR= .. /libpng-0 .96
ZSRCDIR= .. /zlib-1 .0.4

Configure the makefile for Solaris
The next step is to customize the makefile to
work with Solaris. Solaris is based on UNIX
System V Release 4, so we tell Ghostscript about
it by locating the definition for CFLAGS and add

Inside Solaris

-DSVR4 to the end, as we do here:
•

CFLAGS:-0 S(GCFLAGS) S(XCFLAGS) -DSVR4

Since Solaris stores the X server libraries in
a non-standard (with respect to other UNIX sys­
tems) location, you must modify the XINCLUDE.
XLIBDIR, and XLIBDIRS macros to reflect their loca­
tions on your system, as shown here:

XINCLUDE=-I/usr/openwin/share/include
XLIBDIR=/usr/openwin/lib
XLIBDIRS=-L/usr/openwin/lib

Various versions of UNIX have differing
versions of the i n st a l l command, so you need
to change the INSTALL macro to use the old
SunOS 4.x version found in /usr/ucb:

INSTALL= /usr/ucb/install -c

Important note for GNU gee users:
If you're using gee versions 2.7.0 through 2.7.2,
you must modify the GCFLAGS macro to add
-DCONST= and remove the -Wcas !_qua l and
-Wwr i te_s tr i ngs directives, like so:

GCFLAGS=-Dconsl= -Wall -Wpointer-arith
-.-Wstrict-prototypes

You may also want to add the directive
-lno-bui l tin to XCFLAGS, or you'll see plenty of
warning messages such as this one:

/usr/local/lib/gcc-lib/i486-sun-solaris2 .5 . 1/
-.2 .7.2.2/include/string.h:32: warning:
-.conflicting types for built-in function 'strcpy'

Which devices will you use?
Finally, select the output devices you want to
use. If you choose the defaults, Ghostscript pro­
vides a diverse set of output devices, such as
X Windows displays, HP DeskJets, Laser Jets,
PaintJets, Canon BubbleJets, Fax images, TIFF,
and many others.

If you decide not to support some formats,
you're also free to remove devices or add any
devices that are on the list. (The documentation
included with Ghostscript even provides infor­
mation so you can write drivers for new de­
vices, if you're so inclined.)

For the details on including and excluding
particular drivers, refer to the file devs.mak,
which contains a complete list of all available
drivers, and drivers .txt, which contains docu-

II March 1998

mentation for some of the drivers. To include
any particular driver, just add the driver name
to one of the macro definitions starting with
DEVICE_DEVS. Similarly, to exclude a driver, sim­
ply remove it from the DEVICE_DEVS line it's on.

As an example, suppose you don't want to
include the Canon Bubble Jet drivers. To exclude
them, you'd find the appropriate DEVICE_DEVS
macro and remove the drivers. In this case,
DEVICE_DEVS6 contains the references to the
Bubble Jet drivers:

DEVICE_DEVS6=bj10e .dev bj200 .dev bjc600 .dev
-.bjc800 .dev

Just remove the driver(s) you don't want.
Since we didn't want any of them, we changed
the line to the following:

DEVICE_DEVS6=

Compiling and installing
Now that the hard part is over, you can build
and install Ghostscript. You can compile it with
the command

/work/gs5. 10> make

When you do so, your computer will grind
away, compiling and linking until it either com­
pletes successfully or halts with an error. You
shouldn't have any problems if you've followed
these steps carefully.

We've tested this procedure on versions
4.03 and 5.10 and experienced no difficulty. On
a lightly-loaded computer, it took slightly more
than eight minutes to compile, so expect to wait
a little while for the results.

At this point, test Ghostscript to see if it
compiled correctly-and whether or not it's
working. If you're running in an X windows
session, that's as easy as typing the command

/work/gs5.10> . /gs tiger . ps

If all went well, Ghostscript should dis­
play a picture of a tiger on your screen, as
shown in Figure B. (We also built a copy of
version 4.03 and tested it with the file golfer.ps.)
After Ghostscript draws the tiger, it will ask
you to press the [Return] key, which tells it to
go to the next page. Since the tiger is a one­
page document, the program will end, leav­
ing you at the Ghostscript prompt: GS>. Just
type quit to return to your shell prompt. At
this point, you're ready to install Ghostscript.

After you acquire root permissions,
then you can install the fonts and in­
stall the program. You must place the
fonts in the /usr/local/share/ghostscript/
fonts directory so that Ghostscript
knows where to find them.

Figure B

If you've installed X on your ma­
chine, then you'll also want to replace
Ghostscript' s default Fontmap file with
the one that's customized for Solaris,
named Fontmap.Sol. This way, you'll get
access to the higher-quality fonts pro­
vided as part of the Display PostScript
portion of the Solaris' X server. Finally,
you can install Ghostscript just by telling
make to build the install target with the
following lines:

/work/gs5.10> su
Password:

hostscrl 1 hostscrl t

gs4.03
mkdir -p /usr/local/share/ghostscript /work/gs 5 . 10> . /gs -r63 tiger . ps /work/gs4 . 03> ./gs -r63 golfer . ps

Aladdin Ghostsc r ipt 4 . 03 (1996-9-23) # mv .. /fonts /usr/local/share/ghostscript
mv Fontmap.Sol Fontmap

Aladdin Ghostscr1pt 5 . 10 (1997-11-23)
Copyright (C) 1997 Aladdin Enterprises, Menlo Park
This softwa r e comes with NO WARRANTY : see the file
>>showpage, press <return> to continue<<

Copyright (C) 1996 Aladdin Enterprises , Menlo Park
This software comes with NO WARRANTY: see the file
i >showpage, press <return> to continue<< # make install

Installation takes a little while as the You can see the tiger if you built Ghostscript successfully.

program copies executables, man pages,
setup files, etc. to various locations in the /usr/
local directory. That's all there is to it.

Using Ghostscript
Now that we have Ghostscript installed, how
do we use it? If you want to view a PostScript
document, you can do so by telling Ghostscript
the document name, as we did when we used it
to draw the tiger. Just press the [Return] key to
advance to the next page.

Printing a document is almost as simple.
You follow the same process, with the addition
of a few command-line switches, like so:

• Specify the driver: -sDEVICE=dr i ver
• Send image to: -sOutputFi le= out
• Exit when done: -dBATCH

• Don't wait for [Return] key after each
page: -dNOPAUSE

So, if we have an HP LaserJet 4 printer con­
nected to /dev/lpl, we use the driver ljet4. Then,
we can send the output directly to the printer
with this command:

/work/gs5.10> gs -sDEVICE=ljet4
-sOutputFi le:/dev/lp1 -dBATCH
-dNOPAUSE tiger.ps

http://www.cobb.com/sun

Admittedly, the user interface isn't as good
as it could be. However, Ghostscript is in­
tended to be a PostScript renderer, not a docu­
mentation viewer or print manager, even though
it can do both jobs by itself.

Next month, we'll show you how to install
Ghostscript as a print filter. Then you can print
your documents as if you were using a native
Postscript printer. We'll also show you how to
install Ghost View to more easily navigate
through PostScript documents on the screen.

Conclusion
At our site, we needed both a color printer
and another laptop computer. However, it
would've been hard enough to work just a
laptop into the budget, much less a color la­
ser printer. When you're browsing through
the computer stores, you can't help but notice
all the inexpensive color inkjet printers avail­
able, some for less than $200. We discovered
that with Ghostscript and an inexpensive
color inkjet printer, we could add color out­
put for minimal cost. Be sure to read next
month's issue where we tie our new inkjet
printer into Solaris' print system. •:•

Inside Solaris

b1''.~tr,~.;~. -.. 1!?:·)~1li"~)~i'r:il·
HANDY U/ T/fl:

Inserting program output into your
documents with vi
Have you ever been editing a file with vi

and wanted to insert another dqcument
into the one you're currently working on?

If so, you probably learned about the : r f i I ename
command, which reads the file f i I ename and in­
serts it at the current location in your document.

Did you know that you can use this same
command to run a program and insert the out­
put of that program into your document? All
you need to do so is to precede the command
you want to run with : r ! , where the exclama­
tion symbol tells vi to start the program in a
shell, and use the program's standard output
stream as the file to insert.

You'll notice that vi inserts the resulting text
into your document after the end of the line on
which your cursor is currently located. Suppose
you're writing a procedure for a user, and you
want to show exactly the sort of results the user
can expect to see on the screen. Using this little
trick, you can do exactly that.

As an example, let's say you're editing a
file, which contains the following two lines
(where the blue square represents your cursor
location):

Now is the time for alllg ood men ..
The quick red fox jumped over

If you enter the command

: r ! ls

then the file should now look something like

Now is the time for all good men .. .
vi tip.doc
Ghostscript.doc
HTML_update.doc
for_loop.doc
The quick red fox jumped over .. .

Table A: Cursor-movement commands

Command Description
Ip,? p
nG

nj, nk
n{, n}

n(, n1
)

Search forward 'I' or backward '?' f,2! P~P..

Go to line n (last line if not specified) ~

II Mll'Ch 11198

You'll notice that the cursor is left at the begin­
ning of the last line vi inserted for you.

The piece de resistance
As it so often happens, there's another way to
do the job. vi provides another command, ! ! ,
which executes the command you specify and
replaces the current line with the program's out­
put. However, you must have a line you're will­
ing to sacrifice. (Often, that's no big deal).

While both of those commands are great,
wouldn't it be nifty to have a command that
would let you take part of your document, feed
it to another command to process, and replace
that part of your document with the results? It
turns out that the ! ! command is really a special
case of the more general command ! , which has
the form

! range command

where range specifies a range of lines, and
command is the command to execute.

The range parameter isn't as flexible as it is
in the colon commands, largely because vi will
hand entire lines of text to your command- not
just parts of lines. So while the colon commands
allow you to specify ranges that select text on
character boundaries, the range parameter for
the ! command restricts you to line boundaries.

You may specify one of the basic cursor­
movement commands, some of which you may
precede with a count. Just for reference, some of
the cursor-movement commands are shown in
Table A, where n represents a number that de­
faults to 1 unless otherwise noted.

When you execute the ! command, vi starts
a shell to execute command, then sends the text
from your current cursor location to the loca­
tion specified by range to that shell's standard
input stream. The command may then do any­
thing it likes with the text. vi captures the stan­
dard output stream of the program and replaces
the selected text with it.

As you type in the command, vi gives you
no visual indication of what you're doing until
you complete the range part of the command.
Once you complete a valid range, vi prompts
you with a ! on the status line. Suppose you

have a table of 23 lines in your document that
you'd like sorted. Just place your cursor on the
first line of the table and enter !22j.

When you press the j, vi will prompt you
for the command to enter-we'll use sort. At
this point, vi takes the 23 lines you specified
(the one you're on and the 22 following it), and
sends them to the sort command, which then
sorts the lines. After completing the sort, vi re­
places your table with the sorted values.

Conclusion
The vi command has many surprising fea­
tures hidden in its nooks and crannies. As you
discover new features and become familiar
with them, you can be that much more pro­
ductive. ! is a handy command you can use
in many ways, such as writing user docu­
mentation, inserting awk reports into your
documents, and including program output
with a bug report. •:•

An easy way to modify 1,000 files
by Alvin J. Alexander

With so many Internet and intranet servers
in the world today, I've noticed an
interesting phenomenon: The sheer

number of HTML files on these servers plays
right into one of the great strengths of Solaris
systems-the ability to manipulate large quan­
tities of text files en masse. Powerful Solaris
batch-mode, command-line, text-editing tools,
such as sed, grep, awk, tr, cut, and paste, make it
easy to modify dozens, hundreds, or even more
HTML files with a single command sequence.

You may be thinking "Why would I want
to edit a thousand HTML files with one com­
mand?" Let's consider these situations:

• The name of a directory structure on your
server changes.

• A business product line is renamed.
• The contact E-mail address on all your

pages changes.
• You must remove unnecessary meta tags

from HTML documents.
• You want to convert your HTML files to

plain text format.
• File transfers from DOS / Windows systems

to your Solaris system leaves AM charac­
ters in your files.

In each of these situations, you'll need to
make the same change-or series of changes­
to a large number of files on your Web site. Us­
ing Solaris' powerful command-line tools, you

http://www.cobb.com/sun

can modify all of the files in one fell swoop. In
this article, we'll show you how to automate the
mass-editing process by using sed commands
inside of a for loop to modify HTML files .

An overview of the process
From a high-level perspective, we'll perform
the mass-editing of HTML files by placing our
text-editing commands inside a continuous
loop. The loop executes once for each file we
want to modify. So if there are 1,000 HTML files
to modify, the loop executes 1,000 times.

Inside the loop, we'll write our sed text­
editing commands to operate on one HTML file
at a time. Each time the sed program finishes
modifying one file, the loop gives it another file
to work on until all 1,000 files are modified.

There are two secrets to the success of this
approach. The first is knowing how to create
the continuous programming loop. Next, you
must know how to use a good command-line,
text-editing utility, such as sed, awk, or Perl. Let's
examine the need for a good loop first. Then,
we'll look at a text-editing utility.

A simple for loop
Many people use the shell's control-flow com­
mands only in script files and don't think about
using the control-flow commands on the com­
mand line. This is a double mistake: Since you
can use these constructs on the command line,
you can save yourself needless typing. You also

Inside Solaris

become more proficient with constructs as you
use them, which gives you good practice for
your shell scripts.

Just in case you're not familiar with the for
statement, let's take a brief look at it. The for
statement's purpose is to repeatedly perform a list
of operations. The only difference between each
set of operations is the value of a parameter-the
loop variable. In the Bourne and Korn shells, the
syntax of the for statement is

for identifier [in word ... l ; do list; done

Here, for tells the shell that you're starting
the loop, and i dent it i er is the loop variable. The
next part, [in word. . .] lets the shell know
which values to use for the variable i dent it i er.
(Please note that the brackets don't actually
show up in the for statement; they indicate that
the in word ... clause is optional.) The do and
done words tell the shell when the command list
starts and stops, respectively, so Ii st is the list
of commands to execute.

Now, let's examine a simple problem that
the for loop can help you solve. Assume that
you have 100 HTML files in a directory, and you
want to modify each file. Using the Bourne or
Korn shell, you could use a command statement
like this to make changes to every HTML file in
the current directory using a for loop:

for htmlFi le in 'ls -d •html'
do

echo "Converting ShtmlFi le
tmpFi le=/tmp/ShtmlFi le. tmp
sed -f cmds. sed ShtmlFi le > StmpFi le
mv StmpFi le ShtmlFi le

done

Rather than specify the name of each file we
want to manipulate, this statement first gener­
ates in the current directory a list of files that
end with the characters html. It does this by in­
cluding the ls -d •html command within the
grave (') characters at the end of the first line. (As
you may remember, if you enclose a command
within grave accents, the shell executes this
command first, replacing the text between the
grave accents with the results of the command.)

Please note: We used the -d option of the ls
command to instruct ls not to list the contents
of any subdirectories that match this search
pattern. If you omitted this option and kept a
backup copy of all your HTML files in a direc­
tory named backup.html, then our command
would've changed the HTML files in the current
directory and in your backup directory as well!

II M_a_rc_h_1_99_B ________ ___,

Next, the for loop works on each of these
files, one at a time. Each time through the loop,
the current filename (e.g., index.html) is stored
in the variable htmlFi le. For the convenience of
whoever uses this code, an echo statement dis­
plays the name of the file currently being
worked on.

Next, a temporary filename is created and
stored in the variable tmpFi le . As an example, if
the variable html Fi le contains the string index. html,
then tmpFi le is assigned the string index . html. tmp .

In the fourth line of code, the sed interpreter
reads the sed editing commands from the file
cmd s. s e d and applies these commands to the in­
put file ShtmlFi le . The sed command output is
stored in the intermediate file stmpFi le. (Re­
member that sed never modifies the original file;
it just writes its changes to standard output.
Therefore, we're directing standard output to
the filename stored in the variable tmpFi le .) As
the last line of the loop, you use the mv command
to overwrite the original HTML file with the
new temporary file.

This approach works great when all of
your HTML files are contained in one directory.
However, you'll usually want your changes to
be propagated to every HTML file on your Web
server. Since this can include a large number of
subdirectories, we can't use the ls -d •html
command to generate filenames any more. In­
stead, we'll generate a list of HTML filenames
using the find command.

Combining the find command
with the for loop
The find approach is almost identical to the pre­
vious code that used the ls command. The first
change to the code is to use the f i n d command
to generate the list of HTML filenames, as
shown in Listing A.

The find command checks the current direc­
tory, then every subdirectory, looking for text
files that end with the extension html. The out­
put of the find command is stored in the file
named list_of_html_files .

The second change is the addition of the
variables numFi les and i, and the modification of
the echo statement. These changes are really just
for the benefit of the end user, providing better
status information as the program runs.

The next change to the code is the use of the
command cat l i st_of_html_fi les to generate the
list of files to change. Because the filenames are
stored in this file with one filename per record,

the variable htmlFi le is still assigned only one
filename at a time.

The final change to the code is the creation
and use of the new variable, baseFi leName. Be­
cause find locates and prints files with their en­
tire path prefixed to the filename, we must use
the basename command to extract just the file­
name from the full path.

As an example, the find command might
locate a file named ./products/software/Solaris/
myApp.html in your Web server directory tree.
Inside the for loop, this full name- with the
path included- is assigned to the variable
htmlFi le. Using the basename command, we ex­
tract just the base filename (myApp.html) and
assign it to the variable baseFi leName before us­
ing this name to create the tmpFi le variable.

Creating a sed program
Now that we've created the necessary for loop,
let's create the sed text-editing code. In this ar­
ticle, we'll keep our sed commands in a file
named cmds. sed. Then we'll run the sed com­
mands like this:

sed -f cmds.sed inputFile

Using this syntax, sed reads the commands
in the cmds. sed file and applies these commands
to the file named i nputFi le. It's important to re­
member that sed doesn't modify inputFi le. The
sed command just reads inputFi le and prints the
changes to standard output. It's the program­
mer's responsibility to redirect that output.

For our HTML programming example, let's
assume that one of our company products, XYZ
Widgets, was just renamed ACME Gadgets. In
our large Web site, the name XYZ Widgets is
included in hundreds of individual HTML files.
Manually editing hundreds of files to make this
change is definitely not on our top 10 list of
things to do today!

A sed script to convert XYZ Widgets to
ACME Gadgets must include two possible
cases. In the first case, the full name XYZ Wid­
gets will be on one contiguous line of an HTML
file. In the second case, the character string XYZ
will be at the end of one line, and the string
Widgets will begin the next line.

The following line of code shows the sed
command to replace the character string XYZ
Widgets, when the string occurs on one con­
tiguous line:

s/XYZ Widgets / ACME Gadgets/g

http://www.cobb.com/sun

Listing A: fix_html.sh

#!sh
#Filename : fix_html.sh
#Purpose: Run a sed command on every HTML
file on our server .
NOTE : Make sure you "cd" to your HTML
#"document root" directory here, like:
"cd /usr/local/etc/httpd/htdocs"

find . -name "•html" -type f -print >
list_of_html_fi les

numFi les='cat l ist_of_html_fi leslwc -l'
n umF i le s ='echo Sn umF i le s I tr -d ' "
i=O
for htmlFile in 'cat list_of_html_files'
do

i='expr Si + 1'
echo "Editing file Si of SnumFiles: ShtmlFile
baseFi leName=' basename ShtmlFi le'
tmpFi le:/tmp/SbaseFi leName.tmp
sed -f cmds . sed ShtmlFi le > StmpFi le
mv StmpFi le ShtmlFi le

done

This command changes the string XYZ Widgets
to ACME Gadgets on every line of the given
input file. Not only that, but the g at the end of
the command tells s e d to perform this change
globally across every line. So if XYZ Widgets
appears twice on one line of an HTML file, it
will be replaced both times.

In a mass-editing situation such as this, we
must also consider other possibilities. We can
improve our search-and-replace technique in at
least two ways. First, we can account for the
possibility that there may be more than one
space between the words XYZ and Widgets,
generally resulting from a typing error. We can
easily account for this possibility with the fol­
lowing change:

s/XYZ •Widgets/ACME Gadgets/g

Here, we've added an asterisk(•) after the
space in the search string. An asterisk in a sed
search string tells s e d to look for zero or more
occurrences of the character preceding the *.
Therefore, this sed string will search for the
characters XYZ, followed by zero or more
blank spaces, followed by the characters
Widgets. (This also covers the possibility of
XYZWidgets, with no spaces between the two
words.) When sed finds any string that matches
this pattern, it replaces that string with the new
string, ACME Gadgets.

The second improvement to our search
string is to recognize that the search string may

Inside Solaris ..

also be used in its singular or possessive forms,
like this:

XYZ Widget
XYZ Widget's

After looking at these possibilities, it's apparent
that we're better off changing XYZ Widgets to
XYZ Widget, and ACME Gadgets to ACME
Gadget. This subtle code change-omitting the
letter s at the end of each string- lets us ac­
count for the singular, plural, and possessive
forms of our search string.

In summary, these two changes turn our sed
command from this:

s/XYZ Widgets/ACME Gadgets/g

into this:

s/XYZ •Widget/ACME Gadget/g

When the new command is applied, it will
make the following changes to the search
strings it finds:

XYZ Widget becomes ACME Gadget
XYZ Widget becomes ACME Gadget
XYZWidget becomes ACME Gadget
XYZ Widgets becomes ACME Gadgets
XYZ Widget's becomes ACME Gadget ' s

Multiline pattern-matching
The next circumstance to account for occurs
when the string XYZ appears as the last string
on one line of an HTML file, and the word Wid­
get appears as the first word on the next line.
This is a common occurrence, especially with
HTML code-generators, that you must account
for. The sed command to manage this multiline
possibility looks like this:

/XYZ .SI {
N
s/XYZ •\n •Widget/ACME Gadget/g
}

This important command accounts for sev­
eral multiline possibilities. First, it searches for
the string XYZ followed by zero or more blank
characters at the end of one line. (The s charac­
ter symbolizes the end of the line.) Then, if this
string is found, code execution moves inside the
curly brackets.

Within the curly brackets, the N, or Next,
command is called. The N command reads the
next line of text from standard input and ap-

llil Mal'Ch 1898

pends it to the current line of text in the buffer.
As an example, if the line of text currently in
the buffer contains the string

this is line 1 - XYZ

and the second line contains the text

this is line 2

the N command would merge both of those
lines in the current buffer, like this:

this is line 1 - XYZ\nthis is line 2

You'll notice that the N command leaves the
newline character (\n) in the text. After the N
command performs this merge operation, our
search pattern accounts for the embedded
newline character by including the special
\n symbol.

The completed sed code
Listing B shows the final sed program. It com­
bines the two search-and-replace commands we
just developed with a few comments for good
measure.

Listing B: cmds.sed

cmds.sed

1. search-and-replace single-line occurrences

s/XYZ •Widget/ACME Gadget/g

2. search-and-replace multi-line occurrences

/XYZ •S/ {
N
s/XYZ • \n •Widget/ACME Gadget/
}

Now, when you're ready to clean up your
HTML files, you can run the Bourne shell pro­
gram, shown in Listing A, like this:

f i x_h t ml . sh

The Bourne shell program calls the find com­
mand to generate the list of files you want to
modify, invokes the for loop, and runs your sed
program on each file in the list.

A few other sed examples
The next two sections provide a few other sed
batch-mode, text-editing examples designed to
stimulate your thought processes. We'll look at

two examples. The first shows how you can
change the E-mail response addresses (typically
prefaced with a tag like mailto:), and the second
shows you how to delete extraneous HTML
tags that you don't want in your documents.

Example 1 : Modifying mailto: addresses
The following sed command shows how you
can make wholesale changes to mailto: ad­
dresses when the need arises. Assume for a mo­
ment that you need to change a mailto: E-mail
address from fred@xyzcorp.com to webmaster
@xyzcorp.com. Maybe Fred left the company, or
you think this anonymous approach is better. In
any case, you must change the mailto: URL
from fred to webmaster:

s/mailto:lred@xyzcorp\.com/
,,.mailto:webmaster@xyzcorp.com/g

Depending on the other wording on your
Web site, you may also need to change addi­
tional occurrences of fred@xyzcorp.com to
webmaster@xyzcorp.com. Here, you might want
to make your search-and-replace strings a little
less specific:

s/lred@xyzcorp\.com/webmaster@xyzc orp.com/g

Notice that you should use the backslash
character before the dot character in the .com
portion of the search string. Because the dot
character is a sed wild card that matches any
single character except the newline character
(similar to the ? character with filename pattern
matching), your search string will work with­
out the backslash. However, you leave the door

open to match something else, too. In reality, it
won't hurt you in this example, but be careful
in other less-specific commands.

Example 2: Deleting meta tags
One administrator I met liked to delete from
his HTML files the meta tags that advertised
the name of the software program (Netscape,
FrontPage, etc.) used to generate the file. He
didn't care for this form of free advertisement,
so we devised a sed program to delete these
particular meta tags:

r <met a name="GENERA TOR" . oS / d
r <META NAME:"GENERA TOR" . •>SI d

Note that we use two sed commands- one
to eliminate lowercase usage and another to
eliminate uppercase usage. We can also accom­
plish the same thing with this code:

r <[Mm][Ee][Tt][Aa l I Nn][Aa][Mm][Ee]="GENERA TOR"
... •>Sid

Conclusion
Obviously, if you're not comfortable with sed,
awk, or Perl, using them can be as dangerous as
it can be helpful. As always, back up your origi­
nal files before making any wholesale changes.
Next, always test your sed program thoroughly
on a few sample HTML files before running it
on your entire Web site! As HTML text files
continue to proliferate on Web servers, the
powerful text-editing commands Solaris pro­
vides can save you a great deal of time when
you must make repetitive changes to a large
number of files across your entire Web site. •:•

Making your shell prompt stand out
Why would you want to change your

shell's prompt? Well, you might dis­
like the default value. Or, maybe you're

working with large, busy screens, and it's too
easy to lose your prompt. Perhaps you work on
multiple machines, and you'd like your prompt
to indicate which machine you're on. It's also
conceivable that you don't remember exactly
which directory you're in, and you'd like your
prompt to reflect the location.

http://www.cobb.com/sun

As you can see, it's often a blessing that
you can easily change your prompt to suit your
needs. In this article, we'll briefly describe how
to change your prompt to fit your requirements.

Customizing your prompt
The authors of the various shells remembered
that people like to customize their working en­
vironments. For this reason, all the popular

Inside Solaris

Figure A

shells offer a simple method to change your
prompt. For the Bourne shell and its deriva­
tives, you simply set the PS1 environment vari­
able to the prompt you want. With the C shell
and its derivatives, you use the prompt environ­
ment variable.

Therefore, to change your prompt, you just
set the appropriate variable and export it if you
wish child shells to use the same prompt. In the
Korn shell, we can change our shell with this
code:

$ PS1="'hostname'> " export PS1
Devo>

Using terminal features
To make your prompt stand out, you can take
one of two paths. If your work includes moving
from terminal to terminal, you can go for port­
ability. On the other hand, if you remain at the
same terminal, you might customize your
prompt to take advantage of any special fea­
tures offered by your terminal.

tput smso; echo "Standout mode"; tput rmso
Standout mode
$

The tput command offers a standard set of terminal customization com­
mands.

Figure B

BOLD='tput smso'
$ NRML='tput rmso'
$ PS1="$BOLD'hostname' >$NRML " -· You can make your prompt stand out using escape sequences garnered from

tput .

Figure C

$ BOLD="A[[34m"
$ NRML="A[[39m"
$ PS1="$BOLD'hostname'>$NRML "
Devo>

Taking advantage of the special character sequences in the d t term window
results in a blue prompt.

II Mll'Ch 1998

If you want portability, you should familiar­
ize yourself with the t put command, which al­
lows you to put your terminal in one of several
standard modes. While these standard modes
may appear different on various terminals, at
least they'll be handled rationally.

The standout mode is one standard mode.
The tput command provides the set standout
mode command (abbreviated smso) and the reset
standout mode command (rmso). Figure A shows
a brief example of using t put to print text in
standout mode.

To build a customized prompt, we just get
the proper escape sequences with tput and use
them to build our prompt. Thus if we're using
the Bourne shell and we want to make our
prompt contain our host name and stand out,
we can use the statements shown in Figure B.

Instead of making a single, overly complex
statement, we used three steps. First, we put
the escape sequence to put the terminal in bold
mode into the variable BOLD. Then, we placed
the escape sequence to return the terminal to
normal mode in the variable NRML. Once we've
completed those two steps, the third step is
clear: We use the BOLD and NRML variables to
bracket our prompt. At this point, we built our
new prompt with these variables and used the
host name command to find the name of the com­
puter where we're currently connected.

The disadvantage of this technique is that
in order to be as standard as possible, the t put
command doesn't necessarily offer you all the
features available in your terminal. If you really
want some fancy customizations, you can aban­
don any portability concerns, whip out the
manual for your terminal, and make any fancy
prompt you want.

For example, if you use the CDE dtterm
window as your terminal, you might want to
use colors on the screen. By reading Section 5 of
the dtterm manual, we learn that the escape se­
quence for making text blue is

[Escape] [34 m

and for returning the standard text color to the
default is

[Escape] [39 m

where [Escape] is the ASCII value ESC (Oxlb).
Thus, we can use the commands shown in Fig­
ure C to make the prompt blue, thereby making
it easier to find .

Please note that to get the [Escape] (A[) in the
BOLD and NRML variables, you first press [Ctrl]V
followed by the [Escape] key. Otherwise, you
won't get the desired results.

Using shell features
The standard Bourne shell provides no special
features for making your prompt dynamic.
However, the Korn shell does provide one such
feature: It expands the prompt string before
printing it. This allows the Korn shell to display
any environment variables that change during
normal use. For example, if you include the
string SPWD in your prompt as shown in the fol­
lowing code, then the Korn shell will replace it
with your current working directory:

$ PS1='SPWD> '; export PS1
/export/home /marco>

Please note: If you use this trick, you must
quote your prompt with single quotes, or the
shell will expand the environment variable
before assigning it to your prompt. And that
won't work at all. For example, in the Korn
shell, the variable PWD tells you the current di­
rectory that you're in. So if you want to create a
prompt that shows you the current directory,
you'll want to put the variable SPWD into your
prompt, as follows :

S PS1="SPWD> "; export PS1
/export/home /marco> cd I
/exp ort/home/marco> pwd
I
/export / home /marc o>

Hey! What happened? Here, we used
quotes so the space at the end of the prompt
was preserved. However, since we used double
quotes, the Korn shell expanded the PWD vari­
able before assigning it to PS1. So, in effect what
we've done is execute the statement

S PS1=" /export/home/marco> "; export PS1

If we used single quotes, then PS1 would
have a reference to the PWD variable in it. The
Korn shell would expand it to give us the cur­
rent directory at every prompt as a result of
the lines

S PS1='SPWD> '; export PS1
/export /home /marco> cd I
I>

http://www.cobb.com/sun

Alternate prompts
When you're configuring your prompt, don't
forget about the other prompts. The Bourne
shell has two prompts: PS1, the primary prompt
that we've been playing with, and PS2, the sec­
ondary prompt. You'll see the PS2 prompt,
which defaults to>, when you enter a state­
ment and the shell determines that you haven't
completed the command. For example, when
you enter the following for loop, the Bourne
shell prompts you for the second and third
lines using the PS2 prompt:

$ for J in 1 2 3; do
> echo SJ
> done
1
2
3
$

When you press the [Return] key after
do, the shell prompts you with a> prompt . It
knows that the !or loop isn't completed yet,
because it hasn't seen the done statement. Only
after you enter the done statement will the shell
execute the fo r statement and give you another
primary (PS 1) prompt.

The Korn shell adds two more prompts. The
PS3 prompt, which defaults to#?, is used to
prompt you for the select statement. The PS4
prompt is used as a prefix for each line used in
an instruction trace, when you're debugging
shell scripts. Since other shells (bash, tcsh, etc.)
may have additional prompting conventions,
you must carefully check the man page for the
shell you're using. •!•

Are you a good tipper?
Do you have any great Solaris tips that you've discovered?

If so, send them our way! If we use your tip, it will appear
on our weekly online ZDTips service. (Visit www.zdtips.com
to check out all our available tip services.) We may also pub­
lish it here in Inside Solaris . Your byline will appear with the
tip, along with your E-mail and/ or Web addresses.

Send your tips to inside_solaris @ zd.com, fax them to
"Solaris tips" at (502) 491-4200, or mail them to

Inside Safaris
The Cobb Group, Suite 300
9420 Bunsen Parkway
Louisville, KY 40220

Inside Solaris ... ___ _____,;..___at:•

Running Wabi on 24-bit video displays

I don't know about you, but I prefer to run
my video card with as many colors and as
many pixels on the screen as possible. This

way, I can see a great deal of my project, and
my graphics applications don't show annoying
color banding.

Until recently, however, "as many colors
as possible" amounted to 256. You see, I had a
relatively inexpensive video card in my machine.
When I upgraded my video card, I could dis­
play more pixels on the screen, as well as get
24-bit color depth. My definition of paradise
consists of-1280x1024 resolution with 24 bits
on a 19-inch monitor!

A few days after settling in with my new
screen and monitor, I started Wabi so that I
could run a Windows program. However, in­
stead of seeing the Windows desktop on my
screen, I saw this message from Wabi in the
xterm from which I tried to start Wabi:

/export/home/marco> Wabi
Starting WABI ...

• • •
Unrecoverable Error in Wabi

Unsupported display depth 18 in init_gdi.

Wabi will exit now.

Paradise lost. I've got a great display, but I
can't run Wabi. From the error message, it ap­
pears that Wabi doesn't like my 24-bit video
display. At this point I closed X windows,
started a command-line session as root, and ran
kdmconf i g -u to clear the display configuration. I
then ran kdmconf i g -cf to select a new display
configuration with only 8-bit video. When I re­
started Wabi, it came up successfully.

While this procedure let me run Wabi suc­
cessfully, I bought this hardware to make my
life simpler, not more difficult. Reconfiguring
my video display whenever I want to start and
stop Wabi won't simplify my life. Using the same
old video modes doesn't cut it either. When I
brought up the subject with Sun's technical sup­
port representative, he said "Oh, it looks like
you need patch 103587-03. This patch brings
Wabi up to version 2.2D and includes support
for 24-bit video displays."

II March 1998

Patching Wabi
Before Sun stopped development on Wabi, it
cleaned up several issues, bringing the latest
(and last) version to revision 2.2D. To update
your version of Wabi to 2.2D, you'll need one
of these patches:

• 103586-03 for Solaris SPARC
• 103587-03 for Solaris x86
• 103588-03 for Solaris PPC

Just go get the appropriate patch file from
Sun's patch page or your SunPatches™ CD­
ROM. From there, it's a simple install. First, you
must uncompress the patch file. If you obtained
the patch from the Internet, it's compressed
with compress. The file has a .z extension, so
you can uncompress and extract the patch files
with the commands

root# uncompress 103587-03_tar.Z
root# tar xf 103587-03_tar

On the SunPatches™ CD-ROM, Sun uses
GNU's gzi p to compress the patch files. Since
gzi p gives better compression ratios, Sun can
place more patches on the CD-ROM. (See the
article "Compressing Your Files to Save Disk
Space" in the February issue.) In this case, you
can copy the gzcat program from the CD-ROM's
gzip/bin/platform directory to your site's local bin
directory, then expand and extract the patch file
with the command

root# gzcat 103587-03_tar.gz : tar xi -

Now, move to the subdirectory that tar just
created, and ensure that no one's using Wabi by
checking the running processes, as follows :

root# cd 103587-03
root# ps -el : grep wabi
root 6860 6846 0 07:00:12 pts/4 0:00 grep wabi

If you see any processes other than grep, then
you must tell all users to exit Wabi. Once they
do and you verify that it's not running, you can
install the patch with this command:

root# . /installpatch .

When the patch is installed, start Wabi. You
should see that the startup banner in the xterm
window shows the version 2.2D and that the
new splash screen is much more colorful. If this
is true, then you've successfully installed the
new Wabi patch, and you can let people use the
system again.

Notes
The Wabi patch files described here work for
Solaris 2.4, 2.5, and 2.5.1. When Sun released
Wabi 2.6, it changed the pkginfo file slightly.
While you can still upgrade Wabi, you first
must edit the file /var/sadm/pkg/SUNWwabi/
pkginfo and remove the ",REV=6" from the line
starting with VERSION=. Once you do so, you
should be able to install the patch upgrade with
no problems.

An alternative (and slightly more difficult)
solution is to remove the SUNWwabi package
and install the version from Solaris 2.5 or 2.5.1,

lj1·'. .. '1 ;.1 ."':.;. '

RELIABLIL TY REPORT

then install the patch. (We recommend the first
solution, but if Sun comes out with a newer patch
that's incompatible, this method may still work.)

Another potential problem for Solaris x86
users is that there are reported interactions be­
tween this patch and the one used to correct the
Pentium FOOF bug described next in "Attention
Solaris x86 Users!" Some users report that ver­
sion -01 of the Pentium patch causes Wabi to
reboot the system when you start it. Hopefully,
by the time you read this, Sun will have re­
leased a new version of the Pentium patch to
correct this bug.

Conclusion
Well, I can now switch between applications
without random-and annoying-changes to
other applications' palettes. I can also view
complex graphics without color banding at the
same time that I run a Windows program.
Paradise regained. •!•

Attention Solaris x86 users!

The fact that the Pentium had a huge,
well-publicized bug (the old division
bug) surprised few, if any, engineers. The

Pentium chip is a very complex system. It's
probably impossible for anyone to create a sys­
tem that complex without it displaying some
faults. There are several bugs logged against
the Pentium chip- most of which are very mi­
nor. You probably won't run into any unless
you're creating a new chipset or motherboard
to interface with the Pentium.

What's the new bug?
Recently, we've become aware of a newly dis­
covered Pentium bug. This one is severe- it can
hang any Pentium-based system, Although the
explanation of how the bug causes a system to
crash is very complex, the bug itself is far too
simple to re-create. You can do so by simply
executing this sequence of bytes:

0xF0 0x0F 0xC7 0xC8

http://www.cobb.com/sun

Intel confirmed this bug soon after it was
discovered, identifying it on November 7, 1997.
Since that time, Intel has worked around the
clock with OS vendors to find a workaround.
As a result of this collaboration, Sun released a
patch to prevent the problem in late November.

Give us the technical details!
Basically, an instruction named CMPXCHG8B compares
a 64-bit value in one of the CPU registers (the
source) against a 64-bit value in RAM (the destina­
tion) and exchanges the two values. Using a regis­
ter value for the destination operand is illegal.

The bug occurs if the offending code first
uses the LOCK prefix (the OxFO) to lock the CPU's
bus, then executes the CMPxCHG8B instruction
with a register destination. At this point, the
CPU issues an Illegal Instruction exception.
However, with the CPU bus locked, it can't
service the interrupt, and the CPU hangs.

Intel devised a pair of workarounds.
Basically, both workarounds put the first seven

Inside Solaria

SunSoft Technical Support

(800) 786-7 638

PERIODICALS MAIL

02:199

MI 4::::0 :~:5-42: H::

i1i11ii,,l,ii,,,,,jl,,1,1,,1,,i,,l,i111lll,,i,,1,1,1

Please include account number from label with any correspondence.

entries of the IDT (Interrupt Descriptor Table)
into a non-writeable page. This way, when the
Illegal Instruction exception arrives, the CPU
issues another exception (Page Fault) because
the IDT entries are in non-writeable RAM. The
CPU may then execute code in the Page Fault
handler to detect the problem and terminate the
offending application.

How will this bug affect you?
Fortunately, this bug affects only Pentium­
based computers, both with and without MMX.
Anything older (386, 486) or newer (Pentium
Pro, Pentium II) is unaffected. Because of the
nature of the code sequence that's used to force
the bug to occur, it's highly unlikely that any
applications actually contain the necessary code
to cause this problem. If you encounter this bug
in an application, it's quite probable that some­
one placed it there intentionally.

The patches you need
This bug has the potential to cause so much
trouble on systems. Not because any known ap­
plications have the bug, rather, it's so simple to
evoke that any curious user (malicious or other­
wise) will have no trouble trying it out. If they
try it on a mission-critical system, it has the po­
tential to be very serious. In order to prevent
this disaster, Sun put the following patch files
on its publicly-accessible patches page at http://
sunsolve.sun.com/pub-cgi/us/pubpatchpage.pl.
You'll need one of the following patches, de­
pending on which version of Solaris x86 you're
running. As always, be sure to get the latest ver­
sion of any available patch, as Sun may im­
prove the patches without notice:

• 105640-01 for 2.5
• 105638-01 for 2.5.1
• 105639-01 for 2.6

Notes
Please note that the initial release of the
Pentium bug patch has a fatal interaction with
Wabi 2.2D. When you start Wabi 2.2D after in-

II March 1898

stalling this upgrade, your system will reboot.
So, if you run Wabi, you must choose between
installing this patch and running the latest ver­
sion of Wabi. (Also, this patch may interact with
other versions of Wabi as well. We haven't
tested this, nor have we seen any reports con­
cerning other versions.)

Conclusion
If you're running a mission-critical Pentium
system, be sure to keep everyone off the system
but yo"ur most trusted personnel. It's just too
tempting for someone armed with this informa­
tion to resist trying it out. (Don't you ever get
the urge to crash your workstation?)

Be sure you install the appropriate patch
on a backup system, and test all your applica­
tions to verify that they still operate as
needed. Once you've verified that the patch
works with your system, then install it on
your machine. Alternately, you may decide
that this is the right time to upgrade your
server(s) with meatier machines and invest in
a few Pentium Ils. •!•

Using du to determine the
size of a subdirectory tree
I n some operating systems, it's hard to

obtain directory information. For in­
stance, you may want to know the size of a
subdirectory, including all of the files con­
tained in each of its subdirectories. To de­
termine the size of an entire subdirectory
tree, use the Solaris "disk usage" com­
mand, du. Include the - k option for the re­
sult in kilobytes and the -s option for only
a summary listing. For instance, on our
Solaris 2.5 system, this command

du -ks /usr/local/bin

yields this output:

6654 /usr/local/bin

This indicates that more than 6MB
(6,654KB) is stored in this directory tree.

!"";0
··-'\:\'\ Printed in the USA.
D\':' This journal is printed on recyclable paper.

