
February 1998 • $11.50
Vol. it No. 2

,: .. \....~ :

~o:~~; :: il,{ntlS'ISSUE .. :· ~-
$-~ ~,. ,. ' '< ·~ ,. ~,. ') '..:~ :_ ' • ~ - ,· - , : ~ - ~

1
Running Solaria commands from
Java applications

5
Using the keyboard to swit1ch
between COE workspaces

8
Configuring sar for your s1rstem

10
Don't let your directories get
too large

12
Compressing your files to save
disk space

14
A simple way to synchronize the
computers on your network

Visit our Web site at

· ·'' ·1Ji.t:~ techniques [Qr -u~ers of SunSof t Solaris

Running Solaris commands
from Java applications
by Alvin J. Alexander

As a Solaris system administra­
tor, developer, or end user, you
may have looked at Java by

now and decided that it's an envi­
ronment worth investigating. The
combination of a relatively simple
object-oriented language with a
platform-independent philosophy
and browser integration has taken
the industry by storm. More than
just a good programming language,
Java is a programming environment
around which new industries-Java
Bean components, Smart Cards, and
Network Computers to name a
few-are being built.

As I dug into Java from an ad­
ministrator's perspective, my first
questions centered around running
Solaris commands from Java appli­
cations. If you're interested in how
you might use Java programs for
system administration, then this
article is for you. In this article, we'll
tackle the first important skill­
running Solaris commands from
within your custom Java applications.

A first example
Beginning with the JDK 1.0, Java
has provided a way to run system
commands from Java applications
for all operating system environ­
ments. For Solaris administrators
interested in writing Java programs
that run Solaris commands, the Java

classes named Process and Run t 1 me
give the Java program access to
some of the pieces underlying the
operating system.

The Runt 1me class provides an
exec(} method that lets the Java
programmer run commands. You
simply call the exec(} method of
the Runt 1 me class, supplying the
command string you want to run.
The exec(} method then creates a
Process object that runs the speci­
fied command.

Listing A on page 2 shows a
minimal Java program, named
RunCommand, that runs a Solaris com­
mand (ps -ef) from a Java applica­
tion. This code is minimized so
much, in fact, that it ignores the
output of the ps command after it's
run! We'll take care of that problem
a little later, but first let's dig into
the code in Listing A to see what's
happening.

Our program's first statement is
the 1 mp or t statement, which speci­
fies classes you want to use in your
program. The 1mport statement we
used tells Java that we want access
to all the classes in the j a v a . 1 o
package. (We could choose only a
specific class, but it's often simpler
to use the whole package.)

The classes that comprise the
j av a . la n g package are used heavily
in Java programs, so you needn't
import the j av a . la n g package: It's
implicitly imported for you. Please

ZI FF-DAVIS
i SOF T BA N K

company

INSID {~
SOLARIS

Inside Solaris (ISSN 1081-3314) is published monthly by
The Cobb Group.

Prices
U.S $115/yr ($11.50 each)
Outside U.S $135/yr ($16.95 each)

Phone and Fax
US toll free (800) 223-8720
Local (502) 493-3300
Customer Relations fax (502) 491-8050
Editorial Department fax (502) 491-4200
Editor-in-Chief (502) 493-3204

Address
Send your tips, special requests, and other correspondence to:

The Editor, Inside Solaris
9420 Bunsen Parkway, Suite 300
Louisville, KY 40220
Internet: inside_solaris@zd.com.

For subscriptions, fulfillment questions, and requests for group
subscriptions, address your letters to:

Customer Relations
9420 Bunsen Parkway, Suite 300
Louisville, KY 40220
Internet: cobb_customer_relations@zd.com

Staff
Editor-in-Chief Marco C. Mason
Contributing Editors Al Alexander
Print Designer Margueriete Winburn
Editors Karen S. Shields

Joan McKim
Michael E. Jones

Publications Coordinator Linda Recktenwald
Managing Author Eddie Tolle
Product Group Manager Michael Stephens
Circulation Manager Mike Schroeder
Publisher• Jon Pyles
President John A. Jenkins

Back Issues
To order back issues, call Customer Relations at (800) 223-
8720. Back issues cost $11.50 each, $16.95 outside the US.
We accept MasterCard, Visa, or American Express.

Postmaster
Periodicals postage paid in Louisville, KY.
Postmaster: Send address changes to

Inside Solaris
P.O. Box 35160
Louisville, KY 40232

Copyright
Copyright© 1998 The Cobb Group, a division of Ziff-Davis Inc.
The Cobb Group, its logo, and the Ziff-Davis logo are registered
trademarks of Ziff-Davis Inc. All rights reserved. Reproduction in
whole or in part in any form or medium without express written
permission of Ziff-Davis is prohibited. The Cobb Group reserves
the right, with respect to submissions, to revise, republish, and
authorize its readers to use the tips submitted for personal and
commercial use. Information furnished in this newsletter is
believed to be accurate and reliable; however, no responsibility
is assumed for inaccuracies or for the information's use.

Inside Solaris is a trademark of Ziff-Davis Inc. Sun,
Sun Microsystems, the Sun logo, SunSoft, the SunSoft logo,
Solaris, SunOS, Sunlnstall, OpenBoot, OpenWindows,
DeskSet, ONC, and NFS are trademarks or registered trade­
marks of Sun Microsystems, Inc. UNIX and OPEN LOOK are
registered trademarks of UNIX System Laboratories, Inc. Other
brand and product names are trademarks or registered trade­
marks of their respective holders.

----~~ February1998

note also that you can still access
classes that you don't explicitly im­
port. However, when you use them,
you must fully qualify their names.
For example, the IOExcept ion class is
part of the j ava. i o package. If we
didn't include the j av a . i o package,
we'd have to use java. io . IOException
each time we wanted to use this
class. Therefore, the import state­
ment merely gives us a shorthand
notation for writing our code.

The next line of code declares
our new class named RunCommand.
You must put your code inside a
class, because all Java code exists
within classes. Of course, you needn't
name your class RunCommand-you
can name it anything you want.
However, you must declare your
Java program inside a class.

If you're new to object-oriented
programming, declaring a class in a
small program like this doesn't seem
to make much sense. But once a pro­
gram becomes just a little larger, the
class approach of the object-oriented
model becomes much more intui­
tive and elegant.

Now, how does a Java program
know where to start? Well, if you've
had any exposure at all to the C or
C ++ programming languages, you
know that program execution starts
in the ma i n () function. The same is
true in Java. As you can see, the rest
of our program is inside the curly
brackets of the ma i n () routine. When

Listing A: RunCmd

import java.io.•;

public class RunCommand

you write Java applications (as op­
posed to applets), you'll see this
same declaration for the main ()
function again and again.

Within the ma i n () routine, you
encounter Java's try/catch syntax.
This syntax is Java's way of trap­
ping errors, or exceptions, that may
occur while a program is running. I
like to think of this syntax as mean­
ing "go ahead and try this block of
commands, but if an error happens,
stop running those commands, and
run the commands in the catch block
instead." So, if an exception occurs,
Java catches the error and continues
to run, instead of failing completely.
As you work with Java, you'll find
this syntax a powerful way of han­
dling all sorts of possible errors in
your Java programs.

If we apply this thought process
to our program in Listing A, we see
that the Java interpreter will attempt
to run the three commands inside
the try block. Specifically, we'll try
to create a new Process in which to
run the ps -ef command. Next, the
program prints a message to inform
us that the p s -e f command ran,
and it'll ex i t. However, if any of
those commands fail because of an
1/0 exception, Java will start execut­
ing the code in the catch block­
running the print statement and
System.exit(-1) command instead.
If no error occurs, the program ig­
nores the catch block entirely.

public static v o i d ma i n (St r i n g a r gs []) {

try

}

Process psef = Runtime.getRuntime().exec("ps -ef");
System.out.println("ran the ps -ef command");
System.exi t(0);

catch (IOException e) {
System.out.println("Error occurred trying to run ps -ef");
System.exit(-1);

The method System. out . pr 1 n t l n () is simi­
lar to an echo statement in the C, Bourne, or
Korn shells: It simply writes the text you specify
to standard output. The Sys t em. ex 1 t (x) method
is Java's way of returning an exit status of x to
the caller. It's the same as the exit statement in
the Bourne shell.

Compiling and running your
Java program
After you've written your code, running a Java
program is more like running a CIC++ pro­
gram than running a shell script. Unlike a shell
script, you can't just save this code to a file,
change its permissions, then run it. With Java,
you save the file, compile it, and run the com­
piled code through the Java interpreter.

First, you should save the code in a file
named RunCommand.java. Next, you must com­
pile this source code file into a Java byte-code
.class file. You do this by running the Java com­
piler, named javac, as follows:

$ javac RunCommand.java

This command creates a class file that's
named RunCommand.class, which contains your
platform-independent Java byte-code. Once
you've created this file, you can run it on any
platform that has a Java interpreter.

Please note that when you name your source
file, you must name it the same as your class
name, with the addition of the .java extension.
Since the name of our new class is RunCommand,
we name the source file RunCommand.java. Then,
when javac compiles RunCommand.java, it cre­
ates the file RunCommand.class. This is important,
because when you tell you the j ava command
to run the ma i n () function in a specific class,
j av a expects to find the executable code in a
file named after the class name with the
extension .class.

When you want to run this program, you
run it through the Java interpreter, j ava. In our
case, after compiling the code in Listing A, run
the code through the Java interpreter as follows:

$ java RunCommand

This command loads the Java byte-code
interpreter, telling it which class to start with.
So j ava loads the RunCommand.class file and
begins executing it at the function named
ma i n {) . If everything ran successfully, the
output from this program should be

ran the ps -ef comma nd

http://www.cobb.com/sun

Although this result isn't very useful,
you've just run the p s -e f command from a
Java program. Once you learn how to read the
output from the ps -ef command and print
that output to your terminal, you're ready to
add a variety of Solaris commands to all of
your Java applications.

Reading the output or the
Solaris command
In order to start the p s -e f command in our
program, we created a Process object. When
you create a new Process object, Java allows
you access to the standard input, output, and
error streams of the new Process, so you can
communicate with the running program.

In our example, we've named our Process
object psef. All Process objects have a built-in
method named getlnputStream() that connects
the standard output of the running process
into the specified input stream coming into
your Java application. As an administrator,
you're comfortable with the Solaris concepts of
standard input, standard output, and standard
error, so you should feel right at home with the
idea of an input stream.

For a programmer using Java, it's easiest
to convert a raw input stream like this into
something far more useful, specifically a
DatalnputStream. Such a raw input stream
that is provided by the Process object's
get InputStream{) method isn't very conve­
nient, whereas a DatalnputStream is easier to
work with.

Therefore, our first step toward reading
the output of the ps -ef command is to con­
vert the Process object's raw input stream into
a DatalnputStream object. We can easily accom­
plish this with the following Java code:

DatalnputStream dls = new DatalnputStream(
psef .getlnputSt ream());

To make our Java application run faster,
we'll also buffer the input stream by using a
Buffered In pu tS t ream class. In our tests, buffer­
ing the input stream improves the read perfor­
mance almost ten-fold, making it well worth
any additional code. Instead of adding an extra
line of code to the program, you can simply
insert the Bu f f ere d I n p u t St ream method call
between the raw p s e f object and the
Data I npu tSt ream method call, like this:

DatalnputStream dls = new DatalnputStream(
new Buf fered lnputStream(

psef .getlnputStream()));

Inside Solarls

Now, any time you want to read the
input stream, simply read from the object d i s,
using the methods of the Data I npu tSt ream class.
For instance, after invoking the commands
above, it's easy to read from di s using the
DatalnputStream object's readli ne() method.
To read the first line of input from the p s -e f
command, you'll use this code:

String s;
s = dis.readline();

This command gets the first line of input from
the DatalnputStream object dis and puts that
data into the St r i n g variable named s.

In order to read every line of output of the
ps -ef command, you should put the readl i ne()
method into a wh i le loop. In the wh i le loop,
you'll keep reading the output of the p s -e f
command until the read Li n e () method returns
a null value. You'll get a null value when there's
no more output from the p s -e f command. In
Java, you'll create the wh i le loop like this:

String s;
wh i le ((s = dis.readline()) !=null) {

II process the string "s" here ...
System.out.println(s);

Putting it all together
Listing B shows a new version of our program,
named RunPScommand, where we invoke the
ps -ef command and attach a DatalnputStream
object to the output of the p s -e f command. We
read each line from the Data Input Stream object
with the readl i ne() method and print the value
of the string s to the standard output.

Listing B: RunPScommand

import java.io.•;
public class RunPScommand {

public stat i c v o i d ma i n (St r i n g a r gs []) {
try {

Process psef = Runtime.getRuntime().exec("ps -ef");
DatalnputStream dis = new DatalnputStream(

new Buf feredlnputStream(
psef.getlnputStream()));

while ((s = dis.readline()) !=null)
System.out.println(s);

}
System.exi t(0) ;

catch (IOException e) {
System.out.println("Error: Tried to run ps -ef"):
System.exi t(-1);

To run this program, we'll perform the
same steps we did previously. Simply save the
changes to the RunPScommand.java file, com­
pile the Java source code into a class module,
then run it, like so:

$ javac RunPScommand.java
$ java RunPScommand
ran the ps -ef command

UID PID PPID C STIME TTY
root 0 0 0 Nov 01
root 1 0 0 Nov 01

root
root

2
3

0 0 Nov 01
0 0 Nov 01

Some other thoughts

TIME CMD
0:00 sched
0:01 /etc/init

0:00 pageout
2:12 fsf lush

The methods demonstrated in this article let
you run Solaris commands from Java applica­
tions on Solaris workstations. You shouldn't
confuse this action with running commands
from Java applets in Internet browsers, which
is a bit different. Because of the security model
that's used for Java applets running in brows­
ers, we must tackle a few more issues, which
we'll do in a future article.

Please note also that some fundamental
changes in Java have occurred between the
versions implemented in the JDK version 1.0
and version 1.1. For example, the readli ne()
method is now deprecated (i.e., works in ver­
sion 1.1, but you shouldn't use it in new pro­
grams because the next version of Java probably
won't support it.) In a nutshell, this means that
although these classes will still be included in
the JDK, you should begin using the newer
classes as soon as possible. Since a mixture of
JDK 1.0 and 1.1 users are still out there, we
have supplied the code that works with both
developer kits.

Conclusion
There's no question that using Java to run
Solaris commands is more difficult than run­
ning the same commands inside of a shell pro­
gram. But remember, we've only just begun.
By developing your own custom classes, you
can make the entire process as easy as this:

DatalnputStream dis = new SolarisCommand
•("ps -ef");

Also, if you want to run Solaris commands
from a graphical interface, Java is rapidly be­
coming the simplest language to use to create
cross-platform GUI applications. Finally, this
same approach is your first step down the road
of running Solaris commands from Internet
browsers. •!•

.. :·· . . I , .- ·- .
COE CUSTOMIZATION

Using the keyboard to switch between
COE workspaces
When I'm working on a large project, my

desktop is usually cluttered with xemacs
and d t term windows, arranged to fill

all the available screen space. Until recently, I've
always had to make sure that a corner of the
CDE Front Panel showed somewhere, so that
I could click on it and switch to another work­
space to take notes for a phone call or some
other task.

However, arranging your windows so that
you can always see a corner of the Front Panel
can be tiresome, especially when you want to
use that last little bit of space to see another
line or two of code. Imagine my delight when
I found out how to switch between CDE work­
spaces using keyboard commands!

Configuring the keyboard
By default, the CDE doesn't provide this func­
tionality. However, two architectural decisions
make it possible. First, the CDE was written
with an event-passing architecture. Second, the
CDE also allows you to send these events to
various CDE components very easily. Thus, if
you want to spend some time working with
and learning d t Ks h (a version of the Korn shell
that has the ability to interact with the CDE
and X windows), you can do some pretty in­
credible things with CDE.

Fortunately, we don' t have to go to such
lengths. Since d twm (the Desktop Window Man­
ager, upon which CDE is built) is the focal point
of all this CDE activity, it's built with flexibility
and events in mind. Thus, you can tie particu­
lar events to specific actions, such as clicking on
a window or pressing a key. Even better, you
can tweak dtwm's behaviour with its configura­
tion file. Now, we can divide our task into four
simple steps:

• Create a configuration file ford twm
• Find the events we want to use
• Select keys to switch our workspaces
• Update our configuration file

Where do we start?
Our first task is to create the configuration file
for d twm. We begin the configuration by reading

http://www.cabb.com/sun

the man page for d twm, which has plenty of very
interesting information. For our purposes, the
most useful part is how d t wm searches for its con­
figuration file, as described in the con f i g Fi le
resource. If the con f i g Fi le resource specifies a
file, then d twm attempts to use that file as a con­
figuration file. Failing this, d twm checks the fol­
lowing files, in order, until it finds one:

$HOMEl.df/$LANG!dtwmrc
$HOMEl.dtldtwmrc
letcldtlconfig/$LANG!sys.dtwmrc
letcldflconfiglsys.dtwmrc
lusr/dtlconfig/$LANG!sys.dtwmrc
/usrldtlconfiglsys.dtwmrc

Thus, d twm first checks whether the user has
a configuration file in either of the standard lo­
cations. Since SLANG is the language you log in
with, you can have a different configuration
for each language you use. If you use only one
language, you can put your customizations in
$HOME/.dt/dtwmrc). If the user doesn't have a
configuration file, d twm then checks for a cus­
tomized, system-wide configuration file (for
the specific language or a default one). If this
search also fails, then d twm uses the standard
out-of-the-box configuration file.

Please note that d twm stops searching for a
configuration file when it finds the first one.
So if you want to make a minor change to the
current configuration, you need to include in
your configuration file all the information that
d twm is presently using. To do this, simply locate
the configuration file you're currently using
when you log in and copy it to the location
$HOME/.dt/dtwmrc.

$ cd SHOME
$ ls .dt/SLANG/dtwmrc
.dt/C/dtwmrc: No such file or directory
$ l s . d ti d t wmr c
.dt/dtwmrc: No such file or directory
$ ls /etc/dt/conf ig/SLANG/sys.dtwmrc
/etc/dt/config/C/sys.dtwmrc: No such file or directory
$ ls /etc/dt/config/sys.dtwmrc
/etc/dt/config/sys.dtwmrc: No such file or directory
$ ls /usr/dt/config/SLANG/sys.dtwmrc
/usr/dt/config/C/sys.dtwmrc
$ cp /usr/dt/config/C/sys.dtwmrc .dt/dtwmrc

Inside Solarls

Figure A

Now we've accomplished our first task,
and we have our own configuration file. Since
we're reading the man pages for dtwm and
d twmrc anyway, the second task is well under­
way. We must simply determine which events
will let us switch workspaces and how to use
the events.

In the d t wm man page, we discover our first
clue in this statement:

The following types of resources can be
described in the d twm resource description
file:

Buttons Window manager functions can
be bound (associated) with
button events.

Keys Window manager functions can
be bound (associated) with key
press events.

Menus Menu panes can be used for the
window menu and other menus
posted with key bindings and
button bindings.

The d twm resource description file is
described ind twmrc(4).

We then read man paged twmrc(4) and hit
the jackpot: There's a description of more than
50 event functions we can use. We can bind
them to mouse buttons, key presses, and menus.
After searching through the function list, we
find three that do exactly what we want:

f .goto_workspace workspace
f .next_workspace
f .prev_workspace

#Key Bindings Descr iption

Keys DtKeyBindings
{
Alt<Key>Menu rootliconlwindow

Shift<Key>Escape iconlwindow
Alt<Key>space iconlwindow
Alt<Key>Tab rootliconlwindow
Alt Shift<Key>Tab rootliconlwindow
Alt<Key>Escape rootliconlwindow
* * *

f .toggle_frontpanel
f .post_wmenu
f .post_wmenu
f .next_key
f .prev_key
f. next_key

This section of the dtwmrc file tells dtwm what to do with specific key combinations.

February 1998

The first of these, f. goto_workspace accepts
a single parameter: the name of the workspace
you want to use. The f. next_workspace event
function takes you to the next workspace in
the list. If you're already at the last workspace,
it wraps around back to the first one. As you'd
expect, the f. prev_workspace event function
takes you to the previous workspace or to the
last workspace if you're presently at the first one.

Which keys do we want to use?
Next, we must choose which keys we want to
use to switch workspaces. At the risk of get­
ting ahead of ourselves, we'll point out that
you shouldn't select key combinations that
you'll use frequently in your applications or
that already have a meaning, unless you're
content to remove the previous meaning of
those particular key combinations.

For our purposes, we chose [Alt][Fl] to
switch to the first workspace, [Alt][F2] for the
second, and so on. We also decided to use
[Alt][PageUp] and [Alt][PageDown] to cycle
forward and backward through the work­
spaces. This way, we can try out all three of
the event functions.

Modifying the configuration file
Now for the critical part: We must modify
the configuration file. If we're not careful
when we modify this file, the CDE might act
very strangely.

At this point, we know what we want to
do, but we don't know how to do it. Specifi­
cally, how do we bind the key presses to our
new event functions? Luckily, the standard
/usr/dt/config/C/sys.dtwmrc file has plenty of
customizations in it, so we can use them as
examples. Browsing through the file, we come
to the section that binds keys to events, part of
which is shown in Figure A.

Take a look at the line in blue. The first part
is obvious: When the user presses the space
key while holding down the [Alt] key, d twm is
supposed to do something.

A bit more spelunking in the man page for
d twmrc shows that the second part tells when
the key has a special meaning. In this case, it's
active when an icon or window is selected.
The last part is pretty intuitive: It's the action
we' re binding to the key.

You'll notice that some of the other key
bindings have root Ii con lwi ndow, instead of only
icon I window. This difference simply means that

the key will work when the root window (i.e.,
background) is active. (This situation usually
occurs when there's no active icon or window,
so in effect, the key combination should almost
always work.) Since we want our key combina­
tions to work all the time, we'll have to use
rootliconlwindow.

Now, we must figure out the names of the
keys. We can make a pretty good guess, so
we'll use Fl..F4, PageUp, and PageDown. Put­
ting this together, we come up with the lines
shown in Figure B. Now, we simply add these
new key bindings to the D t Key Bi n d i n gs section
of our dtwmrc file.

Well, how does it work?
Now we must log out of COE and log back in,
so that d twm will read our customized dtwmrc
file, instead of the one it was previously using.
We hold our breath and press [Alt]F3. It works!
Unfortunately, when we try the [Alt][PageUp]
and [Alt][PageDown] combinations, they don't
work at all. That's not too surprising, since we
just guessed at the key names.

Digging through the dtwmrc man page
again, we find that the key names should
match those found in the /usr/openwin/include/
Xll/keysymdef.h file, but with the XK_ prefix
omitted. Thus, we should've used Page_Up
and Page_Down.

Please note: This file is only on your system
if you installed the XWindows include files
(package SUNWxwinc) on your system.

While thinking about this problem, we
found another one. If we change the name of a
workspace, we must re-edit dtwmrc, log out,
and log back in again. That process is just too
inconvenient, so there's got to be a better way.
Time to hit the man pages again! After searching
for every instance of workspace, we find that the
workspace has a resource named Title, and you
can specify it like this:

The example given is

After a little while, the answer dawned on
me. The workspaces are named wsO, wsl, ws2,
etc., and the fancy strings on the buttons are
their titles. For some reason, COE lets you refer
to the workspace by its name or its title. There-

http://www.cabb.com/sun

Figure B

Alt <KeJ>F1
Alt <Key>F2
Alt <Key>F3
Alt <KepF4
Alt <Key>PageUp
Alt <Key>PageDown

rootl1conlw1ndow
rootl1conlw1ndow
rootl1conlw1ndow
root I 1 con I w1 ndow
rootl1conlw1ndow
rootl1conlw1ndow

f .goto_workspace WebEdit
f .goto_workspace SysAdmin
f .goto_workspace RC10
f .goto_workspace Ford DataMyter
f .prev_workspace
f .next_workspace

Adding these lines to the DtKeyBindings section should allow us to easily switch
among the workspaces.

fore, we'll change our Fl through F4 key bind­
ings to use the names wsO through ws3, and
we' re finished.

Debugging tips
If only the process were as straightforward as
described. It actually took a bit more effort, and
we learned a couple of things about debugging
configuration changes along the way.

The first tip is this: After you change your
dtwmrc file, log out, then log in, you should
check to see whether you have a .dt/errorlog
file. If you do, read it. The .dt/errorlog file con­
tains diagnostic messages describing any prob­
lems that d twm encounters during the current
(or last) session.

As an example, when we were trying to
make this procedure work, we decided on the
keyboard bindings a day before we acutally
edited and tested the file. While we were test­
ing the file, we forgot that we had guessed the
key names. When the [Alt][PageUp] key com­
bination didn't work, we didn't immediately
suspect the name of the key. Instead, we checked
the line against the [Alt][Fl] line to see if we
mistyped anything. Later, when we finally
noticed that the .dt/errorlog file existed, it gave
us the following information:

Tue Nov 04 03:40 :32 1997
Workspace Manager: Invalid key specification on
•line 143 of config;uration file /home/marco/
•.dt/dtwmrc

Sure enough, our key binding for the [PageUp]
key is on line 143.

When you're caught up in the process of
solving a problem by experimentation and
reading man pages, it's easy to forget to log out
and log in again. As a result, you may incorrectly
assume that a change you made doesn't work
because d twm didn't read the configuration file.
So be careful, and if something doesn't work
the way you expected, just log out, log in, and
try the process one more time. •:•

Inside Solarls

----i ',>-'?.-; ... ~.' ~ ••'':."-, ~· . ,;.~ ·_·~ "·;·'-•;. .. '
PERFORMANCE MONITORING

Configuring sar for your system
B efore you can tune a system properly, you

must decide which system characteris­
tics are important, and which ones are

less so. Once you decide your priorities, you
then need to find a way to measure the system
performance according to those priorities.

In fact, the system activity reporter program
suite is a good measuring tool for many aspects
of system performance. In this article, we'll in­
troduce you to the sar utility, which can give
you detailed performance information about
your system.

What does sar measure?
Since system tuning involves the art of finding
acceptable compromises, you need the ability
see the impact of your changes on multiple
subsystems. System activity reporter (SAR)
programs collect system-performance informa­
tion in distinct groups. Table A shows how sar
groups the performance information. The first
column shows the switch you give to s a r in
order to request that particular information
group. The second column briefly describes
the information group.

Table A
·· Switch Performance Monitoring Grou

A All monitoring groups

a File access statistics

b Buffer activity

c System call activity

d Block device activity

g Paging out activity

k Kernel memory allocation

m Message and semaphores

p Paging in activity

q CPU run queue statistics

r Unused memory and disk pages

u CPU usage statistics (default)

v Report status of system tables

w System swapping and switching

TTY device activi

One way you can run s a r is to specify a
sampling interval and the number of times

February 1888

you want it to run. So, if you want to check the
file-access statistics every 20 seconds for the
next five minutes, you'd run s a r like this:

$ sar -a 20 15

SunOS Devo 5.5.1 Generic_103641-08 i86pc
11/05/97

01:06:02 iget/s namei/s dirbk/s
01:06:22 270 397 278
01:06:42 602 785 685
01:07:02 194 238 215

* * *
Average 394 519 438

Configuring sar to collect data
Notice that you can't run sar right now. If you
just try to run the sar command without first
configuring it, it gives you an error message
like this:

$ sar -a 20 15
sar: can't open /var/adm/sa/sa03
No such file or directory

Sure enough, if you look at the /var/adm/sa
directory, you won't see any files in it-much
less that sa03 file it's complaining about. If you
create a blank file, using touch, for example,
s a r will start to work. However, why must you
do something so strange to make s a r work?
And if you try to run s a r tomorrow, you'll get
a similar error, but this time it will complain
about a different file, such as sa04.

It turns out that the sar program is only
one part of the performance monitoring pack­
age. Three commands in the /usr/lib/sa direc­
tory also contribute to the whole. The sad c
command collects system data and stores it to
a binary file, suitable for s a r to use. The shell
script s a 1 is a wrapper for sad c, suitable for use
in cron jobs, so it can be run automatically. The
sa2 script is a wrapper for sar that forces it to
pr:int a report in ASCII format from the binary
information in the files sadc creates.

If you run the s a 1 script as intended, it
then creates a binary file containing all the per­
formance statistics for the day. This file allows
s a r to read the data and report on it without
forcing you to wait and collect it. Since you
may want to investigate the data a bit later
or compare one days' worth of information

against another, the s a r, s a 1, and s a2 programs
name the data file using the same format: /var/
adm/sa/saX, where Xis the day number. There­
fore, when you run s a r, one of the first things
it does is look for today's binary file. When it
doesn't find the file, it prints the error.

The best way to run sa1 and sa2 is from a
cron job. Sun provides an example of how to
create the cron job instead of forcing you to
figure it out for yourself. Thus, if you edit the
c r on tab for the account sys, then you'll see
commented-out sample cron schedules for
sa1 and sa2, as shown in Figure A.

The first c r on schedule uses s a 1 to take a
snapshot of system performance at the begin­
ning of every hour every day. The second cron
schedule adds a snapshot at 20 minutes (:20)
and 40 minutes (:40) after the hour between
8:00 a.m. and 5:00 p.m., every Monday through
Friday. As a result, you get more detail during
business hours and less during evenings and
weekends.

The final line schedules sa2 to run at
6:05 p.m. every Monday through Friday to
create an ASCII report from the data collected
by s a 1. This ASCII data is stored using a simi­
lar filename convention: /var/adm/sa/sar X, again
where Xis the day number.

The simplest way to configure s a r to run is
to edit the sys account's c r on tab and remove
the # signs from the start of the s a 1 and s a 2
command lines. However, you may want to
customize the cron schedules to suit your own
preferences. For example, your company might
run multiple shifts, and you may want more
detailed data. Thus, you can modify the cron
job to run s a 1 at 15-minute intervals, every
business day.

You can't just log into the sys account and
edit the cron job, though, because the sys ac­
count is usually locked. Instead, you must log
in as root, then s u to the sys account, like so:

$ SU

Password:
su sys

At this point, be sure to set the ED I TOR environ­
ment variable to your favorite editor, and edit
the c r on tab file, like this:

EDITOR=vi
export EDITOR
crontab -e

Now, your favorite editor (vi, in this case)
comes up, and you can edit the cron schedules.

http://www.cobb.com/sun

For our example, we just want to run s a 1 every
15 minutes every day, and the sa2 program
should generate ASCII versions of the data just
before midnight. So we'll change the cron
schedule to look like this:

0,15,30,45 • • • 0-6 /usr/lib/sa/sa1
55 23 • • 0-6 /usr/lib/sa/sa2 -A

Next, we save the file and exit, and c r on t ab
will start the appropriate cron jobs for us.
That's all you do to configure s a r. Once you
do so, you can use sar without worrying about
the file-open errors any more.

Using the binary data files
Once the system is creating the binary data
files, you can use sar without specifying the

Figure A

#ident "@(#)sys

1. 5 92/07/14 SMI" /• SVr4.0 1.2 •/

#The sys crontab should be used to do performance collection. See cron
#and performance manual pages for details on startup.

#0 • • • 0-6 /usr/lib/sa/sa1
#20,40 8-17 • • 1-5 /usr/lib/sa/sa1
#6:05 • • 1-5 /usr/lib/sa/sa2 -s 8:00 -e 18:01 -i 1200 -A
The sys account already has prototype entries for running sa 1 and sa2, which
you can uncomment and use.

Figure B

s sar -up

SunOS Devo 5.5.1 Generic_103641-08 i86pc 11/04/97

00:00:01 %usr %sys %wio %id le
00: 15 :00 0 0 0 99
00:30:00 0 0 0 99
00:45:00 0 1 0 99

• • •
22: 15 :00 0 0 0 99
22:30:00 0 0 0 99
22:45:00 1 1 3 95
Average 3 1 4 92

00:00:01 atch/s pgin/s ppgin/s pflt/s vflt/s slock/s
00: 15 :00 0.00 0.02 0.03 1.82 2.93 0.00
00:30:00 0.00 0.00 0.00 4.35 6. 15 0.00
00:45:00 0.00 0.02 0.02 38.95 44.79 0.00

• • •
22:15:00 0.00 0.00 0.00 0.53 0.39 0.00
22:30:00 0.00 0.14 0. 19 1.39 1.26 0.00
22:45:00 0.10 2.49 3.34 9 .10 14.56 0.00

Average 0.24 2.95 8.32 17.01 18.27 0.00
The sar -up command reports detailed information about the CPU
and paging use up to the current time.

Inside Solaris

interval between samples and the number of
samples you want to take. Simply specify the
data sets you want to see, and s a r will print all
that's accumulated thus far for the day. There­
fore, if you're interested in CPU use and pag­
ing activity, you'd run sar as shown in Figure
B on page 9. Since we ran s a r near the end of
the day, and we're sampling every 15 minutes,
we're inundated with details. And that's the
major problem with detail-it's easy to get
swamped.

Getting the bigger picture
While getting a detailed picture of your system
is wonderful, you probably don't need or want
such a detailed report very often. After all, your
job is to manage the system, not micromanage
it. Do you think that your company's president
monitors the details of the day-to-day operations
of the company? Of course not! The president
is happy to see the weekly reports showing
that the business is chugging along smoothly.
It's only when the business is having problems
that the president starts to examine and ana­
lyze details.

Your role as system administrator is simi­
lar to that of the company president: As long
as the system is running smoothly, you merely
want to glance at a report to see that everything
is going nicely. You don't want to delve into a
morass of details unless something' s awry.
Consequently, what we usually want from s a r
isn't a detailed report on all the system statis­
tics, but rather a simple summary.

The s a r command provides three command­
line switches to let you control how you want
sar to summarize its data. The-sand -e options
allow you to select the starting and ending

I
SYSTEM-PERFORMANCE TIP

times of the report, and the - i option allows
you to specify the reporting interval. So you
can see an hourly summary of CPU usage dur­
ing working hours by using s a r like this:

$ sar -s 08 -e 18 -i 3600 -u

SunOS Devo 5.5. 1 Generic_103641-08 i86pc 11/03/97

08:00:00 %usr %sys %wio %id le
09:00:01 0 1 2 97
10:00:00 3 3 1 94
11:00:00 0 0 0 100
12:00:00 0 0 0 100
13:00:00 0 0 0 100
14:00:00 0 0 0 100
15 :00:00 5 56 30 8
16:00:01 3 68 24 5
17:00:00 0 11 10 79
18:00:00 0 0 0 100

Average 14 7 78

If we had a performance problem during the
day, we could quickly tell when it occurred us­
ing this summary report. Then, we'd ad just our
s, e, and i options to focus on the details we' re
actually interested in seeing. Instead of wading
through pages of data, we can be selective.

Conclusion
Once you get s a r configured, it can capture all
th-e performance statistics for your machine. It's
a good idea to browse through the man page for
s a r a few times to acquaint yourself with the
values it can capture. You needn't understand
all of it, especially at the beginning. To start
with, it's a good policy to become familiar with
the numbers when your system is operating
normally. Then, you'll be able to pinpoint which
system characteristics are degrading and begin
addressing the problems. •!•

Don't let your directories get too large
If you tend to create directories with many

items in them, you may be throwing away
performance without even knowing it.

This may happen frequently when you write
programs to automatically process data for you.

Keep your directories small
Whenever you, or one of your programs, ac­
cesses a file, Solaris must first locate it. In order
to do so, Solaris must find each component of

~-- Febl'llary 19_98 ________ _

the path, in order to know exactly where on the
disk drive your file is located. For example, if
you specify the file /share/work/sort.c, Solaris
starts at the root directory to find the entry for
the share directory. Next, Solaris reads from the
share directory looking for the work directory;
from there, it searches for the file sort.c.

Suppose for a moment that Solaris must
read the disk for each directory access. If a di­
rectory is small, the directory may take only

one or two sectors of disk space. However,
when you search through a large directory that
consumes more space, you have to read more
directory entries from the disk and spend more
time looking for the entry you want.

These disk reads are very expensive. If
you're trying to read a tiny file, Solaris might
spend more time looking for the file than it
would reading the file for you.

To make file access as speedy as possible,
Solaris maintains two levels of buffering. First,
frequently used disk sectors are cached in
memory, because once you use a file, chances
are good that you'll need to access it again soon.
The second level of buffering is the directory­
name lookup cache. This is simply a buffer that
contains information about the starting location
of frequently used directories.

When you access a directory that's not in
the buffers, normally Solaris goes through the
process we've described to locate the directo­
ries. In doing so, it buffers the disk sectors it
read to accomplish the task and creates an en­
try for the directories it searched through.

The problem with large directories is that
when Solaris searches through them for a speci­
fied entry, it may have to read multiple sectors
from the hard drive. Since the disk sector buffer
is a limited resource, it will overflow, and Solaris
will begin discarding sectors to make room for
the new ones.

This, then, is the major problem with large
directories. The larger the directory, the more
information gets discarded, slowing down all
processes as Solaris is forced to re-read sectors
from the disk drives. Even worse, when a di­
rectory becomes really large, the directory itself
might overflow the buffer. Thus, even access­
ing the same directory may force Solaris to
re-read data from the disk.

What's the limit?
So, how many files can you place in a subdirec­
tory before performance penalties accrue? We
can't give you a hard-and-fast answer. First,
only you can determine what performance
tradeoffs you're willing to make. Second, direc­
tory entries aren't of a fixed size. They vary
primarily on the length of the filename. For ex­
ample, a directory containing five files named
a, b, c, d, and e could take less space than a di­
rectory containing a single file with a name
such as GNU_gcc_v2.7.2_Pentium_Optimized_
Solaris_2.5.l_i386.pkg.tar.gz.

http://www.cabb.com/sun

Here, a quick check reveals that the cur­
rent directory contains 155 files, while sys
contains 400.

S for Jin 'ls -as1F lgrep /S lawk '{print S2}''
> do echo "'ls SJ lwc -l' SJ"
> done

155 . /
40 .. I
5 arpa/

• • •
50 rpcsvc/
6 security/

400 sys/
4 tnf /

15 vm/
18 xf n/

The sys directory averages 25 directory entries
per block, and since a block is 512 bytes, the
directory entries average 25 bytes. Remember,
though, the length of each directory name is
proportional to the length of the filename, so
directory entries with longer filenames will
take more space.

Conclusion
It may not matter if a directory is large if you
use it infrequently. However, the directories
that you use often should be kept small to

r ~

Quick Tip: The best way to determine the size of your direc-
tory is to use the ls -as command. If you have plenty of nor­
mal files intermingled with some of your directories, you can
filter the output with grep, telling ls to display only one col­
umn (-1) and to add a I to the end of directory names (-F).
Then you can pipe the result to grep, telling it to display only
lines ending with a /, like this:

S cd /usr/include
S ls -as1F I grep /S

6 ./
2 .. I
2 arpa/
• • •
2 rpcsvc/
2 security/

16 sys/
2 tnf /
2 vm/
2 xf n/

Listing the /usr/include directory, as we did here, shows that
the /usr/include directory itself (i.e., the . I entry) consumes six
blocks, and the other large directory, /usr/include/sys, con­
sumes 16 blocks.

Inside Solaris Ill

keep the system running at its peak. Typically,
you can arrange such a directory as a hierar­
chical structure, breaking it into several
smaller directories and distributing the files
among them in a structured fashion.

For example, if you have many users, but
only a few log in at any given time, you may
want to divide your user-account directory
into multiple pieces. Thus, if you typically
place user accounts on /acct, you might break

.. I' . ./,. . . , ·.
iJ U l C.il 'f RICK

up the directory into /acct/a, /acct/b, /acct/c .. . ,
and use the first letter of the account to select
the directory in which you'll put the user
account.

Remember, each sector of directory infor­
mation that Solaris reads in forces other data in
memory to be discarded. Keeping your direc­
tories smaller can help you keep your data
in RAM and give you the highest possible
performance. •!•

Compressing your tiles to save
disk space
As we mentioned last month in the article

"Using find to Locate Unneeded Files,"
you never seem to have enough space

on your disk drives. While they're relatively
inexpensive, there's no point in wasting space.
You may want to compress your little-used
files so they'll consume less disk space.

Compressing your files
File compression is done all the time on the
Internet. It saves disk space on the servers,
and it decreases the time it takes to transfer
the file. You've probably already downloaded,
uncompressed, and used files in this way.

You can use several programs to compress
your files. Two that come with Solaris are pack
and compress. The pack command is older and
doesn't compress a file as tightly as compress
does, so now it's rarely used. (In fact, the man
page for pack claims that text files are reduced
to 60-75 percent of their original size, while
compress' man page claims reductions to 50-60
percent.) When you compress a file with pack,
it appends a .z to the end of the file so you can
tell that it's a pack file.

Sun's standard file-compression program
is the compress program. When Sun supplies
patches, drivers, etc., they're often compressed
with compress. You can easily recognize a file
compressed with compress because it appends
a .Z to the end of the filename.

Compatibility: a heavy burden
One problem with compress is that it's written
to be compatible with other versions of UNIX,

-----· February 1898

as well as different revisions of the same UNIX.
Because of this, compress hasn't been updated
to take advantage of the latest compression
technologies.

The GNU project, which creates wonderful
free software, created its own file-compression

Quick Tip: If someone renames the file and
doesn't preserve the extension, you may
not recognize whether or not the file is com­
pressed, or even what program was used .
This frequently occurs when you transfer
files between Solaris and MS-DOS or Win­
dows computers. Often the case of the ex­
tension is changed, so it's easy to mistake a
compressed file for a packed one, and vice
versa. Typically, you'll notice this situation
when you try to decompress the file, in which
case the program will complain that the file
is in the wrong format, with these lines:

S uncompress B
B.Z: not in compressed format

In any case, if you can't determine what type
of file you' re dealing with, you can use this
file command to decipher the file types:

s file•
A: USTAR tar archive
B.z: packed data
C.Z: compressed data block compressed 16
bits
D.gz: gzip compressed data - def late method ,
orig i n al f i le name

utility, called g z i p. Since g z i p is newer, it takes
advantage of more recent compression algo­
rithms. You can recognize a g z i p file because
it will add a .gz to the end of the file after it's
compressed. (Please note: If the filename ends
with .tar, and it's too long to add .gz to the end,
g z i p will replace the .tar extension with .tgz.)

Another benefit gz i p offers is that it con­
tains a tag that specifies the algorithm used to
compress the file. This way, rather than having
to write a brand-new program when someone
creates a new compression algorithm, you can
just add a new tag and the appropriate code to
g z i p to support it.

Because g z i p can support multiple com­
pression algorithms, it examines the file you're
going to compress to decide which compres­
sion algorithm works best on your data. Thus,
you'll get better compression if you use g z i p to
compress your files.

For example, we compressed a file with
pack, compress, and gzi p using the following
code:

$ cp A B; pack B
pack: B: 21.5% Compression
$ cp A C; compress C
$ cp AD; gzip D
$ ls -s 1
total 32448
12160 A
9552 B.z
6528 c.z
4208 D.gz

After fiddling around with a calculator for a
few moments, we found that compress squeezed
out 46 percent, and g z i p squeezed out 65 per­
cent of the file, saving 4MB. (We saved more
than 8,000 blocks of 512 bytes.)

You can get g z i p, in either source code or
binary form, from many places on the Internet.
The sunsite .queensu .ca/ sun/ safaris _2 .5 .html site
provides it in pkg add format for SPARC ma­
chines, while for x86-based machines, the
equivalent page is sunsite.queensu.ca/sun/
solaris_2.5_x86.html.

Compressing a directory
Frequently, you'll find that files you no longer
need are grouped together in directories. Then,
you want to compress all the files in a directory.
However, none of the tools we've discussed
works directly on a directory, though gz i p
comes close since it allows you to recursively
traverse a directory structure and compress all
the files found there.

http://www.cobb.com/sun

If you're stuck with using compress or pack
to compress the files, you can effectively do the
same by using the find command to locate the
files, then pass them (via xargs) to the compres­
sion program. When you do, be sure to specify
the-type f option to ensure that you only try
to compress files, like this:

$ find /opt/SUNWddk -type -print
> xargs compress
$ du -s JS
42161 JS

The good side of this directory compres­
sion technique is that it's quick and simple.
You also have all the files in their original loca­
tions, so you can easily locate the file you want
and uncompress it.

If you're going to archive the file to tape,
you'll probably want to archive the directory
first, then compress the archive file. Afterwards,
you can remove the original directory. For
example:

tar cf JS_tar JS
ls -s JS_tar
69048 JS_tar
gzip JS_tar
ls -s JS_tar.gz
28936 JS_tar.gz
rm -rf JS

You'll notice that the uncompressed
archive file (69,048 blocks) is slightly smaller

Quick Tip: You might choose not to com­
press a directory if you won't gain much for
your efforts, so you need to know in advance
the total size of the directory. You can use
the du - s command to find the size of all
the files measured in 512-byte blocks. You
can print out the space in 1KB blocks by
adding the -k option:

$ du -s JS
69081 JS
$ du -sk JS
34540 JS

The JS directory holds 34.SMB, so it's
a worthwhile candidate for compression.
With gz i p, you can use the -r argument to
compress all the files in the JS directory and
subdirectories like this:

$ gzip -r JS
S du -s JS
28961 JS

Inside Solaris

than the directory (69,081). This is because tar
packs the files closely together in a single file
and has no inodes to worry about. On a file
system, each file takes up space in fixed-size
blocks (e.g., 512 bytes, 1KB), so the last block
of each file usually has a little space left over.
In a tar archive file, the next file may begin
immediately after the preceding one ends, so
there's no wasted space.

The compressed archive file is a single file,
suitable for writing to tape. If you want to re­
store the directory, you just reverse the steps:
Use gunzi p to expand the file, then use tar to
rebuild the directory structure.

gunz i p js_tar
tar xf js_tar

Now you can work with the newly restored
files in your directory.

Quick Tip: Many programs use file extension
to indicate the file type, such as .z for packed,
.z for compressed. The tar command, how­
ever, gets the filename from you, the user. Since
a constant extension is such a useful conven­
tion, you may want to end a tar file's name
with .tar or _tar, as we did in our example.

Closing notes
Compressing little-used files is a relatively cheap
way to make large quantities of disk space
available for other tasks. If you already use
pack or compress to compress your files, then
you may want to investigate g z i p as an alter­
nate tool. If you do switch to g z i p, be sure you
recompress your files. Just decompressing
those files and recompressing with g z i p may
save you hundreds of megabytes. •:•

A simple way to synchronize the
computers on your network
M any networks run every day with ad­

ministrators unconcerned about time
synchronization on the individual

computers in the network. However, some
applications require synchronized computers.

In software development, for example, the
make command uses the time and date stamp
on the source code files to decide which files
must be compiled and which may be skipped. If
your computers lose synchronization, some
files may not be compiled when needed, and
others may compile repeatedly because the
time stamp shows that the source file is still
newer than the object file.

In our shop, we had exactly this problem.
Changes we knew had been made wouldn't
make it into the latest test release. Similarly,
some compile cycles would take far too long.
We finally tracked this problem down to its
source: the drifting clocks between computers.

Centralized time management
Once we tracked down the problem, we set the
date on all the computers and went off to de­
velop software. A couple of months later, the

problems began again. This time, we decided
to completely eliminate the problem.

Our first attempt was to create a cron job
on the time server that uses the remote shell
(rs h) command to execute the date command
on each computer we wanted to synchronize,
like this:

rsh Zeus date 1005

However, this technique has a couple of minor
problems. First, we may not have an account
on each of those computers, so we must specify
the account on which we want to log in. Second,
only the root account may change the time on
the computer, and we want to keep the root ac­
count secure with a password. Since we have a
password on the root account, we can't just tell
rs h to execute the date command as root on the
remote computer, using the command

rsh Zeus -l root date STIME

To solve the first problem, we created a
specific user account, named time, to run the
date command. We then made the date com­
mand always run as if it were the root user. To

do so, we turned on the suid permission bit­
as well as the execute permissions for the date
command-on each computer, like this:

chmod 4711 /usr/bi n/date

Making these concessions gives us the
TimeSync script, as shown in Listing A.

Listing A: TimeSync script

#! /bin/ksh

#Get the current time on this machine, the
'Time Server'.
TIME='date '+%m%d%H%M' '

#Set the time on all t he client machines
#using the time acc ount.
rsh Zeus -l time date STIME
rsh Hydra -l time date STIME
rsh Cerebus -l time date STIME
rs h Loki - l t i me date S TI ME
rsh Thor -l time date STIME

Now we have a centrally managed method
to synchronize time on the network. However,
a user can still set the time and date on an indi­
vidual computer, potentially wreaking havoc.
Also, since we made the date command run as
root, we opened a possible security loophole.

We could easily fix these problems by
making a new copy of the date command and
placing it in a secure area that only the time
account could access. Instead, we decided to
make each user responsible for synchronizing
his or her own computer to the time server as
the user may desire.

Distributed synchronization
Placing the responsibility for computer syn­
chronization on the user turned out to be a bet­
ter solution for us. This way, we could publish
a method that anyone wanting synchronization
could use, and we relied on the software devel­
opers to administer themselves in this regard.

The method we used to do this was very
similar to the one we just described. But rather
than making the server use rs h to execute the
date command on all the clients, we make each
client ask the date from the server, like this:

rsh Mercury date

Again, we don't want to put every possible
user account on our time server, so we created
the time account itself on it. Now, everyone

http://www.cabb.com/sun

can use the same account to find the current
"correct" time like so:

Srsh Mercury -l time date
Mon Nov2 12:35:54 EST 1997

At this point, we only need to make the
local computer set the time to the value just
stated by Mercury, our time server-a simple
enough process. If we pass the proper format
string to the d a t e command on Mercury, then
we can pass the results directly into the date
command on the client machine.

We opted to use the full precision offered
by Solaris. Thus, when we install a computer
on the network, we needn't worry about set­
ting the date or time at all. It may be set auto­
matically to the correct date, from the century
to the second. Our statement that gets the cur­
rent time from Mercury looks like this:

rsh Mercury -l time /usr/xpg4/bin/date
+'%m%d%H%M%C%y.%S'

Please note that we're using the XPG4
version of the date command to get the cen­
tury (%C) from date. If you didn't install the
SUNWxcu4 package, you don't have this ver­
sion of the date command. In that case, go
ahead and use the standard d a t e command,
and use 19 instead of %C in the format string.
(Don't forget to change it in two years!)

First, we create a script file, named Sync.
This script reads the time from the time server
and sets the local time, as shown in Listing B.

Listing B: Sync script

#! /bin/ksh

Ensure that we're using the XPG4 version of date
#(it supports the %C format specifier).
DATE:/usr/xpg4/bin/date

#Specify the host and account that will provide
the ' correct ' date and t i me .
TSRV="Mercury -lTime"
TIME='rsh STSRV SDATE +'%m%d%H%M%C%y.%S'
date STIME

We're almost finished. All that's left is to
periodically run the Sync script to synchronize
the computer to our reference computer. Again,
only the root account may set the date and time
on a machine. In this case, however, there's no
problem. Since the root account already runs
several cron jobs, we'll just add another one to
periodically set the date and time. So simply

Inside Solaria

SunSoft Technical Support

(800) 786-7638

PERIODICALS MAIL

Please include account number from label with any correspondence.

add a crontab entry that runs our Sync script
every hour, as in the following line, and never
again be bothered about the time:

0 • • • • /usr/local/Sync

NTP
These two methods of synchronizing the time
on your computers are certainly very simple.
However, the synchronization achievable with
these techniques is only accurate to within a
second or two of your time server. And just how
well does your time server keep track of time?

Solaris 2.6 brings plenty of new features to
the table. One of these is the NTP protocol for
time synchronization of multiple computers on
a network. Using NTP, you can synchronize
your computers to amazingly tight tolerances,
since this protocol even performs some adjust­
ments for network delays on your network.
(Please note: You can also get NTP in source
code form, so you can install it on any version
of Solaris.)

One of my team downloaded a copy of
xn t p, which is a freely available program that

implements the NTP protocol for synchroniz­
ing time on a network of computers. It's a very
powerful tool, but much more than we really
need, especially when some of the network
computers were relatively underpowered with
no RAM to spare for yet another application.

Consequently, we decided to run x n t p on
only one computer, having it keep track of the
correct time on one of the available time ser­
vers on the Internet. Then, we used this as our
time server and used our simple synchroniza­
tion scheme for all the other computers on our
network.

Summary
Many networks don't really need to worry
about time synchronization. For many of those
that do, tight precision isn't a necessity-a few
seconds either way isn't significant. For these
applications, one of our synchronization
schemes is simple to implement and use.
However, those applications that require more
precise synchronization should consider NTP,
even though it brings more complexity and
overhead with its improved precision. •:•

APe you an aspiring author?
Do you have a great article idea? Are you

working on a killer Solaris project that
you'd like to show the world? Have you al­
ways wanted to see your name in lights? If so,
it's time to express yourself!

Inside Solaris is searching for writers who
can provide finished articles, short productiv­
ity tips, or Solaris code for publication. Con­
tributing to Inside Solaris is a great way to
hone your skills as a technical writer, while
gaining exposure in the Solaris development
community.

February 1888

Share your Solaris expertise with developers
around the world by contributing to Inside
Solaris journal. If you'd like to submit an article
for review, contact us at:

Inside Solaris
Editorial Submissions
9420 Bunsen Parkway, Suite 300
Louisville, KY 40220

or E-mail us at:

inside_solaris@zd.com.

O~"'\ Printed in the USA. '2iv This journal is printed on recyclable paper.

