
December 1997 • $11.50
Vol. 3 No.12

: IN THIS· ISSUE -
I

1

Displaying a directory tree
with find and sed

4

Finding a file just a few
minutes old

6

What do you do when
the system is working?

7

Customizing your X
windows programs

9

Some hidden COE man pages

11

Screen savers can be
a bad thing

11

Using your boss' computer

12

Potential security loopholes

14

Which package does this
file belong to?

15

Creating infinite loops with
the while command

Vlsn our web sne at
://www.cobb.com/sun/

~T~~·c~BB GROUP ~ ~

INSIDE;~
OLARIS™

TiJ?~ & technTq~es for users of SunSof t Solaris

Displaying a directory tree
with find and sed
by Alvin J. Alexander

We often run into situations
where we need to see a
tree-like view of our file

systems. Being able to see our file
systems in such a way is helpful
when we're looking for a lost file
or when we're trying to see how
another user or company has orga­
nized a particular file system.

Although Solaris doesn't come
with a built-in tree command, we'll
demonstrate how you can use Solaris'
f i n d and s e d commands in a single
pipeline to create your own custom­
ized tree utility. We'll also see why
sed is such a powerful command.

Tree-command output
To see where we want to be, let's
look at how we want our tree out­
put to appear. Figure A shows how
we want the output to look when
we use our new tree command to
view the directory /home. We cre­
ated this output by typing tree I
home, where aja is the only sub­
directory of the /home directory.

In Figure A you can see that the
/home directory is at the top of the
listing, and aja is a subdirectory of
/home. Beneath aja are several other
subdirectories, including menus,
cobb, bin, lib, tmp, and customers.
Now that we have our vision of the
output we want to generate, let's
create our program.

Figure A

_home
:_aja

:_menus
_cobb

bin
lib

1997
:_may
:_jun
:_jul
:_aug

:_tmp
:_customers
I
I

I
I

:_ge
: ford
_kfc
_asl

A tree command can show you a simple
graphical representation of your file-system
hierarchy.

Finding the directory
structure
First, when building our tree com­
mand, we must determine the file
system's tree structure. It turns out
that you can use the f i n d command,
specifying the - type d option, to
print out a list of the directory
structure. No further options, other
than the usual -pr i n t, are required.
Therefore, we'll use this basic f i n d
command for our tree script:

find SdirToSearch -type d -print

Notice that we're using a
variable named di rToSearch in this
command. We're putting a variable

Inside Solaris (ISSN 1081-3314) is published monthly by
The Cobb Group.

Prices
U.S $115/yr ($11.50 each)
Outside U.S $135/yr ($16.95 each)

Phone and Fax
US toll free (800) 223-8720
Local (502) 493-3300
Customer Relations fax (502) 491-8050
Editorial Department fax (502) 491-4200
Editor-in-Chief (502) 493-3204

Address
Send your tips, special requests, and other correspondence to:

The Editor, Inside Solaris
9420 Bunsen Parkway
Louisville, KY 40220
Internet: inside_solaris@zd.com.

For subscriptions, fulfillment questions, and requests for group
subscriptions, address your letters to:

Customer Relations
9420 Bunsen Parkway
Louisville, KY 40220
Internet: cobb_ customer _relations@zd .com

Staff
Editor-in-Chief Marco C. Mason
Contributing Editors Al Alexander
Print Designer Margueriete Winburn
Editors Karen S. Shields

Joan McKim
Publications Coordinator Linda Recktenwald
Managing Author Eddie Tolle
Product Group Manager Michael Stephens
Circulation Manager Mike Schroeder
Publisher Jon Pyles
President John A. Jenkins

Back Issues
To order back issues, call Customer Relations at (800) 223-
8720. Back issues cost $11.50 each, $16 .. 95 outside the US. We
accept MasterCard, Visa, or American Express, or we can bill
you.

Postmaster
Periodicals postage paid in Louisville, KY.
Postmaster: Send address changes to:

Inside Solaris
P.O. Box 35160
Louisville, KY 40232

Copyright
Copyright© 1997 The Cobb Group, a division of Ziff-Davis Inc.
The Cobb Group and The Cobb Group logo are registered
trademarks of Ziff-Davis Inc. All rights reserved. Reproduction in
whole or in part in any form or medium without express written
permission of Ziff-Davis is prohibited. The Cobb Group reserves
the right, with respect to submissions, to revise, republish, and
authorize its readers to use the tips submitted for personal and
commercial use. Information furnished in this newsletter is
believed to be accurate and reliable; however, no responsibility
is assumed for inaccuracies or for the information's use.

Inside Solaris is a trademark of Ziff-Davis Inc. Sun,
Sun Microsystems, the Sun logo, SunSoft, the SunSoft logo,
Safaris, SunOS, Sunlnstall, OpenBoot, OpenWindows,
DeskSet, ONC, and NFS are trademarks or registered trade­
marks of Sun Microsystems, Inc. UNIX and OPEN LOOK are
registered trademarks of UNIX System Laboratories, Inc. Other
brand and product names are trademarks or registered trade­
marks of their respective holders.

at this point in the find command
to make our program more flexible.
We want our shell script to be flex­
ible so an end user can use the tree
command in any of these ways:

S tree
$ tree /home
$ tree /home /user /bin

Within our tree script, we'll test
to see how many command-linear­
guments the user has supplied by
checking the Bourne shell variable
$#. For instance, if the user types

$ tree

then the number of command-line
arguments is zero, and we'll assume
that our user wants a tree view of
the current directory. In this case,
we'll set di r T oSe arch as follows:

dirToSearch=.

If the number of command-line
arguments is greater than zero, we'll
assume that the user has specified
one or more directory names on
the command line. So we'll set
di r T oSe arch equal to the number of
command-line arguments the user
supplied. We'll do this with the
Bourne shell variable S., which
contains the actual command-line
arguments the user entered:

dirToSearch=S•

With these decisions in mind,
the first cut of the source code for
our tree utility looks like this:

#!/bin/sh

i f [$# -gt 0
then

dirToSearch=S•
else

dirToSearch=.
f i

find SdirToSearch -type d -print

The final line in our program runs
the desired f i n d command. The
only problem with using the f i n d
command is that when we run our

~-• December 19_97 ________ __.

script, we get the output shown in
Figure B rather than the tree out­
put we want:

Figure B
/home
/home/aja
/home/aja/menus
/home/aja/cobb
/home/aja/cobb/1997
/home/aja/cobb/1997/may
/home/aja/cobb/1997/jun
/home/aja/cobb/1997/jul
/home/aja/cobb/1997/aug
/home/aja/bin
I home I a j a /l i b
/home/aja/tmp
/home/aja/customers
/home/aja/customers/ge
/home/aja/customers/ford
/home/aja/customers/kfc
/home/aja/customers/asl

The output of our t; nd command shows the
directory hierarchy, but it's not what we want.

The repeated information is just
too dense, so a minor change in a
directory name might not be imme­
diately apparent. Drawing the di­
rectory structure as a tree makes it
simpler to see the hierarchy of our
file system when we look at it. So
we must find a way to format the
data so it appears the way we want.
This is where sed comes into play.

Reformatting the
directory tree
If we wish to have sed to reformat
our output, we must design the ap­
propriate transformation rules. We
formulated our set of rules by com­
paring what we have to what we
want. At first glance, how to get
what we want isn't readily appar­
ent, but if we compare our output
one line at a time, the process gets
a bit simpler. This line shows what
we get with the f i n d command:

/home/aja/cobb

Here's what we really want:

__ cobb

After some consideration, we
find that we can transform the line

using rules. First, we'll convert any group of
characters followed by a forward slash into a verti­
cal bar followed by four underscores. Running the
output of f i n d through this rule converts the
output in Figure A to that shown in Figure C.

Figure C
__ home

l __ l __ aja
______ menus
______ cobb

l __ I ____ 1 __ 1997
I __ l __ l __ l __ l __ may
I __ l __ l __ l __ l __ j un
l __ l __ l __ l __ l __ j u l
l __ l __ l __ l __ l __ aug
______ bin
___ lib

l __ l __ l __ tmp
l __ l __ l __ customers
l __ l __ l __ l __ ge
l __ I ____ l __ f ord
__ I ______ kf c
________ asl

Converting a group of characters followed by a slash into
four underscores and a vertical bar improves the output,
but we're not finished yet.

As you can see, with just the first rule,
we're almost there. However, the horizontal
lines don't suggest the appropriate grouping
that we want. The first rule indiscriminately
ties each filename all the way to the leftmost
vertical line, indicating that the file is placed in
the starting directory.

Our output just isn't treelike yet. So now
we must formulate our second transformation
rule. Again, let's examine the line we have and
compare it to what we want. We have

______ cobb

and we want

__ cobb

The second rule was easier to deduce. We
want to keep only the underscores before the
filename and convert the rest to spaces. Since all
other underscores precede a vertical bar, we'll
simply convert all groups of underlines followed
by a vertical bar into spaces to get the results we
want. This operation converts Figure C into
Figure A. (Please keep in mind that this is only
one possible method. You may implement a
different technique for your environment. You
might include error-checking, for example,
which we're ignoring for our example.)

http://www.cobb.com/sun

Implementing the rules
Now that we know the transformation rules
we want to use, all that remains is to apply
them. When we pipe the output of the f i n d
command through sed, we use the -e option
to enforce our rules. Our first rule for the s e d
command is easily the most complicated. It
looks like this:

The s tells sed that we're going to create a
substitution rule. The semicolon tells sed that
we're using semicolons as our delimiters. So,
in effect, we're telling sed to find the pattern
["'I]•I and replace it with l __ . (The pattern
matches any collection of characters followed
by a forward slash.) Finally, we use the g flag
to tell sed to apply the rule each time the pat­
tern occurs on the line.

Quick Tip: Most people use a slash (/) as the
delimiter for s e d commands. However, if
you' re using a slash in your regular expres­
sion, you must escape the slash inside your
regular expression. In cases like this, it's
much easier to use an alternate delimiter for
sed. You may use any character other than a
backslash(\) or newline for your delimiter.

We can test our s e d command by typing the
following command, which provided us with
the output shown in Figure C:

S find /home -type d -print I sed -e
•'s;[A/]•/; l __ ; g'

Now we need only add our second trans­
formation rule to convert the output to the
form shown in Figure A . Our second rule sim-
ply converts the pattern " __ l" into " I",
using the s e d command:

s; __ I; l;g

We can read this code as "search for a pattern
of four underscore characters followed by a
vertical bar; if you find this pattern, replace it
with a series of four blank characters followed
by a vertical bar."

We can add the second rule by appending
it to the end of our first rule, separating the
rule with a semicolon, like so:

sed -e 's;[A/1•/;l __ ;g;s; __ I; l;g'

After applying these rules, we'll see the results
we want.

Inside Solarls

Listing A: tree shell script

#! /bin/Ksh

tree
#Draw a tree-structured directory hierarchy
#usage: tree <dirToStart>

if [$#-gt 0]
then

dirToSearch=S•
else

dirToSearch=.
f i

find SdirToSearch -type d -print I \
sed -e 's;[A/J•/;l __ ;g;s; __ l;

I , :
FIND TIP

I

I; g I

Building the tree script
Now we simply put the code together into
a shell script so we can use it whenever we
want. Our new shell script, named tree, is
shown in Listing A. When we use our tree
command on our /home directory, the output
generated by our tree command is shown in
Figure A.

Conclusion
The tree command can be a useful utility to
have in your administration arsenal. Also,
building our own tree command demonstrates
a real application of the sed command. •:•

Finding a file just a few minutes old
by Alvin J. Alexander

ou glance at the clock just as it strikes
2:00 p.m.; it looks like you'll survive
another Monday. While working at the

server console, you relax a little and sip an
afternoon java (the beverage, not the current
computer fad). Suddenly-without warning­
you notice that the system seems to be slowing
down. You see the lights flickering furiously
on the 20GB disk array. You wait, but the flick­
ering shows no signs of slowing down. A
quick check of the p s command fails to show
anything significant. "Something' s wrong,"
you mumble, as your pulse quickens.

Thus begins an anxious moment in the life
of an administrator. As you watch, it appears
as though a rogue process and a runaway file
are rapidly consuming the free space on a file
system. The question is, can you find the file
and the process, or must you wait until some­
thing breaks?

Defining the problem
Because we can't identify any processes gone
bad, we decide that the best approach is to use
the find command to locate the runaway file.
Although we don't know the name of the file
or the user who has turned loose the rogue
process, we do know that the symptoms began
just a few moments ago, at 2:00 p.m. Searching
for files by looking at their creation or modifi­
cation times seems to be the answer .

.______. Oec_e_mb_e_r_1e_e_1 ________ _

Find's -atime, -clime, and
-mtime options
System administrators quickly familiarize
themselves with the -at i me, -ct i me, and -mt i me
options of the find command in order to locate
files by date range. These options are conve­
nient to use and rather flexible.

The - a t i me option allows you to specify
the time the file was last accessed, -ct i me lets
you specify when the file was created, and
-mt i me lets you specify when the file was last
changed. They all work identically and take a
numeric argument, days, like this:

S find I -atime days

If days starts with a plus(+) symbol, you're
specifying files more than days old; if it begins
with a minus sign(-), you're specifying files
less than days old. If it's just a number, you're
specifying files exactly days old.

The only problem is that on a computer
with a large file system and many users, you
could wade through a tremendous number of
files, using such a coarse resolution as a day.
In our example, with half the day gone and
the system failing, the command

S find I -mtime -1 -print

may find a lot of extra files that we don't have
the time to examine. So, can we search only for
files that have been created or modified in just
the last 20 minutes?

The solution
Thankfully, the answer is yes. To search for files
modified after a certain time, you can follow a
two-step process. First, you create a file whose
modification timestamp is the desired time,
then you can use the find command's -newer
option to locate any files newer than this file.

Returning to our example, suppose we
decide at 2:10 p.m. to start looking for the file
that seems to be growing without bound. Since
we noticed the problem at 2:00 p.m., we'll cre­
ate a file with a timestamp of 1 :50 p.m.

Creating a file ol the right age
You can create a file with the appropriate modi­
fication date and time with the touch command.
If you haven't used the touch command before,
you'll see that it's a unique command you can
use to update the timestamp on files. Using
touch, you can make a file look very old or very
new, just by changing its access or modification
time. You might do so for a variety of reasons,
from updating the timestamp of old files to in­
clude them in tape backups, to touching a file
so that make will notice the new date and recom­
pile a file.

The touch command normally allows you
to set the modification date and time of a file to
the current date and time, using the syntax

$ touch filename

If the file doesn't exist, touch creates it.
However, we don' t want a file with the

current time; we want one with a previous time.
Fortunately, the touc h command provides the
- t option to set the last-accessed date and time,
and the -m option to set the last-modified date
and time. When we specify the time with touch,
we must specify at least the month, day, hour,
and minute. (See the man page for touch for fur­
ther details.) So, we can use the touch command
to create an empty file in the /tmp directory
with a modification timestamp of 1:50 p.m.,
like this:

$ touch -mt 08301350 /tmp/empty_f i le

Looking at the file with the ls - l command,
we can verify that it has the proper timestamp:

S ls -l /tmp/empty_f i le
-rw-r--r-- 1 root other 0 Aug 30 13:50
._/tmp/empty_f i le

Finding newer files
The second step in our search for the runaway
file is to use the find command with the -newer
option. We tell f i n d to locate any files in the

http://www.cobb.com/sun

local file system that are newer than our /tmp/
empty_Jile, which appears to have been modi­
fied at 1:50 p.m.:

S find I -newer /tmp/empty_fi le -local -print

Notice also that we add the - local option
to our command, telling f i n d not to check any
NFS file systems. It's obvious that our local hard
disk is churning, so we don't want to waste
time looking elsewhere on NFS-mounted file
systems. We can also add the - type f option to
tell find to locate only normal files and ignore
directories, links, and other file-system objects.

Once the f i n d command locates the new
file, we can identify the user and process that
created the runaway file. If it really is some
type of runaway process, we can terminate the
process and remove the file.

Extending the technique
As you can see, the -newer option is a powerful
feature of the find command. You'll notice that
the -at i me, -ct i me, and -mt i me options allow
only a resolution of whole days. By combining
the touch command and the -newer option, you
can have greater control over the files you lo­
cate with the find command.

Suppose you want to find a file that some­
one was editing during lunch break on Wednes­
day (three days ago). Rather than examining
the entire list of files modified three days ago
with the -mt i me 3 option, you can create two
empty files: /tmp/before, whose modification
time is before the user began lunch on Wednes­
day, and /tmp/after, whose modification time
is after lunch was finished. Then you can
tell find to locate all the files newer than /tmp/
before, but not newer than /tmp/after with these
commands:

$ touch -mt 08271145 /tmp/before
$ touch -mt 08270115 /tmp/after
$ find I -newer /tmp/before ! -newer /tmp/after
---local -print

Conclusion
The combination of the touch and f i n d
commands is so good at locating files modi­
fied within a precise time period that we
use it almost to the exclusion of the -at i me,
-ct i me, and -mt i me options. To identify files
that change during particular shifts, or when
the one-day level of granularity of the -at i me,
-ct i me, and -mt i me options of the find com­
mand is insufficient, we recommend using the
touch command in conjunction with f i nd's
-newer option. •:•

Inside Solaria

I
.
- '

FUN 'JU' GAMES
I
I

What do you do when the system
is working?

Figure B

We all know that the best time to take
care of things is when your system

is working-before anything' s broken.
However, if you keep your system working

Figure A

The xsol program presents an interesting challenge
in arranging patterned rectangles.

- - -- - -- - - t --- - - -- ----50rj.:r - - - - - - ~ - I f

~ ~) Help •) .£!!!..:.! Name: H=arc=-oc=. M=as=on __ _._..,._

DJDDDDDD

The spider program offers more challenge in the guise of more rectangles and
different movement rules.

December 1997

perfectly, you'll eventually find yourself in a
strange and rare predicament: You'll have
something known (by people other than sys­
tem administrators) as free time. For those of
you who are unfamiliar with this concept,
we'll explain what free time is and what you
can do with it.

What's free time?
As a system administrator, you probably haven't
had any free time before. So how do you recog­
nize it, and what do you do with it? While the
formal definition of free time is complex and
hard to understand, you can detect it with this
simple method: When you've completed all
the tasks required for the day, look at the clock.
If it's well after quitting time (the usual case),
you have no free time, thus no bothersome
worries about what to do with or about it.

However, it's possible that the clock will
indicate a time before quitting time. Now you're
in that strange zone we call free time. So what
do you do with it? Obviously, more work! You
could get a head start on some of the chores
you've scheduled for tomorrow. However,
don't be tempted to fall into this trap! If you suc­
cumb to this temptation, you'll probably have
the same problem tomorrow!

You may as well face your fate now. So,
what to do? Some advocate taking a long
lunch, but this is rarely acceptable since free
time usually occurs well after lunch. However,
if you're really hungry, you might try it.

Suitable programs
Solaris provides a couple of programs to help
you consume your free time in a productive
manner. If you've installed the SUNWo l demand
SUNWxwd em packages, then you have two suit­
able programs with which to consume your
free time. Both programs use skills with which
you're already proficient, i.e., clicking and
dragging, so you needn't learn any new skills
to operate them.

However, the first of these programs, x sol,
presents a challenge to your administrative
skills. It displays a somewhat chaotic arrange­
ment of colored rectangles, shown in Figure A,
that you must organize. Moreover, you must

move these rectangles according to the rules
specified in the x sol man page, which can
make the task particularly difficult.

Once you've mastered these skills, you
may want to try the s pi de r program, as
shown in Figure B. It's considerably more
interesting and challenging, since it presents
even more colored rectangles (104, as op­
posed to 52). Its user interface is quite pleas­
ant, making it less tedious to operate. Also,
the rules are similar, but different enough

SYSTEM CU~TOMIZATION
I

that it will continue to challenge you even
after you've mastered xso l.

Summary
As a system administrator, you're used to fac­
ing difficult situations with confidence. How­
ever, unfamiliar situations can still have you
reaching for a manual. In the event that you're
ever faced with that rare dilemma called free
time, we hope that we've helped you find an
appropriate solution to it. •!•

Customizing your X windows programs
The CDE Style Manager offers many cus­

tomization options you can adjust so that
your system will look just the way you

want. However, it doesn't always offer you the
options you'd like. Your CDE programs are
much more configurable than you'd guess after
using the Style Manager. In this article, we'll
introduce you to some of the basic features that
X windows offers for configuring your system.

Resources and widgets
X allows you to customize almost everything
on your display. Each application window is
built from various widgets, such as buttons,
text boxes, scroll bars, and menus. Some of
these widgets may, in fact, be built from other
widgets in a hierarchical fashion. Each widget
has a name to identify it. For example, the hier­
archy of widgets for the CDE text editor (from
the dtpad man page) is:

dtpad (Dtpad)
main (Main Window)

bar (MenuBar)
fileMenu (PulldownMenu)
editMenu (PulldownMenu)
formatMenu (PulldownMenu)
optionsMenu (PulldownMenu)
helpMenu (PulldownMenu)

editor (DtEditor)

So the dtpad application is built from a
Main Window widget named main. Then main
is built from two widgets: bar (a MenuBar wid­
get) and editor (a DtEditor widget). The bar
widget, in turn, contains five widgets, each of

http://www.cobb.com/sun

Figure A

fileMenu
editMenu

formatMenu
option Menu

The dtpad application is built from various widgets, as you see here.

which are Pulldown menu objects: fileMenu,
editMenu, and so on. Figure A shows a d t pad
application where we've labeled some of
the widgets.

Some of these are standard widgets, such as
Main Window, MenuBar, and PulldownMenu.
Many X applications also create their own wid­
gets. For example, the DtEditor widget is the
heart and soul of the dtpad application, and it
handles all the editing. The StatusBar may also
be a custom widget.

All standard X widgets have a set of con­
figuration options, called resources, that gov­
ern their appearance and behavior. Similarly,
the applications have resources available for
customization.

How are resources accessible?
The Style Manager application works by modi­
fying a database of resources used by various
applications. When you choose colors, fonts, a
keyboard, and mouse characteristics, you're
simply telling the Style Manager to make the
appropriate modifications to its database.

Menu Bar
helpMenu

editor

Inside Solll'is •

The resource database that the Style
Manager edits is named ~/.dt/sessions/current/
dt.resource. If you examine it, you can see the
format used to store resource settings. The
designers of X decided to store the resource
settings in ASCII, which simplifies reading
through the resource settings and learning
how to use them. Figure B shows a few lines
from a dt.resource file.

Fig1re B
dtsess ion•displayResolution:
dtsess ion•sessionlanguage:
Dtwm•0•ws3•backdrop•image:
Dtwm•0•ws0•backdrop•image:
Dtwm•0•FrontPanel•geometry:
Dtwm•0•ws2•backdrop•image:
Dtwm•0•ws1•backdrop•image:
Dtwm•0•helpResources: \n\
Dtwm•0•initialWorkspace:
Dtwm•0•workspaceCount: 4

2723
c
Ankh
Crochet
+88-10
Toronto
Pebbles

ws0

•0•ColorPalette: Default.dp
•background: #AE008200C300
•foreground: #000000000000

Resource specifications in file dt.resource are in ASCII to
make them simpler to read, understand, and change.

The structure of this file is interesting.
Each line contains a resource definition where
the word on the left specifies the resource
name, and the word on the right specifies
the value of the resource.

The resource name is actually a path to a
resource, which contains asterisks as delimiters
and is terminated with a colon. When you
break the word into smaller words at the aster­
isks, the first word is usually the application
name, the last is the name of the resource being
selected, and any intermediate words represent
the widget hierarchy used to get there.

The CDE desktop is just another X appli­
cation (named d twm, for Desktop Window
Manager). If you read the man page ford twm,
it's easy to interpret the line

After specifying the d twm application, the next
word is 0, which specifies the display. Next
comes ws3, specifying the third workspace;
then the name of the final widget in the list­
the backdrop widget. The last word tells us the
name of the resource we're modifying, namely
image. The value to the right of the colon speci­
fies the value, so this line is telling us that the
image on the backdrop in the third workspace
is Ankh. The other lines are interpreted similarly.

If you want to perform any really fancy
customizations, you'll have to start searching

through your man pages to do so. First, you
must find out what widgets your applications
are built from, then read the man pages on the
appropriate widgets.

Please note that some widgets are contain­
ers that may hold other widgets, while some
widgets are built from other types of widgets.
The d twm application, for example, has a con­
tainer widget, named 0, that's a display con­
taining workspace widgets (wsO ...), each of
which contains a backdrop.

On the other hand, if you read the man page
for XmPushButton, you won't see a resource to
set the button's caption. The reason is that an
XmPushButton is built from an XmLabel, giving
the XmPushButton all the capabilities of an
XmLabel. The man page only tells you what
differentiates the XmPushButton from an
XmLabel. An XmLabel, in turn, is built on
top of an XmPrimitive, and the man page only
documents the behavior and resources that
differentiate an XmLabel from an XmPrimitive.
Likewise, an XmPrimitive is built from the
Core widget.

In fact, all widgets are built on top of the
Core widget. This is the fundamental descrip­
tion of a widget. You'll find that much of a
widget's basic behavior is specified in the Core
widget. The point is, when you want to cus­
tomize a resource for a particular application,
be prepared to dig around for a while, locating
all the documentation on the widgets and re­
sources you'll need.

The X files
So, you want to customize your applications.
First, you must decide where to put your
customizations. When you start d twm on your
system, it will look for resource definitions in
the following files, from lowest to the highest
priority:

• /usr/dt/app-defaults/$LANG/Dtwm
• ~/Dtwm
• $RESOURCE_MANAGER or ~/.Xdefaults

• $XENVIRONMENT or ~/.Xdefaults-host

The first entry, /usr/dt/app-defaults/ $LANG/
Dtwm, has the lowest priority. Any later data­
base will override the settings in this database.
Since this database affects everyone's system,
you don't want to change it unless you abso­
lutely must alter the default behavior of the
system for everyone. Normally, you'll want to
limit your changes to your machine or that of
a particular user, so you should place your

changes in one of the directories off the a ppro­
priate home directory.

Most other UNIX environments use the
~/.Xdefaults file to store customizations. Putting
your customizations here allows you to totally
erase your ~/.dt/sessions/current/dt.resources file,
regenerate it, and still keep the resource settings
for your applications. Please note, however,
that d twm uses the settings in ~/.dt/sessions/
current/dt.resources as its highest priority, so
any resources you customize in ~/.Xdefaults
will be overridden if they appear there.

An example

Figure c

~lndow £dlt Qptlons

bash$ I find the menu bar a distraction when this popup
llli ndow is so easy to access ...

Qptlons ...
J!elp

The default settings for the dt term application leave
something to be desired.

Now, let's do a simple example. When we start Figure D
the d t term application, shown in Figure C, we ---------------
begin customizing it immediately. We prefer to
turn off the menu bar, because it can occupy a $ Now that ' s more like it.

significant amount of real estate on the screen.
(Also, since we can invoke a pop-up menu
with all the same features, there's really no rea-
son to keep it.)

When I began reading the man page for
d t term, I found that the resource for controlling
the menu bar is named, appropriately enough, Now the dt term operates the way I want it to.
menuBar. So I added the following line to my
~/.Xdefaults file:

Dtterm•menuBar: false

Now I'll never need to turn off the menu bar
again. The d t term comes up just the way I
want, as shown in Figure D .

Conclusion
Don't be shy about customizing your X ap­
plications. Ultimately, the more comfortable

I
. ..

SYSTEM CONFIGURATION

you are in your environment, the more pro­
ductive you're likely to be (unless, of course,
you go overboard and spend all your time
customizing things). This customization also
pays off in other ways: You'll better under­
stand the structure of X applications and
widgets, so perhaps you'll want to create
your own X applications. •!•

Some hidden COE man pages

Everyone's misplaced something. at one time
or another. Looking for a misplaced object
can lead to a frustrating search through­

out the area until you find the item. On the
other hand, you won't search for something if
you don't know it exists!

Well, Sun seems to have misplaced the
basic man pages for CDE. Sure, you can find
the information in the help viewer, but that's
not always the most convenient way. Although

http://www.cobb.com/sun

a GUI does make some things simpler, if you
know exactly what you want, it's easier just to
type in your request.

When I've tried to read the man page for the
d t term, I've been greeted with this message:

bash$ man dtterm
No manual entry for dtterm.

Then I remember that there's no man page for
d t term, and I have to use the online help viewer.

Inside Solaris

Tiie mystery
One day, while working on a software devel­
oper's machine, I received a page from some­
one with a question on d t term. I called up the
man page for d t term, answered the question,
and went on with my work. That question led
me to a good idea for a script program, so
when I returned to my desk, I again called
up the man page ford t term to check out more
of the details. I received this familiar refrain:

No manual entry for dtterm.

Then it dawned on me! All this time, I
thought there was no man page for d t term; yet
I was looking at it not five minutes ago. Why
could I read the man page at the other machine
and not at my own? Just to verify the situation,
I logged into the other machine and was again
able to read the man page.

Tiie discovery
Now that I knew the man page existed, I decided
to find it. I knew of a trick that would find
which package a file belongs to (which we de­
scribe in the article "Which Package Does This
File Belong To?"), so I entered the command

$ grep dtterm.1 /var/sadm/install/contents
/usr/dt/share/man/man1/dtterm.1 f none 0444 bin
bin 34353 22291 811602575 SUNWdtma

I now know that the man page exists in
the SUNWd tma package. But just what is this pack­
age? I ask Solaris with the command

$ pkginfo SUNWdtma
system SUNWdtma COE man pages

I really wasn't expecting to see a package
specifically marked COE man pages. I'd have
thought that it would be part of the basic COE
instal~ation. I'd really expected the man pages
to be m a more obscure location. Now the
question became "Why don't I have the COE
ma n pages on my system?" After installing
CDE on so many systems, I've never noticed
an option for man pages. At this point, I'd for­
gotten that the computer where I found them
belonged to a software developer, or I'd have
realized that the package was in the developer
CDE packages. Instead, I used the brute-force
approach and placed the Desktop 1.1 CD­
ROM into my drive and typed

$ cd /cdrom/cdrom0
$ find . -name "SUNWdtma" -print
./CDE/PowerPC/cde-developer/SUNWdtma

./COE/sparc/cde-developer/SUNWdtma

./COE/x86/cde-developer/SUNWdtma

That's when I noticed that the man pages were
part of the CDE developer installation.

After digging around, I noticed that the
SUNWd tm~ package contains many man pages
that ordinary users might want: d tma i l, d t pad,
d t term, and others. It also contains items that
probably only a developer would want. How­
ever, I believe Sun misplaced this package
because there's another package in the COE
developer installation that contains man pages,
SUNWd tmad, which Solaris describes as

bash$ pkginfo SUNWdtmad
system SUNWdtmad COE developer man pages

All the hardcore programming man pages
reside in this package.

Installing the COE man pages
Now comes the easy part. Since I know the man
pages exist, I just need to install them on my
machine to have access to them. Once we've
mounted the Desktop 1.1 CD-ROM, we can
install the man pages by typing:

$ pkgadd /cdrom/cdrom0/COE/x86/cde-developer
SUNWdtma

Now that we have the man pages, we can read
th~~. from dumb terminals, pipe them through
utilities, and use them like any other man page
on the system. •!•

Are you a good tipper?
Do you have any great Solaris tips that

you've discovered? If so, send them
our way!

If we use your tip, it will appear on
our weekly online ZDTips service. (Visit
www.zdtips.com to check out all our avail­
able tip services.) It may also appear here in
Inside Solaris. Your byline will appear with
the tip, along with your E-mail and/ or Web
addresses.

Send your tips to inside_solaris @

zd.com., fax them to "Solaris tips" at (502)
491-4200, or mail them to

Inside Solaris
The Cobb Group
9420 Bunsen Parkway
Louisville, KY 40220

NETWORK P
1

ERFORMANCE
I

Screen savers can be a bad thing
Walking through the hallways of office

buildings can be amusing-many
computers all running different screen

savers. It's amazing how many CPU cycles are
consumed by frivolity. On some computers,
it's no big deal. Windows 95 computers, for
example, often have fancy screen savers that
reflect the fanciful tastes of their operators.

However, in a Solaris environment, screen
savers can have their dark side. We don't want
to discourage using screen savers, but in this
article, we'll warn you about two potential
problems with them.

CPU performance
One of the reasons that Windows 95 computers
aren't adversely affected by screen savers is
that only one person uses the computer. So the
CPU cycles used by a screen saver are simply
wasted if they're not drawing flying toasters.

However, many Solaris systems have mul­
tiple users and/ or multiple tasks. The CPU
cycles and RAM used by your screen saver aren't
available to other tasks or users. If you want to
run a screen saver, be aware of the impact it may
have on other tasks.

If you're the only user of your computer,
you have no problem. If others use it too, set
the priority of your screen saver low enough so
that even your low-priority background jobs
have precedence over it, and your users won't
be slowed down significantly.

Also, different screen savers vary in their
resource requirements. Some are very demand­
ing, while others place only a light load on
the system. Choose your screen saver based
on the number of users and background tasks
you normally run.

BEGINNER'S SHILLS

Network performance
Another consequence of running a screen
saver is the network bandwidth it consumes.
Even though a screen saver doesn't normally
consume any bandwidth by itself, many net­
works have workstations that are little more
than X terminals. In these situations, the screen
saver can be running on one computer and
displaying on another. Since screen savers
continually run animated sequences all over
the screen, they can generate quite a bit of net­
work traffic.

Play it sale
We came across an amusing situation about
a year ago. A company had an applications
server sitting in the corner, hard at work run­
ning database applications. Someone in pass­
ing noticed that the screen was ugly and was
worried about screen burn-in. Rather than
turning the monitor off, he activated a favorite
screen saver.

Later, the system administrator got a call
from one of the users of the database applica­
tion: The system was acting very sluggish.
Without thinking about it, the system adminis­
trator walked over to the computer, hit a key to
dismiss the screen saver, and began poking
around. He couldn't see any reason for the sys­
tem to be slow. When the users tried out the
system, sure enough, it worked just fine.

This cycle continued for a couple of days
before the system administrator realized that
the system was operating fine when he looked at
it. Then he considered what he was doing, and
he noticed the screen saver. When he returned
it to a simple, boring screen saver, everything
went back to normal. •!•

Using your boss' computer

0 ne of my favorite cartoons shows an engi­
neer complaining to his boss about the
disparity in their computers. The boss

has a shiny new SPARCstation on his desk, but
only watches the screen saver, while the engi-

http://www.cobb.com/sun

neer must perform serious number crunching
on a meager 80286.

This sort of situation happens frequently
enough to be tragicomical. Of course, with
Solaris, you're not limited to the computer on

Inside Solaris

your desktop. Instead, you can let another
computer do some work for you. After all,
"the network is the computer."

In order to use the other computers on
the network, you'll need an account on the ma­
chines you want to use. This requires that you
think ahead and ask the system administrator
to set up some accounts for you. On the other
hand, if you're the system administrator, you
can set them up yourself.

Spreading the work around .. .
delegate
Solaris is a multitasking, multiuser, as well as
network-based system. By taking advantage
of all three features, you can get some complex
jobs done more quickly than you could if you
were limited to your own computer.

Text mode
For many purposes, you need only an account
and a text-based login, and you're ready to go.
You can use telnet to access the other com­
puter. For example, if you want to use the ma­
chine named bugs, you could access it like this:

Suppose you're working late on a project,
and almost everyone has gone for the day.
Think of all the available CPU power on those
desktops that you could put to good use! You
could compile on one machine, run testing on
others, and perform more tasks on still other
machines, without crippling your own ma­
chine where you're editing the results.

taz% telnet bugs
Trying 198.70.147.66 ...
Connected to bugs.warner.com
Escape character is '"']'.

UNIXi System V Release 4.0 (bugs)

I

Potential security loopholes
I

When you're in a small workgroup and trust ev­
eryone, it's often convenient to set up an /etc/

hosts.equiv file so that users on other computers can
log in remotely to yours without specifying a pass­
word. This can be convenient, and it helps you avoid
typing in your password dozens of times each day.
Each user can also use .rhosts to specify other com­
puters or specify user IDs on other computers that
have the ability to log into your account without re­
quiring a password.

For small groups, this can be fine. It makes the
computers convenient to use. However, it can be­
come a security nightmare as more and more people
and hosts enter the lists. The more computers and
accounts that allow unauthenticated login, the less
secure your system becomes. With a foothold in your
system, malicious users can more easily locate and
exploit other loopholes.

If you' re administering a system, limit the hosts
in your /etc/hosts.equiv directory to those that you
really trust. You should also audit your system fre­
quently for all the .rhost files to see who's allowing
easy access to whom. Because of the possible security
problems associated with /etc/hosts.equiv and .rhosts,
you'll want to monitor them closely on your com­
puter. On our site, we use the script shown in Figure
A to list the current settings of these files. You may
want to use this script as a starting point for your
own system.

Be sure to read the man pages on hosts.equiv,
r login, and rsh, and think about the ramifications .

.____lrl oecembel' 1_9_91 ________ _

Figure A
#!/bin/ksh
HostAudit.sh - Display the contents of the /etc/hosts
#and all the .rhosts for each active account on the
system.

1) Display current value of /etc/hosts.equiv
if [-f /etc/hosts.equiv]; then

echo 11 11

f i

echo 11 •** /etc/hosts.equiv *** 11

cat /etc/hosts.equiv

2) Generate a list of home directories for all active
accounts
3) Sort them and remove duplicate entries
4) If directory has .rhosts file, display it

awk -F: '{print $6 }' < /etc/passwd I\
sort -u I\
for ACCT in 'cat'; do

done

if [-f S{ACCT}/.rhosts]; then
echo 11

"

f i

echo "•** SACCT *** 11

cat S{ACCT}/.rhosts

The HostAudit.sh script prints all the hosts and user accounts that
have easy access to your computer.

Yes, they can make life simpler, but at a potential
cost. By monitoring these authorization files you
can keep any surprises to a minimum!

login: marco
Password: password
bugs%

Now you can use bugs as if it were your own
machine-to edit, compile, debug, or whatever.

The only problem with using the t e l net
command is that you must log in each time you
access the other computer. Also, if you tend to
refer to information that's on the screen, you'll
become annoyed with all the space that t e l net
uses when you log in.

Solaris offers an alternative to telnet: the
commands r l o g i n and rs h. You can use r l o g i n
in a similar fashion tote l net, but it won't con­
sume as much of the screen when validating
your password. You can also set up an /etc/hosts.
equiv file or an .rhost file in your user account(s)
to prevent the need for entering passwords at
all. (See the r login and hosts.equiv man pages
for details.) If you choose to set up these files,
watch for security loopholes. (See "Potential
Security Loopholes" for more details.)

We went ahead and set up an .rhosts file in
our home directory on bugs that contains the
single line

taz

This tells bugs that I can log in remotely from
host taz without specifying my password, be­
cause I trust taz to properly authenticate users.

Now, when we use r login to connect to
bugs from taz, it looks like this:

taz% rlogin bugs
Last login: Tue Sep 16 11:14:22 from
taz.marcorp.com
bugs%

If I attempt to log in from another computer
with the following, bugs prompts for a pass­
word, since other computers aren't listed in the
.rhosts file:

daffy% rlogin bugs
Password:
Last login: Tue Sep 16 11 :16:07 from
taz.marcorp.com
bugs%

Running a single command
Sometimes you need to run only a single com­
mand on another computer. You don't want the
overhead of logging into the new computer,
running the command, then logging back out.
This is when the rsh command comes in handy.
You tell rsh which command to execute and
the computer to execute it on, like this:

http://www.cabb.can1/sun

taz% rsh bugs ls
a.out hello.c

The first parameter, bugs, is the name of
the computer where you want to execute the
command. The rest of the command line is the
command you want to execute, ls in this case.
Again, rs h will check security, so you must
specify the password to your account if you
attempt to run the command from an
untrusted host.

The rsh command then pipes your standard
input stream to the remote shell's standard
input stream. It also pipes the remote shell's
standard output and error streams to your
standard output and error streams, so the
command you're executing acts largely as
if it were executing on your computer. For
example, if you want to copy a directory from
/tmp/src to /tmp/dest, you might use the command

taz% cd /tmp/src
taz% tar cf - : (cd /tmp/dest; tar xf -)

Since the rs h command fixes the standard
streams for you, you can use a similar com­
mand to copy the directory /tmp/bugsStuff on
the host bugs to the directory /tmp/bugsStuf!Old
on host taz:

taz% mkdir /tmp/bugsStuffOld
taz% cd /tmp/bugsStuf fOld
taz% rsh bugs \(cd /tmp/bugsStuff\; tar cf - \)
• : tar xf -

Quick Tip: The rsh command has one
other nifty feature. You can give it an ad­
ditional name, and it'll treat its new name
as shorthand notation for the name of the
host on which to execute your command,
thus saving you some typing. Giving it
the name bugs, for example, lets you use
'bugs' as shorthand for rs h bugs, so listing
your home directory on bugs becomes:

taz% bugs ls

To give rs h a new name, just create a
symbolic link to the rs h command with
the name of the host you're going to use.
So, if you frequently want to access com­
mands on the host bugs, you might create
a symbolic link to bugs, as we show be­
low. (Please note that we're assuming that
the directory ~/bin is in your path.)

taz% ln -s /bin/rsh -/bin/bugs
taz% bugs ts
a.out hello.c

Inside Solaris

That's all for now
You can easily let other computers help you
out when your own computer isn't going to be
fast enough. For normal text applications, this

. I -. ,· - . . .
ADMINISTRATION TRICK
I

should be all you need. Next month, we'll show
you how to use another computer when it needs
access to an X server. If you have idle comput­
ers on your network, make use of them! •!•

Which package does this file belong to?

Figure A

H ave you ever needed to know to which
package or packages a file belongs? If
you don't know the secret, finding the

package(s) can be quite tedious. First, you
begin reading man pages about a (potentially)
related topic, hoping to find the name of the
file in the FILES section. If the name is there,
then you quickly check the Availability section
to see which package(s) it's in.

However, this technique isn't dependable:
Some man pages omit the Availability section,
some files won't be mentioned on man pages,
and many times you just don't know any com­
mands related to the file in question.

When you install a package, it checks for
conflicting files, permissions, etc., so there
must be a database of information about files
in the packages. After looking around, we
found the file /var/sadm/install/contents, which
is just what we need. Figure A shows a few
lines from this file on our test machine.

/etc/profile e etcprofile 0644 root sys 700 50375 814624099
•SUNWcsr
/etc/protocols=./inet/protocols s none ·SUNWcsr
/etc/prtconf= . . /usr/sbin/prtconf s none ·SUNWcsr
/etc/prtvtoc= . . /usr/sbin/prtvtoc s none ·SUNWcsr

The /var/sadm/install/contents file contains the information that the
packaging commands use to find conflicts.

As you can see, the first column contains
the name of the file or directory of interest,
followed by some fields that describe the file .
At the end of the line is a list of the packages
associated with the file or directory. Therefore,
to find the package associated with a file, you
simply use grep to search for the file. For ex­
ample, if you want to know to which package
the asy.conf file belongs, you can search for it
like this:

~-• December 19_9_7 ________ ___

S grep asy.conf /var/sadm/install/contents
/platform/i86pc/kernel/drv/asy.conf f none 0644
root sys 1755 16982 850956637 SUNWpsdcr

Here, we see that the asy.conf file is part of
the SUNWpsdcr package. Now, if you want to
find details about the package, you can use the
pkg i n f o command, like this:

pkginfo SUNWpsdcr
system SUNWpsdcr Platform Support,
Bus-independent Device Drivers (Root}

If you want more detailed information
about the package, use the - l option to see
the long description. Please keep in mind that
the information is oriented towards package
installation issues rather than towards descrip­
tion. It still contains plenty of useful informa­
tion though, as shown here:

pkginfo -l SUNWpsdcr
PKGINST: SUNWpsdcr

NAME: Platform Support, Bus-independent
Device Drivers (Root}

CATEGORY: system
ARCH: i386

VERSION: 1.0.0,REV=95.10.27.15.21
BASED IR: I

VENDOR: Sun Microsystems, Inc.
DESC: Platform Support, Bus-independent

Device Drivers, (Root}
PSTAMP: apache970319103111

INSTDATE: Aug 18 1997 18:07
HOTLINE: Please contact your local service

provider
STATUS: completely installed

FILES: 59 installed pathnames
12 shared pathnames
9 directories

34 executables
1157 blocks used (approx}

If you need still more information about the
package, you can reverse your gr e p statement

to discover the other files the package installs.
We'll look for the other files that the SUNWpsdcr
package installs with the following statement:

$ grep SUNWpsdcr /var/sadm/install/contents
/kernel d none 0755 root sys SUNWxwdv SUNWxwmod
SUNWcof f SUNWpcmem SUNWpcmci SUN
Wpcelx SUNWpcser SUNWpsdcr SUNWcsr SUNWos86r
/kernel/drv d none 0755 root sys SUNWxwdv
SUNWpcmem SUNWpcmci SUNWpcelx SUNWpsdc
r SUNWpcser SUNWcsr SUNWos86r

I
SHELL-PROGRAMMING TIP

/kernel/drv/cmdk f none 0755 root sys 14288
47379 839648677 SUNWpsdcr
/kernel/drv/cmdk.conf f none 0644 root sys 646
54089 814617021 •SUNWpsdcr
/kernel/drv/objmgr f none 0755 root sys 5220
37069 814617020 •SUNWpsdcr
• • •

The next time you want to determine
which package a file comes from, don't forget
about this trick. It can save you a lot of time! •:•

Creating infinite loops with the
while command
by Alvin J. Alexander

H ave you ever had to troubleshoot a prob­
lem on a Solaris system where you needed
to see something in the output of the p s

-ef command, but the process ran so quickly
you could never type ps -e f fast enough to catch
the output? I was once working on a problem
with a user who was trying to log into a Solaris
system through a modem. Something was
wrong with the login process, and I couldn't
figure it out.

By sheer coincidence, I typed p s -e f just
as the remote user connected to the system,
and I saw one process listed in the output re­
ferring to my UUCP dialer program. The last
field on this line of the p s -e f output even
showed my modem initialization string. Once
I saw the command that the dialer was send­
ing to the modem, I knew I had the wrong
modem initialization string in the program.
I fixed the initialization string, and the problem
disappeared.

I admit that I solved that problem by sheer
luck. If I hadn't typed the p s -e f command at
just the right time, I would've never seen the
dialer program running as a process-it just
doesn't stay in the process table long enough
for me to keep typing p s -e f manually and
looking at the output.

A better way
As a result of this experience, I developed a
new problem-solving technique. Now, any

http://www.cobb.com/sun

time I need to run a program that will give
me information about my computer, but whose
information is available only briefly, I run the
program continuously in an infinite loop in
another window.

So if I were to troubleshoot that UUCP
problem again, I'd open two windows. In the
first, I'd type this short multiline command at
the Korn shell command line:

while true
> do
> ps -ef : grep -i uucp
> done

Because the first line of the command is
wh i le true, this command will run forever in
an infinite loop. The test never becomes false,
and just like that bunny, the wh i le command
just keeps going and going and going. In most
cases, infinite loops aren't beneficial, and we
try to avoid them. In this case though, such
loops are just what we need.

In order to solve the UUCP problem, I must
keep my eyes open for any process dealing with
UUCP, so the command I select tells Solaris to
list all the processes (ps -ef), print the infor­
mation on any of them that contain the string
uucp (grep -i uucp), and continue doing so
over and over, as fast as possible. Now I can
experiment with the problem at hand, with the
best possible chance of getting the necessary
information. When I receive the output I need,
I can kill the infinite loop by typing [Ctrl]C (or
whatever interrupt key we've configured).

Inside Solaria m

PERIODICALS MAIL

SunSoft Technical Support

(800) 786-7638

Please include account number from label with any correspondence.

The pause that refreshes
You really don't want to run every command
as fast as possible. Sometimes, you may want
a periodic snapshot. In such a case, you can
include asleep command in your loop to act
as a time delay. For instance, if you want a
command to run every five seconds, your
infinite loop would look like this:

S wh i le true
> do
> your_command_here
> sleep 5
> done

Since developing this procedure, I've used
it to solve many other problems with modems,
login processes, terminals, disk drives, and
printers. However, the secret to success with
the infinite loop is not the loop itself, but the
logic you put inside.

Quick tip: If you haven't entered Solaris
commands on multiple lines before, please

note that the shell doesn't accept a line of
input until it's completed. Instead of running
immediately after you press [Enter] on the
first line, the shell doesn't execute the wh i le
loop until it sees the done statement that
completes the statement.

Whenever you press [Enter] like this
and you see a different prompt, > in this case,
the shell is telling you that you've not finished
the command, and it's waiting for the rest of
it. You can now take all the space you need to
complete your command (in this case, enter
all the commands you want between the do
and done keywords).

Conclusion
As our computers get faster and faster, it be­
comes more difficult to gather the clues you
need to fix a problem-the problem manifests
itself in a very brief interval and is then gone.
By executing your monitoring program repeat­
edly, you can run your test program in the
foreground and have a better chance to catch
any clues you need to fix that problem. •!•

Statement of Ownership, Management and Circulation (Required by 39 U.S.C. 3685) 1. Publication Title: Inside Solaris. 2. Publication number: 0013674.
3. Filing date: October 1, 1997. 4. Issue Frequency: Monthly. 5. No. of Issues Published Annually: 12. 6: Annual Subscription Price: $115 ($135 Foreign). 7.
Complete Mailing Address of Known Office of Publication: The Cobb Group, 9420 Bunsen Parkway, Louisville, KY 40220. 8. Complete Mailing Address of
the Headquarters of General Business Offices of the Publisher (Not printer): The Cobb Group, 9420 Bunsen Parkway, Louisville, KY 40220. 9. Full Names
and Complete Mailing Address of Publisher, Editor, and Managing Editor: Publisher, John Jenkins, The Cobb Group, 9420 Bunsen Parkway, Louisville, KY
40220; Editor, Marco Mason, The Cobb Group, 9420 Bunsen Parkway, Louisville, KY 40220; Managing Editor, Michael Stephens, The Cobb Group, 9420
Bunsen Parkway, Louisville, KY 40220. 10. Owner: Ziff Davis Publishing Company, 1 Park Avenue, New York, NY 10016; Softbank Holdings Inc., 10
Langley Road, Suite 403, Newton Center, MA 02159. 11. Known Bondholders, Mortgagees, and Other Security Holders Owning or Holding 1 Percent or
More of Total Amount of Bonds, Mortgages or Other Securities: None. 13. Title of Publication: Inside Solaris. 14. Issue Date for Circulation Data Below:
November 1997. 15. Extent and Nature of Circulation-A. Total No. Copies (Net Press Run): Average No. Copies Each Issue During Preceding 12 Months,
4,309; Actual No. Copies of Single Issue Published Nearest to Filing Date, 5,001 B. Paid and/ or Requested Circulation-I. Sales through dealers and
carriers, street vendors and counter sales (Not mailed): Average No. Copies Each Issue During the Preceding 12 Months, O; Actual No. Copies of Single
Issue Published Nearest to Filing Date, 0. 2. Paid or Requested Mail Subscriptions: Average No. Copies Each Issue During the Preceding 12 Months, 3,881;
Actual No. Copies of Single Issue Published Nearest to Filing Date, 4,428. C. Total Paid and / or Requested Circulation (sum of 15b(l) and 15b(2)): Average
No. Copies Each Issue During the Preceding 12 Months, 3,881; Actual No. Copies of Single Issue Published Nearest to Filing Date, 4,428. D. Free
Distribution by Mail (Samples, complimentary, and other free): Average No. Copies Each Issue During the Preceding 12 Months, 41; Actual No. Copies of
Single Issue Published Nearest to Filing Date, 44. E. Free Distribution Outside the Mail (Carriers or other means): Average No. Copies Each Issue During
the Preceding 12 Months, O; Actual No. Copies of Single Issue Published Nearest to Filing Date, 0. F. Total Free Distribution (sum of 15d and 15e): Average
No. Copies Each Issue During the Preceding 12 Months, 41; Actual No. Copies of Single Issue Published Nearest to Filing Date, 44. G. Total Distribution
(Sum of 15c and 15f): Average No. Copies Each Issue During the Preceding 12 Months, 3,922; Actual No. Copies of Single Issue Published Nearest to Filing
Date, 4,472. H. Copies Not Distributed. 1. Office use, left over, unaccounted, spoiled after printing: Average No. Copies Each Issue During the Preceding 12
Months, 387; Actual No. Copies of Single Issue Published Nearest to Filing Date, 529. 2. Return from News Agents: Average No. Copies Each lssue During
the Preceding 12 Months, O; Actual No. Copies of Single Issue Published Nearest to Filing Date, 0. I. Total (Sum of 15g, 15h(1), and 15h(2)): Average No.
Copies Each Issue During the Preceding 12 Months, 4,309; Actual No. Copies of Single Issue Published Nearest to Filing Date, 5,001. Percent Paid and/ or
Requested Circulation (15c/15g x 100): Average No. Copies Each lssue During the Preceding 12 Months, 98.95%; Actual No. Copies of Single Issue
Published Nearest to Filing Date, 99.02%. This Statement of Ownership will be printed in the December issue of this publication. I certify that all
information furnished on this form is true and complete. I understand that anyone who furnishes false or misleading information on this form or who
omits material or information requested on the form may be subject to criminal sanctions (including fines and imprisonment) and/ or civil sanctions
(rncluding multiple damages and civil penalties). Director-Fulfillment Operations.

____ December 1887 ________ _ ~~""'\ Printed in the USA
\.::J":i This journal is printed on recyclable paper.

