Special Theme — Electronic Business

Volume 14 Issue 2 Spring 2000 Edition

ICL Systems Journal

Editor

Professor V.A.]. Maller

ICL Professor

Department of Computer Science, Loughborough University,
Loughborough, Leicestershire, LE11 3TU.

Editorial Board

V.A.]. Maller (Editor) C.J. Maller (Board Secretary)

A.]. Boswell M.R. Miller

A.E. Brightwell W. O’Riordan FREng

P.J. Cropper J.V. Panter

D.W. Davies FRS J.M. Parker

G.E. Felton D.E. Picken

N. Holt A. Rowley

N. Kawato (Fujitsu) M.G. Wallace

M.H. Kay B.C. Warboys (Univ. of Manchester)
EF. Land P.G. Wharton

All correspondence and papers to be considered for publication should be addressed
to the Editor.

The views expressed in the papers are those of the authors and do not necessarily
represent ICL policy.

Published twice a year by Group Technical Directorate, ICL, Stevenage.

2000 subscription rates (including postage & packing):

UK and Europe Rest of World
Annual subscription £72 $120
Single issues £43 $72

© 2000 International Computers Limited, Registered Office, 26, Finsbury Square, London, EC2A 1DS.

Registered in England 96056
ISSN 1364-310X

ICL Systems Journal

Volume 14 lIssue 2

Contents

The Electronic Commerce Revolution 1
Dick Emery

Content Management Solution Kit (Athens) 6
Paul Duxbury

Regulatory Aspects of Electronic Commerce 40
Tom Cunningham

Scalable e-Commerce Solutions 50
Stuart Forbes

Public Key Cryptography, e-Commerce’s Magic Security Bullet? 59
Tom Parker

Ecx — An Award Winning System 70
Dick Emery

EPIK: Engineering Process Improvement and Knowledge Sharing 83
Brian Chatters, John Hood, Nick Jefferson

Previous Issues 105

Guidance for Authors 113

ICL Systems Journal Spring 2000

The Electronic Commerce Revolution

Dick Emery

ICL, Kidsgrove, UK

Abstract

Electronic commerce is no nine-day wonder. It has now earned itself a deserved place in the
computing hall of fame alongside the spreadsheet, the relational database and the COBOL
compiler. Electronic commerce routinely mechanises the supply chains of big retailers and
manufacturers. It is sending shock waves through retail banking and has given rise to unprecedented
growth in technology stock markets. Electronic commerce is becoming the method of choice when
purchasing books and records. It is here to stay. As electronic commerce relies fundamentally on
advanced information technology, it is appropriate to consider the subject in some depth in a
technical journal. At the same time, it is important to reflect on the social and business implications.
After all, it is through its non-technical aspects that most people will feel the benefits of electronic
commerce. These aspects also play a crucial role in deciding what will ultimately prove a success or
a failure in the market. We have to use a wide perspective if we are to understand correctly the

electronic commerce revolution.

Defining Electronic Commerce

There have been many attempts to define precisely
what we mean by “electronic commerce” —
doing business on-line, trading across networks
and so on. But the urge to achieve brevity
usually results in an opaque outcome. It is like
describing in one sentence “transport”, as we now
understand it, to a citizen of mediaeval England
and expecting to impart some enlightenment. It is
probable that electronic commerce has too many
dimensions and too much capacity to develop
in surprising ways to make any one-sentence
definition even remotely useful.

But that must not deter us from marking out some
of the boundaries. We can certainly make some
assertions about electronic commerce which
sharpen our understanding of whatitis. The ones
that appear below apply to the categories of
electronic commerce which we consider in the
following articles in this issue. In truth, the
result excludes some activities which informed
commentators often consider to be legitimate
forms of electronic commerce. Our narrower
choice here is deliberate. The intention is to
condition the reader’s mind for the better
understanding of what follows rather than to
enter into learned debate about whether our
choices are actually right or wrong.

ICL Systems Journal Spring 2000

* Electronic commerce relates to the exchange
of goods or services for value. This leads to
the exclusion of all activities which do not
contribute to the creation and execution of
contracts. This suggests that electronic
commerce does not take place within an
organisation since contracts operate between
organisations and individuals. For complete-
ness, we take the view that a citizen submitting
information, and thereby receiving entitle-
ment to a state benefit, qualifies for inclusion.

¢ Electronic commerce relates to remote parties
communicating across open, digital networks.
This causes the exclusion of systems on private
networks between consenting parties. This
has the effect of sharpening the challenges of
achieving integrity, security, privacy,
authentication and auditability.

¢ Electronic commerce takes place between two
parties where one (or both) must be a device
not in the synchronous control of a human.
This excludes voice telephony and facsimile
since both are essentially passive requiring
human participation in order to lead to
contracts.

When we apply these assertions, we find ourselves
firmly in the thrall of Internet-based systems.

Payment, where relevant, is typically by credit
card. There may be electronic fulfilment for
software purchases or entertainment downloads.
But equally there may not. In other words, these
assertions appear correctly to locate electronic
commerce precisely where events are moving
most rapidly and where current attention is most
firmly fixed. This vindicates the validity of the
assertions for our purposes.

Size and Growth

All observers agree that electronic commerce
(after applying the assertions from above’) is in
its early days but is growing very rapidly. The
debate is whether it is going to be big, very big or
enormous. For reasons of disparity in definitions,
timing, geographies and sectors, observers and
forecasters find it difficult to arrive at any useful
agreement as to how big electronic commerce
already is or how big it will become, at least
within a factor of ten. For example, they have
reported annual growth rates ranging from two
to four plus. But perhaps this is typical of
something this young, growing this quickly.

A cold, hard look, taken from the perspective of
the north of Europe, suggests that electronic
commerce is just beginning to become part of the
lives of its early adopters. Excellent examples
are the emergence of Internet banking, share
trading and book buying. There are now people
who would be inconvenienced if the Internet and
electronic commerce were to stop functioning —
a sure indicator of adoption. But at present
the inconvenience would strike very few and
recovery would be rapid. On this test, electronic
commerce only accounts for a fraction of a per
cent of economic activity. Itis far from being “the
way we do things” as, for example, car driving is
now. '

Nevertheless, it is easy to see how this situation
is changing. When so many traditional
advertisements display a URL and newspapers
have weekly supplements on the Internet,

" Without this limitation, one could claim that electronic
commerce already transacts $1 trillion plus every day in the
form of foreign exchange, capital markets, credit card clear-
ing and so on. Similarly Electronic Data Interchange (EDI)
already accounts for daily, large transfers of value. All these
modes of electronic transaction are far from new and are
not the cause of the present popular excitement.

including electronic commerce, there has to be
something in the air. We are surely able to
envisage, at least approximately, how far things
could develop. It takes little imagination to see
how Internet banking, Internet insurance selling,
Internet travel purchasing, Internet tax returns
and the like could become norms for many
citizens. Examples of such systems are already
capturing a share of the market at a considerable
pace. If the top third of UK households were to
spend just £2000 per annum across the Internet
for these purposes then the total transacted value
would reach £16 billion, perhaps 3% of consumer
spending. This could easily happen within
relatively few years, perhaps as few as three. The
United States market is arguably crossing the 3%
threshold at the time of writing.

We can deploy arguments in favour of a growth
of this amount by a factor of five over the
following years, reaching say £80 billion for the
UK, but no one knows how long this will take
or what new services will spring into being to
attract the consumer’s pound, euro or dollar.
However, behind the scenes electronic commerce
will support the enterprises which manufacture,
supply and serve the active consumers. Some
argue that this could be as much as ten times the
transacted value which the consumer sees. We
might cautiously envisage an economy which
becomes as reliant on electronic commerce as it
is today on road transport. Many new ways of
doing business, currently unimaginable, will arise
just as they did when the internal combustion
engine replaced the horse. Human characteristics
being what they are, we can expect the aftershocks
of the electronic commerce quake to be with us
for twenty or thirty years into the future. We still
have a long way to go.

Major Segments

The Internet makes possible point to point
communication between individuals,
organisations and devices of all kinds. Either or
both ends of the link can be static or mobile.
Through the power of optical fibres, satellites,
cellular radio and more, we can realise the “any
time, any place, anywhere” proposition. Where
the “wired world” goes, electronic commerce
goes too.

Almost all commentators agree on a useful
segmentation of this apparently limitless space.

ICL Systems Journal Spring 2000

They recognise:

* Business to consumer (B2C) applications. All
Internet retail (cybershops, cybermalls,
merchant sites, retail banking, ...) falls into
this category and so does most entertainment.

¢ Business to business (B2B) applications. This
covers corporate purchasing, supply chain
management, distribution management and
much more.

¢ Government to citizen applications. This is
sometimes known as electronic government
and relates to government interactions with
both citizens and business. Some title it
e-government.

¢ Individual toindividual applications. Although
poorly developed at present there is a vast
potential for individuals to trade with other
individuals using the Internet as the medium.

This segmentation omits what could well become
the most populous segment of all — device to
device. Those who look further into the future
see a world in which almost every device — car,
refrigerator, heating controller, video recorder,
burglar alarm, personal digital assistant (PDA)
— will be connected to the Internet, probably
by radio. These connected devices will work
silently to make human life more pleasant. For
example, one’s car could report the diagnostics
of a fault condition to the local service centre,
order the necessary replacement parts, negotiate
a suitable service date and time with the service
centre and one’s PDA, and only seek final human
confirmation for the complete arrangement once
this had been negotiated. In analogous ways, the
refrigerator could replenish itself, the intruder
detection system could refer suspicious conditions
to a security centre and so on.

Since there are numerically many more devices
than humans, at least in developed countries, the
potential for silent transactions between devices
is much greater, in volume terms if not in total
transacted value, than between humans and or-
ganisations as we currently know them. Through
the exploitation of Wireless Application Protocol
(WAP) and the Bluetooth development of
standards for wireless device connection, we are
now at the leading edge of an exciting and intrigu-
ing explosion. No one knows where it will go.

ICL Systems Journal Spring 2000

Holistic Approach

The constituents of a successful electronic
commerce solution come from many disciplines.
Information technology is certainly necessary
but far from sufficient. Even the best technical
execution of a solution cannot compensate for
an attempt to sell something which no one wants
at a price which few can afford. Equally, any
solution which breaches the law will not operate
for long. All the contributing factors have to be
under control if failure is not to be a real risk.
However, there is no combination which
guarantees success.

We can consider the factors in four major
categories:

¢ Business proposition

Every solution exists for a purpose. This must
be effective from strategic, business and
marketing perspectives. There has to be a
sound business model which has the potential
to deliver value and profit. No amount of
competence in other fields can compensate for
a flawed vision, be it of potential customers,
products, services, competition or prices.
These are the issues which confront every
entrepreneur, investor or business manager
whether the commerce is electronic or not.
Being electronic brings some new issues into
consideration, but it removes none of the old
ones.

¢ Regulatory compliance

The solution must comply with all the
necessary regulation, legislation and, in most
cases, best practice guidelines. In the present
climate of uncertainty and rapid change, this
presents a significant challenge to designers.
Nevertheless it is an unavoidable fact of life
that failure results in early termination of
the solution. But there are also more subtle
features relating to the solution’s longevity
against a shifting legislative background, to
the potential for litigation in case of disputes
and to the avoidance of fraud and other
misuse.

* Operational attractiveness
The solution must be attractive, distinctive,
pleasant and easy to use for its target
population and, where relevant, engender
positive loyalty. Much of this arises out of

designing both the functions and the style
with the typical, target user in mind. For IT
experts this can prove to be a challenge too
far. The disciplines of ergonomics, industrial
design and graphic design all have their roles
to play here.

* Implementation effectiveness

The solution must work correctly to its design.
This is the traditional arena of IT experts,
project managers and operations managers,
supported by graphic artists and copywriters.
While, say, the Internet brings new knowledge
domains which play their roles in creating
success, there is a great deal here which relies
on the established best practices of IT more
generally.

Social Implications

It is far too early to forecast how and where
electronic commerce will alter the lives of the
world’s citizens. Only with hindsight can we
now speak with any confidence about the
social implications of telephony, aviation and
television. The effects, when taken over decades,
can be remarkable. Who would have thought
that aviation would lead to the building of large
concrete buildings (hotels) along the coast of
southern Spain? Or that the equity value of
entertainment companies would exceed that
of steel, coal and shipbuilding combined?
What we can forecast with some confidence is
that electronic commerce will have a dramatic
effect but we can only vaguely discern what it
will be.

One early effect is likely to be a reduction in prices
as electronic commerce lowers costs and opens
up competition between previously isolated
markets. We can already observe the effects in
retail banking and in easily transportable goods
such as CDs. This is clearly only the beginning
of what could so easily happen. There are some
who argue that the effect on retailing will be
at least as great as the transformation of the
traditional High Street grocer into the out-of-
town hypermarket. Electronic commerce could
well change radically our shopping habits.

As electronic commerce is no respecter of
international boundaries, its practitioners now
confront the issues of cross-border, consumer
trade with all the concomitant problems of

taxation, consumer protection, contract formation,
data protection and court jurisdiction. Electronic
commerce is amplifying national differences of
approach which have always existed but formerly
rarely mattered. Now they do matter and there
are few easy solutions. For example, no national
treasury wants to cede its consumption tax
revenues to other nations which happen to enjoy
more success as Internet retailers. We can
confidently expect these issues to rumble on for
many years to come while national leaders
slowly accept the inevitability of convergence on
a world scale.

One class of individuals is likely to gain
disproportionately from electronic commerce —
those with low mobility through disability.
Electronic commerce has the potential to bring
the world’s shops and the world of work and
entertainment into the home. Just as the car
removed the challenge of buying in bulk, or at
least weekly, for those with below average
physical strength who had to walk or take
public transport, so electronic commerce can
remove the need for any mobility for some major
types of activity. This also leaves aside the non-
commercial uses of the Internet for learning and
socialising.

Looking further ahead, some are predicting that
organisations who provide the physical fulfilment
services will dominate and reshape themselves to
provide co-ordinated delivery of whatever is then
available from all sources, rather than from just
one, rather like letter post but with preferences
over timing to match work and life patterns. Some
predict the dominance of electronic versions of
money — say, a pan-global currency for use in
cyberspace — to the extent that central banks will
lose control of their money supplies. Some
predict the adoption of a universal smart card for
use in authenticating personal identity when
undertaking electronic commerce. However, such
dramatic forecasts are purely speculative and
could just as easily be false. The one certain factor
present in all such forecasts is that electronic
commerce is going to make a big difference to us
all.

Conclusions

All informed observers unanimously express
their confidence in electronic commerce’s ability
to revolutionise major aspects of the world in

ICL Systems Journal Spring 2000

which we live. While accepting this postulate,
we have to remember how much collateral
change is happening and has to happen in related
fields. Electronic commerce may challenge IT, but
italso challenges legislation, taxation, traditional
commerce, national identities, social expectations
and so on and so forth. In all revolutions, the
long-term effects rarely match the aspirations of
the inspiring revolutionaries. The articles which
follow look at the present and the near term. They
excite our interest with what is new today. But
we should prepare ourselves to be excited for a
good while longer as electronic commerce will
surprise us over and over again.

Biography

Dick joined ICL immediately after graduating
from Cambridge University. He spent the first
half of his career in technical roles associated with
sales and major customers. He became a national
authority on operating systems and contributed
managerially and technically to the early life of
the ICL 2900 Series mainframes. Dick then
moved through sales management into
marketing. He rose first to the position of
Marketing Manager for ICL Mainframes world-
wide. He then took marketing responsibility
for ICL’s systems integration capability and in
particular the OPENframework methodology.
He also worked within related areas such as Open
Systems and Intranets. He is currently
responsible for creating and maintaining ICL’s
corporate strategy for electronic commerce. He
represents ICL’s electronic commerce viewpoint
on a variety of trade and government activities
as well as advising customers on their electronic
commerce strategies.

ICL Systems Journal Spring 2000

Content Management Solution Kit
(Athens)

Paul Duxbury

ICL, Kidsgrove, UK

Abstract

ICL’s new Content Management Solution Kit (Athens) is intended to expedite dramatically the
development of e-Business solutions, by providing for most of their content-related needs. Like all
ICL solution kits it is designed to be used by ICL project teams, but many of its features and benefits
will also be visible to customer roles such as authorship and administration.

Athens offers a complete solution for stand-alone publishing sites, comprising functions like content
storage, administration, interchange, and publishing. Alternatively, Athens may be combined with
other solution kits and external components through its many integration facilities: at its heart is
the industry standard WebDAV protocol with corresponding API, and virtually all the components
of Athens can be substituted.

A key feature of Athens is its ability to handle content stored on many different types of physical
medium, including various relational databases, filesystems, volatile (RAM) memory, and composite
XML documents. Multiple media types may be accessed concurrently and uniformly, and custom
sponsors may be developed to integrate external or “legacy” data. Publishing features include
powerful Web-page construction and personalization tools, with multi-device support. An XML-
based document-interchange mechanism is also provided. All the facilities of Athens are offered
through user-friendly, Web-based administration interfaces suitable for both locally and remotely

hosted services. High performance & scalability are major objectives.

Introduction

This paper outlines the main concepts and
teatures of ICL's Content Management Solution
Kit (CMSK), known also as Athens, and should
provide useful reading for anyone about to
embark on any e-Business project, since all such
projects include content in some form.

In summary, Athens has the following principal
features:

* It provides most of the content-related needs
of e-Business solutions (storage, management,
page-construction, publishing etc.)

e [t provides a complete solution for stand-
alone publishing sites ...

e ... or use with other solution kits and
components through its many integration
facilities

6

¢ It provides flexible Content Storage Features
— database, filesystem, legacy etc.

¢ Ithas user-friendly Administration Interfaces

* It includes powerful Page Construction,
personalisation and Publishing Tools

* It offers high Performance & Scalability.

These features are described in some detail in the
body of the paper. However, some more basic
questions are considered first, such as, “What is
content” and “Who needs Content Management?”

What is “Content”?

“Content” means any information or goods which
are delivered electronically to an e-Business
consumer, either directly or indirectly. Originally,
content was embodied in HTML pages and their
associated images, and delivered directly to users

ICL Systems Journal Spring 2000

e -
I T

Webmaster

When you might not need Content Management...

+ Simple content—few items, few internal hyperlinks
» Single Web author or Webmaster
+ Targets only PC browsers
+ Same output for everyone

Figure 1: Content Management NOT required

through the World Wide Web. However, the
advent of more general e-Business applications has
led to a corresponding generalization in the
definition of content to include, for example:

¢ Web pages & images

¢ Multimedia files (for example, audio & video
clips)

¢ Streaming media
* Shopping catalogues

* “Soft” or “digital” goods for sale (e.g.
downloadable music and software)

* Even “functionality”, as embodied in CGI
scripts and their modern equivalents.

Furthermore, much content is no longer stored
in the exact form in which it will be delivered to
a consumer, but rather as “raw” data used both
to construct pages and to drive application
processes. For example, the price of a product is
needed both in the catalogue pages shown to
users, and in the business logic used to handle
customer orders, so it makes sense to store it
separately.

What is “Content Management”?

“Content Management” may broadly be defined
as a collection of facilities for:

ICL Systems Journal Spring 2000

¢ the introduction, storage, administration,
exchange and delivery of e-Business content
in all its forms...

e ..with appropriate accuracy, efficiency,
usability, automation, flexibility and
personalization.

Who needs Content Management?

For simple e-Business applications, like small
Websites, Content Management may not be much
of anissue. There are plenty of excellent tools to
allow a single “Webmaster” to author and/or
install HTML pages and images in a conventional
Webserver. Assuming that there is not too much
content, that it does not change too frequently
and that it is appropriate for everyone to receive
exactly the same version of each page irrespective
of their preferences and browser device, then this
approach may be perfectly adequate (Figure 1).

However, as soon as any of these operational
parameters are relaxed, complexity can grow
rapidly. For example, suppose each Web page is
required to include a list of links to others on the
same subject, or by the same author. Each time a
new page is introduced or an old one removed
all the other pages will need to be revised. This
is easy if there are only a couple of dozen pages.
But what if there are 10,000? And what if several
hundred pages change every day? So much
material cannot normally be authored and
controlled by one “Webmaster” and a substantial

e

business operatives

When you probably DO need Content Management...

* Rich variety of media
* Complex interactions
* Many sources
« Multiple destinations
* Personalization

Figure 2: Content Management required

team may be required for the purpose. How is it
ensured that the members of such a team work
effectively together and maintain the consistency
of both individual pages (“house style”) and
entire collaborative sites?

Then, in many cases, e-Business applications
require integration into more conventional
business processes. This means that site
contributors and administrators may not be
“Web” people, or even IT people, but may be
journalists, editors, marketing staff, telesales and
customer service operatives. Each will expect to
have content management facilities tailored to his
or her own needs — for example, a simple forms-
based interface for entering a classified
advertisement for a used car.

Another major factor is access to material
originating from outside the specific application,
whether it be legacy data from an existing
orthodox business, or dynamic feeds from some
news agency.

There are many other similar considerations
concerning performance, scalability, security and
so on. A specific mention must be made, however,
of targeting, which is becoming ever more a
requirement and expectation — it is one of the
unique capabilities of e-Business applications which
distinguishes it from orthodox business operations.

By targeting we mean delivering different content
to different individuals according to their
preferences and/or means of connection. For
example, e-Business applications can now be
accessed by a wide range of devices — not only
various PC-based browsers, but also mobile
phones, pagers and interactive TV (Figure 2). The
protocols used may not be compatible, and it is
not always appropriate to send precisely the same
content to, say, a mobile phone asitis toa 17 inch
monitor. Thus multi-device publishing is
frequently required. In addition, personalization
of content based on a user’s preferences (declared
or deduced) is also becoming a major tool in
attracting and retaining visitors.

ICL Systems Journal Spring 2000

How does Content Management help?

As defined in this document, Content
Management helps at all stages of the design,
construction and operation of an e-Business
application, such as a complex Website. To
understand how, the functional model illustrated
in Figure 3 will be used.

prepared
pages

raw import/
content export

Figure 3: Content Management — Functional
Model

At the centre of a Content Management System
is the Content Store. According to the application
and the nature of the physical storage, this may
hold both content and metadata (see later) and
the content itself may consist of raw reusable data
or prepared Web pages.

The remaining subsystems are all clients
operating on this storage service. The first
involves installing content in the content store,
and retrieving it for modification or export to
other stores. A variety of mechanisms is required
to suit all likely content sources and destinations.
Next comes the user interface for managing the
content already in the Content Store. Functions
include moving, replicating and tagging content
with properties, as well as controlling the other
subsystems. Finally, content needs to be
published for consumers. If the content consists
of ready-made HTML pages, publishing may
consist simply of delivery via a Webserver.
However, for raw content some form of page
construction process is needed. Athens will be
seen to be well equipped in each of these main
functional areas.

The following two examples illustrate the use of
the model for different styles of application (in
this case Websites).

1. A conventional Website, where the content

store is an ordinary filestore containing
prepared HTML pages, import/export may

ICL Systems Journal Spring 2000

use FTP, publishing may use a standard
Webserver, and management may be effected
through a standard Webserver administration
and/or a file-manager.

2. A dynamic Website, where the content store
is a relational database holding raw data,
import/export and management may use a
forms-based data-entry interface, and
publishing may use some dynamic page
construction mechanism such as CGI or ASP,
or the template system provided with Athens.

Though these examples are representative of
many sites, the model presented here is
admittedly very simple, and real-life production
processes are potentially much more complex.
For example, they may involve many stages on
different physical hardware platforms. However,
these can often be represented by combinations
of the simple model as shown in Figure 4, where
a dynamic Website prepares pages for storage on
one or more conventional Websites.

Some Content Management Techniques

So how do Content Management systems
typically solve the problems posed by large and /
or complex e-Business content systems? This
section outlines a few of the main underlying
principles.

Template-based page construction

As more and more Websites start to contain
functionality as well as static information, in some
cases fronting major enterprise applications, so it
is becoming common to generate Web pages
independently for each user, dynamically on
request. This is necessary so that results of queries
or calculations can be inserted into the pages, and
so that personalization can be effected.

Traditionally this meant that building Web pages
became a development programming task. “CGI”
programs were written to perform application
functions and output HTML responses. However
this meant that programmers were also
responsible for the look and feel of the site,
normally the province of graphic designers. Also,
the simplest change to site design had to go back
to the development programmers who created it.

To help this situation, some form of “template-
based rendering system” is now often included

database
management

raw data dynamic

raw content
(RDBMS)

production system

prepared
content entry script pages

WebServer
management

page prepared

capture

static HTML
(FileStore)

publishing system

Figure 4: Content Management — Dynamic Web Sites

in content production systems. Here, a graphic
designer generates HTML for the look and feel
of a site, but leaves “holes” into which dynamic
information can be placed by programmers. This
is known as a template. The process is illustrated
in Figure 5.

Although almost mandatory for dynamic page
generation, template-based rendering can in fact
also greatly benefit the production of “static”

pages, especially where many pages are expected
to follow the same basic layout. In such cases

dynamic data
template = template renderer HTML

Figure 5: Template-based Rendering

the templates capture these layouts, and help
impose house styles. Furthermore, changes in
look and feel need only be applied to the
templates, not to all the pages that are rendered
by them, and alternative templates can be created
for use with different client devices. Some
systems also provide mechanisms for generating
hyperlinks automatically at the page rendering
stage, to ensure their consistency (see later).

The basic advantages of template-based
rendering are that it:

10

* Separates programming and graphic design
aspects, and hence the skills needed

¢ Allows standard layouts, navigation, and
house-styles to be imposed easily

* Makes changes to look and feel easier, since
only the templates need altering

* Allows alternative renderings for different
devices, by supplying multiple templates for
the same content

¢ Allows automatic construction of hyperlinks
in some cases.

Metadata

Metadata is “data about data”. Its use is at the
heart of many content management procedures.

Many data storage systems and applications use
metadata, although they may not label it as such.
For example: files in a traditional filesystem are
accompanied by file properties (e.g. size, access
rights, modification date); word processing
documents may be accompanied by “property
sheets”, recording authorship and subject matter;
a search engine may generate indexes for
documents to speed up searching. All these are
examples of metadata. However, their storage,
accessibility, and usage tend to be restricted and
non-uniform.

The ability to store and manage arbitrary sets of
metadata against any item of content in a

ICL Systems Journal Spring 2000

uniform way is a great advantage for both e-
Business and conventional applications, so
content management systems which support it
fully have much enhanced potential. Some
examples of metadata which might be attached
to an object, and example uses, are:

e Subject keywords, used to deduce a visitor’s
interests and provide him or her with more
of the same (one form of personalization)

e Authorship information, used to record
ownership and route feedback comments

* Document status (e.g. in-preparation,
complete, approved, withdrawn), used to
control workflow processes

¢ Rendering parameters, e.g. what template to
use, background images etc.

¢ Relationships with other items, used to
construct hyperlinks.

Metadata may be stored embedded in text files
(e.g. as HTML metatags), or in a database, or in
application-specific sections of binary files.
Adding metadata is sometimes known as

“tagging”.
Database Storage

Conventional Webservers store their content in a
filesystem, as prepared HTML files and images.
However, the ability to use relational database
systems instead has a number of advantages:

¢ Easy to hold related metadata (e.g. as
additional columns in tables)

* Can exploit physical scaling, resilience and
management features associated with
RDBMSs

¢ Relatively fast keyword search

¢ Readily accepts structured raw data needed
for dynamic page construction

* (Canmodel object relationships, used (e.g.) to
generate navigation and other hyperlinks.

Ideally a content management system will

support RDBMS storage of both text and binary
data, with arbitrary amounts of metadata, and

ICL Systems Journal Spring 2000

without imposing a heavy database design and
administration burden on site developers and
operators.

Soft Hyperlinks

The defining feature of the World Wide Web is
the hyperlink, which (with help from the HTTP
protocol) allows any Web page to route visitors
transparently to anywhere else on the globe.
However, hyperlinks also present one of the
biggest headaches when constructing and
maintaining Website content. Generally, the more
well-placed hyperlinks a site has — to related
documents, to other site regions and features, to
referenced external sites — the more usable the
site will be, but, as the number of pages increases,
the effort of maintaining these links (adding,
removing or adjusting links as target pages are
added, removed, or moved) can grow rapidly. In
the limiting case, where every page is linked to
every other page, growth would be exponential.

An approach taken by some content management
systems is to generate hyperlinks automatically
at page construction time, rather than hard-
wiring them into Web pages. For example, if a
template rendering system is offered, then
information describing the desired target is
inserted into the template, rather than the target
URL itself. This will be called a “soft hyperlink”.

A simple example is provision of a “document
index” facility within a template. This instructs
the renderer to insert a list of hyperlinks to all
content items in a particular folder. Then, as
content is added to or removed from the target
folder, hyperlinks will be added to or removed
from the current page automatically.

More refinement can be achieved using metadata.
For example, hyperlinks may be generated to
only those content items which have a particular
subject field — maybe the same subject field as
the present document, in which case the list will
contain related documents.

Management of external links can be achieved
by holding the target URL as a separate item of
content, rather than encoding it directly into an
HTML page. Within templates this item is used
to build hyperlinks (<A> tags) field by field —
the link text or image reference may also usefully
be held as discrete items of content along with
the URL. This construction may be repeated in

11

any other templates which require the same
hyperlink. Then, when the link needs to be
changed, only one small item of content has to
be altered, not many complex templates.

These approaches can be combined, e.g. by
adding subject keywords (metadata) to content
items holding URLs, so indexes of related or
personalized links may include external
references.

Athens — Concepts and Features

The Athens Content Management Solution Kit
itself will now be discussed. This is a fully
featured Content Management and Publishing
system designed to address the issues raised in
the previous section and, thereby, to satisfy the
needs of a wide range of e-Business applications.

The overall purpose and structure will be
described in terms of the model presented earlier.
Then each of the main subsystems will be
discussed in detail. Finally, the integration
features will be examined.

Overview

First the specific purpose, scope and architecture
of Athens will be outlined.

Purpose & Scope

Athens is a fully-featured content management
system designed to provide most of the general
content-related facilities needed by ICL’s e-
Business solutions.

As a “solution kit”, the “80-20" rule is expected
to operate; i.e., unlike a conventional product
visible to customers, Athens is targeted at ICL
solution builders and is expected to save about
80% of the content-related costs which would be
associated with a purely bespoke
implementation. The remaining 20% (graphic
design, legacy integration etc.) is necessarily
bespoke.

The scope of the solution kit is rather wider than
might be inferred from the title “Content
Management”, since it also includes many
features relating to content publishing,
information exchange, and application design.
Since these features pervade all current e-Business
solutions, the architecture provided also offers a

12

more general basis for such solutions; i.e., it can
serve as a high-value framework into which
application-specific functionality (business logic)
can be plugged.

A number of physical manifestations of this
architecture are provided “out of the box”.
However, it is also intended to be equally well
suited for hosting, as a logical layer, on top of other
enterprise-strength application server platforms
or middleware (e.g. COM, CORBA, E]B).

In summary, Athens is intended:

e To provide most of the content-related
functions associated with e-Business solutions

e To be a Solution Kit

¢ To provide a framework for other application
areas & solution kits

¢ To integrate well with other solution kits.

Highlights

For many regular publishing sites, as might
previously have been accommodated by ICL's
WebUpdate or Monterey, Athens is expected to
provide a complete “out-of-the-box” solution.
Facilities are provided for all the main functional
areas associated with content storage,
management, and publishing. There is usually,
of course, an element of bespoke work needed to
design a site’s unique look & feel.

The individually supplied components have been
designed to be as versatile as possible.

Central to the system is Content Storage. At the
logical level, this provides a rich set of features
for modelling most content needs, whether file-
oriented, database-oriented, or “object plus
metadata”. At the physical level, several storage
media are provided to match all likely
requirements for cost, scalability, and flexibility.

Likewise, the management interface is intended
to be user-friendly by offering a familiar
“explorer” type of image, through a browser.
Also, the template-based publishing system is
intended to span both simple text-insertion
capabilities suitable for hands-on use by
customers, to sophisticated page construction
and automation of administration tasks.

ICL Systems Journal Spring 2000

HTML i

XML import/
WebDAV export
feeds

content
explorer

WebDAV &
DAV-AP|

content stores
(RDBMS, filesystem,
memory, legacy, etc.)

publish HTML

(DAV-Script XML
templates) ASC”
binary

Figure 6: Athens Functional Architecture

But, despite such coverage, it is recognised that
many solutions will have special requirements
and/or need integration with other components.
Athens is well supplied with APIs and protocols,
including the industry-standard WebDAV, which
enables Athens clients & servers to be
supplemented or substituted as required.
Custom content stores are a common technique
for integrating legacy or external data.

Throughout, performance and scaling of
solutions have been key considerations.

In summary, Athens offers:

e A complete Content Management and
Publishing Solution

¢ Flexible Content Storage Features
e User-friendly Administration Interfaces

e Powerful Page Construction & Publishing
Tools

¢ Wide Applicability through Rich Integration
features

* High Performance and Scalability.

Athens Architecture

Using the simple model introduced earlier, Athens
has the basic structure shown in Figure 6.

Taking the subsystems in turn:

ICL Systems Journal Spring 2000

1. For content storage we provide various
physical media, including filesystems,
databases, memory, XML and the ability to
incorporate legacy or external data. These
may be used in any combination

2. For import/export we have various facilities,
both batch (e.g., XML-based bulk transfer),
and interactive (e.g., browser file upload).
Automation is provided by a built-in
scripting language called DAV-Script (more
commonly associated with template-based
publishing, as below). Access to both local
content storage and remote content sources
is provided

3. For a management user interface we provide
a browser-based “explorer” style of screen,
with folding-tree views, cut-and-paste and
similarly familiar paradigms

4. For publishing we provide powerful
template-based page construction facilities,
here using DAV-Script as the template
language.

Finally, these subsystems need to communicate.
The interface is modelled on the open industry-
standard WebDAV protocol. This allows clients
to modify content servers over the Internet or an
Extranet and, therefore, lets third-party
components be incorporated into an Athens-
based solution. For efficient interaction within a
single server, a Java API (“DAV-API”) version is
also provided.

13

WebDAV
WebDAV is important to Athens on three counts.

1. The WebDAV document storage model
inspired that used by Athens for
representing content and metadata at the
logical level.

2. WebDAV’s primitives inspired the basic
operations offered by Athens for access to its
content stores.

3. WebDAV is an important way of integrating
third-party content stores and tools into an
Athens solution.

WebDAV stands for “Web-based Distributed
Authoring & Versioning”. Itis intended to allow
open interworking between Web authoring/
management tools and Web content stores, and
is pitched at a high enough level to allow many
possible implementations of each.

A typical proprietary protocol intended to be
replaced by WebDAV would be the “Front Page
Server Extensions” by which the MS Front Page
and Visual Interdev authoring and development
tools can update a Web server. Microsoft have
endorsed such a replacement by including
support for WebDAV in IE5 which allows the
contents of Web folders to be manipulated. Client
support is also expected to be included in Front
Page, Visual Interdev and MS Office. IIS5 and
Windows 2000 intend to offer WebDAV server
support mapped directly on to Windows 2000
filesystem features.

WebDAV defines an abstract model of a content
store, leaving it to server implementations to map
this model on to physical storage as appropriate.
WebDAV then defines some basic operations on
this model. These operations are invoked
physically by an extension of the HTTP protocol,
with packets encoded in XML.

According to the WebDAV model, any content
store consists of a set of discrete resources
arranged in a tree structure. Resources are
addressed by hierarchic names (specifically
URLs) and are otherwise opaque to the protocol.
This means they can represent any items of
content, including binary images and multimedia
as well as HTML and XML pages.

14

Objects can, however, be accompanied by
metadata which is visible to the protocol. This
takes the form of a set of named properties and
can be used to hold authorship, subject,
versioning, approval status and other such
information needed for management and
targeting — the specific set relevant to a
particular object is indicated by (URL) reference
to a schema, though the latter is not included
explicitly in the protocol. Properties can also be
applied to interior nodes (“folders”) as well as
to leaf nodes (“files”). Note that binary objects
such as images are expected to support
metadata, as well as more easily “taggable”
formats like XML and HTML. Abstract
hyperlinks can also be defined between arbitrary
objects and are, likewise, held externally to the
objects themselves (at least logically), thereby
easing their management.

Against this model a set of new HTTP methods
are defined. Each can operate on a single object
or on an entire subtree rooted on an object, down
to a selectable depth. Such operations on multiple
objects are atomic. Methods include:

e PROPFIND: used to return selected or all
properties from an object or set of objects, and
(implicitly) to list descendent objects

¢ PROPPATCH: used to perform atomic update
and deletion of one or more properties of one
or more objects

¢ LOCK: used to protect objects from colliding
updates in a multi-authoring environment

e DELETE: used for atomic removal of one or
more objects

¢ MKCOL: used to create new folders

e COPY: used for atomic replication of sets of
objects

* MOVE: corresponding to atomic replication
and deletion of objects.

In addition the usual HTTP methods — GET,
PUT, POST — are used to read or write actual
object contents.

WebDAV itself lacks any facility for searching
content stores, whether by properties

ICL Systems Journal Spring 2000

(metadata) or by body text. These are the
subjects of a sister proposal known as DASL
(DAV Search and Location), though this is
currently much more fluid than WebDAV. In
this, and other such areas, Athens has extended
the basic WebDAV model, but with the overall
intention of adopting relevant standards when
they become firm.

Athens Content Storage

As with any content management system,
Content Storage is at the heart of Athens, so this
subsystem will be examined in detail from two
different perspectives.

1. The logical perspective, offering the ability to
model a wide rage of content and application
structures, whether documents, tables, or
more general objects.

2. The physical perspective, offering a wide range
of storage media to match any required
performance, price, scaling, and data-
integration needs.

Logical Content Model

The logical content model of Athens is based on
that of WebDAYV and is illustrated in Figure 7.

Thus, content is arranged in a tree structure of
collections and resources. These suggest the folders
and documents familiar from filesystems, and
provide the same grouping and hierarchic
addressing facilities.

However, WebDAV objects have a richer internal
structure than simple files, so they may represent
more complex Web documents and may include
metadata. This is achieved by allowing all objects
to be equipped with one or more sets of named
properties.

Operations on content may be applied to groups
of objects, rather than to just a single object.

In addition there are optional features concerned
with resource locking, intended to help organize
the safe multi-user update of content stores.
These will be implemented in a future Athens
release. Athens also includes some additional
features not currently included in WebDAYV, such
as versioning and querying.

ICL Systems Journal Spring 2000

The basic hierarchic structure of the content store
provides a familiar paradigm, reflecting
conventional filesystems and Webserver stores.
This is exploited by the “Explorer”-style folding-
tree view presented by the Athens User Interface.
It provides a convenient basis for addressing and
mapping on to URL structures.

The hierarchy can be used to model various real-
world relationships, grouping content, for
example, according to ownership by individual
administrators, or by Website, publication, or

page.

Each resource has its own internal structure,
consisting of the content body itself (analogous
to a file content) and an arbitrary number of
properties. A resource can therefore model the
following.

1. A simple file, where all the content is in the
body, and is treated as just an unstructured
row of bytes or text characters. There may be
some fixed properties, such as content length
and modification date, corresponding to those
of an ordinary file.

2. A document together with its metadata; i.e.,
information about the document such as its
author, approval status, subject matter,
default publishing template and so on.

3. A Fielded Database Record, where all the data
is held in the properties, here having the role
of database fields.

4. Combinations of the above, e.g., a fielded
database record with associated metadata.

Properties have names and types. The particular
set can vary from object to object, and may be
defined ad hoc or may be dictated by the object’s
class. The latter is part of the content schema
described later under user interface.

Properties may be further organized into property
sheets, so that name clashes between standard
properties and those assigned by different groups
of individuals are avoided. They correspond
directly to WebDAV’s XML namespaces.

Any content field, whether body content or

property, may be text (e.g. HTML, or XML), or
binary (e.g. images).

15

/sport/news

/sport/news/
football

Properties

Figure 7: Athens Logical Content Model

Logical Content Primitives
Operations on items in the logical content model
above are also inspired by those of WebDAV.

WebDAV commands are expressed in terms of
operations on resources and their components;
i.e., body content and properties. HTTP itself
provides methods for reading and writing body
content. The WebDAV protocol extends HTTP
to include methods for reading and writing
properties, creating collections (similar to file
folders), copying and pasting branches of the
hierarchy, etc..

There are also some optional methods, such as
those for locking resources over extended periods
(e.g., while a document is being revised).

WebDAV command bodies are expressed in
XML. For efficiency, Athens uses a Java API
(DAV-API) for content access within a single Java
Virtual Machine, with object hierarchies replacing
XML structures, but the overall command and
data semantics remain essentially those of
WebDAV.

Commands may be targeted at individual
resources (objects), or else at subtrees of resources

16

— for example, it is possible to read a set of
properties from a single resource, from a resource
and its immediate children, or from the entire
subtree rooted on the resource. This improves
efficiency by reducing the number of messages.
It may also provide powerful macro updates in
the user interface (not available in Release 1.0).

Future standardization is expected to cover
queries based on attributes (“DASL”) and remote
invocation of executables (e.g. XML RPC). In the
shorter term, Athens includes its own support for
these topics (Resource Filtering and DAVlets
respectively).

Physical Content Storage

Turning now to the physical implementation of
the logical content model described above, we
recognise that no single conventional mechanism
is likely to satisfy every need. Therefore Athens
supports a variety of storage media.

1. Firstis the native Athens storage mechanism
intended to satisfy most requirements - the
“Virtual File System”, or VFS. This is a faithful
implementation of the DAV model,
implemented in a RDBMS (Oracle or MS SQL
Server).

ICL Systems Journal Spring 2000

Internet import/export

WebDAV
server

restore !

virtual
filesystems
(VFS)
memory Pt]
A filestore
save and

—

SQL server Dl A
or Oracle -
filestore
directory
< Y

other sponsors
(legacy etc.)

DAV-lets
(executable
content)

WebDAV
sponsor

\

Internet

WebUpdate,
Monterey V3,
ISSK catalogue

Figure 8: Athens Physical Content Storage

2. Then there are transient, memory-based
stores, with optional backup in persistent
XML files. These are often used for holding
configuration parameters.

3. Mappings exist onto real filestore, though
with limited features (e.g., a fixed property
set). Future versions will allow arbitrary
properties to be assigned, as with the VFS.

4. Asponsor allows any remote WebDAV server
to be treated as if it were a local content store.

5. Amechanism is provided for allowing content
to be generated dynamically and transparently
by Java routines (DAVlets), as one way of
incorporating bespoke functions or business
logic.

6. Sponsors may be produced for any form of
medium, or for any external or legacy data,
which can be moulded into the WebDAV
structure.

Any or all of these mechanisms may be used in
any solution. The DAV-API interface includes a

ICL Systems Journal Spring 2000

“content broker” which determines from a
content address which physical storage
mechanism holds a particular piece of content.

Finally, a WebDAV server gateway allows access
to the entire physical storage aggregate by any
remote WebDAV client with suitable
permission.

The physical content store structure is illustrated
in Figure 8.

Address Structure

There is a simple mapping of the physical storage
systems described above into the single, logical
address space defined by the DAV interface. This
is similar to mounting UNIX distributed file
systems. Here, however, all mountpoints must
exist immediately below the root of the entire
content tree, as shown in Figure 9.

Content stores of different types may be used
together and multiple instances of each type may
be included. Logical names may be used, rather
than the names of the physical storage
mechanisms, so DAV clients can be isolated from

17

/config /tmp /sample store /users
(memory (memory (memory (any)
+ XML) + XML) + XML)

/oracleVFS

/sqlVFS
(vfs) (vfs)

/davlets
(davlets)

/ffileSystem
(filesystem)

Figure 9: Athens Address Structure

from the knowledge of specific content locations
— in particular, content can be moved between
stores of possibly different types, and the stores
renamed to present the same view to applications.

Content stores and their mountpoints are
configured using the content store itself,
modelling each store as a resource, with
properties defining the mountpoint locations, the
Java classes used to implement the stores,
implementation-specific parameters such as
physical directories or database logins, and so on.

The “root” of the logical content store is
conventionally mapped onto a memory store
which is loaded automatically from an XML file
at start-up. This serves as a configuration file
(e.g., for the content stores, as above), but allows
configuration changes to be applied using the
standard Athens content management tools.

The Athens Virtual Filesystem (VFS)

Although Athens may use a variety of physical
content stores for different purposes, as seen
above, one is selected as being “a good all
rounder” for general use. This is hosted in a
relational database (MS SQL Server or Oracle),
but implements the full WebDAV file hierarchy,
soitis known as the “Virtual File System” or VFS.

The VFS has the following useful features:

* [t provides persistent content storage

¢ [Itis fully WebDAV compliant (e.g., it supports
both text and binary, and may hold an

arbitrary set of properties for each item of
content)

18

¢ It combines the best features of file systems
and databases; i.e., the familiar hierarchic
“folder” structure of a file system with the
record structure of a database (useful for both
fielded content and metadata)

¢ [t is hosted on a variety of RDBMSs —
currently SQL Server and Oracle

* Itbenefits from RDBMS scalability, resilience,
and administration features

e [t has fast, indexed data access

¢ It has built-in RDBMS schemata — no need
for complex database design or associated
skills

* Advanced Features include Temporal
Versioning and full Unicode support.

Active Shortcuts

In addition to the basic WebDAV-derived
hierarchic and tabular structures which may be
applied to content, Athens provides some extra
features designed to help model real-world
relationships. The first of these is known as an
active shortcut, which combines the features of a
filesystem shortcut or symbolic link, with a
database view.

A shortcut is an item of content whose body
contains the address of another item of content.
When the shortcut is referenced, the target object
is returned automatically and transparently. This
means that the same item of content may appear
in many locations in the content store, via
shortcuts, without needing a separate copy.

ICL Systems Journal Spring 2000

‘ target

(folder or
ordinary
resource)

shortcut

Figure 10: Shortcuts

Moreover, if the target item is modified, then the
changes are immediately reflected in all the
references (shortcuts). So, for example, if the target
item is a URL to an external site, and that site
moves, then only one item needs to be updated
instead of searching the entire site looking for
references.

Athens shortcuts, however, can do rather more
than this. Being objects in their own right, they
may have properties. In the case of shortcuts,
these may override the properties of the target
object. In particular, if the target is a folder with
a filter property, then the shortcut may use an
alternative filter. Thus, it is possible to define a

shortcut to a folder which references only items
within the folder satisfying certain conditions,
say, only those news items about football.
Alternatively, the shortcut may override the
template property so that the object looks
different when viewed through the shortcut.

Use of shortcuts is discussed further, under
“Publishing”. The basic concept is illustrated in
Figure 10.

Modelling Content Relationships

Frequently we wish to represent, not just content,
but relationships between content. For example,
these may be needed to model:

¢ The ownership of content by the same author
or administrator

¢ The presence within the same Web site, Web
page, or index

* Hyperlinks between pages.

Athens provides a number of ways of representing
relationships between items of content. These are
illustrated in Figure 11, where three types of
relationship are shown.

(1) First, there is the ownership relationship,
which usually represents containment of

address
pointers \

ownership
relation

properties

common property value

Figure 11: Relationships between items of content

ICL Systems Journal Spring 2000

19

some kind, e.g., pages within publications
within sites, or documents within folders
owned by individual administrators.

(2) Cross-linking between resources may be
achieved by storing the address of the target
within either the body content or a property
of the source. Shortcuts are a special case.
Links may also refer to external resources via
URLs. Such links (internal or external) allow
an address or URL to be captured in one place,
so that it can be changed easily — all other
objects and templates refer to the target
indirectly via the link object. Note, however,
that there is no automatic protection against
the address or URL becoming invalid.

(3) True relational “joins” may be achieved by
storing the same values in the corresponding
properties of related objects — for example,
documents may be related by having the same
subject or author property. Unlike explicit
links (2 above), such relationships have the
advantage of adjusting automatically as
objects come and go.

In some cases it may be appropriate to devote an
entire object to a relationship, its content listing
the related objects and its properties describing
the relationship.

Athens Administration Interface

This section outlines the native user interface
provided by Athens for content administrators.
It allows content to be browsed, copied, moved,
tagged and similarly managed. It also provides
a launchpad for other management functions,
both standard — like import/export and
publishing — and bespoke.

Note that the User Interface may be augmented
or substituted by other interfaces, whether third-
party (through WebDAV) or bespoke (through
DAV-API applications or DAV-Script templates).

User Interface Features

In summary, the main features of the
administration user interface provided with Athens
are:

* Web-based. Supports Version 4 browsers (can
also exploit IE5 facilities)

20

¢ Windows Explorer look and feel: familiar
folding-tree view of Global Content Store,
with Select/Cut/Copy/Paste/Delete and
similar operations

* Form and menu-based dialogues: controlled
by a flexible “Object Schema”

¢ Content Entry Facilities: by direct forms-
based data-entry, or by browser file-upload
of documents produced by MS Office,
FrontPage etc.

* One-click operations: e.g., publishing and
XML import/export

¢ User-dependent views: of Content Tree and
User Interface forms

* Highly configurable: can customise toolbars,
framesets, templates etc., through content
store User Interface model

e Alternative WebDAV clients.
These features will be explored in the following
subsection.

Screen Shots

The Native User Interface has a “Windows
Explorer” look and feel, which well suits the tree
organization of the content store. It is Web-based,
needing just a V4 browser (although V5 features
may be used if available). An annotated screen-
shot is shown in Figure 12.

The left panel is a familiar folding tree view. It
shows the content down to the folder (collection)
level, but not individual resources, since this
would produce excessive output. Folders may
be expanded by clicking on the “+”, or selected
by clicking on their icons.

The right panel shows details of the folder
selected in the tree view — in this case its contents
list. Member resources may be selected by
clicking on their icons.

New items may be added to the selected folder
via the contents list.

Other details sheets may be selected via “tabs”.
These include one or more “properties sheets”
and a “content sheet”, used to view or update
properties and content respectively.

ICL Systems Journal Spring 2000

3 DCM Administration - Microsoft Internet Explorer

| Fle Edt View Go Favortes Hep

= a0 1 A =9
Back Fonward Folder prme Search Favortes History

/ . El
‘ Toolbar %

| Address [£] ritp./n17219.98

Listings

(cut, paste etc.) |

TR IR

5990327
5990413
S990525

DD

ulsfolder2
3 pa N

1
i

Sainsbury - Earth Centre - 2
Byers - German British Chamber
Byers - TUC - 24/5/99

List Public properties System properties Content
] =
& | Title | Type | Modified 7
8 90323 Byers - PIRC - 23/3/99 Ministerial Speech Mon Dec 20 09:12:22 GMT 1999

Ministerial Speech Mon Dec 20 09:12:22 GMT 1999
Ministerial Speech Mon Dec 20 09:12:22 GMT 1999
Ministerial Speech Mon Dec 20 09:12:22 GMT 1999

& (] samplestore 5] S990604 Byers - Chamber of Commerce, Ministerial Speech Mon Dec 20 09:12:22 GMT 1999
20 !d’ti Za [0 s990614 Byers - Tokyo - 14/6/99 Property Ministerial Speech Mon Dec 20 09:12:23 GMT 1999
~ ,: -., @ | Create new item Sheet Tabs |Address =~ CI'B&EJ
#-{7] sample %
2] templates
1 admin
3 dti
3 tmp
Add Item
to folder
Gilobal
Content Tree
2l | 2
[ET6em(s] ‘ [11 I35 Localintianet zone
A Stant| 2inbox - Microsolt Dutiook__| (=] Microsolt PowerPoint - Mo. |[& JDCM Administration - CEET e =RE

Figure 12: Annotated Screen-shot — top level

The toolbar allows miscellaneous operations to
be performed on the selected object. Standard
operations include “cut”, “copy”, “paste”,
“preview”, “select all”, “import/export” etc.. In
addition, custom buttons may be included,
causing templates or Java routines to be executed.
The toolbar is fully configurable, including its

contents, icons and order.

Clicking on a resource name opens that resource;
i.e., it displays the resource’s own contents list (if
it is a collection), or one of its properties sheets
(otherwise). A sample property-sheet screenshot
is shown in Figure 13.

Here the resource is not a collection, so its
properties are displayed.

There may be other property sheets represented
by further tabs. Each corresponds to a proplist in
the DAV-API, or to an XML Namespace in the
WebDAV protocol. Property sheets allow
properties to be grouped according to purpose,

ICL Systems Journal Spring 2000

or according to who defined them. They avoid
name clashes. In the case shown, there is just one
property sheet.

Note that the toolbar has been revised according
to the different operations available.

Another tab enables the content sheet to be
displayed, of which a sample is shown in
Figure 14.

The “content sheet” shows the resource’s content
and allows it to be updated.

If content is in text format, such as HTML or
ASCII, then it is shown directly in a text box, and
may be edited (subject to access permission). If
it is binary (e.g., an image or a word document)
then an option to view it through a suitable
viewer application is presented.

Alternatively, the content may be prepared in the
browser PC, using a suitable application like

21

Administration - M

View Go Favortes Hep

S ol sy YN Ty
kA

Refresh Home t Search Favorite:

1 ® A 8 &

Mail Fonts Print Edit

,,,,,,,, - |J ke
@!i,?ngsnfg B /samplestore/dti/speeches/S e
(7] contentstores
® (20 mimetypes
S schema
@ ui Public properties | Conta
(0] davlets - -
(7] filesystem ISpeech title: [Speech by The Rt Hon. Stephen Byers MP, Secretary of State for Trade
(7] oraclevfs I e T
2 (7] samplestore i i foyers
20 i Précis: -
ﬂ ministers j
g
(7] sample
= (7] templates 7
=3 admin H=
Ot | Speech code: |Byers - TUC- 24/5/33
3 tmp o o rew T
 Template location: [/samplestoreftemplates/dti/speech
e e e e
Name: | Type: IStnng 'I
0K| Cancel I

A Start| 2jinbox - Microsalt Outlook.__| | =] Microsolt PowerPoint - Mo |[2]DCM Administration -

Figure 13: Property Sheet Screen-shot

Front Page or Word, and uploaded by typing in
the filename or pressing the browse button.

Resource Schema

The user interface derives much benefit from
inclusion of a Resource Schema.

Although any resource can, in principle, have any
set of properties, and all resources might be
different in this respect, it is usually best to define
a relatively small number of basic object
“shapes”, or classes.

Then, when creating a new object, it is only
necessary to state what class it is and what
properties it takes are immediately known. By
describing such classes to Athens in advance, it
will automatically generate HTML forms with
appropriate fields, names, default values, drop-
down menus, help text etc.. This is a major
usability benefit and helps to ensure consistency
between resources of the same type.

22

Similarly, in principle a collection may own any
type of resource but, in practice, it is often
beneficial to restrict them to certain classes. Thus,
when creating new members, Athens will
automatically present a drop-down menu of the
relevant classes.

The set of classes, collectively known as the
schema, is represented in the content store and
can be configured using the user interface itself.
Alternatively, through the import/export
mechanism, classes may be manipulated or
exchanged using an XML representation. A basic
set of classes is provided “out-of-the-box”, and
these may be refined by the object-oriented
“multiple inheritance” feature.

Being implemented above the content stores
themselves, classes can be used anywhere and
altered at will. There is no need to do any custom
relational database schema design. In summary,
the schema:

ICL Systems Journal Spring 2000

3 DCM Administration - Microsoft Internet Explorer

| Be Edt Vew Go Fovoiles Heb [@]
[L | - A = {
& > g | D 4 3 $E B A § |
. Back tormerd Stop Refresh Home | Search Favoites History Channels Fullscreen Mail Fonts Print Edit gt
¥ = 1
| Address /1172.19.98.194/u/ ¥ || Links
(e o et R — NI} 1
& Home B/ —— = prepared
it fsamplestore/dti/speeches/S990525
5 (3 config s PEStore Ol P / content from
&) contentstores = F e
. SR browser PC
- 3% schema
(33 ui Public properties Content l
#-(7) davlets
(7] filesystem] Browse... s
(7] oraclevfs
&(71 samplestore . .
:) \:J";Jti <p>'I want to talk to you today about - View or edit
inisters the challenge of change and the clear role that partnership H
7*1 - o in the workplace can play in managing the changes that will Content dlreCtly
& :_j san'pb Ibe necessary if we are to have a successful, knowledge
8 {’\-; templates driven economy in the 21st Century.</p><p>You heard from the Prime Minister this
fu dti morning. </p><p>Like him, I want to confirm our pleasure at
Ga trnp; the very fact that today’s event is taking place at

all.</p><p>The New Unionism Agenda, and in particular its
focus on developing and deepening the partnership approach,
is something that I fully support.</p><p>I want to echo the
Prime Minister’s clear view that modernisation and reform
are vital.</p><p>Much has been achieved already, but the
process of modernisation and reform is one that must
continue into the future.</p><p>We need to be clear that
the status guo is not an option. </p><p>We are living in a

growth of

world of continuous and increasing change and have to
respond accordingly.</p><p>Technological advance,
globalisation, increasing levels of competition and the

|

ok | cancel |

€] !

[T 85 Localntianet zone

R Start| 2jinbos - Miciosoht Oullook._| =] Microsolt PowerPoint - Mo_ || 2 1DCM Administration -

Figure 14: Content Sheet Screen-shot

* Defines the Properties of Objects — names,
types, permitted values, defaults

¢ Furnishes forms and drop-down menus used
by the user interface

¢ Controls object placement in the Content Tree
— i.e.,, what classes of object can go where

¢ Isrepresented in the Content Tree itself — so
it can be configured via the Admin. User
Interface, and can import/export in XML
format, etc.

¢ Supports multiple class-inheritance

* Operates above and across all Content Stores.
The schema is made up of classes, each class
describing one shape of resource. The outline
structure of a class in the content store, and its

relation to the objects it describes, is illustrated
in Figure 15.

ICL Systems Journal Spring 2000

9 a5RA 170

Referring to the diagram, the case of a collection
resource (folder) used to hold news items about
sport will be considered.

(1) Like all resources, the folder has a set of
properties.

(2) One special property declares the class of the
resource — in this case it is a newsfolder. The
class is actually a reference to another resource
in part of the content store used to hold the
schema. This second resource describes the
attributes of newsfolders via its own
properties and children.

(3) First its properties are examined. These can
be used to define attribute values shared by
all members of the class.

(4) For example, one property might define what
types of child resources a newsfolder may
have. Here we allow news items, weather
reports, and other newsfolders for
substructuring.

23

class

newsindex

blue

templa

bacol

Properties

newsitem,
weather,
newsfolder

children

Properties
A type list
kX values red
B ‘ green
blue
default red

Figure 15: Outline Structure of Example Schema

(5) In most cases, however, members of the same
class may want to have the same property
definitions, but different values. To do this,
each property is represented by a whole
resource owned by the class — here we show
a template, used to display the list of news
items, and a background colour for use in the
template.

(6) The reason a whole object is used is so that
the attributes of each property can be
described, by the properties of the child object.
Thus, here we see that the background colour
property for newsfolders may be red, blue or
green, with red as the default. Actual values
are, of course, stored with the object instances.

Managing Administrators

Athens recognizes that a single content
management and production system may need
to be accessed by many individual
administrators, with different skills, preferences
and privileges. These need to be recorded and
acted upon.

Many solutions will require specific membership

databases to be integrated as part of their business
application, for example, a directory of shoppers,

24

subscribers or registered visitors. Here it may be
appropriate to record administrators in the same
way. However, for completeness, Athens comes
with a simple membership database “out of the
box”. Either way, members are mapped into the
single virtual content store and can be used
identically to content.

Typical properties associated with (admin.) users
relate to authentication, access control, and
preferences. Authentication takes the form of a
password, optionally one-way-encrypted.

Access control operates via a “capability list” —
in this case a list of content store subtrees which
can be accessed, together with the privileges
enjoyed on those subtrees. The mechanism
avoids needing to store access controls in content
stores themselves (some may have a fixed,
predefined structure). Privileges are fine-grained,
relating to (e.g.) read, write, create, delete,
execute, view operations and separately to
properties and content. “View” privilege controls
whether content branches actually appear in the
Content Explorer User Interface. Custom
privileges may also be defined. DAV-API and
DAV-Script templating each provide methods for
checking current user privileges.

ICL Systems Journal Spring 2000

In summary:

¢ Administrator database is held in virtual
Content Store — therefore “content classes”
can implement “user roles”

* Access-control via “capability lists” attached
to users, containing accessible subtrees and
corresponding privileges — therefore works
on all content stores without modification

e Fine-grained privilege — Read/Write/
Execute/Create/Delete etc., plus user-
definable, applying separately to body
content and properties

¢ Access checking via Java API or DAV-Script

¢ “Visibility” privilege influences Admin. User
Interface — Content Trees are user-specific

* At Phase 1, all users controlled by a single
“Super User” (only this SuperUser has access
to the Admin. Database).

Custom Administration Screens

Like many content management systems, Athens
includes a powerful template language (DAV-
Script) as part of its publishing facilities.
However, for a suitably privileged user, DAV-
Script may modify the content store as well as
reading it. Combining this with HTML forms
facilities and access to URL parameters makes it
possible to implement bespoke administration
interfaces in much the same way as end-user
Websites.

Such bespoke pages may form freestanding sites,
say for different classes of administrator, and /or
they may be invoked from the standard Content
Explorer interface, e.g., via custom toolbar
buttons.

Batch administration

The ability to script administration via DAV-
Script lends itself to the possibility of automating
administration functions, as in the manner of
UNIX Shell scripts. This may be achieved with
the present version as a custom feature.
However, in a subsequent release of Athens, a
Batch Processor application is anticipated, which
will execute DAV-Script sequences according to
a time schedule, configured through the Content
Store.

ICL Systems Journal Spring 2000

Content Import and Export

We have already seen two ways of getting raw
content into the Content Store —direct data entry
through HTML forms, and file-upload from the
Web browser PC. Both these are implemented
by the Administration User Interface. Likewise,
corresponding view and download facilities exist
to get raw content back out (for export or
modification).

However, sometimes it is necessary to exchange
raw content in bulk, and/or with external
systems, and /or with some degree of automation.
Various import/export facilities are therefore
provided.

XML Import/Export

First, an XML-encoded bulk transfer format is
defined, with associated Java utility routines.
Any subtree may be exported to a file and later
imported, maybe into a different system and with
a different root node position in the content store.
Nested nodes correspond to nested elements
within the XML. Properties also correspond to
elements, rather than XML attributes, to avoid
limitations on their contents which would
otherwise occur. Standard tools, such as XSL or
the DOM, may be used to convert to or from other
XML dialects or external formats (CSVs etc.).

Text content is protected by XML “CDATA”
directives, with a mechanism to protect real
CDATAs within the content. Binary content is
encoded using Base64 or QuotedPrintable as
appropriate.

The import/export routines may be executed
directly from the Administration User Interface.
This may initiate export to a browser window or
import from a browser-based file.

Dynamic Access to External Websites

For more dynamic import/export of raw content,
without making a physical copy, it is possible to
map external sites directly into the local Virtual
Content Store address space. Logically, these can
be treated as any other (local) content. Physically
they are accessed via WebDAV or HTTP over an
Intranet or the Internet.

Publishing Raw Content

Publishing, as described in the next section, is
usually associated with generating and

25

delivering documents for end-users. However,
the template-based production process may also
be used to generate arbitrary text files, including
Character Separated Values (C5Vs), and XML
tiles conforming to external formats.

Automation of Import/Export

Both XML import/export and WebDAV /HTTP
access are available through the DAV-Script
template language (see later under Publishing).
Import/export operations can, therefore, be
automated.

Application Programming Interfaces

For more specialized requirements the Java-based
DAV-API interface to content stores can be used
directly by bespoke import/export and translation
programs (a COM version is also anticipated).

Publishing

In addition to its content storage and
management facilities, Athens includes powerful
page construction and publishing features. An
Athens system may serve as one or more Websites,
delivering “static” or “dynamic” pages directly
to end users (e.g. by Web or Email), or it may
serve as a content production engine,
constructing pages for other Websites or e-
Business applications.

Publishing includes facilities for template-based
page production, personalization, and multi-
purposing for different devices. These features
are outlined in this section.

Publishing Features Summary
¢ Powerful DAV-Script template language

e Multi-device publishing based on templates

* “Dynamic” or “Static” page publishing. Also
multi-stage generation to minimize run-time
overheads

* Versioning and Staging

* Templates held in Content Store

* Highly configurable, via Scripts or
Declarative Modelling

¢ Multi-server pipeline capability, with fan-in/
fan-out.

26

DAV-Script

DAV-Script is, primarily, a powerful template
language for publishing. In common with other
template languages, a DAV-Script template
consists of an output document (typically HTML)
with embedded commands used to insert content
from the Content Store. In DAV-Script,
commands are encoded as XML tags.

Simple requirements are intended to be simple
to achieve, making the language usable by
“HTMLers” as well as development
programmers. For example, to insert the body
of a news article, simply add the following tag:

<ds:insert content=”/sport/news/000216"/>

where /sport/news/000216 is the required
content store path. The “ds:” prefix on the tag is
used to distinguish the tag as belonging to
DavScript, and is known as an “XML
Namespace”.

Content properties can also be directly addressed,
by a suffix, as follows:

<ds:insert content=”/s8port/news/
000216:headline” />

This just inserts the headline property associated
with the news article.

There is also a more concise form of the insert
command, used to insert values into HTML
attributes.

In addition to simple content-insertion there are
a number of familiar “programming” facilities
(loops, conditions, procedures, variables etc.)
which may be used to produce very sophisticated
and adaptive Web pages — an index page may
automatically adapt to the number of documents
currently in a target folder, and may optionally
filter them according to property values. For
example:

<ds:forcontent="/sport/news?”
filter="this:subject EQ ‘football’”>

</ds: for>

This construct loops through all the articles in
folder/sport/news, selecting only those about
football.

Why invent another template language? What is
the relationship with, say, XSLT?

ICL Systems Journal Spring 2000

The answer is that DAV-Script is very closely
modelled on WebDAV constructs and operations.
So that anything that can be done with WebDAV
can be done from DAV-Script. For example, this
includes writing back to the content store where
this is appropriate, possibly setting properties on
resources down to a certain depth, as part of some
administration function. Even the “local variables”
of the WebDAV language behave like DAV
resources, and may have associated properties .

From the point of view of templating, the function
of DAV-Script tends to be aggregation and
filtering of content from different sources, local
and remote, in a uniform manner. The result may
be rendered directly into HTML, and typically
is, but it could equally well be output as XML,
for ultimate rendering via XSL. In this case, DAV-
Script and XSL are complementary. A future
version of DAV-Script is expected to include a
<ds:xsl> tag to invoke server-side XSL(T) directly
within a template.

However, DAV-Script is entirely self-sufficient
both as a template language for publishing and a
scripting language for automation.

In summary, DAV-Script:

* Supports templating of any text document
(HTML, XML, ASCII, Email etc.)

¢ Is XML-compliant (uses “ds:” namespace)

* Does simple tasks, like content insertion,
simply, but also includes powerful
programming features (loops, conditions,
variables, expressions, procedures, block-
structuring)

¢ C(Can filter objects by properties

* Is to be equipped with an Animator/
Debugger tool

e Will be equipped with a graphical template
editor

* Supports Multi-phase rendering, i.e., pre-
generate all but final personalization

¢ Is closely integrated with WebDAV, e.g. in
terms of its addressing, scoping rules, remote
access capabilities, ability to both read and
write content

ICL Systems Journal Spring 2000

e Has uniform content access mechanisms
(thanks to the DAV interface)

¢ Handles both mapped or unmapped (ad hoc)
external content stores

¢ [s extensible via custom Java DAVlets.

DAV-Script Uses

DAV-Script is primarily a content aggregation
and page construction language. However, as
already suggested, it has various other uses. In
summary, it can be used:

e As a template-based page rendering
mechanism, separating data and business
logic from look and feel

¢ To implement custom administration screens

* To integrate multiple content sources,
possibly drawing on both local and remote
documents in a single Web page

¢ Toautomate administration procedures — for
example by scripting Import/Export, or
publishing activities

¢ For simple procedural customization

* Todefine simple “methods” on content objects

¢ For defining queries and filters

To complement XSL(T).
DAVlets

DAV-Script contains a range of built-in facilities
for common operations like content access, string
processing, and encoding. In addition, custom
functions may be added as Java classes, via a
special content store. These are known as
DAVlets.

DAVlets are addressed like any other content
resources. For example, they may be used with
the standard DAV-Script <ds: insert> command.
In this case, when the command is executed, the
DAVlet is run and its output used as the content
to be inserted into the Web page. Some standard
facilities are implemented in this way, for
example, the date function, which appears to be
an item of content which somehow always has
today’s date in it.

27

htio ""am""*nld"“flim4bldlsplay asp'?ull Ivfs/templa!esladmmldlag&templale /vls/le

mplalesladml Microsoft lnlemel Explover

Control <2505 R 3 Step = “
Window |- o Rd@m Hm(Controls JH‘,:?W Charvels | Puliciesn - Wt rﬁ

/flamenc0!demo/m4b/dlsplay asp"url—/vfs/te}pﬁr? /ﬂ'WUEﬁﬁen‘olate—/vfs/lempiates/admln/dzag&obpcl /vfs/cnnlenl/speet:i'uz,-.,.7

Object]Ms/conte.rvtggeeches/SBBUﬂ 3 / / d

Template | /
Watches |

[Home | Search ||

Step... 5 Format[<ML =]
o] <] e 2

<ds-insert content="this" title="Speech Text"/>
</ font>

<hr SIZE="1"/>
</td>

</tr>

</table>

[top]

<hZ2><a name="
<i>

<ds-insert content="speakertitle

related"”> Other speeches by

"

Aitle="Speaker Name'/>

3
DAV-Script Command <@

Click to step
to this point

Speech by The Rt. Hon. Stephen Byers
State for Trade and Industry, to The Ger ha
Chamber of Commerce - 13 April 1999.€

Other speeches)

Local variables

and values

(click for help) Ll

ent="{this: parent}" name="speech”

hes Folder"=

<ds-for coy
title="Spe

='speechspeaker EQ this speaker'> template:_path =
args:_path = 'floc
Template L’_’ speaker_path =

raw._path = 'Ivfs:’content]speec/s/SQ%&l 13
this:_path = 'fvfs/content/speethes/3990413"

"fufs/content/ministers/byers'

'fvfs/templates/dti/speech’
alfargs'

|

Window b/diagout asp fomat=XMLtstep=5telated

-

|24 Local intranet zone

Figure 16: DAV-Script Template Animator

Similarly, a DAVlet can be used as the target of a
<ds:write> command. The data being written to
the resource (DAVlet) is passed to the DAVlet as
its arguments.

Such transparent access to DAVlets is not
confined to use by DAV-Script templates. HTPP/
WebDAV get and put operations can also target
DAVlets as if they were ordinary content.

For those functions which do not readily map on
to get/put or insert/write semantics, DAV-Script
provides an explicit <ds:call> command. For
example, this allows data to be both passed as
arguments and returned as content, in a single
call.

DAV-Script Animator/Debugger

In the near future, it is intended to equip DAV-
Script with a set of powerful tools. First, and
already demonstrable in prototype, will be a
template animator/debugger. This allows a
template to be executed command by command,

28

osoft Qutiook ‘ &]Byers - German British Cha...“.g]ht(p: //flamenco/dem...

[9¢ AR 1w

so that the incremental affect on the output screen
can be monitored. It is similar to the windows-
based interactive debuggers available in some
programming environments, except that it is
entirely Web-based and requires no more than a
Version 4 browser. A screenshot from the
prototype is shown above in Figure 16.

The main features of DAV-Script are summarised
below.

(1) The Control Window allows an object/
template combination to be specified, and
controls the step-wise rendering process. A
toolbar is provided to allow single step, or
“fast forward” (i.e. multiple steps, say five at
a time), and restart from the beginning. It is
also possible to jump to the end and step
backwards. Or a step number can be entered
explicitly.

(2) The Template Window shows a portion of the
template being rendered. All the DAV-Script

ICL Systems Journal Spring 2000

commands are highlighted, and the command
which is about to execute is highlighted in a
different colour (here red).

(3) Clicking on any of the DAV-Script commands
in the Template Window causes a pop-up help
window to be displayed for that command.

(4) The View Window shows the page output so
far. Rather than just truncate it at the current
generation step, the underlying HTML is
adjusted to make it well-formed; i.e., to
include end tags. This avoids most problems
which might arise from passing incomplete
HTML sequences to the browser. Through
the Control Window, an option is available to
view the rendered HTML text instead of the
resulting page image.

(5) The output view is seeded with small
hyperlinks known as “locators” (here they are
represented by little green “L” blobs). There
is one such locator for each DAV-Script
command instance in the template, and each
indicates the location within the output which
was generated by the corresponding
command instance. The locator’s tool tip
shows the command instance and the step
number. Clicking on the locator will
automatically “rewind” the rendering process
and step to the selected point. This is useful
for quickly finding the command which
generated a particular (maybe erroneous)
item of output.

(6) Finally there is a Watch Window, in which the
current values of selected local variables are
displayed. A default set of variable names
can be configured, and others can be entered
into the Control Window. This feature is
useful for debugging more complex scripts.

Dynamic Publishing

Athens can behave as a dynamic Webserver,
constructing pages and delivering them directly
to end users on demand, in response to page
requests. This enables rapidly changing content,
or the results of application functions, to be
published, and it also enables pages to be
personalized or otherwise targeted.

To achieve dynamic publishing, URLs arriving

in Web requests are interpreted directly as
addresses in the Virtual Content Store (strictly,

ICL Systems Journal Spring 2000

the first part of the URL addresses the publishing
servlet, and the remainder is the content address).
The query string, if any, is passed to the rendering
process as arguments (made to look like
temporary content items).

The selected object may be a template , or may
have a template address associated with it (as a
property). In the latter case, the template address
may be modified by the provisions for multi-
device support, or personalization (see later).
Once established, the resulting object/template
combination is passed to the DAV-Script engine
to produce the output page.

Static Publishing

Instead of publishing pages dynamically on
demand, batches of pages may be generated in
advance and stored either back in content store
or in a standard Webserver’s filestore (which
amount to the same thing if the filestore has been
mounted into the virtual content store). This is
generally much more efficient for pages whose
content is not expected to change frequently nor
to be dependent on individual end users.

Static publishing can be initiated by a button in
the Administration User Interface, or by a batch
DAV-Script, and can apply to an entire subtree.
Folders within the (raw) content store can
indicate (through their properties) what the
corresponding target file folder should be.
Typically, static publishing will be repeated
weekly, nightly or twice-daily to refresh the
content.

Phased Publishing

A hybrid approach to publishing allows pages
to be partially rendered as a static publishing
exercise, to be finished off dynamically at run
time, e.g., for personalization. This helps to
minimize the run-time cost of page production
on live Websites.

Phased publishing is supported by DAV-Script.
Each command may be marked with an attribute
indicating the publishing phase at which it
should be expanded. Thus, “body material”
may be marked as Phase 1, while “Personalized
material” may be marked as “Phase 2”. If a static
publishing process is initiated quoting “Phase
1”7, then any “Phase 2” (personalization)
commands will be skipped, and will remain in
the output.

29

Such interim output will be stored in another
part of the virtual content store, not in a
Webserver’s filestore, ready for dynamic
publishing (at Phase 2).

E-Mail Publishing

As a standard feature, rendered pages may be
despatched via E-Mail rather than through a
Webserver. Simple address lists may be
configured through the content store.

Future facilities are expected to include agent-
style mailshot processing. At present such
facilities can be implemented as bespoke features.

Multi-Device Publishing

To date, most browsers have been hosted on
orthodox computers, in particular PCs. All
support some version of HTML and HTTP, but
extensions to these protocols, often brand-
specific, have caused severe problems for page
authors. Frequently, therefore, pages are either
targeted at a “suitably low common
denominator” (say version 3 or Version 4 core
features), or are “optimized” for one particular
feature level or one particular brand of browser.

Templating provides the ability to make Web
pages adaptive to the browser type, which is
available to the template as an argument
(masquerading as content). DAV-Script’s
conditional features can be used to vary the
HTML output as required.

However, this can make templates quite complex.
Furthermore, a growing range of alternative
devices, such as mobile phones and messagers,
and Web-enabled TV, use protocols divergent
from the original HTTP /HTML pair, for example,
WAP and WML. In addition, it is not always
appropriate to include the same content in all
these instances, because of limitations in screen
size or bandwidth.

In such cases it is often more appropriate to use
separate templates, so one item of content may
be rendered in different ways. To support this
approach, Athens provides a simple mechanism
for choosing the appropriate template in any
situation. As mentioned earlier, each object may
be equipped with a property value indicating
the default template used to render it, as a
hierarchic address in the Content Store. Itis also
possible to configure, via the Content Store, a

30

modification to this address based on the current
device type, so that an alternative template may
be selected.

It works by allowing an arbitrary string within
the default template address to be substituted by
an alternative string, according to device type.
For example, suppose the default template for a
Web pageis “/sport/templates /newsindex”, but
there is a WAP-specific version in “/sport/
templates/wap/newsindex” and a digital TV
version in “/sport/templates/dtv/newsindex”.

Then, configuration entries such as:
would have the required effect.

Itis also recognized that simply using alternative
templates is not always enough—page
navigation and other procedures may need to be
different for different devices. One approach is
to use separate sites for each major class of device.
Athens provides support for this, as illustrated
below under Declarative Modelling.

Personalization

One of the most significant features of e-Business
is its potential for adapting itself dynamically to
the needs or attributes of individual customers.
For example, an on-line shop may be organized
so that the kind of goods a visitor has previously
investigated or bought are at the front of the store.

Device |Search String
wap /templates/
dtv /templates/

Substitution String
/templates/wap/
/templates/dtv/

Or an on-line magazine (Webzine) may contain
just those articles likely to be of interest to the
current visitor. In the limit, every visitor may
have his or her own unique view of the business
or its content, which would not be possible with
a high street shop or a printed magazine.

To achieve appropriate personalization of content
there are many technologies and products now
available or emerging, ranging from simple
keyword relations between users and articles,
through free-text search engines used to deduce
relationships, to sophisticated neural network
systems which can learn a user’s behaviour
patterns. The task is twofold:

e To establish an individual’s needs, interests
and “hot buttons”

ICL Systems Journal Spring 2000

e To use these attributes to select appropriate
content and behaviour.

A follow-up task may be to analyse the results
for general marketing insight.

A user’s attributes may be obtained explicitly
from some form of on-line registration process,
possibly linked to some off-line knowledge base,
such as a CRM (loyalty card) system or magazine
subscription. Alternatively, and especially for
anonymous users, they may need to be deduced
from the user’s behaviour, and /or the behaviour
of similar users.

The content-selection task may also be driven
explicitly, e.g., by an end-user choosing his or her
own organization for a portal homepage. More
commonly, however, such selection is left to the
system itself, requiring it to match user attributes
against content properties.

Athens does not attempt to duplicate the highly
specialized technology needed for world-class
personalization support, nor does it constrain its
adopters to any specific technology or product.
Rather, it seeks to provide lower level support
for such technologies. For example:

* It can store metadata, particularly subject
indications, with any item of content. This
can be used both to deduce a visitor’s interests
(from the subject fields of the content that he
or she has requested previously), and to select
suitable content for delivery

e Itprovides keyword search facilities, to locate
content based on property values

e It provides for storage of users and their
attributes, i.e., in a suitable content store, with
properties used to hold attributes, and classes
used to represent user types

e It provides for highly parametric site
behaviour, any of the parameters being
potentially subject to personalization. For
instance, personalization might be applied to
simple display attributes like background
colour and font details, through to complete
page layouts via alternative templates.

Nevertheless, it is possible to perform a quite high
degree of personalization with Athens right “out

ICL Systems Journal Spring 2000

of the box”, using the above features combined
with DAV-Script. Within any template, the
current user information is available as an item
of content, with known user-attributes
represented as content properties. Itis, therefore,
possible to match attributes to the properties of
(real) content .

For example, the following might generate a list
of news items relating to the current user’s
interests:

<ds:for name="newsitem” content=”"/sport/
news” filter="newsitem:subject IN
/user:interests”>

...<!— Generate a link to newsitem —
>ise
</ds:for>

Here it assumed that the user’s interests property
is a list of keywords which might otherwise occur
in a content item’s subject property.

Declarative Modelling — Websites

The structure of a Website published by Athens
has been shown generally to reflect that of the
underlying raw content store. This may not
always be appropriate. For example, the raw
content might need to be organized according to
physical location (if it is distributed), or
ownership. Furthermore, the content may be
required to populate multiple Websites of
different structures and with different selections
in each. Keeping multiple copies of content
would consume space and incur an
administrative and performance overhead to
keep them in step.

To solve this kind of problem active shortcuts can
be used to build alternative views on the same
set of raw content. This is an example of
declarative modelling, whereby administrative
processes (in this case publishing) are represented
by resources and properties in the content store.
The advantage of such a model is that symbolic
operations on the model automatically result in
operations in the real world. So, copying and
pasting a shortcut into one or more models causes
the referenced content items to be published in
the corresponding Websites. This is illustrated
in Figure 17.

The stages are as follows.

(1) The content store is divided into three
sections, reflected by branches or groups of

31

content store

football
model

raw
content

po-——

subject
EQ
football

~

general
news
folder i

~

subject
EQ
tennis

@ admin section @

site models

football
site

tennis
model

publish

é published sites

Figure 17: Example of Declarative Modelling — Websites

branches in the content tree. The first section
contains raw content for use in all sites.

(2) The second section contains models of the
target sites.

(3) The third section contains published sites
themselves. For static publishing, this may
be Webserver filesystems mapped into the
Content Store. For dynamic publishing, the
section will be virtual site images as seen by
site visitors, the component pages being
generated on demand.

(4) The Raw content is arranged for
administrative convenience. Here, all news
items have been grouped into a single folder
— “F” denotes items about football, “T” about
tennis, and “G” about golf.

(5) Site models contain appropriate folder
structures, templates, brand images, and
anything else which might be site-specific.
Here we have defined two sites, one about
football, the other about tennis.

(6) In most cases, however, actual content will be
replaced by shortcuts to items in the raw
content store. Here we have included
shortcuts to the news folder, with different

32

filters so that the two sites include only
appropriate articles.

(7) When publishing occurs (dynamic or static)
the shortcuts are followed to retrieve the raw
content, but the properties defined in the
models are used to apply content filtering,
template selection, and other customizations
specific to the target sites.

Note that adding a new news item to the raw
content folder will automatically add the news
item to any site to which it is relevant.

Declarative Modelling — Page Structure

In some cases, complex pages such as portals may
also benefit from declarative modelling. In this
case, instead of a page being represented by a
single object or template, it is described by a
subtree of resources, each representing some page
component such as a featured news article or site
index.

Again, shortcuts are used so that portal
components can be changed just by redirecting
the shortcut, without needing to change the page
itself, or write any new HTML.

This is illustrated in Figure 18 and works as
follows.

ICL Systems Journal Spring 2000

content store A

raw

content

articles news
folder folder

home page
portal

Ml Headlines
publish | e— E

page

N

-
-

site models

admin section
© &

Figure 18: Example of Declarative Modelling — Page Structure

(1) The content store is again divided into
sections, one for the raw content...

(2) ...and one for the target site models.

(3) Raw content is again organized for
administrative convenience. Here we have
two folders, one for editorial articles and one
for news items.

(4) Site models are defined as before, but here the
internal structure of the home page portal has
also been exposed.

(5) Each item in the portal is represented by a
shortcut to the folders and items in the raw
content section. The portal template will
usually generate indexes for folder shortcuts,
and summaries for resource shortcuts.

(6) When the site is published, the shortcuts are
followed to build the page as desired. Re-
routing any shortcut will cause the associated
section of the portal to be updated, while
adding or removing items to or from a folder
will likewise automatically alter indexes.

Temporal Versioning

It has been shown how multiple versions of the
same content, targeted at different devices or
Websites, may be held together in the same

ICL Systems Journal Spring 2000

virtual content store. This may extend to other
situations, for example different natural
languages. Such versions have the property that
they are all “valid” at once. This is called Spatial
Versioning to indicate that such versions are
separated across space rather than time.

However, Athens also allows concurrent storage
of versions separated by time. Thus, items of
content may be accompanied by newer versions
still in preparation, or older versions needed for
archive or possible regression; this is called
Temporal Versioning. Any number of versions of
any document may exist concurrently.

The (temporal) versions of a document are
distinguished by a simple numeric label (1, 2, 3
...). To simplify organization, a version number
can also be applied to an entire system. This
means that, when a particular item of content is
requested, the version which corresponds to that
of the current system version number is selected.
If that version does not exist for this item, then
the next lower version which does exist is selected.

This means that a new system version can be
created without making any new copies of any
content — the previous versions will continue to
be used in the new system version until they are
modified. When an item is modified, a new copy

38

ll version

system versions, and different sites
may choose to publish from different
system versions.

=]

(]

(=]

H

H

This sequence is illustrated in Figure 19,
where the “live” published site (P) is
assumed to be always one behind the
administration version (A).

Here the situation is as follows.

(1) The current “live” version of the site
is 4. This is what visitors see.

(2) The current “administration” version
of the site is 5. This is what
administrators see by default.

(3) Item A has not changed since it was
tirst published, so it continues to be
published at version 4.

(4) Item B has been modified at version

Figure 19: Example of Temporal Versioning

is made automatically and transparently, and
assigned the new version number, retaining the
original unmodified version with the original
version number.

Likewise, if an item is deleted then it is merely
marked as deleted at the new version number —
the contents are retained in the content store
labelled with the previous version.

Within these simple rules, versioning can be
used in a number of ways, for both long-term
strategic site redesigns or campaigns, and day-
to-day updates. A simple approach assigns two
current versions — version N for “live”
publishing (i.e. what site visitors see), and
version N+1 for administering. This means that
whatever site administrators do, their effects
are not visible on the live sites. At some
appropriate time, when the new material is
complete and behaves correctly, both the live
and administration versions are incremented,
so that the previous administration version
becomes visible to visitors, and a new
administration version is spawned. If
necessary, the live site may be regressed back
to its previous version. In addition, individual
administrators may choose to view different

34

4. The previous version remains in
case it becomes necessary to regress
the live site.

(5) Item Cis abrand new item at version 4. If we
regressed the live site to version 3 it would
seem to disappear.

(6) Item D used to exist, but was deleted in a
previous version, so it no longer appears in
the live site. It would reappear if we regressed
to version 2.

(7) In the current administration site, items A, B,
C, and D remain unchanged, item E is deleted,
and item F has been modified. These changes
do not yet affect the live site.

Integration & Customization

As a solution kit, Athens is required to form the
basis of a wide variety of customer solutions, and
to integrate with other solution kits. This section
outlines the main features provided.

External Interfaces

In order to achieve the desired degree of
interworking, Athens is equipped with a wide
range of open interfaces. The main ones are
illustrated in Figure 20.

ICL Systems Journal Spring 2000

WebDAV
clients

custom
services
& ASP

DAV-API
(Java/COM)

WebDAV

XML

content store

DAV-API

(Java)
WebDAV

Y

WebDAV
servers

custom
content
stores

(7) Content Services: Most of

the functionality embodied
in the Athens subsystems

Renderer AP| User Interface, and
gy Publishing) are exposed to
Java programmers so that
new servlets may be written
for custom applications.
Example services are
template-rendering and
schema access.

? (import/export, Admin.

templates
(DAV-Script)

Core Athens facilities are
programmed in Java, and this,
is currently the likely choice for
programmatic extensions.

Figure 20: Athens — Primary Integration Interfaces

In summary, these interfaces are as follows.

(1) WebDAV: This allows third-party authoring
and content management clients to be used
in conjunction with Athens content stores,
and/or allows third party content stores to
be mapped into a local Athens content
address space.

(2) DAV-Script: Templates and scripts written
in DAV-Script may be used to customize
operation of Athens in various ways, for
example, by providing bespoke
administration interfaces. DAV-Script may
also be used to integrate content from remote
Websites using its WebDAV and HTTP client
facilities.

(3) DAV-API: This allows custom Java applica-
tions to access Athens content stores.

(4) Bespoke content stores: DAV-API also allows
bespoke content stores to be integrated into
Athens itself.

(5) DAVlets: These allow typically small, discrete
Java routines to be added to the DAV-Script
language for bespoke purposes, for example
dynamic acquisition or preprocessing of con-
tent prior to rendering.

(6) XML Import/Export: These routines allow

bulk content to be exchanged with external
sites, in the industry-standard XML format.

ICL Systems Journal Spring 2000

However, COM wrappers are
being developed in order to
enable:

* Athens functions to be invoked from COM
environments, for example ASP pages and
Visual basic

e Athens to invoke COM-based functions as, for
example, DAVlets.

In addition, forthcoming exploitation of
middleware platforms such as EJB will enable
open access via COM+, CORBA, and JNI
interfaces.

WebDAV Integration

WebDAV offers the loosest form of coupling
between Athens and external components or
applications. It can also allow the components
of Athens to be distributed. An example of how
various clients and services (content stores) may
be integrated is shown in Figure 21.

Athens Internal Structure

For closer integration, some knowledge is needed
of the internal structure of Athens and its interfaces.

From a programming viewpoint, Athens has the
basic layered internal structure illustrated in
Figure 22. The diagram also indicates the main
places where custom code might be inserted.

Athens Java code is divided into four layers of
functionality as follows.

85

MS
office

DAV clients client:
@

DAV-API

WebDAV

Athens
content
stores

DAV servers

Windows
2000
&1IS5

Zope
content
store

Figure 21: WebDAV Clients and Servers

(1) At the top are the e-Business application
components, typically servlets responding
to Web-based requests. They may contain
business logic, and may draw on lower
level Athens services such as template
rendering and content store access. Some
application components are delivered as
part of the Athens package, and are
suitable for administration and publishing
activities, or as the basis for custom
applications (by class specialization).

(2) Next come a set of services, such as
template-rendering, for use by application
components.

(3) At the heart of Athens is

utilities

- custom modules

XML 1o6G]
import/export 09ging
4

applications the content store. This
Servlets 1
: may be customized b

or ASP admin | | publishing | | batch WebDAV y i
ul adding new stores and /or

! writing “DAVlets”.

content services
DAV-Script content multi- personal- Schema (4) Flp.ally the‘re are some
query publish isation utility routines, such as
- logging, which may be
DAV-API used by any module.

physigal content|stofes membership Davlets As will be apparent, the first
5| release (1.0) of Athens will

integrate most readily with
Java-based applications.
COM wrappers are currently
being prepared for the major
interfaces so that they may be
used, e.g., from Microsoft

Figure 22: Athens Internal Structure and Interfaces

application
site

WebDAV
content store

Athens

site

publishing

Figure 23: Arms’ length WebDAV Integration

36

Active Server Pages and
Visual Basic, and so that
DAVlets may be developed as
COM objects.

Integration Approaches

To write an application based on Athens, or to
integrate an existing application, there are four
main approaches. These are outlined in the
following subsections. Of course, they may be
combined in various ways.

WebDAV approach

The simplest approach is to integrate at the
data level only, without attempting to share
program functions. There are two basic ways
of doing this. The first uses the industry-
standard WebDAV protocol to connect an

ICL Systems Journal Spring 2000

application

application
data

business
logic

i o HTML
output

I
1 Athens
I
I
|
|
; e A
application code
i ! | administration site output
|
|
|

content
store
sponsor

Figure 24: Shared Content-Store Approach to Integration

application to a (remote) Athens content store.
This allows the application to provide the
content for an external Athens site to publish,
and allows the application to make use of the
content administered by Athens. But integration
is very much at “arms length”. It is illustrated
in Figure 23.

Shared Content-Store Approach

In some cases the application may have its own
specialized data storage needs, with more
immediate access than is offered through
WebDAV. For example, it may have a “legacy”
database. In this case it is often possible to make
this data available to Athens using a custom
Content Store sponsor — Athens itself may be
running on a different server, connected, for
example, by SQL. This means that an
application’s data can be included in a publishing
site, along with other content, without having to
call the services of Athens directly. It may also be
possible to manage aspects the application’s data
through the Athens Administration User
Interface. However, it does not exploit the full
potential of Athens, for example, the ability to
render dynamic application results for different
users and devices.

The shared-content approach is often the first
phase of integration for an existing application,

ICL Systems Journal Spring 2000

since it avoids mixed-language programming
issues. This is illustrated in Figure 24.

Content Services Approach

To take advantage of the content services of
Athens within an application itself, we have to
decide how to split content functions from the
application business logic.

The business logic may be included at the
application level, within the servlet (or, in future,
within an ASP page), and to call Athens services
as required. Content supporting the application
may be held in Athens Content Store and accessed
through DAV-AP], or else bespoke storage may
be used. Any results are written to a temporary
content store location, or passed as arguments to
the Template Renderer. The latter is called as a
final stage, to turn the results into appropriate
output text. In this case, templates are used purely
to separate business logic from look and feel. Any
of the other Athens services, for example,
publishing, may be called from the application.

The procedure is illustrated in Figure 25. Note
that, although the application is here pictured as
amonolith at the servletlevel, itis obviously good
practice to separate out business logic into
modules for reuse and possible transaction
processing.

Servlet or ASP page tors : 1
application ! ==
content ! !
________ | 1
I I
I 1
! content '
business logic store ! !
results ! s :
1 1
| -
| 1 1
| | !
render : 1
results i DAV-Script . JHTML
: template ' output
| o
application ! !
! Athens !

electronic publishing systems, or indeed by any
e-Business application with significant on-line
content.

Though novel in many respects, Athens has
effectively been evolving as long as e-Business
itself. It draws on proven techniques
developed in earlier ICL content-management
technologies used in dozens of solutions for
major companies and household brandnames.
It also benefits directly from ICL’s wealth of
experience in designing, building and

operating such solutions, which cover a wide
range of publishing, commerce and other e-
Business applications.

___________________________ :
:] application
: standard :
: p“st:':lg?g » : business
f -1 lOgiC
l : (CAVlets)
1
]
] | A
| 1
| L e
1 DAV-Script , {y
: templated
1
1
1
f
1
1
I
I
[}
I
|
1
| Athens
___________________________ 4

However in many ways the Athens story is just
beginning. In the solution kit philosophy,
added-value software components have an
important role, but of equal importance is all
the accumulated knowledge; i.e., experience,
know-how, collateral, human contacts,
reference sites, worked examples and so on —
which has been gathered during use of the
solution kit (or its predecessors) in real
customer projects. Thus, while Athens
provides a rich set of tools and building blocks
for generating a wide range of content-related
solutions, there is plenty of scope for creating
“bigger blocks” to encapsulate relevant

knowledge and expedite the solution life-cycle

Figure 26: DAVlet Approach to Integration

DAViet Approach

Alternatively, the application may be viewed
primarily as a specialized publishing system, and
business logic may be embedded in Athens itself.
Thus, a page is rendered in the normal way, but
the template now also includes elements of
bespoke business logic.

DAV-Script itself is not designed for complex
programming tasks, so any significant processing
will be packaged as DAVlets; i.e., Java (or COM)
routines callable by templates. This procedure is
illustrated in Figure 26.

Conclusions

In the above we have seen how ICL’s Content
Management Solution Kit (Athens) tackles the
many challenges posed by large and /or complex

38

to an even greater degree.

Already we are witnessing innovative
approaches to real-world applications such as
portals, document libraries, Webzines, and
discussion groups, based on Athens features.
Some even involve applications outside what
would normally be considered “e-Business”.
Over the coming months we expect to capture
these as design patterns, macros, and pre-canned
schema, as well as complete pro forma sites
capable of being configured and combined to
satisfy a range of application requirements, or at
least to provide a good foundation on which to
build.

This activity will not be limited to the core Athens
development team. We will encourage
submission of useful feedback and case studies
from Athens users, amassing an ever-growing
body of reusable knowledge not normally
available to orthodox product vendors, and made
possible because our customers are also our

ICL Systems Journal Spring 2000

colleagues, partners, and sponsors. All will be
made readily available and approachable
through a world-class Content Management and
Publishing system!

The ultimate beneficiaries will, of course, be ICL's
own customers, investors, and partners.

Biography

Paul Duxbury is currently a Technical Design
Authority within ICL’s Electronic Business
Services division, and is responsible for EBS’s
Content Management and Publishing
architecture. This has included the initial design
and prototyping of Athens, and more recently its
application as embedded technology within other
solutions kits. Paul joined ICL in 1973 after
graduating in Mathematics from Imperial
College. Working first in West Gorton, he soon
moved to Kidsgrove where he has since
remained. During this time he has been involved,
mostly as lead designer, in a wide range of
projects and technologies including operating
systems development (VME, DRX, CDOS, and
UNIX), ICL's DRS20 and DRS300 series with its
DRSNET networking, general operating systems
security, distributed systems management,
Transaction Processing, legacy systems
integration, High Availability systems, and most
recently Web technologies. He joined ICL
Multimedia Solutions (now EBS) in 1997. Paul
was appointed an ICL Distinguished Engineer in
1998 and is the holder of a number of patents.

ICL Systems Journal Spring 2000

39

Regulatory Aspects of Electronic
Commerce

Tom Cunningham

ICL, Kidsgrove, UK

Abstract

This paper is intended to provide an outline of the current state of some key aspects of legislation
relating to electronic business and to suggest some guidelines for solution developers working in
this field. It does not set out to provide an exhaustive or definitive account of the existing or emergent
regulation in the arena of electronic commerce. This is a fast-moving and, at least for the moment,
elusive area of the law which is likely to take some considerable time to stabilise, especially given
the complexities caused by the intrinsic facility of electronic commerce systems to operate across
international boundaries. The UK Electronic Communications Bill, for instance, has seen many
changes en route through its consultative stages, as well as the postponement of some issues which
remain to be addressed in future legislation. Also, the legacy of about 1,000 years of existing law
already applies in every state in which the European Directive on Distance Selling operates.
Reconciliation of the existing statutes with the evolving requirements of electronic trading into a
coherent international whole seems a challenging objective, even without considering that
electronic commerce extends across recognised boundaries so easily that it amplifies many
problems which can usually be overlooked as being of little or no substance in the real world. The
challenges posed by the “virtual world” of on-line business have not been comprehensively
addressed so far and indeed it may take some years before workable agreements and regulations
have been put into force.

It would appear more practical and useful to illustrate some respects in which Internet solutions
are likely to be affected by the regulatory aspects of electronic commerce and to offer some suggestions

as to what considerations might be applicable when providing solutions in these areas.

Introduction

The expansion of electronic commerce has been
attended by much confusion and deliberation
over regulation, which has posed many questions
to solution providers and governments which are
only now in the process of being addressed.
Clarification is likely to take some considerable
time, as L.T. is evolving too quickly and now has
too pervasive an effect on the economy and society
for definition of adequate regulatory frameworks
to be a straightforward affair. Nonetheless,
the continued growth of on-line business and
increased consumer awareness of the issues
and concerns in this area make increased
regulation inevitable.

While the finer points of legislation continue to
be discussed, one opportunist viewpoint would
suggest that, in such a large, fast-moving and
evolutionary environment as electronic commerce,

40

it might be easier and more profitable simply to
ignore the various statutes and directives and to
run the risk, perceived as slight, of being caught
and facing the consequences. Consultancy and
development services which set out to provide
guidance and best practice on regulatory aspects
of electronic business would, by this reasoning,
amount to a pointless expense. The question
might be asked as to why customers should pay
ICL, or anybody else, the cost involved in
maintaining awareness of issues and
requirements in such an intangible area when
providing a particular business solution?

The answer is that in choosing not to pay,
customers are courting considerable risk — and
professional I.T. partners are well placed to advise
on just how substantial this risk is becoming as
the regulations evolve. The likely consequences
of transgressing regulations can be severely
damaging to a business — heavy fines are a

ICL Systems Journal Spring 2000

predictable outcome, but by no means the only
potential pitfall. Businesses choosing to ignore the
regulations could be faced with a mass of civil
claims, if individuals sue in response to
malpractice. Such failure to observe the
regulations could result in contracts being
rendered unenforceable, thus undermining
business stability, while extreme breaches of the
regulations could result in a business being closed
down. Risks are not confined to the unscrupulous
trader, as a naive neglect of security considerations
can result in susceptibility to hacking attacks
which can cripple on-line operations. Along with
these risks runs the probability of exposure to the
further damage to reputation which comes with
the inevitable bad press. Even if a system appears
to be distant from the front line of regulatory
concerns, the fact remains that if the system plays
a part in helping someone to make a living, then
itis de facto mission critical and merits appropriate
attention and assurance. Customers need
protection and assurance which a competent L.T.
partner can provide in the form of awareness of
the territory, vigilance against common error and
assimilation of best practice.

Applicable Legislation

Conducting business over the Internet is a relatively
new way of operating for most companies and one
which continues to create legal precedents that
test, and sometimes fall outside, current trading
legislation. Both the UK Government and the
European Parliament and Commission are keen
to ensure that the growth of on-line business is
not hindered by the law, but at the same time they
have a responsibility (recognised as a priority) to
ensure that consumers’ rights and government
revenues are not adversely affected by use of this
medium for financial transactions. To support
this objective, a number of Acts, Directives and
Initiatives have been (or are being) produced,
some key elements of which are outlined below.

UK Data Protection Act 1998

The 1998 Data Protection Act is based upon the
1984 Act, modified in some areas in recognition
of the European Directive’s requirements as
formulated in response to the expansion of on-
line activity over recent years. The Act’s intention
is to protect the interests of individuals, which it
sets out to achieve by the introduction of strict
controls on the use of personal data. Any data

ICL Systems Journal Spring 2000

held by an organisation which can be associated
with, or used to identify, a living individual is
subject to the Act. The Act also extends the scope
of civil liability further than has previously been
recognised. Under its terms, data subjects
(or individuals) are at liberty to sue data
processors directly if they consider their rights
to have been violated.

The substance of the Act is well condensed in a
set of eight principles, presented below. Square
brackets indicate deviation from the exact text of
the Act, in the interests of clarity.

1. Personal data shall be processed fairly and
lawfully and, in particular, shall not be
processed unless the data subject has given
his consent to the processing or the processing
is necessary for the performance of a contract
to which the data subject is a party or at the
request of the data subject with a view to
entering into a contract

2. Personal data shall be obtained only for one
or more specified and lawful purposes, and
shall not be further processed in any manner
incompatible with that purpose or those
purposes.

3. Personal data shall be adequate, relevant and
not excessive in relation to the purpose
or purposes for which they are processed.

4. Personal data shall be accurate and, where
necessary, kept up to date.

5. Personal data processed for any purpose or
purposes shall not be kept for longer than is
necessary for that purpose or those purposes.

6. Personal data shall be processed in accord-

ance with the rights of data subjects under
this Act.

7. Appropriate technical and organisational
measures shall be taken against unauthorised
or unlawful processing of personal data and
against accidental loss or destruction of, or
damage to, personal data.

8. Personal data shall not be transferred to
a country or territory outside the European
Economic Area unless that co