Volume 12 Issue 2

organisation/
role model
data

desktop task organisation

work item || application
presentation|| launch

November 1997 Edition

Journal

ICL Systems Journal

Editor

Prof. V.A.]. Maller

ICL Professor

Department of Computer Studies, Loughborough University,
Loughborough, Leicestershire, LE11 3TU.

Editorial Board

V.A.J. Maller (Editor) C.J. Maller (Board Secretary)

A.J. Boswell M.R. Miller (BT Laboratories)

PJ. Cropper W. O'Riordan

D.W. Davies FRS J.V. Panter

G.E. Felton D.F. Picken

P.H. Forbes E.C.P. Portman

J. Howlett A. Rowley

N. Kawato (Fujitsu) M.J. Rigg

M.H. Kay B.C. Warboys (Univ. of Manchester)
F.F. Land P.G. Wharton

All correspondence and papers to be considered for publication should be
addressed to the Editor.

The views expressed in the papers are those of the authors and do not nec-
essarily represent ICL policy.

Published twice a year by Research and Advanced Technology, ICL,
Bracknell.

1998 subscription rates (including postage & packing):

UK and Europe Rest of World
Annual subscription £72 $120
Single issues £43 $72

© 1997 International Computers Limited, Registered Office, ICL House, 1 High Street, Putney,

London SW15 1SW. Registered in England 96056
ISSN 1364-310X

ICL Systems Journal

Volume 12 Issue 2

Contents

Workflow—A Model for Integration
David Hollingsworth

SuperVISE—System Specification and Design Methodology
S. Hodgson and M.M.K. Hashmi

Process Modelling using the World Wide Web—ProcessWise™
Communicator

Peter Davies

Mobile Applications for Ubiquitous Environments
Jean Bacon and David Halls

Middleware Support for Mobile Multimedia Applications
John Bates, David Halls and Jean Bacon

INDEPOL Client—A ‘facelift’ for mature software
‘ S.B. Southerden

Using the ECL{PS¢Interval Domain Library in CAD
TM. Yakhno, V.Z. Zilberfaine and E.S. Petrov

Conference on Teaching of Computer Science—A Personal Review
Michael H. Kay

Obituary—].M.M. Pinkerton
Previous Issues

Guidance for Authors

ICL Systems Journal November 1997

213

233

251

264

289

315

330

349

358

364

374

Front cover: Workflow System components. See the paper, “Workflow—A Model for Inte-
gration,” in this issue.

ii ICL Systems Journal November 1997

Workflow—A Model for Integration

David Hollingsworth
Skill Centre, ICL Enterprises, Windsor, UK

Abstract

This article reviews the nature of a workflow system from a systems
integration perspective, focusing on points of interaction between the
workflow control software and other system components, such as
process design tools, legacy applications and messaging infrastruc-
ture. The characteristics of the underlying business model and its
representation to the workflow system are also discussed, including
requirements for business processes to span organisational bounda-
ries. The complexity of systems integration is identified as a major
constraint on effective exploitation and indicative of the need for
standards to support more effective product usage and
interoperability. The article draws on the Author’s experience in de-
veloping workflow related standards and concludes with an assess-
ment of their potential impact, particularly on opportunities for their
use in electronic commerce.

1. Introduction

Workflow is often seen as a key integration technology, bringing together
business processes with the information to support them, and linking legacy
and desktop applications into a flexible and adaptable distributed
infrastructure. The external image of such systems can be deceptively
simple, based on the notion that once the business process is defined, its
automation merely requires the integration of a few simple tools.

According to the Workflow Management Coalition' [WMC, 1995-1997],
workflow represents, “the automation of a business process, in whole or part,
during which documents, information or tasks are passed from one participant to
another for action, according to a set of procedural rules”.

Whilst not explicitly stated in the above definition, a key motivation for
the deployment of workflow technology is that it should provide flexibility
for the business process to evolve with minimum re-engineering. This is a
concept simply captured within Openframework [Pratten and Henderson,
1993) as “potential for change”.

Workflow technology typically achieves this by enforcing separation

! The Workflow Management Coalition (WfMC) is a non-profit making consortium of ven-
dors, users, analysts and academia, with the goal of developing standards for workflow sys-

tems operation and promoting knowledge of the technology within the industry.

ICL Systems Journal November 1997 213

between:

¢ the definition of the various activities within the business process
and their data requirements

¢ the business rules governing the flow of control between activities
within the process

* the roles and responsibilities associated with the work undertaken
within the process activities

* anunderlying organisational model, which relates roles and respon-
sibilities to the actual work performers

In theory any aspect can change independently by simple amendment
of the relevant control parameters, without affecting the ongoing operation
of any other aspects of the process.

Despite this apparent utopia, the reality in many workflow systems
implementations has been much more earthly - substantial systems inte-
gration issues to be faced in bringing together the component systems ele-
ments, lack of interoperability between different systems, major cultural
and organisational issues to be resolved in the introduction of new work-
ing practices, and so on. Once operational, many systems prove less adap-
tive than expected to the future organisational or business changes.

2. Integration Requirements

Reliable statistics from within the industry are not always easy to find.
However a recent market survey undertaken by the Workflow Manage-
ment Coalition indicates that for virtually all workflow systems, integra-
tion with other industry software is vital - and a major cost component of
implementation. At the time of writing the full survey results are still being
collated but preliminary findings are as follows:

" Integration Requirement % of Respondents
World Wide Web 89%
Java Applications 75%
Legacy Applications 73%
CORBA based infrastructure 69%
Security Services 66%

Other technologies frequently mentioned included Business Process
Modelling tools, Document Management and Imaging systems.

Informal estimates have indicated a ratio between workflow software
implementation and overall project integration costs of between 1:5 (for
ad-hoc office based systems) to 1:7 or more (for highly structured produc-

214 ICL Systems Journal November 1997

tion workflow applications). Even in an industry where integration is in-
creasingly the major cost component in the introduction of new technol-
ogy, these are high figures

This informal view is supported by a recent study from Ovum Group
[Ovum Group, 1996], which shows workflow vendor revenues split be-
tween product and service currently in the ratio of 1:4.5, with a fall pro-
jected by end 2000 to 1:3. This is consistent with an increasing degree of
standardisation, de jure or de facto, and of product consolidation leading
to simpler integration.

The following sections consider two factors, the fragmented emergence
of workflow within the market and the technical complexity of product
interfaces, which have contributed to this cost.

3. The Evolution of Workflow Technology

One of the reasons for the complexity of the systems integration task is the
fragmented way in which workflow technology has developed in the mar-
ket.

3.1 Workflow—the first phase market

Software to control process operations is not anew concept. Many types of
product in the IT market have supported certain aspects of workflow func-
tionality for a number of years, although often embedded within other, re-
lated products rather than as a technology in its own right.

Image Processing

Workflow has been closely associated with image systems and many im-
age systems have some workflow capability built-in. Once paper based in-
formation has been captured electronically as image data, it is often required
to be passed between a number of different participants for different pur-
poses within the (previously paper based) process.

Document Management

Increasingly, the management of electronic documents has included facili-
ties for routing documents (in whole or part) between individuals and re-
positories, for example to facilitate shared authoring or filing services. Stand-
ardisation within the document management area has already recognised
the requirement for extensions into workflow?

Electronic Mail & Directories
Electronic mail provides facilities for distributing information to individu-

? The Open Document Management Association (ODMA) first identified an API for simple
workflow functionality in 1995. More recently the DMA (Document Management Association,
representing major vendors of document management software) has entered discussions with
the WEMC to address the integration of workflow and document management standards.

ICL Systems Journal November 1997 215

als; associated directories provide a means of recording information about
user attributes, such as organisation roles or other attributes relating to
business procedures. Through the addition of routing mechanisms to de-
fine a sequence of recipients for a mail item, electronic mail systems have
themselves been progressing towards workflow functionality.

Groupware Applications

Groupware applications are designed to support and improve interactions
between groups of individuals. Initially many of these applications sup-
ported improvements in group working via informal processes, accessing
group bulletin boards or diary/scheduling applications on an ad-hoc ba-
sis. As the scope of such applications has spread towards more formal
business processes there has been an increasing move to incorporate
workflow into work-group software’.

Project Support Software

Software to handle complex IT project developments has often provided a
form of workflow functionality within the project environment, for the
sequencing and routing of development tasks between individuals and rout-
ing information between individuals to support these tasks.

Transactional Workflow

As traditional TP applications have become more distributed in nature some
have moved to fully distribute transactional tasks to desktop environments.
In parallel workflow vendors have been adding transactional characteris-
tics to workflow systems, particularly in the area of task commitment and
recovery co-ordination. In these situations there is an increasing degree of
overlap between the two technologies.

BPR and Structured System Design Tools

Whilst workflow has been emerging as a fragmented technology, Business
Process Re-engineering tools have appeared in significant numbers. These
provide IT based support for analysing, defining and modelling the busi-
ness processes of an organisation and the potential effects of change in such
processes or organisations. The use of such products forms a natural pre-
cursor to workflow implementation.

In summary, there are now many products in the market providing
workflow capability*. Such products are often derivatives of products from
other market areas, incorporating elements of workflow technology in an
incompatible manner, making integration costly and negating the “poten-

*Examples of this include the integration of Lotus Notes product with several workflow pack-
ages and the introduction of Fujitsu/ICLis TeamWareFlow as the workflow component within
Team Office.

¢ Of the WIMC membership, there are approximately one hundred different organisations
which categorise themselves as product vendors.

216 ICL Systems Journal November 1997

tial for change” factor.

3.2 Workflow—the second phase market

The GIGA group recently presented an interesting analysis of the develop-
ment of workflow technology and concluded that the industry is entering
the second phase of automation [GIGA Group, 1997]. Most of the first phase
automation projects have been at departmental or workgroup level, with
relatively little co-ordination®. The continuing business pressures of
globalisation, contracting and electronic trading are leading organisations
to reassess their business processes at enterprise level with ever increasing
frequency.

small & growing future
mid-sized
companies second mass
wave market
I
plateauing emerging
large .
companies first next
wave wave
“rgilroads” ~ @pplication- | - general “roads”
specific purpose

Figure 1: Workflow & the shift to IT Infrastructure
(Giga Information Group, adapted from CAP Ventura)

The GIGA view is that, “second phase, messaging based enterprise-wide
workflow will be dominant in 1-2 years time”. This will see workflow posi-
tioned as general purpose middleware across the enterprise. Electronic
trading between organisations will increasingly push workflow into smaller
and medium sized organisations, leading towards ubiquity of use.

This prognosis, however, depends upon the consolidation of the indus-

® At a recent conference a large multinational organisation indicated that of the eight workflow
applications implemented to date all were incompatible in terms of interoperability and use
of common infrastructure components.

ICL Systems Journal November 1997 217

try around a cohesive set of standards to support integration and
interoperability, considered in Section 6.

4. Workflow and Software Integration

Integration complexity arises from the requirements of most workflow sys-
tems to interact with numerous other software components, ranging from
standard desktop tools such as forms, spreadsheets and word-processors,
to server applications such as document repositories and legacy applica-
tions, often based upon TP technology.

A key aspect of many workflow system is the incorporation of an or-
ganisational model, enabling workflow procedures to be defined relative
to organisational roles and responsibilities. These may be separately main-
tained, for example by means of a directory subsystem, with associated
role privileges.

Workflow systems may also require integration with process definition
and modelling tools so that a proposed system can be fully specified and
simulated prior to introduction.

Finally, as with any distributed application, integration with the under-
lying infrastructure (Electronic Mail, Object Request Broker domains, etc.)

definition tool !
workflow i
management "
service generates I i
l may process |
| reference definition may reference l
T
| interpreted by |
organisation/ I
role mode!
data maintain |workflow |
workflow __| control
T ma ; .
| refer%o engine(s) data_|linvokes application{s)
administration 1 I
& control | | Lt
[1 use manipulate
interact work ‘:’;re';f::;'
' via list data update workflow
(supervisor) | | application
| Worklist handier data
|
| [desktop task organisation} i
| work item |{application] |— »| application(s)
T
[presentation}| launch invokes :
[]

Figure 2: Workflow System components

218 ICL Systems Journal November 1997

is a further requirement.
The schematic, shown in Figure 2, gives some indication of the poten-
tial components and points of integration of a typical workflow system.
Several different systems construction paradigms exist within the in-
dustry. Common models include:

¢ Object based, using CORBA as the main distribution mechanism
* Electronic mail based with autonomous desktop environments

¢ Centralised workflow engine with tightly coupled desktop task man-
agement

* Document-centric with shared repository

The boundaries of the workflow management software are often un-
clear, for example some vendors include a directory component or inter-
faces to access legacy systems, others see this as part of the system integra-
tion task.

5. The Characteristics of the Business Process

Workflow is a process centred technology. To quote from Koulopoulos
[Koulopoulos, 1995] of the Delphi Group (a Boston based workflow con-
sulting group): “Workflow emphasises the importance of the process, which acts
as a container for the information. ... This is a process-centred model, as opposed
to an information- centred model.”

5.1 The nature of the business model

Although the majority of workflow systems have tended to automate ad-
ministrative processes (the so called “paper factory”) in an essentially hu-
man environment, there are often certain activities which are wholly auto-
mated by software components. In the manufacturing or process indus-
tries many activities are fully automated with little or no human involve-
ment. In this context the specification of the work “performer” for a par-
ticular activity must incorporate the concept of machine automata.
Various characteristics of a business process need to be considered.

5.1.1 Responsibilities

“Ownership” of a business process is often an alien concept, but once
an electronic representation is achieved, this becomes an important attribute
of the process, if only to determine who has permission to modify the proc-
ess and under what circumstances.

The realignment of business thinking from organisation to process marks
a major shift in organisational culture, likened by Giga Group to the “dis-
mantling of the industrial age”[GIGA Group, 1997].

This emphasises the move away from functional organisation towards

ICL Systems Journal November 1997 219

virtual teams and processes supporting business collaboration.

dismantling the industrial age

organisation process
division f ;
unctions roles S
of labour team
information . ,
. oces rganisation llaborations
hoarding pr S organisatio co

Figure 3: Dismantling the Industrial Age
(source: ICL & Nortel)

This emphasises the move away from functional organisation towards
virtual teams and processes supporting business collaboration.

Since responsibility is increasingly defined in terms of role rather than
person, there is a requirement for workflow systems to maintain an audit
trail of the work performer who actually undertakes a particular activity.
In some cases this is complemented by a supervisory role for individual
activities or the overall process which is invoked if various criteria (for ex-
ample deadlines) are not met. The concept of responsibility also needs to
cope with activities which are wholly automated with no human involve-
ment (for example by IT application).

5.1.2 Process Modification
Adaptive processes are fundamental to the ongoing value of workflow; in

practice adaptation can occur in several ways with different associated com-
plexities of automation.

(i) An ongoing change to the process, introduced by the owner. An ex-
ample might be the introduction of some additional checking on an
authorisation task, or amendment of the value at which additional
checking is undertaken. The changes may need immediate application
to all existing open business cases, or may just apply to new cases.

(ii) A variation to the normal process behaviour may be pre-defined un-
der certain conditions, for example an activity may be skipped or del-

220 ICL Systems Journal November 1997

(i)

egated to a subordinate role if a certain business criterion is met. This
variation is defined as part of the persistent business rules applied
within the process behaviour, but needs to be separately monitored
(and reported) in each case.

In some cases process behaviour (i.e. the business rules) may be arbi-
trarily adapted or developed during operation, without any prior con-
straints imposed when the process was designed. This is a behaviour
pattern often associated with ad-hoc workflow systems in co-opera-
tive workgroup situations, where only a skeleton process may be de-
fined within the process definition. This is amended dynamically as
process execution proceeds to add new tasks or amend responsibili-
ties, etc.

5.1.3 Process Structure & Organisational Boundaries

One consequence of the flattening of organisational structures and increas-
ing business integration across organisations is that process scope is ex-
tending not just across departmental boundaries but also between enter-
prises. A model of workflow put forward by the Japan Standards Associa-
tion (JSA) Groupware Committee (1997) illustrates this industry direction
by a three tier framework embracing workflow at departmental, enterprise
and inter-enterprise levels.

trading partner
organisation

enterprise

department :

hierarchic sub-processes parallel synchronised processes

Figure 4: Inter-organisation Business Processes

This leads to requirements to support process structures which:

* enable a sub element of a process to be initiated in a different organi-
sational domain (hierarchic or chained sub-processes)

* support the periodic synchronisation of process activity between two
(or more) essentially independent processes operating in different do-
mains (parallel synchronised processes).

ICL Systems Journal November 1997 221

Such process models often impose additional constraints on automa-
tion in the areas of security between domains and conventions for object
naming and organisational mapping.

5.1.4 Process Duration

This impacts a number of engineering issues, particularly the likely
concurrency of active process instances and possible requirements for the
support of a dormant process state. Most typical processes have a rela-
tively short duration, typically from seconds to weeks. Some, which are
customer-centric, may be defined in terms of a customer life cycle lasting
many years. Since most workflow systems carry a significant overhead per
process instance there may be a requirement is such cases to remove dor-
mant cases to some form of secondary process data storage.

5.1.5 Activity navigation
One characteristic of all business processes is the thread of control which
links together the various activities during the life of the process instance.
Typically this involves conditional logic and a number of alternative routes
(navigation paths) through the process. These paths generally need to sup-
port a mixture of sequential and parallel activities within a process.

This logic may be defined in quite different ways within different proc-
ess definition methodologies:

Transition Based—Typically derived from Petri Net methodology, the proc-
ess is represented graphically as a network of activity nodes and explicit
transitions between them. Edges connect nodes to transitions (input arcs) or
transitions to nodes (output arcs). Parallelism within a process is supported
by transitions with multiple output arcs (a split into multiple execution
threads transferring to different activities) or with multiple input arcs (a
join of several execution threads into one). Alternative routes between ac-
tivity nodes are evaluated by reference to conditions associated with the
transitions. Although arbitrary complexity can be supported, multiple tran-
sitional expressions involving complex conditional evaluations can become
cumbersome to represent in a machine processable form.

Block Structured decomposition—In this approach any single node in a
model may be decomposed to a lower level of underlying process (a para-
digm based upon the hierarchic sub process model). In this approach par-
allelism is constrained to operate only within the context of a single level of
decomposition (i.e. parallel threads cannot transcend block boundaries). A
product based upon this approach cannot cope with an arbitrary complex-
ity of split and join constructs (for example an unbalanced split where one
path continues beyond the context of the current block).

Activity Pre- & Post-conditions—In this approach no explicit transitions

222 ICL Systems Journal November 1997

between activities are declared. The process is defined as a set of activities
each having entry (pre-) and exit (post-) conditions; parallelism is implicit
and when pre-conditions are met the activity is initiated, independently of
the status of other activities within the process. To provide sequential op-
eration, pre-conditions may relate to the completion of a particular prior
activity (and by extension to multiple prior activities, providing an “and-
join” capability). Post-conditions may be used to control looping within an
activity.

Each of the above approaches has its pros and cons and its own par-
ticular devotees. The problem for the systems integrator is that it is not
easy to transfer process information between design tools and / or workflow
control software based upon the different design paradigms.

5.1.6 The Organisational Model

Virtually all business processes are based around the concept of an indi-
vidual’s roles and responsibilities for the various activities within the proc-
ess. As far as possible processes need to be isolated from the vagaries of
organisational change, leading to the requirement for a (dynamic) organi-
sational model. This can map the ongoing roles and responsibilities at proc-
ess level against the current organisational entities and the current set of
individuals who undertake the various roles.

The identification of an activity “performer” within a process may em-
brace a mixture of organisational and role information (... “the fault ana-
lyst in the European Customer Support Unit”). Organisational relation-
ships often expressed include:

manager of

deputy to
alternative to (proxy)
role or skill profile.

Responsibility models may introduce additional constraints on work
performers (for example .. “not the person who authorised the original
loan”), which require process history to be maintained.

Thus in many cases an organisational model will need to accompany a
business process to enable its automation.

5.1.7 Security

Security is often developed separately from the business process and may
have to added at automation stage by reference to a separate organisation
security policy document. Many of the security requirements during auto-
mation will be related to roles, responsibilities and authority within the
process.

ICL Systems Journal November 1997 223

5.2 Representing the Business Process

In order to provide automated support for a process, it must be first be
captured in a machine interpretable representation. This representation
must have the flexibility to structure and maintain all the process related
information necessary to enable co-ordination of enactment using IT infra-
structure.

The WEMC glossary introduces the term “Process Definition” for this
representation, describing it thus:

“The automation of a business process is defined within a Process
Definition, which identifies the various process activities, procedural
rules and associated control data used to manage the workflow dur-
ing process enactment”.

The process definition may be represented by a combination of any or
all of textual script, graphical notation, or formal programming notation,
with many different process development tools available to manipulate such
information. Typically their use follows a cycle of analysis, modelling, im-
plementation, feedback and further analysis.

Several attempts have been made to define a standard representation
of all or part of a process specification.

IDEF [IDEF, 1997] is a series of modelling notations introduced by the US
Air Force, several of which are published as FIPS by NIST. Included are
methodologies for modelling business functions (IDEF0), information mod-
els (IDEF1X) (both widely used), dynamic system behaviour (IDEF2) and
Process Description Capture (IDEF3).

CDIF [CDIF, 1997] has defined a core architecture for CASE tools and data
interchange bindings, based around a meta-meta-model. Foundation and
Common meta-models are defined and work has been completed on data
definition, data flow and data modelling. An extension to cover business
process modelling is under discussion, but work is not yet mature. UML
(unified modelling language) is a similar initiative under the auspices of
the OMG, with its own modelling notation and meta-model.

None of the above currently provide a machine processable process
definition as a basis for workflow automation.

PIF (Process Interchange Format & Framework) [PIF, 1997] has been devel-
oped by a working group drawn from a number of US and UK universities.
Its underlying philosophy is that of generality over computational efficiency;
this is reflected in the organisation of its entity classes which is not neces-
sarily well suited to the performance of any specific task, such as workflow
management or process simulation. It has been used for experimental trans-
lation of process related information within the research group. As with
other process representations it has been found necessary to structure into

224 ICL Systems Journal November 1997

a minimal core set with add-on classes. PIF is designed to be machine

processable, but is not specialised to the entities and attributes required for
workflow.

The NIST PSL (Process Specification Language) group [NIST, 1997] is a
study group formed by NIST in April 1997, working towards a common
process specification language, rather than interchange format. It has mem-
bers drawn from industry, government and academia but has a particular
interest in the application of process technology to manufacturing indus-
try. There is no current specification produced by the group, but it is re-
viewing inputs from other industry organisations.

WPDL (Workflow Process Definition Language) [WMC, 1995-1997] is speci-
fied by the WMC and despite its name was conceived as a text-based,
machine processable interchange format, rather than a definition language.

The WEMC has produced a process definition meta-model, shown be-
low, which attempts to capture the highest level objects and relationships
which, as a minimum, must be defined to support process automation. This
meta-model underpins the WPDL grammar.

workflow process definition

may refer to I
[N (S —
consists of i [

- . 9 (sub) process .
Fe 0F lagh | definiton |
implemented | B
may use
workflow [a0] workflow i :S_ E ¢ ________
relevantdata [H U process activity 3 : ol :
© activity 3
Y is performed WEEY oot (il
i b may |invoke
inayEss 4 : from A A to
b m
workflow workflow i
participant application) ;ansn ntqn
specification declaration information
J - T
L may use l 1
7 - < e
B A)\
M el 2
A | g

Figure 5: The Process Definition Meta-Model

The route followed by the WEMC is to define as standard attributes the
most commonly required properties of these top level objects, but to allow

extensibility through an extended attribute list and library functions within
the WPDL grammar.

The model and the WPDL constructs are focused specifically on
workflow and provide more detailed structures for defining the workflow

ICL Systems Journal November 1997 225

related aspects of a process. They do not attempt to incorporate the level of
generality of other approaches such as PIF. WPDL will shortly be released
in beta form and several prototype implementations have been made against
interim specifications with reasonable success.

One key difficulty with all approaches remains the capture of all the
potential dynamics of a business process within a single model. It is prob-
able that automatic translation of 100% of such business processes between
different products is an unreachable goal in the foreseeable future. How-
ever the meta-model provides a structure for mapping a large part of the
business process into WPDL or, potentially, other interchange forms.

6. The Systems Integration Model

The WFMC is the principal organisation defining standards for workflow
and is attempting to cover much of the ground discussed in earlier sec-
tions. The standardisation programme is based upon the “Reference Model”
[WMC, 1995-1997] shown in Figure 6.

process
definition tools

interface 1

interface 5 interface 4

workflow service domain other workflow

. i service domains
administration

& monitoring workflow
tools engine(s)

workflow
engine(s)

interface 3

interface 2
tool agent

worklist control
handler applications
invoked
applications

Figure 6: The WfMC Reference Model

Whilst this is an oversimplification of workflow from the integration
perspective, it has proved useful within the industry as a focus for stand-
ardisation work. It concentrates on modelling a workflow service as a black
box object viewed from its external interfaces, whilst ignoring the internal
construction architecture (and hence a number of the integration problems).

226 ICL Systems Journal November 1997

The internal components of the “workflow service” are assumed to be
homogeneous, and typically supplied by a single vendor’s product(s). This
avoids issues associated with service administration and security, which
essentially lie inside the “box”. Also no distinction is made between a sin-
gle centralised “engine” and co-operating, “distributed engines”, which need
to support shared process state data in order to support a single homoge-
neous service image. The model also attempts to avoid dependence on the
nature of the underlying distributed infrastructure through the specifica-
tion of APISs, or interchange formats, by which system components interact,
which are assumed to be supportable through the infrastructure®.

Five “interfaces” are identified within the Reference Model, realised by
a combination of APIs, protocol and format conventions.

6.1 Process Definition Interchange

The purpose of this interface is to support the exchange of process defini-
tion information between BPR tools, workflow systems, and process defi-
nition repositories. The interface is based upon the meta-model described
in Section 5; information exchange is supported in two ways:

1. the WPDL grammar supports the transfer of complete process models
via file transfer, typically using an import/export mechanism from na-
tive product formats. The import process can check the process model
for structural integrity, for example flagging isolated activities with no
transitions. The export process must flag any structures which cannot
be represented in WPDL

2. APIs are defined for reading and writing individual objects and attribute
data within the Process Definition. These are typically used for ad-hoc
process modification or control functions, rather than bulk process trans-
fer. There is no automatic mechanism for checking the integrity of the
resultant modified process.

6.2 Client Applications Integration

This provides a standard interface for work allocation to the desktop envi-
ronment, allowing desktop applications portability and re-use across dif-
ferent workflow environments. APIs are defined for:

1. Process & Activity Control functions, for example starting, suspend-
ing, terminating a process instance or sets of process instances

2. Worklist Handling, to allow users to log on and process (or re-assign)
individual work items.

“One exception to this is the interoperability protocol between workflow domains, which is
discussed later.

ICL Systems Journal November 1997 227

6.3 Applications Invocation
This provides a single interface which may be used for two purposes:

1. To provide a common framework for the integration of software agents
providing access to other industry services such as document reposi-
tories, meeting schedulers and email which use their own specific in-
dustry APIs

2. To support access to legacy applications via application specific meth-
ods (for example terminal emulation or proprietary TP protocols).

A simple API set supports Connect/Disconnect, Invoke Application,
Request Status and Terminate Application.

6.4 Process interoperability
This supports the remote invocation of a sub-process on a different workflow
system, allowing a single business process to be implemented over two or
more workflow systems.

Two variants of interchange protocol are defined:

MIME (Multipurpose Internet Mail Extensions) defined in RFC 1341

2. IDL bindings for use with CORBA (typically via ORB interoperability
services).

This interface uses essentially the same API set as that for process ini-
tiation from client applications’.

A missing element in the current specifications is support for synchro-
nisation points between parallel execution threads; this is identified for fu-
ture development.

The sub-process interoperability model as currently specified makes
no requirement to dynamically share state data between the two
interoperability domains and specifies a minimal level of prior co-ordina-
tion. (This is essentially limited to a knowledge of the called address for a
particular sub-process and any related security attributes.) Thus it is more
suited to “loosely coupled” distributed process enactment across different
organisational entities than tightly bound workflow systems within a sin-
gle department or workgroup.

Some issues of detail still remain; for example, which properties of sub-
process operation are inherited from the superior calling process and which
from the local process definition. In general, it is an accepted principle that
where remote process “hand-off” occurs it will not be feasible to retain all
process attributes through the call and return. Details of name space usage
across the two environments also remains to be fixed in detail.

7 Since remote invocation can occur via an asynchronous interface such as e-mail some addi-
tional optimisations are provided to allow grouping of calls (or call responses) into an under-
lying MIME transfer.

228 ICL Systems Journal November 1997

6.5 Audit and monitoring

Auditing is an important requirement for many workflow systems. This
“interface” comprises a specification of standard audit events and their re-
cording format, thus enabling the integration of audit trails across different
systems during workflow interoperability. The means by which audit data
is accessed or retrieved on any particular system is undefined but is typi-
cally via SQL for many workflow products.

APIs are also defined. to retrieve status information on current process
instances or activities.

7. Ongoing Standardisation Work

The standards currently defined will make a significant contribution to
workflow systems integration—provided they are adopted by product ven-
dors. An important indicator of intent is the current OMG standards ap-
proval cycle for workflow technology [Object Management Group, 1997],
in which the WEMC standards are currently supported by more than thirty-
five organisations.

Various important extensions have been identified to improve the po-
tential of the model as a basis for integration.

Object Integration—the work with OMG has identified potential require-
ments for developing the architecture “internal to the workflow manager”,
to facilitate the integration of other complimentary OMG services such as
OTS (transaction services), naming, security and versioning, etc.. This ap-
proach can support closer integration between different workflow prod-
ucts where all use the same underlying object services architecture. There
is also interest in positioning workflow within the OMG Business Objects
Framework to identify reusable service elements which can be consolidated
into a business application environment.

Security—the approach here is to specify how existing security standards
should be applied in the context of workflow. The most important area is
seen to be the use of authentication, integrity and confidentiality services
applied to workflow interoperability, particularly between domains in dif-
ferent organisations.

Support for Event synchronisation—Event synchronisation represents a
significant extension of the interoperability model to support transitions
(and potentially associated data flow) between different, essentially inde-
pendent processes, running in different domains. Issues to be resolved in-
clude process, thread and event naming and event management functions
applied across distributed, heterogeneous products (e.g. to detect and pre-
vent deadlock and persistent wait states).

Process Integrity and recovery—This is an area which has not been widely

ICL Systems Journal November 1997 229

addressed and will take some time to mature. Recovery may require the
basic process state data, shared workflow and application data and wholly
application related data (for example within legacy applications). Differ-
ent techniques include 2-phase commit and rollback (whose use may be
impractical through asynchronous messaging infrastructure and/or long
transaction times), compensating transactions, or alternative transactions.
Many products rely on at least some manual recovery elements.

Internet and electronic commerce—There is considerable interest in sup-
port for inter-organisational workflow functionality carried via the Internet.
Existing functionality via electronic mail will be augmented by support for
more dynamic process binding (for example using traders or yellow page
services). The use of XML? to encode process based exchanges is also un-
der discussion.

8. The Future

We shall not know for a year or two whether this standardisation programme
will really contribute to the integration task. There are encouraging signs
that the industry has recognised the benefit of a common architectural frame-
work to assist with product interoperability and most products are struc-
tured in broad alignment with the reference model. In practice the number
of conflicting products is bound to fall, if only through market consolida-
tion. Interest continues in capturing and reusing automated process frag-
ments within an applications framework architecture.

The notion that workflow will evolve into ubiquitous middleware, in
the same way as, say, electronic mail, is perhaps more questionable. This
requires both standardisation and a re-orientation of commercial thinking
towards the value of automated processes. There is certainly every likeli-
hood that workflow interoperability will substantially increase in inter-com-
pany trading situations. A demonstration of an automated supply chain
process scenario [Anderson, 1997], in which the overall business process
was automated across seven diverse organisational systems, attracted huge
industry interest’.

Within this style of operation it is possible to enact business processes
which automatically call other organisations to implement those parts of
the process which lie within their domain of responsibility, for example
manufacturing, wholesaling or supply logistics. Such business interactions
go far beyond the simple transfer of order data or supply notes, bringing
opportunities for expressing a complete supply chain business logic in a

8 XML (Extended Markup Language)—a more generalised version of HTML, also derived
from SGML principles.
¢ Workflow Canada, Toronto, June, 1996 and repeated at the Giga Workflow conference, Am-
sterdam, October, 1996.

230 ICL Systems Journal November 1997

manner which can be seamlessly automated across diverse business enti-
ties. This may well point the way towards a second generation of elec-
tronic commerce based on process interoperability rather than simple elec-
tronic data interchange.

Acknowledgements

Many colleagues within the WIMC have contributed important ideas to
the subject of workflow integration and interoperability. Particular thanks
are due to Mike Anderson, from the TeamWare Integration Centre, who
provided comments on this paper and was also responsible for the WfMC
interoperability specifications.

Bibliography

WORKFLOW MANAGEMENT COALITION; Documentation: Glossary,
1996, The Workflow Reference Model, 1995; Workflow API Specification,
1995; Workflow Interoperability Specification, 1996; Process Definition In-

terchange Specification (draft), 1998. Details available via http://
www.wfmc.org

PRATTEN, G.D. and HENDERSON, P., “Creating Potential-for-Change,”
ICL Technical Journal, Vol 8, Issue 3, 1993.

OVUM GROUP, “Ovum Evaluates Workflow,” 1996.

GIGA GROUP, “Business Process & Workflow,” Conference Proceedings,
London, 22-24, October, 1997.

KOULOPOULOS, T., “The Workflow Imperative,” Van Nostrand Reinhold,
1995 (ISBN 0-442-01975-090000).

IDEF, (Integrated Computer Aided Manufacturing Definition), details of
IDEFOQ, IDEF1X, IDEF3, plus work in progress available via the IDEF home
page http:/ /www.idef.com.

CDIF, (CASE Data Interchange Format) specifications available via http://
www.cdif.org.

PIF (Process Interchange Format), details available via PIF home page http:/
/soa.cba.hawaii.edu/pif/-

NIST Process Specification Language (PSL) project documents: Proceed-
ings of the First PSL Roundtable, NISTIR 6081, National Institute of Stand-
ards and Technology, Gaithersburg, MD (1997). Unified Process Specifica-
tion Language: Requirements for Modelling Process, NISTIR 5910, National
Institute of Standards and Technology, Gaithersburg, MD (1996). Both avail-
able via NIST PSL home page http:/ /www.mel.nist.gov/psl/

OMG, Object Management Group, Framingham, MA 01701-4568, RFP for

ICL Systems Journal November 1997 231

http://www.wfmc.org
http://www.idef.com
http://www.cdif.org
http://www.mel.nist.gov/psl/

Workflow Technology, 1997 and associated proposals, details via OMG
http:/ /www.omg.org/library /schedule/Workflow_RFP.htm

ANDERSON, M.J., “Workflow Engine Interoperability—What’s in it for
Users,” Document World (May /June 1997).

Biography

David Hollingsworth has spent in excess of 25 years in the IT industry. His
career with ICL spans roles in product development, market requirements,
strategic planning, systems architecture and major projects consultancy
assignments. His interest in workflow systems dates from 1992 and as ICL
architect working on future office systems he was involved in the establish-
ment of the Workflow Management Coalition as the industry standards
body for workflow. He is currently chairman of its Technical Committee
and has authored several of its reference documents. He holds an honours
degree in Economics from the London School of Economics and is an ICL
Distinguished Engineer.

232 ICL Systems Journal November 1997

http://www.omg.org/library/schedule/Workflow_RFP.htm

SuperVISE—System Specification
and Design Methodology

S. Hodgson and M.M.K. Hashmi
ICL High Performance Systems, Manchester, UK

Abstract

This paper describes the system design methodologies and tools be-
ing developed by ICL under the name SuperVISE [ICL/WWW, 1997].
The paper covers the origins and principles of the methodologies,
and explains the benefits of the SuperVISE tools which support these
methodologies. The SuperVISE language VHDL+is introduced and
the key features of the SuperVISE products are described. SuperVISE
won the 1997 ICL Innovation Award for Technology.

1. Introduction

The creation of the SuperVISE methodologies, languages and tools grew
from the basic need to ‘Improve Time-to-Market’ for large electronics sys-
tems which include significant hardware design content. The requirement
was for more than just an incremental improvement in conventional de-
sign methodology. What was needed was a ‘step function’ improvement,
which would cope with the increasing size and complexity of the systems
expected over the next 20 years and beyond.

These requirements came initially from the mainframe development
group at the ICL High Performance Systems Division in Manchester. The
mainframe systems designers were about to embark on a major new de-
sign—significantly larger and more complex than anything developed be-
fore at ICL—a design that turned out to be a system of more than 10 million
gates. The design had to be complete in less time than the previous, smaller,
mainframe design and with less engineers.

To meet these ambitious timescales, the whole system design had to be
‘right first time’. There would not be time for redesigns or chip iterations,
s0 a major improvement was essential in the design verification phases.

The good news is that the design mentioned has been completed—the
ICL Trimetra (SY) [Allt et al., 1997]. The methodology and tools achieved
their objectives and, in fact, exceeded the ambitious quality targets set at
the start of the project. The methodology used (originally called CHISLE
[Jebson et al., 1993], but since extended and now called ‘the SuperVISE
methodology’) is now being introduced across the Fujitsu Group and pro-
moted externally.

Having defined the methodology and the language extensions, it was

ICL Systems Journal November 1997 233

recognised that the introduction of these new concepts would take time.
So the SuperVISE User Group was formed to bring together a set of com-
panies, individuals and universities who together have the objective of de-
veloping and establishing SuperVISE as a major step forward in system
design. Active members of the User Group include Ericsson, Nortel, Alcatel
and, of course, various members of the Fujitsu Group.

2. Requirements

2.1 Business Needs

Design capture and verification at the earliest possible stage increases the
commercial viability of a product by reducing the overall time to market.

One way to compress and effectively manage the complete product
timescale is to formally capture the design earlier in the design cycle so that
it can be verified earlier, and problems conforming to the requirement speci-
fication solved before reaching the later phases of the design cycle.
SuperVISE makes this possible by introducing powerful specification-level
features within a VHDL design environment.

Ensuring the correctness of a design early on in the design cycle not
only improves the specification phase, but also has a beneficial ‘ripple’ ef-
fect on later stages. This is magnified by the growing complexity of the
design; see Figure 1.

100% -t =

errors
detected

implementation

start
of
project

——> time

Figure 1: Benefits of early error detection

Traditionally, in the electronics industry, system specifications and re-
quirements have been captured as natural language documents. These speci-
fications are then refined and elaborated in a series of manual design steps
until they are detailed enough to be captured formally in schematic or tex-

234 ICL Systems Journal November 1997

tual form for simulation.

Normally, the first simulatable level that is formally captured is at Reg-
ister Transfer Level (RTL) or below. Once captured, the design can be veri-
fied by simulation with test patterns or a test harness. It is then refined
until it can be synthesized or manually translated into a gate level descrip-
tion.

SuperVISE brings the process of design verification up to the specifi-
cation level, removing the conventional design ‘gap’, by supporting multi-
level simulation from concept through to implementation; see Figure 2.

conventional design implement

R —
simulation
SuperVISE specify L design implement
- -
simulation

Figure 2: Simulation from Concept to Implementation

Since specifications are by nature ‘loose’ rather than ‘fixed’ descriptions
they tend to be reusable and capable of supporting many design imple-
mentations.

2.2 Technical Needs

To achieve the overall objectives, three technical requirements came to the
fore:

¢ Inprevious complex designs which involved many engineers and even
many teams of engineers, the definition of the interfaces between teams
and between individual engineers was of great importance. These in-
terface definitions needed to be much more than a static definition, since
they had to describe the communication protocol between units of de-
sign in enough detail to allow the separate design units to be devel-
oped independently. What was required was a language to support
the capture of such protocols and these descriptions had to be separate
to the unit descriptions themselves. The methodology needed the con-
cept of separate interface specifications

* A means of specifying the design at a very high level was vital. System
and architectural design decisions had to be made before moving to the
next level of design. For this to be possible there had to be a language
capable of supporting higher design levels

ICL Systems Journal November 1997 235

* Once captured this specification had to be checked for correctness. Find-
ing system design errors later in the design flow was too expensive in
time and resources. So the new methodology had to include an execut-
able specification. Having captured and verified the system design at the
highest level, it was vital that this description could be taken forward
to the lower levels of design. It is inevitable in the development of
large systems that different parts of the design progress at different rates.
To support this, the methodology had to support mixed multi-level mod-
elling.

To provide the higher levels of abstraction needed, a new set of lan-
guage features were defined. The capability of the language had to include
the ability to define, and reuse, interface specifications. Simulation tech-
nology also had to be advanced to support these new language features
such that the specification was executable. Finally, this specification envi-
ronment had to extend into the implementation phases of design such that
the methodology supported many levels of design within the same system
description [Hashmi and Bruce, 1995].

To meet the last of these criteria, it was decided that the first SuperVISE
language should be an extension of VHDL [IEEE, 1994] and this has been
provisionally named VHDL+.

The SuperVISE methodology is, however, applicable to more than just
a VHDL design environment and additional languages will be supported
in the future.

3. Methodology

3.1 The Interface Specification

The Interface serves three purposes:

¢ Itserves as an unambiguous specification of the protocols to which all
users (units) must conform

e Permits units to communicate despite being at different stages of de-
sign

* Provides a firewall between units, enabling them to be designed sepa-
rately, but guaranteeing that they can communicate.

Ahigh level interface specification tends to be declarative whereas, gen-
erally, a unit description represents an implementation and is therefore more
likely to be imperative.

3.2 Interface Items

An Interface Specification is composed of interface items—messages and
transactions—which can be hierarchically decomposed. The lowest mes-
sage level, at which communication with pure VHDL models takes place,

236 ICL Systems Journal November 1997

is composed of signals.

The Interface Specification contains all the information necessary to al-
low units, which can be defined at different levels, to communicate; see
Figure 3.

interface AB interface BC

I |
transaction) B unitC |
[e

|
I
|
|
|
|
I
I
transaction)|
|

()
(=)

Figure 3: Interface between units

SuperVISE uses this information to automate the translation of infor-
mation across the interface and to check that the communication obeys the
interface protocol.

Interfaces can have one, two or more ends. Also, since they do not
need to know to which units they are connected, interface specifications can
be reused.

The main items in an interface definition are:

* Transaction definitions specify two-way conversations across an inter-
face

* Messages define a one-way stream of information from one end of the
interface to another end. They can be decomposed into other messages
and can be defined at any level

* Messages at the lowest level specify static connectivity and are defined in
terms of signals. If the designer wishes to co-simulate with VHDL mod-
els or to decompose into pure VHDL, this level is essential.

3.3 Multi-level Interface Specification
A SuperVISE interface specification describes the communication between

ICL Systems Journal November 1997 237

design units. This single specification defines the communication at ALL
levels. At the highest level the specification will be loosely defined—in
time, data and resource. As the specification develops more detail is added
and more design decisions are recorded, until eventually all time, data and
resources are fixed; see Figure 4. These different levels of information are
described using transactions and messages. Finally the interface is defined
in terms of VHDL ports.

multilevel interfaces
timing abstraction data
unbounded typeless
bounded enumeration
fixed bits
automatic level translators for time and data

Figure 4: Multi-level Interface

4. Description Levels

As designs become larger and more complex the need for working at dif-
ferent levels of description becomes more important. The design of a com-
plex electronic system is often a task that necessitates deployment of the
best concurrent engineering practices. Different parts of the design will be
developed at different speeds using different design styles.

For example, some functionality may be bought ‘off-the-shelf” by pur-
chasing or reusing models (‘Intellectual Property Blocks’) already proved
against a specification. The descriptions of these ‘off-the-shelf’ models may
be quite detailed with little or no abstraction (i.e. all decisions concerning
the design have been concluded). The properties required of the language
used to described these models demand little by way of abstraction fea-
tures.

Other areas of the design may be designed ‘top-down’ starting with
little or no constraint on the design characteristics. Here the designer needs
to defer any decisions until later in the overall design flow. It may be that
only when other areas of the design are complete constraints will become
clear. The designer, therefore, needs a language which will not force un-
necessary decisions.

238 ICL Systems Journal November 1997

4.1 Implementation

Register Transfer Level (RTL) and gate-level are implementation levels. The
models represent the actual hardware and data is closely mapped to physi-
cal implementation. All timing is absolute and resource characteristics are
fully defined. The move from RTL to gate-level is often via synthesis; see
Figure 5. The most popular two languages used to define RTL and gate-
level are VHDL [IEEE, 1994] and Verilog [IEEE, 1995].

implementation
(register transfer level)

registers and clocks, combinatorial logic
[n]Bit data or simple structures

clock timed

reg

cllj_

c_blk_2
T LJ o
“reg

ckl— L ¢ plk_1

reg

implementation
(gate level)

network of cells/gates
bit wide data
timing accurate (skew, etc....)

——Ta] b
4] b

ke -

Figure 5: RTL and gate-level Implementation Levels

4.2 Design
Design levels are normally considered to be behavioural or algorithmic

ICL Systems Journal November 1997 239

descriptions; see Figure 6. Not all decisions have been made (i.e. designed).
Data is often still defined using enumeration and integer types. The de-
signer may like to defer decisions on timing, but the HDLs available do not
support timing abstraction. The designer is probably also forced to decide
on resource allocation during this stage of design.

design
(behavioural/algorithmic level)

partitioned units (any code for function)
structured data, enumeration, etc....
\timing correct to a few or tens of beats

L |
el

M2 B2

Figure 6: Design Levels

4.3 Specification

The system specification level is concerned with the overall design archi-
tecture, the partitioning of the functionality into separate units and accu-
rate specification of the interfaces between units; see Figure 7.

Traditionally, this area of design has been poorly supported by design
tools. SuperVISE not only supports this specification level, but also bridges
the gap between the specification, design and implementation levels.

specification
(system level)

basic blocks, flexible partitioning
data queues, sets, bags, abstract data types
no real time—sequence and concurrence

[e

el

Figure 7: Specification Levels

240 ICL Systems Journal November 1997

5. Verification
5.1 Executable Specification

Simulation is an established and essential verification tool in hardware de-
sign [Hodgson et al., 1995]. Today, most simulation occurs at RTL and gate
level and simulation of the design described at a higher (e.g. specification)
level is rarely achieved.

Achievement of an executable specification is fundamental to the
SuperVISE methodology. It must be possible to simulate a SuperVISE
specification and, furthermore, it must be possible to simulate a SuperVISE
specification with lower levels of descriptions.

5.2 Mixed level modelling

SuperVISE tools manage the connection of different levels of unit specifi-
cation to the interface and, where necessary, automatically perform the trans-
lation between different levels of communication.

mixed multilevel modelling

interface specifications

o \ d o
test Lot \‘\\ /'/ -4 test
harness [\—/ —/ <&{ harness

/ /
\ /¥ il

| /2 e 1 |
H H

kfunctional specifications——/

enables earlier and faster system simulation
and provides a very useful mechanism for testing

Figure 8: Mixed Multi-level Modelling

One very useful application of the Mixed Multi-level Modelling capa-
bility, supported by SuperVISE, is the reuse of a test harness across the
many levels of unit description; see Figure 8. A test harness can be devel-
oped at a very high and abstract level, and then applied throughout the
design cycle. The test harness remains unchanged despite the many itera-
tions of design on the other side of the interface. Translation across the
interface is automatically performed by the SuperVISE tools.

ICL Systems Journal November 1997 241

6. Language Requirements
6.1 Interface Modelling

The most important addition in SuperVISE methodology is the Interface
Specification. The interface specification is not just a repository for the static
data connections between units, but provides a full description of the com-
munication protocol between units—it specifies the valid ways of using
the interface. With a conventional, static, interface definition, if an error
occurs in the protocol between two units (say) it is difficult to determine
which end is ‘at fault'—each unit will implement its understanding of the
protocol and that will be assumed to be correct. However, if the protocol is
defined as part of the interface where both ends must be considered the
specification is agreed by the using units and there is a common under-
standing of the communication. It then becomes much easier to detect and
diagnose protocol faults.

Also, it is necessary to consider the implementation of the protocol in
the units. Normally, this has to be done before any implementation of the
unit functionality because the unit cannot otherwise communicate with other
units and therefore cannot be tested. However, the implementation of most
protocols is not a trivial task and can take considerable effort to implement.
With a separate interface specification the implementation of the protocol
can be delayed until the overall, high level, design of the whole system is
defined and verified. Specifying the protocol in the Interface Specification
allows earlier testing of the protocol and also enables communication be-
tween the units at an earlier stage since the Interface will take care of the
protocol. In cases where the protocol implementation is being reused from
an earlier design, the Interface can check conformity to that specification.

So, for alanguage to support the SuperVISE methodology it must sup-
port the separate capture and specification of an interface specification. This
is fundamental to the SuperVISE concepts.

An interface specification is used to specify the communication proto-
col and transformations between unit specifications. There are a number
of key benefits to using interface specifications:

¢ Interface specifications are freestanding and can be usefully developed
in their own right

¢ Unit specifications, communicating with one another only via interface
specifications, are assured of working to the same protocol without risk
of different interpretation

* Aninterface specification can be used to define communication between
unit specifications that have been described at different levels of ab-
straction

¢ The interface specification itself can be defined at many levels of ab-
straction

242 ICL Systems Journal November 1997

¢ Interface specifications are not dedicated to any particular unit specifi-
cations. Unit specifications wishing to use a particular interface speci-
fication can do so by mapping themselves on to named ‘ends’ of the
interface specification. So, interface specifications can be reused be-
tween different combinations of unit specifications

¢ Athigh levels of design, almost all communication functionality is han-
dled by the interface specifications. As design work progresses down
the levels towards gate level, the balance of communication functional-
ity changes until it is eventually all hard-wired into real functional hard-
ware at a traditional VHDL level.

The interface construct is used to declare an interface specification.
Like VHDL entity, configuration and package declarations, the in-
terface declaration is a primary unit. An interface has a name, a list of
end identifiers and a list of interface items.

Any interface item of an interface can be instantiated by unit specifi-
cations as long as the unit specification is mapped to the appropriate end
name of the interface.

As the design implementation progresses, the communication protocol
between unit specifications is implemented in the unit specifications them-
selves and less of the interface specification provides functionality. Thus
the driving functionality in an interface specification is eventually imple-
mented in the unit specifications; see Figure 9. Finally, the whole design
may be described using ports rather than instantiating interface items.
However, at all stages of design it is the interface specification that defines
the communication rules and this can be used to check the correctness of
any implementation (e.g. statically or via simulation).

interface

at high levels, interfaces mediate between design units,
units just send design translating between high level

and receive data | unit communication and low level communication,
and checking the low level interface
implementations

at lower levels,

more of the interface
is implemented in
the units

design

' » unit

/V

interface driver

Figure 9: Interfaces

ICL Systems Journal November 1997 243

During a project, it is likely that units will be at different stages of im-
plementation at any one time and interfaces between units often change
their form at the different levels even though the interface capability re-
mains the same. Therefore, it is often impossible to co-simulate the differ-
ent units until they have all reached the same stage of development, but
Interface Specifications can contain the specification of the interface at many
levels and it will automatically translate any communication between lev-
els thus allowing Mixed Multi-level Modelling.

Capturing the different forms of the interface at the different levels also
allows the designer to verify a new level earlier since the Interface Specifi-
cation will check that the different levels adhere to the same overall proto-
col, and that one is translatable to the other.

Atalow level, every message sent or received needs an explicit connec-
tion between the relevant units, but at higher levels there may not be ex-
plicit connections between units or these connections may need to change
quickly. Basically, the semantics of connections at low levels attempt to
model the hardware equivalent whereas, at a higher or system level, we are
more concerned with the design and content of protocols, transactions and
messages than with their detailed implementation.

In SuperVISE, a connection at the interface level merely states that there
is some communication between the units. The content of the interface
specifies the types of messages that can be exchanged and these can be
complex and/or composite in themselves. The unit can use any message
or transaction it chooses from the interface—it does not need a new signal
added to the network and across hierarchies every time a new message is
used by the unit.

SuperVISE allows the system designer initially to capture the system
specification naturally as a set of communicating processes without hard-
ware inferences, then to design the high level using this specification, add-
ing only as much detail as required and to validate the high level imple-
mentation against the system level specification.

6.2 The Unit specification

A unit specification is defined as an entity /architecture pair; i.e. a descrip-
tion that defines functionality. A unit specification can be very complex
(e.g. a description of a computer system) or very simple (e.g. an OR gate).
A unit specification can be composed of other unit specifications communi-
cating through ports, as in a normal VHDL structural description, or it can
be composed of unit specifications communicating via interface specifica-
tions. The extensions of VHDL* enable instantiation of interface compo-
nents in‘a manner similar to instantiation of architecture components.
Unit specification descriptions reference the interface specifications that
they use, and the unit specifications into which they decompose. Note that

244 ICL Systems Journal November 1997

interfaces are in themselves multi-level—so in Figure 10, unit AB would
communicate with units B, or BA, via the interface ‘i’.

D unit specification
U interface specification

A i B
e Sm— - -t
AA j AB /+ * BA k BB
D4f> HD A/ : \u D¢.> +->D
- decomposition «—» Ommunication

Figure 10: Specification Decomposition

A unit specification can, therefore, communicate with another unit speci-
fication via an interface specification or through ports. It is possible, and,
in the early stages of a design, quite likely, that a design will have no ports
and all communication is via interface specification using send and re-
ceive statements.

In VHDL+ the unit specification may describe behaviour using the ac-
tivity. The activity is a behavioural item which may be used to describe
serial and parallel behaviour. The activity is instantiated and acts as a
behavioural resource; e.g. an attempt to use an activity which is in use
will cause queuing. The statements available within an activity include
the VHDL+ statements pause, after, choose, send and receive (see be-
low).

6.3 Design Abstraction
6.3.1 Timing Abstraction
SuperVISE has also relaxed the specification of time in its models. Atlower
levels, timing delays in sequences need to be precisely defined but at higher
levels it is more convenient to specify simple sequences of activities and
place requirements on the start and finish of these activities. This is one of
the main reasons most system specifications are not written in traditional
HDLs.

SuperVISE allows events to be specified in sequence and in parallel,
and to relate events to the beginning or end of other events. Time relation-

ICL Systems Journal November 1997 245

ships can be unspecified, bounded intervals or precise—either as absolute
time or clock intervals—and these can be simulated and validated with the
SuperVISE tool.

At the implementation level, all data is in bits or composite forms made
up of bits.

However, this is not enough at the highest levels. For example, for
some forms of modelling we need typeless data items which can be sent
and received, and placed in queues. So, VHDL+ permits the use of typeless
data (e.g. a message without parameters).

6.3.2 Time

Time in VHDL is defined in absolute terms. Every event has a specific
time. So, for example, every simulation run for a model, given the same
stimuli, should follow exactly the same path.

However, at higher levels the designer may not wish to describe the
exact time of every event as this may not yet have been determined.

So, instead of precise absolute time, the designer may want to define
events in terms of clock cycles or time ranges.

A model with such constructs can be analysed to check performance or
simulated. During simulation a pseudo-random choice of time in the range
is made. This simulation will then check that the functionality can cope
with the time range. Obviously the more simulation performed the better
the check.

At even higher levels, there is sequence or concurrency of activities in
the model even when the overall timing has not been determined. So the
language needs to enable the designer to describe dependencies between
activities without having to connect them explicitly.

The pause construct introduces time ranges. The after construct pro-
vides a method for describing dependencies between interface or activity
items. VHDL+ also introduces a clock declaration such that an interface
can be defined in terms of more abstract time units.

6.3.3 Resource Abstraction
System design is like software design with resources being created as needed
rather than as in traditional hardware design where resources are p