
Volume 9 Issue 1 May 1994

Ingenuity
T H E T E C H N I C A L J O U R N A L

Ingenuity
The Technical Journal published twice a year by International Computers
Limited

Editor

J.M.M. Pinkerton

ICL, Lovelace Road, Bracknell, Berkshire. RG12 4SN, England

Editorial Board

Pinkerton (Editor) M.R. Miller (BT Laboratories)
P.J. Cropper (Northern Telecom Europe) W. O'Riordan
D.W. Davies FRS D. Overkleeft (Holland)
G.E. Felton J.V. Panter
J. Howlett E.C.P. Portman
N. Kawato (Fujitsu) A. Rowley
M.H. Kay D. Thomelin (ICL France)
F.F. Land B.C. Warboys

(University of Manchester

All correspondence and papers to be considered for publication should be
addressed to the Editor.

The views expressed in the papers are those of the authors and do not
necessarily represent ICL policy.

1994 subscription rates:

UK and Europe Rest of World

Annual subscription £60 $120

Single issues £36 $72

©1994 International Computers Limited Registered office, ICL House,
1 High Street, Putney, London SW15 1SW. Registered in England 96056

ISSN 1354-9952

Ingenuity
Volume 9 Issue 1

Contents
Editorial

John Pinkerton iii

Client-server
Foreword

Ninian Eadie 1

Client-server architecture
John Brenner 3

How ICL Corporate Systems support Client-server:
an ArchitecturalOverview
Richard Day 18

Exploiting Client-server Computing to meet the needs of
Retail Banking Organisations
Mike Haynes, Geoff Ibbett, Dave Walker 47

A practical example of Client-server Integration
Andy Ellis 67

From a Frog to a Handsome Prince: Enhancing existing
character based mainframe applications
Alan Beer 81

Legacy systems in client-server networks: A gateway
employing scripted terminal emulation
Paul Duxbury 102

The Management of Client-server Systems
Barrie Archer 122

Dialogue Manager: Integrating disparate services in
client-server environments
Roger Thompson, Ian Robertson 138

Ingenuity May 1994 >

Distributed Printing in a Heterogeneous World
Steve Hilditch 151

Systems Management: an example of a successful
Client-server Architecture
Mike Small, Dave Roberts 167

Other Papers
PARIS - ICL's Problem & Resolution Information System

P.J. Loach 180

OVENframework Architecture Books 191

Architecture Briefings 192

Guidance for Authors 193

“ Ingenuity May 1994

Editorial Note

This issue is largely devoted to matters connected with client-server and
distributed computing - subjects of great interest at this time. Their
importance is underlined in the Foreword to this issue by Ninian Eadie,
ICL Group Executive Director, Technology.

There was an unexpectedly heavy response to a call for papers on the
subject and, as a result, several papers on more specialised aspects such as
security have had to be held over.

This issue marks an important change in publications arrangements. The
Journal is now published by ICL itself and has been renamed Ingenuity:
the cover of the Journal has been altered, to make it more interesting: less
obvious changes have been made to the typography so that it is easier to
read: the basic AS format popular with readers has, however, been
retained. Regrettably, it has been necessary to make a (discounted) charge
now payable hy readers who previously received a complimentary copy.

There will be no change in the editorial policy of printing papers designed
to appeal to technically minded readers who may not enjoy deep
knowledge of the area covered.

Ingenuity May 1994 iii

Foreword
This issue of Ingenuity, the ICL Technical Journal, is majoring on
Client/Server (C/S) systems.

It is less than a year since we set up a separate Client-Server Systems
organisation and in that time C/S has become one of the most pervasive
terms in our industry. Yet neither the term not the concept is new. As
soon as the dumb terminal gained intelligence, programmers began to
move logic downstream to improve response times. This was quickly
elaborated into systems with local area networks and shared services, like
DRS 20 (1981) which can claim to have been among the first C/S
products.

However, at this stage, the IBM personal computer had not even been
invented, and the explosive growth in personal computing which followed
had to take place before the industry could fully exploit these
architectural concepts.

While the growth in personal computers was fuelled by rapid advances in
microprocessor technology, and the dramatic improvements in cost
performance which this made possible, it is important to recognise that
there were also political reasons for its enthusiastic adoption. These
changes were not unique to our industry, the eighties saw a paradigm
shift from the centrally planned to the deregulated, from communism to
democracy. IT users, alienated by centralised computing, saw the move
to end user computing in the same terms and embraced the new world
regardless of its obvious shortcomings.

Those shortcomings became increasingly evident. MIPS are cheap, but
the hidden burden of end user support is expensive. Mix and match is
fine in theory, but does not always work well in practice. There are very
real problems about data back-up, virus protection, security and data
integrity. Besides, not all tasks are personal, many require teamwork.

The over-blown expectations of personal computing, and the subsequent
disenchantment, have been important factors in leading to the rapid take-
up of C/S. On the one hand C/S allows the end user to keep the sub­
second response times and graphical user interface to which he has
become addicted, while on the other it offers the enterprise the prospect
of a more disciplined approach to systems management and data sharing.

In the circumstances it was unfortunate, but perhaps inevitable, that the
Press wrote this up as a battle between mainframes and PCs. In reality,
many servers will require those industrial strength characteristics which
had been evolved in mainframes, at much pain and expense.

Ingenuity May 1994 1

Furthermore, the hard earned skills developed to manage large mainframe
projects are precisely those that are now required to integrate C/S systems,
many of which are every bit as complicated Certainly, there are new
skills to learn, but it would be a great pity if we were to throw the baby
out with the bath water.

Finally, C/S is no passing fad It is the architecture of the long term
future. As competition between the PTTs and the entertainment industry
drives down costs, the network will reach out beyond the enterprise, and
we will look further and further afield for services. Already programs are
written in Bangalore, and networks managed from the United States. The
Superhighway will connect the computer on our desk to remote servers
which will supply us with full motion video, desktop conferencing, and
geographic information, as well as many conventional application
services. Client/Server has migrated from the department to the
enterprise, and is about to go global.

Ninian Eadie

ICL Group Executive Director, Technology

2 Ingenuity May 1994

Client-server architecture

John Brenner
OPEN framework Division, I CL, Bracknell, UK

Abstract

Client-server is an essential part of the vision for often systems
integration that is expressed in OPENframework and ICL
products. This paper explains what client-server is and why it is
important, and what client-server technology is and how it is used.
This is the background within which the final part of the paper
describes client-server architecture.

1 Introduction
Client-server is very fashionable. As such, it might be just a temporary
fad; but there is general recognition that it is something fundamental and
far-reaching; for example, the Gartner Group, who are leading industry
analysts in this field, have predicted that

"By 199S client-server w ill be a synonym for computing."

We therefore need a clear understanding of what it is and why it is
important.

1 .1 Business meaning of client-server
Client-server is generally perceived to be the next step forward in the
operational effectiveness of business information systems. This is
illustrated in figure 1, which indicates cumulative gains from a succession
of innovations.

Business computing started in the 1960s with batch processing. The main
innovation in the 1970s was on-line transaction processing (OLTP),
which brought information technology (IT) to the desktop, and made it
an integral part of business processes. Batch processing and OLTP in
combination continue to be at the core of most enterprise's information
systems. Then in the 1980s came personal computing, which made IT
universally affordable and dispersed it throughout business enterprises.
Now in the 1990s, client-server is generally perceived to be the way of
integrating the separate parts of information systems back together. That
is its role and its importance.

Ingenuity May 1994 3

Figure 1 Perceived business impact of client-server

In these circumstances client-server (or client/server) has become a
popular brand name that is applied to almost every kind of product, and
to all manner of business and technical insights and marketing messages.
This tends to drain it of specific meaning; but in doing so, actually
confirms its near-universal applicability.

1 .2 Technical meaning of client-server
A useful starting point for understanding client-server is the informal
definition used by the Gartner Group:

"Client-server is the splitting of an application into tasks that are
performed on separate computers, one o f which is a programmable
workstation (e.g. a PC).”

This definition says that client-server is about distributed computing and
software architecture (applications are split into tasks that may be on
separate computers). It echoes the vital point that client-server is the way
to integrate PCs into all kinds of information systems.

2 Client-server Technology
Client-server technology is best understood if we discuss it in five areas:

1. personal platforms

2. server platforms

3. client-server middleware

4. client-server applications

5. client-server tools and services

Each of these areas is distinctive, although there can be overlap between
them.

4 Ingenuity May 1994

The term platform is used here to refer to a computer platform that is a
complete combination of hardware and operating system software.

2 .1 Personal platforms
Personal platforms are perhaps the most distinctive area of client-server
technology. We define a personal platform as:

A computer platform which is connected to a network, provides a
consistent and intuitive user interface and assisting a personal user
to accomplish tasks on behalf of the enterprise.

These characteristics are illustrated in figure 2. Personal platforms are
relatively inexpensive and immensely powerful, and there is a wide choice
of suppliers. Many different kinds of computers can be personal
platforms (e.g. MS/DOS PC, Windows PC, OS/2 PC, UNIX™
workstation, Apple Macintosh, and various hand-held devices); but the
most common case today is an IBM-compatible PC with the Microsoft™
Windows operating system.

Figure 2 Characteristics of a client platform

Such platforms are now universally affordable wherever they are needed.
This has turned the architecture of computer systems inside-out: the old
focus was scarce resources in the central machine, remote from its users;
the new focus is the abundant personal resources now at the fingertips of
each individual user. This trend has ever-increasing force, because PC
price^erformance ratios continue to improve by a factor of two every
eighteen months or so.

This change of focus aligns with changes in business structure:
organisational hierarchies are being flattened, decision-making authority
is being devolved, and processes that were formerly provided by office
staff can now be provided by IT-enabled processes. A combined effect of
these business and technical trends is personal empowerment of the
individual at the desk.

PCs provide personal productivity and independence, but this
individuality, multiplied by huge numbers of PCs, can also create anarchy.

Ingenuity May 1994 5

Client-server helps to resolve these problems. The clients use shared
resources (provided on server platforms), not just personal resources;
client-server structure enables all the software and hardware resources to
be under architectural and management control. It transforms personal
computing into inter-personal computing and enterprise-wide computing.
These characteristics help to create order, workgroup cohesion,
productivity, and flexibility of business process.

Although personal platforms are the main economic and technical driving
force for the move to client-server, they are only the first of the five
technical ingredients identified at the start of section 2.

2 .2 Server platforms
We define a server platform as:

A computer platform on which software provides IT services for
use elsewhere in the system.

Ultimately the services are for use at personal platforms; but services are
also provided for use at other server platforms. A server platform may
provide services via dependent terminals that do not qualify as personal
platforms.

Almost all kinds of computer platform can act as server platforms.
Therefore, there are many different suppliers, and many possible kinds of
server platforms, from super computers to PCs. Each is good for
particular kinds of workloads, for different qualitative requirements, and
in different areas of the price and performance spectrum. User enterprises
can select different platforms to match different needs.

Figure 3 Many server platforms to choose from

This breadth of choice is illustrated in figure 3, which shows that the user
at a personal platform may have access to services on many server
platforms. This also illustrates the shift of focus onto the individual user
at a personal platform, who may now choose IT services from many
different sources elsewhere in the computer network.

The polarisation of systems into client and server platforms recognises
distinctions between personal and shared resources. Each personal
platform is an independent personal resource, which may be mobile and is
exposed to risks of accidental loss or damage. Conversely, a server
platform provides a protected, fixed, and carefully managed environment
for shared resources.

Even where the same technology is used for both client and server
platforms (e.g. PCs with the same kind of hardware and operating
system), these distinctions between personal and shared resources should
be made. In the limit, the same machine may be both a personal platform
and a server platform (e.g. in a peer-to-peer network; see 3.2). As always,
the server role brings obligations to guarantee availability and integrity of
the shared resources.

2 .3 Client-server middleware
W e define client-server middleware as:

Packaged software to support the separate parts of client-server
application software and enable them to work together.

This is by far the most complex area of client-server technology. By
concentrating the complexity here we are able to keep the other areas
relatively simple. It includes many kinds of function, each of which may
itself be distributed, and most of which are inter-related. Some of the
main areas are:

• networking services

• distributed application services

• distributed systems management

• distributed security

• distributed object management

• user interface management

• print management

• data management

• transaction management

• workflow management

Figure 4 is a symbolic representation of this middleware support for
client-server application software. It emphasises the importance of
middleware in enabling client-server technology to operate across the

Ingenuity May 1994 7

whole business scope relevant to the user's tasks. This may involve
interaction across departmental and functional boundaries, and perhaps
across enterprise boundaries.

Figure 4 Client-server middleware

Some important areas of client-server middleware technology are
described in [Archer, 1994] and [Duxbury, 1994],

2 .4 Client-server applications
We define a client-server application as:

An application system in which logically separate software
components are integrated together via client-server relationships.

In a client-server relationship, one part of an application (the client end)
uses a service provided by the other part (the server end). The latter is
often a shared resource, used by many clients. Although integrated
together via the client-server relationship, the parts remain separate. We
refer to them as being logically separate because they need not be
physically remote from one another (they might be in the same
computer).

We describe client-server application software here in three steps:
splitting an application (in 2.4.1), joining separate applications together
(in 2.4.2), and distributed application structure (in 2.4.3).

2.4.1. Splitting an application
There are many ways of partitioning application software into separate
components. However, the content of most applications can usually be

8 Ingenuity May 1994

classified under three different technical headings: data management,
application logic and presentation. This is illustrated in figure 5.

Figure 5 Application software modularity

If the application is to be split into two parts (one part on a client
platform, the other on a server platform), the split can be made at either
of the two boundaries between functions, or inside one of the three
functions. Consequently there are five main ways of splitting a
centralised or personal application into two parts between which there is
a client-server relationship. This is the basis of the popular classification
into five client-server styles, which is promoted by the Gartner Group. It
is illustrated in figure 6.

Figure 6 Five generic styles of basic client-server structure

The details need not concern us here. The important point is that
different styles suit different needs and circumstances:

• The two styles on the left of the diagram are typical of centralised
interactive applications that have been adapted to client-server by
means of graphical interface technology, terminal emulation, etc.

Ingenuity May 1994 9

• The style in the middle of the diagram is typical of object-oriented
distributed applications and distributed TP applications in which data
and function are encapsulated together behind application interfaces

• The two styles on the right of the diagram are typical of data-centred
applications using client-server 4GL development tools and relational
database products

Specific examples are described in [Day, 1994].

Some applications combine all three areas of function (presentation,
application logic and data management) at the personal platform. Also,
different styles may occur in combination at the same platform.

2.4.2 Joining applications together
One of the great strengths of client-server is the ability to join separate
applications together. This can be done in many ways; but upon the
principles used in 2.4.1, there are essentially three levels at which
applications can interface with one another. This is illustrated in figure 7.

Figure 7 Three levels at which applications can be joined together

The main characteristics and advantages and disadvantages of these three
approaches are:

• At presentation level: Interaction at this level is achieved via direct
data exchange (DDE) within a window management system, or via
scripting; see [Duxbury, 1994], in which software uses an application's
user interface by simulating a human user. This kind of technique is
often referred to as screen scraping. It is very useful for accessing
legacy applications, but leads to software maintenance problems if the
user interfaces need to change.

• At application function level: Interaction at this level is in terms of
business functions. Therefore, the inter-application requests are about
the business meanings of the application (and not its presentation or
database encoding). This has the advantage of keeping their internal
designs separate from their external interactions. There are fewer
software maintenance problems.

10 Ingenuity May 1994

• At data management level: Interaction at this level is by direct access
to the other application's database. This is common practice, but leads
to software maintenance problems when application data structures
change.

The first and third approaches inhibit potential for change, the second
does not. Further distinctions can be made between direct and indirect
interaction between applications, synchronous and asynchronous
interaction, and externally programmed interaction and internally
programmed interaction.

2.4.3 Distributed application structure
Distributed applications are evolving towards richly-connected network
structures of the kind illustrated in figure 8. The circles represent
separate software components, and the lines represent client-server
relationships between them. This is typical of the kind of structure that
results from use of object-oriented design and distributed object
management.

Figure 8 Complex distributed application

There is also large-scale structure of distributed application systems
(within which the individual client-server relationships occur). Typically,
three tiers of application software can be discerned in the large-scale
structure:

• Front tier: Application software (and databases) at personal platforms,
providing all kinds of application services, using local resources and
remote resources. Typically, the platforms are PCs. This tier is where
the greatest amount of computer power and of new application
software is now being deployed.

Ingenuity May 1994 11

• Middle tier: Application software (and databases) at server platforms,
providing the back-end of personal applications, shared workgroup
services and task-oriented services. Typically, the platforms are UNIX
or PC. This tier provides rapid adaptation to business process change,
without needing changes to the back tier. It puts boundaries around
the turbulence and uncertainty generated in the volatile world at the
first tier, where all the users are. It also provides lateral linkage across
the enterprise (e.g. electronic mail services).

• Back tier: Application software and databases at server platforms
providing corporate information services. These are usually
functionally partitioned (e.g. accounts, manufacturing, personnel).
Typically, the platforms are mainframes. This tier provides the core of
shared and long-lived information assets that everything else depends
on. There are strong guarantees of data integrity, and the applications
and databases are stable, and their design changes rather slowly.

This structure separates different kinds of concerns which used to be
bundled together in centralised computing.

2 .5 Client-server tools and services
This is the fifth and final area of client-server technology.

Client-server systems may be complex, but with well-integrated systems
and well-designed user interfaces the technical complexity should not be
visible to the user; it is essentially a problem for the application developer
and service provider. They need software development tools and
professional services to help manage and hide this complexity. Many of
the tools and services needed are the same as always, but there are also
needs specific to client-server systems.

An important general point is that for packaged ("shrink-wrapped")
application software, the user enterprise does not need program
construction tools. Packaged client-server application products are now
becoming widely available (e.g. distributed office and groupware
applications, business accounting applications, personnel and payroll
applications).

Another important trend is that different tools (and languages) are needed
for different parts of modular application systems. The main distinctions
are:

• User interface: languages and tools for construction of graphical user
interfaces and any application logic intimately associated with them;
e.g. GUI tools and Visual Basic.

• Database: languages and tools for the construction of databases, file
systems and object stores, and construction of the application logic
intimately associated with them; e.g. Data Manipulation Languages
and Relational Database 4GLs.

12 Ingenuity May 1994

• Business logic: languages and tools for the construction of application
logic that is logically separate from user interfaces and databases; e.g.
COBOL.

• Distributed processing: languages and tools specialised for distributed
processing, and for spanning all the above functional areas (and other
technological and organisational boundaries); e.g. Remote Procedure
Call (RPC) tools.

• System management: methods and tools for electronic distribution of
software, and operation and tuning of client-server systems.

Most of these tools are associated with the corresponding areas of
middleware.

3 Client-server architecture
By looking back over the technology described in the previous section,
three kinds of client-server architecture can be discerned.

3 .1 Basic client-server
We use the term basic client-server for the kind of two-way splits
considered in sections 1.2 and 2.4.1.

In basic client-server architecture, a personal or centralised application is
split into two parts: a client part on a personal platform, and a server part
on a server platform. The latter is often a shared resource, such as a filing
service, a printing service, a database, or some application-specific
function. The terms client and server are used to refer to the hardware
platforms and the application software components (often somewhat
ambiguously).

Basic client-server architecture is illustrated in figure 9 (and has already
been shown in more detail in figure 6).

Figure 9 Basic client-server architecture

Ingenuity May 1994 13

Basic client-server configurations are normally organised around a local
area network (LAN). The whole assembly is usually described as a PC-
LAN, and consists of many PCs for personal use (personal platforms),
plus one or more shared PCs (server platforms). The local server
platforms on these PC-LANs usually provide gateways into enterprise­
wide and external networks, and to the servers on them. This is
illustrated in figure 10.

Figure 10 A typical PC-LAN

Although primarily expressed in terms of PCs and PC-LANs, these basic
client-server concepts are applicable to all kinds of computers and
networks (e.g. PCs, UNIX, mainframes, LANs and WANs).

3 .2 Beyond the basics
Beyond basic client-server there is peer-to-peer processing, co-operative
processing and standalone processing.

The term peer-to-peer processing is used to refer to configurations in
which there are no server platforms, and the server parts of applications
are located on personal platforms. Networks operating on this basis are
referred to as peer-to-peer networks. This is a low-cost way of
implementing small PC-LANs, etc.; but the lack of separate server
platforms reduces system integrity and leads to system management
difficulties.

The term co-operative processing is used to refer to configurations in
which application software is distributed over separate server platforms,
and the client and server ends of interactions are both on server
platforms. This includes interaction between separate applications, not
just between parts of the same application.

14 Ingenuity May 1994

The term stand-alone processing is used to refer to configurations in
which all parts of an application are on one platform (usually a personal
platform). Any client-server relationships between the parts are not
externally visible.

People also use the terms peer-to-peer and co-operative processing
interchangeably, and with various other meanings. This causes confusion
and misunderstandings. There are also various other less well known
formulations such as server/requester and producer/consumer. All the
main formulations are illustrated together in figure 11.

Figure 11 Various formulations of client-server system structure

Unfortunately, many people sharply differentiate the other concepts from
client-server (by which they really mean basic client-server). This
obscures the vital point that all are variants within one unified structure:
client-server architecture. It also leads to misleading statements to the
effect that client-server (meaning basic client-server) is defunct, and is
being superseded by other techniques such as co-operative processing.

3 .3 General client-server architecture
A fundamental limitation of basic client-server and of all the formulations
in 3.1 and 3.2 is that they define software configuration in ways
dependent on hardware configuration. Furthermore, it is often
ambiguous whether the terms client and server refer to the software or the
hardware.

To escape from these limitations and ambiguities, client-server
relationship in software should be defined independently of software
location, and independently of any classification of the underlying
hardware as clients or servers.

The essential clarification is that client and server are roles in which
services are used and provided (respectively), and these roles occur in a
relationship between autonomous building-blocks. In such a relationship,
one of the participants uses a service (it has the client role) and another
provides the service (it has the server role). This is a client-server

Ingenuity May 1994 15

relationship. Large and flexible configurations can be built up by
combination of these simple concepts. This is illustrated in figure 12.

Figure 12 Principles of client-server architecture

As indicated in the right hand side of the diagram, a building-block may
be both user and provider of services. Therefore, it may have client and
server roles and may participate in many client-server relationships with
other building-blocks. It is client or server only in the context of the
particular relationship considered.

The realisation of client-server architecture in software is via
programming languages and middleware (not shown in figure 12). The
physical realisation of client-server architecture consists of networks of
separate computers; consequently the term client-server tends to become a
synonym for distributed processing.

Client-server architecture is only incidentally about PCs, or use of any
other particular kind of technology. However, in current circumstances,
it is usually appropriate that client-server is viewed mainly in terms of
exploiting PC technology (as in the Gartner definition which we started
with in 1.2 above).

This general form of client-server architecture (autonomous building-
blocks, client-server relationships, client role, server role) is a fundamental
ingredient of OYENframework application architecture.

4 Summary
This paper has described client-server concepts, technology and
architecture. Distinctions have been drawn between basic client-server
and various formulations beyond it; these are both special cases of general
client-server architecture.

The main conclusion is that client-server is fundamental to systems
integration: it is the way to synthesise large-scale systems from constituent
parts. That is why it is of lasting importance.

16 Ingenuity May 1994

Acknowledgements
The ideas described in this paper have been stimulated, and in some cases
generated, by colleagues in ICL and in collaborations outside ICL:
particularly (but not exclusively) Alan Beer, Ron Brunt, Richard Day,
Tony Gale, Andrew Herbert, Nic Holt and Mike Threlfall.

References
BRENNER, J.B. OPENframework Distributed Application Services.
Prentice Hall International (UK) 1993. ISBN 0-13-630518-0.

BRUNT, R.F. An Introduction to OPENframework. ICL Tech J. 8(3)
pp351-364, 1993.

HAMMER, M. and CHAMPY, J. Reengineering the Corporation: a
manifesto for business revolution Harper Collins Publishers, Inc. USA.
ISBN 1 85788 029 3.

DUXBURY, P. Legacy Systems in client-server networks: A gateway
employing scripted terminal emulation, ICL Tech J. Vol. 9 Iss. 1 pp. 102-
121, 1994.

ARCHER, B. The Management of Client-server Systems, ICL Tech J,
Vol. 9 Iss. 1 pp. 122-137, 1994.

Ingenuity May 1994 17

How ICL Corporate Systems support
Client-server: an Architectural Overview

Richard Day
Corporate Systems, ICL, Manchester, UK

Abstract

This paper provides an overview of the client-server architecture
supported by ICL's Corporate Systems. The architecture of Open
VME™ is such that the support for client-server working has been
a small incremental step in terms of changes to the system, but it
provides a significant step forward for users.

The purpose of the architecture is to provide ease of use for the
end-user together with secure access to shared corporate data. It
does this through showing how to organise systems so that all
kinds of platforms can be used for what they do best.

Corporate Servers have evolved over many years to excel at data-
intensive processing and TP. This continues to be a major focus,
with a new emphasis on client-server TP with maximum
exploitation of the PC revolution and the benefits it brings to
users.

Other themes include the enabling of immediate Management
Information System [MIS] access to all of the enterprise's
information and the protection of enterprise information by the
provision of frontware for existing corporate applications.

1 Introduction
1.1. Scope of this paper
The scope of this paper is to provide an overview of the client-server
architecture supported by ICL's Corporate Client-Server Systems. The
architecture [Day, 1993] is a specialisation of the OPENframework
systems architecture [Brunt, 1993]. For an overall introduction to client-
server, readers should refer to the paper [Brenner, 1994] in this issue of
Ingenuity, before reading this paper.

18 Ingenuity May 1994

1 .2 What is client-server?
An industry view is that client-server is the splitting of an application into
tasks that are performed on separate computers, one of which is a
programmable workstation (e.g. a PC). However, the reality is more
complex than this.

The term client-server is used to mean an architecture of distributed
processing with well-defined roles for two types of components - clients
and servers. The client is the driving or initiating component, delegating
tasks to a server and making requests of a server, usually for which it
awaits a response. A server is a component acting on behalf of a client for
a well-defined set of functions, e.g. database requests.

The term client-server embraces both hierarchic (workstation/server) and
co-operative processing (peer-to-peer) dimensions of distributed
computing.

1 .3 What are ICL's Corporate Client-Server System s?
A Corporate Client-Server System may include a variety of platforms (e.g.
PCs). It always includes an Open VME system or GOLDRUSH™
Meg*? SERVER. Throughout this paper the term "Corporate Server" means
an Open VME system and/or GOLDRUSH server.

"Open VME" is the name of the system which has been developed from
VME. It includes all the environments originally supplied by VME (such
as TPMS).

1 .4 Purpose
Client-server working is a step on the way forward for Corporate Systems
- a small step for Open VME, but a big step forward for users.

A Corporate Client-server architecture is the way to provide
ease of use for the end-user together with secure access to
shared corporate data.

End-user qualities < --------------- > Corporate qualities

Allows graphical user interface Uniform, full, secure data access

Improved functionality Reliable processing

Improved productivity Scaleable, flexible environment

Improved quality High throughput and availability

Corporate Client-Server Systems are primarily concerned with business
operations which require co-ordination across substantial parts of the
enterprise and, increasingly, across external enterprises. Therefore the
servers in such systems support mission-critical data and services used by
large numbers of clients.

Corporate Servers have evolved over many years to excel at data-intensive
processing and TP. They still do.

Ingenuity May 1994 19

During the last decade, new types of machine have evolved to excel at
other kinds of task, for example:

• graphics workstations and PCs excel at GUI

• PCs and RISC servers excel at MIPS-intensive processing

• high throughput parallel machines will excel as relational database
servers.

A corporate client-server architecture is the way of organising systems so
that all kinds of platforms can be used for what they do best.

A major focus for Corporate Servers continues to be on TP. The new
emphasis is on client-server TP, with maximum exploitation of the PC
revolution and the benefits it brings to users. Corporate client-server
working enriches this by bringing TP to the desktop.

The architecture of Corporate Client-Server Systems:

• provides a framework for analysing and designing such systems

• identifies the strengths of such systems and how they can best be
exploited in a particular context

• provides a basis which guides the development of an integrated
product set which meets customers' needs

• provides a structure which gives an understanding of how those
products work together and what their purpose is

• defines a basis for interworking and co-existence with other systems
with different architectures

• shows how the architecture is constructed

• locates the standards which are becoming important.

2 Trends in Client-server
For a general discussion see the introduction to client-server [Brenner,
1994] in this issue of Ingenuity.

2 .1 Business Trends
"By 1995, client-server w ill be a synonym for computing.”
[Gartner, 1992].

The percentage of new, multi-user on-line applications that employ a
client-server architecture is expected to grow to 75 per cent by 1996 and
90 per cent by the year 2000. Indeed it is hard to find a large corporation
that is not either actively developing client-server applications or
considering a strategy to do so.

20 Ingenuity May 1994

Many businesses are now seeking to re-partition their information
systems: businesses increasingly operate in global markets, and involve
more organisations in more places.

2 .2 Technology Trends
The driving forces include:

• the need for information technology which can support organisational
change

• demand for easier-to-use interfaces

• improved price/performance of desktop platforms

• right-sizing: introduction of workstations but with continuing
centralisation of shared data and associated processing onto high-
integrity server platforms

• demand for more access to decision data and support for business
work processes

• existence of high-productivity tools for client-server applications
development

• the appearance of parallel servers which support a relational database
with high throughput

• increasing realisation of the value of data to business, and the need for
corporate qualities, e.g. reliability, security, availability.

2 .3 Benefits
The benefits of corporate client-server working include:

• improved functionality, ease of use, productivity and quality for end-
users via graphical user interfaces

• more efficient use of computer resources, lowering overall costs

together with:

• uniform, secure, full, easy-to-use, access to shared data and services.

3 Aims of the Architecture
3 .1 Overall Aim
The overall aim of the architecture is to provide a unified framework
which can accommodate all the common forms of distributed processing.
In particular this includes:

• interworking between

o all types of desktop applications, and packages from word
processors and spreadsheets through to relational toolsets, and

o all types of application and data services on Corporate Servers

Ingenuity May 1994 21

• interworking with

o other systems, including those with different architectures.

The following list illustrates typical facilities on the desktop which will
interwork in various ways with key services on the Corporate Server.

Desktop Corporate Server

Icons, objects Files

Mail X.400, X.500

Workbenches, CASE tools Dictionary

Word processors, charts, spreadsheets Relational database

Relational tool-sets Other database

Presentational applications Existing applications

Distributed applications Distributed TP applications
Distributed applications

The following list illustrates typical facilities on a Corporate Client-Server
System which will interwork in various ways with services on other
servers which are either Corporate Servers or servers with a different
architecture.

Corporate Client-Server system Other systems

Distributed TP applications Distributed TP applications

Desktop applications Relational database

Desktop packages Dictionaries

Relational database Existing applications

Other database X.400, X.500

Dictionary Distributed applications

Workbenches, CASE tools Other database

Files Files

X.400, X.500

Distributed applications

A key plank in the architecture is the supply of middleware to
enable client-server working. This middleware supports key
standards (e.g. SQL standards) and hides fluid interfaces from
applications.

22 ingMIUlty May 1994

3 .2 Major Themes
The major themes which run through the architecture are:

• client-server TP: bringing transaction processing to the desktop

• protection of enterprise assets: provision of Frontware for existing
corporate applications

• enabling of immediate MIS access to enterprise information

• bringing the Corporate Server to the desktop: access to server objects
through icons

• generic support for client-server tools usage

• enabling of co-operative (peer-to-peer) processing between ICL
Corporate Client-Server Systems and other systems with the same or a
different architecture

• provision of application development tools (including full CASE tools)
for generating client-server applications embracing a range of
platforms

• ability to manage Corporate Client-Server Systems as a whole and in
conjunction with systems with different architectures

• provision of high-throughput parallel servers

3 .3 Principles
3.3 .1 Openness
The Architecture is an open architecture - it provides for:

• any other platforms to be connected to Corporate Servers at the
networking level

• the use of any user interface - whatever is appropriate for the
application. Graphical user interfaces are supplied by software on the
desktop

• application development tools which will generate client-server
applications which will run in many different environments. It allows
a free choice of application development tools

• application interworking, application portability, tool interworking
and avoidance of lock-in

• open SQL access from all clients to all Corporate Server data sources

• interworking with TP applications on other systems

• management of Corporate Client-Server Systems in conjunction with
systems with different architectures.

Ingenuity May 1994 23

3.3.2 Systems evolution
A key property of modern architectures is their ability to allow for
smooth evolution. This allows the enterprise to respond to changing
business needs through introducing new technology, evolving applications
architectures and accessing corporate information in new ways.

Forwards com patibility
The architecture provides for unchanged applications to be revitalised
through the use of frontware, for existing applications to interwork with
new applications, for existing data to be accessed in new ways (relational
access) and for the evolution of existing systems to incorporate new
facilities.

Optim al usage
The architecture supports the use of the various platform elements within
the total system to best effect, e.g. graphical user interfaces on PCs and
shared corporate data and services on Corporate Servers.

Protection o f assets
The enterprise's valuable information resources are protected, including
defending against accidental or malicious threats. A guaranteed forwards
development path is provided such that investment in application
development and stored information is protected.

The architecture provides for server applications to be insulated from
ever-changing PC platforms, environments and software package versions.

Corporate Server environments provide for controlled evolution.
Applications do not have to be updated when new Corporate Server
platforms, environments and facilities appear, since these are supplied in a
forwards-compatible way. A particular example is that migration of data
to a GOLDRUSH MegaSERVER can be achieved without any change
being required to relational applications.

3 .4 Data access
The architecture:

• supports the need for desktop access to corporate data, revitalisation
of existing corporate applications and relational access to data

• provides for access to shared corporate data, taking account of the
needs for security, the size of the data and the size of the application
components needed to access it. Corporate Servers provide access to
databases, files, dictionaries and directories and provide transaction
processing and other processing facilities.

• provides for immediate MIS access to enterprise information

• facilitates the minimisation of network traffic in a way consistent with
the needs of the application.

24 Ingenuity May 1994

3 .5 Standards
There are many and diverse standards (international, industry, de facto)
that the architecture supports.

The networking element of the architecture enables support of all
networking standards, by the use of gateways where appropriate.

The application development element of the architecture insulates
applications from changing standards in the areas of distributed
application services, networking and platforms by removing the need for
specific programming to such interfaces.

3 .6 Quality
Corporate Client-Server Systems provide corporate levels of integrity,
availability, performance, ease of use, management and adaptability.

4 Corporate Client-server Architecture
This description follows on from the paper [Brenner, 1994] in this
issue of Ingenuity.

4.1 Models of distributed applications
In fundamental terms, a total application can be thought of as being made
up of three parts, as shown in figure 1:

• data management

• application logic

• user interface or presentation

Figure 1 An application divided into three parts

Ingenuity May 1994 25

This separation enables the application components to be matched to the
system that best suits those functions. For example, the client platform
that best matches the user interface is often the PC with its superior GUI
capability.

4.1 .1 Basic Client-server Models

Figure 2 A Monolithic Application

Figure 2 represents a monolithic application, i.e. one that has no client-
server split and uses dumb terminals. An application can be split in
various ways:

Figure 3 Client-server models

26 Ingenuity May 1994

This client-server split (see figure 3) divides the three areas of
functionality into two locations separated by a network.

The term remote means remote from the point o f view o f the application,
and distributed refers to distribution unthin a given function (presentation,
application or data management).

4.1.2 Co-operative Processing
Figure 4 represents co-operative processing between two server platforms.

Figure 4 Co-operative Processing

4.1.3 The possibilities combined
In diagrams 3 and 4, due to Gartner, the different distribution models are
represented separately. However, an application may conform to all the
models at once, as shown in figure 5.

Figure 5 The possibilities combined

In other words we have a unifying architecture which allows a given
application to be distributed in a complex way, where required, and
which allows different applications to be constructed in different ways
whilst, where required, accessing the same data.

Ingenuity May 1994 27

Application development tools are used to generate the application, and
systems management tools manage systems and objects within them.

Figure 6 represents an application, together with these services and tools.
The lines between the boxes represent places where there is potential for
distribution. Where more than one application, presentation or data
management component is on the same platform then the corresponding
boxes may be amalgamated

It is possible for an application to be distributed at all the places shown in
the diagram.

Figure 6 Potential for Distribution of functions

In figure 6, the vertical dimension represents client-server working from
workstations through to servers; the horizontal, client-server working
between systems - co-operative processing.

The architecture provides for generic middleware, to enable full
functioning of applications across the network connections, through key
enabling technology (see figure 7).

28 Inganulty May 1994

Figure 7 The Unified Corporate Client-Server Architecture

4 .2 Models - Summary
This section contains a short description of each of the models. The most
significant four models are described first.

4.2.1 Distributed Presentation
In this model, the presentation services are distributed between the
workstation and a host. An example of this is the FORMS product. This
model also supports the use of Frontware to improve the presentation of
unchanged Corporate Server applications.

4.2.2 Distributed Function
In this model, the application functions are distributed between the client
and the server. This type of usage will grow significantly as enabling
infrastructure and development tools become more widely available.

Transaction management systems are major contributors to the support of
this model.

4.2.3 Remote Data Management
In this model, the whole of the application is at the client end and the
data management services are on the shared server. An example of this is
Ingenuity May 1994 29

the usage of relational networking products to enable MIS access to
shared databases. This type of usage is growing rapidly now.

4.2 .4 Co-operative Processing - application to application
In this model, applications communicate on a peer-to-peer (equal) basis.
Where access to several databases on possibly different systems is
required, then this is an appropriate model to use.

The benefits of this model are in high throughput access to data, with co­
ordinated update to data where transaction management facilities are
used.

4.2.5 Distributed Data Management
In this model (otherwise known as distributed database) access to several
databases is achieved through database management system technology.
An example of this is the usage of relational technology such as
INGRES/STAR*.

Benefits can be derived from using this model, but in many circumstances
more benefits are achieved from the co-operative processing (application
to application) model which we expect to be more widely used.

4.2 .6 Remote Presentation
In this model, the presentation services are on the workstation and are
driven from the application on the server. An example of this is
X/Windows driven remotely. This model is not expected to become a
dominant architecture in a corporate systems context.

4.3 Specialised Example
The architecture may be specialised in various ways.

The following example (figure 8) is taken from a Financial Services
enterprise's architecture. It shows combined use of distributed function,
co-operative processing and remote data management.

5 Models - description
This section further describes each of these client-server models in turn,
together with their benefits. It relates the architectural aims to the
architecture and indicates how it is supported through an enabling
product. The most significant models are described first.

5.1 Distributed Presentation Model
A major theme of the architecture, expressed through this model
(see figure 9), is to supply Frontware Support for existing (and
new) Corporate Server applications.

The provision of frontware support allows existing Open VME
applications which use terminals to be given interfaces which are more
user friendly, without change to the applications. It is also applicable to
new applications.

30 Ingenuity May 1994

Figure 8 Financial Services Generic Model

Data
Mgmt

• Distributed Presentation Services
Application

________ • Key usage: re-vitallse existing Corporate
Server applications without having to change

Presentation them
------------- • Example: automatic generation, with FORMS-

Distribute^Presentation WindOWS front end tO VME applications

_ t . • Generic Frontware Enabling: allows free choice
of graphical to o ls e ts ________________________

Figure 9 Distributed Presentation

Ingenuity May 1994 31

The architecture provides a single, integrated approach to this so that:

• as an optional first step, applications may be automatically updated to
have a Windows interface.

• over a period of time the same applications may have a PC application
added to them, without changing the existing VME applications in any
way.

This integrated approach is achieved through using FORMS together with
toolkits such as Microsoft® Visual Basic.

The two stages of this approach (which can be mixed in any way) are now
described.

5.1 .1 Automatic generation
This stage allows the automatic updating of TPMS applications which use
terminals so that they can have a user interface running under Windows.
It is equally suitable for new applications.

Characteristics:

• There is no user application on the PC.

• Existing applications may be re-engineered automatically to use the
new user interface.

• End users work in a Windows environment with facilities such as
mouse, pull-down menus, pushbuttons, radio buttons, drop-down lists
and cut-and-paste.

• A text-based form-filling interface is provided.

This approach is supported by ICL's FORMS product. The user interface
definitions are generated using the Data Dictionary.

5.1.2 Flexible, controlled integration of frontware
This stage allows a further improved graphical user interface and business
logic on the PC to be added to an unchanged TPMS application, with or
without integration with FORMS.

• It may be used with applications which were written to use terminals.

• It may be used with applications which use FORMS, as a replacement
for the FORMS presentation, or in combination with it.

An improved graphical user interface may be constructed using toolkits
such as Microsoft Visual Basic, Visual C+ + or Gupta SQL Windows.

Dialogue Manager is also supported. This acts as a front-end to both new
and existing TP systems including TUXEDO® on UNIX®, TPMS and
MVS CICS.

32 Ingenuity May 1994

5.1.3 Generic Frontware Enabling
The architecture provides generic infrastructure, which will allow
unchanged TPMS applications to interwork with graphical and other
applications on the PC.

Characteristics:

• A wide choice of tools which generate frontware is provided for.

• A workstation application is generated.

• The generated frontware may be very flexible: graphical objects may
be displayed; large amounts of processing may be carried out at the
workstation; information may be accumulated from a number of
different VME application outputs.

• A consistent image can be given across VME applications and
applications running on other vendors' mainframes.

By providing an interface on the PC (3270 DLL) which maps onto the
ICL terminal protocol (7561), then all those frontware packages (e.g.
Easel, Mozart, QuickFront, Flashpoint, Micro Focus Dialogue System
DS/3270) which can generate client applications which work with
unchanged CICS applications may be used to generate applications which
work with unchanged TPMS applications.

Figure 10 Frontware Possibilities

Ingenuity May 1994 33

Further remarks

The relevant IBM standard supported is HLLAPI. An enabling PC
product (HLLAPI/7561) will be available shortly from ICL.

Similar infrastructure is available on UNIX, and is applicable for any
client platform.

Since an application exists on the PC (which can have any degree of
complexity required), this frontware usage should perhaps be considered
as a distributed function conforming to the model.

Figure 10 shows the various possibilities for frontware.

5 .2 Distributed Function Model
A major theme of the architecture, expressed through this model
(see figure 11), is to extend Transaction Processing to the desktop.

A secondary theme is to enable non-TP client-server access, e.g. for
development tools and workflow systems.

The major benefits of this model are that any combination of user
interface styles can be used; the client part of the application is insulated
from knowledge of particular data structures; the server part of the
application is insulated from knowledge of particular user interface style,
and high throughput systems can be supported safely and securely.

Where a large application is needed to support critical business functions,
in many cases it is not appropriate to run it totally on PCs.

Firstly, it is often inappropriate to distribute data. For example, in the
world of financial services, customers need information about their
accounts from any ATM and financial institutions need access to
information associated with customers. These needs are most easily met
by having a shared database on a server platform. Distributing data may
result in the introduction of many complexities into applications, without
any corresponding benefit being obtained.

Figure 11 Distributed Function

34 Ingenuity May 1994

Secondly, the part of the application that is accessing this data is best run
on a server platform. Tliis gives an appropriate level of security to
database access, and, through the use of transaction management
facilities, a controlled environment is provided, giving scheduling,
resilience and co-ordinated update to data. Compared with the remote
data management model where SQL is being passed, network traffic from
PCs can be reduced, giving better throughput.

5.2.1 Client-server TP
The architecture provides generic infrastructure which supports PC-client-
server TP applications with function distributed between the PC and the
Corporate Server or other server.

The intention is to allow any client application on the PC, whether
written or generated, to interwork with a server application on TPMS.
Transaction semantics will be fully supported. More than one interaction
per TP phase will be supported The X/Open standard application
interfaces (initially XATMI, followed by CPI-C and TxRPC) will be
supported on Open VME and at the PC. Client applications (e.g.
Dialogue Manager ones) which work with any other X/Open conformant
transaction management system, e.g. TUXEDO, should work unchanged
with TPMS server applications.

5.2.2 Generic Infrastructure
The architecture provides for generic infrastructure to support distributed
function applications which may not require TP facilities (e.g. application
development tools). This will be supplied through the Open VME
sponsor and gateway architecture, by the support of X/Open interfaces (as
above) on PCs and on Open VME. Remote Procedure Call (RPC)
interfaces will be included

Support for Electronic Data Interchange (EDI) based applications is also
provided

5 .3 Remote Data Management Model

Figure 12 Remote Data Management

Ingenuity May 1994 35

A major theme of the architecture, expressed through this model
(see figure 12), is to enable immediate MIS access to enterprise
information.

The principal standards relating to this model are SQL standards. Open
SQL access to all Corporate data sources is provided.

A second theme is to provide access to G O L D R U S H databases.

For high-throughput access to databases, the usage of this model should
be combined with the usage of a transaction management system.

5.3.1 Open SQL Access
A major characteristic of SQL is that it allows queries to be made which
are not pre-determined. This is extremely powerful: if the required
information is modelled in the database then it can be extracted,
immediately, without the need for any user application.

SQL is now a standard supported extremely widely by desktop
applications and packages. We support SQL access to all Corporate
Server data sources. Therefore we can enable information to flow
between the server and the desktop.

The architecture provides generic infrastructure and product which
allows:

• relational front-end tool sets

• graphical 4GLs for client-server development (such as Gupta's
SQLWindows and Powersoft's PowerBuilder)

• other packages such as spreadsheets

to interwork with all Corporate Server data sources, including relational
databases, IDMSX databases and files including indexed sequential files.

This is enabled by the ReView product.

5 .4 Co-operative Processing (application to application) Model

Figure 13 Co-operative Processing

36 Ingenuity May 1994

A major theme of the architecture, expressed through this model
(see figure 13), is to enable co-operative (peer-to-peer) processing
between Corporate Client-Server Systems and other systems with
the same or a different architecture.

The benefits of this model are in high throughput access to data where
there are several databases which may be on different systems. Co­
ordinated update to these databases, which may be accessed through
different database management systems, is achieved through the use of
transaction management facilities.

An application component is associated with a given database and does
not need to have any knowledge of the data types and layouts in other
databases. These application/database components could, therefore, be
considered as large scale objects.

The application components may be under separate ownership and
operational control, have different technical origins and use different
infrastructures.

This usage will be supported by Open VME TPMS facilities through OSI-
TP and X/Open interfaces, including XATMI, (and by similar facilities in
TUXEDO).

Support for EDI based applications is also provided.

5 .5 Distributed Data Management Model

Figure 14 Distributed Data Management

Many of the potential benefits of this model (see figure 14) can be
achieved more readily through the co-operative processing (application to
application) model, by using distributed transaction processing, for
example.

The unique benefit of distributed database technology is that it provides
the ability to perform queries that will find the data wherever it is held, if
necessary by combining data from several databases. However the
performance aspects of this facility mean that often distributed database

Ingenuity May 1994 37

services will be used for MIS work but distributed transaction processing
for applications.

When distributed data management is used by applications, the data types
and layouts in the databases need to be known by the applications.
Therefore there may be difficulties of management where the application
components are under separate ownership or operational control, or have
different technical origins or use different infrastructures.

This is exemplified by X/Windows support through client-server
PC/UNIX components of the system. Disadvantages of this model (see
figure 15) are firstly that the application often has to have knowledge of
the details of the presentation and secondly that the network traffic tends
to be high where details of graphical bit-mappings are passed.

5 .6 Remote Presentation Model

Figure 15 Remote Presentation

6 Architectural Elements provided
Corporate Client-Server Systems are constructed from the following
architectural elements:

• user interface

• distributed application services

• transaction management

• information management

• application development

• systems management

• networking services

• platforms.

38 Ingenuity May 1994

These elements are briefly outlined in this section, showing how they
relate to the Corporate Client-server architecture.

6 .1 User Interface
The fundamental principle is that the architecture supports the use of any
user interface - whatever is appropriate for the application:

• the architecture allows the use of any platforms and environments
which support user presentation. Sources include terminals, PCs, tone
phones, videotext terminals, ATMs, multimedia etc.

• character interfaces and graphical user interfaces can be supplied.

• application development tools will generate server applications which
will work with any client applications, thereby allowing a free choice
of presentation.

6 .2 Distributed Application Services
A major difficulty in distributed computing is that many different
standards apply, and there is uncertainty about which to use. There are
different kinds of infrastructure: the architecture embraces many of these
environments and provides for co-existence with the others. It achieves
this through:

• provision of application development tools which hide the different
interfaces from the applications

• provision of distributed application infrastructure through the use of
TPMS components, TPMS developments and the extension of TP to
the desktop

• provision of middleware as described, and further middleware as
standards progress

• porting of middleware products to appropriate platforms.

6 .3 Transaction Management
Transaction-based distributed computing is applicable to mission-critical
systems. It supports reliable computing by processing business
transactions while preserving the integrity of shared data.

A key feature of the Transaction Management architecture is that a
distributed transaction can be implemented with parts that execute on
different systems, yet the whole transaction will either succeed and
complete, or the whole transaction will be rolled back as if it had never
begun.

Transaction Management systems are major architectural contributors to
the achieving of corporate client-server computing.

This is achieved through support by such systems of distributed function
and co-operative processing. The extension of TP to the desktop has been
described in section 5.2.

Ingenuity May 1994 39

6.3.1 Aims
The architecture provides for a transaction management environment
which conforms to the following principles:

Quality. To support high-throughput mission-critical systems reliably.

Openness: To support:

• applications interworking with applications running on other systems

• the porting of applications and packages from and to other
Transaction Management systems

• the use of open interfaces in combination with many current interfaces

• client-server access, including access from the desktop

through support of the X/Open TP model.

Forwards Compatibility:

To allow:

• existing Open VME TP applications to be enhanced to use open
interfaces

• existing Open VME TP relational applications to exploit
GOLDRUSH, without change.

Enterprises' investment in TPMS applications is protected through TPMS
being enhanced to meet these transaction management aims.

6 .4 Information Management
Information is a valuable commodity. A key feature of the Information
Management Architecture is that the value of an enterprise's investment in
information is maximised, by safeguarding it, by allowing it to become
available throughout the enterprise where required, and by providing for
open client-server access to it.

6.4.1 Aims
The Information Management element of the architecture conforms to the
following principles:

Data Access

Provision of:

• high-throughput access to shared corporate data, taking account of the
needs of security and the size of the data

• support for relational database, Codasyl database (IDMSX) and files
(including sequential and indexed).

40 Ingenuity May 1994

Immediate MIS-type access to enterprise information

Openness

Provision of open SQL access from all clients to all Corporate Server data
sources.

6.4.2 Client-server SQL Access to All Corporate Server Data Sources
SQL access to all Corporate Server data sources is supplied through the
ReView product (see figure 16).

Full read access is available today, treating these views as though they
were relational tables.

This full read access extends to interactive SQL, SQL embedded in C and
COBOL, all INGRES tools and all database-independent tools which
interface to INGRES (potentially ICL TeamTOOLS, ACCELL, Gupta,
FOCUS, TechGnosis, etc.) and any other vendor's tools which access
INGRES databases.

Figure 16 Access to all corporate data sources from most PC packages
and applications

The applications and tools may be run on any environment on which they
are supported and which can network through to Open VME using
INGRES/NET - PCs, UNIX platforms and all the Open VME
environments (VME-X, TPMS, MAC, Batch).

ReView gives full SQL read access to:

• many IDMSX databases as though they were one relational database

• many ISAM files as though they were one relational database
Ingenuity M ay 1994 41

• many sequential files as though they were one relational database

• any combination of the above

• any combination of the above together with one INGRES database.

Additionally, it is possible to access the Open VME catalogue, operator
picture files, X.500 directories, etc., etc.

Access through CAFS™ is possible.

Remote Data Management via SQL is supported, i.e. the front end usage
does not need to be on the same platform as the databases and may be on
UNIX or PCs.

The architecture provides for:

• performance: supply of ReView on GOLDRUSH (accessing IDMSX,
etc. on Open VME and INGRES on GOLDRUSH)

• automation: simplification of view declaration, automatic registration
process, automation from DDS business data

• update facilities: these can be provided, although update cannot be
done in a fully automated way through standard SQL.

6.4.3 Access to all corporate data from all types of desktop applications
and packages

There is a choice of interworking mechanisms:

One method of achieving networking with relational tool-sets is to use the
relational/NET products.

The architecture provides for the supply on Open VME systems,
GOLDRUSH servers and UNIX systems of product which achieves
interworking from applications and many packages such as spreadsheets.

Examples of such middleware products include TechGnosis's SequeLink,
and Information Builders' EDA/SQL.

Products such as these connect:

• from PC products such as Visual Basic, Lotus 1-2-3, WingZ®,
HyperCard, Easel, ICL TeamTOOLS, SQL, Windows and many others

• to many database management systems on many server environments
such as Open VME, UNIX, MVS and others

providing access to all ICL Corporate Server data sources via ReView.

Sequelink server has been ported to Open VME.

6.4 .4 Relational Database
A choice of relational database management systems is provided: an SQL
service will be supplied by INGRES and Oracle on GOLDRUSH and by
INGRES, Oracle and Informix® on Open VME.

42 InCMiulty May 1994

6.4.5 Codasyl Database - IDMSX
IDMSX is fundamental to our architecture and will continue to be
supported and developed to exploit the increased power and size of new
machines.

6.4 .6 Application Development
The overall aim of the application development element is to enable
application developers to create applications needed to support an
enterprise information system.

The architecture provides a client-server application development
environment. Development workbenches operate at the desktop, in
conjunction with shared master information about business processes and
data and about computer processes and data held on the Corporate Server
in a corporate dictionary.

6.4.7 Data Dictionary System
Quality

DDS is well-placed to be the central repository for corporate business
dictionary data - providing high functionality and integration with many
CASE tools.

For corporations looking for a single place to retain their corporate data,
and where they have different CASE tools on different systems, DDS is
ideal.

Openness and client-server access

Not only is QuickBuild heavily integrated with it, but there are, and will
be, links between DDS and leading CASE toolsets and UNIX dictionary
products from leading vendors. Additional CASE tools will be supported
through support of the CASE Data Interchange Format (CDIF) standard.

• At first release, the DDS CDIF product ("DDS Data Interchange”) is
capable of importing and exporting all the subject areas defined in the
Interim CDIF standard - Entity-Relationship-Attribute diagrams, Data
Flow Diagrams and Data Inventories - as well as all DDS elements and
properties in CDIF format using ICL-specific extensions.

• The product is issued with an associated service, so that users can be
advised on the capabilities of the product and how those capabilities
can be tailored

An object-oriented view of DDS objects is supported through the PC-
based browser/editor DDS 'WINDOWS product (which is available today)
providing the following key features:

• graphical user interface to DDS, in a Microsoft Windows environment

• navigation through DDS

• browsing edit of DDS where the changes are prepared locally and a
single update is issued to apply the changes.

Ingenuity May 1994 43

The architecture provides for:

• description in DDS of more types of object, e.g. real-world objects,
program text, graphics objects, C programs and data

• improved ability to generate for IBM and UNIX systems

• re-map of DDS to use relational rather than IDMSX, giving potential
to port to GOLDRUSH.

6 .5 System s Management
The architecture's Systems Management element aims to manage
Corporate Client-Server Systems as a whole, and to manage them in
conjunction with systems with different architectures.

6 .6 Networking Services
The aim of the architecture, at the networking level, is to provide
interworking between our Corporate Servers and any other platforms.

This is achieved through a combination of direct support within the
Corporate Server for a set of core networking services, and provision of
gateway products.

6 .7 Platforms
The architecture provides for the different application components to be
hosted on various appropriate platforms to best effect.

Figure 17 Platform usage

44 Ingenuity May 1994

Open VME systems will continue to be enhanced by a range of faster
systems supporting the same order code. GOLDRUSH enables an order
of magnitude increase in relational database performance, together with
all the corporate qualities, without change being required to applications.

In a distributed function situation, server code runs on Open VME. This
code will normally be running under TPMS, obtaining its benefits as
described in other sections. Figure 17 shows a typical arrangement, with
relational access to GOLDRUSH. Application access to data management
on both Open VME systems and GOLDRUSH servers is via TPMS;
remote data management access (MIS access) to both Open VME and
GOLDRUSH is via SQL. Data management access from TPMS to
relational databases on Open VME and GOLDRUSH is via SQL.

7 Summary
Enterprises' application architectures, to be effective, need to use various
computing platforms together, each for what they do best. In order to
provide ease of use to the end-user, programmable workstations, such as
PCs, are likely to appear in the architecture. In order to provide secure
access to shared corporate data, Corporate Servers also appear.

This inevitably gives rise to a client-server architecture.

This paper has discussed what client-server means and how ICL's
Corporate Systems support it through:

• bringing TP to the desktop

• providing frontware for existing corporate applications

• enabling immediate MIS access to enterprise information

• providing high-throughput database servers (GOLDRUSH).

Acknowledgements
TUXEDO and UNIX are registered trademarks of UNIX Systems
Laboratories Inc. in the USA and other countries.

X/OPEN is a trademark of X/Open Company Limited in the UK and
other countries.

Microsoft is a registered trademark of Microsoft Corporation in the USA
and other countries.

Informix and WingZ are registered trademarks of Informix Software Inc.
in the USA and other countries.

Ingres is a trademark of the Ingres Product Division of ASK Incorporated.

VME, CAFS, GOLDRUSH and QUICK-BUILD are trademarks of
International Computers Limited.

Ingenuity May 1994 45

Reference in this paper to products other than ICL products is intended
solely to illustrate technical principles described in the architecture, and
not to assist readers in evaluating or using the products concerned.

References
BRENNER, J.B. Client-server architecture, ICL Tech. J. Vol. 9 Iss. 1 pp.
3-17, 1994.

BRUNT, R.F. An Introduction to OVENframework. ICL Tech. J. 8(3), pp.
351-364, 1993

DAY, R.P. The Architecture of ICL Corporate Client-Server Systems
document. CSD 259 issue 1, Aug 93

GARTNER GROUP INC. Fifth Annual Applications Development &C
Management Strategies Conference. Gartner Group Inc., 1992.

Biography
Richard Day

Richard Day joined ICL in 1969 with an honours degree in Mathematics
from Warwick University, and is now also a Chartered Engineer.

After early work in design, implementation and testing of System 4
COBOL components, he went on to lead the design and implementation
of a PL/1 code generator. Involvement in 2900 COBOL compilation
systems resulted in his becoming chief designer and then project manager
for that development, which was released as VME (C2) COBOL.

Later, he had management and design responsibility running a strategy
and design unit responsible for VME application development and
database, including language compilers, testing tools, a programmers
workbench and VME INGRES.

Recently he was appointed a Systems Architect, with overall responsibility
for Corporate Systems' Superstructure (application development and
database) and Client-server technical strategy and architecture.

46 Ingenuity May 1994

Exploiting Client-server Computing to
Meet the Needs of Retail Banking

Organisations

Mike Haynes, Geoff Ibbett and Dave Walker
Financial Services Systems, ICL, Slough, UK

Abstract

Retail banking organisations face increasing competition both
from other banks and other financial institutions. This trend is
being exacerbated by the deregulation of the financial services
industry which started in the mid 1980s and is placing increasing
pressures on the information technology systems in these
organisations. This article describes ways in which ICL uses
client-server technology to implement systems capable of coping
with the business and technology changes facing the financial
services industry.

1 Introduction
1.1 Background
This article describes the approach ICL Financial Services Systems has
adopted in developing a client-server architecture addressing the needs of
financial services organisations. It also introduces the components from
which ICL builds client-server systems for this marketplace.

In late 1990, ICL brought together all of its financial services activities
into a new global business. The objective of this unit, now known as
Financial Services Systems, was to develop a coherent strategy for the use
of information technology (IT) within retail banking organisations in
selected key countries and then to develop products and services enabling
the concepts that made up this strategy to be delivered to the customers.

Although the structure and organisation of financial institutions vary from
country to country, it is commonly accepted that retail banking is a
business offering core banking services (that is, deposits, lending and
money transmissions) to the general public. However, as financial service
organisations come to offer an increasingly wide variety of services, such
as pensions and insurance, this definition becomes inadequate.

Ingenuity May 1994 47

In the United Kingdom, the main providers of retail banking are high
street banks and building societies, although large retail organisations,
such as Marks and Spencer, now offer an increasing range of financial
products. In other countries, the dominant suppliers of such facilities can
include organisations such as the postal savings banks or credit
associations.

Throughout this paper, the terms retail banking and bank are used rather
than the more general (and probably more accurate) term retail financial
services.

1 .2 Ttie Retail Banking Environment
In the 1990s retail banks will need to respond rapidly to a business
environment characterised by uncertainty and change. Banks are
historically conservative and averse to taking risks, and will not meet the
challenge of change easily. The need for banks to respond to change is
paramount. Only those organisations that learn to adapt to change are
likely to survive.

Some of the pressures for change on retail banking organisations are
shown in figure 1.

Figure 1 Pressures on Retail Banking Organisations

Business Environment
Intense competition in the marketplace, accelerated by widespread
deregulation of the financial services industry, has dramatically changed
the business environment, forcing banks to react more rapidly than in the
past to changes in the market environment. Retail banking organisations
look for ways to reduce staffing levels and restructure their networks of
high street branches while simultaneously reprofiling the main staff role
from administration towards sales and services.

48 Ingenuity May 1994

Customers are increasingly demanding to do business on their terms,
using methods like telephone banking and self-service machines, rather
than in the traditional ways. Many of the staff reductions in recent years
are as a consequence of this change in attitude by customers.

New Enterprise
In banking, the concept of a branch is changing significantly with new
forms of distribution channels such as telephone and home banking
increasing in popularity and availability, redefining the roles of branch
staff and their jobs.

Information technology departments are being asked to deliver systems
supporting this much more volatile and dynamic form of business
environment.

1 .3 New Technology
In an industry in which most products are essentially the same,
information technology is seen as potentially a key instrument for
reducing costs and delivering competitive advantage.

Thus the key requirement is an ability to deliver flexible services to a wide
variety of different types of user, and through a variety of channels.

The rapid advance of technology in both hardware and software terms has
dramatically changed costs determining the most effective solutions. This
effect is particularly apparent in personal computers and open systems
technology.

There is an increasing need for systems which require the integration of
components from a wide variety of suppliers. This approach is facilitated
by the emergence of both formal and de-facto standards covering all
elements of IT solutions.

2 The Problem
2.1 The Existing Infrastructure
Retail banking organisations vary greatly in the way their information
technology systems are organised. Figure 2 shows a typical case. The key
characteristics are:

• centrally located core systems

• a geographically distributed branch network

• links to third party organisations

• a wide variety of different device types at different locations within the
network.

The sheer size of many of these systems and networks creates major issues
in the areas of systems management, change control and the logistics of
implementing change [Archer, 1994].

Ingenuity May 1994 49

^ Branch

& 1 _ W O [□
— ATMs — ATMs

Office I J

/ X?/ ATM switch
I controller VISA

Branch
Teller term inals / controller Head office 'X ^ H A P S

y ' da ta centres

Z Y f f l______ ^
A B B Viewdata links

Back
office_________________________________

Figure 2 Typical Organisation of IT in Retail Banking

2.2 Requirements
Business Related
For financial services organisations to compete in the dynamic
marketplace of the late 1990s they must protect their existing customer
base, attract new customers and increase their profitability. Banks can
retain existing customers and attract new customers by improving
customer service, responding more quickly to customer requests and
bringing new products to market quickly. For example they could:

• Provide customer-centred data and systems that give the bank a
complete picture of customer's relationships with the bank (in contrast
with account-centred systems).

• Develop new distribution channels for delivering existing and new
products, for example home banking and sophisticated self-service
capabilities.

• Provide any branch banking, enabling customers to access from any
branch the same facilities that are available at their home branch.

• Increase the flexibility of their existing information systems to make it
easier to offer additional facilities with existing products.

• Reduce the time to market of new financial products. The timely
introduction of new competitive products stops customers looking
elsewhere; that is, it provides one-stop shopping.

• Reduce or remove service charges on customer transactions.

50 Ingenuity May 1994

Profitability can best be addressed by increasing staff productivity and
reducing capital and operational expenditure. For example banks could:

• Provide bank staff with more effective information technology to
reduce repetitive tasks and improve decision making.

• Reengineer banking processes to minimise or eliminate redundant
activities.

• Reduce capital expenditure and maintenance costs of central, regional
and branch information technology

• Target sales and marketing activities more precisely.

Technology and Architectural attributes
The attributes and characteristics of the technology and IT systems that
can help retail banks meet these requirements can now be deduced. They
include:

• Consistency. A consistent technology platform (hardware, operating
system, communications, database, etc.) upon which organisations can
implement a variety of business functions.

• Potential for change. Systems must have the ability to be altered in
response to both business and technology changes with the minimum
of cost and impact.

• Rapid development. Systems must enable banks to bring new financial
products to market faster.

• Integration. Most financial services organisations have very large, and
often complex, core systems characterised by high volumes of database
accesses and connections to external services such as card networks
and inter-bank clearing houses. These existing systems are the
lifeblood of the business. New application systems at branch level
must be capable of integrating with these core systems with the
minimum of disruption, and also integrate business functionality with
standard PC-based application packages, such as electronic mail, word
processing and graphics.

• Flexibility. Systems must include components that can be used to
build solutions which meet the specific requirements of a wide range
of organisations, all doing business differently.

It is important that new systems do not compromise the key attributes of
existing banking information technology infrastructures namely:

• high branch connectivity

• high throughput on-line transaction processing (OLTP)

• high system availability and security

Ingenuity May 1994 51

3 Why Client-Server
Figure 3 illustrates the general concept of relationships between
components in a client-server architecture. The server component
provides a service to the client.

_______________ Request _______________
Client ----------------------------► Server

Component 4 __________________ Component
Response

Figure 3 Simple Client-server Model

In reality, client-server interactions tend to be far more complex than is
shown in the figure with multiple levels of interaction, all of which are in
a client-server relationship to one another. However, a full description of
client-server is outside the scope of this article which will concentrate on
the specific models supported by ICL's financial services architecture [see
papers by Brenner and Day in this issue].

The client-server approach, coupled with object-orientation, provides for
simplicity in design, flexibility in implementation and potential for change
in response to both business and technology pressures.

The separation of application functionality into client and server
components maps very well onto the structure of banking organisations in
which branches act as clients and core systems as servers. Provided the
interfaces between these components are clearly defined, it is possible to
enhance, develop and replace branch and core systems relatively
independently of one another.

Encapsulation enables the complexity of existing legacy systems to be
hidden behind well-defined interfaces whilst new, client applications are
created.

The use of object-oriented techniques to decompose clients and servers
further into interacting components enables the development of reusable
software objects.

The trend is towards increased distribution of function. The use of client-
server object-oriented design and implementation gives clearly defined
points at which functions can be distributed. By using implementation
technologies that allow clients and servers to interact without knowing
each other's physical location, it is much easier to change the ways in
which functions are distributed at a later date.

This separation of function means that it is possible to isolate changes to
small sections of the total system. This is key in the banking environment
where it is vital that change can be implemented with minimal risk. The

52 Ingenuity May 1994

large scale of many banking systems means that incremental change is
also far more practical as it allows it to happen in many small steps. At
each step the risk can be minimised, and any faults contained within a
small part of the total system.

4 Architecture
The overall model for Financial Services includes two major components
characterised by the environments in which they run, as shown in
figure 4.

Branch S ystem s 1 Core S ystem s
I

r—b — ■ r z J ia/am I Data centres^ ™ mTt I I
"*-* Branch server * \

Client i t o ^ j ■

Figure 4 Overall Architectural Model

Most organisations find it impossible to change all elements of their
existing systems at the same time. It was necessary, therefore, to devise
an approach that would allow individual banks to choose their own
priorities and timescales for what should be changed.

For most organisations there is a distinct break between those systems
implemented at the centre and those implemented at the branch.

ICL's approach has been to develop an overall architecture for retail
banking, based upon OWNframework, encompassing both branch and
core systems. This architecture takes client-server ana object-orientation
as two fundamental principles and comprises object models of both the
retail banking business and the associated IT gramework required to
support the business functions.

This approach facilitates not only the development of systems which can
be deployed in a variety of environments but also ensures it is possible to

Ingenuity May 1994 S3

develop and market core and branch systems independently whilst having
the confidence that they form part of one consistent and compatible
whole.

The next two sections describe two scenarios for implementation.

5 Core Systems Scenario
5.1 Introduction
The core systems scenario covers the development of the central systems.
It will normally be a requirement that this can be done without changing
elements of the branch systems and network.

The core systems in retail banking organisations have traditionally run on
mainframe systems located at a small number of data centres. On-line
transaction processing (TP) systems are used extensively by such
organisations to provide strategic, mission-critical applications. They
allow large numbers of users to access and process the organisation's data,
provide predictable response times and offer high levels of application
availability and integrity and security of data.

Access to these systems is required primarily from within bank branches
and is traditionally provided by clusters of terminals accessing a central
mainframe.

Many banks are considering a migration away from this mainframe
centred approach for a number of reasons:

• applications have become tied to out-of-date technology

• the raw price/performance ratio of mainframes has not kept pace with
that of PC and mid-range systems

• core applications cannot match the required rate of change in the
banking business and have become obstacles to progress.

This last point is probably the most crucial. Applications have been in use
for many years, and have become increasingly convoluted and fragile as
statutory changes have been applied and new banking services have been
added.

5 .2 Approach
The client-server approach to design and implementation can increase the
potential for change in core banking systems. Figure 5 illustrates ICL's
design for core banking systems, known as ORB/f. The central TP
environment is itself divided into client and server components. These
are co-ordinated by the distributed application services provided by
TUXEDO®.

Although TUXEDO has been chosen for initial implementation, the
design model makes no assumptions about the specific technology used to
implement the Distributed Application Services (DAS) layer.

54 Ingenuity May 1994

, x x
Distributed Application Services

Qaerver^ Qserver^ ^Server)

V_____________________________)

Figure 5 Model for Core Banking Systems

If other DAS mechanisms (for example, object request brokers, DAIS™,
DCE) become appropriate, they can be adopted without change to the
application code.

In this model, clients receive transactions from the bank's sub-systems,
(for example, the branch network, ATM network, etc.), transform them
into server requests, route them to the appropriate servers, collect
responses from those servers and send a reply to the originators of the
transactions. The servers are responsible for processing the requests they
receive, including any database updates required

The branch subsystem could be implemented using a variety of techniques
including one based on the client-server approach that is outlined in the
branch systems scenario described later.

This approach enables the bank to move the central TP environment to an
open systems platform without any modification to existing branch
systems. It is possible, of course, to move these client processes out into
the branches and generate service requests directly without intermediate
transactions.

5 .3 Distributed Application Services
TUXEDO's distributed application services provide the infrastructure
within which this client-server environment can be constructed. They
allow clients to issue service requests, route each request to an
appropriate server and relay its reply back to the originating client. It
also supplies many of the other attributes necessary for an open systems
commercial on-line transaction processing environment.

Branch Network ATM Network

Ingenuity May 1994 55

Location Transparency Service requests are routed by the DAS
element, removing the necessity for
the clients to be aware of where the
servers actually are. This enables
server reconfiguration without any
disturbance to the clients.

Replication Transparency The clients do not know how many
instances of a particular server are
running. The servers are capable of
receiving requests from more than one
client. Individual servers may be
replicated to provide increased system
throughput and high resilience
configurations with service requests
being processed by two or more
servers.

Access Transparency Clients and servers may be running on
different platforms which impose
different rules regarding data
representations. This transition from
one environment to another takes
place in a way which is transparent to
the components concerned.

Distributed TP TUXEDO's management of global
transactions ensures that transactions
using more than one service, possibly
running on different machines, are
either all committed or all rolled back,
thus ensuring data integrity.

Load Balancing Where there are multiple, functionally
identical servers running, the workload
is spread evenly among them.

Systems Management Facilities are provided to manage the
operational environment. Additional
servers can be started automatically if
workloads increase sufficiently for
service response to deteriorate beyond
a preset threshold. Servers can be
restarted automatically should they
fail. Servers can be moved from one
machine to another without affecting
the clients.

56 Ingenuity May 1994

5 .4 Preserving Ttie Strengths Of The Traditional TP Environment
High System Throughput The transaction processing engine

must service the high volumes of
transactions which retail banks
process. One way of ensuring this is
to exploit replication transparency and
load balancing by spreading the
workload between many mid-range
servers. Another is to use large
processing engines, such as ICL's
GOLDRUSH massive parallel
processor. A combination of the two
approaches could also be used.

High Availability Retail banks demand greater
availability from their core banking
engines, especially as banking services
are increasingly used 24 hours a day.
This requires the elimination of the
traditional batch processing periods by
interleaving on-line transactions with
batch activities. It must also be
possible to back up databases while
they remain available for transaction
processing and to perform systems
maintenance while continuing to
provide on-line services.

Replication transparency provides
facilities for transactions to be
processed by more than one server. If
these servers are placed on separate
machines and one should fail then the
transaction can still be processed by
the other, thus preserving system
availability. The requests received
during this time are stored and
forwarded to the other server once it is
recovered.

When a machine needs maintenance,
the servers located on it can be moved
onto another machine.

5 .5 Migrating to a Client-server Environment
To benefit from a client-server environment, an organisation must move
its workload from the current system to the new; this is a non-trivial task.
Any architecture must provide a clear migration path.

Ingenuity May 1994 57

Often, the fragility of existing applications will preclude changing them
just to support migration to a new environment. With TUXEDO,
gateways can be created to these systems enabling transactions to be
routed either to current systems or to new TUXEDO server applications.
By using parallel running, transactions can be routed to both old and new
systems. The routing may be altered by changing TUXEDO's
configuration tables rather than by changing any application code.

However, migrating old applications to the architecture defined above
may not be the first step. Perhaps a new application will be introduced
using the new architecture, with TUXEDO enabling coexistence between
the old and the new. Typically, a bank's existing systems will be account-
based, with customer data being replicated across each system for which
the customer has an account. In tnis environment, changes to customer
data do not keep in step across the applications and the bank will be
unable to obtain a coherent view of their customer base.

This is leading some institutions to build a customer database, linked to
existing applications. This database is intended to support sales and
marketing activities. Different client applications may need to access this
database to reflect the way that different business processes are mapped
onto the organisation. For instance, marketing and mailshot operations
might be a central function, some account-based sales may be from
branches and other more complex sales of financial services may be made
by mobile representatives working from regional centres. There may be a
telephone support centre where service staff may need to retrieve details
of the latest customer contact from any of these sources. The ORBr'f
client-server architecture is ideal for supporting these different application
styles whilst normalising and rationalising the data.

5 .6 Some Typical Configurations
The ORB/f client-server architecture provides a number of different
configuration options to support whatever the current business needs may
be.

One is for the core system to remain centralised in one location, either on
a single large open systems platform, a massively parallel open systems
platform or a number of inter-connected smaller servers. This is shown in
figure 6.

An alternative is to distribute the servers across a wide area network
either at regional or branch level, as shown in figure 7.

The architecture permits gradual migration of the workload from the
centre, to regions or ultimately, if required, to branches. A typical
configuration would encompass more than one of the above options.

58 Ingeuulty May 1994

0 0

Application Application
___ Servers ___ S erver

o o o o
T u x e d o /T " T u x e d o /T

— ' LAN >
T u x e d o U x * \

External S ystem s________Client Gateway i______________ f Branch /

\ f i l l ip Network j

Figure 6 Centralised Approach

Head Office S Ex,ernal Sy®,ems
Tuxodo/T \

|SC(frs(0) Network - l---------------------- Tu'x^gr~ | . ---- N
S) © © - N - 0

ClientStlliy t, Server L_____)

M / 'V Workstation L j ®ranc^ Workstation
------ / \ Client Client

Tuxedo/T*-^ \

m <d - M \
Server ____ s \

Workstation L J Branch 1 1 Workstation | Yuxedo/t -------
Client 4 ¾ ¾ Client (H> © J

Server ____ «•

I I Branch I_I
Workstation h a t i K Workstation

Client " ' ^ 5 Client

Figure 7 Distributed Approach

6 Branch Systems Scenario
6 .1 Introduction
The branch systems in retail banking organisations have, in the main,
been either completely free-standing, or simple terminals used to access
the core mainframe systems of the type mentioned earlier in this article.

Ingenuity May 1994 59

There is increasing demand for the branch-based systems to be far more
flexible and user-friendly. This arises from the need to obtain both higher
levels of service to customers and increased productivity for bank staff.

This has resulted in demands for new methods of accessing bank systems.
For example, customers are making greater use of terminals in branches,
and are increasingly likely to conduct their banking from home or the
office via telephone; travelling sales people are using laptop computers.
Ideally it should be possible to develop widely varied methods of access
without having to make fundamental changes to the core systems.

Furthermore, it is also desirable, in the interests of cost and efficiency,
that these different methods of access should be constructed, as far as
possible, from the same, reusable components. Developments in client-
server and object-oriented software technology, together with advances in
PC hardware technology, mean that it is now possible to deliver such
systems in a cost-effective way.

6 .2 Current Situation
The technology used within the branches of a typical western bank has
normally evolved over a number of years. The IT for a typical branch
would look something like that shown earlier in figure 2.

This relatively simple diagram conceals considerable diversity and
complexity, in both hardware and software terms. Over the past 30
years, successive layers of technology have been added on top of existing
systems until, in the words of one bank's IT director, the TT system
resembles an archaeological dig!

Even when systems are physically co-resident they are typically not
integrated with each other in any way. The ATM network for example is
often a free-standing network that does not use any of the IT
infrastructure that has been installed for the branch. At best it may share
some of the communications infrastructure.

6 .3 OMNIA Client-Server Model for Branch System s
The branch part of the ICL Financial Services solution for retail banking
is called OMNIA™. The model for OMNIA divides the branch based
system into a further two tiers, as shown earlier in figure 4.

In this model, the branch software can be considered to be split into two
distinct classes, those resident on the client and those resident on the
branch server. The client and the branch server are always located in the
branch. Access to the core systems across a wide area network is always
via the branch server. The core systems are then treated as another layer
of server and are accessed in a consistent way from the viewpoint of
branch applications.

The core systems may be existing systems based on traditional mainframe
technology. These are accessed via a software interface which hides the
details of the core systems implementation. This allows them to be
accessed in a client-server mode. Alternatively, the core systems can be
60 Ingenuity May 1994

more modern systems that use client-server architecture as outlined in the
previous section. In this case the main difference is that there will already
be client-server interfaces in place, and it will not, therefore, be necessary
to develop special code within the branch systems to present a client-
server interface to the core systems.

Key to this model is the fact that applications resident at the branch level
should be largely independent of whether the core systems have been
implemented using traditional mainframe technology and techniques, or
whether they are based on the client-server and distributed processing
techniques.

Client systems should be based on common technology to provide
benefits in terms of integration, economies of scale and ease of
implementation and support.

The current variety of systems resident in the branch are all refocussed
onto a single applications infrastructure. This is flexible enough to
support the wide variety of applications and user interfaces that current
and future systems will demand.

6 .4 Branch Servers
The branch server provides those elements of functionality that are either
common to all workstations in a branch, or which it would be
uneconomic to provide at each workstation.

Another key function of the branch server is to provide a client-server
method of interacting with the core systems. These core systems are
isolated behind a software interface. This allows applications to be
developed within the branch, independently of the method of
communicating with the core systems.

6 .5 Client System s
A central part of client systems is the concept of a workplace, i.e. an
environment designed to support a specific job role within the
organisation such as a teller or a sales advisor, or even a customer using
banking services via an ATM or over the telephone.

It is important to understand that these terms are not hard and fast
definitions. In practice, each organisation will define the roles, and the
processes which they perform, to suit their business needs. This means
that ICL must be capable of delivering extremely flexible and configurable
systems.

Figure 8 shows a conceptual view of a workplace.

A workplace comprises both hardware and software with, as far as
possible, much of the generic functionality supplied by common
components, such as user interface enablers, access and authentication
facilities and workflow software. Office functionality, such as electronic
mail and word processing, may also be shared between workplaces.

Ingenuity May 1994 61

Figure 8 Conceptual View of Workplace

OMNIA makes use of standard ICL and third party products wherever
possible so that ICL Financial Services can concentrate on the provision of
those added value components which are either specific to the financial
services industry, or are required to provide the flexibility and potential
for change that retail banks demand.

It is also a goal that the same business functions can be delivered through
different sales channels using the same software technology. For
example, the software for withdrawing cash from an ATM should, except
for obvious exceptions due to the nature of the environment, be the same
as that used to implement a manned teller workstation or a telephone
banking system.

This strategy leads naturally to the adoption of object-oriented methods
of design and implementation.

Central to this strategy is what we have called the OMNIA Banking
Frame, which comprises the business and system objects and services,
together with the tools required to enable application developers to create
business solutions to meet the requirements of each individual
organisation.
62 Ingenuity May 1994

OMNIA Banking Frame
The OMNIA Banking Frame comprises

• a retail banking business model which defines the business objects.
(Note this covers both branch and core systems)

• a set o f business objects, which support specific business functionality
relevant to financial services, such as cheque and till managers, as well
as generic objects such as customer

• an IT framework object model, which defines the service objects and
the environment in which the business objects operate. (Note this
covers both branch and core systems.)

• a set o f service objects, whose role is to insulate the applications from
the environment, thereby maximising the potential for change.
Examples of service objects are Database Manager, Screen Manager,
Security Manager, Host Manager

• a set o f development tools and design templates, to enable users to
exploit the business and service objects to create a wide range of
financial services applications. This development environment covers
all the activities from business process definition through to actual
implementation of software systems.

The OMNIA Banking Frame has been designed to provide maximum
flexibility for organisations in the way in which they implement their
retail banking branch systems. While the business objects themselves may
be configured to provide a range of business functionality, the service
objects within the IT framework model insulate these business functions
from the environment, such as database access and distributed application
services.

At the branch level, database access is required for journalling purposes at
branch server level, and is currently implemented via a service object.
However, in the future we anticipate that Microsoft® Open Database
Connectivity (ODBC) will be the preferred solution.

Distributed application services are currently provided either by SQL (for
client-branch server interaction as described above) or by Advanced
Program to Program Communications (APPC) protocols for interfacing
with core systems. This allows the client to emulate existing interfaces
with hosts without the need for any changes to existing mainframe
applications. For environments with UNIX servers, TUXEDO provides
the carrier capability; in the medium term we anticipate using object
request broker technology to support access to heterogeneous servers (see
previous section for more details on server strategy).

6 .6 Migration from Existing System s
Most organisations are not in a position where they can make a
completely fresh start. A key requirement is that there is a clear and
sensible way forward from the existing systems to those based in the

Ingenuity May 1994 63

client-server techniques identified in this paper. This may be achieved in
a number of ways:

• PC based systems can be used to emulate existing methods of working.
By choosing the appropriate mix of hardware and software it is nearly
always possible to emulate the existing system with the minimum of
change. The PC may simply emulate a terminal connected to a
mainframe, or it may be required to perform more complex tasks.

• Additional functionality can often be obtained from the emulation of
existing systems simply because they run within the same operating
environment and infrastructure as the new client-server applications.
By using encapsulation techniques, the old and new applications can
interact with each other.

• New systems are then developed which operate naturally in client-
server mode. These co-exist with the older systems which will
gradually be superseded by new ones of higher functionality that have
been developed using the client-server approach, and object oriented
design.

Furthermore, this approach applies to migration of both business
functionality and technology. As described earlier, business functionality
is clearly separated from the technology which supports it enabling
technology migration and evolution to take place alongside the evolution
of the business functions.

7 Conclusions
ICL Financial Services Systems intends to be at the forefront of those who
are providing systems to the retail banking marketplace. The strategy is
to exploit client-server technology and associated techniques, such as
object-orientation, to build flexible cost-effective solutions that can be
adapted to the rapidly changing business and technology environment.

The client-server approach to building systems is flexible enough to be
applicable to addressing the needs of the central core systems and the
geographically distributed branch systems. This is a very powerful
endorsement of the basic paradigm behind client-server computing.

References
ARCHER, B. The Management of Client-server Systems, ICL Tech / ,
Vol. 9 Iss. 1 pp. 122-137, 1994.

BRENNER, J.B. Client-server architecture, ICL Tech. J. Vol. 9 Iss. 1 pp.
3-17, 1994.

DAY, R.P. How ICL Corporate Systems support Client-server: an
Architectural Overview, ICL Tech. J. Vol. 9 Iss. 1 pp. 18-46, 1994.

64 Ingenuity May 1994

Definitions
ORBA - Open Retail Banking Architecture, ICL's overall business and
technical architecture for Retail Banking

OVENframework is ICL's systems integration architecture and
methodology.

Acknowledgements
TUXEDO is a UNIX transaction processing system available on a wide
range of platforms and is capable of interworking with PC client systems
and a range of servers. TUXEDO is a registered trademark of UNIX
Systems Laboratories, Inc., in the U.S.A and other countries.

DAIS is an application development and systems integration tool kit for
building client-server applications in a multi-vendor environment. At its
core is an object request broker. DAIS and OMNIA are trademarks of
International Computers Limited.

DCE is the Distributed Computing Environment from the Open Software
Foundation

Biographies
Mike Haynes

Mike Haynes joined ICL from university in the late 1960s. Apart from
three years spent with a micro computer manufacturer he has worked for
ICL ever since. His career has been spent in various software roles,
including compiler writing for 1900 and early 2900 Series computers,
writing software for ICL's Distributed Array Processor and 10 years spent
managing all aspects of ICL's mainframe and mid-range CASE
(application development) programmes.

Since the beginning of 1993 he has been responsible for the development
of the systems architecture for ICL Financial Services Systems.

Geoff Ibbett

Geoff Ibbett joined ICL as a graduate trainee in 1984. His career has
been primarily in software development and product consultancy, with a
break of two and a half years working outside ICL. Since joining ICL
Financial Services Systems in 1991, he has held positions as a banking
product consultant, product integration manager and latterly as designer
of a core banking system based on client-server approach, online
transaction processing technology and object oriented techniques.

Ingenuity May 1994 65

Dave Walker

Dave Walker joined ICL from university in the early 1970s. He has
worked throughout this period in the various ICL units that have been
responsible for selling systems in the financial marketplace. He has
always specialised in systems that involved significant amounts of
networking or integration expertise.

His current role is as a Systems Integration Consultant to ICL Financial
Services Systems with particular responsibility for technical issues
involved in implementing client-server systems for customers.

66 Ingenuity May 1994

A Practical Example of Client-server
Integration

Andy Ellis
OPEN framework Division, ICL, Bracknell, UK

Abstract
Systems Integration is often viewed as primarily a technical
problem, yet many of the issues may not be technical. In this
paper a case study is presented which describes how a problem of
integrating an existing system into a new client-server
environment was resolved. The problem had been perceived as
technically difficult yet was resolved by analysing the business
environments within which the systems operated before designing
a technical solution.

1 Introduction
The spread of client-server architectures is bringing an increased degree of
information systems integration to many organisations. The effects of a
move to a client-server architecture are relatively easy to manage when
changes are localised to a single department. However, when the changes
extend across an organisation many more factors come into play, many of
which were seen by the manufacturing industries in the early 1980s when
they moved to Computer Integrated Manufacturing.

Isolated islands o f automation gave way to integrated design to delivery
processes with an integrated business system managing the automatic
transfer of information between the different sub-processes. These
changes were driven by a need to reduce costs to cope with tough
competition world-wide. There was also a rapid rate of change in
demand, in technology, and in customer expectations [Ranlcy, 1986].
Finding a solution quickly enough became as much a question of business
survival as of competitive advantage. Service industries now face similar
pressures.

When organisations move from disparate islands o f IT to some form of
distributed client-server architecture, there may be business and political
impacts as well as technical. This paper seeks to explore some of these
impacts by examining a recent case study in which the need to integrate

Ingsnulty May 1994 67

disparate systems arose from a merger of two businesses, one of which
was changing to a distributed client-server architecture.

2 The Case Study
2 .1 Initial Assessm ent
The management of two merged businesses believed that it was inefficient
and uneconomic to run two equivalent, but different, IT systems side by
side to support a combined business operation and decided that the
disparate IT systems should be integrated. They saw this as a technical
issue and so requested a systems integration plan that would move them
to one organisation supported by a single seamless IT system. The
questions were - what choices should be made, when, and why?

Company A was a roadside vehicle repair and recovery services
organisation with a number of regional Response Centres taking
telephone calls from customers and deploying the required assistance.
Each Response Centre was taking some 15,000 calls per week on average,
but with substantial variation in load according to time of day and
weather conditions. In the past, the Response Centres had used dumb
terminals connected to small local mainframes, linked in turn to the
corporate administrative mainframes (figure 1), but software changes had
been taking too long to implement prompting a move to the greater
flexibility and capability for rapid change generally associated with a
client-server architecture.

Figure 1 ICL Mainframe response centre environment

68 Ingenuity May 1994

The new distributed client-server system was based on UNIX servers and
PC workstations (figure 2), and was being implemented in-house. This
used a Windows-based call-handling front-end on an Intel486 PC using
services on local UNIX servers but with direct access across the corporate
network to servers located at other Response Centres to provide
resilience. Communication with the administrative systems still running
on corporate mainframes was via terminal emulation protocol (TEP)
services supported on these local UNIX servers for interactive queries,
and via a modified TP service for automatic transfers.

Figure 2 Client-server response centre environment

Company A was profitable and had decided to expand its business by
acquiring Company B.

Company B specialised in deploying roadside repair and recovery services
for commercial vehicles, up to and including heavy goods vehicles, and
had valuable experience of using IT effectively in this type of business.
However, it was a much smaller company and had just one Response
Centre taking some 2,000 calls per week on average. It was successful in
its chosen market segment using an IT system developed in-house and
running on an IBM AS/400. The IT system was supported, maintained
and enhanced by a small and dedicated development team, proud of their

Ingenuity May 1994 69

IBM skills and of the success of 'their' system in supporting the business.
Intel486 PCs were connected to an AS/400 connected in turn to an
administrative system, again an AS/400 (figure 3).

Figure 3 AS/400 Response centre environment

To reduce costs and improve efficiency, the management of the combined
company decided that any customer call would be taken at any Response
Centre and, if necessary, transferred to another, without being
constrained by the technology. It was accepted that this would probably
be limited in practice so that calls from a particular region would
generally only be redirected to centres in adjacent regions. This was part
of an objective of one business supported by a single, seamless
information system. In particular the Response Centre from Company B
would be amalgamated physically with one of the Response Centres from
Company A. Many of its enquiries were then to be directed to Company
A's other Response Centres.

The management were now looking for a technical integration plan which
would lead towards this objective.

2.2 Evaluation using OPEHframework
The first stage of the study was to gain a broad understanding of the
nature of the IT systems from each company, what facilities were
provided in the Response Centres, and how much discrepancy there was
between them. It was important to understand the current situation in
sufficient detail. It was not practical to discover everything that might
have an impact, but it was essential to minimise the risk of major factors
being overlooked.

The approach was based on analytical models from OPENframework, and
on the method outlined in figure 4. The scope of the study was restricted

70 Ingenuity May 1994

to the Response Centre operations, excluding the administrative systems.
The main force for change at this time was the desire to amalgamate the
Response Centre from Company B with one from Company A.

Figure 4 Evolution Planning method

The basic situation as described appeared to offer an immediate answer to
technical integration of the IT systems. Using the new distributed client
server system it appeared likely that, with a suitable choice of terminal
emulator on each PC and a gateway to provide the necessary translation,
the AS/400 could become another server accessed across the network
from each PC as required and fitting naturally into the client-server model
(figure 5). Further AS/400s could be added at other Response Centres to

Figure 5 Integrated environment

Ingenuity May 1994 71

provide additional resilience and to cope with anticipated business
expansion. This would be a relatively straightforward answer to the
immediate need for operational integration of the Response Centres
although not fully answering the requirement for seamlessness because of
functional difference between the two company systems.

2.3 Analytical Approach
This approach made it possible to assess whether seamlessness was
important as well as identifying other requirements. Individuals from
each company were identified representing the business and technical
perspectives from QVENframework - Enterprise Manager, Customer,
Trading Partner, Employee, User, Application Developer and Service
Provider. Due to the sensitivity of the study, the customer perspectives
were represented by individuals from within the company; this restriction
was judged to be acceptable in this case. Requirements capture from the
other perspectives was carried out through individual interviews due to
the limited time available and the limited availability of the people
representing each perspective. Normally this phase would have been
carried out through workshops to reduce the time taken to resolve
disputes and conflicts.

The business purpose to be achieved by integrating the systems, the
benefits expected and the business related capabilities that should not be
lost were captured, with the terms of reference for the study providing the
context. Integration priorities were expressed in terms of the
OPENframework Qualities. As a control, the critical success factors,
risks, and mission-critical factors for each perspective were also
ascertained.

In addition, each interview identified extra people whose views should be
considered. In the early interviews a number of further people were
identified, but few new names appeared from the later interviews. This
approach provided a check on completeness. In the event, time proved
too short to interview everyone but the OEENframework model of a
limited but balanced set of perspectives gave confidence that a sufficient
subset of individuals had been questioned. Few interviewees could cover
all areas, but the extent to which information was duplicated by the later
interviewees gave confidence that all relevant areas had been covered and
in adequate detail.

2 .4 Analysis of the Information
The high volume of information collected, some 15,000 words of
abbreviated notes, was then reviewed and assessed for completeness. At
this stage, and with this volume of information, it was difficult to be sure
where the gaps were. To digest this information it was converted into
meaningful one line statements, each holding a single message, such as
Management should be able to divert calls to alternative response centres
for managing workload. This reduced the information to some 450 one
line statements. By partitioning them under the headings - Vision, Forces
for Change, Risks, Benefits, Critical Success Factors, Existing Plans,

72 Ingenuity May 1994

Requirements, and Solutions, they were rationalised to approximately 350
one line statements and 30 suggestions towards solutions.

The many requirements were further divided across the OPENframework
qualities and technical elements. The requirements at a business level
were divided according to the model in figure 6. This model was derived
by relating the technical elements of OPENframework to the five layer
model of business transformation [Kay, 1993], Deming's work on
statistical process control [Neave, 1990], and recent changes observed in
business practice [Peters, 1988 and 1992]. Finally, each one line
statement was checked to ensure that it lay within the scope of the study
before being linked with the IT environment more affected by that
particular issue. As the picture built up some clear messages became
apparent.

Figure 6 Business requirements model

2 .5 Other Issues
The analysis showed that further technical detail was needed from the
development teams and from suppliers of specific products to uncover
technology opportunities and to identify likely technology constraints. It
is not unusual to find an apparently minor technical detail which is a
major hindrance to an otherwise appealing technical solution. By
interviewing relevant technicians it was discovered that there was a subtle
difference in the use of the ethernet protocols in the two environments.
This difference was likely to cause difficulties with routing messages

Ingenuity May 1994 73

across the wide area network. As a result, extra constraints were added to
the Networking Services section of the analysis to ensure that this
problem was avoided.

The approach also made it straightforward to eliminate duplication. Any
conflicts identified were followed up, either with the individuals who
originated the conflicting requirements, or through relevant working
parties and committees.

By this stage the broad picture was well understood which made it much
easier to focus on the relevant details from the mass of hardware and
software configuration information available. The high level verbal
descriptions of the current operational systems were expanded by
obtaining detailed configuration diagrams which identified the specific
combinations of hardware and software components being used. It
became clear that the new client-server system of Company A was still
under development and had not yet been installed in any of the response
centres, although the first live test environment was about to be
implemented.

It was now possible to understand more fully the implications of the
planned migration path from the existing mainframe-based environments
which were still active to the new client-server system. In particular, the
stable and effective systems from company B were expected to undergo
substantial change to be integrated with a client-server environment that
had not, at that time, even been tested in a live environment, and parts of
which were still very much under development. A further complication
involved the interfaces between the administrative systems of the two
companies. These were outside the immediate scope of the study, yet had
to be included in the integration plan, at least in outline. Without them it
was impossible to appreciate in full the nature of Company B's operations.
On-line access to their administrative system was necessary for deciding
whether a particular enquiry would be accepted.

3 A Fresh Perception of the Problem
3 .1 Management Issues
It was now clear that the situation was far more complex than had been
described at the start of the project. As the management's intentions for
the integrated system were not consistently understood, each person
involved was interpreting their part of the problem in a different way. N o
one person had a clear overall view of all the relevant factors at business,
political and technical levels. Yet the analysis had shown that the
operations from Company A were likely to gain significant business
advantage with minimal risk, whereas the operations originating in
Company B faced a major upheaval which was to bring them almost no
benefit and could diminish their competitiveness. There was, therefore,
much resistance to the proposed changes from Company B's staff and it
was this that had been blocking progress.

74 Ingenuity May 1994

The two businesses were in many ways dissimilar, and what had appeared
to be almost identical business processes were actually very different. On
the one hand (Company A) the emphasis was on handling a high volume
of calls as quickly and economically as possible and at minimum cost,
typically taking just 2 minutes per call. On the other hand (Company B)
the emphasis was on providing a high quality service with personal
attention. In some cases it was possible for a single call to incur the best
part of a day in finding a specialist supplier with the right skills and
spares.

So the operators in the Response Centres from Company A were
essentially production line workers handling calls as quickly as possible
whereas in the Response Centre from Company B the operators were
highly skilled specialists dealing with calls from professional drivers about
a wide range of commercial vehicles. The two businesses also differed
dramatically in the time scale of change in their markets, 6 months as
against a few weeks; the commercial vehicle market was very competitive
and undergoing rapid change, whereas the personal market was driven
more by broad market trends.

These differences raised a number of issues that had to be resolved before
an appropriate technical solution could be designed One of the highest
priorities was to decide how the operational integration of the centres was
to be managed and what form the merged Response Centre operations
should take. Because of the operational differences between the two types
of response centre it could not be a straight amalgamation; the nature of
the operational tasks meant that operators would have had to switch
continually between very different types of work, degrading their quality
of response for high-value calls whilst adversely affecting their
productivity on high-volume calls.

After discussion and negotiation, particularly with staff familiar with both
Response Centre operations, it was found possible to combine the
activities of the two types of Response Centre in a way that provided
management with sufficient operational flexibility. In essence this
consisted of having a pool of production line operators together with a
section of more specialist operators. This gave the operators an enhanced
career structure. With some other changes at supervisory and
management level as well, all levels of staff were encouraged to make the
change succeed

A less immediate priority was to reduce the variety of types of hardware
platform where possible. Senior management expected the technical
choices to lead strategically in this direction although pragmatic technical
anomalies were acceptable if they were sufficiently low cost and did not
obstruct the longer term view. This made it acceptable to consider a
temporary combination of terminal emulators and communications
software stacks on a limited number of PCs to offer flexibility in the
changeover period. This appeared likely to give early operational benefits
as the chosen UNIX platform could be introduced as a gateway between

Ingenuity May 1994 75

the two environments to provide remote access to the AS/400 from the
client systems.

3 .2 Application Development Issues
The two businesses also used different application development methods,
tools and management processes. Company A had a sizeable development
team using standard large team management and development methods
supporting a phased client-server implementation, optimised for handling
high throughput volumes. Changes to the applications were made on a
six-monthly cycle. New requirements were derived by another
department from statistical analysis of market trends. In contrast,
Company B had minimal and lean management processes and used an
integrated CASE environment to support a development approach of
rapid prototyping followed by swift asynchronous implementation and
roll-out within weeks of customer-demanded changes. Prototyping was
usually carried out in the presence of someone from the particular
customer business requiring the change.

Thus, as well as the operational issues within the Response Centres and
technical issues about integrating dissimilar IT environments, there were
now human factors and management issues from the development
environment. To insist on applying in full the more bureaucratic
management methods of the large development team to the working
environment of the small, rapid response team would have destroyed one
of that team's key strengths - flexibility. A fast-track simplification of the
management processes was needed that would provide sufficient control
with fewer change reviews by management. The development
environment needed to allow the use of both rapid prototyping and
phased delivery techniques in parallel. A suitable organisational structure
would encourage differences between the two teams rather than leading
to uniformity and would be necessary for success in the two very different
markets. The organisational structure recommended is shown in figure 7.

Figure 7 Proposed organisation

76 Ingenuity May 1994

3 .3 Organisational Structure
The purpose of the architecture group was to ensure that the systems
would continue to support the business throughout the changes. To
achieve this it was recommended that members be drawn from the
business units as well as the information systems departments. Their
skills could be enhanced by appropriate education and training. The
infrastructure team would specify and police the middleware, the
infrastructure and communications components needed to enable
applications on a particular workstation to use services from a number of
servers. They would ensure that standardised services to support the
various distributed applications would remain independent of the short
term needs of particular applications. This would help in maintaining the
overall system's potential for subsequent change by defining firewalls
between parts of applications, thereby limiting the impact ana scope of
subsequent change. The three remaining teams focused on developing
pilot applications for new product opportunities, on developing readily
changed applications, and on producing optimised high volume
applications.

The clarity that resulted from this analysis provided a common
architectural view. The associated suggestions for technical activities
encouraged the two technical teams to work together to a common plan
and to take on joint responsibility for the ongoing technical aspects of
integration.

4 Conclusions from the Case Study
4.1 Increased Complexity
The transition to a distributed client-server architecture brought to the
fore many of the issues and advantages that arise with Open Systems.
The islands of IT previously supporting the individual business functions
were now being brought together in enterprise-wide information systems
to support a rationalised business operation. The changes to the business
accompanying the integration of these disparate IT systems, possibly
including subsequent dispersion into separate operating companies,
brought additional levels of complexity to the whole process of change.
Business, political and technical factors all had to be considered for
success to be achieved.

With so many factors being relevant, it was necessary to adopt an
approach that had a sufficiently wide scope. In this case OPENframework
provided the necessary breadth and helped to partition the problem into
manageable sections; it also provided a structure for managing the high
volume of information involved. The completeness of its models helped
to show up significant gaps in the requirements specified allowing an
opportunity for these omissions to be rectified. These gaps, including
some which, when filled, changed the requirements on the middleware
infrastructure, would have been extremely costly to correct if they had
been left to a later stage in the integration project. Most of them arose

Ingenuity May 1994 77

from the wider business context and so would have been missed if a
purely technical approach to systems integration had been taken.

4.2 Change in Business Processes
Full benefit was unlikely to be achieved merely by integrating the
underlying information systems. The client-server approach encouraged
much greater movement of information around the organisation, together
with a wider spread of the functions provided. This introduced
opportunities to combine, modify and improve the operational processes
within the business. As a result, political territories within the business
were likely to alter as roles and responsibilities changed.

4.3 Middleware is Significant
With more technology suppliers adopting an Open Systems approach
technical issues were becoming a smaller proportion of the integration
problem. However, there were still significant middleware conflicts
where so many factors met. This was an area where clear firewalls had to
be established and maintained, so needed to be highly valued by
management. This was to be achieved by setting up a specific middleware
team.

4 .4 Coexistence
The last conclusion reached was that, as the existing systems would have
to co-exist with the replacement systems for some time, there would be a
period during which extra operational overheads would outweigh the
anticipated returns. As the full business benefits would only be achieved
once the existing systems began to be decommissioned, management
would have to maintain strong commitment throughout to capture the
potentially rich rewards.

5 Recommendations for Other Projects
The conclusions from this study indicate areas which other projects might
benefit from considering. There are some further general
recommendations which can perhaps be drawn from this study.

5.1 Business Policies
The many contrasts between the two businesses exposed a number of
areas which needed to be addressed by company-wide policies. Policies
were needed to ensure a consistency of approach throughout the period of
change, particularly in regard to changes to the operator roles and career
structure, and to clarify the way in which these roles would be supported
by the integrated information systems. Although these policies were not
directly aimed at the information systems, they were needed to ensure
successful use.

5 .2 Infrastructure Policies
The contrasts between the development teams and their development
tools and methods also indicated a need for company-wide policies. The
most immediate of these arose with respect to the middleware

78 Ingenuity May 1994

components. As the modification time scales required by one of the
markets were so short, it was critical that swift and frequent changes
could be made in the low volume applications. However, it was
imperative that these changes would not have an undue adverse impact on
the performance of the high throughput applications, even though both
would be running across the same middleware.

This conflict should be managed from both business and technical levels
to ensure that appropriate criteria are adopted in making trade-offs
between the two. Benefits from investment in infrastructure can often be
hard to quantify, yet it is fundamental to distributed client-server systems.
It is recommended that this should be championed by a specific member
of the architecture team who can, by understanding both business and
technical issues in significant depth, develop and maintain a solid business
case and ensure that the importance of the infrastructure is generally
recognised and accepted.

5 .3 Development Methods
One might assume that an information system will automatically be easy
to change if it is based on a client-server architecture. Unfortunately, this
is not the case. If the information system is seen as one development
instead of as a series of co-operating components, the integrity of the
firewall interfaces, which localise the effects of change and allow for
heterogeneity within the system, may get degraded Those firewalls
should be specifically designed and maintained

The architecture team, being responsible for the structure and integrity of
the overall system, may be a natural and appropriate owner of this
responsibility. With a broad overall view and an influential role, this
team should be in a position to recommend those policies which will
protect the firewalls and hence maintain the ongoing potential for change
of the system. This approach also appears to support continued
heterogeneity within the system.

5 .4 Architecture
Finally, with Openness becoming more widely adopted in the IT industry,
systems integration is increasingly about choice between viable
alternatives and less about finding a single technical solution. Thus, one
has to collect and understand sufficient information about the business
context for cost and benefit comparisons to be carried out. This large
volume of information can be managed successfully if the business and its
supporting information systems are represented and documented in the
form of a coherent model, an architecture.

In this particular study the company was able and keen to resume
responsibility for the technical aspects of its integration problem as soon
as it had the clarity of understanding that comes from such a
representation.

Ingenuity May 1994 79

References
RANKY, P.G., Computer Integrated Manufacturing, Prentice Hall
International, 1986

NEAVE, H.R., The Deming Dimension, SPC Press Inc., 1990

PETERS, T., Thriving on Chaos, Macmillan, 1988

PETERS, T., Liberation Management, Macmillan, 1992

KAY, M.H., The Evolution of the OPENframework Systems Architecture,
ICL Tech. J. Volume 8 Issue 3, May 1993

Biography
Andy Ellis

Andy Ellis is a Chartered Engineer. He graduated in Mathematics from
the University of Cambridge and joined ICL in 1988 having worked in
various capacities with large scale scientific systems for SERC and with
telecommunication systems in STC. His work has covered a wide range
from software and hardware development through to business
consultancy. He is a Senior Management Consultant within
OPENframework Division.

80 Ingenuity May 1994

From a Frog to a Handsome Prince:
Enhancing existing character based

mainframe applications

Alan Beer
Project Manager, Solutions Centre, OPEN framework Division, ICL,

Bracknell, UK

Abstract

Many mainframe applications have been developed over the past
few decades. Studies have shown that the life of an application
and its associated data can be well over 20 years. Must we then
retain dated character mode interfaces for the end user?

This paper outlines some of the practical possibilities for moving
these existing character-based mainframe applications into a
Client-Server mode of operation. In this mode one can then add
Image; Black & White and Colour, Video; Pictures & Sound and
many other technologies to enhance legacy applications with
minimal, and in many cases no, change to the mainframe
application itself.

This paper traces the experiences of one particular ICL Mainframe
customer. They were interested in two aspects of the problem,
how to develop such distributed Client-Server systems and what
problems would be encountered. They chose to investigate, the
move to Client-Server, by means of a workshop.

1 Introduction
A large number of organisations rely on operational Information
Technology (IT) systems developed over 5 years ago. These systems were
developed before the PC revolution which dramatically altered the PC
price/performance and generally increased the capability of desktop
workstations.

PC systems can now be bought at a very attractive price. It can be cost
effective to replace some, or all, of the character only, green on black,
dumb terminals currently in use. However one of the significant
advantages of the mainframe-centred, dumb terminal, approach is that
control is vested in one place in the organisation.

Ingenuity May 1994 81

Where the user is known to have a PC the developer of an application can
provide a more pleasing or friendly interface for a particular application
or system. This interface allows the user to access the system using such
facilities as graphics, windows, icons and a mouse. The user can make
selections and perform computer tasks using a click of the mouse.
Previously they may have had to type in textual commands to achieve the
same effect.

Using this graphical mode the PC now has some intelligence running in it,
in the form of a computer program. That intelligence is placed on the PC
to make the user's job easier. But in placing programmed logic onto the
PC we have introduced a level of complexity we did not have before. It
also introduces a problem of coordination and control. How can we be
sure that the version of the graphical interface is the correct one for this
application? Who loaded it onto the PC? What else is on the PC? If
something goes wrong, which part of the system is at fault?

Giving the user a PC both improves the situation and introduces potential
problems. How then do you give the user a PC, in order to improve the
interface, yet still retain control? To answer this question the paper traces
the experiences of one particular ICL mainframe customer. They were
interested in two aspects of the problem, how to develop such distributed
Client-Server systems and what problems would be encountered.

After discussions with ICL, on the subject of Client-Server, the customer
requested a workshop in order to build a prototype system. The idea of
the prototype was merely to demonstrate the possibilities that such an
approach might offer.

2 The Workshop background
The first question the customer asked was 'exactly what is Client-Server?'

2.1 What is Client-Server?
We all may believe we have a good idea of what Client-Server is and what
it is not. Full explanations appear in other papers in this journal. A basic
explanation is available in [Brenner, 1994].

The three terminals shown in Figure 1 are dumb, or legacy, terminals
connected to a mainframe. All the intelligence is driven from the
mainframe. A single terminal may be replaced by a PC. Is that Client-
Server?

Using a Gartner Group definition, Ref [1], we see that Client-Server is the
'Splitting o f an Application into Tasks that are performed on Separate
Computers, one o f which is a Programmable Workstation (e.g., a PC).'

So separate tasks run on different (interlinked) computers with a specific
task running on the computer for which it is best suited.

82 Ingenuity May 1994

Figure 1 What is Client-Server?

We know that these tasks can loosely be grouped into Presentation,
Application and Data management. Also we have come to accept that
presentation is best run on an intelligent workstation or a PC with
graphics capability.

So, to illustrate the definition of Client-Server, we could ask ourselves a
series of questions, as follows:

Q. Is a situation where a (dumb) terminal accesses a mainframe
application Client-Server?

A No.

Q. Is a workstation running both an application and its graphics
presentation but where the data is on a remote machine Client-
Server?

A Yes.

Q. What if we replace the terminal by a PC running Terminal
Emulation (TE). Is that Client-Server? See Figure 1.

A Our initial answer might be no, but let's look at the environment.

What if the TE supports word wrap? On a dumb terminal I may be
typing in text. At the end of a line I may be surprised that a long
word 'wraps round' to the next line. I may have typed 'another' but
I may find that 'ano' is at the end of one line and 'ther' is at the start
of the next line. On the PC, with word wrap, I would see that the
whole of the word 'another' would be moved to the start of the
second line with no truncation.

Similarly the PC may support basic local validation such as whether a
field should be numeric or alphabetic etc. For example there might be the

Ingenuity May 1994 83

Figure 2 Separation into Presentation/Application/Data Management

requirement to input an international telephone number, which is
numeric. On the PC if I type an alphabetic 0 instead of a zero then as I
tab to the next input field I would see the telephone number highlighted
to show that it was in error.

Performing such validation locally on the PC can often improve the speed
and appearance of a character-based application to the user.

Using the Gartner definition, these and other facilities can be split out and
run locally, on the PC. More complex cross field validation might check
a Post Code against a county, an Invoice amount against a credit limit and
so on.

The terminal emulator will almost certainly support colour, in which case
one can re-map the single colour terminal screen presentation onto
meaningful everyday colours. One might use blue for neutral background
text, green for directional text, amber for warnings and red for serious
errors.

Another advantage of a colour PC is that a partially colour blind person,
blind in only one part of the colour spectrum, can adjust the use of
colours in a way which is comfortable.

There might be someone in a department at work who is colour blind in
part of the spectrum. Their PC might be set up with colours towards the
red end of the spectrum. What is garish for one person might be perfectly
restful for another.

It should be noted that emulators themselves have different
characteristics. Powerlink™, the character-based emulator for

84 Ingenuity May 1994

OfficePower™, allows the PC user to connect to a UNIX® server as if it
were a VT220 terminal. It also provides facilities such as the transfer of
files between the PC and the server. These files may contain graphics,
word processed documents, spreadsheets and so on. Once on the PC they
can be input to the appropriate PC based tool.

From the above we can see that, while we may be clear on what is Client-
Server and what is not, the dividing line between the two is not so easy to
define.

Client-Server systems commonly comprise four parts

• an intelligent workstation, probably a PC on the user's desk

• a local server supporting personal or workgroup functions

• a remote server supporting company-wide functions

• a network.

2 .2 The Workshop Objectives
As already indicated, in an attempt to understand the full implications of
Client-Server systems the customer commissioned Integration Services
Division, part of ICL Client-Server Systems, to run a workshop covering
'the enhancement of existing systems by the addition of links to document
imaging and other similar technologies'.

The remainder of this section follows the same sequence as that of the
workshop, only one day of which was run on the customer site.
Preparation was done at ICL Bracknell. In addition, the setup of
communication links, and the loading of pre-requisite software, was
performed before the workshop.

The starting point for the workshop was the customer's business with an
analysis of their problems in business terms. What needed to be done to
remain competitive? What needed to be done to retain end customer
loyalty in an industry where there is much competition? Next it looked at
a possible solution and the benefits that would arise from this approach.
Finally, the workshop looked at what such an approach would mean in
terms of future enhancements. In this paper, the appendix gives details of
the code produced, setup constraints, equipment and software used.

2 .3 The user's business problem
In this case the company involved was a UK travel firm. They operate in
the UK and parts of France, Spain, Italy and the Netherlands. They own
and operate some holiday camps and also hire out both boats and holiday
cottages. To book a holiday you fill in a form at the back of a brochure
indicating first, second and third choices and send it off to the booking
centre.

The mainframe-based system had been in operation for several years and
had served the company well. Whilst it has been successful, the customer
felt that future extensions would require a different approach. The

Ingenuity May 1994 85

booking aspects of the system work well. Bookings have been supported
by the mainframe application for some years. The problem arose when a
prospective customer phoned up to enquire about the status of their
particular holiday or to amend the details in some way.

The situation is that a customer will have a letter and probably a brochure
in front of them and will be using expressions like 'the letter I wrote on
the 12th', 'on page 7', 'the picture with the boy in the canoe' and 'the cabin
on the left'.

Figure 3 Customer enquiries re bookings - The 'Before' picture.

86 Ingenuity May 1994

The operator on the other end of the phone has the benefit of a character
based computer system. They may not have instant access to the
appropriate correspondence. They may handle several brochures and may
not have the actual page to hand They will be forced to ask questions
like

• 'what was our reference number?'

• 'what is the holiday start date?'

• 'what is your booking reference?'

• 'can you give me your post code?'

Even if the operator can find the relevant brochure, and the appropriate
page within it, there is no direct link to the customer's original booking
form and any subsequent correspondence.

In figure 3, the customer makes an enquiry by telephone. The telephone
operator collects some details and passes the enquiry on to someone else.
An initial enquiry may search local files in a filing cabinet. A more
detailed search may have to be made of some central, larger filing system.

Finally, before the telephone operator contacts the customer, some details
may have to be entered into, and cross checked against, a computer
system. Only then can a response be made to the customer.

This approach has several disadvantages but two are immediately
apparent. First there is a delay in answering queries because reference has
to be made to local or central filing systems. When found, the details
may have to be checked against a computer system, possibly not the one
used by the original telephone operator. Finally there is the expense of
contacting the customer either by phone or by letter, or both.

These factors potentially add up to delay, bad company image and
expense.

2 .4 The workshop prototype.
During the workshop, a prototype application was set up in which
telephone enquiry operators were to have their terminals replaced by PCs.
They were then to be given on-line access to the booking details on the
mainframe, as before, but now with concurrent access to the brochure and
correspondence details as well. To make it easy for them, the approach
adopted was to provide direct automatic access to the brochure using the
booking reference, or holiday reference, extracted from the mainframe
system, or by direct input of the brochure page number. Similarly,
automatic reference was to be made from the customer name, or booking
reference, to the associated correspondence.

A brochure page often contains written details of four or five holidays.
For each holiday there is at least one photograph. There is also a table
showing charge rates by number of people and by start date for each
holiday. Some pages also contain a map with overview directions.

Ingenuity May 1994 87

Figure 4 Improved Customer Service

With this on-line access to the brochure, a better impression can be
presented to the customer. Queries may be answered over the phone
quickly and using the same 'language' as the customer.

A simple prototype application implementing this approach was achieved
in a day. The steps taken and the code used are to be found in the
appendix to this paper. It should be remembered, however, that whilst a
demonstration can be achieved in a day, a live implementation can take
many months as it may well involve a change to company procedures,
replacement of existing equipment, retraining etc.

2.5 Possibilities for future enhancement
The difficult part of this Client-Server environment is to establish a
working link between that part of the application running on the
mainframe and that part running on the PC. Having established this link
then the same principle, as used for direct retrieval of document and
colour images, can be used for sound and moving graphics.

This might lead our travel company to adopt some new approaches.

88 Ingenuity May 1994

The combination of Windows 3 front ends, fast 486 processors, good
graphics and a touch screen can lead to some innovative systems, see
figure 5.

Figure 5 Possibilities for future enhancement

For example, having taken the trouble to produce the brochure in
machine displayed form, e.g. on a CD-ROM, with document and
photograph images, they might place touch screens in the concourses at
major railway stations and shopping arcades. While waiting for the train,
a potential customer might touch part of the screen and see a video clip,
also on the CD-ROM, along with a sound bite 'selling' them on the merits
of the French canals or the Cornish Riviera.

This touch terminal might even invite them to make their booking.
Without the hassle of telephones, letters or delay, the prospective
customer, via a quick swipe of a credit card, would know that the annual
holiday in the South of France is assured

3 Workshop
3 .1 Outline of the workshop
The infrastructure for the workshop was set up in advance. This basically
covered the procurement of a PC, the loading of appropriate networking
software and the installation of terminal emulation software.

Before the workshop, advance copies of the latest brochures were sent to
Integration Services, part of ICL Client-Server systems. Selected pages
and photos were scanned so as to produce an image stored as an
electronic file on computer disc.

Using the scanned images, a demonstration and presentation were built by
ICL Integration Services to show the potential of Imaging. These made

Ingenuity May 1994 89

use of ICL's PowerVision™, Ref [5], for black and white document
imaging, and FotoTouch Color, Ref [7], and Logitech ScanMan for colour
photograph imaging Ref [6].

Certain principles were explained as part of the workshop. This covered
the principles of windowing within Windows 3 and the use of Dynamic
Data Exchange (DDE). A demonstration of interlinking of windows
programs made use of Excel, Windows card file and Visual Basic, using
DDE.

The prototype was then moved from an Integration Services PC, used for
the demonstration, to the customer PC which already had a Terminal
Emulation connection to the customer's ICL VME™ TP service. Several
application screens within this TP service were enhanced as follows. The
PC was set up to display several windows at once. Terminal emulation,
to the mainframe, was active in one window and an image server in
another window. When the customer details were displayed in character
mode in the TE window, the operator was able to click on the image
server window. Clicking on this image window caused the customer
reference details to be passed automatically between windows and the
relevant correspondence and/or brochure details page to be displayed

These latter two steps were completed within the day allocated

4 General guidelines for choosing a particular image
system

Adding Image to an existing mainframe application is straightforward
However, before starting, certain choices have to be resolved

• what sort of Imaging system is required?

• is it to deal with black and white or colour?

• will the system store and manage copies of documents or full colour
photographs?

• what volume of images are to be managed?

• what will the purpose of the imaging system be?

• is the requirement merely to store records in a form in which they can
be accessed infrequently or is regular fast access required?

• do people have to have concurrent access to the same image?

• how often do the images change?

• how mobile are the people?

The answers to questions such as these are outside of the scope of this
paper. Suffice it to say that for the workshop two imaging products were
used:

90 Ingenuity May 1994

• ICL's PowerVision for black and white Document Image Management.

• The combination of FotoTouch Color, and a Logitech ScanMan for
Colour Image management.

Both products operate on the PC under DOS and Windows. ICL's
PowerVision can also operate under UNIX.

Figure 6 Some logistics of storage size.

Figure 6 shows one 12" Optical disc which can hold the same information
as 200,000 A4 pages. These pages would themselves occupy 8 Four-
drawer Filing cabinets.

A brochure with 250 pages would take 10 Mbytes if scanned in in black
and white. The same brochure would take 20 Mbytes if the photos were
included as photos rather than a scanned page, but still as black and
white. Finally, such a brochure would take 100 Mbytes if scanned in as
full colour, even though the text is black and white.

One 12" Optical disc could hold approximately 10 different brochures;
plus around 4000 active customer files with booking details and
additional correspondence and about 20,000 bookings where there was
no additional correspondence.

4 .1 Image enhancement to an existing mainframe application
The example code in the appendix is only valid for Windows based
terminal emulators which support DDE. DOS terminal emulators (e.g.
ICL's PowerLink) cannot interwork directly with Windows applications
and therefore cannot be used for this purpose.

4 .2 Design Steps
Four steps must be performed when writing a PC application which links
a mainframe character application to an imaging system:

• decide how the images are to be indexed. Store the images using this
indexing scheme.

Ingenuity May 1994 91

• write code to pass the reference key from the terminal emulation
screen to the image server.

• write code to transform this reference key to a file name. This file will
contain the document name and view of the corresponding document.
(Using the indexing method devised in step one above.)

• write code to call the imaging system software (PowerVision/PC, Ref
[5], or FotoTouch here, Ref [7]) to display the picture, document or
photograph using the file name and view found in the previous step.

The documents, photographs and pictures are scanned using an electronic
scanner. An index is added before the images are finally stored on
magnetic disc, or CD-ROM. Often the index is on magnetic disc and the
image on CD-ROM. See figure 7.

Figure 7 Steps in Indexing and retrieval.

4.3 Potential pitfalls
Many Windows 3 products allow the end user low-level facilities such as
cut and paste. In a live situation you rarely want the user, the telephone
operator here, to cut and paste manually. They may make a simple
mistake - and then blame the system. Their blame would be justified as a
good system doesn't allow mistakes. To avoid this you need a way of
controlling all the PC operations automatically. This may constrain the
end user to work only one way but it also ensures that errors are not
made. For the workshop prototype Visual Basic was used as a controlling
framework. Any one of a number of products could have been used such
as Micro Focus COBOL, Gupta SQL Windows, C+ + , Windows Software
Development Kit (SDK), Microsoft Access, Microsoft Visual Basic and
Borland Turbo Pascal.

92 Ingenuity May 1994

As an aside, one of the advantages of the COBOL approach is that many,
or even most, mainframe TP systems are written in COBOL. If the
graphics interface at the PC can be developed using COBOL then this
maintains the discipline of using as few development languages as
possible. There is, therefore, a minimum of retraining and support costs.

5 Conclusions and Recommendations
5 .1 Conclusions
The workshop showed that, using the latest PC Tools, code to enhance
the user image Graphics User Interface (GUI) is very easy. It is robust and
can be used for so-called Industrial Strength applications. However, code
to interface with other, existing, applications still requires a low level of
detail. Also, for an operational system, there is not always that same level
of control over the developed code as has been available on mainframe
systems. Many PC-based development tools are aimed at the single
developer, not a team of developers. They do not make use of a project
dictionary with source control and documentation facilities.

Increasingly, however, dictionary-based products are appearing, such as
that with the Network Designer product 'T.C.T.' and with the
Micro Focus COBOL Workbench, Ref [2].

So the benefits to the end user are real. But we must not forget the
benefits of control of the development process that we have learnt over
the past 25 years.

5 .2 Recommendations
It is worthwhile setting up a pilot using one from each of the two types of
tools.

1. One of the new PC-based tools which have their own 'new' language
and which are targeted at the PC as the complete development
environment.

Tools in this category include Microsoft Visual Basic, Gupta SQL
Windows and Network Designers T.C.T.

2. One of the mid-range or mainframe-based tools that have been ported
to the PC but which cooperate with the existing mid-range or
mainframe system.

Products in this category include the Micro Focus COBOL Workbench,
Ingres Windows 4GL and Oracle Forms.

This approach will provide valuable experience with the new tools. It
also provides an incremental approach which doesn't require that the
existing system be scrapped. Perhaps most important though is that it
gives the Data Processing or IT department the chance to re-establish
themselves as the visionaries within an organisation; those people who
seek out new and better ways of doing cost effective business.

Ingenuity May 1994 93

Acknowledgements
Many colleagues within the Systems Integration Group, Client-Server
Systems and OPENframework Division have contributed ideas and
stimulated thoughts on this subject; I thank them all. Special thanks,
however, go to Andy Laidler who assisted in the technical setup of the
original workshops and who wrote the image indexing code.

Trademarks
UNIX is a registered trademark of UNIX Systems Laboratories, Inc., in
the U.S.A. and other countries.

MICROSOFT is a registered trademark of Microsoft Corporation in the
U.S.A. and other countries.

PowerLink and PowerVision are trademarks of International Computers
Limited.

References
[1] Gartner Group Client-Server Computing Conferences May 1993.

The Gartner Group is a leading USA based IT Industry Watcher.
They publish research and host conferences on IT related topics.
They also act as consultants to major users and IT vendors.

[2] Micro Focus COBOL Workbench™; Micro Focus Dialog System™,
April 1993.

[3] Microsoft® Visual Basic Language Reference, Version 3.0., 1993

[4] BRENNER, J.B. Client-server architecture, ICL Tech. J. Vol. 9 Iss. 1
pp. 3-17, 1994.

[5] ICL PowerVision/PC Programmer's reference manual. 54513/001 June
1993

[6] ScanMan Hand Held Scanner. Software user's guide 620430-02-EN
July 1992

[7] ScanMan FotoTouch User's guide 620363-00-EN, July 1992

[8] 7561 Windows User's guide 15458/007 September 1992

Biography
Alan Beer

Alan Beer graduated from Leicester University in 1968 with an honours
degree in Mathematics. His early career was spent working at Honeywell
Information Systems where he was involved in the development and
support of the disc based Bill-Of-Material-Processor. This was followed

94 Ingenuity May 1994

by several years working for two large IBM and Univac users on the
installation and support of database systems.

He joined Logica as a Senior Business Consultant and, after a period of
work in Continental Europe, joined ICL in 1979. Initially he worked on
the development and implementation of ICL's IDMSX Codasyl database
and TPMS, on-line TP Monitor. After two and a half years secondment
to ICL Australia, introducing 4GLs into the Asia Pacific Division, he
became Marketing Manager for QuickBuild, ICL's dictionary based 4GL
development environment, and for Ingres, ICL's initial Relational
Database on VME.

Alan is currently Business Development Manager of the Business Team in
The SOLUTIONS Centre within OPENframework Division. This unit
undertakes workshops and sales training on all aspects of Client-Server
implementation and support and gives seminars on Client-Server based on
the practical experience gained.

iBgMMilty May 1994 9 5

Appendix A

A.1 Glossary of terms
DDE. Dynamic Data Exchange

Most PCs run DOS and Windows 3. DOS and Windows 3 together form
a single tasking environment. This means only one task, as viewed by the
user, can be active at a time on the PC. In the examples above we require
to have at least two tasks active (or at least appearing to be active). To
achieve this we can make use of Dynamic Data Exchange. This is a
Windows feature which allows data to be passed from one Windows 3
'window' to another.

DT.Dumb Terminal.

A terminal dependent on a mainframe computer for its operation. Often
green characters on a black background. Sometimes referred to as 'legacy
terminals'. Similarly the character based applications which reside on the
mainframe are sometimes referred to as legacy applications.

TE. Terminal Emulator

This is a piece of software running on the PC which allows it to
communicate with the mainframe 'as if it were' a mainframe driven
terminal. Common emulators are 7561 to communicate with an ICL
mainframe; 3270 to communicate with an IBM mainframe; and VT220
to communicate with UNIX and DEC VAX environments.

A.2 Workshop details
The following is provided for completeness only. It gives an indication of
the types of routines required and their relative simplicity. The following
examples relate to the use of Visual Basic but, as indicated in the text
above, other Windows based products could have been used.

A.2.1 Design and Coding of the prototype example
The example given below has been written in Microsoft Visual Basic.

A similar procedure would produce the same results in any application
development environment which supports DDE (Dynamic Data Exchange
- the method for communicating between Windows applications).

A.2.2 Decide how images are going to be indexed.
The prototype program had an indexing file (a straight text file) which
contained lines with page numbers (or holiday references which contained
page numbers within them) and corresponding file names.

96 Ingenuity May 1994

For Example:

Page File

084.1 p084.tif

084.2 p084.tif

This maps the page number, 84, and holiday reference, holiday 1 on page
84, onto the image file, p084.tif.

Each image (page) in this example contains more than one holiday, and so
it is desirable to "zoom in" on the selected holiday.

This is done using "views". In ICL's PowerVision it is possible to save the
required positioning and magnification of the image as a "view" and to
recall it by name. For the prototype example, the view used for each
holiday number is named as the holiday number itself. For example, the
image for 084.1 is in file p084.tif (from the above table) and has view
084.

On a live system, since there are only 4 or 5 holidays per page, it would
be acceptable to define 4 'Views' TLH (Top Left Hand), TRH, LLH and
LRH (Lower Right Hand).

The view for the end user will be of 'One System', where one window
contains information from the mainframe. Another window may contain
a photo or some other image from the brochure. Another window may
contain part of an Excel spreadsheet say with financial details.

A.2.3 Obtaining the holiday or booking reference number
automatically from the Emulator screen.

The method for doing this is dependent on the terminal emulator in use.
However, there are three general principles for extracting portions of the
screen from a terminal emulator:

In the following example, code comment lines start ***

a. Open a DDE link to the Terminal Emulator and execute a DDE
command which puts a portion of the screen onto the clipboard. DDE
commands are specific to the emulator in use and are normally
described in the emulator documentation, e.g.

Textl.LinkMode = 0

*** Make sure T extl is not linked to anything.

Textl.LinkTopic =

*** Specifies the other end of the link. (See emulator manual

* ** for the required link topic for your emulator. Since we were

*** using win7561 the topic was win75611 win7561).

Ingenuity May 1994 97

Textl.LinkMode = 2

*** Activate the link.

Textl.LinkExecute "Command"

*** Perform the operation.

Textl.LinkMode = 0

*** Unlink from the emulator.

In this case, "Command" would probably be of the form:

gettext(x,y,a,b)

Which would get a region of text starting at column x, row y, and a
characters wide, b characters deep and store it for use by DDE.

It is then necessary to get this text from DDE into the application.

b. (This is the method used by vt220 Plus and win7561 Windows.) In
the terminal emulator configuration window, define a region of the
screen to be associated with a name.

(e.g. for vt220, edit the .220 configuration file to include the line

DDEn = 'name', x, y, a, b

This associates the name "name[with the screen region starting at x, y
and being a wide and b deep)

Thus, whenever an application uses DDE to connect to the emulator using
the name defined above, the emulator will send the contents of that
portion of the screen to the application.

A.2.4 Displaying an Image on the Screen.
The following assumes the display of a PowerVision image. A similar set
of code would be used for other DDE enabled products. It is necessary to
first open a DDE connection to the Work Station Manager (the part of
PowerVision which deals with the DDE communications), then to send
the commands required to display an image.

Textl.LinkMode = 0

*** Open up the DDE connection in file mode

Textl.LinkTopic = "Wsm|file"

Textl.LinkMode = 2

Textl.LinkExecute "[openwindow(local 1,1,Display Window)]"

*** Open a window in which to display the image

T extl.LinkExecute" [displayimage(c:\filename,t)]"

*** display the appropriate image

98 Ingenuity May 1994

This is a very simple way to display an image, for all the options available
see the PowerVision Programmers Reference.

PowerVision can store images in TIFF (ending .tif) or PowerVision
Internal, CCITT Fax 4, format (ending .pvi).

FotoTouch can store images as Bit mapped (BMP), TIFF (Compressed or
uncompressed), TIF, PCX or JPEG.

A.2.5 Other subroutines used in the workshop.
The following are added for completeness. An explanation follows each
piece of Visual Basic, Ref [3], code.

Sub Do_Movement ()

com$ = ”[setview(" &c Textl.Text &")]"

MsgBox "Textl.Text

*** Diagnostic only. Show what page and view we are looking for

Textl.LinkExecute com$

End Sub

*** This subroutine, above, is called to focus on the appropriate

*** view of a page.

Sub get_filename (temp$)

Open "c:\directory\pages.doc" For Input As 1

temp$ = "dummy string"

Do until (Left$(temp$, 6) = Textl.Text Or EOF (1))

Line Input # l,tem p$

Loop

If (EOF (1) And Left$(temp$, 6) < > Textl.Text) Then

MsgBox "Page number not found."

End If

temp$ = Right$(temp$, Len(temp$) - 7)

End Sub

*** This matches the page name to an image that has been stored

*** previously

Sub Commandl Click ()

*** Get Page number from the emulator (win 7561)

Textl.LinkMode = 0

Ingenuity May 1994 99

Textl.LinkTopic = "win7561|win7561"

Textl.Linldtem = "R3C16:R3C23"-

*** Here the field is on screen at Row3 Col 16 to Row 3 Col 23

Textl.LinkMode = 2

Textl.LinkRequest

Textl.LinkMode = 0

*** Open The PowerVision Window

Textl.LinkMode = 0

Textl.LinkTopic = "Wsm|file"

Textl.LinkMode = 2

If (Err < > 0) Then

MsgBox "Cannot DDE connect with WSM"

End If

Textl.LinkExecute ”[openwindow(local 1,1,Display Window)]"

If (Err < > 0) Then

MsgBox "Open failed"

End

End If

*** Translate Page Number into FileName

get_filename temp$

*** Tell PowerVision to open the file

Textl.LinkExecute)\ &c temp$ &C ",t)]"

*** Zoom in on the page/Holiday in question

Do_Movement

Close

AppActivate "Display Window"

AppActivate "Display"

End Sub

Sub Command2_Click ()

100 Ingenuity May 1994

If Textl.LinkMode = 0) Then

MsgBox "Error, An image is not active"

End If

Textl.LinkMode = 0

End Sub

Sub Form_Load ()

T = Shell(C:Mclpv\wsm.exe",4)

End Sub

*** Load up workstation manager first time round-

A.3 Software and Hardware required for the prototype
described here

In constructing the prototype the following were used:

1 386/486 PC, for speed when working with graphics, with network
connection to the mainframe application being used.

2 A Terminal Emulator which supports DDE.

3 Software capable of displaying the scanned images. PowerVision PC
and FotoTouch were used here.

4 Access to a scanner to scan the images into a machine readable form.

5 A development language which supports DDE.

For running the application, the first three items are required plus the
application itself. Many of the PC development languages have a run­
time subset. This subset is of lower cost and uses less machine resources.
However the run-time subset does not support development by the user.
Either a full development environment or a runtime subset must be
available for the application to run.

An accelerator card can be used to improve the speed of graphics. Where
an operator is constantly referring to nigh quality images then such a card
is highly desirable. The workshop was run on 486 PCs without the
benefits of these cards. A 386 PC without acceleration would be
acceptable only for infrequent usage.

log eau lty May 1994 101

Legacy systems in client-server
networks: A gateway employing scripted

terminal emulation
Paul Duxbury

Client-server Systems, ICL, Kidsgrove, UK

Abstract

A successful commercial client-server architecture cannot ignore
the vast legacy of existing applications on a wide assortment of
platforms and networks, developed over decades. Some can be re­
engineered but, for many, the only practical mode of access is
from a native terminal. A generic server which enables such
applications to be sponsored as network services would be highly
desirable. Such a gateway server has been produced, initially for
the ICL TP Manager system but intended to be reusable in other
client-server architectures. It works by scripted terminal
emulation.

This article describes the technology from three angles: the image
presented to potential customers; a more formal set of engineering
requirements; and the actual implementation. It ends with an
evaluation of the gateway's effectiveness, particularly the ease of
scripting. Since adaptability to existing legacy systems, protocols,
client-server architectures, ready-made components, etc., is a key
factor, the whole project may be considered an extended exercise
in bottom-up design.

1 Functional description
This first section introduces the concept of a Scripted Terminal-emulation
Gateway, whose purpose is to help integrate legacy systems into newer
client-server networks. It is deliberately styled as a sales pitch and might
be considered the top-level marketing requirements for such a product.

Subsequent sections probe beneath the gloss to discuss some more formal
engineering requirements, an actual implementation, and its ultimate
effectiveness. The intention is to provide a rounded description from
various viewpoints.

102 Ingenuity May 1994

1 .2 Legacy software is VALUABLE software
Modern client-server solutions, distributed application platforms and the
like are all very well for green-fields developments, but what about the
vast legacy of traditional software? Take, for example, the billions of lines
of mainframe COBOL which have been written over decades, and the
data they control. There are also plenty of examples in the asynchronous
world of departmental systems (e.g. UNIX®).

The ability to tap into this rich legacy from within the emerging
distributed application architectures would provide benefits all round
(figure 1).

End users: - Preserve their investment
- Achieve more phased migration

Client-server vendors: - Benefit from ready-made servers
- See fewer migration obstacles

Original products: - Benefit from new lease of life

Figure 1 Summary of benefits

However, despite these benefits, the cost of changing legacy software to
fit the client-server model is often prohibitive - a barrier between cultures
and ultimately a barrier against progress (figure 2).

Figure 2 Alien cultures?

Ingenuity May 1994 103

1 .3 Scripted Gateway provides a tim e tu n n el
What is needed is some magic time tunnel between the new client-server
and the old centralised system architectures. This would make older but
nevertheless valuable programs appear to new clients as modern
networked service providers. New clients, on the other hand, would
appear to these programs as old-fashioned terminals. So both would be
happy!

The Scripted Gateway provides just such a time tunnel. Its basic function
is illustrated in figure 3.

Figure 3 Scripted Gateway Time Tunnel

The facilities offered by the host program/system are re-defined by the
gateway as networked services, in a form appropriate to the specific
client-server architecture in use, i.e. as Remote Procedure Call (RPC) stub
libraries, ICL TP Manager (TUXEDO®) servers or the like. These are
advertised on the client network in the normal way. The services
themselves are implemented within the gateway as scripted terminal
dialogues with the target host program.

The client and host are shown here as a PC and a mainframe application
respectively, but they could equally well be just two different programs in
the same UNIX box, or some other configuration.

104 Ingenuity May 1994

1 .4 Traditional UNIX programs can act a s network servers
Take as a first example a traditional UNIX application which expects to
talk to dumb asynchronous character terminals. It can, of course, be
accessed from a PC by direct terminal emulation, and windows systems
even offer some limited integration capabilities like cut and paste.

But the presentation style of the target program, often archaic, remains
visible to the end user, as do the (manual) integration procedures.
Moreover, there is limited scope for true value-added integration with
other applications, local or remote.

By contrast, introduction of the Scripted Gateway into the server system
offers the host program's services to clients in a much more convenient
form, perhaps using some type of RPC, or TP Manager's /Workstation
product. Indeed, the interface is then indistinguishable in style from that
of purpose-built servers.

In the other direction, the Gateway talks to the target host program by
terminal emulation through a UNIX pipe or pseudo-terminal - as a bonus,
this reduces the heavy load on the network normally incurred by
character traffic. See figure 4.

Figure 4 New life for an old UNIX program

The scripts might be produced by:

• the client vendor to increase market penetration;

• the original program vendor to prolong its life;

• a customer or service outfit to achieve custom integration;

• a third party as value-added products in their own right

Ingenuity May 1994 105

1.5 A UNIX server can front-end a mainframe host
In many situations it is not feasible to run the Scripted Gateway in the
same system as the target program - for example, the system may be a
non-UNIX mainframe, or it may be outside the solution-provider's
control (perhaps being a public service).

Nevertheless, the Gateway can still be employed, by introducing a UNIX
system between the client network and the host. Such a system may well
exist anyway, for departmental applications or as a concentrator. The
situation is indistinguishable on the client side, whereas on the host side
an external comms link to the host is needed rather than just a pipe. (See
figure 5.)

Figure 5 Front-ending a mainframe

The UNIX system may be positioned physically close to the client
network (e.g. if it is a departmental initiative), or close to the host system.
The latter offers particular benefits where the host operates an
asynchronous terminal protocol, since the traffic is then removed from
the corporate network - especially relevant for Wide-Area Networks
(WANs).

1 .6 TP Manager and Dialogue manager integrate legacy system s
The integration possibilities of the Scripted Gateway are widened still
further when used in conjunction with a distributed transaction processing
system, like ICL's TP Manager product. This is based on the TUXEDO
system and allows multiple local and remote transactional services,
typically databases, to be integrated within its client-server architecture.
The inclusion of the Scripted Gateway extends this capability to other
applications which might provide useful services to the application and its
clients (figure 6).

106 Ingenuity May 1994

Figure 6 Integrating legacy systems with TP Manager

Multiple terminal sessions and multiple terminal protocols (VT220, 7561,
3270) may be employed within the same application using separate
gateway instances orchestrated by TP Manager. In addition, and where
appropriate, many clients may snare a smaller number of host sessions,
thereby reducing host overheads and network costs.

Integration can also be achieved within the client itself, using ICL's
Dialogue Manager technology, which is frequently used in conjunction
with TP Manager to achieve multi-stage integration and modularity.

ICL intends to supply a ready-made Scripted Gateway Server for use with
the TP Manager product. In addition, the gateway could be made
available as C libraries to enable servers for other client-server
architectures to be built.

1.7 Scripting harmonises system s administration
As a possible example of systems integration using scripted terminal
emulation, consider the problem of administering multiple, heterogeneous
IT platforms.

Over time most companies end up with a mix of IT equipment, often
requiring a corresponding mix of IT skills, both to use and administer.
While this may be tolerable where the systems are to be used for different
purposes by different people, there are, nevertheless, important situations,
like administration, where this is not so.

Ingenuity May 1994 107

From the point of view of administration, most systems provide
essentially the same set of operations - adding users, managing filestore
and so on, but in completely different ways requiring different skills and
perhaps staff. Even worse, in some cases users need to be represented in a
number of IT platforms and services simultaneously, and in a co­
ordinated way.

Modern approaches to this problem are usually object oriented. The topic
area (here systems administration) is described by a single set of abstract
objects (users, volumes...) and services on those objects (add, delete,
mount...), common across all platforms to be managed. This simplifies
the task of administrators and client-software developers, but expects
each platform type to interpret abstract commands in its own terms.

Where such direct support is not available, Scripted Gateways can help by
turning abstract requests into appropriate terminal dialogues with the
target platforms. A standard set of script interfaces is defined (the abstract
service definition), and then an implementation is provided for each
platform type. This is illustrated in figure 7. (An actual realisation might
also employ TP Manager and/or Dialogue Manager.)

Figure 7 Administration of heterogeneous systems

108 Ingenuity May 1994

1 .8 Scripted Gateway Is flexible
To fulfil the promises made of it this far, it is clear that the scripted
gateway needs to be flexible in two dimensions: it needs to fit into a
variety of modern programming architectures and it needs to cope with
the widest range of legacy software.

To see how these are achieved we need a closer look at its structure. The
gateway is composed of several levels and flavours of functionality. You
choose as little or as much as you need (see figure 8).

Figure 8 Take just as much as you need!

At the top level are some ready-made programs, for example, a TP
Manager Gateway Server, and the tsh set of commands. These just require
you to write scripts. Servers for distributed programming environments
other than TP Manager are anticipated, as are standard sets of scripts for
popular legacy programs.

If the ready-made gateway programs are not appropriate, then you can
build the underlying script support library directly into your own
program. This program might itself provide an embedding into some
other distributed programming environment.

Finally, you can elect to drive terminal sessions directly from your own
program, without scripts, using the virtual terminal facilities of the
XHLLAPI library.

Ingenuity May 1994 109

Accommodating a wide range of target legacy applications is done by
providing a choice of XHLLAPI terminal emulations over a variety of
media: currently VT220 is scheduled for release, a 7561 prototype exists
and a 3270 version is intended shortly.

2 Requirements
The above described the scripted gateway technology as it is intended to
appear to an end customer. The present section lists the requirements
from an engineering perspective. Individual requirements are labelled Rn.n
for cross reference in the subsequent implementation section.

2.1 General Requirements
R l.l The gateway is required to offer a high degree of flexibility in

respect of target host, protocol, language, client-server
infrastructure etc.

R1.2 Existing components should be re-used wherever possible, and
new components should be designed with re-usability in mind.

R1.3 Where relevant, open standards should be adopted.

2 .2 Client-server infrastructures
There are, of course, many client-server infrastructures which could
benefit from a scripted terminal-emulation gateway. Our primary
requirement was:

R2.1 a gateway server for ICL's TP Manager product (a UNIX-based
distributed Transaction Processing system incorporating the
TUXEDO infrastructure from UNIX Systems Laboratories, Inc.).

However, it was quickly recognised that the bulk of the gateway
functionality was independent of the actual distributed programming
environment. Therefore, a secondary goal became:

R2.2 Re-usability within other client-server environments.

R2.3 Re-usability in stand-alone applications.

2 .3 Target hosts
Clearly there is an immense diversity of legacy systems and software. Any
capability for integration ought, therefore, to accommodate the widest
range and be readily extensible. For the gateway this requirement was
interpreted as a threefold need:

R3.1 for multiple terminal emulations, preferably plug-in modules

R3.2 for appropriately configurable communications

R3.3 for support of various application HCI styles, e.g. screen-mode
(including templates), scroll-mode, asynchronous, and hybrids
like VME MAC which can output templates in scroll-mode.

110 Ingenuity May 1994

As with other gateway features, re-usability was a key factor:

R3.4 Existing terminal emulations should be adopted where feasible.

R3.5 Where we would need to produce our own terminal emulations,
we ought to capitalise on the common aspects of such
emulations.

R3.6 Our own terminal emulations ought to be re-usable outside the
gateway itself.

2 .4 Levels of service
The gateway works by providing client programs with a terminal
emulation capability assisted by scripts. This leads to the question - how
best to split functionality between client programs and scripts. Flexibility
in this respect was required in order to accommodate differing
circumstances of motivation, host HCI style, host stability, skills
availability, network bandwidth and so on. For example:

• Where a host session can be redefined functionally as a set of distinct
high-level operations, these can often be implemented entirely as
scripts, giving an image identical to that of native services.

• In other cases, scripts may just be used to encode screen formats,
leaving session control to the client but insulating the latter from
actual screen layouts, in the manner of template libraries.

• In still other cases, the client program may require direct access to the
virtual screen and keyboard metaphor, without any scripting and
insulated only from the actual terminal protocol.

These are summarised as:

R4.1 The gateway must provide clients with an appropriate choice of
service levels (images of the target host session) ranging from
essentially transparent to completely abstract.

R4.2 Mixing levels of service must be possible within a single session.

2 .5 Scripting Language
Languages are largely a matter of taste, and there are also performance
and availability considerations surrounding implementations. Therefore,
while needing to include a scripting language, it was also recognised that
it ought to be custom-replaceable.

The bundled language itself was expected to be flexible in its own right
and not to impose a continual development load for extensions. These
requirements are summarised thus:

R5.1 The scripting language should be custom-replaceable.

R5.2 A suitable language ought to be bundled or be readily available
without further cost.

Ingenuity May 1994 111

R5.3 The bundled language must be readily extensible.

R5.4 The bundled language ought to be open and familiar.

R5.5 An existing language would be preferred, for reasons of
expedience (in both specification and implementation).

2 .6 Performance
For obvious reasons, high performance was not expected to be an
attribute of the gateway, i.e. when compared with distributed
programming techniques for host integration. It is intended for use when
no such distributed programming capabilities are available.

However, it was required that solutions based on scripted gateway
technology could be customised for optimum performance within its
limitations, where feasible. Pluggable script languages might be one
instance, where a compiled language could be substituted for an
interpreted language.

R6.1 Selected strategic components ought to be custom-replaceable
for performance enhancement.

On the other hand, in some respects new client-server applications based
on the scripted gateway might be expected to perform better than direct
terminal access to the host because much of the purely interactive work,
such as form-filling, on-line help, etc., can be delegated to the client
platform.

Furthermore, for certain specialised but commercially important
configurations, of a transactional nature, it ought to be possible to allow
many clients to share a smaller number of host sessions in the same way
that a transaction monitor like TP Manager might allow sharing of native
database sessions.

R6.2 Where appropriate, host sessions should be serially re-usable
between many clients.

2 .7 Security
Host security needs to be maintained. Requirements will generally vary
with specific security policies but, in general, it is undesirable to require
passwords to be included in scripts. Also, end-user accountability at the
host is often required. These are complicated by factors like the need for
automatic recovery of host connections and the sharing of host sessions
among multiple clients.

R7.1 Scripts should not be required to hold passwords in clear text.

R7.2 End-to-end authentication and accountability should be possible
as required by local and host security policies.

R7.3 Automatic re-login should be possible, without end-user or
administrator intervention, where the reason is a simple host
session break.

112 Ingenuity May 1994

2 .8 Server platform
We accepted that, in the first instance, implementation would be confined
to UNIX server platforms. This happened to be the initial product
requirement and is considered the most open server platform currently
available. DOS/Windows PCs tend to be well covered by single-user
terminal-emulation tools.

R8.1 The server should operate on UNIX platforms;

R8.2 The server should port readily to other POSIX conformant
platforms.

2.9 Tools
Recognising the diversity of host systems and applications, tools are
essential to enable scripts to be generated. The following requirements
were identified:

R9.1 Generation of scripts should be largely automated by enabling
the capture of interactive host sessions.

R9.2 As well as off-line utilities, on-line tools should also be provided,
for example, the ability to view the host session in real time as it
is being operated by clients.

R9.3 Tools should support all levels of service (i.e. from transparent
to abstract), and all configurations of the technology.

R9.4 Tools should faithfully reflect the target environment, e.g. by re­
use of actual product components.

R9.5 End-user tools should double as test programs, diagnostic
utilities, and validation tools for the gateway itself.

3 Implementation
This section outlines the design of the resulting scripted gateway product
set.

The above requirements largely reflect the need to fit into an existing
environment. Therefore a bottom-up approach was adopted and will be
so described. Cross-reference is made to the requirements individually
identified in Section 2 (as R l. 1, etc.).

Naturally, the first step was to establish the existence of any existing
commercial products with the required characteristics. There turned out
to be several products in the field but covering only different subsets of
our requirements - some are strictly PC based; some are restricted to
specific protocols like 3270; some focus on providing graphical user
interfaces to single applications, rather than turning the applications into
general abstract services for subsequent integration. Hence, we embarked
on a bespoke development, though with the objective of re-using existing
components wherever possible (R1.2).

Ingenuity May 1994 113

3 .1 Structure
Most of the Scripted gateway functionality is encapsulated in a layered
series of dynamic libraries (also known as UNIX Shared Objects) for the C
language. These are completely unaware of the specific client-server
environment which pertains, if indeed there is such an environment.
(R2.2) The structure is illustrated in figure 9.

Figure 9 Scripted Gateway Structure

The resulting TP Manager gateway server was then written as an
application making use of these libraries and itself merely providing the
TP Manager (TUXEDO) server embedding (R2.1). Tools use the same
libraries.

This approach has the following benefits:

• Other client-server platforms can readily be accommodated by
building servers based on the same set of libraries (as a trivial example,
a stand-alone UNIX command, tsh, has been produced to enable
otherwise unsuitable, possibly remote programs to be included in
UNIX pipelines);

• The layered libraries offer different levels of support to client software
as required - ranging from a direct virtual terminal image to an
abstract service call image implemented entirely as scripts (R4.1,
R4.2);

114 Ingenuity May 1994

• Dynamic libraries are not linked until run-time, so they can be
substituted by alternatives (R6.1);

• Tools use the same code as the end-product and so see the host session
in exactly the same way (a bit like a single-lens reflex camera) (R9.4);

Since TP Manager operates on UNIX platforms, all gateway components
were developed for UNIX, using standard libraries (XTI, etc.) wherever
possible to ease porting (R8.1, R8.2). The services offered are, of course,
available to PCs via the TP Manager /Workstation option, as well as to
other UNIX systems.

3 .2 TCP libraries
At the bottom of the stack of interfaces is a set of Terminal Emulation
Program libraries (TEPs). These provide just the protocol-specific aspects
of terminal emulation and, as such, are not complete in themselves, so
they are not directly usable outside of the gateway. They are
implemented as separate dynamic libraries so they can be substituted one
for another at run-time (R3.1). In fact, multiple instances can also be
used concurrently.

3 .3 XHLLAPI
The lowest level library available to users is known informally as
XHLLAPI (The X prefix does not imply any standard). It is a generic
application programming interface for terminal emulation and is usable as
a free-standing library (R2.2, R2.3, 113.6).

The XHLLAPI interface is modelled on EHLLAPI, an equivalent for PC-
based 3270 emulators of which an example is included in ICL's 3270
Client for Windows (R1.3). Use of a common existing interface was
intended to enable existing terminal emulators, particularly 3270, to be
substituted (R3.4). It might also enable XHLLAPI to be substituted for
EHLLAPI in existing 3270 applications (R3.6).

The interface provides a virtual terminal metaphor with a rich set of
functions by which client programs can simulate keystrokes,
read/write/search the virtual screen contents, synchronise with host output
and so on.

Extended features of XHLLAPI include support of non-3270 emulations
(via the plug-in TEPs), concurrent sessions involving the same or different
TEPs, asynchronous protocols, and specific scroll-mode support (R3.3).

From a practical point of view, XHLLAPI embodies all the functions
common to all the terminal emulators. Thus over 90% of the code is re­
used between TEPs. (R3.5).

3 .4 Host communications
Host communications are implemented by XHLLAPI on behalf of the
individual TEPs. It includes interfacing via the standard UNIX transport
service interface (XTI) to OSLAN, TCP/IP and X25, including the ability
to push extra protocol modules onto the protocol stack, for example,

Ingenuity May 1994 115

PAD emulation. Direct UNIX devices, like RS232, are also supported, as
are other UNIX files including named pipes. (R3.2)

As a catch-all for situations where the above are insufficient, XHLLAPI
can be made to pipe its host communications through a configurable
UNIX command. This runs as a separate process and can be custom-
written if necessary. In fact, asynchronous access over LAN is often piped
through telnet (R3.2).

3 .5 Script Support Library
Whereas XHLLAPI offers its users a wide selection of low level functions
like 'read x characters from the virtual screen starting at position y', the
library above it offers a much simpler, higher level capability based on
scripting. Again, it can be used as a free-standing library (R2.2, R2.3),
possibly in combination with XHLLAPI (R4.2).

The main function has the unassuming title 'run_script', but it is best
considered as providing the ability to execute a named service with
associated arguments (named or positional). It is obviously well suited to
supporting client-server paradigms like Remote Procedure Call.

As the name Script Support Library implies, the services are implemented
by running correspondingly-named scripts. The complexity of these
scripts determines the level of service offered to the client program
(R4.1). Two common approaches are to:

• Implement an entire abstract service as a script, e.g. 'Deposit amount x
to account y', or 'place order for x, to be delivered to y by date z' and
so on;

• Capture just screen layouts in scripts, leaving the actual dialogue
sequencing to the client - e.g. 'send form DEPOSIT with fields ...', and
'Receive form NEWBALANCE into variables...'.

3 .6 Scripting Language
As a bundled scripting language the UNIX Shell is employed. Though not
elegant (again a matter of taste) it does have the advantages of being
readily available, widely used, and an open standard (R5.2, R5.4, R5.5).
It is also readily extensible through the use of shell functions and UNIX
command pipelines (R5.3).

Shell scripts are executed by the script support library, on demand, by
executing the Shell command as a separate process and linking to it via
UNIX pipes. The pipes carry a simple textual protocol enabling
parameters and results to be exchanged and low level (XHLLAPI) services
to be offered to the scripts. These are hidden behind a set of shell
functions, such as:

tsh_read <variable> <row > < co l> <size>

which reads a string from the virtual screen into a named shell variable.

116 Ingenuity May 1994

This arrangement means that any UNIX command could be substituted
for the UNIX Shell, and therefore any other language system capable of
reading and writing simple UNIX character files can be employed. Likely
examples are variants of Shell (C Shell, Windowing Korn Shell, etc.), and
compiled C programs (R5.1).

Most of the services offered to scripts by the support library are based on
XHLLAPI operations. An exception is the ability to invoke pre-stored
passwords held by the library in order to avoid the need for them to be
coded in the scripts themselves (R7.1). Password storage is volatile,
[>asswords typically being supplied initially by clients as arguments to a
ogin service (script), and subsequently available to the gateway for

automatic re-login following loss of the host session (R7.3).

The modular structure of the gateway itself and the scripting mechanism,
as outline above, is considered to fulfil the basic requirements for
flexibility and re-use (R l.l, R1.2).

3 .7 TP Manager Gateway
An example of the use of the above libraries is their embodiment as a TP
Manager server, known as Intelligent Server Gateway (ISG), which
happened to be the initial requirement (R2.1). The extra functionality
needed is quite small, basically just the ability to translate service calls and
data structures from the format demanded by the particular client-server
infrastructure (in this case TUXEDO), into calls on the Script Support
Library.

Once done, however, the enhanced client-server features of TP Manager
serve to enhance the integration capabilities of the Scripted gateway, and
vice versa. For example, suitably written scripts can enable the serial re­
use of host sessions by many clients, in common with other TP Manager
servers (R6.2). Legacy services can also be readily integrated with native
(e.g. RDBMS-based) services.

As well as many-to-one serially re-usable services, TP Manager also offers
extended one-to-one conversational associations between clients and
services (and in this case host sessions). These can be used to satisfy
end-to-end security requirements where necessary (R7.2) or to export
low-level host session control back to the client (R4.1).

3 .8 Interactive Script Generator
Finally, an interactive terminal emulator has been provided, known as the
isgen toolkit. This uses the above libraries to access the target host, so it
shows exactly the image that scripts and clients will see (R9.4, R9.5).
Tools are included to capture interactive dialogues as skeleton scripts, to
analyse formatted screens, and to replay existing scripts (R9.1).
Assistance for raw XHLLAPI usage is also provided (R9.3).

The screen display component is itself a separate library isgmon which
can be linked into the applications themselves to enable real-time session

Ingenuity May 1994 117

monitoring (R9.2). The TP Manager Gateway makes use of this
capability.

4 Evaluation
In conclusion, the practical effectiveness of the scripted terminal-
emulation technique is considered, as indicated by some initial experience
with the resulting product set.

It is not unreasonable to suppose that the gateway described above can
appear to clients as a native network service, and to host systems as a
native terminal. It is also not unreasonable to assume that a virtual
terminal can be appropriately controlled through a scripting language - a
number of commercial products demonstrate this capability (though they
may often be limited to providing GUI's to single applications). Thus, in
principle, any character-based host system and application ought to be
accommodated.

The cost-effectiveness of the approach compared with the re-engineering
of the host application as a network service is a central issue, and will
depend on the circumstances. Re-engineering may just involve
modification of some middleware to conform to the host platform's
distributed programming architecture, if any. Or it may involve porting
to a more suitable platform, or even a complete rewrite.

If the scripted gateway already supports a suitable terminal emulation, its
cost as an alternative to re-engineering the host depends chiefly on ease of
scripting, which in turn depends on the behaviour of the target host
application.

Some general classes of host behaviour can be identified and are discussed
below. From the viewpoint of scripting the main distinguishing attributes
are:

• synchronisation with host output (how does the script know when
results are available on the virtual screen, and when to start typing
again?)

• location of fields on the screen (are they fixed? Is there a standard
screen layout? Do fields have any distinguishing characteristics? Does
the screen scroll?)

• non-deterministic behaviour (are there any unsolicited host outputs
such as operator broadcasts? Where do they appear?).

4.1 Buffered protocols
Buffered or block-mode protocols like 7561 and 3270 seem the easiest to
handle. They have explicit turn-control, so the gateway can inform
scripts exactly when host output has finished. Likewise, explicit field
delimiters are included on the (virtual) screen so that automated screen-
analysis is possible. Finally, unsolicited outputs tend to be constrained to
specific broadcast or status lines. (Those applications which operate

118 Ingenuity May 1994

buffered protocols in scroll-mode, like VME MAC, can benefit from some
of the provisions for asynchronous protocols discussed below.)

Buffered protocols, therefore, offer much scope for automation of
sessions. The tools developed to date (ISG toolkit) allow interactive
dialogues to be captured directly as scripts, with screen contents unpacked
automatically into script variables. Scripts can be replayed without
modification, but usually some manual adjustments are needed:
parameterisation; exception handling; pruning of unwanted fields, etc.

4 .2 Asynchronous protocols
Asynchronous protocols, like VT220, generally require scripts to be more
intelligent. There is no explicit turn-control, so a script (like a human)
has to deduce from screen content changes when host outputs have
finished. Likewise, there are no explicit field delimiters, and usually no
particular conventions regarding unsolicited messages. Therefore, some
specific support is provided by the gateway, according to the particular
style of screen operation.

4 .3 Scroll-mode operation
Many applications of asynchronous terminals still use the simple teletype
scroll-mode. The interactive UNIX Shell is an example, as are public
services targeted at lowest common denominator terminals. Again,
applications with complex HCIs often provide a command mode for
batch operation. This simplicity of presentation leads to simplicity of
scripting, provided turn-control and field location can be resolved

Usually, completion of host output is detected simply by looking for a
specific prompt, like the UNIX "$ ". The problem is distinguishing a new
prompt from previous prompts, particularly the most recent which may
be in the same place that the new one is expected to occupy. To help, the
asynchronous terminal emulators keep resetable statistics, e.g. of things
like numbers of scroll operations performed. Therefore, a script can defer
checking for a prompt until a certain number of scrolls have taken place,
meaning that the host has at least begun its response and will have
scrolled the last prompt out of the way. Alternatively, though less
efficient, the old prompt could be erased from the virtual screen using the
screen-update facilities provided for buffered protocols.

A further scripting feature provided for scroll-mode access is the ability to
mark the current cursor position on the screen with a flag which then
sticks to the screen contents and scrolls with it. Subsequently, the marker
and current cursor position will delimit the host dialogue since the marker
was placed Facilities are provided to retrieve screen data based on these
delimiters, either as an unstructured sequence of lines, or by using the
marker as an alternative addressing base for formatted data which some
hosts output in scroll-mode.

4 .4 Screen-mode operation
Asynchronous host applications using formatted screens can be simpler to
script than scroll-mode as far as field location goes, but deduction of turn-

ingenuity May 1994 119

control can be more difficult (unless, of course, they provide an
alternative scroll-mode presentation). Drop-down menus and overlaid
windows present additional complexity.

Again, statistics can be used, though screen-access optimisation in the host
can make things less predictable. The cost is entirely governed by the
host application's uniformity or otherwise, and how much of its
functionality is to be accessed. At one extreme, using scripting to operate
a large, complex application in its entirety, say to provide a GUI, will no
doubt prove a major exercise. On the other hand making only a few of its
features available to network clients (say the mail and/or diary facilities of
an office automation system) may prove extremely cost-effective
compared with re-engineering.

The gateway provides some specific assistance for asynchronous screen-
mode operation, namely by helping to locate fields in the absence of
explicit field delimiters. Thus, changes of character attributes, line-ends,
and extended white space are interpreted as field delimiters. This enables
the same tools to be used as for buffered protocols - generation of scripts
can be partially automated, though more subsequent editing may be
needed.

4.5 Performance
Little hard-evidence yet exists regarding the performance of the gateway.
Clearly it would not expect to achieve the same response or throughput as
would purpose-built servers. However, users have so far compared
gateway performance with existing native-terminal access to their legacy
systems, and have, therefore, been quite satisfied with the improvement
achieved (due to automation, host session sharing, exploitation of client
processing power, etc.).

4 .6 Future directions
Actual usage of the gateway to date has been very encouraging. In the
future, it is expected to develop in a number of ways, e.g.:

• additional terminal emulations

• support for other client-server platforms

• enhanced tools

• enhanced script support (especially declarative languages).

5 Conclusion
To summarise, the scripted gateway approach:

• is cost-effective - integrates legacy programs and systems, without
change, into new client-server applications;

• is transparent - appears to legacy systems as a native terminal, and to
clients as a set of native networked services;

120 Ingenuity May 1994

• has wide host applicability - can support a variety of terminal
emulations (e.g. VT220, 7561, 3270), over various communications
media;

• has wide client applicability - available as a TUXEDO server, and as
libraries to build gateways for other client-server environments;

• is flexible - supports various levels of client access to host sessions;

• is configurable - replaceable modules include the scripting language
(UNIX Shell) and communications routines.

Acknowledgements
UNIX and TUXEDO are registered trademarks of UNIX Systems
Laboratories, Inc. in the USA and other countries.

DEC and VT220 are trademarks of Digital Equipment Corporation.

Biography
Paul Duxbury

Paul Duxbury joined ICL in 1973 after graduating in Mathematics from
Imperial College. He worked initially as an engineering test programmer
in West Gorton, Manchester, before moving to VME development in
Kidsgrove. Since 1980 he has worked on the DRS range of products,
including lead design of the DRS300 CDOS system and DRSNET. More
recently he has worked in a wide variety of fields including
communications, TP, systems management and security. He is currently a
senior designer in the Operating Systems Extensions Centre, Kidsgrove,
which specialises in commercial extensions to UNIX and other server
platforms.

Ingenuity May 1994 121

The Management of Client-server
Systems

Barrie Archer
The SOLUTIONS Centre, OPEN framework Division, ICL, Bracknell, UK.

Abstract

The deployment of distributed computer systems employing a
Client-server Architecture has increased the awareness of the need
for distributed systems management solutions to support such
systems. This paper analyses the systems management
implications of client-server systems, develops models for the
organisation of systems management, indicates the types of
solutions that are required and outlines possible future directions.

1 Introduction
Historically the capability to manage computer systems has tended to lag
behind the functions that needed to be managed. In some ways this is
inevitable since it is only as this functionality is deployed in real
production situations that the detailed requirements for management
become apparent. For example, as computer systems became more
powerful it became clear that facilities were needed to enable the various
software and hardware components of the system to be controlled so that
they might deliver service to end-users. Hence mainframe systems have
typically come with a rich set of facilities to enable them to be managed.
Mid-range systems have followed with management becoming
increasingly important as the power of the systems increases and
enterprises rely on them for day-to-day operations.

As enterprises build systems using a client-server architecture, so the
requirements for managing such systems become more detailed and
solutions specifically oriented to such management become available.

Thus, the importance of systems management in client-server systems is
becoming increasingly recognised -

"Because o f its critical role in the deployment o f client/server
networks, systems management functionality is an
increasingly important component o f the functionality that
servers must provide [GARTNER-SMEM, 1993]."

122 Ingenuity May 1994

This paper looks at the specific requirements for managing client-server
systems. The majority of these requirements are for managing clients,
since this is where the greatest gap exists between what is available and
what is required. Many requirements for managing the server are the
same as for managing Mid-range systems, and currently these are much
more adequately covered by the facilities available. There are, however,
specific requirements for the server, particularly to support distributed
server resources and to provide the server end of client management
functions.

The categorisation of systems management tasks used in this paper is
based on Gartner's Midrange System and Server Evaluation Model
(MSSEM) - see [GARTNER-SMEM, 1993]

2 Client-server overview
2 .1 Hie definition of client-server
For the purposes of this paper, the definition of client-server systems
follows that given by Gartner and adopted by ICL's Client-Server Systems,
namely:

"Client-Server is the splitting o f an application into tasks that
are performed on separate computers, one o f which is a
programmable workstation (e.g. a PC)."

In practice, it is found that many client-server systems will not consist of
a homogeneous mixture of systems. In particular, services will be
provided in the most cost-effective way with interoperability enabling
these services to be provided on different platforms. The realisation of
this heterogeneity will be different in different circumstances, sometimes
applying to hardware, sometimes to operating systems and sometimes to
applications (e.g. databases) and, all too often, to all three. This has
particular significance for the management of client-server systems.

2 .2 Types of workstation
It is important (from a systems management view) to distinguish between
workstations (clients) used as personal productivity tools and those used
to distribute processing power, since tne management requirements are
normally quite different. We will call these two types personal
workstations and application workstations respectively.

In figure 1 we summarise the differences between these two types of
workstation, categorised by 6 attributes (described in column 4 of the
table).

This assignment of attributes to the two types of workstation is not
intended to imply that all workstation instances will fall definitively into
one class rather than the other. There will be examples of workstations
that are mainly application workstations with some personal workstation
functions, and vice versa. Nevertheless, understanding that there are

Ingenuity May 1994 123

these differences is of benefit when considering the type of management
required for a client. Later we will refer to this classification in describing
management tasks and their applicability.

Personal Application Description of Attribute
workstation workstation

configuration diverse standard the hardware of the
workstation and the
software that is run on it

data local remote the location of data: local
to the workstation or
remote, that is on the
server

applications personal enterprise the type of application:
personal productivity or
enterprise defined

administration local remote how administration tasks
are performed: locally on
the workstation or
remotely from the server

security complex simple whether a simple logon
gives access to all data or
whether security varies
between resources

networking peer-to- client- whether limited to
peer and server interaction with a server,
client- or peer-to-peer
server networking with other

workstations

Figure 1 Attributes of workstation types

2 .3 Management of client-server system s
In managing client-server systems, it is important to appreciate the
significant difference between the requirements for managing the server
and those for managing the client. Generally, we can say that for the
server the requirement is for a small number of systems to be closely
monitored and accurately tuned. For the client, the requirement is for a
large number of systems to be managed as a whole, with relatively loose
monitoring and accurate and detailed inventory control of hardware and
software.

On the basis of these requirements, the management tasks, and hence the
tools needed, have significantly different characteristics between the client
and the server. This is not to say that the tools themselves, or the
interfaces to them, have to be different but it does mean that tools should

124 Ingenuity May 1994

be selected at least as much for suitability to the management tasks as for
commonality between client and server management. Take as an example
performance monitoring. It may be preferable to choose one tool to
perform the relatively simple monitoring on a workstation but another
tool to perform the complex monitoring, and capacity planning, required
for the servers and network.

At this point it is worth commenting on the possibility of having server
and client machines as the same physical hardware. Although such an
arrangement may be possible, and may apparently offer cost benefits, it
should be avoided since, compared with clients, servers have very
different requirements for quality of service. From a management point
of view, many difficulties can arise in this situation principally because
the management responsibility is no longer clear cut. In the end it will be
found that the increased on-going costs will outweigh the initial savings.

3 The cost of management
The use of clients in a client-server network has often been the domain of
computer-literate professionals using personal workstations. The effect of
this has tended to mask the costs of administering the workstation
because each user has performed the necessary administrative tasks in the
course of using the system. The fact that the time spent administering
workstations is not separately accounted for has tended to favour them in
any cost analysis. Several factors have arisen which are making this cost
more visible.

• Workstations are being used by a wider range of people, increasingly
clerical staff with only minimum necessary computer literacy (often
using application workstations).

• Workstations themselves are becoming more complex to administer,
particularly their communications with the network and the servers on
it.

• Professionals are becoming less willing to spend the time necessary to
administer their personal computers.

• Management has become aware that personal workstations are often a
vital corporate resource, but the administrative tasks necessary to
secure this resource are not always being performed.

3 .1 Evaluating costs
The true costs of management can be considered as the costs of doing it
compared with the costs of not doing it.

The costs of management may be broken down into personnel costs
(administrators and their management, as well as user costs as described
above) and resource costs, that is the cost of machines to run management
applications, software to perform management tasks plus an incremental
cost for each resource managed. This last item includes any additional
hardware required to make a resource manageable (e.g. extra store) plus a

Ingenuity May 1994 125

software cost where, as is becoming more common, management
application licence fees are based on the number of items being managed.

The costs of not doing management can often be hidden, for example
inadequate service, user/customer dissatisfaction, risk taking, inefficient
use of resources, inadequate accounting, etc. We have pointed out that
the users are often performing administrative tasks without the cost being
accounted for. However, there are also the hidden costs due to users
making catastrophic errors, failing to perform necessary management
tasks on an adequately regular basis or using resources inefficiently. The
cost of risk taking is normally hidden until the risk turns into a reality, so,
for example, the cost of not performing a backup of workstation data
only occurs when a hardware fault requires large amounts of work to be
done again.

The hidden costs of delivering an inadequate service to users result in a
lowering of productivity; this cost may be better understood through the
implementation of Service Level Agreements. These lay down
specifications for the quality of service that will be supplied to the user
and many organisations are now implementing such agreements. Systems
management is particularly useful in monitoring adherence to such
agreements and in providing a means to predict potential future shortfalls,
so enabling proactive measures to be taken.

3 .2 Reducing Costs
One specific aim of systems management is to reduce costs but this should
be taken to include the hidden costs identified in the previous section.
Hence, it will only be where hidden costs are fully appreciated that the
true gains of implementing systems management will be recognised.

Some of the ways in which systems management addresses direct cost
reduction are:

• automation of mundane tasks

• efficient utilisation of expert resource

• elimination of human error

• scalability to large numbers of components

• efficient and accurate information collection

All of these areas apply to the management of client-server systems and
some take on particular significance because of the factors outlined
before.

The areas of indirect cost reduction addressed are concerned with
performance monitoring, capacity planning, change management, data
integrity, etc. Some of these areas may not be applicable to client
systems, particularly for personal workstations, although benefit can still
be gained by ensuring that user responsibilities are fully understood both
by individuals and management. For example, if a user is responsible for

126 Ingenuity May 1994

performing backups of personal workstation data, this should be clearly
understood.

3 .3 Change management
One of the advantages of client-server systems is that they can easily be
changed to accommodate increased workloads or new applications. A
new workstation can be installed or new software can be used at a strictly
incremental cost. However, the disadvantage is that there is a certain
anarchy which works well enough when there are no difficulties, but
which gives rise to a heavy management task load if problems arise or
there are knock-on effects of changes.

Systems management has a role to play both in the implementation of
change and in the verification of change. By implementing change in a
systematic and structured fashion, the chances of unexpected and
unwelcome side effects can be greatly reduced. Keeping accurate and up-
to-date records greatly simplifies the planning of change, and even, in the
extreme, eliminates the need for change altogether. For example,
shelfware, hardware and software that is purchased but never deployed,
can be eliminated or used to meet new requirements.

4 Management model
In this section we explain how the management of systems can be
represented by different models which help us to understand the
relationships between different styles and classes of management.

Figure 2 Levels of management

4.1 Levels of Management
Systems management can be viewed as the first level of a hierarchy of
management disciplines, the higher levels being service management and
business management, see figure 2. This is explained in detail in

Ingenuity May 1994 127

[OPENframework, 1992]. The basis of this concept is that the
information obtained and the control exercised by systems management,
can be abstracted to enable comparable tasks to be performed at both
service and business levels. At the service level the concern is about how
the Information Technology (IT) services on which an enterprise depends
are functioning (e.g. the assurance that an order entry system is
functioning correctly). At the business level the concern is about the
overall impact that the IT services can have on the business of the
enterprise (e.g. the contribution of the order entry system to the business).

However, in this paper we are concerned with examining systems
management with particular reference to client-server systems. The
concepts of service and business management fit on top of client-server
systems management without regard to any peculiarities or differences in
the client-server environment. Indeed, it is fundamental to the concepts
of these higher levels that they are independent of specific systems
management functionality.

The rest of this paper will consider client-server systems management
without regard to service and business management. Please consult
[OPENframework, 1992] for further information on this subject.

4.2 Centralised management
From the point of view of corporate departments, such as Information
Technology, Management Information and Finance, centralising the
management of computer systems has many benefits in terms of
controlling computer resources and the amount of money spent on them.
A consequence of this approach is that there is often a degree of
standardisation in the configuration of clients, both in terms of hardware
and software.

In figure 3 we illustrate two ways in which central management of
workstations can be effected. If the resources of the workstation are
exported to the server, then they can be managed using the server
administration facilities either as a side effect of the management of the
server resources or specifically as workstation resources that are resident
on the server. Alternatively, the management of the workstation can be
effected by remote administration from the server.

Figure 3 Central and local management

128 Ingmiulty M ay 1994

Remote administration is more often employed for personal workstations,
whereas management through remote resources more often occurs on
application workstations.

4 .3 Devolved management model
One of the effects, and in some cases the motivation, for implementing
client-server solutions is that it gives power to the end-user, or end-user
departments, to define the way in which Information Technology will be
used to provide solutions to end-user-tasks. We say that this is devolved
responsibility. End-users are given responsibility to perform a task and
authority to define how this should be achieved. So, for example,
requirements for processing a particular class of company data may be
defined at a corporate level but the end-user department may be free to
choose how this should be accomplished.

This devolved responsibility obviously has to be held in balance with the
centralised management described in the previous section, and we are
particularly concerned with the management implications of this. We see
that for client-server systems there needs to be a clear understanding of
how responsibility for the management of clients should be divided
between the end-user and the systems administrators.

Obviously this particularly applies to personal workstations, running a
range of applications some of which may have definite corporate
implications (e.g. mail agent software which provides a user interface to a
mail server) and some of which are more user task oriented (e.g. personal
productivity tools, such as spreadsheets). However, we will develop a
model into which the application workstation also fits.

In order to ensure that the client can be managed it is necessary to define:

• what needs to be managed

• who is responsible for the management

• how the management will be effected.

We illustrate this diagrammatically in figure 4. We show responsibility
for the management of the workstation split between the user and the
central administrator. For this model to work there must be a clear
definition of the management tasks that the user is required to perform.
(The user may choose to perform additional management tasks in
exercising the responsibility that has been devolved, but that is not of
concern to this model.)

The area of overlap may be realised in two ways

• the user performs a task and the central administrator checks
(preferably automatically) that the task has been performed, examples
being local back-up and changing passwords.

Ingenuity May 1994 129

— __ TASK ____

/ user ^

(ResP°nsibili‘y () Administrator)
X. _ / R esponsibility/

------ COMPLETION ____________

Figure 4 Allocation of management responsibility

• the central administrator performs part of the task, which is completed
by the user, an example being software distribution when the user is
responsible for the final installation phase.

5 Management tasks
In this section we look at various tasks to be performed to manage client-
server systems, highlighting areas that are particularly important or
different. As stated before, we are primarily concerned with the
management of clients since the management of servers is generally the
same as for mid-range systems.

5.1 Operations management
5.1.1 Accounting and chargeback
For clients, determination of resource usage (accounting) and allocation
of charges to end-users or end-user departments (chargeback) is normally
limited to costs for the client hardware and the software installed on it.
Hence this area is closely related to inventory and licence management. It
tends to be more complex for personal workstations than application
workstations because the latter tend to have more standardised hardware
configurations and fewer, more closely administered, applications.

5.1.2 Network management
The impact of network management on the client is limited to managing
it as a component of the network. Hence it is important that the
workstation software network components can be managed remotely,
implying the capability to act as an agent to a Network Management
Station (NMS). So, for example, the workstation should respond to NMS
requests to identify itself, thus enabling the NMS to build a topographical
map of the network.

5.1.3 Print management
The requirements for print management depend very much on the way in
which a client-server system is organised For client-server systems that
are strongly workgroup-oriented a simple print management capability
may be sufficient, handling only printers within the workgroup.

130 Ingenuity May 1994

However, where the client-server system is (also) serving enterprise needs,
a sophisticated, all-pervading print management system is likely to be
required. This would have the capabilities such as:

• ability to choose appropriate printers according to attribute

• allocation of print jobs dynamically

• provision of sophisticated queue manipulation

• handling exceptions

• providing statistics

• resilience to failures

• security features

For a personal workstation much of this functionality will be hidden,
although manipulation of queues will be visible. For application
workstations even this visibility may not exist.

5.1 .4 Problem handling
This is concerned with determining that an operational problem has
arisen and progressing its resolution and correction. Both manual input
(support calls) and automatic detection of faults are relevant to client-
server systems. The former are likely to be in the majority for clients
although automatic detection is becoming increasingly available and
offers the promise of much more efficient administration.

The first aspect of automatic detection is the monitoring the resources
being managed. This covers both the handling of exceptions and faults,
and the regular inspection of the resources in order to recognise
conditions that indicate a problem may occur in the future. A critical part
of this is filtering to ensure that administrative staff are not swamped by
minor or self-correcting faults. This is particularly critical for client-
server systems where some faults will be dealt with locally by the user.

Once a problem has been detected, there must be the capability to
diagnose the fault (testing, remote access, etc.) and to track the work
being done to diagnose and correct the problem (using a help desk plus
tools specific to the problem, such as software distribution or
configuration).

5.1.5 Application monitoring
Application monitoring is restricted mainly to servers and application
workstations. The software on the workstation is effectively a distributed
part of the application running on the server and hence needs to be
considered in presenting a total picture of the health of the distributed
application. For the workstation, an extra degree of flexibility is required
to take into account the unpredictable work pattern of any particular
user. For example, it is necessary to take into account the workstation
being switched off when the user goes on leave.

Ingenuity May 1994 131

5 .2 Performance management
5.2.1 Capacity management
This involves measuring the resource utilisation of various components of
a client-server system and actions taken as a result of that determination.
This includes charging for resource usage (accounting), planning for
future capacity requirements and possibly providing data for service level
management (see 5.2.2).

This type of function tends to apply more to servers (and the
communications between clients and servers) and to application
workstations (typically concerning response times). Users of personal
workstations will often be left to determine from experience when there is
a capacity problem. This method is not very efficient but, equally, the
impact on the enterprise is also much less.

5.2.2 Service level management
Devolved responsibility often results in the responsibility for the servers
lying with different parts of an enterprise from the clients. This split is
likely to increase awareness of the need to define the level of service to be
provided by servers, encapsulated in Service Level Agreements (SLA).

Hence, we see that client-server systems may lead to an expansion in the
number of agreements and therefore to applications to manage these.
This will involve determining the level of service offered and comparing
this with what is specified in the agreement.

Although much of the functionality needed to manage SLAs will be
server-based, the requirement can be seen as an aspect of managing client-
server systems.

5.2.3 Performance monitoring
Most personal workstations would not be monitored for performance.
Application workstations are more likely to be monitored in order to
obtain information about quality attributes perceived by the end-user, for
example, response times. Facilities to provide this monitoring are likely
to be provided within the application running on the client.

5 .3 Storage management
5.3.1 Archive
Archiving involves the removal of data from immediate storage to off-line
storage. There are often requirements for longevity of the medium on
which it is stored as well as for large quantities of data. Archiving is
infrequently required for workstations but, if needed, can be provided via
a server.

5.3.2 Backup/Restore
Backup of directly addressable data ensures that, if the data is lost, it can
be restored to its state at a previous point in time. There are basically the
following options for backup of client data:

132 Ingenuity May 1994

• Where the data is held remotely on the server, backup of workstation
data will occur when the backup of the server data occurs. The
problem with this solution is that it does not allow the end-user to
restore the data.

• Backup of the workstation data can be performed by the end-user
using a server as the repository for the backup. The advantage of this
is that the administration of the server is likely to include off-site
storage of the backup data.

• Backup of the workstation data to local removable media can be
performed by the end-user. The disadvantage of this is that it can be
difficult to verify that it has been done and the media stored correctly.

• Administrative action from the server can backup the data on the
workstation. This requires appropriate facilities for the server to
access the workstation and for the workstation to be available for the
operation (probably during unsocial hours).

Backup of the server data, essential for some of the above to work, is
covered by the normal administrative activities for servers.

It is important to appreciate that data on a personal workstation can
easily be of vital importance to an enterprise (e.g. the result of an
extensive company audit could reside on one workstation), and yet
adequately securing it is often overlooked.

5.3.3 Threshold monitoring
Monitoring resource thresholds on a workstation is needed to ensure that
it does not cease to function through lack of resource. The most common
such resource is filestore. Depending on the use made of the workstation,
it may be necessary to monitor with only a very coarse granularity, for
example daily.

5 .4 Security management
5 .4 .1 Authentication
Authentication assures that the user has the identity claimed.
Authentication at the workstation can become especially important when
the workstation is trusted by the server, that is where the user performs
one logon which provides authentication for all the servers to be accessed
and all the functions to be performed on those servers. Application
workstations, where the authentication is likely to involve the server, are
easier to make secure. Making a personal workstation secure is likely to
involve a restriction on the user's capability to manage it.

5 .4 .2 intrusion detection
Detection of viruses is particularly important, especially with personal
workstations. Various mechanisms are now available for virus checking
and these can be initiated centrally or locally. It may also be necessary to
institute restrictions, using standard access mechanisms, to inhibit the
spread of viruses through the network.

Ingenuity May 1994 133

5 .4 .3 Audit
Audit means keeping a record of the identity of the user who performed a
particular action and, hence, is only as good as the authentication of the
user. Secure audit is more applicable to an application workstation but
may also be implemented on a personal workstation.

5 .4 .4 Password management
For application workstations, passwords are likely to be managed from
the server. For personal workstations, password management is likely to
be limited to verification that the workstation has password protection for
resources deemed to need it and that the passwords are secure (e.g. are
not too simple and are changed regularly).

5 .5 Configuration and change management
5.5.1 Asset management
One consequence of devolved responsibility is that it may be difficult for
the enterprise to ascertain what hardware and software it actually has.
Some enterprises might decide that end-user departments should have
total control of IT hardware and software but most will want to have
central asset management for the following reasons:

• accounting

• planning

• support

Asset management involves determining the configuration (hardware and
software) of a workstation dynamically and providing a means to store
this information and access it in a flexible manner, so that, for example,
reports can be generated. Whilst this also applies to servers, these would
normally be under closer supervision, enabling records to be more easily
kept. However, the asset management system should handle both clients
and servers.

5.5.2 Licence management
Enterprises are becoming more aware of the need to ensure that only
properly licensed software is used on both clients and servers.
Determining who is using particular licences may involve positive control
(inhibiting use of software without a licence) or passive control (auditing).
Floating or network licences allow licences to be shared between users by
providing a network-wide repository of licences that can be allocated to
users on demand.

Portable (laptop) computers present a particular problem because vendors
often permit a single licence to be used on two (or more) machines
provided only one person uses the software. Future development like
payment for usage will increase the management facilities needed in this
area.

It is important for client-server systems that the licence management can
be performed by an administrator in a distributed manner. Hence,

134 Ingenuity May 1994

technologies that require interactive dialogues on the workstation
(challenge systems) will not scale well to large numbers of clients.

5.5.3 Configuration management
Configuration can apply to both hardware and software. Today's
workstations, particularly personal workstations, are highly configurable,
and this can make central management difficult. For this reason, in some
management regimes, there may be restrictions on the permitted
variability of configurations. For the effective central management of
large numbers of workstations, non-interactive configuration is called for.

5.5 .4 Software Distribution
In client-server systems, software distribution should normally be done
electronically, except where the software is for a single system or where
the connection is unsuitable against this for reasons of speed or cost.
Even in this latter case, software may be distributed on a removable
medium but management control effected centrally. Facilities need to be
provided to enable software to be distributed from one or more
distribution points with the capability to perform the installation
remotely. There are many different detailed requirements depending on
the systems and users.

Server software would normally be under strict control and its
distribution, installation, etc., would be handled by administrators able to
manage all the servers in a system.

For workstations, software may be controlled entirely by administrators
or may be controlled by the user, or a combination. The choice depends
on the software and the user. For example, some organisations may insist
on central control of operating system software but be happy for users to
manage their own applications. What is required by administrators is a
consistent way to administer software on all systems, irrespective of the
hardware, software, communications, etc. Such administration would
include facilities such as:

• distribution of software

• installation of software

• removal of software

• configuration of software

For managing large networks of clients, installation processes that require
an interactive dialogue with the person doing the installation are not
practicable.

6 Technologies available
Ideally the tasks defined in section 5 should be implemented in a way that
allows for integration between them, so that when performing one task
the information or control facilities of the other tasks would also be

Ingenuity May 1994 135

available. So, for example, problem handling could use information in
asset control, or service level management could use the information
gathered by capacity management. This integration could be achieved by
having one management application that implemented all the tasks or
several such applications that conformed to a common interchange
standard enabling them to interoperate.

At the present time there are, in general, management applications that
address each of these tasks in depth, or management applications that
address them all in somewhat less depth. Interoperability between
different management applications, which depends on there being agreed
standards, is still at a very basic level. Some management applications
will interoperate very successfully with specific other management
applications, but only on a one-off basis.

Currently, the only management infrastructure commonly used and
deployed in client-server systems is the Simple Network Management
Protocol (SNMP). Originally developed to manage network components,
this protocol can be used to enable some management tasks to be
remotely performed on workstations (particularly monitoring and
configuration).

7 Future directions
Standards for managing workstations have been defined by the Desktop
Management Task Force [DTMF, 1993], an industry consortium of
companies concerned with desktop systems. These standards define
interfaces for the transmission of information between management
software and manageable components on the workstation and for how the
manageability of the components is described. These standards are likely
to be important in providing a means by which workstations become
more manageable by central administrators.

The Distributed Support Information Standards group [DSIS, 1993], an
industry consortium of companies concerned with servicing, has been
defining the components and attributes of those components that need to
be manageable in a distributed manner. Conformance to these standards
by vendors of hardware and software will result in a homogeneous
management view of client-server systems even when composed of
heterogeneous components.

Current initiatives, particularly those of the Object Management Group
(an organisation set up to promote standards in distributed object oriented
technologies, [OMG, 1990]), are aimed at the distributed use of object
oriented techniques, enabling applications to make use of objects
distributed throughout a network of systems. Such techniques are likely
to be of major importance in the construction of client-server systems.

136 Ingenuity May 1994

8 Conclusion
The management of client-server systems imposes particular requirements
on the way an enterprise organises its systems management and on the
tools needed, by both administrators and end-users. However,
management of clients is less advanced than that for servers, particularly
in terms of tools to manage populations of clients.

We have shown that the type of management depends on the type of
workstation and that there needs to be a clear understanding of how
responsibilities for systems management are split between end-users and
central administrators.

Proper attention to these aspects of client-server systems can effect real
financial savings, increase user satisfaction and productivity and
significantly reduce the risks to the enterprise from malicious and
accidental disasters.

References
GARTNER-SMEM, 1993 Gartner Group, Midrange Computing
Strategies, Key Issues K-290-1414 P. McGucldn, The Gartner Group Inc,
Stamford, CT, USA. December 8, 1993.

OVEN framework, OVEN frame wo rk Systems Management Architecture,
Prentice Hall, 1992.

DMTF, 1993 Desktop Management Interface Specification DRAFT 4.2
The DMTF can be contacted on +1 503 221 2945. January 12, 1994.

DSIS, Distributed Systems Support Information Standards Requirements
Specification, Doc PW017, Rev 1.0 (11 June 1993) obtainable from Ray
Edgerton, DSIS Group Chairman, BABSS, 50 East Swedesford Road, PO
Box 3004, Frazer, PA 19355-0704. Phone + 1 215 296 2159; also by
anonymous FTP from gatekeeper.dec.com: /pub/forums/dsis.

OMG, Object Management Architecture Guide, 1.0, The Object
Management Group, Inc., Framlington, MA, USA. November 1, 1990.

Biography
Barrie Archer

Barrie Archer is a Systems Designer working in The SOLUTIONS Centre
of ICL OVENframework Division. He is responsible for Systems
Management aspects of integrating ICL's client-server solutions. H e has
worked on the strategy of ICL's Systems Management products and
participated in the development of ICL's OVENframework Architecture
for Systems Management. He is the ICL representative on the X/Open
Systems Management Working Group and POSIX 1003.7 Working
Group. Electronic mail address 'barcher@oasis.icl.co.uk'.

Ingenuity May 1994 137

Dialogue Manager: Integrating disparate
services in client-server environments

Roger Thompson and Ian Robertson
OPEUframework Division, ICL, Bracknell, UK

Abstract

Many organisations have disparate IT services, using a variety of
technologies, which are central to their business. Today's climate
often implies rapid change in the nature of that business,
particularly in competitive levels of customer service. The current
services remain valuable assets, but their full potential cannot be
realised while they remain isolated. Re-engineering the services is
ruled out for reasons of timescale, cost and risk to the business.

Dialogue Manager is a set of software technologies which resolves
this dilemma, by allowing systematic integration of such services
at the desktop without changing them, so they can be viewed as a
single coherent system, accessed via a single consistent user
interface. Existing services can remain fully operational alongside
the integrated service, allowing controlled and phased
deployment, thereby eliminating business risk. The Dialogue
Manager client architecture provides for modular separation of
components, with the ongoing ability to adopt the best and most
appropriate tools from the software industry.

1 Introduction
"No one can plan the future. Three years is long-term...Five years is
laughable" [McCracken in Prokesch, 1993].

The 1990s were predicted to be a turbulent time in business. That
prediction has been amply fulfilled. While the nature of many businesses
is changing at a bewildering rate, the IT systems on which they depend
have often not kept pace.

[Brenner, 1994] illustrates some of the benefits of Client-server systems in
addressing these problems. Such systems are flexible enough to allow
components to be changed, or recombined in different ways, many of
which could not have been predicted, and yet maintain the integrity that
the business depends upon.

138 Ingenuity May 1994

While new systems can be constructed in this fashion, the IT legacy with
which most companies currently find themselves is far from an ideal
starting point from which to base a client-server infrastructure. However,
the time, risks and costs associated with populating that infrastructure
from scratch, or by re-engineering legacy systems, may be daunting.

Issue Characteristics of solution

In order to maintain Being able to construct apparently
competitiveness, transactions from new services from a combination of
disparate services need to be existing services, perhaps
combined together. These services supplemented by new services,
were typically not designed to work provides opportunities to gain
together competitive advantage.

Because these services are large, any
solution must be scaleable, implying
the use of mechanical tooling for
development and maintenance.

Services often have different user The services need to be viewed as if
interfaces, each of which requires they were a single integrated service,
extensive training. This causes both accessed via a consistent user
high training costs and poor staff interface. This interface should not
mobility, motivation and be constrained by existing user
productivity. Attempts at service interface characteristics,
integration without addressing this , . , , , , . ,
problem have usually proved The solution should not be tied to a
unsuccessful. Many services are particular toolset, but aUow choice
becoming ’customer-facing'. from ffhe best that the IT mdustry
Current user interfaces are not can ° er’
acceptable in this environment.

The business climate requires IT Change to IT systems must be
systems be changed as fast as the incremental. Large scale projects
business demands. Often, the rate should be divisible into smaller
of business change is constrained by increments, each of which shows
the rate at which IT systems can rapid return on investment. Later
change. phases should be capable of adapting

to changes both in the business and
in technology.

Conversely, small scale projects
must demonstrate that they do not
lead to dead-ends.

Businesses are critically dependent Improvements or re-engineering
on their current IT systems must be developed and deployed

without disruption to existing
systems.

Ingenuity May 1994 139

The IT legacy is a valuable asset, but how can it be made to fulfil its
potential in client-server systems?

In trying to answer that question, it quickly becomes apparent that some
issues are widespread, and particularly pressing. These are summarised in
the table on the previous page.

Dialogue Manager was developed to address these issues, providing a
client environment in which services can be integrated together
systematically and maintainably.

2 Architectural Principles
Dialogue Manager uses the Distributed Function model of splitting client
and server [Gartner, 1992]. This model identifies two client components
as application logic and presentation. Dialogue Manager recognises the
functional separation between these components. It also recognises that
the interface between client and server should be described at as high a
level as possible, in order to insulate the effects of changes of one half on
the other.

2.1 Data definitions - an introduction
Dialogue Manager allows the appropriate data to be viewed in an
appropriate way by each client component. This is achieved by
encapsulating the data that passes between components. This involves:

• normalising the data

• controlling data relationships by a data definition language

• providing an event-driven to block mode mapping.

The rest of this section examines each of these topics in turn.

Figure 1 illustrates the purpose of data normalisation. On the left of the
diagram, different device classes have different interfaces. The choice of
Human Computer Interface (HCI) toolkit may be influenced by the
number of device classes that can be driven, or the number of different
platforms supported. However, it should not constrain how the
application logic is to be written, nor what services can be accessed. The
alternative presentation logics shown illustrate that, however versatile the
HCI toolkit, different users may have fundamentally different
requirements on how they use the system, reflected not only in look and
feel, but also in dialogue flow. Nevertheless, these differences are not
relevant to application logic, nor to the services accessed.

On the right hand side of the diagram, different servers have different
networking requirements, and different data interchange formats and
rules. These should not be of concern to the application logic, nor to
presentation logic. By defining normalised data at the boundaries shown,
the necessary component independence can be achieved

140 Ingenuity May 1994

Figure 1 Normalisation of data

A data definition language is used to define logical data sets and
relationships between them. To illustrate what this means, consider the
example of a mainframe service accessed via dumb terminals. Here the
sets of data exchanged between service and terminal correspond to
particular screen types, and are determined by the mainframe application.
If the same service were designed to be accessed only by program, the
data sets might look rather different. The reason for this is that the screen
types are constrained by the amount of information displayed on a screen,
and by any contextual information required to make sense of it. This may
involve constant background text, but commonly also involves
retransmission of data from previous screens.

In order to isolate the logical definition of a service from the way it is
provided in practice, a data definition language is used. As illustrated in
figure 2, this language allows mapping of items between data sets.

Two types of relationship are supported:

• identity, where items have identical values.

• shadow, where the items are related, but require code to transform
one into the other.

It is thus possible to construct data sets for new logical services from
elements of existing services without disturbing either the existing logical
or actual services.

While the mapping could, of course, be accomplished by code, this would
be far less amenable to change than data mapping, and far less amenable
to mechanical tooling.

Ingenuity May 1994 141

Figure 2 Mapping of items between data sets

The data mapping techniques described above provide data normalisation
between application logic and actual services. They are also used to
[>rovide data normalisation between application logic and presentation
ogic. As described above, alternative presentation logic may be required

to be connected to the same application logic. The dialogue flow in a

f>articular style of presentation logic should be of concern to application
ogic only to the extent that it conforms to required business rules.

Conversely, presentation logic should not be concerned with what
happens to the data it collects, or how the data it presents is generated.
Neither component can, therefore, necessarily call on the other to do
specific actions. Instead, each component merely triggers the other,
effectively saying, "I have changed this data, or I need this data. Do
whatever you do in response to this". The data definition language
defines which data causes such triggers in which components, rather than
by code, for exactly the same reasons as in the data mapping case.

Dialogue Manager provides triggers as events on individual data items.
While this is a natural mode of operation for presentation services,
external services often deal with data at data set level (screen or block­
mode). Interfaces are, therefore, also supplied at this level, e.g. distribute
or gather this data set, check validity of data set etc.

142 Ingenuity May 1994

2 .2 Use of data definitions
In the previous section, data definitions were introduced as a way of
insulating components from each other, particularly in regard to resilience
to change.

This section describes other advantages that derive from the use of data
definitions:

• separation of toolsets, methodologies and skills.

• mechanical tooling to derive and maintain data definitions, and
generate run-time structures from them.

Dialogue Manager maps the run-time structures generated from data
definitions to a variety of language interfaces. Different components can
therefore be written in different languages. It also supports relationships
between data definitions in different applications, so that a client can be
constructed as a set of separate applications in different languages.

This has several advantages. Apart from allowing toolsets to be mixed
and matched from the best that the industry has to offer, the right skills
can be applied to the right component. Designers of the presentation
component, for example, can be human factors specialists, without having
also to be specialists in business processes. The rate of change of
technology applicable to the presentation component is particularly rapid.
By separating this from application logic, which is rather more stable, the
maximum amount of component re-use can be achieved without
sacrificing the ability to adopt the best technology available at any time.

The architecture does not demand that separate application and
presentation logic be provided. Where the prime reason for using
Dialogue Manager is for re-presentation of services, the amount of
application logic may be very small - almost approaching the Remote
Presentation model of Client-Server. Nevertheless, the use of data
definitions ensures that separation can be achieved later without
disruption of what has been developed already.

Legacy services can involve large numbers of screens. While it is feasible
to derive screen data sets manually for a few screens, this approach
becomes totally infeasible where hundreds, or even thousands of screens
are involved. In such cases, mechanical generation and maintenance is
required. Dialogue Manager has tools for generating and maintaining
data definitions from VME™ TPMS systems and TUXEDO® systems. It
also has tools for automatic generation of screens for VME TPMS
systems, together with the associated processing code. Section 3.4
describes this in more detail. The Dialogue Manager design facilitates the
addition of such tooling for other legacy services via the Professional
Extension (see Section 3.2).

2 .3 Objects
As described in the previous sections, the data description language
defines data sets, with relationships and event triggers. The items in a

Ingenuity May 1994 143

data set have some reason to belong together, for example, they may
define a screen or a logical transaction type. The items may be passive
data containers, whose significance is known only to the writer of the
Particular component. Alternatively, sets of items may have active

ehaviour, provided by code associated with them, in other words they
may be objects.

By addressing objects in the same way as other data sets, Dialogue
Manager ensures that they can be accessed from a wide variety of
languages, and that data relationships can be established between items in
different objects, between items within objects and items outside objects,
or between objects as a whole.

3 Dialogue Manager features
3.1 Introduction
This section outlines the features provided by Dialogue Manager both at
design time and run-time. Figure 3 shows the main Dialogue manager
components. These components are explained in sections 3.1 and 3.2.

Figure 3 Dialogue Manager components

Design time activities start with running Computer Aided Software
Engineering (CASE) extraction tools which can extract data definitions
for services mechanically, and converting them into the data definition

144 Ingenuity May 1994

language used by Dialogue Manager held in an inventory file (Dialogue
Manager's terminology for a data set is an inventory). This file is then
edited as required, adding relationships, event triggers etc. Runtime
structures are then generated. These include structures for:

• language bindings to particular HCI toolkits. These need runtime
structures to relate the application's view of data in the particular
language to the underlying generic representation.

• structures which encode the generic representation, including
relationships and event triggers.

• service access translation structures. These identify particular screen
or block types, and define prescriptions for gathering or distribution of
data.

• Objects (see section 3.2).

The components for the basic Dialogue Manager product at release 2 are
shown in solid boxes in the diagram above. This product allows access to
external services via its use of the X/Open supported XATMI interface, a
subset of the TUXEDO program interface, the ATMI. Dialogue Manager
provides applications with higher level interfaces to external services,
which map to XATMI using the support routines illustrated in the
diagram. XATMI effectively provides the means to pass data between a
client and a server, without the need for the client to handle routing or
networking itself. As well as native TUXEDO services, other service
types can be accessed via TUXEDO gateway servers, for example ICL
VME TPMS (available as part of the ICL TP Manager product), and IBM
CICS. XATMI is transparent to data. For example, screen data passing
between the client and legacy services is delivered without knowledge as
to its contents. Understanding the contents of data passing between the
client and legacy services is one of the main keys to front-ending and
integrating such services.

As explained above, Dialogue Manager's structures are specifically
designed to allow this process to be automated. In the basic product,
VME data dictionary definitions and TUXEDO View File definitions can
be captured (represented in the diagram above as CASE extraction), and
structures can be generated in Dialogue Manager's data definition
language in an inventory file. Structures from several services can be
generated in this way.

The HCI toolkits supported by the basic product are Microsoft® Visual
Basic and Visual C + + , and Gupta SQL Windows.

Business logic language bindings are additionally provided for C, C + + ,
and Micro Focus COBOL.

The Dialogue Manager design allows for the addition of other language
bindings for both business logic and HCI toolkits (see the next section).

Ingenuity May 1994 145

3 .2 Dialogue Manager Professional Extension
While the Dialogue Manager standard product offers external service
access via XATMI, its core capabilities have much wider applicability.

As illustrated in figure 3, Dialogue Manager also accommodates third
n packages. The standard Dialogue Manager Release 3 product will

)le to use such packages. However, the development required to
allow packages to integrate with Dialogue Manager requires use of the
Dialogue Manager Professional Extension.

The third party package may, for example, provide additional HCI
toolkits, service access capabilities or object libraries. Dialogue Manager's
ability to normalise and relate data items allows packages to be used for
integrating services for which they may not have been explicitly designed,
and widens their applicability by complementing their specific strengths
with those offered by others, or with the facilities provided by the
standard product.

Two packages are to be provided initially by ICL for Version 3. The first
package allows direct connection to ICL VME services without the use of
TUXEDO. The second package allows direct connection to IBM CICS
services accessed by 3270 emulation.

Direct connection to VME is provided so that the decision as to whether
to access VME via the TUXEDO route can be taken as the business
requires it, but also to allow a low entry cost for evaluation, pilots and
initial deployments. Applications using the direct connection route are
"TUXEDO ready", in that the same package interfaces can also be used
via the TUXEDO route.

Direct connection to VME also allows non-TPMS services to be accessed,
for example, MAC services. Dialogue Manager provides a 7561
presentation emulator in Visual Basic, so that raw 7561 presentation
protocol can be translated into a screen and attribute map, and be
displayed if required, with the look and feel of a 7561 emulator screen.
These facilities may also be useful for TPMS services where individual
fields contain 7561 protocol information (typically for bulletin boards or
dynamically configurable screens).

3 .3 CASE integration facilities
As illustrated in figure 3, Dialogue Manager has been designed so that
CASE integration tools can be used to extract and maintain service
definitions. To give examples of such tools, this section and the next
describe what is provided with the standard product.

Dialogue Manager provides tools for automatic generation of data
definition language files from ICL VME ISDA or Visionmaster™ screen
definitions held in DDS (VME Data Dictionary System). Data
relationships between identically named and identically defined fields are
generated automatically.

146 Ingenuity May 1994

Intelligent compression, under user control, is provided to generate
inventory types by merging the data definitions for closely related screens.
This is an attempt to assist in the process of deducing logical transaction
types from the screens that actually exist.

Dialogue Manager also provides tools for automatic generation of data
definition language from TUXEDO View files, both for Views and FML
Views.

Data relationships are defined in the inventory file. Though some
relationships may be generated automatically, many will not be. It is
therefore important to be able to maintain such relationships in the event
of service definition changes. For this reason, intelligent merge tools are
provided.

3 .4 Automatic screen generation
Many modern HCI toolkits offer a highly productive environment in
which to construct user interfaces. Nevertheless, the work required to
improve the HCI for an entire service, or to provide an integrated HCI
for several such services may still be substantial. It may be a useful first
step to be able to construct a replica of existing screens automatically
from CASE information, because the full functionality of the service(s) is
available immediately. The most urgent improvements can then be
worked on, leaving the rest unchanged.

As an example, the standard Dialogue Manager product can generate
automatically Visual Basic screens and processing code from VME TPMS
dictionary information, thus giving a Windows look to existing TPMS
screens. In addition:

• all the generated controls are linked to their appropriate definitions in
the inventory file. This would allow, for example, fields to be moved
around on a screen, without the need for code to be written.

• the processing code automatically generated is in source form, so that
the degree to which processing is automated can be controlled field by
field, and/or screen by screen.

3 .5 Scaleability issues and export inventories
One of the main advantages of mechanical extraction and generation
tools is that they allow services with hundreds or even thousands of
screens to be tackled. However, to achieve this in practice, it may be
necessary to split the applications solution into a number of separate
cooperating applications. The main reasons for this are:

• the need to allow many developers to work on the same applications

• the limitations of various HCI toolkits in the number of screens they
support.

Dialogue Manager supports relationships across applications by the use of
export inventories, as illustrated in Figure 4.

Ingenuity May 1994 147

Figure 4 Export Inventories

Each application has its own data definition file. Data sets (inventories)
are private to that application. However, export inventories define data
sets which transcend applications. Dialogue Manager links export
inventories with the same name in different applications as if each item
had an identity relationship with all its equivalents. The linkage may be
many-way if required.

The effect of this linkage is that if an item is set in an export inventory in
one application, the same value appears for the same item in all the other
applications. If an event trigger is defined for that item in one
application, which is to be fired when that item is written to, then it will
fire when the item is written to in another application.

Support for multiple cooperating applications also has implications for
service access. For example, one application sends a particular screen to a
service. However, the screen received in response is not necessarily in the
set supported by that application. While the runtime structures generated
for service access in different applications are separate, the Dialogue
Manager core can "see" all of them, and can therefore identify which
application should process a particular screen. Interfaces are defined so
that the original application is informed that another application needs to
process the received screen, and so that the identified application can be
told to process it.

4 Dialogue Manager in action
Dialogue Manager was first released generally in December 1992, with a
second release in September 1993. A third release is planned for mid
1994. It has been adopted by a number of large organisations, both to
construct new composite applications and to integrate a number of
services via a single modern user interface.

Some of the productivity gains have been very dramatic. In one case, the
operator time needed to assemble relevant customer information to
respond to a telephone enquiry was reduced by a factor of twenty five.

148 Ingenuity May 1994

The development process has also proved very productive and there are
now enough examples to allow development effort to be predicted with
some confidence. It has often been possible to produce an initial subset
development to achieve real business benefits both quickly and cheaply.
As well as providing initial estimates of cost, the resultant improvements
in productivity sell themselves within the organisation in a way that
proposals cannot [Peters, 1988].

The scaleability issues addressed in section 3.5 have proved important - in
one case, a composite application has been constructed from nearly 30
separate applications.

Data mapping has allowed the HCI to be designed as the business requires
rather than be constrained by the way in which the services provide data.
The screens displayed are not merely representations of existing screens.
Indeed, it may require some thought to relate them visually at all.

Last, but not least, no change has been required to any existing service,
and in each such case, a design based on Dialogue Manager has been
deployed without disruption to existing users.

Acknowledgements
The authors wish to express their thanks to all those who have been
involved with Dialogue Manager, whether in development, marketing or
management.

Trademarks
TUXEDO is a registered trademark of UNIX Systems Laboratories, Inc.,
in the U.S.A. and other countries.

MICROSOFT is a registered trademark of Microsoft Corporation in the
U.S.A. and other countries.

VME and Vision-master are trademarks of International Computers Ltd.

References
BRENNER, J.B. Client-server architecture, ICL Tech. J. Vol. 9 Iss. 1 pp.
3-17, 1994.

GARTNER: Software Management Strategies E-400-1121, 1992.

ICL: Dialogue Manager Reference Manual ICL Reference number
52381/003, September 1993.

PETERS T.: Thriving on Chaos, Macmillan 1988, Part III 1-3.

PROKESCH. S.E.: Mastering Chaos at the High-Tech frontier, an
interview with Silicon Graphics' Ed McCracken, Harvard Business Review
Nov-Dec 1993.

Ingenuity May 1994 149

Biographies
Roger Thompson

Roger Thompson joined ICT in 1967 prior to reading Mathematics at
Cambridge University. He worked on systems software development for
ICT 1900 systems, then as chief designer for operating system
development on ICL 2903 and ME29.

More recently, he has represented ICL on working groups of X/Open and
UNIX International concerned with PCs and User Interfaces.

In 1991, he co-founded Business Opportunities Development with Ian
Robertson, which was set up to identify business opportunities and
develop innovative products quickly to exploit them.

Ian Robertson

Ian Robertson has over 25 years experience of systems design and project
management with ICL and its predecessors.

He was involved with UNIX systems from their introduction into ICL in
the early 1980s and represented ICL on X/Open Networking and
Transaction Processing technical committees.

His area of technical specialisation is Transaction Processing (TP) with
which he has been involved for over 20 years. Immediately prior to co­
founding Business Opportunities Development he was responsible for TP
strategy for ICL mid-range systems.

150 Ingenuity May 1994

Distributed Printing in a Heterogeneous
World

Steve Hilditch
Client-Server Systems, ICL, Bracknell, UK

Abstract
Today's computer systems are becoming more complex, more
heterogeneous and more structured towards the client-server
paradigm. Print spooling is also faced with the challenge of
printing at the point of need and the opportunity of newer, low
cost printers. All these changes are happening within the context
of a continual need to reduce systems administration costs.
Therefore, there is an increasing need for an easy-to-use, fully
heterogeneous, client-server, distributed print spooler. This paper
discusses the requirements on such a spooler from the point of
view of an IT manager and presents a distributed architecture.
Current ICL printing products are also discussed.

1 Introduction
Three important trends are making distributed printing more and more
necessary in mid to large computer systems:

• the movement to networks from centralised processing

• the desire to print at point of need

• the availability of low cost, low throughput printers.

It is becoming common to have a variety of computers within an
enterprise computer system. There can be a variety of manufacturers, a
variety of platforms and a variety of operating systems, each with its own
spooler. Similarly, the growing desire for a variety of printers in a variety
of locations, coupled with increased low cost printer availability makes
the situation more complex. The need for well-defined, well-integrated
distributed printer systems management software is growing.

1.1 What is Distributed Printing?
Distributed printing can be defined as the ability to submit, route and
control print jobs within a network of possibly heterogeneous computer
systems and possibly heterogeneous printers. On an individual level, this
means being able to submit a print job from anywhere to anywhere,

Ingenuity May 1994 151

maintaining control of it after submission, and being kept aware of
printers being taken off-line and paper outs. On a corporate level, this
means having the capability of controlling all the connected printers,
collecting usage statistics for planning and billing, and controlling printer
servicing centrally.

1.2 Output and The Paperless Office
Since offices are exchanging more and more electronic information, a
paperless office is becoming more of a reality. This raises another
important aspect of printing: its relation to output in general. It is
outside the scope of this paper to discuss output at length but it will be
touched upon at various stages.

Output is the sum of all data exported from a computer system. This can
take many forms:

• printed hard copy

• EDI (electronic data interchange)

• BACS (the banks' automated clearance system)

• IPM (inter-personal messaging or electronic mail)

• FAX.

The forms of output listed above are all essentially one-way. Output is
not interactive communication such as remote login or video
conferencing. Output is essentially taking an object of revisable format
and transmitting a non-revisable copy of it.

The differences between the types of output are reflected in their usage
and format. Printed hard copy can be used for informal or legal purposes
of which faxes are the express variety, IPM for informal communication,
BACS for account transfers, and EDI for business transactions. Each of
the types of output has its own text format, its communications protocols
and media. It is possible to use common electronic communications such
as X.400 as a basis for more than one form of output. It should be the
long term aim to integrate as many forms of output as possible in order to
increase ease of use for the end user and the systems administrator. An
important part of this integration would be the ability to group more than
one type of output together, e.g. an invoice with an informal covering
letter. As regards printing, the distinctive features in relation to other
forms of output are that its medium is paper, that its format is a human
readable language, and that printing may be for use within the enterprise
as well as outside the enterprise.

1 .3 Other Literature
A suggested implementation of a distributed print spooler, nip, is
described in [Fletcher, 1992] based on TCP/IP and the Berkeley UNIX™
LPD protocol, lpd was developed on-site in the SAS Institute Inc. where
the computers in the network system vary widely. The industry standards
for distributed printing are ISO 10175 DPA (distributed printing

152 Ingenuity May 1994

application) [ISO, 1993] and POSIX P1003.7.1 [POSIX, 1993]. These
standards are discussed and elaborated in the proposal of [Duvall, 1994].
This paper aims to be more implementational than the standards
documents mentioned above, but at the same time more embracing than
the paper of Fletcher.

1 .4 Overview
The complexity of the distributed printing subject and the limited length
of this paper dictates that the paper's scope be limited. Therefore, it
concentrates on those issues of most relevance to IT managers. This
paper considers first the requirements on a distributed print spooler from
the point of view of IT managers, and then describes a distributed print
management architecture. The following section describes some current
spooler products and a spooler which most clearly reflects the proposed
architecture.

2 Requirements
The requirements outlined below are designed to be those of most
relevance to IT managers.

2.1 Interoperability
The first key requirement is that the spooling facilities on one system be
able to cooperate with those of another system. This means being able to
exchange print jobs and to control information. There are three main
aspects to interoperability:

• different vendors

• different platform architectures

• different operating systems

The situation is made worse by the provision of separate print spoolers
within certain applications. Those applications were perhaps written in
the days when the native print spoolers provided with the operating
system were not as user friendly as they might have been and they perhaps
lacked facilities now considered important. However, the situation in
many enterprises is a widely distributed heterogeneous system.
Developing systems management tools, such as a distributed spooler, in
such an environment is a challenge. Standards are an important aid to the
development of solutions and they provide the long term solution, but the
key to today's distributed spooling is in the hands of the ISV (Independent
Software Vendor) or solutions provider: integrating what is now
available.

2 .2 Devolved Responsibility and Printing at the Point of Need
The trend towards devolved responsibility within an enterprise means that
the end user increasingly wants to be able to print at the point of need.
This means firstly that print jobs should be able to be sent to any printer
in the network, assuming the correct privileges and the appropriateness of

Ingenuity May 1994 153

the printer. It is desirable that certain forms of print jobs appear as close
to the job submittor as possible for personal collection, e.g. printing slides
for a presentation. Printers can no longer all be gathered in central
places; printers will have to be connected to LANs, departmental servers
and PCs. Secondly, there is a need for employees to be able to login from
another site, perhaps when visiting, and be able to print close to where
they are. These two requirements can be summed up in the maxim
"submit from anywhere, print to anywhere". The flexibility of print
management software implied by employee empowerment in turn dictates
that all the print spoolers, from mainframes to PC-LANs, be integrated
into one print management system.

2 .3 Centralised Administration versus Devolution
In a world of increasing system complexity, the ability to control a
computer system either centrally or de-centrally is an important
consideration. An administrator should be able to gather usage,
performance and failure information easily, on the enterprise level or
departmental level, despite the complexity and location of the network
components. In this way, billing, capacity planning and the management
of system servicing can be performed efficiently. Centralised mainframe
systems are easily controlled centrally and PC-LANs are easily controlled
by individual users. However, with the introduction of complex
heterogeneous computer networks, the ability to support systems
administration at the appropriate level of devolution has become much
harder.

In relation to printing, certain administrative tasks can naturally be
decentralised, for example, re-filling paper on printers. On the other
hand, other administrative tasks are better centralised, for example,
security, billing and capacity planning. Print management software
requires the gathering of management information about the various
printers and print queues across the network. It also implies the ability to
install, configure, start, stop and maintain distributed spooling.
Therefore, print administration can only be achieved by close integration
of all the spooling facilities.

2 .4 Open Standards
Openness and standards are the long term solution to interoperability and
heterogeneity. As the interfaces are refined and the solutions providers
use those interfaces, so integration of multi-vendor networks becomes
relatively straightforward. The pioneering work was done by the
European Computer Manufacturers Association (ECMA) upon which the
International Standards Organisation (ISO) standard ISO/IEC/DPA 10175
[ISO, 1993] is based. ISO 10175 consists of two parts: the Abstract
Service Definition Parameters, and the Protocol Specification. The former
section describes the distributed printing application (DPA), its object
classes in object oriented terms, the processing model, the operations and
the object attributes. The latter section describes how the distributed
print service modules in different locations can communicate. ISO 10175
is at International Standard status. The Portable Operating System

154 Ingenuity May 1994

Interface (POSIX) standard POSIX P1387.4 [POSIX, 1993], formerly
P1003.7.1, is very much based upon the ISO 10175 standard but moves
towards an implementation by incorporating most of the features of the
Palladium print management system from MIT. The POSIX standard
should be able to be endorsed in 1994. Work is under way to draft an
X/OPEN standard from these other standards. It is the responsibility of
print management implementors to provide input to these standards and
then follow them as soon as possible after they have been endorsed.

2 .5 Cost Reduction
In a world of continuing reduction of unit costs, distributed print
management needs to be designed to reduce the following costs:

• running costs

• development costs

• upgrade costs

• operator intervention

• training costs

Printing must have interfaces to the end user and the administrator that
are easy to use. Tools will have to be provided to aid print management
software development, capacity planning, installation and configuration.
Administration must be as mechanised as possible, to reduce the number
of mundane tasks of a systems administrator and simplify training.

2 .6 Client-Server Design
In a distributed world, it is becoming increasingly important to
decentralise the processing of all tasks. Print management is no
exception. Application distribution by the use o f client-server
architectural methods has three major benefits:

1. performance, by best utilising the various hosts.

2. flexibility, by easing system reconfiguration and system upgrades.

3. resilience, by duplicating services to cope with individual failures.

2 .7 Environmental Friendliness
Environmental issues are becoming increasingly important, not just to
save money by re-cycling but also to satisfy our consciences in this
resource-draining civilisation. It is often the rank and file employees who
drive the corporate green conscience and therefore prowess at recycling
can increase enterprise morale. Some of the most pressing environmental
issues associated with printing are:

• duplex printing

• recycled paper

• toner refilling

Ingenuity May 1994 1S5

• printer component recycling

• the growth of the electronic office

• ozone reduction.

3 Architecture
3 .1 Hardware Topologies
Figure 1 shows the numerous variations within a networked print
environment. Distributed print clients can be attached to the network
directly as a PC or they can be connected indirectly via a departmental
server, a terminal concentrator or a mainframe. The printer they wish to
use may be directly attached to the back of their PC or another PC across
the LAN, or may be attached to a departmental server, or a dedicated
print server, or a terminal concentrator, or even directly to the LAN.
LAN-connected printers usually contain communications software for a
variety of network protocols, but can also contain part of the print
management software or act as Simple Network Management Protocol
(SNMP) agents for operations management software.

Figure 1 Hardware Network Topologies

156 Ingenuity May 1994

It is this final category of LAN-connected printers that are being
promoted by printer manufacturers such as HP and QMS. They point out
that LAN-connected printers have a number of advantages that justify the
major disadvantage of a higher price:

• Speed: LAN bandwidth is greater than serial or parallel cables.
However, the printer may itself be the performance bottleneck.

• Flexibility-, the printer is able to handle a number of different LAN
protocols simultaneously: OSI, TCP/IP, IPX, AppleTalk, NetBios, etc.

• Resilience/Availability: a LAN-connected printer is no longer
dependent on the availability of the server to which it is attached.

3 .2 Two Classical Approaches
There have been two classical approaches to print spooling:

• the centralised mainframe approach

• the decentralised PC-LAN approach.

The mainframe print spoolers centred all the printing facilities around the
host. The user on a remote terminal submits a print job, the job is kept
on the host until being sent to a printer local to the host. Since all the
jobs are processed by a single central spooler, systems administration is
kept simple. The central location of the printers used to cause
inconvenience until the introduction of terminal connected printers, such
as Direct Print on VME.

On the other hand, the PC-LAN spooling approach is to decentralise the
whole process. The end user submits a job, perhaps with data from the
PC, the job is queued either by the same PC or by a departmental server
and the hard copy appears either on a printer attached to the original PC
or on a printer in the department End users can export their own
printers as a service to others. This implies that the end user administers
the spooling process and the printer servicing.

PC-LAN spooling means:

• Increased ease of access for the end user.

• Increased administration skill required for end user.

• Devolved administration and responsibility.

• Difficulty in centrally collecting printer statistics, fault messages.

• Difficulty in centrally billing printer usage.

3 .3 Spooling a s "Middleware"
The first step towards a distributed printing architecture is to see printing
as middleware. If, for example, printer usage and billing are to be
administered centrally, all jobs will have to be submitted through a
common spooler. The spooler sits above the operating system and
networking which, in turn, sits above the physical system, see figure 2.

Ingenuity May 1994 1S7

The spooler provides interfaces to end users, applications and
administrators. The figure also shows the interface provided by the
application to the end user. End users, administrators or applications
could call the native operating system print spooler if desired but this
activity would not be managed by the common spooler.

Spooling as "middleware" implies that both users and applications submit
their jobs through a common spooler, instead of calling the printer drivers
directly. Spooling as middleware also implies that both an end user
interface and an application programming interface (API) be provided by
the spooler. This does not imply that all jobs must be submitted to a
central point, only that common and interworking spooler components be
used throughout the network.

Figure 2 Spooling as "Middleware”

3 .4 Print Job Dataflow
A distributed printing architecture must be able to transmit print job data
from anywhere to anywhere. This means that the print job data may have
to be formatted, filtered, transmitted, translated and stored in a number
of places before reaching output. See figure 3.

The first stage of processing the print job data is to create the user-desired
print job data. The input data is in a revisable format and an un-revisable
copy is taken of the required file or part of file. This is most naturally
done by application software on the client computer system. At this stage
a front sheet or separator may be added.

After the print job data has been created it is possible that some other
software may post-process the print job data, splitting the data into

158 Ingenuity May 1994

multiple print jobs with different subsets of the print job data. The
splitting is indicated on the figure as a double-headed sideways arrow.
This form of print job data splitting is common in large batch print jobs.

The second stage consists of formatting or translating the print job data
before transmission across the network. This might involve translating
into PostScript or PCL (HP Printer Control Language).

The third stage is to store the data. For reasons listed below, it is best to
store the print data close to its original source.

The fourth stage of processing is after a printer has been chosen for the
job, either explicitly by the end user or automatically by the spooler. A
transmission route to the printer is selected and the data is moved across
the network. Note that the print job data format may have to be changed
en route. For three reasons, transmission is best delayed, called late
binding, until the printer is ready to accept the job:

1. It avoids possible unnecessary copying of the data if the destination
printer is local to the data source.

2. It allows the decision about the printer to be delayed if load balancing
a number of printers.

3. It allows easy recovery after printer blockage, either failure or paper
out.

Figure 3 Print Job Dataflow

IntfMiulty M ay 1994 1 5 9

The fifth stage is post-processing, which is done close to the printer.
Downloaded fonts and output forms can be added, standard printer
control languages (e.g. PCL or PostScript) can be emulated, and the final
output assembled.

An optional final stage is delivery of the output from the printer to its
required destination. This may be achieved by an operator using the front
sheet or separator. In a large enterprise with specialised centralised
printers, automation of this stage is crucial.

3 .5 Client-Server Structure
The internal structure of a distributed printing architecture determines its
effectiveness:

• efficiency

• flexibility

• manageability

• ease of use

• resilience

A distributed printing architecture has five essential logical components:

• user interface

• data storage

• scheduling

• printer control

• recovery from server failure.

Figure 4 Client-Server Structure

1^0 Ingenuity May 1994

Each component provides a service to end user clients or other
components. See figure 4. The arrows shown indicate communication
between the various components. In each of the internal
communications, one component is a client and the other is a server.
Each of the components can be implemented by a number of instances
across the network in order to provide flexibility, speed and resilience.

3.5 .1 User Interface: Client
User access (either end user or administrator) is through either GUI,
commandline, C library or character-based interfaces. The user interface
checks printing privileges, adds any default parameters and executes the
pre-processing of the print job data. The user interface code executes
most reasonably on the host nearest to the job submittor. Its appearance
may vary according to the terminal and operating system used (e.g.
character-based, X windows or Microsoft® Windows). However, there
should be no necessary restrictions on a particular client's functionality.

For the end user, some or all of the following are appropriate:

• browsing suitable print queues to which access has been given

• submitting jobs

• checking the status of jobs

• suspending the job whilst in a queue

• removing a job from the queue

For the administrator, some or all of the following are appropriate:

• monitoring printer status and queue status

• adding and deleting privileges, printers and queues

• managing recovery

• managing load balancing and capacity planning

• managing servicing and billing

The user interface/client component will interface with the Data Storage
component to store the print job data, and with the scheduling
component managing the queue selected for the job.

3.5.2 Data Storage
The data storage component manages the storage of the print job data,
the print queues, access control information and the print configuration
information. Its function is different from that of the scheduler's since it
is concerned only with safe storage of information and not with job
dynamics. The data storage component provides a service to the
scheduling component, that is storage. Resilience to failure can be
achieved by duplicating the print job data on different storage media

Ingenuity May 1994 161

accessible by more than one host. After failure, all information about
configuration, permissions, current print jobs and current print job data
would be immediately available in order to carry on spooling.

3.5.3 Scheduling
The scheduling component controls the print queues, determining
priority, destination and transmission path. Each scheduling component
instance may manage a number of print queues, and thereby a number of
printers. The queues can be kept safe by duplicating storage on more
than one medium, accessible from more than one host. The scheduling
component interacts with the printer control components associated with
its print queues. Load balancing can be achieved by late binding: delaying
the sending of a job to a printer until it is about to be idle. Late binding
also aids recovery from printer failure, printer off-lining and dis­
connection from a printer, by re-routing the job to another printer.

3.5 .4 Printer Control
There is one printer control component to manage each printer. It will
initialise and configure the printer, initiate the post processing of the print
job data, call the relevant printer drivers and manage the error messages
from the printer. A printer control component responds to job requests
from the scheduler and returns messages indicating job-done, ready-for-
next-job and error messages. The printer control component associated
with a printer most naturally executes on a host nearest to that printer.

The printer control component could be replaced by a more general
output control component in order to bring other forms of output within
the distributed architecture. The output control component would be
responsible for communicating the output from the computer system:
either managing the sending of an electronic message or dialling a FAX
machine and sending the data.

3.5 .5 Server Failure Recovery
The server failure recovery component monitors the progress of the other
print management software processes and their hosts. It is responsible for
the initialisation of the processes and their restart after failure, either
automatically or manually. The important data structures of failed
processes can be made accessible even after medium or host failure,
thanks to the Data Storage component. These surviving data structures
can be used by the replacement process. The server failure recovery
component can be implemented as a number of instances, all monitoring
each other. In this way print spooling can be made resilient to network
failure, printer failure, process failure, medium failure and host failure.

162 Ingenuity May 1994

4 Implementations
The spoolers available in the marketplace usually fall into one of two
categories:

• the centralised spooler

• the decentralised spooler.

4.1 Mainframe VME Spoolers
In the centralised spooler category fall the mainframe spoolers, e.g. on
ICL hosts, the VME print spooler and the Gandlake spooler. The printers
are normally LAN-connected, control is centralised and client-server
splitting of print management is minimal.

4 .2 Microsoft LAN-Manager
The Microsoft products: LAN Manager, Windows For Workgroups and
Windows NT™ allow PC owners (386 or later) to export the services of a
printer attached to their PC by creating and exporting a print queue. The
management of the print queue remains their responsibility, although it is
not an onerous task, and they have the power to suspend and restart the
print queue. Anyone using the LAN can connect to the print queue
providing they have the permission (an optional password associated with
the print queue). Having connected to a print queue, its contents are
visible. In this way an end user can browse those connected print queues
in order to choose a lightly loaded printer. Windows NT does allow print
queues to be administered centrally and also allows print queues from
more than one LAN Manager domain to be administered centrally. There
is as yet no spooler component that enables the spooler to recover from
host failures.

4 .3 Novell NetWare
Novell NetWare's print spooler is split into two major components and
three print utilities. Print jobs are written to queues (subdirectories on file
servers), these are polled by a small number of printer servers: PSERVER,
which are perhaps executing on a host different from the file server. The
PSERVER instances send the next highest priority job to the printer (or
the next available printer if a set of printers is specified). Each printer is
managed by RPRINTER software (called NPRINTER in version 4),
perhaps running on the PC to which the printer is attached, perhaps
running on the printer itself, as in some LAN-connected printers. The
utilities provided: CAPTURE, ENDCAP and NPRINT enable non-
NetWare compatible applications to submit print jobs. CAPTURE and
ENDCAP redirect output from local PC printer ports to a print queue,
whereas NPRINT redirects files for printing. According to the proposed
architecture, RPRINTER (or NPRINTER) does printer control, and
PSERVER does scheduling, but there is no resilience to host failure when
that host is running the relevant PSERVER software.

Ingenuity May 1994 163

4 .4 Standard UNIX Spoolers
The standard UNIX spoolers: SVR4's lp and BSD's Ipr, provide certain
distributed spooling facilities. A UNIX host can export access to its print
queues to other UNIX hosts. This allows jobs to be sent across the
network. However, the interface is commandline and the location of the
printers is not made transparent to the end user. These ease of use
shortfalls for end users are also reflected in the lack of easy to use
administration tools.

4 .5 Siemens-Nixdorfs Xprint: From UNIX Outwards
ICL's PrintManager on DRS/NX, UnixWare and SCO UNIX, which is a
port of the Xprint spooler from Siemens-Nixdorf, can be seen to be a
good starting point for a distributed print spooler implementation.
Judged by its architecture, it provides the desired features set out in the
architecture section above:

• interfaces: as well as graphical end user and administrator interfaces,
and a commandline interface, it provides both lp (UNIX SVR4
spooler) and lpr (BSD UNIX spooler) interfaces. In addition, there is
an API for developers.

• client-server: Xprint is composed of five modules that correspond to
the five essential components of a distributed print spooler
architecture. It is unique in providing a server failure recovery module
to monitor the other print management processes and recovery from
loss of hosts as well as printers.

Although restricted at present to UNIX variants and Siemens-Nixdorf
mainframes, it is being ported to UnixWare 2.0, NetWare and Windows
NT. In addition, client packs are available for DOS and Windows PCs.

In order to provide a distributed enterprise print spooler, Xprint will need
to be integrated with native mainframe spoolers as well as existing legacy
applications, such as OfficePower.

5 Conclusions
In this paper we have reviewed print management in terms of IT
management requirements and in the wider context of output. A
distributed print management architecture has been proposed:

• considering print spooling as middleware

• involving six stages of the print job dataflow

• consisting of five crucial software components

It has been shown that the current ICL product PrintManager (Xprint
from Siemens Nixdorf) satisfies that architecture completely, unlike other
print spoolers considered.

At present it is possible to network printers in such a way that an end user
can submit a job from anywhere to any printer, but not all end user

164 Ingenuity May 1994

features would be available (e.g. stopping a job after queuing may be
impossible). What is clear is that administering a distributed spooler in a
heterogeneous network is currently a difficult task, although Xprint
provides a solution in the UNIX environment and in an environment that
is becoming ever more heterogeneous. A complete distributed print
management product is not yet available in today's heterogeneous world,
but the subset of that world that can be integrated is growing. Standards
will define the end implementation when they are agreed and then
followed.

Acknowledgements
Thanks are due to Bernt Palmqvist, Barrie Archer, Ann Knowles, Dave
Hollingsworth, Wojciech Kierstan and Alex Sharp of ICL for helpful
information, also to John Pinkerton and Barrie Archer (again) for giving
detailed comments on the draft version of this document.

References
[Duvall, 1994] Distributed Print Resource Management &
Interoperability Standardization, Keith E.Duvall, IBM, submission to
X/Open's Systems Management Working Group, 1994.

[Fletcher, 1992] nip: A Network Printing Tool, Mark Fletcher, SAS
Institute Inc., USENIX LISA VI, October 19-23, Long Beach, CA, 1992.

[ISO, 1993] ISO/IEC/DPA 10175, International Standards Organisation,
1993.

[POSIX, 1993] System Administration Interface/Printing P1387.4,
Institute of Electrical and Electronics Engineers, Draft Standard for
Information Technology - Portable Operating System Interface (POSIX),
1993.

Trademarks
UNIX is a registered trademarks of UNIX Systems Laboratories, Inc., in
the USA and other countries.

MICROSOFT is a registered trademark and Windows NT is a trademark
of Microsoft Corporation in the U.S.A and other countries.

Ingenuity May 1994 165

Biography
Steve Hilditch

Steve Hilditch gained a PhD in pure Mathematics (Algebraic Topology)
and a BA in Theology before turning to Computers in 1987. From 1987
until 1991 he worked as a research associate and part-time lecturer at
Manchester University on joint projects with ICL, West Gorton: Flagship,
EDS and GOLDRUSH. During this time he completed his MSc in
Computer Science. After a year learning French, Steve joined ICL,
Bracknell. He now works in Server Systems Division within ICL, Client-
Server Systems. Since joining ICL full-time, Steve has filed 8 patents in
both hardware and software.

166 Ingenuity May 1994

Systems Management: an example of a
successful Client-server Architecture

Mike Small and Dave Roberts
Client-server Systems, ICL, Bracknell, UK

Abstract

The need for remote management of distributed systems has led to
the development of a client-server architecture for this purpose.
This paper describes ICL’s Community Alert Management which is
used to implement such an architecture, together with some
practical examples of its use.

1 Introduction
The aim of systems management is to enable service providers to manage
distributed, complex, multi-vendor information systems.

Systems management has a broad scope which covers all of the tasks
necessary to ensure the availability, performance, security and change of
IT systems within an organisation. Traditionally, tools and facilities for
systems management have been provided locally as part of proprietary
architectures for the management of particular manufacturers' equipment.
By contrast, network management developed in response to the need to
provide remote control over equipment which is geographically widely
distributed and which is from a number of suppliers.

ICL's systems management architecture evolved [Gale, 1991] from the
work done in the early 1980s to build and manage large scale multi­
vendor systems for ICL's large customers in a number of areas including
retail, government and public services. This led to the definition of ICL's
OPENframework™ architecture and the development of a number of
products. These products include the Open Systems Management Centre
(OSMC) and Retail Systems Management.

Over a period of time, various components of this architecture have been
implemented. One key component is the management messaging system
Community Alert Management (CAM). The software which implements
this runs over the X/Open* Transport Interface (XTI) and provides many
interesting features which are described in this paper.

Finally some of the live applications of CAM are covered.

Ingenuity May 1994 167

2 Architecture
2.1 General Management Model
ICL's systems management architecture is based on ISO and de-facto
standards. The basic model for management, adopted by OSI, comprises
a managing system and a managed system as shown in figure 1. The
managing system contains a managing process which exchanges
management operations and notifications with an agent process within
the managed system. The managed system contains one or more
managed objects and the agent process is responsible for mediating
between what is communicated in the management protocol and what
happens in, or to, the managed object.

The attractiveness of this open management model is that it provides an
effective and efficient means of managing a wide variety of remote
platforms in a standards conformant way.

Figure 1 OSI Management Model

2 .2 Client-Server Approach
The nature of the model described above is such that organising it as a
network of clients and servers is very natural, and also a convenient
approach as we try to show in the rest of this paper. In this approach
both the managed systems and the managers are clients of a set of
management services. These services provide a flexible but standard way
of communicating with, and operating on, different types of system.

As pointed out by [Brenner, 1994] a client-server system is not necessarily
restricted to one client interacting with a single server.

There can well be several servers providing different services at the same
or different times to one or more clients. The clients and the servers can

168 Ingenuity May 1994

also be distributed throughout the network as is illustrated in figure 2.
Here both the manager and agent are clients of a messaging service. To
send a message the agent passes this to the local message server, which is
in turn a client of other network services such as TCP/IP. The message
server then passes the message to the manager over a route, hidden from
the agent and the manager, which may involve other message servers and
a variety of network services.

Figure 2 Messaging Service

One benefit of a client-server approach is that the managed systems need
not be sized to provide all of the management functionality themselves.
This functionality may be located wherever it is most effective or
efficient. For example, event routing, filtering and correlation services
may be provided at the centre so that managed systems need only concern
themselves with reporting their own events.

The client-server approach also makes it possible to distribute certain
services. For example, file transfer services may be located at key points
in the network so that only small numbers of copies of software need be
distributed over the wide area network. This makes for a scalable
solution which is capable of managing very large numbers of systems.

Ingenuity May 1994 169

2 .3 Management Infrastructure
The remote management of systems requires connection services between
the managed systems and the management centre. These services form a
management infrastructure providing:

• management messaging

• bulk data transfer

• interactive access

2.3.1 Management Messaging
This covers relatively small amounts of data involved in communicating
events, alerts, alarms and commands.

The established ICL protocol for management messaging is Community
Alert Management (CAM). This has been in use since 1986 and runs over
both OSI and TCP/IP transport infrastructures. CAM provides a number
of useful features which are described in more detail later in this paper:

• Real Time: CAM works in real time so that messages are delivered
swiftly enough for operational monitoring and control.

• Routing: CAM uses the name of the target object to determine the
route to send a message.

• Resilience: CAM is able to re-route messages avoiding failed paths.

• Filtering: CAM provides facilities to send messages selectively to
certain destinations depending upon the type and content of the
message.

• Recovery: CAM can retain messages for destinations while no path is
available to send and to re-send these messages when the path becomes
available.

• One to Many: CAM can broadcast a single message to a number of
destinations.

• Store and Forward: CAM is able to deliver messages when the final
destination is not known directly to the originating system.

CAM is available on all ICL Open platforms as well as a range of non ICL
platforms.

2.3.2 Bulk Data Transfer
This covers the large amounts of information communicated periodically
as part of software distribution and configuration changes.

2.3.3 Interactive Access
This provides terminal access connections required by remote login.

170 Ingenuity May 1994

3 Implementation
3 .1 Community Alert System (CAS)
The CAS software implements the CAM messaging system mentioned in
section 2. CAS enables elements of a distributed system to send and
receive management messages in real time. CAS is based on the use of the
X/Open Transport Interface (XTI).

Each managed system may have one or more CAS service and each CAS
service is identified by an address known as the CAS address. Each CAS
service may provide messaging facilities for a number of applications each
of which are identified by a CAS sub-address. By means of CAS each of
the applications may send and receive messages.

3 .2 CAS Components
The overall structure of CAS is shown in figure 3.

Figure 3 CAS Components

Ingenuity May 1994 171

3.2.1 Message Router
This is a software module which takes messages from a queue and decides
the action for each one. Each message is dealt with on a first come first
served basis.

A configuration file, known as the routing file, determines how messages
are to be dealt with. Rules may be set up whereby actions may depend
upon the message type, message content and addresses. Actions taken
may include:

• transmission to another network element

• passing the message to a local application

• logging the message

• discarding the message, with or without a non-delivery indication to
the originator.

Rules are used to divide the messages into logical groups which may then
be selected for particular actions. The rules are written as boolean
expressions using the names of various fields making up messages,
constants and boolean operators. The fields include:

MT Message Type
DATE Date
TIME Time
OAT Overall Alert Type
MAC Major Alert Cause
SC Specific Component
AC Alert Code
CAS CAS Address
SUB CAS Sub Address
DET Details
RET Retry Field

The operators available are:

= Equals
NE Not Equals
< Less than
> Greater than
> = Greater than or equal to
< = Less than or equal to
AND Logical and
OR Logical or

172 Ingenuity May 1994

The Message Type identifies the style of messaging being employed. The
most common style is the 'Directed Message', where the originator
identifies the recipient. Routing of such messages is to send to the
recipient, unless the routing rules decide otherwise.

Alert messages are also catered for. Here, an application posts a 'cry for
help1 to CAM and the Message Router decides who is competent to assist,
based on the characteristics of the message. Alerts do not identify their
recipient. This conveniently separates the concern of raising an alert from
that of deciding what to do about it.

Since it is the responsibility of the message router to route the alert
appropriately, the application relies on CAM to deliver the message
suitably. For instance, should the Router decide that the message is of no
significance to anyone else and discard it, then the originator need not be
concerned.

However, directed messages are treated very much like mail. The default
is to deliver at all costs, however long it takes. To continue the mail
analogy, it is equally possible to mark the envelope with 'if undelivered
return to sender' or 'if undelivered do not return to sender'. Again, these
are defaults, set by the submitting application and the message router is at
liberty to override these rules if it thinks fit.

A message may not be delivered if its destination cannot be reached
immediately. For local destinations, the router knows which applications
are connected to CAM. For remote applications, discard is done in
cooperation with the Message Handler which evaluates whether
communication failures are transient or more long lasting.

3.2.2 Message Handler
This module communicates between the network and the message router
described above. It ensures that each message is successfully transmitted
to its destination using the path specified. This software uses the X/Open
Transport Interface to the network transport services.

The Message Handler maintains a queue for each remote destination.
Message receipt is confirmed by the receiving message handler before a
message is discarded from the queue.

Note that whilst CAS provides application-to-application messaging, it
obviates the need for direct application-to-application communication
links. All intra-system communications are between CAS message
handlers.

Message Handler passes all incoming messages to message router, which
may deliver them to local applications and/or onward route them via the
message handler.

Ingemilty May 1994 173

3.2 .3 Message Storage
In principle, messages are held in files thus avoiding their loss when
processing or transmission is held up for any reason. Messages entering
the system, whether from local applications or from the network, are held
in the Message Submission Interface (MSI) directory until the message
router is able to deal with them. Messages output from the message
router are placed in files to await transmission across the network by the
message handler or processing by local applications. Messages in these
files are processed on a first in first out (FIFO) basis.

For efficiency, message passing may be via direct connections between the
message router and local applications or the message handler. In such
cases, messages are secured in files only if a connection becomes
congested or if necessary to avoid loss.

3 .3 Availability of CAS
The CAS software described above is now available on a range of
mainframes and UNIX® systems. The mainframes include ICL VME®
and IBM MVS (running under CICS). The UNIX systems include ICL
DRS 6000 and DRS 3000 series under DRS/NX, Hewlett Packard
HP9000 series under HP/UX, SUN systems under SUNOS and Solaris 2,
SCO UNIX, Pyramid Systems and DG Aviion. CAS has also been
implemented on other regimes including OS/2 and VMS.

4 Examples of CAS in use
The CAS software, which forms part of a number of different products, is
also used by certain customers directly.

4.1 OSMC Operations Manager
OSMC Operations Manager caters for the remote management of a
network of systems [Hacker, 1991]. It provides a comprehensive view of
the overall system and the services provided. A high quality graphics
display [Small, 1991] shows a map of services and servers in the network
and their real time status. Some thousands of end systems, world-wide,
are currently managed by Operations Manager.

Operations Manager presents the status of the managed objects rather
than the raw stream of events. This enables pro-active management of
services. For example, defined thresholds can be set for filestore and
swapspace which, when exceeded, will generate an alert automatically.
This potential problem can then be detected and remedied without any
disruption to crucial services.

Messages from the managed systems about the state of the managed
resources are communicated via CAS. Icons representing services and
service components change colour to indicate the significance and severity
of a problem, or potential problem. Clicking on a service icon gives an
instant view of the components underlying the service, their colour
indicating their status. Thus the component at fault can be pinpointed

174 Ingenuity May 1994

swiftly. A service icon can map onto a specific service instance or the
whole service, as required by the user.

By not relying on constant polling, the load on the IT network is kept to a
minimum, freeing the maximum available capacity for business-critical
applications. Also, alerts are reported immediately, and do not have to
wait for the next poll.

Normally, each managed machine will be supported by an Operations
Agent which reports status to one or more Operations Manager. When
the manager establishes contact with the Agent, detailed information will
pass from agent to manager about the current state of all the entities being
monitored. From there on, only changes will be reported. Confidence in
the report is maintained by a periodic 'heartbeat' message sent from agent
to manager. If a beat is missed, the manager will know that the machine
state is uncertain and it will re-establish control.

Remote Action facilities are provided by operations manager to give direct
control of remotely located systems. Actions available depend upon the
object type but for DRS/NX systems these include system resets, restarts
and reload The actions may be tailored to be any command relevant to
the managed end system. The action messages and their replies are
carried by CAS.

Operations manager uses both alerts and directed messages.

The operations manager agents for UNIX trap certain system and
application specific events and raise alerts where necessary. The CAS
message router directs these alerts to interested operations manager
displays.

Most operations manager messages are of transient interest.
Consequently 'discard on non-delivery' is requested for many of the
messages. Non-delivery notification is not needed in most cases but is
sometimes used to allow a re-establishment of confidence in the
information flowing between manager and agent. For instance, all reports
from agent to manager will be discarded on non-delivery, as they are
likely to be out of date if not delivered promptly. The agent is notified
about non-delivery of its 'heartbeat' and will suspend further
communication with the manager. When the manager detects the loss of
heartbeat, it can re-establish control of the agent.

4 .2 OSMC Distribution Manager
OSMC Distribution Manager [Barthram, 1991] enables the centralised
distribution of files, application software and products over a network.
Files may be delivered to any kind of system supporting a suitable file
transfer protocol. Software installation may be automated for UNIX,
VME ana PCs under Windows.

Ingenuity May 1994 175

CAS is used to provide the messaging service upon which the Distribution
Manager software depends. Messages are sent from the central
Management Application software to remote agents controlling the
transmission of files and the installation and activation of software on the
remote systems. The remote agents transmit feedback information to the
management application concerning progress and success or failure using
CAS.

Unlike Operations Manager, Distribution Manager requires delivery of all
its control messages. It does not use the discard on non-delivery
capabilities.

4 .3 Retail System s Management
In 1984 ICL formed the Retail Business Centre to develop business in the
vertical retail market [Pickworth, 1991].

This led to the development of products to allow retailers to make use of
data collected at point of sale. Although many large retailers tend to use
IBM mainframes at their head office, ICL decided against using IBM
protocols for this purpose. This was for various reasons including the fact
that the IBM standards were not open.

The systems management infrastructure components for management
messaging (CAS) and bulk data transfer (CFT) were used instead to
develop a set of open products known as Retail Systems Management.

These products are in use today by more than 100 retail customers
worldwide.

4 .4 Inland Revenue
The Inland Revenue (IR) currently uses ICL's Community Alert
Management to carry management messages concerning their network of
VME mainframes and BULL Office Systems. Each of the VME
mainframes and over 1000 UNIX systems use the CAM protocol to
communicate over the X.25 Government Data Network with a VME
mainframe which acts as a central manager.

The CAM messaging system is used by several different management
functions including:

• central statistics collection

• status monitoring system

• load set manager

• event logging system

• configuration management

Two kinds of message are used: alert messages and command messages.
Alert messages carry information concerning an event or set of events
which have occurred within a managed system. The alert messages have
different classifications enabling the routing mechanisms to know what to

176 Ingenuity May 1994

do with them. Command messages are used to initiate actions on the
managed systems. Command messages are also used to request
information from the managed system, for example, the status of a
managed object.

The Event Logging Subsystem is a significant user of CAM. This receives
messages from a variety of sources concerning five general kinds of
managed object:

• X.2S Service: which supports the management of the communications
functions required to provide a network service conforming to the
CCriT X.25 recommendations.

• LAN: which supports the management of all the hardware devices and
communications functions required to provide a local area network
service conforming to OSI standards.

• Transport Service: which supports the management of an OSI transport
service over both the wide area and local networks.

• File System: which supports the management of the disk filestore on
the UNIX systems.

• Print Spooler: which supports the management of print devices and the
documents to be output on these devices.

Several thousands of messages per day are carried over this infrastructure
within the IR.

5 Conclusions
This paper has shown how the technical architecture required for the
management of a network of distributed system is a specialised form of
client-server architecture. The features of ICL's management messaging
service CAM have been described in detail. The CAM service works in
real time and provides routing, resilience, recovery, store and forward and
fan out features. Software implementing CAM is now available on a
range of types of hardware and operating systems. This software forms
an important part of ICL's TeamCARE™ systems management product
set. It has also been used successfully by a range of ICL's major
customers.

Trademarks
UNIX is a registered trademark of UNIX Systems Laboratories, Inc., in
the U.S.A. and other countries.

X/OPEN is a trademark of the X/OPEN Company Limited in the U.K.
and other countries.

ICL VME is a registered trademark of International Computers Limited in
the U.K. and other countries.

Ingenuity May 1994 177

OPENframework and TeamCARE are trademarks of International
Computers Limited.

References
BARTHRAM P., HOWLING D.; Distribution Management - ICL's Open
Approach. ICL Tech. J. Vol 7, N o 4, 1991.

BRENNER, J.B. Client-server architecture, ICL Tech. J. Vol. 9 Iss. 1 pp.
3-17, 1994.

GALE A.C.; An Evolution within ICL of an Architecture for Systems
Management, ICL Tech.]. Vol 7, N o 4, 1991

HACKER D.; Operations Management. ICL Tech. J. Vol 7, N o 4, 1991.

PICKWORTH L; Experience in Managing Data Flows in Distributed
Computing in Retail Businesses. ICL Tech. J. Vol 7, N o 4, 1991.

SMALL M. et al.; OSMC Operations Control Manager. ICL Tech. J. Vol
7, N o 4, May 1991.

Biographies
Mike Small

Mike Small is Solutions Architect for ICL's Systems Management
Business. In this role he has been responsible for the systems management
solutions provided to some of ICL's major customers including France
Telecom.

He is a graduate of Brunei University and joined ICT at West Gorton in
1967. He was initially involved in the design of engineering software for
the design, manufacture and maintenance of ICL's 2900 series of
computers and the ICL ME29.

In 1982 he was a founder member of ICL's Knowledge Engineering
Group which was concerned with the exploitation of software
technologies based on artificial intelligence. In this group he led the
application of these technologies to systems management. He was
responsible for ICL's VME Capacity Management System (VCMS) and
received ICL's Gold Excellence Award for this work. He was also
responsible for the development of the Operations Control Manager
(OCM) which provided a graphical interface for the management of
UNIX and VME systems.

He has published many papers in the ICL Technical Journal and the
proceedings of international conferences.

178 Ingenuity May 1994

Dave Roberts

Dave Roberts is Lead Designer for Operations Manager in ICL's Systems
Management Business. He is responsible for the design, implementation
and delivery of Operations Management solutions.

He is a graduate of Manchester University and has been involved in the
computer industry since graduation in 1968.

Prior to his Systems Management involvement, he had wide experience in
software development with both computer manufacturers and users.
Over the past 20 years, he has taken part in several successful
implementations of what we now understand to be client-server
applications, including distributed data collection, remote data delivery,
electronic mail and distributed transaction processing systems; hosted on
ICL and other manufacturer's systems.

He has been with ICL since 1977; joined the Systems Management
Business in 1985 and was one of the team which carried out the first
CAM implementation on ICL's VME Operating System. H e maintains a
responsibility for the management messaging area, whilst majoring on the
development of applications which exploit it. H e is the recipient of an
ICL Excellence Award for his work on Managed Bulk Data Transfer.

His current responsibilities include products which run on VME
Mainframes, UNIX Servers and PC Clients.

genuity May 1994 179

PARIS - I d 's Problem & Resolution
Information System

P.J. Loach
DSC, Customer Services, ICL, Manchester, UK

Abstract

This paper outlines the concept of PARIS (ICL's maintenance
database), and some of the problems encountered during its
development. The PARIS database was originally designed to
record both hardware and software maintenance problems
(although to date it is mainly software problems that have been
recorded) by describing the symptoms by which incidents
manifested themselves. Being a structured database this
considerably simplified the task of identifying known problems
and finding the appropriate corrective action, both for ICL and
customer staff. This also paved the way for future automatic
computer searching to take place, in a similar way to the
operation of the Maintenance Knowledge Base (MKB). A further
development allowing customer access to a subset of the data held
on PARIS was the PC based CD-ROM system known as PC-PARIS.

1 Background
The introduction of the Series 39 family of computers, and the
development of Support and Maintenance (SAM) in 1985, had shown that
when a computer hardware fault occurred it was usually possible to
obtain sufficient diagnostic information from the broken machine, which
could then be transmitted to an ICL Mainframe in the form of a
fingerprint. This fingerprint then could be compared automatically with
previously collected sets to see if the problem was already known. In the
event of a match being found an engineer could be dispatched to the site
either with the appropriate spares, or knowing what action was required.
In 1986 this method of diagnosis was enhanced to include some simple
software problems relating to the firmware of the machine and the
Maintenance Knowledge Base (MKB) was born. When a fingerprint
match occurred then a solution (usually in the form of a repair) would be
transmitted directly to the site. All this was achieved with a minimal
amount of human intervention thereby saving time and costs for both
customers and ICL. The principle of having to solve any problem

180 Ingenuity May 1994

manually only the first time it was encountered was, therefore, well
established for both hardware and firmware. (For further information
regarding the remote and automatic diagnosis facilities of Series 39
computers see [Allison, 1988]).

The resultant cost savings made by using fingerprints for hardware
diagnosis, coupled with the increase in the reliability of computer
hardware, meant that the next logical development was on the software
front. Since the late 1970s ICL had been using a loosely structured
database for the recording of useful tips and known errors called the
Maintenance Data Base (MDB). A field-trial giving some of ICL's larger
customers access to a subset of this data, via an ME29 computer,
indicated that there was a demand for on-line access to this information.

The MDB, however, had been designed for internal use by ICL staff, and
resided on an ICL Corporate Mainframe in Hitchin, (which contained
other important ICL information). Also, being intended for internal use,
much of the data recorded on it was unsuitable for customer viewing.
The data was structured using keywords and therefore did not lend itself
to an automated diagnosis, or search, process. To give all ICL customers
access to the data recorded on the MDB, subsets were generated and
reproduced on microfiche, commonly referred to as the Known Error Log
(KEL), for distribution at fortnightly intervals. In the early 1980s it was
realised by the support community that the massive increase in computer
usage, and the development of ever more complex applications, would
result in these microfiche becoming too cumbersome to be effective by the
1990s. Therefore it was decided in October 1984 to develop a new
database based on the successful principle of the SAM/MKB fingerprints.

Shortly after this decision was taken, ICL started to develop another
information system, designed to provide hardware assistance for
engineers. This eventually grew into the LOCATOR system [Rouse,
1991]. The approach used by Locator was considered unsuitable for
PARIS, with the result that the two systems were developed
independently.

2 The Original Concept
Although ICL had the resources to design and build a suitable system, it
was decided to employ outside contractors with specialist knowledge in
the use of databases. As some of them had been involved in the original
design of the MDB, they were aware of the nature of the data that needed
to be recorded on PARIS.

They advised that a fingerprint approach should be adopted, whereby the
symptoms of a problem identify it uniquely. The ICL Integrated Data
Management System (IDMS), first released in 1977, was recommended as
the best method of recording and searching through large volumes of data
efficiently. An added advantage was that the IDMS database system
readily lent itself to expansion, as required, to include new products.

Ingenuity May 1994 181

It was decided to mirror, as far as possible, the data structure on the
existing product hierarchy, with the topmost node being GLOBAL,
having one leg for hardware and another for software. (The structure
consists of a series of nodes, each dependant on the one above and, as you
progress down the structure, each node becomes more product specific.)

It is interesting to note that when several groups of diagnosticians were
asked independently to invent a suitable structure, each group made a
completely different suggestion.

Figure 1 Extract from the PARIS hierarchy

Each product could then individually generate its own bespoke set of
Support Knowledge Entries (SKEs) and Symptoms. (A SKE is a record of
the manifestation of a problem and consists of a global Entry Class and a
series of local product related Symptoms, together with a brief textual

182 Ingenuity May 1994

description of the way the problem appears to the user.) The global Entry
Class was intended to provide a description of the type of problem (e.g.
unexpected Result Code or Program Error) which would be applicable to
all products and provision for 9998 such entries was made (of which only
41 have been used to date). The local Symptoms and associated values
would further describe the problem in terminology most appropriate to
the product. These SKEs would, wherever possible, be linked to records
containing solutions to the problems. The result was a highly structured
database as opposed to the existing MDB.

An example of a typical SKE is:

SKE NUMBER: 60035

SKE TITLE: SETPERMISSIONCONTROL fails with
RC 9118

ENTRY CLASS: 0015

SYMPTOMS:

PRODVR SV292

RC 9118

ACTVTY DECLARATION

COMAND SETPERMISSIONCONTROL

OBJTYP PERMISSION

PRODCT CATLOG

OBJTYP OPTION

DESCRIPTION:

SETPERMISSIONCONTROL fails with RC 9118 when it should
be generally available.

3 Populating the Database (part 1)
As customers were intended to be given access to PARIS data it was
decided that the Product Authorities (i.e. those responsible for the
development and support of products) should ultimately be responsible
for all the data on PARIS, so a very secure privacy/authorisation system
was set up to vet the quality of the data recorded. ICL's flagship product
(VME) was selected to test the PARIS concept and the VME Product
Authority was tasked with generating and entering the first SKE
standards. This resulted in an empty database shell-like structure with a
set of SKE standards on it. The task of populating it was given to the
diagnosticians working in the Software Support Centres (SSCs) in the
course of their normal work, investigating incidents. There was an
expensive learning curve for these diagnosticians as, in addition to their
normal work, they had to record information (SKEs) as they encountered

InCMIUlty May 1994 183

new problems. Naturally there was considerable resistance to this, since
recording this data did not assist them in the diagnosis process and
involved them in an additional 20 minutes extra work per problem. The
result was that fewer than 500 SKEs were created during the first six
months, and closer inspection showed that some were of very dubious
value.

Throughout this six month period there had been a succession of meetings
to monitor the process and consider how it could be improved. This
resulted in a Change Control Board being set up, consisting of some of the
PARIS designers, the Product Authority and SSC diagnosticians, to advise
and progress any alterations to PARIS. At the end of the six month
period two issues had become clear:

1. Although the basic concept of PARIS was sound, the Product
Authority had failed to generate a set of SKE standards suitable for use
by the SSCs.

2. Any future trial would need to have a pre-populated database
otherwise no-one would use it.

4 Populating the Database (part 2)
The VME Product Authority, in consultation with members of the SSC,
embarked on the task of re-writing the SKE standards. At the same time
the PARIS development team was tasked with producing a programme to
convert the data held on the MDB to a format suitable for inclusion on
PARIS. One of the problems encountered in the conversion process was
that some of the MDB data either could not be converted automatically,
or that its conversion resulted in multiple SKEs being produced. Both
these situations could potentially have resulted in the loss of existing
knowledge. A suite of transition programmes was written to overcome
most of these difficulties and many MDB entries were re-written as
'SUPERCEDED by...' (it really was mis-spelt!) to prevent them from being
accidentally updated without the equivalent SKE on PARIS being
changed. Throughout the entire development period it was considered
essential that any data entered on PARIS should automatically be entered
on the MDB, so the data would be available to customers on the KEL
microfiche. To achieve this, a programme was run daily to copy any new,
or altered, data from PARIS to the MDB. A further trial was held using
the pre-populated database with more encouraging results, and
occasionally problems were actually identified and solved using PARIS
alone.

Statistical evidence indicated a problem for SSC staff in identifying
existing PARIS SKEs where the original SKE had been raised by a member
of a Product Support Unit. An experiment was conducted in which ten
randomly selected problems, where it was known that a SKE had been
raised by an SSC diagnostician, were given to other SSC diagnosticians.
The result was a 100% success rate in identifying the original SKE raised.

184 Ingenuity May 1994

A similar experiment where the SKE had been raised by a Product
Authority diagnostician resulted in only a 40% success rate. The
conclusion was that the way an incident is described in a SKE depends on
the level of knowledge of the person raising the SKE. It appeared that the
higher this knowledge was, then the more likely that the SKE would
explain the reason for the problem rather than the manifestation of the
fault. This resulted in the rule that all problems arriving at the SSC
should have a SKE raised, which could then either be modified or another
SKE raised and linked to the original SKE by the Product Authority if
necessary.

5 A Further Development
At about this time the development team suggested that an improvement
to the basic PARIS concept would be to have a SKE (or a number of
SKEs) pointing to a Problem which could then have a Solution (or several
solutions) linked with Solution Actions. This increased the flexibility of
the data being recorded and resulted in the current design structure for
PARIS. The difficulty with introducing this change was that previously
the SKE had held both the manifestation of the problem and a brief
description of the problem itself. Although the definition of a SKE was
changed to accommodate this introduction of a Problem record, there was
(and still is) some confusion as to where the description of the
manifestation ends, and the description of the problem begins.

Figure 2 PARIS linking of SKEs to Solution Actions

The figure illustrates a typical arrangement where one problem manifests
itself in three different ways (3 SKEs). There are two Solutions (one
might be advice on avoiding the problem, and the other the cure by way
of a repair or patch). Both these solutions have a Solution Action having
four different Solution Action Versions, (the applicable version would
depend on which version of the product is giving rise to the problem).

Ingenuity May 1994 185

6 Acceptance
By 1988 the success of PARIS as ICL's future support knowledge database
looked secure and it was decided to stop updating the MDB. The
complications of maintaining two databases with so much duplicated data
were considerable, so it was decided to transfer all the remaining known
useful data onto PARIS by 1st April 1989, for all products. With the
anticipated demise of the MDB, and the KEL microfiche, a working party
was set up to advise on the format of a PARIS microfiche. During 1988 it
became clear that a large quantity of useful VME data on the MDB could
not be converted automatically, and many other products would need to
re-write their data totally. This resulted in the MDB getting several
reprieves. By 1 9 9 1 ICL was still in the unenviable position of supporting
two massive databases containing almost identical information, but in
completely different formats. As both databases now had text search
facilities using Content Addressable Filestore (CAFS - an ICL product
developed in the early 1970s enabling very fast parallel searches), and this
was the normal process used to retrieve information in SSCs, a deadline of
3 1st December 1992 was set (and kept) finally to switch off the MDB.

7 PC-PARIS
Throughout the development of PARIS it was anticipated that customers
would be charged a fee for on-line access to PARIS data. Various ideas
were suggested ranging from the use of British Telecom's 0898 premium
rate service numbers, to charging for a licence to access data. Both of
these methods would have required an expensive infrastructure of smaller
computers to front-end the service and poor response times could have
resulted if the service had become over-subscribed. The rapid growth of
the PC market and the development of CD-ROMs made it possible to
consider these as a vehicle for distributing the data.

Rather than develop new software, it was decided to adopt an existing
commercial package Windows Personal Librarian which had sophisticated
text searching facilities and allowed the encryption of the data so it could
be password protected. The CD-ROM's capacity is about 600 MBytes
enabling the PARIS data to be grouped into a number of discrete files,
each protected by a different password. The customer could then choose
the appropriate file(s) for his business and, by paying the licence fee,
would receive a new CD-ROM and password(s) at regular intervals. The
adoption of this mode of access to PARIS data also satisfied the demands
of secure sites and those where no external communication facilities
existed.

Although most ICL staff have access to the Mainframe running the PARIS
service, there are occasions when this is either expensive, or undesirable.
Also, multiple attempts to access the same data can result in either poor
response times or even deadlock. To ensure that the data on the CD-
ROM is up-to-date, the customer disc is produced every two weeks, and a
disc for ICL use is generated in the intervening weeks. (The ICL internal

186 Ingenuity May 1994

disc has additional engineering data on it which is not relevant to
customers.)

8 The Future
As with any project of this magnitude, there are problems that were either
forgotten or considered to be minor at the time of the original
development. One of these is that no provision was ever made to archive
or delete data from PARIS for products that were no longer supported
One result is that, as the database expands, space is becoming a problem
especially on the internal ICL CD-ROM. Also, customers are starting to
encounter a significant volume of data which is no longer of any value to
them, and this masks the more recent information which may be relevant.
This issue is being addressed and a further programme is being developed
to assist the Product Authorities to remove obsolete SKEs.

As stated previously, there is virtually no hardware data recorded on
PARIS, although investigations into how to organise the hardware SKE
standards have started Originally the data on PARIS comprised a list of
faults on mainframe systems. This data has now been expanded to
include information pertaining to the small and medium range systems,
and it has been broadened to include Advice Sc Guidance SKEs to help
users exploit ICL products (especially for Office Systems products).

9 Some Facts and Figures
Currently the Mainframe PARIS database uses 1.2 GBytes and runs on a
3-node Level 80 machine. There are about 60,000 SKEs, 31,000
Problems and 30,000 Solutions with 31,000 Solution Actions. There have
been about 600 Change Requests made by the PARIS users, and discussed
by the Change Control Board since the beginning, of which around 350
have been approved and incorporated in the product.

The PARIS user community is world-wide, consisting of over 3,000
registered users accessing the Mainframe service. In addition, on
alternate weeks, 500 CD-ROMs are distributed to ICL support staff, with
a further 400 CD-ROMs being produced for external licensed customers.

Average search times are 50 seconds on Mainframe PARIS (this does not
include any time associated with the comms), and 15 seconds is typical
for a complete search of all the SKEs on the PC-PARIS (ICL disc) using a
486 PC.

Ingenuity May 1994 187

Acknowledgements
Windows Personal Librarian is a trademark of Personal Library Software
Inc.

Thanks to all my colleagues who have contributed, knowingly or
unknowingly, to this paper.

Glossary of Abbreviations and Terms used
CAFS - Content Addressable Filestore
CD-ROM - Compact Disc - Read only Memory
firmware - basic software built into the machine
IDMS - Integrated Data Management System
KEL - Known Error Log
MDB - Maintenance Data Base
MKB - Maintenance Knowledge Base
PARIS - Problem and Resolution Information System
PC-PARIS - Version of PARIS designed to run on PCs
PROblem - The cause of the manifestation detailed in the Support

Knowledge Entry
SAM - Support and Maintenance
SKE - Support Knowledge Entry
SOLution - How to resolve the Problem
Solution

Action - The activity required to implement the Solution
Solution

Action
Version - The specific Version of any repair required.

SSC - Software Support Centre
VME - Virtual Machine Environment

Terms such as GSAPP, GSOFTWARE and GSUPP used in figure 1 are
examples of names given to various nodes in the hierarchy. In this
particular instance they refer to Generic Software Applications, Generic
SOFTWARE and Generic Software SUPervisor respectively.

References
ALLISON, R., ICL Series 39 Support Process, ICL Tech. J. Vol. 6 N o 1
PP2-16, 1988.

ROUSE, G.W., LOCATOR: An Application of Knowledge Engineering to
ICL Customer Service, ICL Tech. J. Vol. 7 N o 3 pp546-553, 1991.

188 Ingenuity May 1994

Biography
P.J. Loach
Peter Loach has worked for ICL for 28 years, having spent the first 11
years as a field based hardware engineer, followed by 17 years working, at
first in the Liverpool and later in the Manchester Software Support
Centres. Since 1986, alongside his work in the Manchester Support
Centre, he has worked closely with the PARIS development team and has
been involved in the development of the product and the user interfaces
of both PARIS and PC-PARIS. His current role as the Service Controller
includes Chairing the Change Control Board, and he acts as the focal
point for all the user problems etc., with the PARIS suite of products.

Ingenuity May 1994 189

Architecture Briefings
A Briefing is a short paper on a technical issue. ICL produces a number
of valuable, informative, leading-edge papers each written by an authority
in a particular field.

The Briefings are published quarterly, in sets of 5, at a cost of £250 per
annum to OVENframework Community members and £350 to ICL
customers.

The 1994 current titles include:

94/01 Object Management Group
94/02 X/Open - The Open Systems Integrator
94/03 Electronic Mail - A New Era in Interoperability
94/04 Client-server Middleware: The Way Ahead
94/05 Object Database Technology - How Mature Is It?

1993 back issues:

93/001 SQL Interoperability - The New Standards
93/002 CALS
93/003 Classification of Performance Problems
93/004 What is Client-server Computing?
93/005 Business Trends Related to Transaction Management
93/006 Repositories: Is the Dream Fading?
93/007 Systems Management - Many Things to Many People
93/008 ATM: The N ew Networking Technology
93/009 Open Transaction Management - Standards Update

For further information and details on how to order, please contact the
ICL SystemWise Help Desk, D2D House, Manchester Road, Ashton-
under-Lyne, Lancashire, OL7 0ES, England.

Telephone+ 4 4 (0)81 565 7993 Fax: + 44(0)6 1 3 7 1 9 1 6 4

Ingenuity May 1994 191

OPEN fr a m e w o r k Architecture Books

This series of books explains the OPENframework Systems Architecture,
providing excellent studies of major technology trends. Colour coded for
easy identification, and published by Prentice Hall, they are an ideal tool
for those involved in planning or implementing information systems
strategies.

Blue book: Overview

The Systems Architecture - An Introduction

The Blue Book explains what OPENframework is all about, where to use
it and how to use it and how its components build up into a
comprehensive planning tool.

Red books: Elements

The Red Books describe the technical structure of OPENframework which
is made up of 8 elements. One of the elements, Application Architectures,
represents the user's own information systems. Others in the series are
entitled:

• User Interface
• Distributed Application Services
• Information Management
• Application Development
• Networking Services
• Systems Management
• Platforms

Gold books: Qualities

The Gold Books on OVENframework Qualities address the requirements
process, how they are specified, how they are agreed, how to manage that
they are met and how to measure them in the running system. Titles
include, Availability, Usability, Performance, Security and Potential for
Change. ^

Silver books: Specialisations

The Silver Books analyse a particular theme or topic of OVENframework
Specialisations. They are documents which use the OVENframework
terminology and reference models to describe the theme or topic.
Examples of topics include Services, Transaction Management and Local
Government.

For further information and details on how to order, please contact the
ICL SystemWise Help Desk, D2D House, Manchester Road, Ashton-
under-Lyne, Lancashire, OL7 OES, England.

Telephone + 44 (0)8 1 565 7993 Fax: +44(0)61 371 9164

192 Ingenuity May 1994

Ingenuity
The ICL Technical Journal

Guidance for Authors

1 Content
Ingenuity, the ICL Technical Journal, has an international circulation. It publishes high
standard papers that have some relevance to ICL's business. It is aimed a t the general technical
community and in particular a t ICL's users and customers. It is intended for readers who have
an interest in the information technology field in general bu t who may not be informed on the
aspect covered by a particular paper. To be acceptable, papers on more specialised aspects of
design o r application must include some suitable introductory material or reference.

Ingenuity will usually not reprint papers already published but this does not necessarily
exclude papers presented a t conferences. It is not necessary for the material to be entirely new
or original. Papers will not reveal m atter relating to unannounced products of any of the ICL
Group companies.

Letters to the Editor and book reviews may also be published.

2 Authors
W ithin the framework defined in paragraph 1, the Editor will be happy to consider a paper by
any author o r group of authors, whether o r no t an employee of a company in the ICL Group.
All papers are judged on their merit, irrespective o f origin.

3 Length
There is no fixed upper o r lower limit, bu t a useful working range is 4000-6000 words; it may
be difficult to accommodate a long paper in a particular issue. Authors should always keep
brevity in mind bu t should no t sacrifice necessary fullness o f explanation to this.

4 Abstract
All papers should have an Abstract o f no t more than 200 words, suitable for the various
abstracting journals to use w ithout alteration.

5 Presentation
5 .1 Printed (typed) copy
Two copies o f the manuscript, typed 1V4/2 line spacing on one side only o f A4 paper, w ith right
and left margins o f a t least 2.5cms, and die pages numbered in sequence, should be sent to the
Editor. Particular care should be taken to ensure that mathematical symbols and expressions,
and any special characters such as Greek letters, are clear. Any detailed mathematical treatm ent
should be pu t in an Appendix so that only essential results need be referred to in the text.

5 .2 Disk version
Authors are requested to submit a magnetic disk version of their copy in addition to die
m anuscript All artw ork and diagrams to be supplied in their original source fo rm at The
Editor will be glad to provide detailed advice on the format o f the text on the disk.

Ingenuity May 1994 193

5 .3 Diagrams
Line diagrams will, if necessary, be redrawn and professionally lettered for publication, so it is
essential that they are clear. Axes o f graphs should be labelled with the relevant variables and,
where this is desirable, marked off with their values. All diagrams should have a caption and be
numbered for reference in the text and the text marked to show where each should be placed -
e.g. "Figure 5 here". Authors should check that all diagrams are actually referred to in the text
and that all diagrams referred to are supplied. Since diagrams are always separated from their
tex t in the production process, these should be presented each on a separate sheet and, most
important, each sheet must carry the author's name and the title o f the paper. The diagram
captions and numbers should be listed on a separate sheet which also should give the author's
name and the tide of the paper.

5 .4 Tables
As with diagrams, these should all be given captions and reference numbers; adequate row and
column headings should be given, also the relevant units for all the quantities tabulated.

5 .5 References
Authors are asked to use die Author/Date system, in which the anthor(s) and the date o f the
publication are given in the text, and all the references are listed in alphabetical order o f author
a t the end.

e.g. in the text: "...further details are given in [Henderson, 1986]"

with the corresponding entry in the reference list:

HENDERSON, P. Functional Programming Formal Specification and Rapid
Prototyping. IEEE Trans, on Software Engineering SE’ 12, 2, 241-250,1986.

W here there are more than two authors it is usual to give the text reference as "[X e t a l ...]”.

Authors should check that all text references are listed; references to works not quoted in the
text should be listed under a heading such as Bibliography or Further reading.
5 .6 Style
A note is available from the Editor summarising the main points of style - punctuation, spelling,
use of initials and acronyms etc. - preferred for Journal papers.

6 Referees
The Editor may refer papers to independent referees for comment. If the referee recommends
revisions to the draft, the author will be asked to make those revisions. Referees are
anonymous. Minor editorial corrections, as for example to conform to the Ingenuity general
style for spelling or notation, will be made by the Editor.

7 Proofs, Offprints
Printed proofs are sent to authors for correction before publication. Authors receive up to 20
offprints of their papers, on request, free of charge, and further copies can be purchased.

8 Copyright
Copyright of papers published in Ingenuity rests with ICL unless specifically agreed otherwise
before publication. Publications may be reproduced with the Editor’s permission, which will
normally be granted, and with due acknowledgement.

194 Ingenuity May 1994

This publication is copyright under the Berne Convention and the
International Copyright Convention. All rights reserved. Apart from any
copying under the UK Copyright Act 1956, part 1, section 7, whereby a
single copy of an article may be supplied, under certain conditions, for the
purpose of research or private study, by a library of a class prescribed by
the UK Board of Trade Regulations (Statutory Instruments 1957, No.
868), no part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means without the prior
permission of the copyright owners. Permission is, however, not required
to copy abstracts of papers or articles on condition that a full reference to
the source is shown. Multiple copying of the contents of the publication
without permission is always illegal.

©1994 International Computers Limited. Registered office, ICL House,
1 High Street, Putney, London SW15 1SW. Registered in England 96056

Ingenuity M ay 1994

