
in this issu-e , , : · : ·.

1
Automating common ftp tasks

4
Installing the NCSA WWW
Server

10
Netr-The easy way to
connect to the Internet

11
An introduction to shell
scripts

13
Create multiple directories
with mkdir

14
Adding external disk causes
system failure

15
Connecting to Cobb's
anonymous AP server

15
Execute commands when
logging in

16
Quickly create small text files

April 1996 •VOL. 2 NO. 4
us $11.50

Automating common ftp tasks
By Marco C. Mason

Suppose that you manage a large
network where multiple machines
need to have a local copy of some

set of files, and you're frequently up­
dating these same files. You start ftp
and transfer the files like this (what
you type is in color):

$ ftp widget1.cobb.zd.com
Connected to widget1.
220 widget1 FTP server (UNIX(r) System

V Release 4.0) ready.
Name (Widget1:marco): anonymous
331 Guest login ok, send ident as password.
Password:
ftp> cd /pub/data
250 CWD command successful.
f t p > put d a i l y. summary
200 PORT command successful.
150 ASCII data connection for

daily.summary (140.244.96.202,32817)
226 Transfer complete.
local: daily.summary remote: daily.summary
21468 bytes sent in 11.32 seconds (1.9
Kbytes/s)
ftp>

Ugh! You've sent only one file, and
you've barely gotten started. If you need
to send a few files in different sub­
directories to a dozen machines, you'll
be baby-sitting ftp for quite a while.
Wouldn't it be better if a command
could do all the transfers for you?

In this article, we'll show you how to
create macros to make large file transfer
jobs simpler using ftp. We'll also show
you how to make ftp automatically
log you in when you specify the com­
puter to which YC?U want to connect.

Creating macros
The first thing we can do to make f t p
simpler to use is to create macros for
common tasks. You can create your

own commands in f t p by building
them out of other f t p commands.
These new commands are called
macros. You create your com­
mands with the mac def command.
To use the macdef command, all
you need to do is type macdef and
follow it with the name of your
new macro. Then, type each com­
mand you want your new macro to
perform. When you're finished, en­
ter a blank line to tell ftp that your
macro is complete.

Figure A shows an example
macro, named transfer, that will
copy our daily summary files to a
remote machine. Please note that
this macro assumes that we're al­
ready connected to the machine.

Figure A
macdef transfer
cd /pub/data
put daily.summary
put graphs/daily.orders
put graphs /daily.inquiries
put graphs /daily.cancels
cd /pub/spreadsheets
put daily .worksheet .wks
<blank line>

We use this macro to transfer our daily
summary files to a remote machine.

Executing macros
Now that we have our macro,
transferring a set of files from our
machine to a remote machine is
simpler. Once we're connected, all
we have to do is tell ftp to execute
the new macro. You do so by en­
tering $macroname at an ftp
prompt, like this:

ftp> Stransfer

Inside So/arts (ISSN 1081-3314) is published monthly by
The Cobb Group.

Prices Domestic $115/yr ($11.50 each)
Outside US $135/yr ($16.95 each)

Phone US toll free (800) 223-8720
UK toll free (0800) 961897
Local (502) 493-3300
Customer Relations fax (502) 491-8050
Editorial Department fax (502) 491-3433
Editor-in-Chief (502) 493-3204

Address Send your tips, special requests, and other
correspondence to:

The Editor, Inside Safaris
9420 Bunsen Parkway, Suite 300
Louisville, KY 40220
Internet: inside_solaris@merlin.cobb.zd.com.

For subscriptions, fulfillment questions,
and requests for bulk orders, address
your letters to:

Customer Relations
9420 Bunsen Parkway, Suite 300
Louisville, KY 40220
Internet: cr@merlin .cobb.zd.com.

Postmaster Second class postage is paid in Louisville, KY.

Send address changes to:

Inside So/arts
P.O. Box 35160
Louisville, KY 40232

Copyright Copyright © 1996, The Cobb Group. All rights reserved.
Inside Safaris is an independently produced publication
of The Cobb Group. The Cobb Group reserves the right,
with respect to submissions, to revise, republish , and
authorize its readers to use the tips submitted for per­
sonal and commercial use.

The Cobb Group and its logo are registered trademarks
of Ziff-Davis Publishing Company. Inside Safaris is a
trademark of Ziff-Davis Publishing Company. Sun, Sun
Microsystems, the Sun logo, SunSoft, the SunSoft logo,
Solaris, SunOS, Sunlnstall, OpenBoot, OpenWindows,
DeskSet, ONC, and NFS are trademarks or registered
trademarks of Sun Microsystems, Inc. UNIX and OPEN
LOOK are registered trademarks of UNIX System
Laboratories, Inc. Other brand and product names are
trademarks or registered trademarks of their respective
holders.

Advertising For information about advertising in Cobb Group
journals, contact Tracee Bell Troutt at (800) 223-8720,
extension 430.

Back Issues To order back issues, call Customer Relations at (800)
223-8720. Back issues cost $11.50 each, $16.95 outside
the US. We accept MasterCard, VISA, Discover, or
American Express, or we can bill you.

Staff Editor-in-Chief Marco C. Mason
Contributing Editor Jeff Warner

Al Alexander
Editors Linda Recktenwald

Martha Bundy
Production Artist Margueriete E.Winburn
Circulation Manager Mike Schroeder
Editorial Director Linda Baughman
Publisher Lou Armstrong
President/CEO J. Thomas Cottingham

2 Inside Solaris

Advanced macro operations
Even though transferring all the files to a single remote computer is
simple, we still must connect to each machine that we need to up­
date and then execute our macro command. Fortunately, there's a
better way. You can write a macro that accepts arguments. In other
words, you can write a macro so that when you execute it like this

ftp> Ssend_fi les widget1 widget2 arthur

your macro has the ability to read the arguments widgetl, widget2,
and arthur. To do so, when you write your macro, use the character
sequence S 1 to refer to the first argument, S2 to refer to the second,
and so on. Therefore, we could write the send_files macro to send
our files to the machines widgetl, widget2, and arthur, as shown in
Figure B.

Please note that each argument is separated by spaces, unless you
use quotes. If you use quotes, you may embed spaces in your ar-
guments. Thus St rans fer 11 a r g 111 11 a r g 211 has only two arguments.

Figure B
mac de f send f i l es
open $1
Stransf er
close
open $2
Stransfer
close
open $3
st rans fer
close
<blank llne>

This version of the send_files macro will
send our daily summaries to three machines.

Figure C
mac def send f i le s
open Si -
st rans fer
close
<blank line>

The improved version of the send_files
macro will send our daily summaries to any
number of machines.

This method is a lot bet­
ter. Now you can start f t p,
issue the send_files macro
with the list of machines
you want to send the files
to, and walk away. No more
baby-sitting the computer.

However, this macro could
still be improved. First, it's
repetitious-whenever you
do repetitive tasks on a com­
puter, there's usually a bet­
ter way. (Second, what hap­
pens if you want to transfer
the daily summaries to
more or fewer than three
machines?

Both of these problems
can be solved by another
special character sequence:
Si. When you use Si in a
macro definition, you're tell­
ing ftp to execute the macro
once for each argument. The
first time f t p executes the

macro, Si refers to the first argument. The second time it executes
the macro, Si refers to the second argument, and so on, until there
are no arguments left. Thus, we can rewrite our send_files macro
as shown in Figure C. Using our improved send_files macro, we
can transfer our daily summaries to as many machines as we
want, simply and easily.

Special notes
Of course, not all is wine and roses. When you're using macros
with ftp, you're limited to having only 16 defined at one time. An­
other limitation is that all your macros combined must have less
than 4,096 characters.

In addition, since the S symbol is used in macro definitions, you
can't blithely use it whenever you want one in your macros. In

order to put a $ in your macro definitions,
you must precede the $with a \.To put a \
in your macro definitions, you must use \ \.

Storing macros for future use
While macros are a very nice feature, why
use them if you have to redefine them each
time you start the f t p program? Fortunate­
ly, the designers had similar thoughts: When
you start ftp, it looks in your $HOME di­
rectory for a file named .netrc. If it finds this
file, it will automatically scan this file for
macro definitions and load them into memory.
By the time you get to the first prompt, all
the macro definitions in the .netrc file are
ready to use.

You can put a macro in your .netrc file
by entering it just as you would at the ftp
prompt. Don't forget to place a blank line
after the last line in the macro to end the
macro!

The init macro
Do you find yourself executing the same set
of commands each time you run f t p? If so,
you'll like one of the other benefits of using
the .netrc file. It turns out that when ftp
loads all the macros in the .netrc file, if it
finds one named init, f t p executes it before
giving you control.

For example, when you transmit a large
file, do you enjoy staring at the screen wait­
ing for the transfer to complete? Neither do
we. When we start a file transfer, we open
a new terminal window and work on a dif­
ferent project.

Just so we can tell how things are pro­
gressing, we always execute the hash com­
mand so that ftp will print hash marks(#)
as it transfers the file. This way, we can
easily look up from our job to see if ftp is
still banging away. Similarly, we execute
the bell command so that ftp beeps us
when the transfer is complete. This allows
us to take a break from our other project
and start the next file transfer operation.

Rather than execute the be l l and ha sh
commands each time we start f t p, we cre­
ated the init macro, shown in Figure D, in
our .netrc file to execute them for us.

Figure D
macdef init
bell
hash
<blank line>

By putting the bell and hash commands in our init macro,
we'll never have to execute them manually again.

Automatic login
When you examine Figures B and C, you
might think we made an error. After all, the
open command doesn't automatically log
you in, does it? By itself, it doesn't. But if
you put the machine definition information
into your .netrc file, it can. This is a great
feature even if you're not using macros, as
it can help you log in to machines without
having to type in your user name and pass­
word each time.

When you start ftp with a host name on
the command line like this

ftp widget1.cobb.zd.com

or if you simply try to open a connection
from an f t p prompt, like this

ftp> open widget1.cobb.zd.com

f t p scans its list of machine definitions and,
if it finds the specified machine in its list, it
will provide whatever information it has. If
you specify all the information required,
then ftp will automatically log you in with­
out prompting you for the user name and
password.

You can create a machine definition by
putting the following text in your .netrc file:

machine machine name
login user_name­
password password

All you need to do is replace the itali­
cized text with the required information.
You can put the machine, login, and pass­
word clauses on a single line if you prefer.

Combining all the concepts we've talked
about, we created a .netrc file, shown in
Figure E on page 4, that contains our mac­
ros and machine names so we can perform
all our daily summary updates just by
starting f t p and typing

$transfer widget1 widget2 arthur

Temporarily disabling ftp' s
automatic login feature
Occasionally, you may need to log in to a
computer with a different account than the
one described in your .netrc file. In this
case, you need a way to tell ftp to ignore
the machine definition information in your
.netrc file but to otherwise run normally.

You can do this by starting f t p with the
- n option. This tells f t p to read only the

April 1996 3

Figure E

macros from the . netrc file and to ignore the
machine definitions. When you use the - n
option, you'll have to log in to each ma­
chine manually. To start ftp using this
switch, just type

ftp -n hostname

Protect yourself!
All the features provided by the .netrc com­
mand are great time-savers. However,

machine widget1 login anonymous password marco@widget1
machine widget2 login anonymous password marco@widget1

machine arthur
login marco
password splemliferous

macdef init
bell
hash

macdef transfer
cd /pub/data
put daily.summary
put graphs/daily.orders
put graphs /daily.inquiries
put graphs /daily .cancels
cd /pub/spreadsheets
put dai ly.worksheet.wks

macdef send files
open Si -
$transfer
close

Our .netrc file allows us to automatically log in to three machines
and to transfer our daily summaries.

software installation

there's one security problem that you need
to be aware of. If you use the automatic
login feature with a real account (i.e., not an
anonymous login), then anyone who can
read your .netrc file can find out your user
name and password on that machine.

You can plug this security hole by telling
Solaris not to let anyone read the file but
you. You can do so by using the command

chmod go-r .netrc

This command tells Solaris to remove the
read permission from other accounts inside
and outside of your group. Now no one
may read your .netrc file but you, the root,
and the superuser accounts.

Conclusion
As you can see, f t p has some very powerful
features that let you customize its opera­
tion. If you take full advantage of the macro
facilities and the machine-definition fea­
tures, you can simplify your daily chores
considerably. •!•

Marco C. Mason is a freelance computer
consultant and author based in Louisville,
Kentucky. He's worked on cattle feeding sys­
tems, automated destructive equipment test­
ing, and the largest computer-controlled sound
system in the world.

Installing the NCSA WWW Server

4 Inside Solaris

By Al Alexander

F or the last several years, the Internet
and the World Wide Web have been

the most publicized and possibly the
most exciting part of computing. It seems
that every company, large and small alike, is
putting its corporate information on the Web.

The technology has recently spread even
further to create corporate intranets-in­
house Web servers that store information
that can be accessed by employees on inter­
nal LANs. Intranet information includes

employee manuals, telephone directories,
policy manuals, engineering documents, and
much more. The Internet and intranets
promise to become even more exciting as
technologies such as VRML and Java bring
animation to the Web.

Since the inception of the Web, NCSA
(National Center for Supercomputing Ap­
plications at the University of Illinois) and
CERN (Center for European Particle Physics
Laboratory) have created free, public do­
main Web server software known as HTTP
(HyperText Transfer Protocol) daemons.

These HTTP daemons allow schools, corpo­
rations, and government agencies to create
their own Web servers on UNIX platforms.
As the Web has evolved over the last two
years, NCSA' s Web server software has
won the battle for the public domain HTTP
daemon Web server, offering more features
and functionality than the CERN version.

In this article, we'll explore the process of
acquiring NCSA' s HTTPD Server software
and installing it on a Solaris 2.4 system. In
the process, we'll set up a fictitious Internet
Web site that we'll call www.alexander.com.

Obtaining the NCSA HTTPD Server
software
The first part of the installation process is
obtaining the NCSA HTIPD Server software.
The Server software can be obtained directly
from NCSA via the Internet.

The easiest way to retrieve the file is to
point your Web browser (i.e., Netscape Navi­
gator, Mosaic, or a similar product) to the
URL http://hoohoo.ncsa.uiuc.edu/docs/setup/
PreCompiled.html. This URL displays a self­
explanatory Web page that allows you to
download the entire NCSA Server software
distribution. This distribution includes bi­
nary executables and necessary subdirec­
tory structures but, unfortunately, no in­
stallation instructions.

At the time of this writing, the most re­
cent version of the NSCA HTTPD Server
software is 1.5a. It's available for the fol­
lowing Sun platforms:

• SunOS 5.4 I Solaris 2.4 SPARC

• SunOS 5.3 I Solaris 2.3 SPARC

• SunOS 5.4 I Solaris 2.4 x86 (Intel)

• SunOS 4.1.3 I Solaris 1.x SPARC

Putting the Server software in
an appropriate directory
The default directory location for the Server
distribution is /usrjlocaljetcjhttpd. You can
change this default as desired, but it fits our
directory tree structure very well, so we'll
install it at that location.

The file that you'll download from NCSA' s
Web site has been tared and compressed.
For the Solaris 2.4 x86 environment, the file
we downloaded, named httpd_l.Sa-export_
solaris2.4_x86.tar.Z, was 498,103 bytes, or
about 0.5MB.

After downloading the file, place it in a
directory named jusr/local/etc. If you don't
have this directory already, create it as follows:

mkdir -p /usr/local/etc

Next, copy the file to that directory, and then
make that your current working directory:

cp <f;tename> /usr/local/etc
cd /usr/local/etc

As we mentioned, the distribution is
tared and compressed. Therefore, the next
step is to uncompress the file:

uncompress <f;tename>

This expands the x86 distribution to a
1,130,496-byte file. Next, use the tar com­
mand to extract the tar archive:

tar xvf <f;tename>

This command extracts all of the NCSA
HTTPD Server files into a subdirectory
named httpd_l.Sa-export. The last step in the
installation is to rename that directory to
the default name httpd:

mv httpd_1.5a-export httpd

The NCSA distribution is now installed
in the default location, /usrjlocaljetcjhttpd.
Move into the httpd directory and list the
files in that directory:

cd httpd
ls -al

The complete distribution includes not
only all of the necessary binaries and con­
figuration subdirectories and files, but also
the source code for the HTTPD Server. If
you're a C programmer with a C language
compiler, you'll find this code valuable if
you want to make changes to the actual
binary.

The directory jusrjlocaljetcjhttpd is called
the ServerRoot directory. At a minimum,
the files and directories shown in Table A
should be in the ServerRoot directory.

httpd NCSA HTTPD Server binary executable file

./conj Configuration file subdirectory

./logs Server log files subdirectory

./support Various support-related programs subdirectory

./cgi-bin Common Gateway Interface files subdirectory
These files and directories should be in the ServerRoot directory.

April 1996 5

6 Inside Solaris

The logs directory didn't exist in the dis­
tribution, so you must create it manually:

mkd i r logs

Other files may also be in your ServerRoot
directory, including BUGS, CHANGES,
COPYRIGHTS, CREDITS, a Makefile, and a
README. You may want to view these files
to understand more about the distribution
contents.

Modifying the Server
configuration files
You can configure the NCSAHTTPD Server
in three different ways:

1. At compile time by modifying the C
language source code

2. Through startup configuration files

3. Through run-time configuration

The first option requires a C language com­
piler and is rather inflexible when you want
to make changes to the Server as it's run­
ning. The third option is typically used to
control access to portions of directory trees.

The second option, using configuration
files, is probably the most common method
of configuring the NCSA Server. Through­
out the remainder of our discussion, we'll
examine the second method and show you
how to configure the NCSA Server by
modifying its startup configuration files.

The conf subdirectory contains the Server
configuration files. When the Server dae­
mon starts, it examines three files in this di­
rectory, as shown in Table B

httpd.conf Server configuration file

srm.conf Resource configuration file

These configuration files tell the HTTPD Server the
information specific to your location.

When you look in your conf subdirectory,
you'll notice that these three files exist in
the r subdirectory, but they're followed by
the extension -dist. These files are sample
files that come with the distribution.

Copy these three -dist files to the names
shown above, and then edit them to cus-

tomize them for our environment:

cd conf
cp access.cont-dist access.cont
cp httpd.conf-dist httpd.conf
cp srm.conf-dist srm.conf

By copying these files instead of renaming
them, we keep the original files as a future
reference.

Each of the three files contains a fair
number of comments. Commented lines
are those lines that begin with the# sym­
bol. We'll look first at the access.conj global
access configuration file.

access.cool
The file access.conj is the global configura­
tion file. This file contains only a few vari­
ables, and if you put your Server files in the
default locations, the defaults for these
variables will be fine.

Please note that if you decide to put your
Server or your Home Page documents in
alternate directories, you'll need to change
the two Directory entries in this file to re­
flect your specific locations. Because we're
installing the Server files in the default lo­
cations, no changes are required to the
access.conj file.

httpd.conl
The main Server configuration file is
httpd.conf. When it starts, the Server dae­
mon looks in this file to determine impor­
tant information, such as the TCP /IP port
to run on, which user and group will own
the Server daemon, etc.

For most basic HTTPD Server installa­
tions, many of the default values will work
just fine. The few options that may need to
be changed initially are shown in Table C.

Server Name <none>
Server Admin you@your.address
Server Root I usr /local/ etc/httpd
User nobody
Group -1 VirtualHost

These are the configuration options in the httpd.conf
file that you'll probably want to customize.

You should set the ServerName variable
to the TCP /IP name of your UNIX server in
your /etc/hosts file (or NIS database). Since

we're setting up a site named www.alexander.
com, we'll use the following statement:

ServerName www.alexander.com

You should change the variable Server-
. Admin to the E-mail address of the person

administering your Web site. For the pur­
poses of this article, we'll assume that the
Web administrator's username is al, so
you should set the ServerAdmin variable
as follows:

ServerAdmin al@www.alexander.com

As we mentioned, ServerRoot is the root
or top, level directory of the HTTPD Serve;
files and directories. Because our Server is
installed in the default location, there's no
need to change this variable. Please note
that if the Server was installed into another
directory, such as /var/ncsa_httpd, you'd
need to modify the ServerRoot variable as
follows:

ServerRoot /var/ncsa_httpd

The User and Group variables represent
the owner of the Server daemon while it's
running on the computer system. Although
the root user must start the HTTPD Server
the ownership of the child processes change~
to the User and Group values specified in
the httpd.conf file. This is done to enhance
security by allowing you to make the dae­
mon run with fewer privileges.

The User and Group default values are
nobody and -1, respectively. These are good
choices, but a minor change may be required.
On a typical Solaris machine, a username
of nobody already exists, so no change is
required there.

A group named nobody also exists, but
the default group ID for the group nobody
on Solaris 2.4 is 60001, not -1. Therefore,
you need to change the Group variable to
the name nobody instead of using the
number -1, as shown below:

User nobody
Group nobody

The VirtualHost variable (the last few
lines of the file) is configured to allow your
Server to respond to client requests for
multiple hostnames. For instance, it's pos­
sible to configure your Server to respond
not only to requests for www.alexander.com,
but also for other domain names, such as
www.acme.com and www.foo.com.

This option is typically used by Internet
service providers who sell Internet access
to corporations, but not by corporations,
schools, or government agencies. The best
thing to do with the VirtualHost variable is
to comment out the lines that configure it:

<VirtualHost 127.0.0.1 Optional>
DocumentRoot /local
ServerName localhost.ncsa.uiuc.edu
ResourceConf ig conf/localhost srm.conf
</VirtualHost> -

One final comment on the httpd.conf file:
Please note that the HTTPD Server listens
on TCP /IP Port 80 by default. This is the
default port that Internet browsers such as
Netscape call on when looking for a Web
server. The HTTPD Server must be config­
ured to listen on the same port that the
browser is calling, so we'll leave the Server
at port 80. (If you change the port number,
no one will be able to access your Web
server without changing their Web browser
software.)

srm.conl
The file srm.conf configures the server's re­
sources. This configuration file defines the
name space that users of your Server can
see. You may need to change several of the
default variables in this file to configure
your site. These variables are shown below:

Doc~mentRoot /usr/local/etc/httpd/htdocs
Redirect /HTTPd/http://hoohoo.ncsa.uiuc.edu/

The DocumentRoot variable defines the
location of your home page documents. By
default, your initial home page document­
index.html-and the remainder of your
HTML documents must be in the /usr/local/
etc/httpd/htdocs directory and subdirectories
of that directory. If you want to keep your
home page documents in another location,
you'll need to change the DocumentRoot,
Alias, and ScriptAlias variables to reflect
that location.

You don't need the Redirect variable for
an initial installation, so you can comment
it out:

#Redirect /HTTPd/http://hoohoo.ncsa.uiuc.edu/

Because we're configuring our server to
work in the default location, we'll use the
default directory. First, create the htdocs di­
rectory in the /usr/local/etc/httpd directory:

mKdir /usr/local/etc/httpd/htdocs

April 1996 7

Figure B

G] -
~indow f_dit Qptions

It ps -ef I g rep httpd
nobody 494 491 2
nobody 493 491 2
nobod y 496 491 1

root 491 1 12
nobody 495 491 2
nobody 492 491 2

root 511 278 5
It
It
It
It
It
It
It
It
It
It
It
It
It
It
It

j! • - -

Let's create a home page!
Now we nearly have the Web server config­
ured. Before we proceed to the last step,
that of running it, let's create a home page.
To do so, go to the DocumentRoot directory
by typing

cd /usr/local/etc/httpd/htdocs

Now, using vi (or a similar editor) create
a text file named index.html. Make sure it
contains the following text. It's very impor­
tant that you copy this text exactly.

<HTML>
<TITLE>My Home Page</title>
<h1>Welcome to my Home Page!</h1>
<h2>Documents on the system include :</h2>

<l i>< a hr e f ="ht t p : / / www. a lex and er . com I
bio.html">
A description of the site manager.
Watch for new documents in the future!
</html>

Figure A
httpd Usage:

httpd [-d directory] [-f file] [-v]

-d directory specify an alternate initial
ServerRoot directory

-f f i le

-V

specify an alternate Server
Configuration file
(httpd.conf)
display version information

You may use these options to start the HTTPD
daemon with alternate parameters.

-
Terminal - - · ~

= l.:J~
·~·

.!ielp)

11 27: 56 ? O: 00 /us r /loc al / etc/httpd/ httpd HI
11 27:56 ? O: 00 /usr / l ocal / etc/httpd/httpd
11 27:56 ? o: OD / us r /l ocal / e t c/httpd / httpd
11 27:56 ? o: 00 / us r /l ocal / etc/httpd/httpd
11 27: 56 ? O: 00 /us r /local /etc/httpd / httpd
11 27: 56 ? O: 00 /usr/l ocal /etc/httpd / httpd
11 45:15 pts/4 0: 00 g rep httpd

-

.... - - - - ""'
You can view the processes running the Web server by typing ps -ef I grep httpd at
the command prompt.

8 Inside Solaris

Now, in our fictitious example, any time
a user points a browser at the URL http://
www.alexander.com, he or she will receive this
document as the home page. After you've
created your home page, return to the conf
directory to finish changing the srm.conf file:

cd .. /cont

Starting the HTTPD Server daemon
Now that you've properly modified the con­
figuration files, you can start the HTTPD
Server daemon in one of three different ways:

• in the /etc/inetd.conf file

• from the command line

• from a startup shell script

For performance reasons, you shouldn't
start the server from the /etc/inetd.conf file.
There's a lot of overhead involved in start­
ing the HTTPD daemon in this manner that
slows the response time under a heavy load.

Therefore, we'll initially start our server
from the command line. Once it's working,
we'll create a simple shell program that will
start the server every time the computer
boots into multi-user mode.

The httpd file in the ServerRoot directory
(/usr/local/etc/httpd/httpd) is the server bi­
nary executable file. When this file runs, it
reads the configuration files in the conf sub­
directory and begins running as a daemon
process. Usage options for starting the
HTTPD daemon from the command line
are shown in Figure A.

Because the server is installed in the de­
fault location, no options are required at
the command line. Therefore, to start the
server, type

/usr/local/etc/httpd/httpd

You shouldn't see any error messages when
the server starts. If you do see messages,
record those messages and carefully review
the previous steps.

Also, note that the server automatically
runs in the background. You don't need to
use the & character after the command to
run it in the background.

If everything is working properly, you
should be able to identify six processes
running on your computer waiting for cli­
ent requests, as shown in Figure B. Run­
ning the highlighted command in Figure B
should return seven output lines. (The last

output line in Figure B shows the process
that's running the grep command that's fil­
tering out the processes dealing with httpd.)

The output displays the process you cre­
ated, process ID (PID) 491, owned by root,
and five other processes, owned by the
user nobody. The five processes owned by
nobody are child processes of the parent
process, PID 491.

You created five child processes because
the variable StartServers is set to 5 in the
httpd.conf file. These five processes listen on
port 80 for client requests and respond to
those requests as they occur.

The NCSA HITPD Server is now running
on your Solaris server. To verify that an end
user can actually see your home page, you'll
need access to another computer on your
TCP /IP network that has a browser, and you
must point that browser at your new Web
server.

In our fictitious example, the server is
named www.alexander.com. On another com­
puter on my network that has a browser,
we'd enter the URL http://www.alexander.
com. The home page document we created
above would appear. Figure C shows how
Netscape would display the home page for
www.alexander.com.

Starting the server automatically
at boot time
With the server starting properly from the
command line, the last thing you need to
do is to start the server processes automati­
cally at boot time. You can easily accom­
plish this by creating a shell program and
putting that shell program in the /etc/rc2.d
directory.

Figure D shows a simple shell program
to accomplish this task. The shell program
is named S99ncsa_httpd, which is consistent
with the naming structure in the /etc/rc2.d
directory.

VERY IMPORTANT NOTE: Make sure you
test this shell program from the command
line before putting it in the /etc/rc2.d direc­
tory and rebooting the computer. If there's
an error in this file and the computer can't
get past it during the boot process, your
computer could hang at boot time!

First, create this file in the /tmp directory.
Then kill the old server processes by killing
the parent process (PID 491 in our example):

kill 491

(To find the parent PID #,just look at the out­
put of the ps -ef I grep httpd commands,
and look for the line starting with root. The
number following root is the PID of the
parent's process. Killing this process will
automatically kill the child processes as well.)

Now that you've stopped the Web server,
you can test the startup shell script by typ­
ing the following command:

sh ./S99ncsa_httpd

! Welcome to my Home Page!

Documents on the system include:

• A description of the site manager.
• Watch for new documents in the future!

Here's how Netscape running under Windows 95 interprets our new home page.

Figure D
#!/bin/sh

PROGRAM: S99ncsa_httpd

PURPOSE: Start the NCSA HTTPD Server daemon at boot time.

#Run the NCSA HTTPD Server command:

/usr/local/etc/httpd/httpd

#Check the Exit Status of the previous command.
If the status= 0, it started ok.
If the status != 0, it did not start correctly.

STATUS:S?

if [$STATUS -eq 0 1
then
echo "NCSA HTTPD Server Daemon started successfully."

else
echo "The NCSA HTTPD Server Daemon did not start properly."

f i

This script starts the NCSA Web server daemon and then tells you whether it started
correctly.

April 1996 9

1 0 Inside Solaris

If the server is started properly, you'll see
the message NCSA HTTPD Server Daemon
started successfully. If it fails, or if it hangs
for any reason, you'll need to begin the de­
bugging process.

You can verify that the server is running
by reissuing the ps -et I grep httpd com­
mand and verify that it shows a parent
process and five child processes. If the
startup shell script works successfully,
copy it to the jetcjrc2.d directory:

cp /tmp/S99ncsa_httpd /etc/rc2.d

The Solaris operating system will now au­
tomatically run this script every time your
computer is booted to run state 2 (the nor­
mal multi-user mode).

connecting to the Internet

Conclusion
The Internet and intranets have helped to
bring an enormous amount of information
to end users in the last few years. Configur­
ing the NCSA Web Server is a relatively
simple and straightforward process that
can help your organization achieve further
information distribution goals that can ben­
efit everyone at your company. •!•

Netra-The easy way to connect
to the Internet

If you need to connect a network to the
Internet, how will you do it? If FTP,
Archie, WWW, and Mosaic are foreign

words to you, you'll probably want to in­
vestigate Sun Microsystems' Netra series of
Internet servers. Sun's N etra series is a line
of computers preconfigured to act as Inter­
net servers. These servers are designed to
connect your network to the Internet with a
minimum of fuss.

Even if connecting to the Internet is
nothing new to you, you still may want to
become familiar with the N etra series. Af­
ter all, other departments in your company
may want access, and you may not want to
be stuck with managing them. Or perhaps
a less-savvy friend in another company
would like a little help.

What is a Neira Internet server?
The Netra line of Internet servers is a series
of Sun computers designed from the ground
up to connect to the Internet. All the soft­
ware you need comes preinstalled on the
computer, so you don't have a complex
configuration job facing you. The hard parts
are done by your local Sun distributor.

The Netra Internet servers come in sev­
eral sizes. The smallest of these is designed
to serve from one to 20 users, and the larg­
est handles over 200 users.

What does it buy you?
If you get a Netra box for your network, the
following software is already configured
for use:

• Solaris version 2.4 with revised PPP
drivers

• Automatic performance tuning daemon

• DNS client and server (to help manage
IP addresses)

• Automated PPP, Token Ring, Ethernet,
and ISDN configuration (for access to the
Internet or remote clients)

• POP2, POP3, and IMAP protocol (for
handling E-mail)

• HTML-based tools for administration
(allows you to use a Web browser for
administration)

• Telnet and FTP (for accessing remote
systems)

• NCSA WWW server and Netscape
Communications Server (provides access
to multimedia WWW pages)

• Anonymous FTP server (allows you to
make documents available for people on
the other side of the firewall)

using shells effectively

• Optional Solstice FireWall-1 software
(protects your entire LAN from hackers
on the Internet)

Summary
If you've been given the task of connecting
your server to the Internet, there's a quick
and easy way to do it. If you don't have the
time to learn all the configuration manage­
ment tasks yourself, you can use the Netra
series to get you online right away. •!•

An introduction to shell scripts
By Marco Mason

If you're like most people, you often find
yourself repeating tasks. Each time, you
must type the same series of commands

to get a job done. Wouldn't it be nice if you
could just keep a list of commands in a file and
tell the computer to execute the whole list?

It turns out that you can do this and much
more with shell scripts. Shell scripting al­
lows you to perform complex tasks like
looping, decision-making, and math. How­
ever, you don't have to learn everything
about shell scripting all at once. In this ar­
ticle, we're going to introduce you to the
bare essentials: We'll show you how to turn
a list of commands that you want to execute
into a shell script.

A very simple script
Just for fun, let's create a simple shell script
that will find all the files ending with the ex­
tension .bak in your home directory and all
subdirectories below it. To make it more in­
teresting, we'll find only those files that are
over a week old and haven't been accessed
in that time. After reading the man page for
the f i n d command, you'd figure out that
you should type something like this:

find SHOME -name '•.bak' -atime +7 -mtime +7
-print

While this is a single command, you can
see why you wouldn't want to have to type
it in its entirety each time you wanted to
find some files in your directory tree. To
make our lives simpler, we'll make this
command a shell script.

Turning your command list
into a script
It's surprisingly easy to change a list of
commands into a shell script. You need to
do two things: You must enter the com­
mand list into a text file, and you must tell
Solaris that the file is executable. While you
could use an editor to create the script file,
we'll use the technique described in the ar­
ticle "Quickly Create Small Text Files," on
page 16.

cat> find.files
find SHOME -name '•.bak' -atime +7 -mtime +7 -print
[Ctr l J D

Now you've created a file named find.files
that contains the list of commands you
want to execute. (In this case, there's only
one command, but you could have as
many as you like in a single shell script.)

Next you must tell Solaris the file is ex­
ecutable using the chmod command. To do
so, type

chmod a+x find.files

Now you have a shell script that can
find all the old backup files from your di­
rectory tree. To run your macro, you just
type the following line:

./find.files

You might be wondering why you need
the./ at the beginning of the line. That's
because the directory you're currently in is
presumably not on your path. When you

April 1996 11

12 Inside Solaris

type a command name at the shell prompt,
Solaris searches through the directories
stored in your path for the program to ex­
ecute. The./ tells Solaris to start looking in
the current directory.

Please note: If you're going to be creating
shell scripts of your own, you'll probably
want to create a special directory for them.
Then you can place this directory name in
your path so you can run the shell scripts
no matter what directory you're in.

You can do this by creating a directory
off your home directory called bin. Then
you can add your local bin directory to the
path. In the Bourne and Korn shells, you
can do so with the following commands:

cd SHOME
mkdir bin
PATH=SPATH:SHOME/bin
export PATH

If you' re going to use the C shell, you can
instead use

cd SHOME
mkdir bin
set path=(Spath SHOME/bin)

Now that you've created a local bin di­
rectory and placed it in your path, you can
start placing shell scripts in your bin direc­
tory. Your shell scripts will start looking
more like real Solaris commands because
you no longer need to type the . I before
each macro name when you run it.

Please note that when you log out, Solaris
will forget the changes you made to the
path. You can fix this if you use the tech­
nique shown in the article "Execute Com­
mands When Logging In" on page 15.

Command-line arguments
What do you do if there are other file types
that you want to find? You could create a new
shell script for each type of file. But what if
you want to use a different aging period?

After you think about it a while, it's ob­
vious that multiple shell scripts aren't the
answer. Eventually you'd wind up with
dozens of shell scripts, and you wouldn't
be able to remember which one to use.
Wouldn't it be nice to tell the shell script
which types of files to delete and how old
they should be?

It turns out that you can do this. Inside
your shell script, you can refer to any argu­
ments that you provide when you start it.
When you put a $ followed by a number
into your script, the text the shell script
sees will be the argument referenced by the
number. For example, a $3 will be replaced
with the text of the third argument.

Two other sequences can be useful. The
$@sequence represents a list of all the argu­
ments, and$# represents the number of ar­
guments passed to the shell script. As an
example, let's assume you've created the
following shell script named test:

echo You invoked test with $#arguments
echo Second: $2
echo First: $1
echo Ent i re l i s t : $@

When you execute test with the command line

./test A private buffoon is a light-hearted
loon

your shell script will print

You invoked test with 7 arguments
Second: private
First: A
Entire list: A private buffoon is a light­

hearted loon

Arguments and quoting
When you invoke a macro and you use
quotes in its arguments, you should be aware
that anything inside a set of quotes is treated
as a single argument, even if the quotes en­
close one or more spaces. Thus, if we ex­
ecute our test macro like this

. /test "The first argument" "the second"

you'll see that test sees only two arguments.
As you probably know, when you use

the * or ? characters to specify wildcards in
filenames, the shell expands them for the
program. So when you type

the shell actually looks in the current direc­
tory, builds a list of all the filenames that start
with a q, and passes this list to rm. What rm
actually sees might be something like this:

rm quick quack quart

If you put the file specification in quotes, then
the shell won't expand the file specification

into the matching list of files. Thus, typing

rm 'q•'

tells the rm command to remove the file q*.
Similarly, when you write your own shell
scripts, you need to be aware that if the user
uses a wildcard specifier, the shell will expand
the expression to match all possible files in the
current directory and pass you the resulting
list of arguments. If you don't want that, you
need to enclose the argument in quotes.

Updating our shell script
Now let's add the ability for the script to ac­
cept some parameters that tell it how to be­
have. We'll use the first argument to describe
the file extension find and the second argu­
ment to tell how old the files must be. To do
so, all we have to do is modify our find.files
script to look like this:

find SHOME -name '•. '$1 -atime +$2 -mtime +$2
-print

Please note that we put the $1 outside the
quotes for the file specification rather than
inside the quotes. If we leave the $1 inside
the quotes, the script will look for all files with
the ending . $1 rather than what we want.
We'll cover the rules on how to determine
where to put quotes and such next month
when we discuss variables in shell scripts.

Our shell script is now much more flex­
ible. Rather than only finding .bak files that
haven't been used in a week, you can use it
to find files with any given extension that
haven't been used for as many days as you
specify.

quick tip

Comments
Even though the shell scripts in these examples
aren't very complex, you'll want to adopt the
habit of documenting your shell scripts. As
you get better at writing shell scripts, you'll
find that your scripts get more complex. As
you maintain them, you'll find that comment­
ing your shell scripts will help you to modify
them for new uses with a minimum of hassle.

If you start a line in your shell script with the
symbol, the entire line is ignored. Therefore,
you can use this feature to add documentation
to your shell scripts. At a minimum, you should
describe the purpose of your shell script. In the
places where your script gets complex, you'll
want to add comments to help your reader de­
cipher what the script is doing. Figure A shows
our shell script with some comments added.

Figure A
#find.files arg1 arg2
#This script file finds all files ending with the
#extension in arg1 that haven't been accessed or
#modified in the last arg2 days

#Note: The •. is in quotes to prevent the shell from
#replacing it with a list of file names found in the
#current directory. The $1 is outside of the quotes
#so that the shell •Will• replace it.
#.
find SHOME -name '•. '$1 -atime +$2 -mtime +$2 -print

This shell script can help you locate unused files on your hard drive.

Conclusion
Writing shell scripts can simplify your life by
making many tasks easier. Rather than memo­
rizing complex sequences of instructions, you
can make your own shorthand. As the example
we just used shows, creating a shell script
doesn't have to be particularly difficult. •!•

Create multiple directories with mkdir
H ave you ever needed to create a direc­

tory tree like /test/app/data, /test/app/
bin, and /test/app/config when you

haven't yet even created the /test directory?
You might think that you need to execute
five commands to do so:

mkdir /test
mk di r It es ti a pp

mkdir /test/app/data
mkdir /test/app/bin
mkdir /test/app/config

It turns out that you can do the same job
with only three commands instead of five.
The mk di r command has a switch, -p, that
tells mkd i r to create any parent directory
that doesn't already exist. This allows you

April 1996 13

to create multiple directories with a single
command. Thus, if you type the command

mkdir -p /test/app/data

the mk d 1 r command first finds that the /test
directory doesn't exist, so it creates it. Then
it notices that the /test/app directory doesn't
exist and creates it as well. Finally, it creates

letters

Adding external disk
causes system failure
0 ur system has been very reliable in the

past. However, we added an external
disk drive last week, and now it crashes at
least once a day. Can you help?

William Scotts
Dayton, Ohio

We normally don't print letters like this,
but after some work on the phone, we've

Figure A

168
HD

CD-ROM Adapter
1542

Terminated connection
Unterminated connection

The system configuration appeared like this before the
external hard drive was installed.

Figure B

168
HD

CD-ROM Adapter
1542

External
HD

Terminated connection
Unterminated connection

Since a SCSI bus must be terminated only at the ends, we should
remove the terminators on the SCSI adapter.

14 Inside Solaris

the data subdirectory. You can then finish
the job by issuing the commands:

mkdir /test/app/bin
mkdir /test/app/config

The next time you need to create a complex
directory tree, save yourself some typing and
try the -p option on the mk d 1 r command. •!•

discovered that this is a classic problem
that people should be reminded of. It turns
out that William's problem was an improp­
erly terminated SCSI cable.

William was using an Adaptec 1542 SCSI
controller, which allows both internal and
external drives. Originally, he had two in­
ternal drives, a CD-ROM and a lGB hard
drive. His system was cabled, as shown in
Figure A. As you can see, the 1 GB hard
drive has a terminator on it.

The rules of a SCSI interface say that both
ends of a SCSI cable must be terminated.
The Adaptec 1542 has terminators on it by
default. Thus the 1 GB hard drive at one end
of the cable is terminated, and the other end
of the cable is terminated on the card.

For the Adaptec 1542, like many other
cards, the external connector is an extension
of the internal connector. When the external
hard drive was added to the external con­
nector, the SCSI cable had terminators on
both ends and in the middle, as shown in
Figure B. This caused the system crashes
William is experiencing. In this case, all that
was required was to remove the termina­
tors on the Adaptec 1542 card.

Please note that some SCSI controller
cards might have the external connector
on a different SCSI bus. In this case, the
internal and external connectors are on
different cables. On such drives, you may
not have to remove a terminator from the
controller card.

Remember, at the physical end of each
SCSI bus, you need to have a terminator.
Read the documentation on your controller
card to find out if the internal and external
connectors are on the same SCSI bus and to
determine the procedure to mix internal
and external SCSI devices.

Connecting to Cobb's
anonymous FTP server
While I was reading the February issue

of Inside Solaris, I ran across the article
on your anonymous FTP site ("Inside Solaris
List Server and Anonymous FTP Update").
I tried to connect to the site with the follow­
ing command

ftp ftp.cobb.zd .com/pub/COBB/solaris

but was rejected, like so

ftp .cobb.zd.com/pub/COBB/solaris: unknown host

What's wrong?

Terry Holthaus
New York City

When we published the address of the FTP
site, we used the popular convention of ap­
pending the directory path to the machine
name to show you where the files are. Actu-

using shells effectively

ally, you have to specify the machine name
when you start ftp. Then after you've es­
tablished a connection, you use the cd com­
mand to go to the proper directory. The fol­
lowing dialog will show you how to do this:

ftp ftp.cobb.zd.com
Connected to ias3. iacnet.com .
220 ias3 FTP server (Version wu-2.4(3)

Wed May 24 21:37 :02 EDT 1995) ready .
User (i as3. i acnet. com: (none)): anonymous
331 Guest login ok, send your complete

e-mail address as password .
Password:
230 Guest login ok, access restrictions apply.
ftp> cd pub!COBB!solaris
250 CWD command successful.
ftp>

As a general rule, when you see an FTP
address with forward slashes in it like
ftp.cobb.zd.com/pub/COBB/solaris, just use
the text before the first slash as the ma­
chine name for establishing your FTP con­
nection. Then use the text after the first
slash for the directory name. Now you
should be able to log in and use our FTP
site without any problems. •:•

Execute commands when logging in
H ave you ever needed to set the value

of an environment variable to make
some application run correctly? If so,

you've probably noticed that when you log
in the next time, you have to reset the envi­
ronment variable to run your program again.
Perhaps after you log in, you always run
the same couple of commands, just to see
how the system is doing.

If you're in one of these situations, then
you'll benefit from this discussion. In this
article, we're going to discuss how to make
your shell automatically execute com­
mands for you when you log in to your
computer.

Which shell are you running?
Before you try using the procedures we're
about to present, you need to know which
shell you're running when you log in. To find
this out, execute the following command:

cat /etc/passwd I grep \Auser_name

Be sure to replace user _name with your user
name. This command will scan the /etc/
passwd file and find the entry for your name.
Figure A shows the results of searching for
the user marco on one of our systems.

Figure A
S cat /etc/passwd I grep \Amarco
marco:x:1313:60001:Editor-In-Chief, Inside
Solaris:/export/home/marco:/bin/sh
$

Here we found the /etc/passwd entry for the user marco.

Notice that the second line in Figure A
contains many fields of information sepa­
rated by colons. The first field holds the user
name, which is the key we used in our search.
The last field holds the path of the shell to
execute. In this case, the default shell is the
Bourne shell.

The three shells shipped with Solaris are
the Bourne shell, the C shell, and the Korn
shell. By default, when you create a new

April 1996 15

SunSoft Technical Suppor

(800) 786-7638

SECOND CLASS MAIL

Please include account number from label with any correspondence.

16 Inside Solaris

user account, the account uses the Bourne
shell unless the system administrator over­
rides it. The files /bin/sh and bin/jsh* hold
the code for the Bourne shell, the file /bin/
csh holds the code for the C shell, and the
files /bin/ksh and /bin/rksh* hold the code
for the Korn shell. (* These are special ver­
sions of the shell.)

The Bourne and Korn shells
When you log in using the Bourne or Korn
shell, the shell automatically looks for two
shell scripts to execute for you. First, the shell
looks for the script /etc/profile and executes it if
it exists. You should place any commands
you want executed by all users in this file.
Next, the shell looks in your home directory
for a script named .profile, executing it if found.
Each user uses the .profile file to customize his
or her environment.

The Korn shell performs an additional step:
It looks for the environment variable ENV
and searches for the file it specifies. If it finds
one, then it executes that script as well.

quick tip

The c shell
When you log in using the C shell, the C
shell looks in your home directory for a file
named .cshrc and executes it if found. You
use this script file to customize your envi­
ronment.

If you've just logged in to the computer,
the C shell executes the .login script file
found in your home directory, if it exists.
You use this script file to run any com­
mands that you need to run only once per
login, such as setting your path or custom­
izing your terminal settings. Please note
that the C shell executes the .login script
after the .cshrc script, if it executes the .login
script at all.

The C shell provides one additional fea­
ture you might want to use: It lets you ex­
ecute a script file when you log out of the
computer. To do so, simply create a script
named .logout, and when you log out, the C
shell will execute it. (Please note that this
technique works only when you're using
the C shell as your login shell.) •:•

Quickly create small text files
If you're like most of us, you often want

to create a small text file. While you
can run v i or start the text editor to do

so, there's a quicker way for tiny files. You
can use the ca t command to redirect the
characters you type on the keyboard to
a file.

To do so, just type cat >fname, where
fname is the name of the file you want to
create. When you press [Enter], Solaris will
put the cursor on a blank line. Just type the
text you want to store in your file, and press
[Ctrl]D when you're finished. For example,
if you want to put the sentence "I am the
very model of a modern Major-General"

into a text file named Pirates.ditty, you can
simply type this:

cat >Pirates.ditty
I am the very model of a modern Major­

General
[Ctr l l D

This technique can save you some time
since you don't have to load a big editor
like vi from the disk to quickly create small
text files. If you're all thumbs, just remem­
ber to correct your errors on each line be­
fore pressing [Enter]. If you don't, the file
will contain errors, and you'll either have
to redo it or use vi anyway. •:•

•. .:;'./~"'"' Printed in the USA \:J.¢' This journal is printed on recyclable paper.

