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Preface

This book is intended as an explanatory guide for readers who are familiar with 
general computer concepts and wish to gain a broad understanding of ICL’s 2900 
Series.

The series was conceived from the outset as a range of machines and the initial 
design effort was concerned with those features common to all members of the 
range. Within this basic range architecture individual hardware and software 
systems were then developed. The present book is concerned mainly with the 
range architecture. Implementation matters are described when these are helpful 
to an understanding of general range concepts, or give the reader an insight into 
the way in which the architectural principles can be interpreted to meet differing 
criteria of cost, power and application. In addition some attention is devoted to 
the history of the 2900 and the influences on its design.

The book is intended to be read sequentially, but many of the individual 
sections are freestanding. This introduces some repetition, but does allow the 
book to be used for differing purposes by readers with different interests. To aid 
such use the logical structure of the book is shown diagramatically in figure 0.1. 
Each box represents an area of possible interest and the number in the top left- 
hand corner of a box represents the section or sections in which information can 
be found. Thus design influences are described in section 1.2. Boxes within 
another box indicate a logical subset of the area covered by the surrounding box. 
Thus section 2.1 efficiency is part of the general subject of aims and objectives 
and section 3.3 program structure is one of the fundamental concepts, which 
themselves form a part of the 2900 Architecture. A line with a horizontal arrow­
head can be interpreted as meaning ‘leads to’ while a line with a vertical arrow 
head means ‘constrains’ or ‘controls’. Thus the planning operations (section 1.1) 
led to the 2900 Architecture (sections 1.3, 3, 4, 5), which was constrained by 
design influences (1.2) and aims and objectives (2). Similarly the fundamental 
concept of a virtual machine (3.1) leads to an architectural mechanism called 
virtual store (4.3), which in turn produces a requirement for virtual store and 
interrupts (5.3) in the primitive architecture. The reader can use the diagram 
either to select areas of the book of interest to him or as a reference guide, to 
find, for example, all the ramifications of the virtual machine concept or the 
reasons for the register structure of the primitive architecture.
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Preface xi

Finally, whatever else the book is useful for, it is definitely not written as a 
sales brochure for the ICL 2900 systems. However, when one has been closely 
connected with something from conception, through a five-year gestation period, 
to birth and a year or so of infancy, it is difficult not to feel some parental 
affection, even after a year’s separation. This can lead to a concentration on 
obviously attractive characteristics to the exclusion of congenital defects of a 
permanent or correctable nature. The author wishes to apologise for any un­
necessary enthusiasm shown in the book and begs the reader’s indulgence.

Crowthorne, 1977 J- K. BUCKLE
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1 The History of the ICL 2900

The 2900 Series arose directly from the formation of International Computers 
Limited by the merger of ICT and English Electric Computers in 1968. This 
chapter is devoted to the historical background to the development. It defines 
the way in which the development was carried out in the new company, the 
influences that affected the final system design and the basic form of the final 
2900 specification.

1.1 THE ORIGINS OF THE SERIES

At the formation of International Computers in 1968 it was realised that within 
a few years the new company would need a range of machines to replace the 
series currently being marketed by the individual components of the merged 
corporation. At that time ICT was selling the 1900 series, while English Electric 
as a result of a previous takeover was supplying both its own System 4 Series 
and the 4100 range of machines developed by Elliott Automation. The three 
ranges inherited by the new company were incompatible in almost every respect- 
word length, basic hardware structure, software construction. Although each of 
the ranges had their own special areas of application there was still a considerable 
amount of overlap. This, and the cost of maintenance of three production lines, 
pointed to the need for some form of rationalisation.

In addition, although there existed as-yet-unannounced developments of 
both the 1900s and System 4s that could prolong the life of these ranges for 
several years, all three types of machine dated initially from the early 1960s. 
Major new design enhancements would be needed to take advantage of improve­
ments in hardware and software technology over the past decade.

As a result of considerations such as these, one of the first corporate decisions 
of the new company was to establish a New Range Planning Organisation. The 
nucleus of this organisation, known by its initials as NRPO, was formed by 
‘professional’ planning staff drawn from the constituent companies. These 
provided experience both in corporate planning and market research, and in 
technical product planning. To this nucleus were added experts in different 
disciplines from all the operating divisions of ICL: development and manufactur­
ing staff for both hardware and software, logical designers, technology experts 
and sales and support staff.
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The resulting unit was organised into small teams, each with an individual 
task. The teams fell into one of three broad categories. The first category was the 
‘aims’ teams, who were responsible for establishing the basic aims and objectives 
of the New Range. They carried out or commissioned market research in the 
United Kingdom and abroad. They determined trends in user needs and computing 
practice and made predictions of future development. They analysed competitive 
operations and produced price targets and performance criteria. They examined 
technological developments and evaluated their effectiveness and usefulness. And, 
finally, they established a corporate marketing strategy and determined the 
conditions that this imposed on future products.

The second category of team was the ‘options’ team. Each options team had 
the task of producing the outline design for an archetypal computer system that 
could form the basis of a New Range which would satisfy the basic requirements 
of the aims teams. The staff for each options team was drawn from as wide a 
variety of disciplines as possible—hardware and software designers, technology 
experts.and marketing and planning staff. The teams were kept small—a maximum 
of six people—to avoid ‘committee design’, but could call upon the services of a 
wide variety of experts for advice from within NRPO, the rest of ICL and outside. 
Each of the teams had a specified ‘option’ that formed the framework for their 
design. For example, one team considered further, possibly radical, development 
of the 1900 series to meet the requirements of the 1970s and 1980s. Another 
team considered a similar proposition for System 4, continuing the RCA and 
English Electric policy of following IBM. Two of the teams were concerned with 
the further development of internal research projects that had been in progress 
for some time. One of these was a dedicated High Level Language machine, 
while the other considered the development of J. K. Iliffe’s Basic Language 
Machine,1,2’3 a prototype of which was operational in ICT’s Stevenage Labor­
atories. Smaller teams considered the exploitation of various developments 
outside the company. Finally, there was what was called, rather unprepossessingly, 
the ‘Synthetic Option’. This team had a free hand to consider any known develop­
ments or propositions inside or outside ICL and, from any elements it considered 
good, to synthesise a coherent architectural design. The aim was not under any 
circumstances to produce a compromise, and the team was at liberty, if it wished, 
to choose some other option or external development in its entirety. However, 
its chief objective was to incorporate as many compatible modem but proven 
computer concepts as possible in a unified design.

The final group consisted of ‘assessment’ teams. Their task was twofold. First 
they extended the requirements laid down by the aims teams, by detailed 
examination of particular aspects of computing with which the New Range would 
be expected to deal effectively. Proceeding independently of the design of the 
range itself, they were able to develop a set of secondary requirements that the 
options would have to meet. As an example, one of these orthogonal investigations 
was concerned with data management: the growth of data bases and the growth 
of techniques for data capture, data transmission and data-independent programm­
ing. Another group was concerned with ‘Bridgeware’, the products necessary to
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ease the transition of ICL’s own and competitors’ customers from their current 
systems to the New Range. The second task of the assessment teams was to 
establish detailed criteria by which the output of the options teams could be 
measured against the stated requirements, as an aid to management decision.

NRPO was not a particularly large unit and it was possible to maintain good 
communication between the various teams. Thus options teams were able to swap 
experience and ideas and to take or adapt part of each other’s designs. This not 
only saved effort but allowed the incorporation of good techniques into an option 
design at an early stage, before design work had become too frozen and the Not- 
Invented-Here syndrome could lead to their rejection as a matter of principle. 
Additionally, as work proceeded on refining judgement criteria and developing 
the options in parallel, it was possible to compare the embryonic designs with 
the stated ideals. Such co-operation was encouraged and could result in option 
design changes to meet criteria or the highlighting of defects in the statement of 
a particular criterion, leading to its modification or rejection. Finally, well- 
established communication channels with the operating divisions of ICL, and 
the availability of the in-house expert consultants mentioned earlier, provided a 
fast turn-round for new ideas and reactions to them. As a result of this form of 
organisation, although the first phase of NRPO operations lasted for more than 
six months, during this period several of the options were eliminated for market­
ing or technical reasons, or were amalgamated with other similar options. At the 
end of the phase the remaining contenders were presented to the Company at 
large and were reviewed by, among others, a ‘jury’ drawn from senior and middle 
management across ICL. The outcome of these deliberations was that the Syn­
thetic Option as defined at that time was chosen as the basis for the future ICL 
New Range. A number of changes and improvements were however also proposed. 
In particular it was suggested that the protection mechanisms should be improved 
to give something approaching the capability displayed by the Basic Language 
Machine.

Following this decision NRPO entered its second phase and grew in numbers. 
Refinement and further development of the Synthetic Option proceeded in 
parallel with an expansion of the basic architectural model to include require­
ments specifications for software, initial hardware models, peripheral availability 
and so on. More experts were drawn in from operating divisions of ICL to help 
with this work. By the end of this second phase of NRPO operations the require­
ments for the initial manifestations of the range were documented to a level at 
which implementation teams could be established. At this point control passed 
back to the main hardware and software development units of ICL and most of 
the technical staff returned from NRPO to work on the implementation. The 
reduced NRPO changed its name to New Range Organisation and changed its 
activities to monitoring and co-ordinating development. The development units 
began to design and build what were later to be called the first 2900 Series 
systems.
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1.2 DESIGN INFLUENCES

The very definition of the task of the Synthetic Option team meant that the 
resulting design would be subject to a wide variety of external influences. In 
searching for the best modern ideas in computing science and practice, and 
melding them into a whole, the team were subjected to various methods and 
techniques and, even when these features did not appear in the final design, 
they had an effect on the team’s thinking and its approach to solving particular 
design problems. As might be expected, these rather subliminal influences were 
more common than the complete incorporation of a design solution from another 
machine, since the latter almost always dragged in subsidiary requirements that 
were incompatible with other parts of the Synthetic Option design. Ideas were 
taken in to the team, thrown around among the members until the rough edges 
were abraded and then remoulded until they fitted into the partial design edifice 
that was being built up.

This process often introduced much greater generality into 2900 concepts 
than had been present in the original source. For example the techniques used to 
implement the concept of a virtual machine (described in more detail in subse­
quent chapters) are not new. Virtual storage was available on Altas computers 
in the early 1960s.4,5 The idea of the programmer interfacing only indirectly 
with peripherals (perhaps via spooling) has been around even longer. Nevertheless, 
techniques like this have been considered more as solutions to isolated problems 
than as part of an over-all operational method. The virtual machine combines all 
such concepts into a single coherent structure which is new, but the implemen­
tation of this new structure is by proven individual techniques. Previous paging, 
segmenting and spooling systems are, if you will, degenerate implementations 
of a virtual machine system.

Many of the direct influences on the 2900 architectural design came, as one 
might expect, from in-house systems. For example, concepts originating in Atlas 
and its supervisor and developed on the large 1900s with the GEORGE operating 
systems6 were well known to all the original team and provided a continuous 
influence on the team’s thinking. Again, as already pointed out, there was con­
siderable communication between the rival options. The Basic Language Machine 
in particular was very carefully studied and many of Iliffe’s innovations became 
foundations for the 2900.

Of the competitive systems studied during the Synthetic Option design, those 
most relevant were probably the large Burroughs machines.7 Although the funda­
mental concepts of the 2900 architecture differ considerably from those of 
Burroughs, similar design requirements have resulted in an over-all design ‘shape’ 
that is quite similar. The Burroughs approach of a single high level language 
machine was rejected for 2900 but the latter’s requirements for good all-round 
high level language performance led to the selection of some similar implemen­
tation details. In the operating system area several MULTICS8 concepts had a 
considerable influence on 2900, particularly in the sphere of protection where, 
even seven years on, it still represents the state of the art.
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However, the single most important external influence on the 2900 archi­
tecture was almost certainly the Manchester University MU 5 system.9,10 This is 
hardly surprising. The association between Ferranti Computers, a constituent of 
ICL, and Manchester University went back to Mark 1 and had progressed through 
Mercury and Atlas. At the time of the establishment of New Range Planning 
Organisation a team at Manchester University had been working on the design of 
their fifth machine for some time. Indeed, one of the options briefly considered 
for the new ICL range was to adopt the MU 5 architecture intact. This approach 
was ruled out since the objectives of the two developments were not identical, 
but sufficient similarities were present to make the Manchester work of consider­
able interest to the Synthetic Option team. Two aspects were particularly 
important. First both teams recognised the need to generalise the supervisory 
software system while improving its efficiency, and the decisions taken by the 
University in this area were well received by the ICL team. Second both teams were 
aware of the ever-increasing trend towards use of high level languages rather than 
assemblers, and the research and design done at Manchester were of great use in 
the formulation of the 2900 architecture in this area.

Although there are fundamental differences which mean that MU 5 falls out­
side the 2900 Range Definition, the early co-operation between the two design 
teams ensured that there would be a family resemblance between the two systems. 
Many of the fundamental approaches to storage management and process structure 
on 2900 are directly derived from the MU 5.

1.3 BASIC 2900 ARCHITECTURE

As already stated, the 2900 Series was conceived from the start as a range of 
machines that between them would cover a considerable spectrum of power and 
facilities. This made it necessary to define the new series in terms that were of 
general application to all the members of the range and not merely to design the 
first few models that were to be developed. In addition we were concerned not 
just with the hardware machines that would form the range but with a number of 
hardware-plus-software systems. The range definition therefore had to be system- 
oriented and to cover items that might be implemented in different ways—purely 
by hardware, or purely by software, or by some mixture of the two—on different 
models of the range.

The description of the range in this fashion forms the basic architecture of the 
2900 Series; it includes all the most important and interesting features and 
relationships of the components of a 2900 system. In particular it specifies the 
criteria by which a particular hardware-software system can be judged to be a 
member of the range. Because of the range and system concepts underlying the 
2900 these criteria are not always what one might expect from older range 
definitions. For example, although all the early members of the 2900 range 
share the same order code, the order code definition is not a part of the basic 
architecture. Because the hardware-software system is considered as an entity,



6 The ICL 2900 Series

changes in the instruction set between models may be hidden by the intimate 
software and so be invisible to all normal users. On the other hand considerations 
of data storage and interchange, as well as international standards, mean that the 
data formats do form part of the basic architecture: a 2900 is an 8-bit-byte, 
32-bit-word machine, for instance. These considerations in turn place restrictions 
on the features necessary in the instruction set, without actually defining its 
contents.

The basic architectural description of a 2900 forms a complex hierarchy. At 
the top is the architectural model, which is a general description of a 2900 system. 
In producing this model, the feasibility of actual implementations was of course 
considered but the model is kept as simple as possible and any specific 2900 
system design has to be a practical realisation of this. The architectural model is, 
as one might expect, most concerned with aspects of the central processors, 
storage mechanisms and lowest-level supervisory software, together with the 
interfaces with the other hardware and software components that go to make up 
a total system. These components are in turn described in the next level of the 
hierarchy: how peripherals fit into the architectural model, supervisor architecture, 
communication systems, multiple-processor operations and so on.

Many aspects at this second level, particularly where they interface with the 
architectural model, form range standards. Other aspects, however, are not so 
fundamental and can best be described as elements of architecture for a sub­
range within the over-all 2900 Series. The lowest-level documents within the 
hierarchy describe in detail the implementation of specific pieces of hardware 
and software that conform to the specifications of the higher-level documen­
tation. Implementations of these items can be combined, again according to rules 
specified at the higher levels, to form actual 2900 systems.

The actual design of the 2900 did not, of course, proceed in the strict top- 
down sequence outlined above. Even before the Synthetic Option had been 
chosen as the basis for the new range of machines, detailed investigations of 
much lower-level hardware and software technology matters were proceeding.
The results of these had an obvious effect on design decisions at a higher level. 
Again, at a very early stage the Synthetic Option team themselves were forced 
to sketch out designs for specific systems to convince themselves that such 
implementations within the architecture were in fact feasible. The over-all 2900 
design thus proceeded in an iterative fashion through the levels, but with the 
centre of the iteration descending to lower levels as time went on.

While this hierarchical description is the best form of reference documentation 
for the 2900, it does not form a very convenient method for an expository docu­
ment like the present book. Some of the higher levels of abstraction are difficult 
to grasp without specific examples, while some of the intermediate-level range 
standards, such as the status of peripherals in the architectural model, are too 
detailed to cover in a work of this size. For this reason the remainder of this 
book is structured rather differently. After chapter 2 outlines the basic aims and 
objectives determined by ICL for the New Range, the fundamental concepts of 
the basic architecture are first described in chapter 3. Chapter 4 then describes
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some basic architectural entities which are a mixture of basic architecture and 
range standards. Chapter 5 defines some important second-level or primitive 
architectural features that are again a mixture of range and subrange standards. 
Finally, to place the preceding descriptions in perspective, chapter 6 gives some 
details of the first implementations of the 2900 Series that have been produced.



2 Aims and Objectives

The last chapter described how the aims and assessment teams of NRPO specified 
the guidelines for the design and development of the 2900 Series. These took the 
form of a catalogue of requirements, which were of varying importance and 
seemed at times to the Synthetic Option team to be too numerous and in some 
respects self-contradictory. In retrospect, however, it can be seen that the require­
ments do indeed form a coherent set. Not all affect the architectural model, some 
being more concerned with implementation details.

The requirements can best be considered as a hierarchy that has at its apex 
the needs and wishes of the user of the system. This hierarchy is set out diagram- 
atically in figure 2.1. ICL was out to make a system that would be financially

Figure 2.1 Design constraint hierarchy;
numbers under boxes denote relevant sections in text

successful and it was realised that modern customers were not prepared to take 
an off-the-shelf system, however good, and adapt it to their needs (or, worse,
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to adapt their needs to it). The basic requirements for the New Range were there­
fore specified by the way in which its future customers wished to use their 
computers. The projected customer base was not homogeneous, and even within 
one customer installation the needs of the management, technical staff and end 
users were liable to be different. However, strong trends could be seen. At the 
grossest level the users’ needs split down into cost-effectiveness and ease o f  use.

Cost-effectiveness, the ability to get as much as possible for your money, is a 
well-known business desire. There are two possible approaches to providing a 
cost-effective system, both of which were taken into account in the 2900 design. 
The first is to reduce the cost to the customer by reducing ICL internal costs.
The second is to make the end systems as efficient as possible in areas of 
importance to the user.

Ease of use is much more complex, but again broad areas of agreement over a 
wide user spectrum could be discerned. First, users wanted their dealings with 
the computer to be at as high a level as efficient use permitted. People are a 
valuable (and expensive) commodity and cannot be allowed to waste time 
adapting their statements of problems to forms that the computer finds acceptable. 
There was thus a need to define computer systems from the user levels inwards 
and not from the hardware outwards. A closely connected requirement was that 
of versatility, both in the variety of applications and in the way in which they 
were being operated within the system. Thirdly, it was recognised that the invest­
ment in existing software and hardware is considerable in most installations and 
it was necessary to provide protection for this investment. Cheap and efficient 
methods of using existing hardware, software and data were required. Lastly, 
users required a dependable system. Since much of the day-to-day operation of a 
large business is tied up with the computer, users simply could not afford to be 
let down.

The remainder of this chapter considers these block requirements—efficiency, 
low internal costs, high level interfaces, versatility, ease of transfer, and depend­
ability—in more detail, and highlights some of the effects that each had on the 
design of the 2900 Series. It can be seen that there is considerable overlap in 
many of the requirements—for example, hardware assistance for high level 
language compilers in turn helps provide more effective TP systems, and ease of 
use must always interact with effectiveness.

It can also be seen that considerably more space is devoted to high level 
interfaces than to any other section. This is not because it is considered of 
greater importance but because, while other user requirements apply almost 
directly to the system design, the requirement for high level interfaces needs one 
further level of indirection. It is necessary, in order to understand the design 
constraints, to establish what the mechanisms that provide the high level inter­
faces themselves require of a computer architecture. Section 2.3 attempts to do 
this.

Each of the following sections is a statement of particular objectives for ICL’s 
New Range designers, against which their success was to be measured. Orthogonal 
to all these was the requirement—less explicitly stated but no less important—that
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the proposed solution be a first-class one from a technical point of view. It was 
of paramount importance in meeting these requirements that a coherent archi­
tecture should emerge. Individual solutions to most of these problems exist in 
various systems already commercially available. The requirement for 2900 was 
to combine these solutions in such a way as to produce a race horse rather than 
a camel.

The way in which these objectives eventually gave rise to the 2900 series is 
far too complex a story to be recorded here. As might be expected it involved 
much iteration and several false starts. Also the mapping of requirements on to 
design concepts is not easy, since any concept may help meet several require­
ments and, conversely, each requirement may affect widely different areas of 
design. The following chapters therefore omit the intermediate proposals and the 
long and painful task of coming up with a complete system architecture. Instead 
they describe the design of the 2900 that finally emerged and was implemented 
in the 2960, 2970 and 2980. In describing this architecture, mention is made in 
passing of some of the requirements of this chapter and how they are .satisfied, 
but in general the architectural description is based on more fundamental con­
cepts of processes and virtuality. However, in order to tie up loose ends a section 
of chapter 7 is devoted to explaining at least some of the ways in which the 
eventual design meets the more important objectives set for it.

2.1 EFFICIENCY

The efficiency of computer systems is a much debated subject but it is still an 
elusive entity and difficult to measure. Early measurements of performance, such 
as addition speeds, have long become meaningless and even weighted instruction 
times or measurement units such as the Post Office Work Unit (POWU) are largely 
irrelevant in the face of very complex user applications. In many business appli­
cations the speed of the central processor may be entirely irrelevant, or only 
relevant in terms of its effectiveness at running the operating system. Efficiency 
to the user is normally concerned with the speed and ease with which his own 
particular problems can be solved and this is often affected more by data speeds 
and high level software effectiveness. These matters are dealt with later under 
high level interfaces.

Nevertheless, the speed of basic hardware is by no means irrelevant. For 
example, there are still applications, mainly of a scientific or near-scientific nature, 
to which pure number crunching is important. What is of more general importance 
is that the speed of basic manufacturer-supplied software, which greatly affects 
over-all work throughput, may well be dependent on the speed of simple data- 
manipulation instructions. The basic design of the 2900 Series assumed that the 
early models would use current tried technology but the general design principles 
must permit the exploitation of possible future developments. In this context it 
is perhaps interesting to note that after the 2970 had been designed, the hardware- 
development organisation of ICL was able to build, quite quickly, a number of
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machines that were logically equivalent to a 2970 but were constructed entirely 
using old-fashioned (and cheap) 1900 technology and peripheral equipment.
These machines, known variously as ‘hardware simulators’ or ‘architectural 
prototypes’, were used to develop engineering and user software before the 
availability of production machines.

Again, although logic and storage costs were both falling, and had been for a 
decade or more, ratios of cost between mass storage, main storage and ‘registers’ 
were not closing as fast as some forecasters had predicted. The architecture thus 
still had to allow for different mixes of such components in various range members. 
In a similar way, the use of pipelining and instruction-overlap techniques had to be 
permitted at the top of the range without prejudicing the performance of smaller 
2900 models that could not afford such luxuries.

While most of these requirements affected design levels lower than that 
described by the architectural model, the Synthetic Option team and its successors 
had constantly to check that no decisions they took prejudiced the realisation of 
these objectives.

2.2 LOW INTERNAL COSTS

In order to keep the cost of 2900s to the customer at the lowest possible levels,
ICL was keen to minimise its own costs. This applied both to the investment to 
be made in hardware and software development and in the manufacturing costs of 
individual systems. The means adopted to achieve this end were basically similar 
in both hardware and software areas and can be summed up in the two words 
modularity and standards.

In software it was essential to allow for the greatest possible modularity using 
standard software production techniques. As well as the well-known and unanswer­
able technical arguments in favour of such an approach to software implementation, 
ICL had an enormous task to produce a software system that would be competitive. 
It had to produce, from the outset, a set of software that would be at a similar 
level, at least in terms of facilities, to the software catalogues on existing machines, 
which had been built up over several years. It was thus necessary to carry out a 
complete outline design of the projected software and then implement selectively 
so that individual components could be improved, replaced or added at a later 
date without collapsing the whole structure.

In hardware, modularity was again a well-known cost-cutting technique, and 
was adopted from the outset. However it was necessary to maintain flexible 
interfaces in the design so that particular 2900 models could exploit new tech­
nology as it became available. As a particular example of this the interface 
between hardware and software itself is deliberately kept flexible. It has already 
been stated that there is no range-defined order code but, even where two models 
of the 2900 Series share the same order code, individual instructions may be 
implemented in pure hardware, microcode, or by software extracode.
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2.3 HIGH LEVEL INTERFACES

By the end of the 1960s the computer had ceased to be a technological wonder 
and had become just another tool, although an important one, in the everyday 
operations of businesses and scientific and research establishments. With this 
process it slowly came to be realised that the man-machine interface was far too 
close to the machine. To perform even relatively simple jobs required programmers 
and operators with a great deal of knowledge and technical skill in the particular 
hardware and software of the customer’s installation. As computer usage in­
creased such people became scarce and expensive. Accordingly, throughout the 
decade, there was a tendency to raise the level of the man-machine interface and 
to make system input as close as possible to the level of the natural statement of 
the problem or the natural form of the data. Two distinct aspects of this can be 
seen. The first is the almost universal adoption of high level programming lan­
guages such as COBOL and FORTRAN in preference to assembler. The second 
is the high-level treatment of data, both in the movement towards integrated 
data management systems and data bases, and in the idea of capturing data where 
it occurs and delivering results directly to where they are needed.

Such developments eased the problems of scarce staff and long development 
times but introduced new user worries in terms of efficiency. A machine that 
has been designed by assembler users for assembler users is unlikely to be well 
suited to running structured high level languages. Beautiful bit-twiddling in­
structions cannot be exploited by high level languages without large and complex 
(and hence slow, bug-ridden and expensive) optimising compilers. Again, while 
logical designers think in terms of words and bytes as data items, the handling of 
arrays, structures and records is unlikely to be as good. In the data handling area 
the problems were similar. Data management and communication subsystems 
tended to be grafted on to existing hardware-software systems. The resulting . 
‘layers’, while providing some sort of structured modularity, lead to unnecessary 
communication problems between the subsystems and to duplication of code 
and effort in each. This in turn has an adverse affect on the system performance.

The task set for the 2900 designers was to overcome these difficulties by 
starting from the outside with the user-interface requirements, and working 
inwards towards a sympathetic hardware and basic software design. The data- 
related aspects led to specific requirements on the hardware and supervisory 
system—the need to provide at the basic architectural level

•  an efficient but totally protected communications environment
•  inherent ability to handle a wide range-of communications equipment
•  fast interrupt handling
•  efficient handling of basic data-management functions
•  the ability to handle data and code in as independent a fashion as possible
•  an effective matching between the design of the hardware and the basic 

supervisory system.
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These requirements had a fundamental effect on the 2900 design as can be seen 
in later chapters, contributing to the adoption of virtual machine processing, a 
hardware stack and descriptor addressing. Some are dealt with in more detail in 
section 2.4 below.

Since the 2900 is sometimes said to be a high level language machine it is 
perhaps worth investigating in more detail the language-imposed constraints on 
the basic architecture. The idea of building a machine that was designed specifi­
cally for one high level language was considered in NRPO; indeed one of the 
original ‘options’ was such a high level language machine that would take the 
same approach as Burroughs7 but probably with a language other than Algol 60. 
This was rejected at an early stage because of the large investment in programs 
written in a wide variety of existing languages throughout the computer 
community. While COBOL is undoubtedly the most widely used language, with 
FORTRAN close behind, both Algol 60 and PL/I have their adherents and even 
more minority languages are well entrenched in certain areas. Investment in 
programs in all these languages is now so great that users are often close to the 
state of the telephone companies: although new technology that could increase 
efficiency by an order of magnitude is available, the cost of replacing existing 
stock and retraining staff is too large to allow such a revolution to take place. 
Likewise, a large percentage of the computer market is financially tied to an 
existing programming language. Selection of the language on which the new 
machine would be based would therefore immediately rule out large groups of 
potential customers. Instead, the designers were faced with the more difficult 
job of producing a computer that would be better than a conventional machine 
over a wide range of languages.

Analysis of the object code and compilation techniques of a wide range of 
compilers and languages produced a number of desirable attributes for a system 
architecture that were not language-dependent. By implementing these features 
it would be possible to produce a compiler that could generate code of greater 
efficiency at the same cost as on a conventional machine (or code of the same 
efficiency at less cost). This is shown diagrammatically in figure 2.2. The vertical 
axis represents the production effort needed to obtain a compiler of a particular 
efficiency. This is normally directly proportional to the compiler size and com­
plexity and, of more interest to the user, inversely proportional to the compi­
lation speed and the compiler reliability. The horizontal scale represents percen­
tage efficiency of the object code compared to optimum hand-coding over small 
code segments. (Note in passing that the object code comparison over large 
segments will be better, even on a conventional machine, since by using a high 
level language the programmer can concentrate on the over-all effectiveness of 
his algorithm much more than a hand-coder can.) As one approaches zero 
efficiency or 100 per cent efficiency, the type of architecture is immaterial and 
the compiler production effort tends to a constant value, or an infinite value, 
respectively. However, in the middle ranges adoption of the attributes defined 
below can provide either savings in effort or increases in efficiency. The attri­
butes are, not necessarily in order of priority



14 The ICL 2900 Series

•  a ‘clean’ order code
•  good procedure handling
•  good structure handling
•  ease of expression evaluation
•  an efficient object-code support environment.

These are dealt with in turn below.

Figure 2.2 High level language aims

Clean Order Code

Wirth11 has pointed out how the lack of regularity in an order code becomes 
apparent when one tries to design a language around it. The same problem arises 
when trying to map an existing, regular language on to an order code. ‘Holes’ in 
an order code, such as the ability to reverse divide in floating point but not fixed 
point, or to have only fixed-point immediate operands, either complicate the 
code-generation algorithms out of all proportion to the hardware savings or mean 
that some useful features of the hardware cannot be exploited.

To be useful for a compiler writer, an order code must be regular in two 
respects. First it must be regular with respect to data type. High level languages 
normally allow identical operations on all permissible arithmetic data types: 
integers, floating point, decimal, single or double length. The hardware should 
similarly provide the same repertoire for all data types wherever this makes 
sense. Secondly, order codes normally provide several operand types: operands
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in store or in registers, operands accessed indirectly via a register or store location, 
immediate operands contained within the instruction itself. If these are to be 
effectively exploited by a compiler they should be applicable to all instructions, 
not just ah arbitrary subset, and to all data types. An order code with these two 
types of regularity, sometimes called an orthogonal instruction set, is a prime 
requirement for lowering the compiler-effort-efficiency curve.

A natural spin-off from an orthogonal instruction set is a reduction in arbitrary 
hardware limits. It has been said that in computing there are only three good 
numbers—zero, one and infinity. Hardware built for assembly coders on the other 
hand seems to prefer numbers like 8, 16 and 128. Careful attention to compiler 
needs at an early stage means that, where limits need to exist, they do not make 
life unbearable for the compiler designer. Finally, hardware designed by engineers 
for engineers often contains what one might call bit-twiddling instructions'. 
orders that exploit peculiarities of the hardware but are of only very limited use. 
Providing this use is of importance to the over-all operation of the system, this is 
no problem but one must realise that such instructions cannot normally be used 
by a high level language compiler. Considerations of what compilers can use will 
often lead to a less efficient but more general form of instruction that is of much 
greater value to the over-all system efficiency.

Procedure Handling

One tends to associate procedure handling with Algol and its derivatives but the 
basic subroutine concept pervades all programming languages. Even a non­
procedural language such as COBOL contains primitive, explicit subroutine 
mechanisms and makes even more use of procedures implicitly by library calls. 
The requirements for efficient handling of such relatively simple subroutines are 
fundamentally the same as for more advanced languages. Admittedly FORTRAN 
or COBOL may not require recursion, but the same is true of 98 per cent of all 
PL/I and Algol procedures. However, where recursion provides a natural solution 
to a problem, any other solution tends to be either grossly inefficient or totally 
opaque.

With the growth of complex operating systems and transaction processing, 
the interfaces between the controlling system and the high level language appli­
cation program itself are of equal importance and these often show the same 
characteristics as a procedure call in one of the more modern high level languages.

What then are these characteristics? Most important is that the invoked 
procedure (or program) requires work space of its own. This is of three separate 
types. First, there are the parameters that are passed to the procedure for use in 
this particular invocation. Second, there are the named data items (‘names’ for 
short) that the procedure declares and uses. Third are implicit working variables, 
which occur as partial results during the evaluation of the steps of the algorithm 
that the procedure represents. While it is possible in many cases to assign this 
work space long before the procedure is invoked, this is not normally an efficient 
use of resources, particularly in transaction processing or real-time applications.
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A requirement of good procedure handling is thus that the basic architecture 
should handle assignment and reassignment of storage space for names, parameters 
and work space in a simple and efficient manner. This mechanism should be 
capable of dealing with the most complex types of procedure and very efficiently 
with the simpler, more common types. Recursion is necessary in some circum­
stances and it should also be possible to support code that is reentrant or shared 
between different applications simultaneously. Such support must not however 
be allowed to degrade the efficiency of simpler procedure types.

The possible complexity of procedure definition can with conventional 
computer design lead to high overheads on the actual call of the procedure and 
exit back to the caller. With modern programming techniques it is becoming 
vital to reduce this overhead, since programs are tending to include more 
procedure calls than before. The splitting of application programs into many 
procedures is now seen to be preferable to the construction of monolithic 
programs, since this produces better-defined, better-structured programs that 
are easier to debug and maintain. For these benefits supporters of structured 
programs are prepared to pay some penalty in efficiency, but it is obviously 
important to reduce procedure call and exit overheads as much as possible in 
the basic system design.

Structure Handling

Considered from the point of view of access, program data is essentially of two, 
and only two, types.

Scalar data items are those that correspond directly to individual units of 
storage (or small collections of such units). The variety of subtypes of scalar data 
depends on the particular language—real, integer, character, logical, bit, Boolean, 
fixed, complex, double-precision. The uses of the subtypes and the arithmetic or 
logical machinery for manipulating them may vary widely; however, as far as 
storage is concerned, they should be accessed and stored in the same fashion. It 
is with such scalar items that the clean order code and addressing functions are 
essentially concerned. In programming terms the scalar items are referred to 
individually by name.

Structured data items, on the other hand, are collections of scalar items that 
are treated in some sense as a named aggregate. While a few languages provide 
facilities for dealing with these aggregates as entities (APL, for example), in 
general the individual elements are accessed and manipulated by some form of 
indexing, slicing or mapping carried out on the named aggregate. The complexity 
of the aggregate depends on the language used and the form of application. With 
the older scientific languages one tends to think mainly in terms of arrays, and 
with commercial languages in terms of records and character strings. More 
modern languages have generalised these concepts to provide hierarchical 
structures that can themselves contain arrays, strings or other structures as sub­
structures.
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Some special languages contain even more esoteric structures—lists, trees, etc. 
These, and the need for efficient and convenient access to hierarchic structures, 
give rise to a new scalar type-reference or pointer variables that can be used to 
access other variables indirectly. Such scalars can of course themselves appear in 
structures, giving the possibility for extremely complex addressing patterns.

In a ‘high level language machine’ there is thus a need to deal not only with 
the common basic scalar types but also to assist as much as possible in the access 
of structured elements. There is also another requirement—to assist in detecting 
access errors. With complex structures there are many possibilities of error in 
calculating addresses. For example, array subscripts may be outside the array 
bounds or one may treat a character string as an integer by misreference. Not all 
of these errors can be trapped at compilation time, and run-time checking code 
normally brings heavy overheads in time and space. As a consequence such 
checking code is normally used only during debugging and removed for ‘production’ 
runs. However, as has been pointed out many times, no program is ever com­
pletely debugged and, particularly in high reliability systems, such checking is 
really needed at all times. The only solution is to provide some form of hardware 
checking that can be done efficiently by overlapping it with other hardware 
operations. Such considerations become even more important when the 
structured data is in some sense self-defining, for example, in data base manipu­
lation languages.

Expression Evaluation

In the past considerable attention has been paid to efficient ways of translating 
complex arithmetic expressions into machine code. Less attention has been given 
to the design of the machine code to make this process easy for the compiler.
More recent investigation of real programs however (for example, by Donald 
Knuth12) has shown that both studies tend to be mainly of academic interest 
only, since the majority of expressions used in practice consist only of one or 
two elements. It would nevertheless be nice if the ‘high level language machine’ 
did assist the compiler in this area.

Of much more importance is the need to optimise usage of hardware features 
in object-program code. Take the example of optimisation of register usage. 
Compiler algorithms for such optimisation, although well researched, are still not 
simple and in any case some general-purpose registers need to be permanently or 
semi-permanently dedicated to specific purposes by the compiler. This wastes 
the generality of the hardware, but the interface between the hardware designer 
and compiler writer in a conventional machine does not allow the designer 
actually to take advantage of such specialisation.

An associated problem is concerned with the access of data elements. While 
the hardware designer provides a completely general store, which the compiler 
then structures into instruction store, temporary data, scalars and structures, 
neither hardware designer nor compiler writer can take advantage of the 
specialisation of data areas. The compiler writer cannot have hardware checks
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that data or instructions are not being misused and the hardware designer cannot 
optimise his data access techniques. A cache store, for example, which tries to 
reduce store accesses by saving the last n accesses to main store for possible re-use, 
must at best be a sledge-hammer-for-a-nut mechanism. Any high level language 
programmer knows that, if he uses the scalar a, there is a high probability he will 
use it again soon, whereas if he uses the array element b [/] there is a much lower 
probability of re-use, but a high probability of an access soon to a different 
element of b. The cache-store designer has no real way if distinguishing between 
these uses and the hit rate for items held in the cache store cannot be expected to 
be very high.

The hardware designer must therefore have information about the way in which 
object programs will use his hardware to allow him both to assist such usage, and 
to take advantage of it in his design.

Object-code Support Environment

In thinking of a high level language machine one is apt to consider only the 
efficiency or ease of production of the code that the compiler actually generates. 
This is only part of the story. To begin with, the execution of the high level 
program will in addition involve code not generated by the compiler directly— 
library routines and operating system code. To the compiler these items are 
logically equivalent: they are a method of obtaining a service and can be considered 
as identical to the call of a high level language procedure. In practice, however, the 
mechanisms are usually different. Not only may the linkage to a library routine 
be different to a compiler-generated procedure, but operating system services 
are obtained by extracode or macro-instruction. Such unwarranted variation leads 
to unnecessary object-code overheads and/or undue compiler complexity.

A particular example of such complexity occurs with input/output and file 
handling. Operating systems tend to provide either extremely primitive access 
mechanisms, which each high level language must use to build up its own I/O 
procedures, or high level access procedures, which may mask complex data 
management routines but do not meet the requirements of any particular 
programming language. What is needed is a range of access mechanisms from 
direct data transfer to sophisticated data base handling which can be called in 
a similar way by the object program, with mapping information possibly being 
provided separately in the job description for a particular run. In other words, 
except for high level languages that specifically deal with data-access mechanisms, 
the specifications of the mechanisms should if possible be orthogonal to the 
production of the object program by the compiler.

Another aspect that is lost if we consider only the object code of a high level 
language program is the way in which the total program—code, data, work space— 
is mapped on to real storage. If each compiler is forced to take its own decisions 
on such mapping, particularly with regard to overlaying code or data or both if 
the total size exceeds the available mainstore, not only will there be unnecessary 
duplication but we will again forfeit the possibility of direct hardware assistance,



Aims and Objectives 19

since each language will inevitably implement differently. Such services need to 
be provided in a standard and straightforward fashion for all languages by the 
operating system.

What is of even more importance is that handling overlaying in the compiler 
or even the loader means that the overlay structure is fixed before execution. 
While this may be optimised for the program, the technique cannot take into 
account over-all system resource optimisation with a dynamically varying work­
load. Such a partition technique is inevitably wasteful of resources when con­
sidered from a system viewpoint—local optimisation produces, if not global 
system chaos, at least global system inefficiency.

If we extend our view further from individual processes to total system 
operation a third need arises, that of protection. We have already seen the need 
for hardware help to prevent corruption of internal process data. It is also vital 
that separate programs should not be able to interfere with each other. In appli­
cations like transaction-processing systems where separately compiled programs 
are accessing common data, possibly simultaneously, such protection is vital and 
cannot be provided by individual compilers. It must therefore be a service for all 
programs that is incorporated into some combination of the hardware and basic 
system software.

These then are the basic requirements for a good high level language engine. 
Note that not all are direct hardware design requirements. Some are requirements 
on basic operating system design, which, in turn, may themselves give rise to 
hardware requirements. It is worth noting in passing that many of the requirements 
of high level language programs are very important to the production of operating 
system software itself. It is the lack of good support for high level language features 
in existing machines (Burroughs being a notable exception) that has been res­
ponsible for the regrettably low usage of high level languages for the production 
of system software. An operating system is, in effect, a large collection of in­
dependent and asynchronous processes and has sections that may be obeyed 
many times a second; in these circumstances, such things as error protection and 
procedure-entry efficiency become vital concerns. Unless the architectural design 
helps in these areas the only choice is between relatively efficient but unstructured 
and bug-ridden systems written in assembly code, or maintainable but inefficient 
systems written in high level languages.

2.4 VERSATILITY

It was obvious that with a large and varied customer base and potential market, 
any new ICL development would need to be versatile. There were two important 
aspects of this, which were largely orthogonal—versatility of applications and of 
modes of use.

As far as applications were concerned the new series had to be capable of 
lealing with both scientific and commercial requirements. To begin with, this 
neans support of both types of high level languages—a matter already dealt with
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in section 2.3. It also meant the ability to provide on individual 2900 installations 
the basic configuration requirements that each type of application considered 
important—for example, to allow an individual customer to spend his money 
either on processing speed or peripheral connectivity. In practice, though, the 
boundary between scientific and commercial applications had become considerably 
blurred over the past few years. For example, scientific installations were begin­
ning to make heavy use of data bases—a facility previously thought of as a com­
mercial concern. Conversely, commercial computer owners were using their 
machines for forecasting and analysis purposes and therefore using programs 
with a high scientific content. It was thus important not merely to provide a 
straight choice between commercial and scientific configurations but to allow the 
customer to buy a balanced set of facilities that provided the best match for his 
work profile.

Whatever applications the customer wanted it was also important to allow him 
to operate the computer in the most convenient way—versatility of modes of use. 
Batch processing, the original way of initiating work, was still much in use and 
unlikely ever to die out, but was rapidly being supplemented by remote job 
entry, multi-access computing and—perhaps the most important commercially— 
transaction processing. These modes of use placed different requirements on the 
system.

For good batch processing the essential requirements are high over-all through­
put, good control of jobs and optimum use of computer resources. In meeting 
these, the processing times for individual jobs, while important, were secondary 
considerations. The fundamental process was the efficient scheduling of work 
and resource employment. Remote job entry (RJE), the ability to insert jobs 
into the batch stream at several, possibly remote, points, meant geographical 
convenience for the user. For the system, it imposed rather more complex 
scheduling requirements (for example, output normally had to be returned to 
the original source of the job) and the need to handle effectively communication 
channels. With transaction programming (TP), a rapidly growing operational 
method, the emphasis is quite different. Here the over-all operational efficiency 
is subordinated to user convenience. Looked at another way, the scheduling has 
to consider the user’s time as the most important resource. A user transaction, 
which normally requires execution of a fairly simple application program, 
demands a response in ‘real time’. There are thus a large number of small jobs to 
schedule and, since they are to be run on demand, the order or combination in 
which they run is indeterminate. To handle such operations the hardware and 
basic software system requires a number of characteristics that are not necessary 
for batch or RJE—the ability to handle a large number of small jobs; the ability 
to use the same simple job in a multiplicity of contexts; and fast job switching, 
which in turn requires fast interrupt handling. In addition the communications- 
handling requirements of RJE assume even more importance.

Between batch and transaction processing but slightly at a tangent to them 
comes multi-access computing (MAC). Here we are concerned with many users 
sitting at teletypes or videos and interacting with the computer to edit files,
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develop programs or operate complex systems, for example, computer-aided 
design systems. The fundamental difference between TP and MAC is possibly 
that, while the former requires for each transaction the complete execution of 
a simple program, MAC users are normally communicating with large complex 
programs, like compilers, several users may be using the same program at the 
same time and a user-machine interaction is only a step on the over-all operation 
of the program and not a complete execution. It can be seen that while interrupt­
handling and communication requirements between MAC and TP may be similar, 
optimum scheduling and work-organisation techniques are normally quite different.

Consideration of user needs in these areas does not, however, allow us to 
choose completely between the various modes of use. Very few modern organi­
sations are operated on a pure batch basis. Nearly all will have some part of their 
workload in the form of RJE, TP or MAC. Similarly even what are thought of as 
pure TP organisations will normally have batch runs for bulk input, report 
production or housekeeping operations either outside the normal transaction 
hours or as low-priority jobs during transaction processing. It is thus necessary 
to allow the customer to mix his own cocktail of the various operational modes 
to suit his particular needs.

There is a third aspect of versatility, which applies not to any particular 2900 
implementation but to the 2900 definition itself. Since the 2900 was envisaged as 
a range of machines covering a wide spectrum of power and performance, the 
chosen design had to be capable of implementation at both ends of the range. 
Nevertheless a choice of a definite target area had to be made as a guide to 
optimisation decisions. Difficulties with the 1900 Series had been encountered 
because the first manifestations had been at the low end of the range and ICL 
experience had conclusively proved that, within limits, it was easier to develop a 
less powerful system from a more powerful one than vice versa. Additionally, it 
was realised that improvements in technology and reductions in costs meant that 
the mean performance level of computer installations was constantly rising. The 
chosen target point was therefore towards the upper end of the range, somewhere 
between the eventual 2970 and 2980 implementations. Nevertheless every design 
decision taken was vetted to ensure that it could be effectively implemented in 
both less powerful and more powerful systems.

2.5 EASE OF TRANSFER

It has already been pointed out that potential customers for the 2900, whether 
ICL or competitors’ users, could be expected to have considerable investment 
in their existing installations. This investment would take the form of existing 
hardware, staff training and programs. The first two of these can be taken care of 
in a straightforward (if not simple) manner by the adoption of standard hardware- 
interface techniques and international standards wherever these were possible.
This would allow maximum use of existing peripheral equipment with the 2900 
and minimum staff retraining.
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Protecting investment in programs is rather more complex. The ways in which 
programs can be transferred to new systems form a spectrum. At one end the 
original source code can be amended where necessary and recompiled on the new 
machine; at the other it may be necessary actually to execute the alien machine 
code on the new machine, a process generally known as emulation, following IBM’s 
original provision of this facility of 1400s on the 360 series. The point in the spec­
trum that is chosen by a user for a particular program depends on a number of 
factors: whether the source language is supported on both machines, if the program 
has a limited or indefinite predicted life, if it is subject to constant amendment or 
frozen, etc. A user may use more than one transfer method over a period of time; 
for example, he may use emulation to allow rapid transfer to the new system to 
begin with and then transfer and possibly amend the source code to take ad­
vantage of new facilities at a later stage.

In general all program conversion can be done by architecturally independent 
software tools so that only the requirement for emulation has an effect on the 
basic architecture. Two basic methods of implementation of emulation had to be 
taken into account. If a particular 2900 processor was to be microcoded, it 
would be possible to use alternative microcode sequences to provide the order 
code of the emulated machine. The ability to do this would obviously impose 
constraints not only on the microcode itself but also on the basic system software 
which must be capable of dealing with more than one order code. Alternatively, 
particularly on non-microcoded machines, it would be necessary to attach an 
alien-order-code processor to provide emulation. This is effectively a requirement 
for the 2900 system to be a multiprocessor system. As we shall see this require­
ment arose from other considerations but here we have an added requirement 
that the configuration need not be symmetric with each of the processors identical, 
and in fact it may be necessary to have several processors with different order 
codes.

2.6 DEPENDABILITY

With the computer system becoming an essential factor in day-to-day operations 
of a customer organisation it is essential that he can depend on it. There are a 
number of facets to this. First he would like it to be reliable, that is, not to 
break down for either hardware or software reasons. This must be a major aim 
but, since nothing in this world is perfect, an ultimately unrealisable one. Since 
an average user would not consider it cost-effective to pay for the reliability 
required by, say, a space mission, he must expect some failures. In such circum­
stances he would like the system to be resilient; capable of easy recovery, 
preferably automatic, or of ‘fail-soft’ operations if not ‘fail-safe’. Finally, he 
would like the system to be secure; that is, various hardware and software 
elements of the system should be protected from each other, and error propa­
gation throughout the system should be prevented. System components should 
be designed to be mutually suspicious. Such security is particularly essential in 
transaction-processing situations, where individual programs or hardware com­
ponents must be prevented from corrupting the system.
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Methods for providing reliability, resilience and security are diverse but over­
lapping. It must be possible to meet the other requirements of the system within 
the limits of known technologies. Reliability requires at least the possibility of 
redundancy in areas where an individual user feels this to be important. Resilience 
requires the possibility of reconfiguration and, in particular, of multiple-processor 
configurations to allow graceful degradation in situations where this is important. 
In order both to recover easily and to prevent error propagation it is necessary to 
trap errors as soon as possible; thus hardware-error checking and diagnosis 
becomes a requirement. Error propagation can only be prevented if there exist 
well-defined boundaries at which the error can be caught; in other words modu­
larity of design of hardware and software is essential. Finally, a hardware-assisted 
protection system is needed for software to provide the same level of security as 
error checking provides for hardware.



3 Fundamental Concepts

This chapter is concerned with the basic principles that underlie the 2900 design. 
They are mainly concerned with how programs in practice work: how they are 
conceived by the programmer, transformed into electrical or electronic patterns 
in the hardware, how execution is then carried out and how this maps back on to 
the original algorithm. It is in the light of these concepts that the basic archi­
tecture of the 2900 Series can best be understood.

In examining these aspects of program structure we are concerned with two 
interrelated ideas. First, how does the program actually use the hardware resources 
of store, peripherals and processors? Second, what is the relationship between the 
program in the programmer’s mind and the actual hardware used and the software 
that is executed? The second idea itself consists of two parts. We need to study 
both the way that the final, executable representation of the program is structured 
and the translation process that takes place from the conceptual to the actual. 
Consideration of these ideas in as abstract a fashion as possible without the con­
straints of existing hardware and software lead to some fundamental architectural 
decisions. These decisions are introduced in this chapter and expanded in more 
detail in chapter 4.

3.1 THE VIRTUAL MACHINE

The way in which programs use store, processors and peripherals was perhaps 
first examined systematically in the joint development of Atlas by Manchester 
University and Ferranti.4 The problems have not changed much since then. 
Essentially we have programs that wish to use more storage or more peripherals 
than are available to them, or even than there is available on the system as a 
whole. And conversely we have the fact that no individual program can efficiently 
use all the available resources all the time.

The second problem was solved by what was called at the time ‘time-sharing’, 
but is now a generally accepted technique under the name of multiprogramming. 
Essentially, a supervisory system shares the available processor time between 
several programs in order to maximise the use of other resources—peripherals, file 
devices, store. Individual programs, however, are unaware of this process and 
believe that they have the central processor to themselves—a virtual processor, in



fact. The solution to the peripheral problem appeared long before Atlas, in IBM 
machines among others. If a program needs two line printers and the configuration 
has only one we accumulate the data being sent to the two distinct outputs on 
two print files and then print them sequentially on the single printer. As far as 
the program is concerned the effect is as if there were two printers. We have 
created a virtual peripheral. The Atlas supervisor carried this further by allowing 
not only more virtual instances of an available device but also the mapping of 
one device on to a device of a different type. Thus a program could believe it 
was reading cards and actually be getting data in 80-character blocks without 
line feeds, although the input was in fact coming from variable-length records 
on paper tape.

The degree of virtuality need not stop there, however. Consider access to data 
on a disc file. The lowest level of physical access is by addressing the disc drive 
via the controller. At a slightly higher level of abstraction we can address merely 
the drive, leaving the routing via a controller to be done by some hardware or 
software ‘system’. Higher still we might access a named disc whose drive and 
controller are discovered by the ‘system’ but whose volume geometry we know. 
The next level might be to allow the ‘system’ to handle volume geometry and 
deal only with blocks, knowing their physical format and size. Or we could 
ignore blocking and deal with logical records. Our ‘system’ has now become 
some form of data management system. Finally, we could deal only in named 
items; we are supported by something like a data base system.

Each of these forms of access may be considered as a level of virtuality. Within 
a total system there will be programs that want to use each of these levels. Each of 
these degrees of virtuality should therefore be permitted. (For those concerned 
with efficiency, the existence of these ‘layers’ on the basic hardware access 
mechanism does not necessarily mean that top-level accesses need go through all 
the intermediate transformations to obtain data. There is no reason why the 
mapping should not be direct.)

Storage is more complex. Although prices and speeds have changed con­
siderably since Atlas, one can still buy either fast main store or slow cheap(er) 
store and the price differential has not altered significantly. Programs in any 
reasonable period of time tend to use only a small part of their total instructions 
and data and hence, if we can arrange that each such part is brought into fast 
main store when needed, we can keep the rest on slow cheap backing store. Thus, 
with some degradation in speed, it is possible to run programs that are larger 
than the main store available; they have a virtual store. Again this mechanism is 
not even remotely new. Individual programs have used overlay techniques for 
years. However, program overlaying is costly since the effort of overlaying is 
duplicated in each program, and if the system is to multiprogram, over-all 
system efficiency will fall considerably if each program is allowed a partition the 
size of its maximum overlays.

If, however, we introduce a total-system overlay mechanism we run into other 
problems. Variable-length overlays in store will, as they are used and deleted, leave 
variable-length ‘holes’ of available space. This will lead to the situation where
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enough free store may be available to load a needed overlay but it is distributed 
in unusable pieces throughout the store—store fragmentation in fact. There is no 
complete solution to this problem but techniques that alleviate it are known. An 
example of such a technique is paging—splitting the real store into fixed-size 
blocks and mapping on to them, by hardware, variable-length program sections 
with contiguous virtual addresses. Individual pages may reside in secondary store 
until needed and then be read into any free block in main store. The actual 
techniques adopted in any particular 2900 system design is an implementation 
detail but the provision of a virtual store for each program with its own virtual 
addresses is a fundamental part of the 2900 architecture.

By considering these resource-mapping problems together we can see that the 
individual solutions that have been adopted for each set of problems actually 
form part of a coherent pattern. Each program can have a complete virtual 
machine with its own store, addresses, processor, peripherals and files and these 
will be mapped on to the real available resources by the system. It is this total 
concept that is perhaps the most important single item in the 2900 architecture, 
and which allows many of the other features to be included. While the imple­
mentation of the various aspects of the virtual machine may be far from new, the 
generality of the over-all concept allows for some of the 2900 design innovations.

3.2 THE PROCESS

The first step in using a computer to solve a problem is for a programmer to find 
or invent an algorithm. This algorithm is then converted into statements in some 
machine-translatable language. With knowledge of the requirements of chapter 2 
we can assume that this is a high level language of some sort. It is therefore 
tolerably close to the programmer’s initial conception and this statement is the 
‘highest’ level of expression of the program that we need to consider. This 
representation is then translated by a compiler into one or more sections of 
machine-code representation. Some of this translation will be direct in the sense 
that there will be instructions that correspond in a straightforward manner. In 
addition some services (such as type-transformation code) that do not correspond 
directly to the high level language may be added by the compiler. In other words 
sections of code have been added to the original statement to make the algorithm 
work at this lower level of abstraction.

The next stage is to assemble and load the program. Unless the program is very 
unusual this will result in more code being added to satisfy library calls. However, 
even this loaded manifestation is not a complete statement of the algorithm in 
terms of the hardware since the program will during execution also use code in 
the operating system. Such use may be explicit, as in a ‘get-time’ command or an 
I/O initiation, or implicit in the allocation of resources to allow the algorithm to 
be executed. This conventional software model is shown in figure 3.1. The 
operating system code is as much part of the program representation as the 
square root or sort routine but it is not ‘added’ to the program in the same way 
as the other. Communication between the OS code and the rest is slow and
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inefficient since it involves crossing the OS-object program boundary. This is, 
to say the least, unfortunate since such communication can be a fundamental 
part of the execution of the algorithm. Logically, there is no reason why this 
code should not be added in exactly the same way as library routines and this, as 
we shall see, has many other advantages.

Applications programs
Compilers
Utilities
Library procedures
and subroutines

__________ ________ O S .____________________
Interfaces

Operating system programs
— Schedulers
— Spoolers
— Data management
— Device management
— Processor management
— Store management

Figure 3.1 Two-level model o f  software

The 2900 architecture therefore provides a single virtual store for each 
program, which contains all the code necessary to execute the algorithm. We 
can call the code for this total representation a process image. Although this 
provides a much cleaner solution than the conventional operating split, two 
other problems immediately suggest themselves. First, we cannot afford a 
physical copy of the operating system for each process image and we must there­
fore provide a means of sharing one copy of the code between several processes. 
This mechanism will not onlyapply to the operating system procedures but to 
library routines and complete utilities. It can allow, for example, multi-access 
users to share a copy of compiler. We can also use it to share user-produced code 
between co-operating programs.

The other advantage of the two-level model is that software below the line of 
figure 3.1 is protected from errors in software above it'by the needle eye of the 
OS interfaces. This, however, is a very crude mechanism since the single ‘fire wall’ 
merely divides the code in a fairly arbitrary manner and does not prevent errors 
in, say, a spooler from propagating through the complete operating system 
without check. And one pays a considerable overhead penalty each time the fire 
wall is breached. We must, therefore, also provide some more general and more 
efficient mechanism for protecting both code and data. Such a mechanism can 
allow.for multiple levels of protection depending on the privilege of the code 
involved. Such a possible multilevel organisation is shown in figure 3.2.

This provides an additional advantage. Some of the routines (such as con­
version procedures) below the OS-interface barrier of figure 3.1 would be of 
use to an applications program but are not used because of the high overhead of 
an OS call. Indeed, in general there will be no OS call that provides access to
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them. With a multilevel approach and lower overhead protection mechanism such 
facilities can be used, avoiding duplication of storage and effort. This in effect 
provides the basic mechanism for the user to select the degree of virtuality he 
requires in peripheral access. The different data-access methods of the last section 
can be thought of as procedures within the system software, which call on each

APPLICA T IO N  PRO G RAM S
e.g. COBOL program for information retrieval

CON TIN GENCY AND S ER V IC E  PR O C ED U RES  
e.g. recovery of file after system failure

JO B  COMMAND LA N G U A G E IN T ER PR ET ER  
for control of program and system

RECO RD  M A N A GEM EN T 
blocking/unblocking files — 
serial, indexed sequential, etc.

CA TALO G U E M A N A GEM EN T
user, file, volume management services, etc.

PH YS IC A L  D EV IC E  HAND LING  -
card read/punch, discs, operator's console, etc.

PROCESSOR AND D EV IC E  D ISPATCHING 
system error handling 
store management

HA RD W A RE

Figure 3.2 Multi-level model o f  software

other for services. Choosing the degree of virtuality is then equivalent to choosing 
the particular procedure within the chain at which the application program is to 
enter. Again, because there is now no logical difference between routines in the 
operating system and in applications libraries, providing that the protection system 
is designed in the right way, the access to a procedure at any level of privilege can 
be identical—specifically a standard procedure call. This means that a compiler 
need have no knowledge of whether an external facility is provided by a library 
procedure or the OS (deciding whether to generate a call or an OS macro is always 
messy). More important even, the compiler need have no knowledge of whether 
the code it is compiling is to be part of the operating system or not. The way in 
which it invokes other OS facilities will be identical to the way in which they 
are called by an unprivileged applications program. We do not therefore need 
special compiler versions (or worse, languages) for operating system development.

3.3 PROGRAM STRUCTURE

The final set of fundamental concepts arises from consideration of the structure 
of programs in their high level language form and attempting to find ways to
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provide a system on to which this natural structure can be easily mapped. What 
then are real programs actually like? Examination shows that most are often 
badly and illogically structured, but that modern programming techniques are 
attempting to eliminate this. The basic unit of structure tends to be a subroutine, 
procedure or module; that is, a set of code for carrying out a well-defined subset 
of the algorithm with its own constants, named scalars and data structures. The 
data structures could be simple things like an individual array or a complex 
entity such as a FORTRAN COMMON block.

Figure 3.3 shows the structure of a very simple two-module process, using 
the terms discussed in section 2.3. The two modules each have their own code

Figure 3.3 Logical process structure

and constants and a set of named items. Some of these latter are scalar variables, 
others are the names of structures that are represented separately. In addition, 
there is a need for general work space for use during the process execution. The 
size of this area will, unlike other areas, vary dynamically as the modules are 
executed. In the diagram Module 1 calls Module 2 as a procedure and passes to 
it a scalar parameter, which is referenced in Module 2 as the first of its named 
items, A2. Note also that the two modules share access to Data Structure Y. This 
is common since passing complete data structures as parameters is time-consuming. 
Sharing scalars is less common but possible, and they can be considered as 
degenerate structures. In addition, in some block-structured languages at least, 
it may be possible to access the local names of Module 1 from Module 2.

What we require in an architecture, then, is a natural support for this form 
of program structure, and if we are to allow languages such as Algol or PL/I 
we must also have system (and preferably hardware) support for recursion in 
individual procedure modules. Note that this form of logical structure leads
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naturally to the use of easily shared, pure, code since CODE-1 refers to such 
locations as NAMEA1 and, by providing a new block of names, the same code 
can be used without interference.

We are now in a position to define more formally some terms that have 
already been rather loosely used in earlier sections.

•  We will call a module with the structure shown in figure 3.3 a procedure or 
procedure module.

•  Such procedures can be grouped into aggregates that perform together some 
coherent and well-defined function, and present to other aggregates a coherent 
and well-defined interface. An aggregate of this kind is a subsystem. Examples 
of sub-systems are: data-management routines; compiler run-time packages; a 
loader; the code generated by a compiler directly from a user program.

•  The aggregate of all the subsystems necessary to perform a given user task is a 
process image and execution of this aggregate is a process. (Sometimes process 
is used to encompass process image where this does not cause confusion. An 
alternative but equivalent definition of a process image is used in hardware 
definition. This lays stress on the fact that there is a single instruction stream, 
that is, that the process image cannot timeshare with itself.)

•  The environment for a process is a virtual machine.

•  Finally a name is a local scalar variable that can be recognised by the hardware, 
that is, it has within the context of a particular procedure a unique name or 
address. The collection of all names for a particular procedure is the namespace 
for that procedure.

With these basic concepts in mind we can now go on to consider the mechanisms 
that can be used to build an architecture with the desired properties.



4 Architectural Mechanisms

One can think of the architecture of a computer system as being a mixture of the 
most important and interesting features of the design and the relationship between 
these various aspects. In defining the general architecture for the 2900 Series the 
feasibility of implementation had to be continually borne in mind, but the basic 
concepts were kept simple and uncluttered by the actual methods of building such 
a system, except where consideration of these methods was vital to the achieve­
ment of the architectural designers’ aims. Any specific 2900 system design 
would have to be a practical realisation of these concepts. In the last chapter we 
considered the structural features of the system that we required. This chapter 
considers the basic mechanisms by which these features could be provided. These 
mechanisms are still described conceptually, actual implementation details for 
hardware or software being included only when necessary to aid explanation. 
Chapter 5 will go on to consider how these mechanisms can be implemented in 
hardware or software.

To map these divisions on to the more traditional world of architecture, 
chapter 3 considered what sort of building we were to produce in the light of 
predicted use; this chapter considers the layout of the building, the room 
dimensions and services required; and chapter 5 considers the actual building 
production, the plumbing, electricity supply and building standards.

In defining the mechanisms it is easier to move from the internal needs of a 
particular process outwards to the total system, and so we begin with the 
methods of realisation of the process layout described by figure 3.3. The soft­
ware terminology used is that of VME/B (see section 6.3).

4.1 THE PROCEDURAL STACK

The basic mechanism for the implementation of procedural storage requirements 
is a hardware-managed stack. A procedural stack is a set of consecutive storage 
locations to which individual data items or blocks of data can be added and 
from which they can be removed in a last-in/first-out fashion. Each virtual machine, 
and therefore each process, has its own stack. Whenever a procedure is called, 
namespace for it is allocated on the stack. As the code of the procedure is 
executed any temporary work space required is also allocated and removed when
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no longer needed. When the execution of the procedure is complete the namespace 
is also removed, returning the stack to its state at the time of the call.

The procedural stack can best be imagined as having a vertical structure with 
items being added to, or removed from, the top of the structure (see figure 4.1a). 
However, items within the procedural stack can be accessed without removal so 
that, for example, a procedure can access global data declared in an enclosing 
procedure. The procedural stack is therefore not a ‘pure’ hardware stack of the 
kind found in English Electric’s KDF9 although, as we shall see, the top of the 
procedural stack exhibits the same properties.

Figure 4.1a shows the state of the stack at the moment before the call of a 
procedure p that has two parameters x, y . The form of this procedure is shown

Figure 4.1 Stack processing

at the bottom of the figure in an undefined but hopefully self-evident language. 
At the moment of call (figure 4.1 b)\ linkage information is placed on the stack in 
preparation for the eventual return from p. The stack front is then raised to 
allocate space for the parameters and locally declared names of p and the actual 
values of x and y  are placed on the stack. Procedure p is entered. It has all of its 
local names to hand and if it uses any names of surrounding procedures these 
are available to it in the global namespace on the stack.

As p is executed (figure 4.1c) it may need temporary workspace, for example 
to store partial results of expression evaluation. These will be allocated above the 
local names by raising the stack front to accomodate them. As they are used, and 
no longer required, the stack front automatically falls, giving up the unwanted 
space. This section of the stack, then, acts as a pure last-in/first-out stack for the 
purpose of expression evaluation. Should p itself call another procedure in the
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middle of such an evaluation the namespace of the new procedure would begin 
above the current stack-front level, thus automatically preserving any temporary 
values until return.

When p has completed execution (figure 4 .Id) control is returned to its caller 
via the linkage information on the stack and the stack front is returned to its 
position immediately before the call of p, thereby freeing p’s namespace for 
further use.

Figure 4.2 shows how the procedural stack mechanism can be used to map 
the namespace of the procedures of figure 3.3. The illustration is of a point 
during the execution of module 2, which has been called from module 1. Essentially

Figure 4.2 Process mapping-stack

the name spaces of the two procedures have been mapped without change on to 
the stack while the work space is provided automatically and dynamically at the 
top of the stack. The layout illustrated assumes that module 1 has some temporary 
values that it wishes to retain between the call of module 2 and its return (for 
example, it is calling module 2 as a function in the middle of an expression 
evaluation). Were it not for this fact the work space above the namespace of 
module 1 would not exist. The stack also contains global data that was not de­
clared by either module. This is assumed to be the namespace of other subsystems 
in the total process—for example, the operating system. Note that logically the 
data structures themselves could also have been placed on the stack (the shared 
structure B would have to be in the namespace of module 1 to allow access by 
both modules). There is nothing in the architecture to prevent this and, indeed, 
small structures do sometimes reside on the stack in a 2900. However, general 
properties of structures and access-efficiency considerations, as we shall see, 
make it more useful to segregate and store them separately in most cases, with 
pointers to them from the stack.
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Finally, for any reader concerned about the temporary existence of procedural 
names for such static languages as FORTRAN, although the official FORTRAN 
definition does permit a dynamic stack implementation, there is nothing to 
forbid the concatenation of names from several FORTRAN subprograms at load 
time in order to provide essentially a static environment for the FORTRAN- 
coded section of the total process. The system software that lies below this 
section, and runs the procedures called in by the program, may still utilise the 
dynamic nature of the stack.

4.2 DESCRIPTORS

Section 2.3 described the need for a hardware mechanism to handle general data 
structures and pointer or reference variables. The 2900 mechanism for this 
purpose is a descriptor. A descriptor is essentially a (virtual) address together with 
reference information that defines the item that can be found at that address. It 
forms a scalar data type recognised by the 2900 processors, along with the more 
usual arithmetic, character and logical data. A descriptor can be used to point to, 
and therefore indirectly reference, any item in the virtual store including data 
items, other descriptors or code. In particular, code descriptors are used as the 
means of passing control to other procedures.

In their basic, unmodified form, descriptors map the reference or pointer 
variable and can be used to construct chains, lists or trees in a straightforward 
manner. Descriptors can, however, also be indexed or modified so that items at a 
stated displacement from the given descriptor address can be accessed. Since the 
descriptor contains information on, among other things, the size of the object 
pointed to, the displacement can be stated in terms of items and the hardware 
can automatically scale this to provide the correct virtual address. This provides 
an efficient access method' for structures of the form of arrays or strings. Finally 
the positions of the index and address can be reversed to give reverse modification. 
In other words it is possible to construct a descriptor that references an item of a 
particular type that is not at a particular virtual address but at a stated displace­
ment from an unknown address. If an address is now provided in the form of a 
modifier the descriptor will reference the item of the stated type at the stated 
displacement from the address. This mechanism can be used to map a particular 
data structure on to a given unstructured area of store and thus forms the basis 
for 2900 structure handling.

The value of the descriptor concept was originally demonstrated in the Basic 
Language Machine (BLM).1 This proved the usefulness of adopting an architecture 
in which information structure could be explicitly described within the machine 
rather than working within a fixed reference frame dictated by the actual 
mechanics of the storage mechanism. While, because of conflicting requirements, 
the Synthetic Option found it impossible to carry this philosophy to the limits 
set by the BLM, Iliffe’s work did have a considerable effect on 2900 thinking.

Using descriptors, we can extend the representation of figure 4.2 to include
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the data structures and show that access to the structure elements will be by 
descriptors held in the stack namespace. This is shown in figure 4.3. Note that 
the call between module 1 and module 2 will also be carried out via a descriptor 
and that the linkage information held on the stack for return to module 1 will 
effectively be in descriptor form.

Figure 4.3 Process mapping-descriptors

4.3 THE VIRTUAL STORE

As we have already seen the virtual machine is the environment for a single 
process; there is a one-to-one correspondence between active processes and 
virtual machines. We can best study the form of the virtual machine in the light 
of the conceptual requirements of chapter 3. Section 3.1 required that the virtual 
store concealed from the individual programmer the knowledge of the storage 
hierarchy of the system. For him there must be only a one-level storage, with any 
automatic overlaying being done behind the scenes and out of his sight. Second, 
within this store will reside a collection of subsystems. For an individual 
applications programmer some of these will be known—he will have written them 
or directly included them; some will be implied—he will have invoked library 
functions; and others will be unknown—they will have been included by the 
compiler or loader for their own purposes or called indirectly by routines that he
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directly requested. However, the form of the individual subsystems will be identical 
to his own subsystem; to their authors they will have exactly the same structure 
as his own code. He will refer to all known data and code by a combination of 
name (for example, a procedure, label or structure name), displacement (an 
array index or character number within string), and length (for example, an 8-bit 
character or 32-bit word). Even though it would provide the most simple way of 
mapping the original source program, it would obviously be wasteful and 
expensive for the hardware to be aware of all program-named entities. However, 
as we have seen in section 3.3, these items cluster conveniently into areas, which 
can either be code or data. We can map these areas on to virtual-store segments.
The segment is the basic unit of the virtual store and can be of variable length.
Each segment provides storage for an area of the object program although, to 
avoid fragmentation or otherwise increase efficiency, two or more areas may be 
combined into one segment, providing that they all hold the same class of object. 
Local names, as we have seen, are stored dynamically on a stack—the stack is 
itself a segment. Finally, the constants of figure 3.3 are read-only items, which 
are totally associated with the code blocks. Indeed, they may be included directly 
in instructions in the form of immediate operands. They are therefore included 
in the corresponding code segment.

We are thus in a position to complete our 2900 map of figure 3.3. This is 
shown in figure 4.4. Note that the two data areas W and X have in this example 
been mapped on to a single segment. We can note in passing that because of the 
separation of code and data and the automatic provision of a processing environ­
ment by the stack, the production of pure code (code that neither modifies itself, 
nor contains addresses that restrict its own locatability or that of the data it 
operates on) is a relatively simple operation. Since the segment is the basic unit 
of virtual storage any virtual address must be of the form

This virtual address is mapped on to the real store address via a process segment 
table. The nth table entry corresponds to segment n. An entry in the segment 
table has the following form

The ‘present’ marker p indicates if the segment is currently in main store or not. 
If not, when an access attempt is made, a virtual store interrupt is caused, which 
will bring in the segment from backing store. This is the basis of the one-level 
store.
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Another requirement of the virtual store was that it should be possible to 
share code of data between processes. This could be achieved by mapping the 
same real address on to segments in different processes, that is, the same r appears

Figure 4.4 Process mapping—complete

in more than one place. The two processes can thus refer to the common segment 
by different virtual segment numbers. (While this is conceptually the method by 
which interprocess sharing is achieved, in practice—to avoid system housekeeping 
problems caused by the existence of multiple copies of real addresses—another 
level of indirection is employed. Since this is more concerned with implementation 
than mechanisms it is dealt with in the next chapter.) This basic mechanism 
provides the means of sharing essential supervisor code between all processes, as 
well as more ‘casual’ sharing between two or more communicating processes.
Figure 4.5 shows schematically this overlap of virtual store. Note that, since we 
are talking of virtual store only, any of the segments of figure 4.5 whether shared
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or not could at any instant in time be in main store or in any other part of the 
storage hierarchy. *

As we have seen in section 3.1, because segments are of variable length, store- 
fragmentation problems may arise. As an implementation choice, therefore, rather 
than a fundamental architectural requirement, individual 2900 implementations 
employ a fixed-length paging scheme to support the segmentation scheme.

Figure 4.5 Virtual store sharing-1

However, segments (particularly small segments) need not necessarily be paged, 
and paged and unpaged segments can co-exist in a process.

Finally, since segments are addressable entities and each contains information 
of a single coherent type, they form the natural units for protection purposes as 
part of the protection and privilege scheme. This is discussed in section 4.4 below.

The advantages of the form of segmentation adopted for 2900 can thus be 
summed up as follows

•  direct mapping of program structure
•  concealment of multi-level storage hierarchy
•  basis for pure code generation
•  provision for code and data sharing between processes
•  basis for protection scheme
•  ability to be underpinned by other mapping techniques (such as paging) while 

not actually demanding such assistance.
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4.4 THE PROTECTION SYSTEM

A minimum requirement of the process concept was that the ‘operating system’ 
should be protected from the user process. However, we are looking for a much 
more comprehensive form of protection than that, as section 3.2 explained.

One aspect of protection is already implied by virtual addressing. Unshared 
segments cannot be corrupted (or even accessed) by other processes since they 
cannot use real addresses and they will not have any virtual address corresponding 
to the real address of the unshared segment. A second protection aspect can be 
easily deduced from the definition of a segment. Since a segment contains only 
data or code items with common characteristics, these characteristics can be 
recorded and monitored by hardware on every access. Thus a code segment can 
be marked as ‘execute only’ and can be protected from accidental writing or 
reading within the process. Data segments can be marked both as ‘data’ (to prevent 
accidental execution) and as either ‘read only’ or ‘read and write’. Vital constants 
can thus be protected from accidental corruption within the process.

However this is not sufficient. One can easily imagine data—peripheral 
allocation tables, for example—which must be updated by a system procedure, but 
which should be protected from being overwritten by all other procedures. Again, 
the loader subsystem will read and write data that will then become executable 
code. To cope with these situations we must introduce the concept of privilege.
A classical two-level OS-application split has a crude form of privilege. Every­
thing below the OS-interface level has more privilege to read tables, alter data, 
etc., than anything above it. We need a finer graduation than this and so the 
2900 provides multiple privilege or protection levels. We can now assign each 
segment in a virtual machine a separate protection key (that is, read, read and 
write, execute) within each privilege level. Thus the most privileged procedures, 
those concerned with mapping virtual resources to real resources, will find most 
of the segments of a virtual machine available for writing, while a user-produced 
application program will tend to find that only its own names are so available.
To paraphrase Orwell, within the process all subsystems are equal, but some are 
more equal than others.

All that is needed now to complete the protection system is a means of 
identifying the point at which a privilege boundary is crossed. We need to provide 
this without relying on the programmer’s or compiler’s knowledge of what 
privilege applies to which subsystem. This v/ould involve too much system know­
ledge, increase the chances of error and complicate such operations as running 
the same procedures at different levels of privilege for different purposes. The 
basis of a suitable mechanism is already available, since we have noted that the 
only way of accessing code in another subsystem is by procedure call and that 
calls are made via code descriptors. The call instruction can remain the same 
regardless of whether the procedure called has the same or a different privilege. 
The relative privilege levels will be known by the loading subsystem, which can 
therefore amend the descriptor accordingly (see figure 4.6). When the call is 
executed, if no privilege change is involved a normal procedure call is carried out.
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If there is a change, the descriptor access will cause what is known as a system 
call to occur, and the necessary changes to access keys and provision for re-setting 
them on return from the procedure can be made.

Figure 4.6 Procedure and system calls

This mechanism involves only limited software knowledge (in fact, it is con­
fined to the loader), can be easily supported in hardware, and provides protection 
checks on every store access without any time penalty since the check can be in 
parallel with other operations. The way in which the protection system is imple­
mented is described in detail in section 5.4, and so the current description of its 
properties is kept deliberately brief. Readers confused by unfamiliar concepts or 
unconvinced that the system contains no loopholes should suspend judgement 
until chapter 5.

4.5 PROCESS CONTROL

A total 2900 system is a collection of virtual machines and all system procedures 
needed are in every virtual machine. In such a set-up we need to solve the prob­
lems of inter-process control. Two questions immediately spring to mind—what 
creates virtual machines and what allocates real resources to them? The question 
of how processors are assigned to particular processes is especially intriguing since 
the scheduler is itself within the process. How then do we deal with suspended pro­
cesses and interrupts? It is obvious that for the system to work, virtual machines 
must co-operate in some way, but how are they forced to?
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The answer is a subsystem of the highest privilege which deals with real 
resources. This subsystem is called the kernel and corresponds to the layer of 
software immediately above the hardware in figure 3.2. Its chief functions are to 
allocate real resources, such as peripherals or store, to virtual machines; to handle 
system errors; and to deal with interrupts. The kernel exists in all processes and is 
known by the hardware. Whenever there is an interrupt or failure the kernel is 
entered by the hardware after the current process state has been recorded. To 
preserve the general rule that all code access is by procedure call, the hardware 
can invoke the kernel by a forced procedure call, giving it the necessary infor­
mation on the interrupt or fault as parameters. There is only one difference from 
a normal procedure call, which is that the kernel must have available to it real 
work space on entry (otherwise there will be a virtual store interrupt, which will 
invoke the kernel, which will not have work space, which will cause a virtual 
store interrupt,. . . )  The section of the kernel that deals with faults and inter­
rupts is called the event manager. Its existence solves the problems caused by 
having the scheduler within the process and can also provide the basis for an 
interprocess communication system. One process can activate or otherwise 
communicate with another by making operative a named event. This can be 
treated by the event manager as a form of interrupt, which it processes using 
event tables for synchronisation, etc.

The virtual-machine system means that all internal system-procedure 
interfaces can be visible to application-program modules. This is illustrated in

Figure 4.7  Visibility o f  interfaces

figure 4.7, which shows that although the system is layered as in figure 3.2, any 
‘layer’ can call for services (represented by the arrows) from any other layer, and 
application modules can interface directly with any layer in the system.
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Figure 4.8 reillustrates the segment-sharing concepts of figure 4.5 for two 
virtual machines but adds to it actual examples of shared subsystems, and maps 
the combined processes on to real resources. Real resources are shown within

Figure 4.8 Virtual store sharing—2

the double rectangle. Process A is currently doing a COBOL compilation. The 
compiler itself uses the in-line data management system (DMS). A’s virtual 
machine thus contains the COBOL compiler, in-line DMS, essential kernel and 
other supervisor procedures, and work space. Some of each of these are in main 
store (within the rectangle); others, such as procedure 51 and procedure 9900, are 
not. Process B is carrying out data-management operations using some DMS 
utilities, which again use in-line DMS. Again some of these items are in main 
store, some not, including some segments that are shared between the two 
processes. One can note in passing that the whole of the COBOL compiler and 
the DMS utilities are in practice shareable and could be simultaneously used by 
other processes. In fact, if there was a second COBOL compilation process going 
on in parallel, the whole of the contents of virtual machine A would appear in 
the second virtual machine, except for work space and data areas used to hold 
source, object and intermediate code associated with each particular compilation.



5 The Primitive Architecture

The primitive architecture is the way in which the fundamental concepts and 
mechanisms of the two previous chapters are implemented in actual systems.
Some of these implementation methods are a fundamental part of the 2900 
Series, but most are merely choices for one or more of the members of the 
Series that were implemented first. They thus form subrange standards or 
particular machine implementation details. Only those that are of importance 
in understanding 2900 concepts are included in this chapter and so the description 
is not a complete one for any particular range member. For example, error­
checking mechanisms are a vital part of any particular implementation but they 
are omitted from the description except where they throw light on basic archi­
tectural matters.

Conversely, one cannot assume that all future members of the 2900 Series 
will exhibit all the standards discussed here. For example, in this chapter, and in 
appendix A, some details of the order code are given. These details are correct 
at the time of writing but since the order code is not a range standard, future 
2900 systems may have a different one. Indeed, there is no reason why it should 
not be changed on one or all of the currently announced models. However, because 
of other architectural features and design aims, any new or amended order code 
would have to have many of the attributes of the current one and such abstract 
attributes are most easily explained using the current definition as an example.

5.1 DATA FORMATS

The primitive architecture at the object code level is concerned with such items 
as data formats, the instruction repertoire, addressing mechanisms and register 
structure. Of these only the first are range-defined and conform to formal or 
actual international standards wherever possible.

A 2900 computer is a 32-bit-word, 8-bit-byte machine. Individual data items 
may be multiples of these two basic units. All the data types required by common 
high-level languages are provided

•  fixed-point (integer)
•  floating-point (real)
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•  decimal (binary-coded decimal representation)
•  logical (bit-pattern or unsigned integer)
•  character (binary-coded character information).

Fixed-point numbers are held in two’s-complement form and can be one or two 
words long. Floating-point numbers are held with a hexadecimal exponent and 
may occupy one, two or four words. Decimal numbers have four bits allocated 
for a sign and four further bits for each decimal digit. In store they can occupy any 
integral number of consecutive bytes up to a maximum of 16, that is, they can 
have a sign plus any odd number of digits from 1 to 31. However, for arithmetic 
purposes they are always expanded to 7, 15 or 31 digits corresponding to one, 
two or four words. Logical data items may be one or two words. Finally a 
character occupies one byte. As we have already seen, there is one other data 
type fundamental to the architecture—the descriptor. A descriptor always occupies 
two words, of which the second is a virtual byte address. The first or most 
significant word defines the type of the descriptor and gives information about 
the item addressed. There are four basic types of descriptor.

(1) Vector descriptors point to a vector or contiguous list of items in store.
The first word of the descriptor states the size of the item accessed, which 
may be one bit, one byte, or one, two or four words. It also states the 
length of the vector and whether modified accesses via this descriptor 
should be hardware-checked against this bound. Finally it states if any 
modifier should be scaled by the item size. (The normal case is to scale so 
that modification by n will access the «th list item rather than the «th 
byte.) Modification will be unsealed if, for example, the descriptor is being 
used to map a structure on to a store area, the address of which is used as a 
modifier. The second word of the descriptor would then normally contain 
a byte displacement.

(2) String descriptors are used to identify a string of bytes. They specify the 
address of the first byte and the length of the string.

(3) Descriptor descriptors can only point to other descriptors. They are similar 
to vector descriptors although the item size must always be two words.

(4) Code descriptors are used to identify code.

As described in section 4.4, a code descriptor can be either a procedure-call 
descriptor, or a system-call descriptor if a privilege boundary is to be crossed.
Both are used in call instructions and for return linkage. There is a third subtype 
called an escape descriptor. If an escape descriptor is discovered by the hardware 
accessing mechanisms when they expected one of the other descriptor types, a 
jump is made to the escape-descriptor-specified address. The state of the machine 
is preserved so that the code accessed in this way can construct an actual 
descriptor to replace the escape descriptor and restart from the point at which 
the escape descriptor was discovered. This provides a very convenient and efficient 
way of implementing such high level language mechanisms as the full generality
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of Algol 60’s call-by-name. It also supports run-time code binding, that is, the 
ability to delay linkage of little-used routines until the first time that they are 
actually called.

A more detailed description of 2900 data formats can be found in appendix B.
It is also possible to hold descriptors in store with their address field containing 

a displacement relative to the storage position of the descriptor itself. Facilities 
exist for automatically constructing a normal descriptor from such a self-relative 
descriptor.

5.2 INSTRUCTIONS AND REGISTERS

This section is totally concerned with the 2960/70/80 implementations but 
exhibits the general principles that need to be shown by any 2900 order code 
and register structure as well as the associated function of data addressing. The 
section does not attempt to define the complete order code or list all registers 
but appendix A gives more details. We have seen that all directly addressable 
items such as local names, parameters and work variables are held on the stack, 
off-stack variables being accessed via stacked descriptors. Each virtual machine 
has its own stack, which constitutes one of its segments. The stack is one word 
wide, that is, items are added to it or removed in units of one word. The register 
structure supporting the stack is shown in figure 5.1. The local name base register,

Figure 5.1 Basic register structure
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LNB, points at the base of the local data of the currently active procedure and 
local names are accessed relative to the value in LNB. The top of stack is indicated 
by the stack front pointer, SF. This controls allocation and release of new stack 
storage, provides a check against access of currently undefined storage above the 
stack top and allows addressing of the pushdown workspace at the top of the 
stack.

When a procedure is to be called, LNB can be made to point to the current 
value of SF and linkage information is dumped on the stack. Linkage information 
will include not only the return address but also the old value of LNB, so that 
the previous stack status can be restored on return. It is not necessary to save 
the old value of SF since this will be the new value of LNB.

Procedures in block-structured languages may also access names declared in 
surrounding procedures, which will be at lower levels on the stack. Such access 
could have been provided within the architecture by a set of display registers 
that would point to all previous name bases but analysis of real programs showed 
that this would not have been cost-effective and the facility is instead provided by 
a single register, the extra name base pointer, XNB, which can be set to any desired 
point within the stack. Items on the stack can, of course, also be accessed in­
directly via descriptors and this method is used for passing parameters by name. 
Also, as an implementation decision, XNB is, unlike SF and LNB, capable of 
holding a full virtual word address and so it can, if necessary, be used as a base 
address for directly accessed off-stack areas. This is useful in non-block-structured 
languages. (There is actually a second register, LTB, functionally equivalent to XNB, 
but since it is conventionally used for certain system-software purposes outside the 
scope of the main architecture it is not further described here, but in section 5.4 
below.)

Most arithmetic and logical operations are performed in the accumulator ACC. 
The accumulator can be 32, 64 or 128 bits long depending on the data on which 
it has to operate, and its current length is shown by the accumulator size register, 
ACS. ACC is shown coupled to the top of the stack since provision exists for 
pushing down the contents of ACC, popping up the top of stack item to ACC, or 
interchanging ACC and the top of stack. Analysis of actual programs and efficiency 
considerations led to this arrangement rather than a ‘pure’ stack with reverse 
polish operations on the top members. The index accumulator, B, is used mainly 
for dynamic descriptor modification in the way described in section 5.1 above. 
Modifier arithmetic can be carried out in B in parallel with ACC and without 
disturbing ACC operations or content. B is also coupled to the stack top in a 
similar way to ACC. For efficiency purposes, a descriptor register, DR, is provided. 
DR is automatically loaded whenever a descriptor is used for an indirect access 
and can then be used for any further access that requires this descriptor. Facilities 
are also available to construct or modify descriptors within DR and to stack and 
unstack its contents. Finally, on current implementations, ACC and DR are used 
to double as two conceptually different registers which hold source and destination 
descriptors for store-to-store character operations.

The dedication of registers to particular purposes, rather than provision of
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multiple general-purpose registers, allows easier exploitation by programs and 
permits engineers to optimise each register’s design to its chosen purpose. Because 
of the close mapping of program structure on to hardware, any extra money that 
the hardware designer might have can be devoted to very efficient slaving registers, 
which will be automatically exploited by programs without alteration to code.
For example, because most accessed items are always in the local name base, a 
stack slave that keeps for future immediate access the last few items obtained 
relative to LNB must have a very high hit rate, an order of magnitude higher 
than a general cache slave on a conventional machine. In addition, hardware 
registers slaving the top of the stack have a similar effect to multiple-accumulator 
provision without the need to optimise software, and without the need for soft­
ware to deal with the situation that arises when an expression evaluation uses 
more pushdown registers than are available. Again hardware organisation and 
design can take advantage of the fact that code and data are always in separate 
segments and that off-stack segments are always addressed indirectly.

2900 order-code functions have in general two operands, with one usually in a 
register implied by the function code. However, store-to-store operations to move, 
compare, edit and manipulate character strings are also provided. The function 
code and addressing form are completely dissociated. This has three major 
advantages. First, it makes instruction generation by high level language compilers 
easier. Second, it allows any function to take either a 32-bit form or a short 16-bit 
form if the address representation will allow. Third, it permits easy implementation 
of hardware pipelining, where operands can be fetched for instructions while 
previous instructions are still in various stages of execution. Basic directly addressed 
operands for arithmetic and logical operations are as follows

Operand Normal use

(1) literal item in the instruction simple constant 
value

(2) item at fixed displacement from current instruction complex constant 
value

(3) item at fixed displacement from LNB local name

(4) item at fixed displacement from XNB (or LTB) global name

(5) item at the top of stack (TOS) partial result

(6) contents of B index for 
manipulation

These possibilities are illustrated in figure 5.2a..
Operands can also be indirectly addressed via the descriptor in DR. This des­

criptor can optionally be modified by an index indicated by any of the forms 1 
to 6 above. Finally, an operand can also be addressed via a descriptor held in any
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of the locations indicated by forms 2 to 5 above and the descriptor in this case 
may be optionally first modified by the contents of B. These cases are illustrated 
in figures 5.2b and c.

Arithmetic and logical functions operate between ACC and another operand 
and are provided uniformly for all those data types and for all sizes of individual 
data types for which the operation has meaning. Arithmetic orders are provided 
for: add, subtract, multiply, divide, reverse subtract and divide, remainder divide, 
double-length multiply and divide, compare and arithmetic shift. There are also 
the logical functions: and, or, not-equivalent, rotate, shift and shift-while-zero, 
as well as two-way conversions between fixed and floating and fixed and decimal 
data.

In addition to these ACC operations, some arithmetic and logical functions 
can be performed in B and DR, other registers can be loaded and stored in various 
ways and there is the usual complement of comparison and jump instructions.

Store-to-store instructions operate either between a byte and a byte string 
referenced by a descriptor or between two such strings. Facilities are available for 
scanning, comparison, moving, table look-up, insertion, logical operations, packing, 
unpacking and editing.

It can be seen that this general function code satisfies the cleanliness require­
ments specified by section 2.3. However, there are in addition special-purpose 
instructions, which, while not of general use in high level language translations, 
are included under the criterion that they have a significant effect on over-all 
system performance. An example is the validate instruction, which can check 
whether a descriptor provided to a called procedure is valid at the access level 
of the caller (see section 5.4).

5.3 VIRTUAL STORAGE AND INTERRUPTS

The 2900 virtual byte address is 32 bits long. It is split into 14 bits for a segment 
number and 18 bits for the byte displacement within the segment. Thus any 
virtual machine has a maximum of 214 segments, each of a maximum of 2 18 bytes. 
To recap on section 4.3, the mapping information between virtual and real storage 
is contained in a segment table. Hardware access to this is facilitated by a segment 
table base register, STBR, which contains the real store address of the first item of 
the segment table of the currently active process, together with the length of the 
table. Each segment table entry is eight bytes and contains the real address of the 
segment, the length of the segment, its protection status and whether it is present 
in main store or not.

The practical problems of real-to-virtual mapping are, however, too complex to 
be handled by the simple mechanisms we have considered so far. For example, 
some of the problems that arise are as follows

•  segment tables for each segment in each virtual machine would rapidly become
too large to keep in main store;

•  sharing segments by holding copies of the real address in each segment table
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gives a great overhead on moving the segment, since all references to it in all 
virtual machines must be found and altered;

•  variable length segments can, as we have seen, lead to store fragmentation, which 
is worsened by the overheads of moving;

•  access via an in-core segment table means that every variable reference requires 
two store accesses, one for the segment-table entry and one for the variable 
itself; this is an unacceptably large overhead.

In any practical virtual store implementation, solutions must be found to these 
problems. Those that are described in this section are a mixture of range standards 
and implementation choices.

First, we already know that a large number of segments belonging to what on a 
conventional machine would be the operating system will be included in all virtual 
machines. These are called public segments. We arbitrarily assign these the same 
segment numbers in the range 8129 to 16 383 in each virtual store (that is, segment 
numbers with a 1 in the top bit). We can thus have a separate segment table for 
these items, which is common to all processes. This reduces considerably the over­
all size of segment tables.

Second, we can separate all segments that are not public but are shared by two 
or more processes and put their addresses into a global segment table. The corres­
ponding entries in the segment tables of the processes that share such segments 
now contain a bit indicating that they are shared and, instead of a real address, a 
reference to the global table entry. This is shown schematically in figure 5.3. (This 
indirection mechanism could be taken to any level if desired.) There is thus only 
one copy of each real address to be altered if a segment is moved. In a multi-access 
environment, where several users are accessing the same compiler, for example, 
local segments would be confined to data areas, the compiler code being global.

There is no complete known solution to fragmentation but we can (at least on 
medium-to-large machines with many simultaneous processes) divide the segment 
further into fixed-length pages, which are the unit for transfer between the store 
hierarchies. There will thus never be external fragmentation since all transfer units 
are pages and all holes are of page size. However there will now be internal frag­
mentation-storage wasted at the end of each segment since the segment will not 
in general be an integral number of pages. This wasted fraction must statistically 
be p/2s per segment where p is the page size and s the average segment size (that is, 
on average half a page is wasted per segment). To minimise this we can either 
minimise p or maximise s. If p is small, however, we need very large page tables 
(the equivalent of segment tables but for pages). So we must maximise s, which is 
a reason for grouping program areas of similar types rather than mapping them one- 
for-one on to segments. We chose 1024 bytes as a reasonable page size and a 
virtual address thus takes the form
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As a further compromise we can allow unpaged segments as well as paged in the 
same process, the relevant segment table entry being marked accordingly. This

facility is mainly used for very small segments (especially smaller than one page) 
particularly in the system software, or for very large segments that are permanently 
in store.

The extra indirections introduced by the global segment table and paging have 
worsened the access overhead. To overcome this we introduce current page registers 
(CPRs) and current segment registers lCS>Rs), which hold the most recently or 
most frequently used table entries and can be searched in parallel by hardware to 
avoid any unnecessary store accesses. The number of such registers and the com­
plexity of the algorithm by which they are updated are a matter for cost-efficiency 
trade-off for any particular machine.

Interrupts are quite complex in the chosen architecture. They are basically of 
two types. The first are concerned with autonomous-unit synchronisation: external 
stimuli, multi-processor messages and peripheral interrupts. The subtypes differ 
considerably with information being passed in buffers, lines or main store. The 
second type are more concerned with the actual CPU design: system errors, timer 
interrupts, virtual store interrupts, system calls, extracodes (function codes not in 
fact supported by hardware but requiring software subroutines), program errors 
or exception conditions. This collection is messy in that greatly different techniques 
are needed to deal with each. A mechanism is thus required to analyse the type of

Figure 5.3 Segment sharing
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interrupt, localise its peculiarities, determine its priority and call for the necessary 
services. This interrupt decoder is in public segments (which implies co-operation 
between virtual machines so that one process can carry out an interrupt service for 
another). The interrupt-decode routine can be entered by a hardware-generated, 
forced procedure call, but because of the VSI problem, explained in section 4.5, 
it requires guaranteed available main store. This is provided in the form of a 
second stack that is actually a small public-data segment. When an interrupt occurs 
the state of the current stack is dumped, registers are switched to the new stack 
and a normal procedure entry is forced to the interrupt decoder.

5.4 PROTECTION AND PRIVILEGE

Since the protection applied to a segment must be relative to the accessor’s privi­
lege status, we need some graded access mechanism. This can differ between read 
access, write access and execution access. Each segment has associated with it 
three pieces of protection information—an execution permission bit (EPB), which 
is an item in the segment table entry, a read access key (RAK) and a write access 
key (WAK). As an implementation choice the RAK and WAK are each 4 bits, 
giving 16 possible levels of protection. This could vary between models but it 
would seem to provide a minimum number (7 would be too few) and also a rea­
sonable number (not all are in fact utilised on early 2900s). Only code located in 
segments with the EPB set may be executed—this can be fixed by the loader.

Each procedure of a process has an associated privilege level between 0 and 15. 
The software of a process can be distributed through these levels in any convenient 
way but on existing implementations a convention is adopted for subsetting them. 
Three levels are devoted to the kernel, which, as we have seen, handles real resources. 
The remainder of the system software is structured between seven levels;-and six 
levels are left for user applications. These last can be used, for example, to allow 
procedures under test to be tried out in an operational, on-line user system while 
still protecting vital system code and data.

When the process is active a hardware register, the access control register (ACR), 
holds the privilege level of the currently executing procedure. A particular seg­
ment can be accessed for reading if, and only if, the ACR value is less than or 
equal to its RAK. The segment may be accessed for writing if, and only if, the 
current ACR value is less than or equal to its WAK. Thus a low number indicates 
high privilege and high protection status. (This can be a pitfall for the unwary; 
readers are requested to consider the context of ‘high’ and ‘low’ in what follows 
very carefully.) Whenever a store access is attempted a hardware check is made of 
the relevant segment-access key against the current setting of the ACR. Since the 
check is not for equality it means that procedures are increasingly trusted as their 
privilege increases. A particular segment may therefore be inaccessible to one 
privilege level, accessible only for reading to a higher level and accessible for read­
ing and writing to a higher level still. This facility is heavily utilised within the 
supervisory software, so that, for example, peripheral handling routines can access
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data tables connected with their peripherals and thus have direct control of real 
resources, but are nevertheless forbidden access to data concerned with store 
allocation. This level structuring also assists in localising program faults and pre­
venting their propagation throughout the system, thereby permitting more rapid 
diagnosis and higher chances of automatic recovery.

The ACR register forms a part of a larger hidden register called the program 
status register, PSR. Also in the PSR is a privilege bit PRIV. Only if PR1V is set 
to 1 can the ACR be changed by instruction and this facility is reserved for the 
most trusted part of the kernel. The ACR value is dumped and restored on inter­
rupts and system calls so that these provide the mechanisms for increasing the 
current level of privilege. The ACR can only be set to a less privileged level by 
exiting from such routines. Access keys are set by the kernel and not altered. The 
remaining items of the protection system are dealt with by such supervisory 
subsystems as the loader. Thus, for example, a segment can be loaded with different 
privilege at different points.

We are now in a position to examine more detailed implementation matters 
that are essential to a fool-proof system. First consider the problem that although 
a non-privileged procedure cannot access restricted data it can, via a system-call 
descriptor, invoke a procedure that can. This is an essential part of the process 
operation but is obviously open to misuse. When a system-call descriptor is en­
countered, a system-call interrupt occurs. The system-call descriptor contains a 
reference to an entry in a system-call table, which defines the called, or target, 
procedure. In this entry is stored the ACR of the target and a number, K, which 
indicates the maximum ACR value of the class of procedures that are allowed to 
call it. Direct call of trusted routines can thus be forbidden to less trusted code.
The process-interrupt manager will allow a requesting procedure to change a K 
value to any value higher than its own ACR level. This allows a supervisor pro­
cedure to isolate another kernel facility from less privileged code.

Figure 5.4 illustrates how the protection mechanisms work. We consider a 
simplified process with three code segments. In increasing order of privilege, these 
segments are: A, which has access level 10; B, access level 7; and C, access level 4. 
The ACR values shown are those that would be found when the associated segment 
was executed. There will also be within the process some kernel code, which is not 
illustrated but has access level 0. The process has data segments D, E, F with differ­
ing Read Access Keys and Write Access Keys. Two further segments used by the 
kernel, the System Call Table, G, and the segment table, H, have RAK and WAK 
equal to 0, as do all the code segments. All this information is contained in the 
segment table H, together with the execute-permission bits.

We can see immediately that only the code segments A, B, C may be executed. 
Also, since both RAK and WAK are zero for code segments, only the kernel may 
read or write to them. This restriction also applies to the tables G and H. Data 
segment D has RAK = WAK =10, which means that A, B, C or the kernel can 
access D for reading or writing. F has RAK = WAK = 4 and can therefore be read 
or written to only by C or the kernel. It is not accessible directly to A or B.
Segment E on the other hand has different RAK and WAK settings. The RAC value
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of 7 forbids reading by segment A but allows B or higher levers to read it. How­
ever, the WAK value is 1 implying that this data is read-only except at the two 
highest levels of privilege within the kernel.

Figure 5.4 Protection mechanisms

Note that special provision needs to be made to allow the access of literal 
operands and constant values stored within the code (see section 5.2). Such access 
is only permitted to the code segment in which they occur.

The system call table, G, contains the procedure-call permission list for the 
virtual machine. The two entries illustrated show that, while B can be called from 
any ACR level, which includes an ‘inward’ call from A or an ‘outward’ call from 
C, C itself can only be called by procedures with ACR less than or equal to 7. This 
will permit a call by B but not by A. The only way in which A can obtain a service 
from C is therefore indirectly, via a system call to B.

The choice between constructing a system-call descriptor or a normal procedure 
descriptor as the operand of a call instruction is made by the loading subsystem, 
which is aware of the privilege level assigned to the segment being loaded and of 
other segments in the system. A procedure descriptor will contain a normal virtual 
address. A system descriptor on the other hand contains an index to the system 
call table, which will be used by the system-call interrupt routine to determine 
whether the call is legal. Normal procedure descriptors are used for calls to routines 
at the same ACR level and are also constructed dynamically as part of the link
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information for a return of this type. Such a link descriptor incorporates program- 
status information—for example, the ACR value and whether arithmetic overflow 
has occurred as well as the return address. In the case of an inward system call, 
that is, a call for a procedure of greater privilege, a system-call descriptor will be 
used to invoke the required procedure and a normal procedure descriptor can be 
used for the link since no special action will be needed.

The much less frequent case of an outward system call is more complex. In 
this case we have a less privileged routine being invoked and in general such a 
routine cannot be trusted not to interfere with vital information on the stack. The 
system-call interrupt routine will in such circumstances prepare and activate a new 
stack segment and protect the old one before invoking the less privileged pro­
cedure. In this case the link constructed will be another system-call descriptor so 
that the old stack, program status and system status can be restored on return.
In all cases—normal, inward or outward,—the pre-call and post-return sequences 
are identical. It is also worth noting that on the 2980 the entire inward-call 
sequence is implemented in hardware.

The software-system implementation adopts an interesting method for dealing 
with the storage of inter-segment references so as to preserve the full generality 
of sharing. While not strictly a 2900 architectural matter the principle is worth 
some investigation. Consider the case of a procedure that is to be shared between 
processes. This procedure calls a private procedure, which will differ for each pro­
cess, for example, a user-specified error routine. Where is the descriptor (pro­
cedure or system call) of the private routine to be stored? If it is stored in the code 
segment and accessed by operand type (1) or (2) of section 5.2, the code can 
only be shared if the private procedure has the same virtual address in all processes. 
This is possible to organise but messy. Alternatively if the descriptor is stored 
in any static data area—either in a data segment or in a fixed position relative to 
the outermost global namespace on the stack, say—the same virtual address or 
displacement within the global space will have to be used for the descriptor itself 
within each sharing process, which is essentially the same problem. The ideal 
place is obviously in the local namespace of the shared procedure but this only 
exists when the shared procedure is invoked.

The following method has been adopted to overcome this difficulty. All des­
criptors of external items of this type associated with a procedure are collected 
into a program linkage table, PLT. The relative position of each descriptor within 
this table is known to the procedure and the PLT is stored off-stack in a static 
location. A descriptor that points to the PLT is by convention passed to every 
procedure as its first parameter. By using this descriptor, modified by the relative 
position of the required descriptor within the PLT, the procedure can access any 
of them without its code containing any fixed addresses and the procedure, or any 
of the items that it references, can be assigned any virtual address in any process 
without reducing sharing. To reduce the overheads of indirection the linkage table 
base register, LTB, is used, by convention, to hold the address of the PLT. It is 
set from the first parameter of the procedure. Data segments can obviously be 
dealt with in the same way as code segments.
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The reader may be asking how a calling procedure knows the PLT address of a 
procedure that it calls. Several possibilities are available depending on implemen­
tation considerations such as space, time and the availability of registers like LTB. 
An obvious way is to extend the PLT so that, for each procedure entry, not only 
the code descriptor but the PLT descriptor for that code is stored. This would 
solve the problem without affecting sharing but at a PLT-space cost. Alternatively, 
this space can be traded for an extra indirection by arranging that the PLT holds 
only the descriptors for the PLTs of the accessed routines and that each PLT 
conventionally has as its first entry the code descriptor of the associated code 
itself. The situation is then as in figure 5.5.

To access procedure A from the current procedure, A’s PLT-base address can 
be accessed by a modified use of the current PLT-base descriptor. This is placed 
on the stack as A’s first parameter. An indirect access via this descriptor can then 
be used as an operand for a call instruction to invoke A. It is left as an exercise 
for the reader to see how system calls can be handled in this situation. It is, after 
all, an implementation rather than an architectural matter but it illustrates the 
power and flexibility of some basic architectural features.

The protection system allows subsystems to provide services directly to less 
trusted procedures while still protecting data. However, since virtual addresses are 
merely binary patterns there is nothing to prevent any routine constructing any 
address. (This is in contrast to the Basic Language Machine, where addresses are 
specifically tagged and can only be constructed by highly trusted routines.) 
Attempts to access forbidden data using an illegal address constructed in this way 
will fail, because of ACR protection. Nevertheless the criminal or negligent pro­
cedure could pass such an address as a parameter to a more privileged routine at a 
system call, and thus gain illegal access indirectly. On a system call, therefore, it is 
necessary to check that any descriptor passed as a parameter was valid at the ACR 
level of the caller. This is quite easily done but since we require system calls to 
have low overhead to combat the conventional OS service problems, a hardware 
validate instruction is provided to speed up this operation.

Finally the protection mechanism described only effectively protects items in 
store. Other real resources such as peripherals also need protection; random appli­
cation programs cannot be allowed to drive peripherals directly by error or design.

Figure 5.5 Possible PLT operation
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This, however, is much simpler to control, since direct peripheral access can be 
restricted to specific routines. The protection is in fact managed by an extension 
of the use of the program status register, PSR, which allows specific routines to 
access directly machine hardware registers. These registers are treated as though 
they represented a highly protected piece of store, the image store, which can be 
accessed only by procedures with the correct PSR settings. Special operand forms 
that indicate an image-store access are allowed, but these can be used by the 
privileged routines together with normal manipulative functions.



6 Initial Implementations

This chapter describes some of the important implementation features of the first 
2900 hardware and software systems realised by ICL. There are essentially three 
processors, the 2960, 2970 and 2980 although hybrid systems with the processing 
power of one of these and connectivity of another are also available. There are 
also two supervisory systems or Virtual Machine Environments: VME/B, which is 
available on all machines, and VME/K, which was designed for 2960. Also of 
interest, because of the initial range objectives, are the ways in which data 
management and peripherals have been treated. Each of these subjects is dealt with 
superficially in this chapter. Of all the chapters this is the least complete descrip­
tion both because more detailed information can be easily discovered in ICL 
literature and because the subject matter is essentially of transitory interest, since 
if the 2900 is to meet all its objectives as a range of machines one can expect 
additions and improvements to the range for a considerable time to come.

6.1 PROCESSORS

All the basic processor models have adopted a structured approach to the provision 
of the processing system. Each processor consists of a number of basic modules. 
These are illustrated in figure 6.1. First there are one or more order code processors 
(OCPs). These are the units concerned with basic arithmetic and logical opera­
tions. Main store is provided in semiconductor blocks and is accessed via a Store 
Multiple Access Control (SMAC). Each block is independent and can be accessed 
simultaneously. Peripheral controllers access the main store via a Store Access 
Control unit (SAC) which, as far as the store is concerned, is functionally equiva­
lent to an OCP. The OCP is thus not concerned with handling peripheral transfers, 
which after initiation are dealt with autonomously by the SAC. Figure 6.1 
shows the cross-connection of both OCP and SAC to both the SMACs. This basic 
structure leads naturally to multiprocessor systems, which can provide improved 
throughput with sufficient redundancy to allow reconfiguration in case of com­
ponent failure. A typical multiprocessor configuration is shown in figure 6.2.

All models employ ICL 1000 and Schottky TTL with ICL’s matched inter­
connection technology. The larger machines employ platters of up to 20 layers 
while the 2960 uses up to 17, each supporting macro circuit boards. Each model
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employs pipelining (instruction overlap) and slaving techniques (see section 5.2) 
to improve throughput, the degree of use varying according to the individual 
cost—performance objectives of the processor. Considerable attention has been

Figure 6.1 Processor structure

Figure 6.2 Multiprocessor configuration
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paid to reliability, both in the selection of the technology, the reconfiguration 
ability mentioned above, and by selective hardware self-correction techniques.
The SMAC performs Hamming-type checks on the main store while the SACs 
parity check all data received from the SMAC or the trunk links including 
control data and addresses. Order code processors have internal checking systems 
and instruction retry facilities while methods of displaying and recording the status 
of the system have been devised to assist in maintenance.

The 2980 is the largest and most powerful of the currently available systems. 
The OCP operates at around 3 million instructions per second and peak instan­
taneous throughput between the SMAC and store is 27 million bytes per second. 
This gives a Post Office Work Unit (POWUII) rating of 0.3 milliseconds. To 
achieve this performance the OCP uses a multistage pipeline that not only has 
phased address decoding, operand access and function execution, so that several 
instructions can be in various states of execution at the same time, but also has 
independent basic arithmetic, multiplication and string-handling processing units. 
Items can enter the pipeline via three slave stores; that is, the contents of various 
locations are held in fast-access stores outside the main store, the choice of loca­
tions varying as a program is executed. The instruction slave holds items from the 
currently executing code segment. Instructions are transferred in blocks, reduc­
ing the numbers of store accesses needed in the case of sequential execution, while 
branches caused by loops will, within constraints imposed by the number of slave 
registers, find the instructions already in the slave. A second stack slave holds 
accessed items from the stack, the most commonly used segment of any process. 
This is a particularly cost-effective slave store, a hit rate of 90 per cent being 
common; that is, of all stacked data needed in instructions, only one in ten is 
fetched from store, the remainder being in fast registers. This is better than even a 
highly optimising compiler could expect to achieve with a general-purpose register 
structure and conventional storage. There is a general operand slave on items from 
other data segments. The algorithms for each of these slaves are different since 
they can take into account the different inherent use of the various items in 
memory and their associated access patterns.

A 2980 can have one or two OCPs, one or two SACs and from 2 to 4 SMACs. 
This can support between 1 million and 8 million bytes of 500-nanosecond semi­
conductor store and can also include an alien-order-code processor for emulation 
purposes.

The 2970 is slightly lower down the cost and performance scales, although 
the store speed is basically the same as the 2980. A typical configuration might 
have around megabytes of storage on two SMACs arid POWU II measurement 
of around 1 millisecond. Unlike the 2980, the 2970 is a microcoded machine.
Apart from cost savings and similar advantages normally quoted for microcoding, 
loading an alternative microcode enables alien order codes to be emulated directly 
on the 2970 OCP. Alternatively, a separate emulation processor can be attached 
if the extra throughput is needed.

The medium-scale 2960 is the smallest of the 2900s so far introduced. It uses 
850-nanosecond store, two-stage pipelining and less ambitious slaving techniques
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to achieve a POWUII measurement of the order of 2 milliseconds. 2960, like 
2970, is a microprogrammed machine capable of directly emulating alien order 
codes.

6.2 PERIPHERAL HANDLING

The underlying theme of peripheral handling in 2900 is to disperse intelligence 
throughout the system, thus continuing the structured approach of the processors 
out into the system. The peripheral controllers, which connect to the SAC via 
a standard trunk link, are autonomous units, each of which deals with a number of 
a particular type of peripheral device. Separate types of controller exist for the 
following units

•  general peripherals: serial devices, input and output peripherals and magnetic 
tape

•  disc files: exchangeable disc stores
•  sectored files: fixed-head discs and drums
•  communication links: communications systems

The disc file controller contains facilities for rotational position sensing, queueing 
and retry while the sectored file controller takes advantage of the known sectored 
structure of the file to provide the sort of performance needed for efficient one- 
level store implementation.

Each controller consists of a central logic unit plus one or more peripheral 
interface modules. This eases connection of existing peripheral equipment and 
introduces some flexibility for future peripheral developments. In the case of the 
communications link controller (CLC) the interfaces are known as Network 
Interface Modules, each of which can handle a number of channels. The CLC is in 
fact a microprogrammed processor and can be enhanced by the addition of storage 
and provision of a new microprogram to become a full-scale front-end processor.

6.3 SUPERVISORS

The VME/B Virtual Machine Environment was the first supervisory system to be 
announced by ICL and is available on 2960, 2970 and 2980. It exploits the 
architectural design features to provide a general-purpose operating environment 
for a wide range of job types. Separate options within the system handle and 
schedule transaction-processing systems and also batch jobs from local or remote 
sites and multi-access users. These separate stream types are in turn co-ordinated 
by central resource handling and low-level schedulers. The system manager (a 
human, not a routine!) can influence VME/B in order to control the way in which 
resources are utilised between these various streams or between jobs within a 
stream.

*
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The over-all system is controlled by a system control language. This is in fact 
a purpose-built high-level block-structured language with variables, computational 
facilities, conditional statements, etc. The block structure allows the phasing of a 
total job and the acquisition and release of resources to be stated in a straight­
forward manner. However, macro facilities and default options allow simple or 
frequently run jobs to be initiated using a very simple interface.

VME/B devotes considerable attention to resilience by fully exploiting the ACR 
system within the supervisor and by providing error-management, correction and 
diagnosis routines at various levels within the system. This, together with system 
calls and parameter validation, is aimed at containing hardware or software faults 
wherever possible and preventing error propagation.

VME/K is offered by ICL on 2960s and has a simpler structure more suitable for 
the applications area at which it is aimed. Like VME/B it is capable of dealing with 
various work-load types but it handles them in a different way. Separate function 
processors are devoted to batch, MAC and TP, which exist in the virtual store of 
each process of the appropriate type. Additional function processors handle such 
matters as operator communication, emulation, and local and remote spooling. Each 
function processor is responsible for resource control within its own application 
area and all are co-ordinated by the central controlling routines, known collectively 
as the Executive. Basic mechanisms are provided for manipulation of programs and 
data within system files and special streamlined access is allowed for TP system 
users. Job control is via a more conventional job control language (JCL).

Both operating systems support the same set of compilers and utilities including 
specific utilities concerned with transfer of programs and data from other systems.

6.4 DATA MANAGEMENT

The virtual machine concept particularly benefits the implementation of data- 
management systems. On conventional systems, the data-management system 
either sits between the programs and the operating system, introducing access 
overheads, or exists in each program that needs it, introducing space overheads; 
on the 2900, by contrast, data-management routines can sit in the same virtual 
store as the ‘program’ and the operating system, but are shareable.

On VME/B separate routines are provided for different record-access mechanisms 
—serial, random, indexed sequential, etc.—and those corresponding to the files 
needed by the user are linked into his process at load time. On top of these basic 
access mechanisms, it is possible to introduce other routines that will map the 
user’s view of a file on to the actual format it takes and thus provide virtual files.
The way in which the user interacts with the system is the same at any level of 
virtuality.

With VME/K the basic accessing methods are provided within Executive, which 
is also responsible for fundamental file creation. Both VME/B and VME/K have a 
form of data description language, which allows the format and content of a file 
to be described and stored for future use. In this way a unified interface can be
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provided to all data, and degrees of data and program independence can be intro­
duced, since the actual file definition can be stated outside the program proper.

The way in which data source is concealed from the user in both VMEs is 
particularly useful in the case of communications handling. Applications programs 
are shielded from the characteristics of terminals and communications sytems, 
and data bases can interface easily to each other.

A range of data-management facilities is provided from a set of utilities through 
to an Integrated Data Base Management System, and in accordance with the funda­
mental design principles the user is allowed to choose his level of complexity in 
this area and make his own balance between system power and overhead costs.

6.5 PORTABILITY

It has been noted in the previous sections of this chapter that all aspects of hardware 
and software implementation have been constrained by the need to allow easy 
transfer of user jobs, data and equipment from existing machines to 2900. Thus, 
processor configurations support alien order-code processors and/or microcode 
emulation; controllers and peripheral interface modules allow the incorporation of 
alien devices; while the supervisory, utility and data management software provide 
support or translation facilities for foreign programs and data. It is interesting to 
note that the microcode emulation facilities have been so successfully implemented 
as to allow ICL to take a post hoc marketing decision to offer large 1900 customers 
the option of using a 2900 merely as a super 1900 (the so-called Direct Machine 
Environment or DME)!



7 Conclusions

It is too early as yet to say what the 2900’s place in computer history will be. 
Systems can be successful in their own terms while never selling in great num­
bers. Multics, the Basic Language Machine and Atlas all added considerably to 
computer-science theory and techniques without ever being runaway commercial 
successes. On the other hand ICL must judge success in terms of the numbers of 
systems sold and profitability. While initial signs look good, it will be some time 
before such measurements can be accurately taken. This form of success is also 
subject to marketplace intangibles, over which the system architect has no control 
whatsoever.

At this stage then, the only measure of success of the Synthetic Option Team 
and their successors is obtained by comparison of the eventual design of the 2900 
systems with the original objectives of chapter 2. This must be a subjective judge­
ment on the part of each reader but, in order to help (and possible bias) him, 
figure 7.1 provides a mapping of the objectives on to the features of the system. 
The list at the left-hand side represents the major aims outlined in chapter 2. They 
are grouped rather loosely under major headings but, for example, many of the 
‘high level interface’ features could also appear under ‘user application effective­
ness’. Each column represents one of the important features of the architecture or 
implementation described in chapters 3 to 6, again grouped under major headings. 
Wherever an architectural feature has a significant impact on a particular aim, the 
intersection of the corresponding rows and columns is marked. Otherwise it is left 
blank. Thus, for example, by reading down the column marked ‘Interrupt hand­
ling’, we can see that this group of architectural features has an impact on system 
throughput, communications, the match between supervisor and hardware, trans­
action processing, multi-access computing and resilience. Conversely, reading 
across the row marked ‘Good procedure handling’ we can see that this is provided 
by segmentation and the stack.

Any attempt to chart such a complex mapping is bound to be subjective, and 
so the reader is invited to consider what entries he would consider important. The 
list of aims also omits a fundamental objective set out in chapter 2, that the 
architectural design of the Series should be coherent and first-class technically. On 
this matter the author declares an interest, and leaves the consideration as an 
exercise for the reader.
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Internal
cost
reduction

Hardware modularity • • • • •
Software modularity • • • • •
Technology exploitation •

User
application
effectiveness

Shared code • •
System throughput • • • • • • •
Processor speeds • • • •
Data speeds • • •
Communications • • • • • • •

High
level
interfaces

Data management • • • •
Data independence • • • • •
Storage type independence • • • •
Hardware/supervisor match • • • • • • •
Clean order code
Good procedure handling • •
Structure handling • • • •
Expression evaluation • • •
Object code support • • • • •

Versatility

Modes of use • • •
Batch • • • • • • •
TP • • • • • • • • • •
MAC • • •

T ransf er
Programs • • •
Data • • • • •
Equipment

Dependability
Reliability • • • • • •
Resilience • • • • • • •
Security • •

Figure 7.1 Impact matrix



Appendix A Order Code Structure

A.1 INSTRUCTION FORMATS

Instructions may be 16 or 32 bits long. There are three formats in all, of which the 
first 7 bits specify the function, the remaining 9 or 24 bits the operand. The 
format is determined by function code and the length by the operand code. There 
are 104 primary format instructions, 16 secondary format or store-to-store instruc­
tions and 8 tertiary or jump instructions.

A.2 PRIMARY OPERAND DECODE

The allowable operands consist of literals within the instruction, direct operands 
accessed via a pointer register, or indirect operands accessed via a descriptor. The 
conventions used below to describe the operand forms are illustrated by the 
following

n a 7-bit literal

N an 18-bit literal

LNB the address contained in the Local Name Base Register

XNB the address contained in the Extra Name Base Register

LTB the address contained in the Linkage Table Base Register

PC the address of the current instruction (contained in the 
Program Counter)

B the modifier in the Index Register

DR the descriptor in the Descriptor Register

TOS the item at the top of the stack

IS the Image Store (see section 5.4)

(LNB+N) the data item in LNB+N (that is, the data item displaced N 
words from the item referenced by the Local Name Base 
Register)
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((LNB+N)) the data item referenced by the descriptor (LNB+N)

((LNB+N)+B) the data item referenced by the descriptor (LNB+N) after
the descriptor has been modified by B

(DR+(LNB+N)) the data item referenced by the descriptor DR after the 
descriptor has been modified by (LNB+N)

A.2.1 16-bit Form

The 9 bits of the operand are decoded as follows

Appendix A Order Code Structure

The meaning depends on the value of K as follows

K operand

0 the 7-bit signed literal n

1 (LNB+n), n unsigned

2 ((LNB+n)), n unsigned

3 n is decoded further as follows

R is reserved and not used 

K1 may take the values 0-3 

K2 may take only the values 6 or 7

The meaning is as follows

DIRECT INDIRECT

DESCRIPTOR IN 
DR, MODIFIED

DESCRIPTOR IN 
STORE

DESCRIPTOR IN 1 
STORE, MODIFIED

\ k i
K 2 \

0 1 2

L

3

6 TOS (DR+TOS) (TOS) (TOS+B)

7 1 Unassigned (DR) (DR+B)
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A.2.2 32-bit Form

The 25 bits of the operand are decoded as follows

K K1 K2 N

bits 2 2 3 18

K is always 3

K1 may take values 0 to 3

K2 may take values 0 or 2 to 5 (1 is unassigned)

The meaning is as follows

DIRECT INDIRECT

DESCRIPTOR IN 
DR MODIFIED

DESCRIPTOR IN 
STORE

DESCRIPTOR IN 
STORE MODIFIED

\ K 1
k X

0 1 2 3

0 N signed (DR+N) Note 1 Note 2

2 (LNB+N) (DR+(LNB+N)) ((LNB+N)) ((LNB+N)+B)

3 (XNB+N) (DR+(XNB+N)) ((XNB+N)) ((XNB+N)+B)

4 (PC+N) (DR+(PC+N)) ((PC+N)) ((PC+N)+B)

5 (LTB+N) (DR+(LNB+N)) ((LTB+N)) ((LTB+N)+B)

Note 1. Privileged direct operand—IS location N. 
Note 2. Privileged direct operand—IS location B.
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A.3 SECONDARY OPERAND DECODE

This format is used for store-to-store operations. The operand field of the 15-bit 
form and the first 9 bits of the 32-bit form are equivalent, and the 32-bit form has 
two extra 8-bit fields as follows

16-bit form H Q n

32-bit form H Q n M L

bits 1 1 7 8 8

The difference between the two forms is determined by the value of Q

Q = 0 16-bit form

Q = 1 32-bit form

H determines the length of the string in the operation 

ifH  = 0, length = n + 1

if H = 1, length = length from descriptor of destination string

M is used as a mask byte, L as a literal or filler byte, which can replace the source 
string.
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A.4 TERTIARY OPERAND DECODE

This format is used for conditional jump instructions

16-bit form M K3 R

bits 4 3 2

32-bit form M K3 N

bits 4 3 18

M is a 4-bit mask field.
R is unused and should be set to zero.
K3 provides the following operand types

K3 operand

0 N literal

1 (DR+N)

2 (LNB+N) T
32-bit form

3 (XNB+N)

4 (PC+N)

5 (LTB+N)

6 (DR) "1

7 (DR+B) /  ' 6-b l,f° ,m

A.5 INSTRUCTION LIST

The following list merely names the instruction except in those cases where the 
function is not immediately obvious from its name, when explanatory notes are 
'provided.
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A.5.1 Control Instructions

Load LNB
Notes

Store LNB

Load XNB Store XNB

Load LTB Store LTB

Adjust SF 

Raise LNB

Store SF

Increment and Test Test and Decrement 1

Note 1. Semaphore instructions.

A.5.2 Jump Instructions Notes

Call Exit

Jump Jump and Link

Decrement B and 
jump if non-zero

Jump on condition 
code

Jump on arithmetic 
condition true

Jump on arithmetic 
condition false

Escape exit Idle

Out 2

Note 2. ‘Out’ forces an interrupt. 

A.5.3 B Instructions

Load B
Notes

Stack and Load B

Store B Add to B

Subtract from B Multiply B

Compare B Compare and Increment B

Dope-vector
multiply 3

Note 3. ‘Dope-vector multiply’ assists with the calculation of array 
elements for arrays stored in FORTRAN-like form.
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A.5.4 DR Instructions

Notes
Load DR Stack and Load DR

Store DR Modify DR

Load bound field Load address field

Load type and bound Increment address
fields field

Validate address 4

Load relative 5

Note 4. See section 5.4.
Note 5. See section 5.1.

A.5.5 ACC Instructions

Notes
Set ACS 32 and load Set ACS 64 and load 6

Set ACS 128 and load Stack, Set ACS 32
and load

Stack, Set ACS 64 Stack, set ACS 128
and load and load

Stack and load Load

Store Load upper half

Store upper half Copy DR

Modify PSR Copy PSR 7

Read real-time clock

Note 6 . Accumulator-size register, see section 5 .2 .
Note 7. Program-status register, see section 5 .4 .

A.5.6 Computational Instructions

Computational operations in the accumulator are affected by the previous setting 
of ACS. Many are common to all arithmetic-data types as shown by the following 
table
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Floating Fixed Logical Decimal

Add X X X X

Subtract X X X X

Reverse subtract X X X X

Compare X X X X

Shift (scale) X X X X

Multiply X X - X

Divide X X - X

Reverse divide X X - X

Remainder divide - X - X

Divide double X - - -

Multiply double

x Provided 
-  Not provided

X X X

The following instructions peculiar to one arithmetic type are also available: 
Additional floating-point instructions 

Fix
Additional fixed-point instructions 

Convert to decimal 
Float

Additional logical instructions 
And 
Or
Not equivalent 
Rotate 
Shift 32 bits 
Shift while zero 

Additional decimal instructions 
Convert to binary
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A.5.7 Store-to-store Instructions

The following instructions operate in general either between two designated strings 
or between one string and a literal byte. A second literal byte may also be in some 
cases specified as a mask or a filler.

Scan while equal Table translate

Scan while unequal Pack

Compare strings Suppress and unpack

Move Conditional insert

Check overlap And Strings

Move literal Or strings

Table check Not-equivalent strings
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B.l FLOATING-POINT FORMAT

The formats for 32-bit, 64-bit and 128-bit floating-point numbers are compatible, 
in the sense that the first word of a 64-bit number is a legal 32-bit number and the 
first two words of a 128-bit number form a legal 64-bit number.

The formats are as follows

S Biased exponent Fraction Continuation of Fraction 

Bits 1 7 24 32

Ignored Continuation of Fraction

Bits 8 56

S is a sign-and-modulus sign bit, 0 = positive, 1 = negative. Biased exponent is the 
true hexadecimal exponent + 64. Bits 8 onwards contain an unsigned fraction.
For 128-bit form, bit 72 is assumed effectively adjacent to bit 63.

B.2 FIXED-POINT FORMAT

Fixed-point numbers are represented as 32-bit or 64-bit signed integers. The sign 
convention is two’s-complement, bit 0 being the sign bit, and the binary point is 
assumed to be after the least significant bit.

B.3 LOGICAL FORMATS

Logical operations on 32-bit or 64-bit items treat them either as bit strings or as 
unsigned (that is, positive) fixed-point numbers.
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B.4 DECIMAL FORMAT

Decimal numbers are held in a string of consecutive bytes, with two 4-bit, binary- 
coded decimal digits to each byte except for the least significant 4-bits, which 
correspond to a sign as follows

1010, 1100, 1110, 1111 positive

1011, 1101 negative

Decimal numbers may thus be any odd number of digits but arithmetic is carried 
out on numbers of 7, 15 or 31 digits, plus sign.

B.5 DESCRIPTOR FORMATS

All descriptors are 64-bits. The format is as follows

Bits 2 3 1 1 1 24
More significant 
wordT S A use BCI Bound/Length

Byte Address Less significant

Bits 32 word

The byte address may be modified in the course of accessing the information to 
which the descriptor occurs. The meaning of the other fields depends on the value 
of the type field, T, as follows.
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T = 0 Vector Descriptor

S = size of addressed item(s) in store. Permitted values are

s Size in bits (First) Item addressed

0 1 First bit of byte addressed

3 8 Byte addressed

5 32 Word containing byte addressed

6 64 Word containing byte + next word

7 128 Word containing byte + next 3 words

A = ignored, should be 0. The values of USC are as follows

USC = 1 unsealed, modifier is added directly to the address field

= 0 scaled, modifier is scaled according to the size field, that is, it is 
taken to represent a number of items of the size denoted by S.
If S = 0 this permits access to any bit within a byte.

The values of BCI are as follows

BCI = 0 any modifier is checked (before scaling) to ensure that it is less than 
the value of the Bound field

= 1 no Bound check.

Bound = unsigned integer upper bound for modifiers 

T = 1 String Descriptor

S should always have value 3. A, USC, BCI are ignored (should be 0).
Length = length in bytes of string whose first byte is indicated by the address 

field (possibly after modification)

T = 2 Descriptor Descriptor

S must = 6, otherwise equivalent to T = 0.

T = 3 Code Descriptor

Fields S, A, USC and BCI taken together define a 6-bit subtype number, N. 
Permitted values are as follows
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T = 3, N  = 32 Bounded Procedure Descriptor. The address field references the 
destination instruction of a Call or Exit Instruction. Bit 63 is ignored as instructions 
must be half-word aligned. Modifiers (if any) are scaled by 2 (that is, represent half 
words). Bound is an upper bound for a modifier as with T = 0.

T = 3, N  = 33 Unbounded Procedure Descriptor. As for N = 32 but the Bound field 
is ignored and no check is performed.

T = 3, N  = 35 System Call Descriptor. The Bound field (usually) contains an entry 
displacement to index a System Call Index Table. The Address Field contains an 
entry displacement to index the System Call Table referenced by the descriptor 
accessed from the System Call Index Table.

T  = 3, N  = 37 Escape Descriptor. When a descriptor in DR being modified by a 
MODD instruction or used to access data indirectly is found to be of this type a 
branch is made to the address found in the word referenced by the Address field. 
This word will be followed by any parameters the escape routine needs. By using 
the Escape Exit instruction it is possible to return to execute the original instruction 
with a calculated descriptor.
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The book is intended as an explanatory guide 
for readers who are familiar with general 
computing concepts and wish to gain a broad 
understanding of ICL’s 2900 Series, its basic 
architectural features and its historical 
development.
In order to place the 2900 Series in context, the 
book begins by tracing its history and the 
internal and external influences on the architec­
tural design. In particular, the aims and 
objectives for the new series which were decided 
at an early stage are enumerated and their 
influence on subsequent design described.
From this basis the 2900 Series is described at 
three levels of detail. The first level consists of 
fundamental concepts: abstract machine 
definitions of virtual machines, processes and 
program structure which impose a basic shape 
on a 2900 system. The second level describes 
the mechanisms which are used to support these 
concepts: the stack, descriptors, the protection 
system. The final level describes the primitive 
architecture: data formats, instruction types, 
interrupts.
The 2900 Series design is such as to allow a 
wide variety of actual implementation choices 
to exploit technological developments or to 
achieve a balance between cost and performance. 
Some concrete examples of early implementa­
tions are included at the end of the book. 
Although the book is intended to be read 
sequentially, many of the individual sections are 
freestanding. It is therefore possible to use the 
book for various purposes, for example, to trace 
the effects of initially stated requirements on 
the final architecture, or to examine individual 
implementations as manifestations of architec­
tural concepts.
John Buckle was a member of the original ICL 
architectural design team for the 2900 Series 
and later managed the design and implementa­
tion of the software tools used to implement 
2900 systems. Before leaving ICL in 1975 to 
establish his own consultancy business, he was 
manager of the 2900 programme in the Product 
Development Group, responsible for the 
hardware and software development aspects of 
early 2900 deliveries. From 1966 to 1968 he 
was Professor of Computing Science at the 
Indian Institute of Technology, New Delhi, 
under the auspices of the Colombo Plan 
Technical Aid Scheme.
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