
in this issue

1
The secret of reading
keyboard input one key at
a time

4
Using tput to dress up
your character-mode
screens
7
Make a shell script mail
you a summary
9
Don't clutter your system
with core images!

10
Conditionally executing
shell scripts

11 ·
Hard and soft file links
14
Build a keyword index
for man

15
Who's tying up the file
system

18
Quickly switch between
directories

Visit our Web page at
http:llwww.cobb.com/sunl

July 1996 •VOL. 2 NO. 7
us $11.50

i ~~:ff. techniq~i~~}o; users of SunSoft Solaris

l11e secret DI reading keyboard
input one key at a time
By Al Alexander

Have you ever wished you could
write a shell script that would
wait for the user to press a single

character and then proceed? Several
years ago, we discovered a cool shell
programming technique that lets you
do just that. The premise is simple:
You want to dispfay a text menu to
your end users, like the one shown in
Figure A. The user should only have
to type one key to select the desired
menu option, such as the letter C to
start a CAD application.

Unfortunately, using standard shell
programming techniques, it's not possi-

ble to type just one character to start
an application-you must always
type that character (such as the let­
ter C), followed by the [Enter] key.

The desire to eliminate the re­
quirement to press the [Enter] key
led several people on a journey that
required weeks of thought, research,
and discussion before we finally
discovered the proper technique.
We'll discuss that technique-which
requires only six lines of shell pro­
gramming code-in this article. The
technique presented here stretches
one's knowledge of terminal I/0,
the d d command, and I I 0 redirec­

tion and employs an
unusual method for

Figure A invoking a shell
script function.

Iii Our technique is
.!tlindow f.dit Qptions .tielp I 1 f 1 1-;::================:::;~·I a so very use u in

* SAMPLE END-USER MENU *

APPLICATIONS

~
D Application
tus 123

~ord Perfect

UTILITIES

Create Oape Backup
Show ~ate/Time
Show CIJlendar

El it program menu

Choice: $ I

This is a typical text-based menu for selecting which application
program to run.

other situations. For
instance, if you've
ever wanted to
prompt an end user
for a password and
display asterisks (*)
on the screen as that
person types, then
you'll find the start­
ing point right here.

The solution
We discuss how to
make a fancy menu,
such as the one shown
in Figure A, in the

A Publication of The Cobb Group

SINSIDE
OLAR IS

Inside Solaris (ISSN 1081-3314) is published monthly by
The Cobb Group.

Prices
U.S $115/yr ($11 .50 each)
Outside U.S $135/yr ($16.95 each)

Phone and Fax
US toll free (800) 223-8720
UK toll free (0800) 961897
Local (502) 493-3300
Customer Relations fax (502) 491-8050
Editorial Department fax (502) 491-4200
Editor-in-Chief (502) 493-3204

Address
Send your tips, special requests, and other correspondence to :

The Editor, Inside Solaris
9420 Bunsen Parkway, Suite 300
Louisville, KY 40220
Internet: inside_solaris@merlin.cobb.zd.com.

For subscriptions, fulfillment questions, and requests for group
subscriptions, address your letters to:

Customer Relations
9420 Bunsen Parkway, Suite 300
Louisville, KY 40220
Internet: cr@merlin .cobb.zd.com.

Staff
Editor-in-Chief Marco C. Mason
Contributing Editor Al Alexander
Production Artist Margueriete E. Winburn
Editors Linda Recktenwald

Martha Bundy
Circulation Manager Mike Schroeder
Editorial Director Linda Baughman
VP/Publisher Lou Armstrong

Back Issues
To order back issues, call Customer Relations at (800) 223-8720.
Back issues cost $11 .50 each, $16.95 outside the US. We
accept MasterCard, Visa, or American Express, or we can bill you.

Advertising
For information about advertising in Cobb Group journals,
contact Tracee Bell Troutt at (800) 223-8720, ext. 430.

Postmaster
Second class postage paid in Louisville, KY.
Postmaster: Send address changes to:

Inside Solaris
P.O. Box 35160
Louisville, KY 40232

Copyright
© 1996, The Cobb Group. All rights reserved. Inside Solaris is
an independent publication of The Cobb Group. The Cobb
Group reserves the right, with respect to submissions, to revise,
republ ish, and authorize its readers to use the tips submitted
for personal and commercial use. Information furnished in this
newsletter is believed to be accurate and reliable; however,
no responsibility is assumed for inaccuracies or for the
information's use.

The Cobb Group and its logo are registered trademarks of Ziff­
Davis Publishing Company. Inside Solaris is a trademark of Ziff­
Davis Publishing Company. Sun, Sun Microsystems, the Sun
logo, SunSoft, the SunSoft logo, Solaris, SunOS, Sunlnstall,
OpenBoot, OpenWindows, DeskSet, ONC, and NFS are trade­
marks or registered trademarks of Sun Microsystems, Inc. UNIX
and OPEN LOOK are registered trademarks of UNIX System
Laboratories, Inc. Other brand and product names are trade­
marks or registered trademarks of their respective holders.

2 Inside Solaris

article "Using tput to Dress Up
Your Character-Mode Screens" on
page 4. The part that concerns us in
this article lies in the technique re­
quired to have the user hit only one
key without pressing [Enter]. The
solution to our problem lies in two
little-used UNIX commands in the
Sun/ Solaris world-st t y and d d.

The GetUserKeystroke
function
We'll solve our problem by creat­
ing a Bourne shell function named
Ge tUserKey stroke that will read
and return one character from the
user's keyboard. This function re­
turns the character to the calling
program, so the calling program
knows exactly which character the
us.er typed. (Please note that the
GetUserKeystroKe function will
also work with the Korn shell.)

To achieve this functionality,
we need to follow these steps in­
side our function:

1. Save the current terminal settings.

2. Use st t y to put the terminal
into raw mode so we can read
one character from the key­
board at a time.

3. Uses tty to disable echoing of
characters.

4. Use dd to read one
character from the Figure B
end user.

the function contains only six lines
of code, but it's a very powerful six
lines indeed.

Preserve the terminal's
current state
In the first line of the function, we
use the st t y -g command to dump
all the current st t y settings of the
user's terminal. We do this so that
we can restore the terminal to its
original state at the end of our func­
tion. If you execute the st t y -g com­
mand on your terminal, the output
will look something like this:

2506 :5:d04bd:8a3b:3:1c:8:15:4:0:0:0:
• 11 : 13: 1 a: 19: 12 : t : 17 : 16 : 78: t 4

This line of information describes
the state of the terminal device in a
format thats tty can read. It doesn't
matter what kind of terminal you're
using. You could be using a VT-
100, an X terminal, an xterm win­
dow, a shell tool terminal window,
or any other terminal device, and
the st t y -g command will print all
the pertinent information in a form
that it can read back again.

We execute the st t y -g command
inside a pair of grave accent (')
characters: This tells the shell script
to retrieve the command's output
and put it in the old T t ySe t tings
variable.

5. Return that charac­
ter to our calling
program.

GetUserKeystroke ()
{

6. Restore the termi­
nal to its original
settings.

We'll also perform one
additional step, as a
convenience to the
user: We'll display the
character the user typed
on the terminal screen.

Figure B shows
the code for the
GetUserKeystroKe func­
tion. As you can see,

Save old tty settings .
oldTtySettings="'stty -g'"

Set echo off and raw mode on
2 stty -echo raw

Get the Keystroke from the user
3 userKeystroke="'dd bs=1 count:1 2> /dev/nul l "'

#Return character to calling program
4 ec.ho "Su serKeys t roke"

#Display character on the screen
5 echo "SuserKeystroke\c" >&2

#Restore the previous tty settings
6 stty SoldTtySettings
}

This function, GetUserKeystroke, allows us to read a single
keystroke from the user's terminal.

Change the terminal's state
Now that we've saved the terminal's current
state, it's time to change it. In the second line
of this function, we use the s t t y command
again. This time, it does two tasks for us. First,
we use it to disable echoing of characters to
the screen, via the - echo parameter. Second,
we use it to put the terminal in raw mode via
the raw parameter.

Disabling the echoing of characters means
that no matter what the user types, Solaris will
not display them on screen. Programs often do
this when a user needs to enter a password­
the user never sees the password displayed
on the screen.

Putting the terminal in raw mode enables us
to read one character at a time from the user.
Normally, Solaris buffers each character you
type until you press the [Enter] key and pro­
cesses the command keys, such as kill, erase,
rprnt, etc. In raw mode, the characters coming
in from the keyboard aren't held until you press
the [Enter] key. They're available to an appli­
cation the moment you press them. Putting the
terminal in raw mode also disables the pro­
cessing of all the command keys.

Read a character from the terminal
With the terminal in raw mode, we can read
the user's keystrokes one character at a time.
Unfortunately, the read command built into
the Bourne/Korn shells normally used to read
user input just doesn't work this way-we need
another software tool. We need a command
that can read one character at a time. Fortu­
nately, the UNIX d d command provides the
functionality we need.

By default, dd reads from the standard input
stream and writes to the standard output stream.
We take advantage of this by reading one
character from the standard input stream (the
user's keyboard, in this case) and writing that
character to the standard output stream.

We've supplied two arguments to the dd com­
mand. The first, bs=1, tells dd that we're going
to read and write with a block size of one byte.
The second, count= 1, tells d d how many blocks
to read at a time. This combination of param­
eters tells d d to read a single byte and print it
to the output. We also redirect the standard er­
ror stream to /dev/null so we don't have to see
any status messages on the screen. Since we've
executed the d d command inside grave accents
('), the shell takes the output of the d d command,
in this case the character the user typed, and
assigns it to the variable userKeys t roke.

Return the character to the caller
After we read the character the user typed, we
need to return it to the caller. We do this by
printing it to the standard output device. This
necessitates a somewhat unusual calling con­
vention for our shell function. Rather than
calling it in the traditional fashion, we call it
by enclosing it in grave accents. Then the
caller must assign the result to a variable, as
we did when we called the d d command previ­
ously. We'll give a demonstration later, in the
section How to Use GetUserKeyStroke.

Display the character on the screen
The fifth line of our function sends the charac­
ter that the user typed to the standard error
stream. Unless the calling function redirects
the standard error stream somewhere, this line
prints the character to the screen. We use the
\c symbol so that the echo statement doesn't
display a carriage return after the character.

Restore the terminal's state
Now we've done everything we wanted.
We've read a single character from the user,
displayed it, and returned it to the caller. Now
all we need to do is clean up after ourselves.
Since we altered the terminal's state with st t y,
we need to restore it.

The last line in our function restores the t t y
device (e.g., your terminal or shell tool) to the
settings that were in effect before the script
called GetUserKeystroke. For most situations,
this means to take the terminal out of raw mode
and re-enable character echoing.

How to use GetUserKeystroke
When you want to use GetUserKeys t roke in
your scripts, you must call it like this:

userChoice='GetUserKeystroke'

This varies from the traditional method of call­
ing functions, and it gets you to think differ­
ently about invoking function calls. By calling
the Ge tUserKeys t roke function within the grave
accent characters, the shell executes the function
and places the standard output of the function
into the variable userCho ice. We have to do it
this way because the Ge tUserKeys t roke function
returns a value by printing the return value to
the standard output stream.

The code fragment shown on the next page
gives a simple example of how you can use the
GetUserKeystroke function. As you can see, we

July 1996 3

4 Inside Solaris

prompt the user for Y to continue or Q to quit.
Next, we read the user's key press into the
variable userChar using the GetUserKeystroke
function. Finally, we decide what to do based
on the keystroke. If it's a y or Y, we print the
word Continuing, and execute the loop again.
If it's a q or Q, we print Thanks for playing! and
stop the script. Otherwise, we print ? What?
and prompt the user again for a Y or Q.

while true
do

echo "Press (Y) to continue, (0) to quit: \c"
userChar='GetUserKeystroke'
echo
case SuserChar in

ylY) echo "Continuing ... ";;
qlO) echo "Thanks for playing!"

exit;;
•)echo "?What?";;

esac
done

Special note
After studying the Ge tUserKeys t roke function,
you may be wondering why we disable char­
acter echoing when we intend to display the
character on the screen anyway. We do so be­
cause terminal echoing doesn't let you control
when the display occurs. If we control it, we'll
display the character only when it's conve­
nient for us.

If we allowed the display to happen at any
time, then if the user pressed a key while dis­
playing a menu, it could disrupt the appear­
ance of the menu. In fact, since the terminal
uses special key sequences for some opera­
tions, an inappropriate keystroke could render
the screen totally unreadable.

Conclusion
In retrospect, Ge tUserKeys t roke appears to be
a relatively simple six-line function that im­
proves your shell programs. However, as the
saying goes: Hindsight is always 20/20, and
many veteran shell programmers have learned
a few things from being exposed to this code.

In a nutshell, GetUserKeys troke solves a par­
ticular programming problem, but more than
that, it provides insight into several important
UNIX shell programming topics. This function
shows how to use the st t y command to con­
trol terminal characteristics, gives an unusual
example of the d d command, stretches the lim­
its of I/ 0 redirection to return a variable from
a function, and displays a variable to the screen
on the standard error device.

Once you've mastered the technique pre­
sented in this article, you'll find that it opens
your mind to other possible applications. For
instance, you can use this technique to create a
GetUserPassword function that displays an as­
terisk for each character the user types in after
you prompt the user for a password. •!•

Using tput to dress up your
character-mode screens
By Al Alexander

0 ne of the most enjoyable things in Solaris
is shell programming. It's very satisfy­
ing to create shell programs to help

people accomplish their tasks more easily. It's
even better when you're able to go the extra
mile and give your programs a great look.

While it's very simple to make your shell
scripts have simple displays, it's much nicer to
dress them up and make your programs ap­
pear more professional. There is a standard

UNIX command called t put that allows you to
do many fancy things to improve the appear­
ance of your shell programs, including mak­
ing text bold, underlining text, making it
blink, and even controlling cursor position.

In this article, we'll explore the t put command
and show how you can use it to liven up the
output of your shell programs. We'll create a
simple menu screen that shows how you can
use t put to clear the screen and display under­
lining and bold effects on your terminal.

The basics ol tput
The t put command uses the terminfo database
to make certain terminal-dependent character­
istics available to command-line users and shell
programmers. It's important to understand that
your program can tell a terminal to underline
a certain character, but if the terminal doesn't
provide the capability for underlining text,
you won't get underlines on your screen.

The terminfo database contains entries for
many common terminal types. Each termcap
entry has a list of capabilities that the terminal
supports. Table A describes the capabilities that
we use most often with the t put command,
along with the standard name (Cap-name) for
the capability. If you want to see a comprehen­
sive list of device capabilities available for use
with t put, you should read the man page for
terminfo.

Table A
Cap-name Desired effect

clear

smso

rmso

smul

rmul

cols

cup r c

Clear the screen

Write any following characters
in standout mode

End standout mode

Start underlining mode

End underlining mode

Return the number of columns
on the terminal

Move the cursor to a specific
location

These are some of the most commonly used terminal
capabilities available in the termcap database.

Most terminal capability entries in the term­
info database describe the special character
sequences you must print to do some special
operation on the terminal. Other entries de­
scribe the key sequences the terminal returns
when you press one of the special keys on the
keyboard, such as [PS].

Unfortunately, you can't access the terminfo
database directly with a shell script. Normally,
a program must examine the database to find
out what to do. Fortunately, Solaris provides
the t put command, which simply looks up the
specified Cap-name and prints its value to the
standard output stream. To do so, you simply
need to execute the command

t put Cap-name

replacing Cap-name with the name of the
terminal capability you want to invoke. For
example, Figure A shows a standard CDE
terminal screen where we put the terminal in
standout mode, add underline mode, and then
turn off the modes in the same order. As you
can see, the CDE terminal window supports
this behavior.

Unfortunately, you can't rely on all termi­
nals being able to allow you to turn on and off
modes in any arbitrary order. In general, you
should use modes sparingly, and you should
probably avoid mixing them whenever possible.
This will maximize your chances of having your
screen look the way you intend it to when the
user runs your script on a new terminal.

As an example, you might want to execute the
commands shown in Figure A on an Open­
Windows terminal window. If you do so, you'll
notice that when we turn off the standout mode
the Open Windows terminal loses the under- '
line mode as well.

There's a special case of t put that you need
to be aware of. Some terminal capabilities re­
quire one or more parameters in order to ex­
ecute properly. For example, the cup capability,
which moves the cursor, requires that you pro­
vide the desired cursor position as two numbers,
the desired row and column. The t put command
accepts these parameters after the Cap-name.
Thus, to move the cursor to the tenth column
on row four, you'd type

tput cup 4 10

We often use another Solaris command,
i n f o cmp, to determine what characteristics a
given terminal type supports. You can use the
i n f o cmp command to extract specific terminal

Figure A

Iii Terminal ,
I ~indow fdit Qptlons

$ tput smso ••iiilll
'1n1trc.Save crdel . c ul96
a.out dfv iun96

a.out dfv
$ tput rmul
$

jul96
jun96

The COE terminal window supports turning modes on and off
in any order.

July 1996 5

information from the terminfo database. For
instance, if you want to know what display
characteristics your current terminal supports,
simply type

infocmp

This command tells you all the capabilities
your current terminal supports. For a large,
complex terminal, i nfocmp is likely to provide

Figure B
- . -I .- ------T-e-tn-1in_a_I ____________ r ,-

t ~lndow fdlt Qptlons

* SAMPLE END- USER MENU *

APPLICATIONS UTILITIES

tD Application
tus 123

~ord Perfect

Create Oape Backup
Show !Eate/Time
Show C!Jlendar

El it program menu

Choice: $ I

Using the tput command, it's easy to create professional-looking
menus for your shell scripts.

Figure c
#! /bin/sh
B='tput smso'
Bx='tput rmso'
C='tput clear'
U= ' t put smu l '
Ux=' tput rmul'

Start bold mode
End bold mode
Clear screen
#Start underline mode
#End underline mode

echo "${ C}
S{B}••***********************•S{Bx}
S{B}• SAMPLE END-USER MENU •S{Bx}
S{B}••***********************•S{Bx}

S{U} APPLICATIONS S{Ux}

S{B}CS{Bx}AD Application
Backup

${ u} UTILITIES

Create S{B}TS{Bx}ape

S{Ux}

S{B}LS{Bx}otus 123
S{B}WS{Bx}ord Perfect

Show S{B}DS{Bx}ate/Time
Show CS{B}aS{Bx}lendar

ES{B}xS{Bx}it program menu

Choice: \c"

This script displays the sample menu shown in Figure B.

6 Inside Solaris

many lines of information. (The CDE terminal
window, in fact, returns 30 lines of terminal
capability information.)

If you're writing a script for a user who uses
a terminal you don't have access to, all is not
lost. You can use inf ocmp to tell you what ter­
minal capabilities the user's terminal supports,
as long as the terminal is in the terminfo data­
base. You can do so by specifying the desired
terminal type on the command line. For ex­
ample, if you want to determine the display
characteristics of a VT-100 terminal, you can
type the command

infocmp vt100

Within shell programs, we often create shell
variables that turn on and off various display
capabilities. Figure B shows a sample menu
screen that you might create for your users.
Figure C shows the shell script that displays
the menu shown in Figure B. The five colored
lines show the definitions of five shell variables
that control various display attributes.

Once you create these terminal-control vari­
ables in this manner, they contain the terminal­
dependent codes necessary to turn on or off
the bold and underline features on your cur­
rent terminal. This technique makes your pro­
grams more efficient, because your scripts
don't have to execute the tput command each
time you want to change the terminal attribute.

Please note the use of the braces in the echo
statements. This is the method that the Bourne
and Korn shells use to separate your shell
variables from other text when it's necessary
to run them together. Suppose we had the
statement

echo "Play the S{B}xS{Bx}ylophone"

Normally, this would display the x in bold
mode. However, if we didn't use the braces,
the statement would look like this:

echo "Play the SBxSBxylophone"

This statement wouldn't execute correctly, be­
cause it's telling the shell to print the value of
the variables Bx and Bxy lop hone. The variable
Bx turns off bold mode, but since we never en­
abled it properly, it doesn't print anything.
Similarly, since we don't have a variable
named Bxy lop hone, it won't print anything ei­
ther. If you execute this line, you'll simply see
the string Play the on your screen.

Conclusion
The t put command can greatly enhance the ap­
pearance of your shell programs, which makes
them easier to use. If you create shell variables
that turn these modes on and off, your program
won't have to call t put each time you want to
change the terminal mode. These techniques
will help you create great-looking shell scripts
in a very short time. •:•

Alvin J. Alexander is an independent
consultant specializing in UNIX and the
Internet. He has worked on UNIX networks to
support the Space Shuttle, international
clients, and various Internet service providers.
He has provided UNIX and Internet training
to over 400 clients in the last three years.

Make a shell script mail you a summary
If you often run shell scripts unattended,

such as in the background, or via the a t
command, you may find that it would be

helpful if you could get a summary of their
operation. In this article, we'll show you how
to make a shell script mail you a summary.
Using this technique, you'll be able to run
your shell scripts, content in the knowledge
that when you want to check the results, you
can simply look at your mail.

Sending a message with mail
As you probably know, you can send mail to
someone by using the ma i l command. To do
so, you give the ma i l command the recipient
list on the command line, and then it accepts a
mail message via standard input. Once it finds
the end of the input stream, it mails the text to
the specified recipients.

Therefore, to have a shell mail us a sum­
mary report, we must provide two things: an
appropriate recipient list and a message body.
Fortunately, both of these are easy to obtain.
We'll use your user name as the recipient list
and the output of your command list as the
message body.

The recipient list
Who is interested in the results of your script
file? Presumably, only you. Therefore, in your
script file, you can send a message to yourself
with the command

$ mail my name

where myname is your user name.
However, this technique has one slight

disadvantage. If you give a copy of your script
to others, they must edit it to send the results
to their mailboxes or you'll get their reports.

Fortunately, there's a better solution.
Rather than hard-code your user name into
the recipient list, we'll extract your user name
from the environment. If you've ever executed
the set command and looked at all the envi­
ronment variables, you may have noticed the
one named LOGNAME, which the shell set to your
user name. All you need to do in your script is
use the LOGNAME environment variable as the
recipient, so whoever runs the script gets the
report. You can do so like this:

$ mail S{LOGNAME}

The message body
Now that we've properly addressed our
summary report, all we need to do is send the
ma i l command the body of the message. If
your report merely consists of a mention that
the script has run, you can get away with
something simple like this:

mail S{LOGNAME} <<!
The test script executed normally.

We use a here document (described in the
article "Automating Applications that Accept
User Input" in last month's issue) to feed a
message body to the ma i l command. One prob­
lem with this technique is that you have to
know all the reports that you want to send at
the time you run your script. That's usually
not the case.

The normal case is that you'll want to see
all the output of your script in the mail message.
That way, you can examine the output for any­
thing unexpected. As you probably suspect, if
you have a single command, you can simply
pipe its output to the ma i l command. For ex­
ample, if you want to find a list of all the files

July 1996 7

8 Inside Solaris

named core in your home directory and below,
you might use the command

$ find - -name core -print l mail S{LOGNAME}

If you have multiple commands to execute
in your script, what do you do? You could try
creating a temporary file and appending the
output of each command to it. Then, after you
mail the results to yourself, you can remove
the temporary file. For example, suppose you
want a listing of the contents of your .dt/Trash
and .wastebasket directories. You could do it
like this:

$ ls -1.dt/Trash >/tmp/test
$ ls -/.wastebasket >>/tmp/test
$ mail S{LOGNAME} </tmp/test
$ rm /tmp/test

The first line creates the file /tmp/test and
fills it with the list of files in your .dt/Trash
directory. The second line appends the listing
of your . wastebasket directory to it. The third
line mails the resulting file to you and the
fourth line deletes the temporary file.

However, this technique has two disadvan­
tages: First, you must create a temporary file
that won't be used by some other process.
Second, you must be sure to clean up the file
when you' re finished.

Another way you can find the list of files
is to create a shell script that contains the list
of files you want to execute. Then you can re­
direct the output of that shell script to the ma i l
command. For our example, we could create a
shell script that does both directory operations,
like this:

ls -/.dt/Trash
ls -/.wastebasket

Assuming our shell script is named test,
we can execute it like this:

$ test l mail S{LOGNAME}

This technique works very well. However,
for very simple jobs, it may be too much work.
A good method for small command lists is to
tell the shell to execute your list of commands
in a subshell. Then you can pipe the output of
your subshell to the ma i l command. In effect,
it's the same as the technique we just showed
you, but you don't need to explicitly create a
shell script in a file.

All you need to do with this technique is
to put your command list in parentheses, with

the pipe symbol outside the parentheses. You
can separate your commands with semicolons
or newlines. You can process the same exam­
ple two ways:

$ (ls I; ls -) ma i l ${ LOGNAME}

or

$ (ls
> ls -) l ma i l ${ LOGNAME}

Capturing error output
So far, we've only shown you how to mail the
standard output of a command to yourself. Once
you try this technique, you may find that parts
of the output you're used to seeing on the con­
sole don't arrive in your mail message. This
happens because many programs print normal
results on the standard output stream, also
known as stdout, and errors on the standard
error stream, known as stderr.

You may be interested in both the normal
output of your commands and the error output.
If this is the case, then you'll have to know
which shell you're using when you execute
your script. If you're using the C shell, you
can pipe both the stdout and stderr output to
the ma i l command like this:

$ cmd l& mail S{LOGNAME}

As you can see, all we did was use the I &
operator, which tells the C shell to pipe the
stderr stream along with the stdout stream. If
you're using the Bourne or Korn shell, it's a
little more difficult: These shells don't provide
the I & operator.

However, you can do the job by telling the
shell to redirect the stderr stream to the same
place as stdout. Then you can pipe the resulting
output to the ma i l command.

You can merge the stderr and stdout streams
by using the I/ 0 redirection command 2>& 1,
which tells the shell to take the output of stream
2 and send it to the same place as stream 1.
Since stream 2 is the stderr stream and stream
1 is the stdout stream, this command does
exactly what we want.

Now we're ready to put it all together. Please
note that we must use the I/O redirection com­
mand that merges the standard error stream
to the standard output stream before the pipe
symbol, because the pipe symbol separates
different sections of the command. If we put
the I/0 command after the pipe symbol, we'd
be telling the shell to take any error output

from ma i l and send it to the standard output.
Our completed command line is

S cmd 2>& 1 : ma i l S{ LOGNAME}

Conclusion
If you're as busy as most people, then you may
find this trick to be a time-saver. It's nice to be

able to run your scripts and programs confident
in the ability to examine the results at your lei­
sure rather than watching for the output before
it scrolls off the screen. One added benefit is
that since the summary is in your mailbox,
rather than just on your screen, you can elect to
print it, forward a copy to someone else, or just
ignore it until you need to look at it again. •!•

Don't clutter your system with
core images!
As you may know, sometimes when a

program crashes, it creates a large file
named core in the current directory.

Your program may also create a core file if you
press the quit key (usually defined as [Ctrl]\)
while it's running. If your program doesn't
explicitly trap the quit signal, Solaris will write
the core file and terminate the program.

What is the core file?
The core file is simply a file that contains the
program code and all the data that the program
is using. Application developers often use the
core file to examine various bits of data that the
application was using to see why it crashed.
Since some programs are quite large, and they
use a lot of data, these core image files can con­
sume quite a bit of space.

Even smaller programs can generate a sur­
prisingly large core file. For example, Figure A
shows that the program cat generates a core
image file of over lOOK. This is rather surpris­
ing for a program that's a mere 8,172 bytes
long in Solaris x86 v2.5.

Why is the core file so large for cat? It's
certainly not from the amount of data that the
cat command uses. It turns out that many
Solaris commands, to save space and ease
program maintenance, access a shared library
of code when they execute. The cat command
is one of these. Thus, when you run cat, it loads
some code from a shared library to perform
some tasks for it, such as file manipulation.

The ulimit command
If you're not diligent about removing unnec­
essary core files, you may find a large amount

figure A
- ---------=rermTn-<>I ____________ - - - -T;: r;

~lndow fdlt Qptlons

$ ls -1 /bin/cat
-r-xr-xr-x 1 bin
$ l s -1
total O
$ cat
A\Quit(coredump)
$ ls -1
total 288
-rw-r--r-- 1 marco
$

lj_elp

bin 8172 Oct 25 1995 /bin/cat

staff 132960 May 28 11:24 core

Here we create a core file by terminating the cat command with the quit key.

of disk space consumed with these useless
files. Wouldn't it be a lot simpler if you could
just tell Solaris that you're not interested in
core files? Then you'd be spared the bother of
cleaning them up.

It's a simple task to tell Solaris not to gener­
ate these core files. The u l i mi t command allows
you to set limits on resource usage by various
users. One of the limits you may set is the size
of the core image file that an application can
generate.

If you want to prevent a core file from being
generated at all, you can simply use the command

S u limit -c 0

which tells Solaris to limit the size of any core
image files to 0 blocks. This way, Solaris won't
allow your applications to create core image files.

Make sure everyone runs ulimit
Unfortunately, when you run the u limit com­
mand, you're telling Solaris to prevent you from

July 1996 9

generating core files. All the other users on the
system can still generate them. If you want to
prevent everyone from creating core files, you
need to ensure that everyone runs the u limit

command each time they log in. The article
"Execute Commands When Logging In," in
the April issue, describes a procedure you can
use to make everyone execute this command. •!•

Conditionally executing shell scripts

Figure A
#! /bin/ksh

You sometimes might want to run a shell
script at a scheduled time to perform
some administrative tasks, like making a

backup. If you use c r on t a b to schedule your
scripts, you're just about set. The only problem
we encounter with this technique is that while
you normally want to execute the script, there
are occasions when you don't.

You could remove the appropriate c r on t a b
entry when you don't want to execute the script
and then reenter it when you do. However,
this method is tedious and error-prone. In this
article, we'll show you a simpler technique:
We'll let the script decide when to execute
based on the presence of a particular file.

How does the shell decide whether
to run?
First we need a method to allow the shell
script to decide whether to run. It turns out
that this is very easy to do. Figure A shows
our demonstration shell script, named test.
The highlighted lines show the part that
checks for the file /locks/test.

The heart of the trick is the -e t; I ename
clause in the condition section of the if state-

#Test whether shell script is allowed to run

if [-e /locks/test]; then

f i

echo "/locks/test exists, script terminated"
exit

#Normal shell script operation starts here

echo "Hello, world!"

If this shell script finds the file /locks/test, it prints a warning and exits.

1 0 Inside Solaris

ment. This clause is true if ti I ename specifies a
file that exists; otherwise the clause is false.
The rest of your shell script remains unchanged.

In our demonstration, if the file /locks/test
exists, the script prints a message to let you
know why it terminated. Then it executes the
exit statement to stop processing the script.

Create a directory of lock files
In order to make this technique manageable,
you should keep your lock files in a centralized
location. For our purposes, we simply created
the /locks directory. Creating this directory
gives you the ability to easily determine which
shell scripts are locked out on your system. All
you need to do is execute the command

$ ls /locks

and you'll see a list of the scripts that are
currently locked out from use.

Whenever you want prevent a shell script
from operating, just execute the command

$ touch /locKs/scriptname

where scr; p tname is the name of the script you
want to lock out. Then, when you want to

Figure B
' - - -

..-- Terminal

Window fdit Qptions

./test
Hello, worldl
touch /locks/test
./test
/locks/test exists, script terminated
rm /locks/test
./test
Hello, worldl

!:!.elp
,,.

~ .
.·
'

7 -AJ

Here's how the technique works: First test runs normally,
we lock it out, and then we allow normal operation again.

allow access to this script again, just remove
the lock file with the rm command

$ rm /locks/scriptname

Figure B shows our demonstration script
in action. First we run test normally, and then
we lock it out by creating the file /locks/test and
run test again. Finally, we delete the lock file
and test runs normally again.

Conclusion
This technique is useful whenever you want to
prevent a certain script file from running. If
you're scheduling a late night and don't want
to be slowed down by a large finite element
analysis job, you can turn off the script that
runs it. Or perhaps your tape drive was re­
moved for repair. If so, you can use this tech­
nique to turn off the backup script. •!•

Hard and soft tile links
By Marco C. Mason

As you're aware, your file system greatly
resembles a tree structure, like the one
shown in Figure A. From the root

directory, /, everything grows upwards. You
graft other file systems onto the root file system
at various places to add more disk space to
your machine or to allow simple access to files
on other machines or file systems.

However, there are cases where a simple
tree structure isn't the best choice. Sometimes
you want to provide different users access to a
restricted access file without adding more groups
to the system. Or maybe you want to have a
command with multiple names, but you don't
want to fill your disk drive with multiple copies
of the command. Perhaps you simply want to
effectively move files to a more logical location
but still allow users to pretend that the files
exist at their old location.

. In cases like these, you'll want the ability
to graft together some of the branches of your
tree, as shown in Figure B. The blue part of the
file system is on a different file system than
the root. When the root file system ran out of
room, we moved the S UNWss directory from
the root file system to the export file system.
We then deleted the SUNWss directory from
the root partition and created a link to the
SUNWss directory on the export file system.
Now, none of the users of the S UNWss direc­
tory will notice that the file moved.

Directory entries and inodes
When you're working with files, you're actu­
ally working with directory entries. The direc­
tory entry keeps track of two basic pieces of

information about the file: its name and the
inode number that describes the file.

All the basic information that describes
the file is stored in the inode. You'll find the
permissions, user ID of the owner, last access
time of the file, and much more in the inode.

The two most interesting fields in the inode
are the block list and link count fields. The block
list keeps track of all the blocks of storage on
the disk that are part of the file. The link count
field tells how many directory entries refer

Figure A

SUNWlts SUNWss bin home

~- ~ var~export

,
The traditional view of a file system is a tree of files and directories growing
from the root directory.

Figure B

SllNWllS SUNWss ~

'/'bm~
var~xport

~

File system maintenance is easier when you can merge some branches in
the tree.

July 1996 11

Figure c
Directory Entry

to the inode. Figure C shows how the direc­
tory entry, inode, and file data are connected.

Hard links
From the existence of the link count field, you
may infer that multiple directory entries may
refer to the same inode. If you think that, you' re
correct. A hard link is simply the directory entry
that refers to the inode that describes the file.

When you create a new directory entry that
refers to this inode, UNIX increases the link count
field in the inode. Similarly, when you delete a
directory entry that refers to this inode, the link
count decreases. If the count decreases to 0, then
UNIX deletes the file specified by the inode.

For example, suppose we're in the direc­
tory /export/home/marco, and we create two
subdirectories, abc and def.

$ cd /export/home/marco
$ mKdir abc
$ mKdir def

Then let's create a file named test in the abc
directory and list the directory abc.

$ ls >abc/test
$ ls -l abc
-rw-r--r-- marco staff 69 May 12
•12:24 test

Now let's get ahead of ourselves and create a
hard link to the file in our def directory, calling
it temp. Then we'll list the directory def.

$ ln abc/test def /temp
$ ls -l def
-rw-r--r-­
• 12: 24 temp

2 marco

lnode

lnode #

staff 69 May 12

As you can see, both directories are identical,
except that the number in the second column
changed between directory listings and the
filenames are different. The number in the
second column is the link count field. It is 1 for
the first directory listing and 2 for the second
directory listing because we added a link
between the two l s commands. If you go back
and list the abc directory, you'll see that it too
now has a 2 in the second column.

At this point, our directory entries and
inode look something like Figure D. Next, let's
delete the file abc/test and then list the def
directory again.

$ rm abc/test
$ ls -l def
-rw-r--r-- marco staff
•12:24 test

69 May 12

Now the link count goes back to 1. Even
though we created the file in the abc directory
and then deleted it, the file exists and is
currently linked to the def directory. UNIX
doesn't care which directory you link a file to
first. It deletes a file only when the link count
goes to 0. If we delete the file from def, the link
count will go to 0, and UNIX will free all the
space currently allocated to the file.

Creating a hard link is very easy. All you
need to do is use the l n command like this

$ ln source dest

where source is the name of the file you want
to link to and des tis the name you want for
the link. The des t field is optional, and when

File Contents

you omit it, it defaults to the same
name as source, but in the current
directory.

The directory entry refers to an inode that contains all the information describing a file,
including the list of data blocks holding the data in the file.

Let's suppose your friend Joe­
Bob created a program named
smorgasbord-selector that chooses
the restaurant you'll go to for lunch.
You might think that's a bit too much
to type, so you want to name your
own copy lunch. Rather than copy
the entire program, you can just

Figure D
Directory Entry
/export/home/marco/abc

1811 123

/export/home/marco/def

tamp 123

lnode

............... MaJ1212:24
nB'CO
11111

At this point, we have two directory entries pointing to our test file.

12 Inside Solaris

create a link to it with the command

$ ln /export/home/joe-bob/smorgasbord­
• selector lunch

One advantage of using a hard link
rather than a copy is that you're
expending only the space for a
single copy of the program. An­
other benefit is that if your friend
updates the program with more

restaurants, the next time you run lunch, you'll
have access to the new restaurants.

Hard links have their disadvantages as
well. First, you can't hard link one directory to
another because the. and .. entries in a direc­
tory link to the current and parent directories,
respectively. Solaris prevents you from linking
to directories so that your directory links don't
get confused with Solaris'.

To illustrate why you can't create hard
links to directories, let's assume that you can.
Suppose you create the directory /export/home/
fred/games. When you do so, Solaris automati­
cally creates the .. entry in games to refer to
/export/home/fred. Now suppose Fred's buddy

George started work at the same company and
offered George the use of his games. George
created a link to Fred's games directory, just as
you might expect.

Now, George is in his home directory,
/export/home/george, and wants to play a game.
He types cd games to get to the games directory,
plays tic-tac-toe, and then wants to get back to
work. He types cd .. , and where is he? He's
in Fred's home directory!

Suppose Fred leaves the company, and the
system administrator removes Fred's account.
George would still have access to Fred's games
directory. But now when George types cd ..
from the games directory, UNIX would get
confused. The directory that the .. directory
entry refers to no longer exists!

Another shortcoming with hard links
results from the fact that the directory entry
directly specifies an inode number. Because of
this, you can't make a hard link refer to a file
on another file system. The reason for this is
twofold: First, there's no data item in the direc­
tory entry to specify on which file system the
inode resides. The second reason is the most
important: It prevents file system corruption.

Suppose for a moment that you could
access an inode in a different file system, and
the file system happens to be a directory tree
on another machine on the network. If you
shut down the network and the user on the
remote machine continues working, it's possi­
ble that the inode your directory entry refers
to could be reassigned to some other file. Once
the network comes up, if you were to write to
the file specified by your link, you could damage
a file on the other person's machine.

son, or symbolic, links
In Figure A, we showed you a diagram that
violates both limitations of hard links. Not
only does it show a link to a directory, but it

shows a link across file systems. While a hard
link has both of these limitations, a symbolic
link has neither.

A hard link works at the very bottom level
of the file system to allow direct access to an
inode and, therefore, operates very quickly. A
symbolic link does its magic by operating at a
higher level than a hard link. Rather than storing
the inode number of a file, it stores the file
reference in a symbolic form: text.

When UNIX uses a symbolic link, it goes
through an extra level of processing. When it
finds itself at a symbolic link, it reads the sym­
bolic link to get the name of the file or direc­
tory being linked to. Then it starts all over
looking for the file.

For example, suppose you have a file named
/alpha/beta, and you have a symbolic link to it
called /one/two. If you attempt to read file /one/
two, UNIX first locates the directory entry for
/one/two. Next it reads the symbolic link infor­
mation and finds out that the file's real name
is /alpha/beta. Then UNIX starts all over and
looks for /alpha/beta.

The chain could continue, where /alpha/
beta refers to yet another file. As you can see,
UNIX has to do more work to resolve a sym­
bolic link. However, since it's symbolic, the
link can refer to any directory, even one on
another machine, as long as it's mounted and
accessible in your machine's file system hier­
archy. If a symbolic link resolves to a file that
doesn't exist, UNIX will simply generate a file
not found error.

UNIX allows you to create symbolic links
to a directory because the strange situation that
could happen with hard links can't happen
with a symbolic link. Since you can't delete a
directory's parent directory, UNIX will always
be able to process a cd .. command without
error. In fact, to make operating with symbolic
links less confusing, the shells have support
built in to help change directories with less
confusion. So if you change to a directory
through a symbolic link, you'll get to your
original location when you execute the cd ..
command.

For example, with a default installation of
Solaris, the /lib directory is really a symbolic
link to the /usr/lib directory. So if you're in the
root and type cd lib, you'll be in /usr/lib. How­
ever, the pwd command will report that you're
in /lib, and c d .. will take you back to the root.

You can create a symbolic link by adding
the - s option to the l n command. Thus, you
can create a symbolic link like this

$ ln -s source dest

July 1996 13

where sou~ce is the name of the file or direc­
tory you want to link to and des tis the name
of the symbolic link. Please note that unlike a
hard link, source need not exist at the time
you create your link.

You can see symbolic links when you issue
an ls - l command. Whenever you encounter
a symbolic link, Solaris prints the standard
directory line and then appends -> source. Thus,
if you're in the root directory, and you type
ls - l, the line for the lib directory appears as

lrwxrwxrwx 10 root sys 512 Apr
-.20:50 lib-> . /usr/lib

As you can see, it also prints an las the file
type in the permissions mask. No matter whe­
ther the file is a file or a directory, you'll see
an l as the first character.

Please note something else about the per­
missions mask. Notice that the permissions
are rwxrwxrwx, giving you, your group, and

the rest of the world complete access. This
isn't bad as it seems at first glance. It's not
really telling you that just anyone can erase
all the files in the lib directory.

Symbolic links have one additional feature:
You can set a priority mask for them that can
further restrict access to a file or directory.
Rather than using the permissions for the sym­
bolic link as the permissions for the file or direc­
tory the link refers to, the permissions simply
tell Solaris which permissions are allowed if
they're allowed on the original! If you've removed
any permissions from either the original file or
the symbolic link, then Solaris won't grant the
permissions.

On a default installation of Solaris, the per­
missions on the /usr/lib directory are rwxrwxr­
x. Therefore, even though the symbolic link
grants write access to the world, the /usr/lib entry
restricts it, so no one outside the root's owner
and group may write to this directory. •!•

Build a keyword index for man

Figure A

S man -k f i l esystem

As you know, if you want to read a man
page, you have to know the name of
the command, and optionally the section

number. What you may not know is that man
will help you find the appropriate manual
sections if you don't know exactly what you
want. All you need to know is a word that's
related to what you want to find. You use this
word in the man command like this: man -k
keyword, where keyword is a word relating to
the information you're seeking.

As an example, Figure A shows the results
of running the command man -k f i le system.
As you can see, man found five man pages con­
taining the keyword filesystem. The reason it
didn't find the obvious candidates mount and
umount are because these man pages use the
phrase file system rather than the word file-

filesystem filesystem (5) - file sys t em o rganization
hsfs hs f s (7fs) - Hig h Sie rra & ISO 9660 CD-ROM fi l esystem
shar e_nfs s ha re_nfs (lm) - make local NFS f il esystems avai l ab l e for rrounting by rerrote systems
tmpfs tmpfs (7fs) - merro ry based fil esystem
unshare_nfs unsha r e_nfs (lm) - make l ocal NFS filesystems unava ilable for rrounting by rerrote systems
s

Here's what man turned up when we searched for the keyword filesystem.

14 Inside Solaris

system. As you can see, this isn't a perfect meth­
od. However, it does give you a good way to
start dredging the man pages for information.

However, before you can use the -k option
with man, you must build the keyword indices.
This is where ca tman comes into play: It's the
program that builds the keyword indices for
the man pages.

-
Table A

--

1 User (shell-level) commands

2 UNIX system calls

3 C library calls

4 File formats

5 Headers, tables, and macros

6 Games and demos

7 Special files

9 DDiand DKI
These are the major categories of standard sections for
man pages.

All you should need to do is to execute
catman -w with the list of sections you'd like to
index. If you omit the section list, cat man assumes
that you want to index all manual sections. Table
A shows the standard sections used to organize
man pages. For example, to build a keyword index
of sections 1 through 4, just use the command

$ catman -w 1 2 3 4

You should build the keyword indices
only for the sections that you're interested in.

If, for example, you don't do any Device Driver
Interface (DDI) programming, then indexing
section 9 would be a waste of disk space.

This process of building the keyword index
can consume a good bit of disk I/ 0 and CPU
time, depending on the number of sections and
man pages that cat man must process. Therefore,
you may not want to run catman during your
peak load hours. You could consider this as an
example of when you'd want to defer program
execution by using the at command. •:•

Who's tying up the file system?
I just recently "inherited" a network with

several Sun workstations and have a couple
of questions. As part of our monthly mainte­
nance schedule, we have to unmount some file
systems. Unfortunately, sometimes someone is
still using a file on the file system. Right now,
I have to use wall to tell everyone to get off
the file system.

The problem is that someone might be at
lunch and won't see the message immediately.
Also, some users don't know if they're using
the file system. I know there's a better way,
but I don't know what it is. Can you help?

Also, my boss wants me to add a dialup
line to one of the workstations so some em­
ployees can have access after hours. How do I
do this?

Carolyn Belak
Orlando, Florida

To find out who's using a file system, you can
use the two commands f user and p s . The first
command, f user, tells you which processes
are using a file system. To use it, you just type
fuse r followed by the list of file systems you' re
interested in. The fuse r command will respond
with the list of processes using each file system.

Please note that each process number will
have one or more letters following the number.
These letters aren't part of the process ID­
they' re just telling you what the process is
doing with the file system. For example, c means
that the process is using the file system as its
current directory, and o means that the process
has an open file on the file system. You can
execute man f user for more information on
this command.

Once you've found the list of processes
using the file system, you need to convert them
to the usernames with the ps command. You
need to use the - f switch to tell ps to print a full
listing that includes the username. You also need
to add the -p option, which tells the ps command
that you're going to specify a list of process
IDs that should follow the -p command sepa­
rated by commas, like this:

$ ps -f -p1,2,3

Now you can tell the specific users to
please finish their jobs that use the file system
or you can log them out if they don't respond.
Suppose that you want to unmount the /export/
oracle and /export/remote directories. Your
session might look like this:

$ umount /export/oracle
umount: /export/oracle busy
$ umount /export/remote
umount: /export/remote busy
$ fuser /export/oracle /export/remote
/export/oracle: 300c 319co
/export/remote: 301c
$ ps -f -p300,301,319

UID PID PPID C STIME TTY TIME CMD
root 300 298 0 09:06:48 pts/3 0:00 /sbin/sh
root 301 298 0 09:07:01 pts/3 0:00 /sbin/sh
root 319 300 0 09:10:06 pts/3 0:00 /export/home/marco/
•thrash

As you can see, you can give the fuse r
command a list of file systems, and it will
print the file system name before each list of
process IDs. Also, when you specify the process
ID list to the p s command, don't put a space
between the -p and the list of process IDs.

Julv 1996 15

r

SunSoft Technical Support

(800) 786-7638

SECOND CLASS MAIL

Please include account number from label with any correspondence.

Your second question is much more complex.
Obviously, you'll need a data communications
line between the remote user and the host.
Most people use modems to communicate
over telephone lines. The hardware aspect is
beyond the scope of this journal, but we've
covered the software in past issues.

You'll probably want a PPP link between the
remote and host machines. We discussed how
to set up the host side of a PPP link in the arti­
cle "Configuring PPP under Solaris 2.x" in
October 1995. The article "Configuring a Remote
PPP Dial-up Client for Solaris 2.x" in the Feb­
ruary 1996 issue covers the remote user side. •!•

Quickly switch between directories
If you're like me, you frequently move be­

tween directories in your job. Some direc­
tories you use so frequently that you can

probably type them without thinking. When
the directory names you use are very long,
however, typing them can be a tedious and
error-prone activity.

It turns out that there's a simple trick you
can use to make it much easier. All you need
to do is create environment variables for your
commonly used directories. Then you can use
these environment variable names instead of
the directory names when you want to specify
a directory.

You're probably already familiar with an
example of this. When you log in, the shell
creates the SHOME variable, which holds the
path of your home directory. If you need to go
to your home directory, you can simply type
cd $home, which is certainly simpler to type
than cd /export/home/marco.

In the Korn and Bourne shells, you can
create an environment variable with the
following syntax

var; ab I e= va I ue

where var; ab I e is the name of the environ­
ment variable that you're creating and va I ue

holds the path. For the C shell, the syntax is
similar:

set variable:value

Suppose you maintain an ftp area for
GNU utilities at /export/ftp/pub/GNU and a
WWW server with pages stored at jusrjlocalj
etcjhttpd. If you find these hard to remember
or type accurately, you may want to give them
simple mnemonic names. Let's name them
GNU and WWW for convenience.

$ GNU:/export/f tp/pub/GNU
$ WWW=/usr/local/etc/httpd
$ cd $GNU
$ pwd
/export/ftp/pub/GNU
$ cd SWWW
$ pwd
/usr/local/etc/httpd

You can save yourself a lot of time if you
maintain a set of directories that you're always
referring to. Please keep in mind that these
environment variables will stay around only
as long as you' re logged in. If you want to use
them all the time, you'll want to put these
definitions in your .login or .profile file, as
described in the article "Execute Commands
When Logging In" in the April issue. •!•

16 Inside Solaris

.[).-..,
.. i""\: \"\ Printed in the USA D\,/' This journal is printed on recyclable paper.

