
iCl
TECHNICAL
JOURNAL

Volume 6 Issue 4 November 1989

Published by
INTERNATIONAL COMPUTERS LIMITED

at
OXFORD UNIVERSITY PRESS

I

ICLTPPHnirfll The ICL Technical Journal is published twice a year by
1¾ iDrvoi International Computers Limited at Oxford University

JUUKllHl Press.

Editor
J. Howlett
ICL House, Putney, London SW15 ISW, UK

Editorial Board

J. Howlett (Editor) F.F. Land
H.M. Cropper (F International) (London Business School)
D.W. Davies, FRS K.H. Macdonald
G.E. Felton M.R. Miller
M.D. Godfrey (British Telecom Research
(Imperial College, London Laboratories)
University) J.M.M. Pinkerton
C.H.L. Goodman E.C.P. Portman
(STCTechnology Ltd B.C. Warboys (University
and King’s College,) of Manchester)
London)

All correspondence and papers to be considered for publication should be
addressed to the Editor.

The views expressed in the papers are those of the authors and do not
necessarily represent ICL policy.

1989 subscription rates: annual subscription £35 UK, £44 rest of world, US
$88 N. America; single issues £17 UK, £22 rest of world, US $38 N. America.
Orders with remittances should be sent to the Journals Subscriptions
Department, Oxford University Press, Pinkhill House, Southfield Road,
Eynsham, Oxford 0X8 1JJ.

This publication is copyright under the Berne Convention and the Inter­
national Copyright Convention. All rights reserved. Apart from any copying
under the UK Copyright Act 1956, part 1, section 7, whereby a single copy of
an article may be supplied, under certain conditions, for the purposes of
research or private study, by a library of a class prescribed by the UK Board
of Trade Regulations (Statutory Instruments 1957, No. 868), no part of this
publication may be reproduced, stored in a retrieval system or transmitted in
any form or by any means without the prior permission of the copyright
owners. Permission is, however, not required to copy abstracts of papers or
articles on condition that a full reference to the source is shown. Multiple
copying of the contents of the publication without permission is always
illegal.
© 1989 International Computers Limited

Printed by H Charlesworth & Co Ltd, Huddersfield ISSN 0142-1557

ICL
_ t . TECHNICAL
Contents JOURNAL

Volum e 6 Issue 4

EDITORIAL iii

‘TIME TO MARKET’ (ICL URC Workshop, Wokefield Park,
5-6 March 1989) vi

Foreword
John Dickson 623

Time to Market in new product development
Professor S.C. Wheelwright 625

Time to Market in manufacturing
David Saxl 647

DATA SECURITY

The VME High Security Option
Tom Parker 657

Security aspects of the fundamental association model
Heather Alexander and David McVittie 670

An introduction to public key systems and digital signatures
Jim Press 681

Security classes and access rights in a distributed system
R. W. Jones 694

KNOWLEDGE ENGINEERING

Building a marketeer’s workbench: an expert system applied to
the marketing planning process
Stephen A it ken and Harry Bint ley 721

ICL Technical Journal November 1989 i

The Knowledge Crunching Machine at ECRC: a joint R&D
project of a high speed Prolog system
H. Benker el al. 737

FLAGSHIP’ PROJECT

Aspects of protection on the Flagship machine: binding, context
and environment
S. Holdsworth, J.A. Keane and K.R. Mayes 757

HISTORY OF ICL

ICL Company Research and Development.
Part 3: The New Range and other developments
Martin Campbell-Kelly 781

Notes on Authors 814

Index to Volume 6 819

ii ICL Technical Journal November 1989

Valedictory Editorial

This is the last issue of the ICL Technical Journal that I shall edit; I am
handing over this privilege to my very good friend and colleague, Dr. John
Pinkerton - who was much involved in the setting up of the journal and has
been a member of the Editorial Board from the start. Both of us have been
concerned with the electronic digital computer from its very first days but he
has the distinction of having designed one of the truly pioneering machines,
LEO - “Lyons Electronic Office” . Based on the design of the Cambridge
University EDSAC, this was doing routine clerical work for the catering
company J. Lyons & Co. in 1951 and has a good claim to be the world’s first
business data processing machine: at the very least it was among the first.

The first issue of the Technical Journal was that of November 1978 (this,
November 1989, is the 23rd); that was 11 years ago, which is a long time in
the history of the computer. Two developments have made the computer
world of today a very different one from that of 1978: the scarcely believable
advances in circuit and storage technologies and the greatly increased
understanding of the formal properties of information. The sequence of
issues reflects this. The terms VLSI (Very Large Scale Integration) and RISC
(Reduced Instruction Set Computer), for example, do not appear at all in the
early issues - the technologies they describe did not exist; now it is assumed
that everyone knows what they mean. “Expert Systems” - which involve
formal representation and manipulation of knowledge - were something of
an adventure in the 1970s (the first paper we published was in November
1980); recent papers have described systems used routinely in ICL for
configuring complex computer installations and planning the supply of
materials to its manufacturing plants. One interesting observation is that the
term Information Technology does not appear in any issue before May 1982
(Volume 3, No. 1) where we record the launching of Information Technol­
ogy Year 1982 (“IT 82”) by the then Minister for Information Technology,
Kenneth Baker. The very next issue, by the way, has a paper on “The
advance of Information Technology” by J.M.M. Pinkerton.

The journal was set up with a very broad remit; the Notes for Authors in the
first issue say that the content “will have some relevance to ICL’s business
and will be aimed at the technical community and ICL’s users and
customers.” In 1978 the computer - the technological base on which ICL’s
business rests had already penetrated deeply into industrial, commercial
and even ordinary daily life over a very wide area; that penetration is now
even deeper and over an even wider area - think of supermarket check-out

ICL Technical Journal November 1989 Hi

tills, for example (very much ICL territory) - so it is not surprising that the
Journal’s coverage has increased. An indication of this is the physical size:
we - meaning the Editorial Board and myself - started with the idea of each
issue having about 6 papers and filling about 100 pages; these values have
been about 12 and 200 respectively for the last half-dozen or so issues - a size
which I (and I think my colleagues too) consider the maximum for
comfortable handling.

Any regularly-published series, on whatever subject, is something of a record
of history, and this is certainly so for our journal. One thing that I have
found particularly interesting in looking through the past issues is that some
of the problems discussed in the earliest papers are still of major importance
- of greater importance than ever, in fact, because the tremendous develop­
ments in technology have made so many more applications both physically
possible and economically feasible. I am thinking in particular of the
problems of networking, of distributed systems and of security of electroni­
cally stored, processed and transmitted information, treated in many papers
throughout the life of the journal. As the applications and the physical
devices that execute them become ever more sophisticated, and the systems
that are built and operated become of ever larger scale, the problems they
raise become not only of great importance but also of great intellectual
difficulty; these are problems that face everyone, not only ICL, and the work
of the authors who have written on these problems has contributed
significantly to their understanding and, because of that, to their solution.

I have just said that the journal was given a very broad remit; it has also been
given a very free hand, for which the company has my sincere gratitude and
respect. There was a positive decision that there would be an Editorial Board
and that this should include non-ICL members, and that whilst the majority
of papers would be written by ICL staff", contributions from outside ICL - in
particular, from the academic world - should be sought as a matter of
course: all this to reduce the risks of too much inward looking and so help to
maintain standards. It has always been one of the Board’s basic principles
that every paper we publish must convey some real information about the
subject or problem that has some significance in the real world. Some of the
subjects and problems discussed are intrinsically difficult and inevitably only
readers with a live interest, and probably specialist knowledge, will follow
the arguments of the corresponding papers; but even here we ask the author
to indicate, in the Abstract or the introductory paragraph, why the
subject is important and therefore why the paper has been written.

I have found producing this journal immensely enjoyable and stimulating,
not least because it has brought me into contact with so many able,
enthusiastic and thoroughly likeable people. I am not yet severing contact
completely, because I shall continue as a member of the Editorial Board and
collaborate closely with Dr. Pinkerton in the production of the journal. Let
me record my gratitude to all the authors (something like 150, all told):
writing, I know, is very hard work and, after all, without their efforts there

iv ICL Technical Journal November 1989

would be no journal; to my Editorial Board, for their help, advice and
support and especially for the lively and always constructive discussions at
our meetings; to our publishers, first Peter Peregrinus and then Oxford
University Press, with whom it has always been a pleasure to work; and to
the ICL management for allocating the funds that support the journal and
for the great freedom we have been given in producing it.

Jack Howlett

ICL Technical Journal November 1989 v

“TIME TO MARKET”

The ICL University Research Council organised a Workshop on the theme
of Time to Market, at Wokefield Park, Berkshire on 5-6 March 1989, in
which 23 ICL staff and 20 members of British, continental European and
American academic institutions participated. The Workshop was opened by
John Dickson, Managing Director, ICL Product Operations; the principal
speaker was Professor Steven Wheelwright, Harvard University, USA; and
five “Syndicate” discussions were held in parallel.

There follows a Foreword by John Dickson, summarising his opening
address; a paper by David Saxl of ICL Manufacturing and Logistics, dealing
with the Syndicate discussions, and a paper by Professor Wheelwright, based
on his address to the plenary session.

vi ICL Technical Journal November 1989

Foreword

ICL’s mission is to provide high value solutions through the use of IT for its
customers’ problems. The core hardware and software products under­
pinning these solutions are produced by Product Operations. This group
employs some 7000 people of whom half are in manufacturing. The value, at
cost, of its annual output is S500M and is made up of some 7000 different
customer-recognisable products.

Approximately 10% of the Company’s revenue is spent on development
funding; within Product Operations £12-15M is spent on IT and IT
applications.

Time to Market - the interval between conceiving a new product and getting
it on to the market - is taken very seriously. ICL, particularly in the 1970s
and early 1980s, did not give enough attention to this subject: but that has
now changed.

A fundamental aspect of the improved and still improving performance has
been to cultivate throughout the organisation the belief that everyone, in
whatever job or grade, is a member of the team and plays a part in achieving
the goals of the best levels of competitive quality and reliability for each and
every product; of 100% on-time delivery; of continuous inventory reduction;
and - the theme of the Workshop - of the reduction of time in all activities,
particularly in delivery lead time. We are introducing measures to recognise
and reward such achievements. The Company is now performing at a very
high level relative to its competitors; in particular, inventory turns are among
the highest in the industry, as is the overall level of return on investment.

However, there is still much to be done. Design cycles are too long:
mainframes take approximately four years - can we find ways of reducing
this to three, and then to two? As well as developing its own programs to
achieve these goals Product Operations is looking to work with academia to
provide the necessary innovative thought and approaches.

John Dickson
Managing Director, ICL Product Operations

ICL Technical Journal November 1989 623

Time to Market in New Product
Development1
Steven C. Wheelwright

Graduate School of Business Administration, Harvard University,
Boston, Mass. 02163, USA

Abstract

Increasing rates of technology development, rising expectations in the
market place, and increasingly global competitors have led to shorter
product life cycles in a number of industries. There are a number of
consequences tor manufacturing firms as a result of pressures for
reduced time to market. Following an introductory section, this paper
explores the gap between the promise and reality of new product
development in all too many manufacturing environments. The body of
the paper then introduces a number of concepts, techniques, and
approaches that recent studies suggest otter considerable potential to
managers seeking to improve significantly their time to market.
Because of the importance of projects in new product development,
the article is organized around three phases in project management:
those issues that can be addressed before the project is formally
staffed, approved, and initiated (pre-project activities); those issues
that arise during the life of the project team and its development effort
(project management); and those issues associated with how an
organization learns across projects and applies that learning to
improve its product development capabilities (organizational learning).

I Introduction and Perspective

Time-based competition and new product development have become hot
topics both for academics and managers. Recent work in a number of
industries - ranging from personal computers (and their peripherals) to
automotive and from medical instruments to consumer appliances and on to
manufacturing equipment - suggests at least three reasons for this surge in
popularity. Each of these reflects a somewhat different perspective, and thus
identifies different issues and concerns in the broad area of shortening time to
market for new products.

'This paper is an edited version of a talk given by the author at the ICL University Research
Council Manufacturing Workshop, held on 6 March 1989, at Wokefield Park, Mortimer,
Reading, Berks. It draws on the author's prior work as well as that of his colleagues. The author
would like to recognize especially the contributions of Professors Kim Clark, Robert Hayes, and
Earl Sasser of the Harvard Business School in the development of many of the ideas, concepts,
and examples reported in this article.

ICL Technical Journal November 1989 625

The first of these perspectives is that of the firm or business unit. For these
organizations, fast product development can provide benefits related to
market position, resource utilization, and organizational renewal. In terms of
market success, rapid new product development is considered a means to get
a jump on the competition, strengthen existing advantages by creating
stronger competitive barriers, establish a leadership image that translates into
product dominance through the setting of industry standards, access new
markets and new customer segments, and enhance existing product offerings.

From the firm’s perspective, anticipated benefits in resource utilization
include capitalizing on prior R&D investments (applying discoveries made in
the laboratory), improving the return on existing assets (such as the sales
force, the factories, and the field service network) by giving them better
products to sell, applying new technologies in both products and manufac­
turing processes, and eliminating or overcoming past weaknesses that have
prevented other products from reaching their full potential.

Perhaps the most exciting benefits from fast product development arise in the
form of prospects for renewing and transforming the organization. The
excitement, image, and growth associated with product development efforts
capture the commitment, innovation, and creativity of all parts of the
organization. This success can, in turn, enhance the firm’s ability to recruit
the best people, improve their integration, and accelerate the pace of change
and progress throughout the organization. The development projects them­
selves often can be the vehicle by which new approaches and new thinking
are adopted and become institutional reality.

A second important perspective leading to interest in time to market and new
product development topics is today’s competitive arena. As witnessed in a
variety of industries, the organization that can bring out new products
significantly faster than its competitors and then repeat that process more
frequently than competitors can develop a substantial advantage in the
market place. Such organizations have the luxury of choosing between pre­
empting competitors by introducing early, or waiting for technologies,
markets, and distribution channels to shake out and then developing new
products that are better targeted for tomorrow’s environment.

Numerous studies indicate that CEOs and managers see the capability of
rapid product development as one of the last frontiers of new competitive
advantage. In addition, it is an advantage that, if not developed before
competitors, will quickly become a disadvantage as one becomes a follower,
finding it increasingly difficult to keep up with competitors’ moves. A firm
with a significant advantage in rapid product development can dictate the
terms of competition to others in its industry and thus “take charge” of its
environment.

A third perspective on the importance of these issues is a national one.
Countries that have historically been innovators in technology and R&D

626 ICL Technical Journal November 1989

increasingly find their returns on such investments taken away by developing
or recently developed countries who have better skills for applying those
technologies in new products and services. For example, the inability of the
U.S. with all of its investment in R&D to dominate a number of global
industries where its domestic market is substantial, is of great concern today.
It focuses attention on educational issues, tax laws, and trade policies.

Whatever the perspective, it is clear that time-based competition and new
product development are areas of concern to a broad segment of the
population. They also are likely to remain concerns for several years to come
because their potential benefits can be substantial, as can their failures.

II The Reality Versus the Promise

In spite of the potential promise and perceived need for faster new product
development, the reality in most firms is that such efforts fall far short of their
possibilities. In many firms, the majority of product development projects fall
far short of their original objectives, with development efforts proving to be
painful and frustrating both to organizations and individuals. To understand
what causes the disparity between this promise and reality, and, more
importantly, to be in a position to take corrective action, it is useful to
consider half a dozen types of commonly encountered problems. These
appear to be “classics”2.
1 The moving target. Too often, the basic product concept and its match

with the technology and the market shift over time. This can be caused by
external problems: for example, locking into a technology before it is
sufficiently stable, targeting a market that suddenly changes, or making
assumptions about the distribution channel that don’t hold. In each of
these cases, the project gets in trouble because of inadequate consistency
of focus throughout its duration and an eventual mismatch with reality.
Once the target starts to shift, the project lengthens and longer projects
invariably drift more and become more of a moving target than shorter
ones. Thus the problem compounds itself. Dramatic examples of such
mismatches include the Ford Edsel in the mid-1950s and Texas Instru­
ments’ home computer during the late 1970s. Even very successful
products like the Apple Macintosh can experience a rocky beginning and
require iteration to reach an appropriate focus and positioning because of
such moving target difficulties.

2 Mismatches between functions. While the moving target problem usually
reflects a mismatch between an organization and its external environ­
ment, mismatches also often occur within an organization. What one part
of the organization expects or imagines that another part can deliver may
prove to be unrealistic or even impossible. For instance, engineering may
design a product that its factories cannot produce - at least, not

2See “The New Product Development Map” by Steven C. Wheelwright and W. Earl Sasser, Jr.,
Harvard Business Review, May-June 1989, pp. 112-125.

ICL Technical Journal November 1989 627

consistently, at low cost, and with high quality. Similarly, engineering
may design features into the product that marketing’s established
distribution channels and selling approach cannot utilize fully or existing
customers don’t need or are unwilling to pay for. Or, manufacturing may
assume a certain mix of new products in planning its requirements while
marketing makes different assumptions, confident that manufacturing
can alter its mix dramatically on short notice when in fact it cannot.
Such mismatches may result from a lack of communication among the
functions, or from a sequential, over-the-wall approach to development
project management. Whatever the case, new product development is
hampered. One of the most startling mismatches we’ve encountered was
at an aerospace firm where manufacturing built an airframe assembly
plant using one set of new product specs, only to find that the building
was too small to accommodate the wing span of the aircraft as finally
designed.

3 Lack of product distinctiveness. Often, new product development termi­
nates in disappointment because the new product is not as unique or
defensible as the organization had imagined. The problem is not that the
concept was poorly executed, but that it was not nearly as robust and
distinctive as the organization had imagined. This can occur because (a)
early on, the organization fails to consider a full range of alternative ways
to meet the set of customer needs, (b) the organization locks in on the
initial concept too quickly, without thorough analysis, or (c) the market
place and technology were not yet ready for the concept as incorporated
in the product.
As a result, competitors are able to block or parry the new offering with
their existing (or slightly modified) products. A unique example of this is
Plus Development’s HardCardfit), a hard disk designed for easy installa­
tion into the expansion slot of a personal computer. After eighteen
months of development effort, the company thought it had a unique
product with at least a nine-month market lead on competitors. How­
ever, by the fifth day of the industry show at which the HardCard ft; was
introduced, a competitor was showing a breadboard of a competing
product. Within three months, that competitor was shipping product.

4 Unexpected technical problems. Delays, cost overruns, and feature short­
comings often can be traced to unexpected technical difficulties. There
tend to be two primary causes of such technical problems: the firm
overestimates its technical capabilities and discovers, belatedly, it lacks
the depth and resources to do what the new product concept requires; or
it mixes invention with the application of new technology during the new
product development effort.
If an essential invention is not completed before the product development
project starts, the entire project tends to suffer the delays, mid-course
corrections, and backtracking typical of the inventing process. An
industrial^ controls firm encountered both problems when it changed a
part from metal lo~ plastic, and discovered that its own manufacturing

628 ICL Technical Journal November 1989

processes could not hold the required tolerances and its new supplier
could not provide raw material of consistent quality.

5 Problem solving delays. Every new product development activity involves
uncertainty, both with regard to the specific problems and conflicts that
will inevitably arise, and the resources required to resolve those. Too
often, organizations allocate all of their development resources to known
project requirements and leave little or no cushion for the unexpected.
Subsequently, when the inevitable occurs - an unanticipated problem is
encountered and the project experiences delay - they rob Peter to pay
Paul. This siphoning of resources cascades into delays on other projects.
Once delays occur, costs increase, pressures amount to cut corners, and
further problems arise. When a major project got into trouble at one
electronics company, key people were pulled olf other projects. The
company discovered that the reassigned people took weeks to get up to
speed, and the project was almost as late as it would have been without
them. In addition, several other projects were delayed and saw their costs
escalate as well.

6 Unresolved policy issues. A number of very specific choices and decisions
must be made during any product development project. If major policies
have not been articulated clearly and shared, these project choices often
force the related policy issue for the entire organization. While such
forcing is not inherently bad, it inevitably involves more senior levels of
management in resolving a specific issue.
Resolving policy issues during the “heat of battle” and at senior (more
politically oriented) levels of the organization inevitably engenders delay
and further complications. One automotive firm that lacked a clear
policy on make versus buy-in component sourcing changed the manufac­
turing location for a new product four times - from a headquarters plant,
to offshore Mexico, to offshore Japan, to a local subcontractor - before
actual start-up. Each change entailed a couple months of delay and costly
design modifications.

While most firms can recite their own litany of horror stories regarding
development projects that have fallen short of their original objectives and
potential, management’s concern is with how to avoid such problems and,
more importantly, how to turn product development capability into a strong
competitive advantage. Several firms have found a useful framework for
organizing their thinking to be one that divides development efforts into
three time-related segments. The first segment addresses actions and behav­
iours that occur before the formal project is set up and approved. The second
considers what goes on from the start of the formal project until its
completion. The third considers activities and actions that occur after the
project is completed and impact the retention of lessons learned, their
transfer to other development efforts, and the general enhancement of the
firm’s capabilities in product development. The remainder of this article
samples a number of important concepts, techniques, and approaches that
can be used in each of these three segments.

ICL Technical Journal November 1989 629

In today’s competitive environment, it is not enough for an organization to
achieve either low cost, high quality, or short development cycles. They must
achieve all three. However, most firms who pursue improvements on all three
fronts do so primarily in the middle segment of the development cycle - the
formal project management phase. Unfortunately, management’s ability to
influence and shape the success of the project is already largely determined
by that point. Separating the planning of a project before it begins from the
project itself, and spending adequate time, effort, and resources on pre­
project work, can have a substantial impact on the outcome. One of the best
graphical illustrations of this is shown in Fig. 1. The data for this representa­
tion comes from a major U.S. auto company, and was collected by the
consulting firm of McKinsey during their study of several new car develop­
ment efforts.

Knowledge Concept Basic Prototype Pilot Manufacturing
acquisition investigation design building production ramp-up

High ABILITY TO
INFLUENCE
OUTCOME

Index of . \ / \
Attention and \ \ / \
Influence \ \ / 1

ACTUAL \ \ / \ / \
MANAGEMENT \ \ \ \
ACTIVITY \ / \

Low PROFILE

Time

Source: Hayes, Robert H., Wheelwright, Steven C., and Clark, Kim B. (1988). Dynamic
Manufacturing. New York: The Free Press, p. 279.

Fig. 1 Timing and Impact of Management Attention and Influence

As indicated in Fig. 1, the ability of management to influence the outcome of
a project is highest in the pre-project phase. By the time prototypes are being
developed, that ability is declining rapidly. However, as McKinsey found in
this automotive firm, the actual profile of management activity tends to be
minor in the pre-project and initial project phases and does not become
substantial until the prototyping, pilot production, and manufacturing ramp-
up stages of the project. This is the point at which new product programs
tend to run into difficulties - specific conflicts among the functions and
between the product and its intended market. Yet it is also a time when the

Ill Pre-Project Activities: Project Definition

630 ICL Technical Journal November 1989

best management can hope for is to correct obvious problems, not pre-empt
them.

The type of pre-project involvement needed on the part of management
ranges from resolving policy issues, establishing functional and business
strategies, and linking individual development projects to setting overall
corporate and business goals. Ideally, the pre-project activities establish the
context and boundaries within which each project is to be conducted and
achieve its desired performance. Managers from several levels of the organi­
zation and from all of the functions have relevant inputs to make during this
pre-project phase.

One of the reasons that managers do not spend more time in pre-project
activities - establishing these boundaries and the context for individual
development efforts - is that they have relatively few tools and approaches to
do so. It is much easier to react to a physical prototype of the product or to
specific problems, ranging from difficulties in pilot manufacturing to feed­
back from customers on sample products, than it is to anticipate how the
development team should be guided and influenced while still allowing
sufficient creativity and flexibility to arrive at a good, manufacturable design.
Two concepts that can be easily applied in a variety of situations and provide
a means for management to make inputs in this pre-project stage are the
development funnel and functional maps3.

The Development Funnel

The concept of the development funnel, as illustrated in Fig. 2, provides a
framework for thinking about the generation and screening of alternative

/ □ □ \ □

D D1 D □ ^ \
D c D □ D
a h u n u J

\ □ □ □ ^
V In

investigations development introduced
projects products

Source: Hayes, Robert H., Wheelwright, Steven C , and Clark, Kim B. (1988). Dynamic
Manufacturing. New York: The Free Press, p. 295.

Fig. 2 The New Product-New Process Development Funnel

3Dynamic Manufacturing, by Robert H. Hayes, Steven C. Wheelwright, and Kim B. Clark (New
York: The Free Press, 1988). See Chapter 10, “Laying the Foundation for Product and Process
Development”, pp. 273-303.

ICL Technical Journal November 1989 631

project ideas. A variety of product and process concepts enter the funnel for
investigation, but only a fraction of those progress to the point of formal
project approval and execution. Those that do must be examined carefully
before entering the narrow neck of the funnel, where significant resources are
expended on developing them into commercial products.

Managing the funnel involves two very different tasks. First, the organization
must expand its knowledge base and its access to information in order to
increase the number of new product concepts. This is analogous to expand­
ing the size of the mouth of the funnel. Systematic thinking on the part of
management as to how that can be done - from accessing research labs for
more technical ideas, to purchasing concepts through licensing arrange­
ments, to soliciting creative inputs from across the organization, its custom­
ers, and its suppliers - is one of the ways management can add value in this
pre-project phase.

The second, complementary task, and one which often tends to dampen the
creativity desired and needed so the firm will have the best set of options to
choose from, is that of screening and selecting the handful of projects that will
actually be pursued. This is analogous to narrowing the neck of the funnel
while ensuring that a constant stream of good projects flows through it. Achiev­
ing an effective balance between creatively widening the funnel’s mouth and
rigorously narrowing its neck is not easy. Companies that do it best tend to
combine various idea-generating mechanisms with a sequential review process.

A particularly useful step in applying the development funnel concept is its
application as an investigative weapon. Several firms have gotten together a
broad cross-section of managers involved and having influence on develop­
ment projects, explained the concept, and then broken them up into small
groups, asking them to diagram the funnel applied in their organization.
Even a brief forty minute period doing so can provide tremendous insight as
to the nature of their development funnel and its practical realities. Usually
such graphic representations have several humorous aspects, yet provide
accurate descriptions of the strengths and weaknesses of the firm's existing
approach. In one scientific instruments company, where half a dozen groups
of fifteen managers each developed such graphic representations of their
firm’s development funnel, it quickly became apparent that there were a
handful of common characteristics that management needed to address:
1 While the firm obtained ideas from many sources, the idea generation

effort was neither managed nor guided.
2 There was no defined start point for development projects. The company

did not make systematic choices about which ideas became projects and
obtained the resources needed for their eventual completion.

3 One of the sources of new product ideas was third-party suppliers, but
their ideas didn’t enter the funnel until just before market introduction.
Thus they tended to get very incomplete development attention and
review, resulting in a stream of problems (and even failures) after market
introduction.

632 ICL Technical Journal November 1989

4 Within the supposedly narrow neck of the funnel, there were several
bulges which reflected late redefinition of projects, fuzzy start dates for
projects, the mixing of invention with application, changes in project
team players, and the fact that early decisions often did not stick late in
the procedure.

5 Many ideas that were killed partway through the funnel seemed to con­
tinually show up again at the mouth of the funnel as someone’s pet project.

6 At the end of the funnel, top management added tremendous heat (and
resources) to finally get individual projects completed.

7 Not many products came out the end of the funnel, particularly not many
in a recently added product family. For neither the traditional nor the
new family were projects being completed in a timely, paced manner.

A key point with regard to the development funnel is that every firm has one,
but most firms do not examine it systematically nor do they consider how it
might be altered to provide a clearer context and boundaries for each
individual project.

In addition to developing an appropriate procedure that implements the
desired “development funnel’’, management needs to relate individual pro­
jects and ideas to the ongoing business strategy and strategic choices within
the functions. Mapping is a concept and technique for doing do.

Functional Maps

A project of any significant size involves a number of people from various
functional groups. For the project to achieve focus and move ahead rapidly,
the entire project team must have a common or shared understanding of the
objectives of the project and how it relates to their own functional area, the
product line strategy, and the overall business strategy. While the topics of
business planning and strategy development have received considerable
attention over the past decade, most organizations concentrate attention on
business strategy, usually as driven by the dominant function (for example,
engineering in an electronics firm or marketing in a consumer packaged
goods firm). The reality is that most groups in a firm do not have clear
functional strategies.

Several of the “classic” problems encountered by development efforts and
outlined earlier result because of gaps in planning between the business level
and the functional level. With clear functional strategies, it is much easier for
the project team to resolve policy issues and relate their efforts to the
ongoing activities of the organization. The development of a set of functional
maps can be an effective approach for developing functional strategies and,
more importantly, relating them to the product development funnel and
individual projects to be undertaken by the firm.

A functional map is simply a chart or a graph that depicts the behaviour of a
critical variable (or combination of variables) over time either within the firm

ICL Technical Journal November 1989 633

or in relation to competitors. Knowledge maps summarize what is known
historically about a particular variable or issue, and strategic choice maps
suggest alternative directions that the business or function might pursue in
the future (and often where the development project might play a critical
role). Functional maps might include those illustrated in the outer ring of
Fig. 3.

Strategic manufacturing
/ A Manufacturing facilities V operatjng p|an

\ Unit capability maP / N\
/ \ map / \

/ critical \ — process \
/ skills y S A. generation \

/ map A Manufacturing A map \
A . r / \ . Strategy A . \

product / / Business \ market
technology h / Unit X H segment
maP r j Strategy I S map

1 l Engineering \. (/
\ Strategy ------ ' Marketing / /

\ / Strategy /

\ Produc* \ S product /
\ 9enera l̂on \ / / positioning /

\ ap / map /
engineering \ / competitor distribution \ /

° peratin9 Plan X X ,S \ X m a r k e t i n g
maP s ' operating plan

Source: Hayes, Robert H., Wheelwright, Steven C., and Clark, Kim B. (1988). Dynamic
Manufacturing. New York: The Free Press, p. 284.

Fig. 3 Relationships between Business and Functional Strategies: Functional "Maps”

The complete set of functional maps indicate how various aspects of each
function will interact and influence the project and its objectives and, in turn,
how the project will help achieve strategic objectives. Thus manufacturing,
with its concern for process technology, facilities, critical skills, sourcing, and
plant location, might choose to develop maps on each of those dimensions.
In the marketing function, issues related to market segmentation, product
positioning, distribution channels, and pricing might each be areas where
functional maps would be particularly relevant to planning development
projects. Finally, within engineering, the application of new technology, the
relationship of platform or core products to derivative products in the

634 ICL Technical Journal November 1989

product line, and the development of the proper mix of engineering skills and
talents would all be candidates for functional maps.

Perhaps the single most useful map in establishing the context for a
development effort is the “new product development map”4. An example of
this map for Apple Computer, covering the period from their start as a
business in the late 1970s up through the mid-1980s, is shown in Fig. 4.
(Figure 4 is a knowledge map in that it reflects historical choices and
evolution as opposed to future plans.) With the introduction of the Lisa and
Macintosh family in 1984, Apple had two product families, each with
multiple offerings.

_____________1977 1978 1979 1980 1981 1982 1983 1984 1985 Future ?

APP'e Apple I

Apple II

Apple II +
Apple lie

Apple III Apple lie

Macintosh ($2500)
z -------------------------\ 128

Y M .
---------------- ' \ Mac XL

Lisa/Mac Lisa Lisa 2
($8-10,000) \ Lisa 2/5.

\Lisa 2/10

Source: Hayes, Robert H„ Wheelwright, Steven C„ and Clark, Kim B. (1988). Dynamic
Manufacturing. New York: The Free Press, p. 293,

Fig. 4 Product Generations at Apple

As suggested in Fig. 4, the Apple II family may have been conceived
originally as simply the next generation product for the low-end education
market. In fact, it has proved to be extremely durable and while evolving, has
continued to serve as the platform product for that family of offerings. The
Apple III was an attempt to develop a related product for the business
market, but was dropped not long after its introduction because of quality
problems. The product map for the Lisa/Macintosh line indicates that Lisa
was envisioned originally as the platform product for the family with
Macintosh as the derivative product. However, Lisa proved not to be a good
match with the market place, and Macintosh became the surviving product
in that family5.

4See “The New Product Development Map", op. cit.
5 A more complete set of maps for Apple Computer is provided in Chapter 10 of Dynamic
Manufacturing.

ICL Technical Journal November 1989 635

With regard to future product offerings at Apple Computer, in the late 1980s
the firm announced two important decisions which internally provided the
basis for developing a strategic choice map of future product generations. The
first was that the Apple II would continue as the primary product for
elementary and secondary education. The second was that an engineering
work station version of the Macintosh (designated the Macintosh IIx) would
become the platform product for the Macintosh family. Thus, future
Macintosh development efforts would include a next-generation work
station and then a set of derivative products aimed at the business and
university markets. The company also has indicated that peripheral products
(such as laser writers, file servers, and other hardware) will form a third
family of product offerings. (Apple has subdivided its development engineer­
ing efforts into three groups, each focusing on one of these product
categories.)

IV Project Management

An effective pre-project stage with appropriate managerial inputs and links
to functional strategy can do much to raise the probabilities of a successful
development project. However, there still remain a number of issues and
tasks that must be dealt with effectively during the project management
stage. While most companies do spend the bulk of their development
resources during this stage, many do so late in the project when it becomes
apparent it is falling short of original objectives. As a result, firms often forget
the good thoughts they had about how to manage the project, and “Get it
finished, never mind how” becomes the driving force. As a consequence,
much of the conventional wisdom regarding effective project management is
ineffective and, in many cases, simply wrong. Three very generic - yet
powerful - aspects of project management can be used to illustrate both the
challenge and the opportunity for effective management during this phase.
These include overlapping problem solving, conflict resolution, and project
organization6.

Overlapping Problem Solving

At a number of critical junctures, new product development projects involve
the interaction of both an upstream and a downstream group. Early on the
upstream group is often marketing, who specifies desired product character­
istics for design engineering, the downstream group, who must convert those
into technical solutions and designs. Subsequently, design engineering

6 Many of the ideas in this section build on the work of Professor Kim Clark and his study of the
worldwide automotive industry. That study, involving approximately 30 new car development
projects in 20 different firms, has been reported in a number of Harvard Business School
working papers by Professor Clark and is currently being converted into book form. I am
grateful to Professor Clark for his contributions to my own thinking in this area. (See also
Chapter 11, "Managing Product and Process Development Projects”, pp. 304-339 in Dynamic
Manufacturing.)

636 ICL Technical Journal November 1989

becomes an upstream group, and manufacturing a downstream group. At
this interface, design engineering must transfer designs, or at least prelimi­
nary thinking about designs, to manufacturing, who converts those into
manufacturing processes and procurement arrangements.

Even within any single function such as design engineering there may be
subfunctions that have an upstream and a downstream relationship. At each
such interface, there are issues involving problem solving and information
transfer that must be addressed. As suggested in Fig. 5, at the extremes of a
continuum, there are two very different modes for carrying out this interface
- a one-shot, batch approach, and an overlapping, intensive, two-way communi­
cation approach. Each of these deserves further explanation.

I____I problem-solving cycle upstream output

upstream cycle
Phased .. .
Approach

one-shot transmission
of upstream information ., downstream cycle

m m m

upstream cycle
Overlapping~
Approach —-r’" '-" '

^ F " f “ ■ early release of
,, ,, ,, ,, preliminary information

downstream cycle

Source: Hayes, Robert H., Wheelwright, Steven C., and Clark, Kim B. (1988). Dynamic
Manufacturing. New York: The Free Press, p. 314.

Fig. 5 Linking Problem-Solving Cycles

In the one-shot, batch approach without overlapping, the upstream group
works through the details of their assignment and tasks and then - and only
then - passes all of that information (in a single batch) to the downstream
group. At this point the downstream group start to prepare and carry out their
set of tasks. Commonly, this is referred to as the “over the wall” connection
between the upstream and downstream groups. Not only does the upstream
group avoid tipping its hand before they have completed their tasks, but the
downstream group avoids making any commitments or doing any preliminary
work until they have those final plans in hand. In many cases, this approach
can lead to a number of repeat cycles as the downstream group identifies the
need for modification and revisions in the work of the upstream group.

ICL Technical Journal November 1989 637

In the overlapping approach, with intensive two-way communication, there
is a continuous transfer of information (and, more importantly, partial
information) from the upstream to the downstream group with feedback and
comments flowing in the reverse direction. In the case of the design
engineering/manufacturing interface, the designers share with manufacturing
their thinking as they carry out the design process, and manufacturing, in
turn, provides feedback on that thinking and seeks to add value to the final
design. Obviously this approach is the most effective one when carried out
appropriately.

Preliminary study suggests that the overlapping approach can involve as
much as five times the level of information transfer as the batch process.
Thus, it must be perceived as adding value - to both parties - or else it will
not be sustained. Manufacturing, as the downstream group in this example,
must develop an ability to “forecast” the path design engineering is following,
based on early clues, and then provide feedback as to the feasibility of that
path. In addition, the downstream group, manufacturing must be flexible and
adaptable, and must provide short cycle feedback on problems. It is not
acceptable for manufacturing to take three weeks to get back to engineering
on a preliminary idea. Nor is it acceptable for manufacturing to say
repeatedly, “That won’t work.” Rather, manufacturing must become suffici­
ently skilled in the development procedures used by designers to be able to
add value to their designs.

The extent to which the overlapping approach, with intensive information
transfer, differs from conventional wisdom and common practice is perhaps
best illustrated by how organizations using each of these two approaches
characterize “Early Manufacturing Involvement” (EMI). EMI comes to the
forefront rapidly as organizations explore ways to shorten new product
development and avoid costly errors necessitating additional iterations at the
eleventh hour. The following summarizes the characterizations typically
given by those using a phased, batch approach (the traditional view) and
those using an overlapping, intensive approach (the integrated view). It is
interesting that within a firm using either approach, there tends to be great
consistency in these views across both design and manufacturing.

Descriptions of “ Early Manufacturing Involvement”

TRADITIONAL VIEW INTEGRATED VIEW
(Phased approach with (Overlapping approach with
hatch information processing) intensive information processing)

Manufacturing constrains Manufacturing enhances
engineering engineering
Engineering passes completed Engineering and manufacturing
designs exchange information continuously
Each function has separate Responsibility is shared
responsibilities throughout
Parochial functional attitudes Team attitudes

638 ICL Technical Journal November 1989

Another illustration of the substantial differences in these two problem
solving approaches comes from the procurement of parts in connection
with a new product development effort. Conventional wisdom is that
common parts across product families will speed up design. In an industry
like automobiles this requires that suppliers be given a completed set of
drawings and full specifications for the components they are to provide. This
is a form of the phased, batch approach. Traditionally, even when unique
parts were sought, the design was done by the automotive firm and the
phased, batch approach was used to tell the supplier what to make and
how.

Research by Professor Kim Clark suggests that the degree to which these two
approaches have been followed varies dramatically among auto firms in
Europe, the U.S., and Japan. In Japan, automotive firms source over half of
their purchased components for a new car program from suppliers doing
their own design of unique parts. While the automotive firm provides
functional guidance as to performance requirements, the supplier is expected
to know best how to design and build that component. This enables the
supplier to do their own overlapping problem solving within their firm rather
than be forced into the phased, batch approach. The resulting components
are tailored to that new car program, and they can be more easily and
more effectively produced by that supplier over time. In the U.S., less than
20% of the components for a new car program are sourced in this way.
Over 80% are sourced in the more traditional way: the auto firm pro­
vides exact component specifications to the supplier and tells them how to
make it.

Conflict resolution

An issue that ties closely to the problem solving approach used in a new
product development project is the organization’s approach to conflict
resolution. The very nature of a development effort makes conflict inevitable.
However, individual areas of conflict can be either healthy or unhealthy. The
unhealthy kind arise when unilateral action is taken (usually on the part of
the dominant function or strongest individual), legitimate discussion and
questioning is suppressed, a group pretend they have a solution (often in an
attempt to avoid conflict) before that is actually the case, or political
considerations dictate the solution adopted. Healthy conflicts arise when
knowledgeable people have different information, perspectives, or analysis,
or when tough choices are required. The resolution of healthy conflicts,
whether between functions or within a single function, are what the process
of convergence to a final design is all about. Such conflicts need to be
addressed in a systematic and effective manner.

Many organizations have discovered that five rules provide excellent guid­
ance in resolving conflicts during the course of new product development
projects. Recognizing these and having the discipline to adhere to them
makes a significant difference to overall success.

ICL Technical Journal November 1989 639

1 Conflicts should he surfaced as early as possible. There are always more
options early on, and the likelihood that the best solutions will be
adopted is directly related to when conflicts surface.

2 Conflicts should be resolved through mutual accommodation. Political clout
and functional dominance are not likely to lead to the best solution in
most cases. Rather, thorough and reasoned discussion is needed.

3 Conflicts should be resolved at the lowest level possible. That is usually
where the best information exists, where mutual accommodation is more
likely to occur, and where conflicts can be surfaced early. When conflicts
are pushed up the organizational hierarchy, two things tend to happen
and both are bad - it takes longer, and the resolution tends to become
more political and less based on fact.

4 The lowest level of the organization must be made competent. This requires
skill development, training, and experience in the depth dimensions as
well as the breadth dimensions of product development.

5 Adhere to and follow through on agreed to solutions. Nothing undermines
the conflict resolution process more than false or pretended resolution.

Project Organization

Effective development project management requires that the organizational
groups involved develop the specialized capabilities needed and that the
efforts of those groups be appropriately integrated. How a firm chooses to
organize a development project can have significant bearing on both. As
shown in Fig. 6, there are four basic ways to organize development efforts,
each having its distinctive strengths and weaknesses7.

The traditional functional system is depicted in the upper left. This approach,
the most common in use today, organizes people together by discipline, each
working under the direction of a senior functional manager. For instance,
within each engineering discipline, specific engineers specialize in various
aspects of the product under development. The work of the different
functional areas is then coordinated either through a set of detailed specifica­
tions agreed to by all at the start of the project, or by occasional meetings
where issues that cut across groups are discussed. Primary responsibility for
the project passes sequentially - although often not smoothly - from one
function to the next. This approach appears to work best where deep
functional expertise is critical to the success of the project and/or where the
firm has such a commanding position in the market place that they can
dictate, to competitors and customers alike, the timing of new product
introductions.

The second approach shown in Fig. 6 can be referred to as the lightweight
project manager system. In this approach, people physically reside in their
traditional functional settings, but each functional organization chooses a

’ See Chapter 11, "Managing Product and Process Development Projects”, in Dynamic
Manufacturing, pp. 311 323.

640 ICL Technical Journal November 1989

(A) Functional Organization (B) Lightweight Project Manager

function ---------- ---------- ---------- ---------- ----------
manager (FM)—i. FM<, FMu FM<> FM o FMn

i l l ! :
workinq / 1------- ̂ 1------ ----------- 1
engineers pro|ect liaison

manager (PM) person

(C) Heavyweight Project Manager (D) Tiger Team Organization

FM,, FM,, FM, ' FM ,, FM" FM<>

PM

^
PM

Source: Hayes, Robert H., Wheelwright, Steven C., and Clark, Kim B. (1988). Dynamic
Manufacturing. New York: The Free Press, p. 320.

Fig. 6 Types of Organizations for Development Projects

person to represent it on the project team. These liaison representatives work
with a lightweight project manager (lightweight in terms of status, command
of resources, and experience) who has responsibility for coordinating the
activities of the different functions and keeping track of the project schedule.
Experience suggests that this approach is not particularly stable and is very
dependent on the personality of the project manager. However, it is the one
most commonly adopted when the functional system begins to falter in
effectiveness.

The third organizational model is that of the heavyweight project manager
system. In contrast to the lightweight system, a heavyweight project manager
has direct access to and responsibility for the work of all the major players

ICL Technical Journal November 1989 641

on the project. This person is a heavyweight in terms of both status and level
in the organization and in terms of control over the resources applied to the
development effort. While the long-term career development of people on the
project may still reside with the traditional function managers, the project
manager takes on a very important role in their intermediate term evalu­
ation. The heavyweight system tends to be robust and effective, but suffers in
that most firms do not have career paths that develop such project managers
nor do they have an abundance of people already qualified. In addition, if a
firm has operated under the functional system for many years, the heads of
the various functions may not initially be willing to give up power and
influence to a heavyweight project manager.

The fourth form of project organization is the tiger team system, shown in the
lower right of Fig. 6. Under this structure, the different functional areas
assign and dedicate their people to the project team. These people are co­
located throughout the project. The project leader is really a general
manager, but rather than being charged to work within the existing
organization in negotiating resources and achieving compatibility across
product generations and different projects, the tiger team project manager is
largely autonomous. Thus the tiger team tends to work best when the project
involves a radical new product or a new market, and where issues of
compatibility and transition to the operating organization are not major
concerns.

There are many other dimensions of effective project management, but these
three - problem solving approaches, conflict resolution methods, and project
organization structures - are among the most important. However, even
when handled effectively on a given project, there remains the challenge of
transferring experience and learning to other projects. This suggests a third
stage of product development requiring management attention, one that
appears to be more challenging even than the first two.

V Organizational Learning

The individuals involved in new product development projects always
conclude that they have learned a tremendous amount during that effort.
Even when the project has not gone well, they have a long list of things that
they’ve learned. Unfortunately, very few organizations seek to capture or tap
into such learning over time. Just as individuals need to grow and develop by
learning from their mistakes as well as their successes, organizations must do
likewise.

Managers offer many explanations as to why their organizations fail to learn
from past projects - the urgent need to reassign key resources to the next
project (often before the current one is finished); the separation (physically,
organizationally, and psychologically) of different functional groups, which
inhibits cross-functional learning; the natural resistance to change, in any

642 ICL Technical Journal November 1989

organization; and staff and system support groups’ preference for fine-tuning
the status quo. Furthermore, as one very successful CEO of a high tech
company warned, “You’ll never get anywhere looking across a series of
development projects because no two are the same. It’s all personalities, and
even when you get someone good, you cannot be sure they will do well on the
next project. There are just too many variables and too much random noise
to make sense of anything.”

While there is obviously some truth in each of these objections, they are
much more an indication of why organizational learning is so difficult, yet so
important, than an indication that it is impossible. Rather than make it less
valuable, these challenges strengthen the competitive advantage achieved by
those firms who can master the ability to “learn across product development
projects”.

One reason firms do not learn well across development efforts is because of
the perspective they take regarding such learning and improvement. As
illustrated in Fig. 7, the conventional view is that to the extent such learning
occurs, it is a staircase process. Basically, a set of procedures is followed over
the course of several projects, the lessons from experience are collected, and
then that set of procedures is revised with the expectation that there will
be a measurable drop in the time required for product development (and
a measurable increase in the effectiveness of the product development
effort).

Unfortunately, recent studies suggest that firms who operate with this
perspective face a quite different reality. Instead of staying on a horizontal
path until management finds a way to improve project management,
performance usually deteriorates (cycle time drifts upwards). This is caused
by the way managers in these organizations respond to problems in each
individual project. As unexpected difficulties arise or problems are encoun­
tered (for example, someone forgets to double check something, or does not
get a necessary sign-off), managers add steps to the existing procedures to
make sure that those particular problems do not recur. As a result,
procedures become more and more cumbersome, and project performance
deteriorates. Eventually the organization decides that its procedures have
become too bureaucratic and need to be streamlined. A major effort to
improve those procedures is made, but generally it only brings the organiza­
tion back to where it was before that cycle started. The sawtooth horizontal
pattern shown in Fig. 7 generally fits reality much better than the expected
staircase improvement pattern.

The relatively few organizations that do learn effectively across product
development projects appear to seek smaller but more frequent improve­
ments, as indicated by the dotted line in Fig. 7. They manage to learn from
each project they undertake, continually streamlining and integrating the
overall set of procedures. Even more important, they are constantly building
and reinforcing the capabilities needed for future improvements.

ICL Technical Journal November 1989 643

actual
pattern

development *** S J (conventional
project _ d n r Z _ _ , paradigm)
cycle time ~j ^

• • I
• I

* '------------1
!

• i________
!

• I expected
a I_________pattern

• , (conventional
paradigm)

* • •
pattern in

• • superior
performers
(new
paradigm)

1982 1983 1984 1985 1986...
calendartime

Source: Hayes, Robert H., Wheelwright, Steven C., and Clark, Kim B. (1988). Dynamic-
Manufacturing. New York: The Free Press, p. 337.

Fig. 7 Two Approaches to Development Improvement

One of the areas in which these superior performers seem particularly
effective in capturing individual project learning as an organization is in
prototyping. Most new product development projects go through several
prototype iterations as the product passes from concept to breadboard and
on to prototype and pilot production unit. The superior firms do fewer cycles
of prototyping, yet learn more in each cycle. It is not a matter of simply
dropping prototyping cycles - which exist because the firm needs to learn
more before moving to the next iteration. Rather, it is a matter of learning
more from a given cycle so that fewer total cycles will be required.

These same firms also have discovered ways to shorten the feedback loops in
prototype cycles so that each cycle occurs more rapidly. A combination of
fewer cycles, each of which is faster, can do wonders for the overall product
development cycle time. Equally important, shorter feedback loops and the

644 ICL Technical Journal November 1989

focus on maximizing learning in each prototype iteration reduces project
costs, most of which are fixed period costs - thus the shorter the period, the
lower the cost - and improve the resulting product performance because
learning cycles are more complete, focused, and effective. Those organiza­
tions that are significantly faster at product development than the bulk of
their competitors got there not by cutting corners but by being smarter, and
the results show up in all aspects of their development project performance.

One of the ways the most successful firms tie together all of the concepts
described in this paper is through the articulation and refinement of a
product development strategy. Such a strategy consists of several elements, as
outlined in Fig. 8. As part of the pre-project phase, the firm addresses, in a
systematic manner, issues of technological forecasting and competitive
assessment, linking and summarizing those in the form of specific goals.
These serve to relate product development in important ways both to the
firm’s technology strategy and its business and product line strategies. As
suggested by the right hand side of Figure 8, these firms also learn across
projects, thereby continually improving their management and execution of
individual projects.

Technology
''x Strategy

/TechnologyN
l Forecasting/ __

y — y / F ^ t y f Pr°iect \ y y
(Goals/ —►(strateav/—*\ Management j—►{Results)

______ s * ' ------ y \ and ExecutionJ ^ ^

Assessm ent/
^ ------- ^ Business and

Product Line
Strategies

Fig. 8 Elements of a Development Strategy

Clearly a central element of all of this is developing what can be termed a
projects strategy. Unfortunately, very few firms seem to have focused much
time or attention on this. One way of thinking about a projects strategy is
that it outlines for the organization the relationship between individual
projects and the other elements of an overall development strategy. To do so
effectively, it needs to include four very important subelements of a plan to
continuously improve the firm’s product development capabilities. These
include:
(a) Outlining the path by which the fundamental capabilities needed for

new product development will be provided in the future.
(b) A projects plan that indicates the sequence of projects and their goals,

and how that sequence will operationalize and accomplish both the
technology strategy and the business/product line strategy.

ICL Technical Journal November 1989 645

(c) Outlining the path and providing the means by which appropriate
sources of knowledge will be accessed and developed across a series of
projects.

(d) Relating the projects themselves to the learning and improvement path
the organization wants to follow in building its new product develop­
ment capabilities over time.

In one company where at least an initial effort has been made to develop a
projects strategy, it was done by looking at a broad range of very specific
goals across three subsequent product generations. Those goals ranged from
the number of component parts in each generation of product to the yield at
final assembly, and from the resulting service call rates to the operating cost
structures for each product generation. Knowing that a new product
generation would be required every two years for the next decade, manage­
ment could plan how specific goals would be achieved through each
generation and how, over time, the long range objectives would be accom­
plished.

Honda North America is another firm where the elements of a development
strategy have been effectively developed and applied. They have become a
leader in their global industry at reducing the design-production cycle. They
can npw:
• launch a new model in 18-24 months, against their competitors 3-8

years, while increasing quality, not merely maintaining it;
• launch complex engine modifications in less than 8 months time;
• implement the results of new product development efforts quickly, such

as switching the entire supply chain over from the current model to the
next generation model in a single weekend.

Not only have Honda accomplished this in North America, but they have
achieved similar results in Europe, South America, and the Far East. As a
firm, they have taken to heart the challenges of time-based competition and
new product development. They have developed a capability that results in
significantly faster and more effective new product development efforts than
the majority of their competitors. Furthermore, in the process, they have
instilled within their own organization the desire to continually improve and
enhance that capability and use it in other, non-automotive, product market
areas.

646 ICL Technical Journal November 1989

Time to Market
in Manufacturing

David Saxl
ICL Manufacturing & Logistics, Kidsgrove, Staffordshire

Introduction

Following the plenary session, delegates to ICL’s University Research
Council Workshop on Time to Market formed themselves into five syndicate
groups to discuss different aspects of the overall subject. Each syndicate
group had a number of objectives, including the identification of opportu­
nities for research or collaboration arising from the discussion.

Four of the five syndicate groups concentrated on the phases of

• Marketing
• Design
• In-plant
• Logistics

and the fifth group concentrated on the subject of organisation which is
relevant to all of the other phases. This paper was produced following the
discussion in the organisation syndicate and can therefore be taken as
representative of all of the syndicate groups. The key points emerging from
the other four syndicate groups are presented in the form of an Appendix to
this paper.

Time to Market and competition

An observer, looking back at manufacturing over the period of this century,
would probably have a view that competition for the first 50 years was
essentially based on product innovation and engineering quality. This may
not actually be the case, but the effect of looking back in time is to lose sight
of everything apart from the actual design of the product being examined and
one therefore assumes that this was the basis of competition. Looking at the
second half of the century however, there has been an increase in the power
of management theory, and the basis on which companies have been
competing with each other has certainly changed. Emphasis has moved from
portfolio management to price competition, then quality competition until
now, in 1989, competition is increasingly being seen as being based on time.

ICL Technical Journal November 1989 647

If a company engages in time based competition this will have a number of
effects on the style of operation within the organisation. Some of these effects
will be discussed later.

Time based competitiveness may also affect the external view of the
organisation both in terms of customer service (faster response to orders etc.)
and innovation (first into the market with new product ideas etc.). The carrier
firm Federal Express can be seen as an example of “service”, having used
speed of delivery to derive competitive advantage in their market. Honda can
certainly be seen as an example of “innovation”, using speed of new product
introduction to defeat first Yamaha and now the European Auto Industry.
The American company Atlas Door can be seen as an example of the
synthesis of both of these approaches, using its ability to design and
introduce products quickly to provide the customer with a solution exactly
meeting his requirements and in competitive timescales.

This design and product introduction cycle is often known as “Time to
Market” and it is this which is expected to be the principal area of
competition for many companies in the electronics and computing sector.

Components of “Time to Market”

One of the difficulties of discussing Time to Market is defining an unambig­
uous start point for the cycle. This will be the point at which someone in the
organisation perceives a market opportunity which is subsequently trans­
lated into a product. Unfortunately, in most companies this does not
correspond with a formally recorded or measured event. The process can
usually be broken down into a number of phases which are conducted more
or less serially. These are:

• Marketing
Starting from the bright idea, producing a business case, getting it
approved by the organisation, and turning it into an agreed statement of
marketing requirement.

• Design
Starting from the statement of marketing requirement and producing an
agreed design which meets the requirements of marketing and manufac­
turing.

• Manufacturing
Taking the agreed design and turning it into a product which can be, and
is being, manufactured.

• Logistics
Setting up a physical distribution channel for the product; its associated
support requirements, for instance literature, spares and service.

• Market introduction
Ensuring that the market is ready to receive the product and the sales
force is ready and equipped to sell it.

648 ICL Technical Journal November 1989

The recent focus on time to market as an area of competitive differentiation
has produced evidence of large differences between the norm and best
practice in various areas of manufacturing. Research in the automobile
industry, for example, has shown a typical model introduction time of 43
months in Japan against a European and American average of 63 months -
see the reference to Professor Kim Clark’s work in Professor Wheelwright’s
accompanying paper. A difference of 2 to 1 has been observed in some cases
in this industry, with even greater differences in the electronics industry. A
frequently quoted example is Compaq’s performance in launching the
Deskpro 386 personal computer only six weeks after Intel announced the 386
chip.

A number of factors have already been identified as contributing to the
differences in time to market. These factors include use of tools, types of
organisations, culture of organisations, size of organisations, etc.

Types of organisation

Most large enterprises are organised on a functional basis. The logic for this
form of organisation is that, by grouping all similar specialists together, it
maximises the use of staff resources, allows areas of special competence to be
built up and creates units which are large enough to allow for investment in
tools and training.

An alternative form of organisation is product or market focused. Such an
.organisation brings together all the skills and resources needed to deal with a
particular product or customer into a single unit which, in theory at least,
looks just like a small single product company. (See Fig. 1.)

CUSTOMERS CUSTOMERS

i f i n 'f
i . — 1 1

1 ■ Product Product
Creation Creation

j —| Process Process

I ZZZ1

Functional Organisation Custom er Focused Organisation

Fig. 1.

The use of projects within large organisations is an attempt to combine the
best features of functional and product organisations. The existence of
project teams can therefore be seen as either the perfect general solution to

ICL Technical Journal November 1989 649

organisational issues or evidence of the failure of processes which should
make project teams unnecessary.

Any functionally based organisation must have clearly defined processes to
succeed in product creation. These processes ensure that the right things are
done to the product at each stage. They also ensure that it is passed from one
function to the next as it is being developed, or as the service is being
delivered. If similar organisations compete with each other they will do so on
the basis of the quality of these processes and the size of the functions. The
processes will generally determine the quality and timeliness of the product
being created. The size of the functions will give competitive advantage to the
largest organisation because of economies of scale.

A product or customer focused organisation has less need of formal processes
to ensure that the product is created or the service delivered. Everyone in the
organisation is focused on this single objective with no conflicts caused by
having to deal with other products or other customers. Similar companies of
this type will essentially be competing on the quality of their people because
the importance of processes is reduced and the advantage of scale eliminated.
In other words, with this form of organisation, the large enterprise has no
inherent competitive advantage.

It has generally been observed that when product developments are carried
out in functional type organisations, more than 60% of the development time
is spent at the interfaces between functions. Many theories have been
advanced to explain why functionally organised enterprises are slow at time
to market and why they lose so much time at functional boundaries.

One factor is thought to be the complexity which is generated by the attempt
to handle, simultaneously, activities for different products, for different end
customers and from different suppliers. Since all of these factors are variables,
they combine together to generate great complexity. The effect of different,
competing project managers is to create an environment of continuous
replanning in which more time may be spent adjusting priorities and queues
than performing useful work.

Another factor is thought to be the rigidity of the functional organisation. It
may offer efficient redeployment of resources but it is not able easily to
provide resources to other organisations or to accept unplanned work. This
is because the objectives and funding of the group are often so tightly defined,
to maximise control of the process, that the manager dare not take on any
activity which may threaten achievement of his objectives.

Given the limitations of functional organisations, it would be natural to
assume that if the basis of competition was to be speed of development, then
the enterprise should be organised in a completely product or customer
orientated fashion in order to minimise the time lost in crossing functional
boundaries. This suggests that small organisations will be much better than

650 ICL Technical Journal November 1989

large ones in respect of speed of new product development and this
corresponds with observations made by many researchers in this field.

The implication of this for a large enterprise is that time based competition
would force it into the kind of organisation where it loses all competitive
advantage over its smaller rivals. It is this problem which needs to be
addressed.

For a large enterprise to gain competitive advantage from scale while being
organised in a product or market focused manner it must look for, and
develop, opportunities for sharing and synergy between the market focused
segments. One area could be in the provision of support services built into
the infrastructure of the organisation in such a way that they are available to
all product groups without presenting any organisational implications. In
the same way as no-one questions the sharing of a telephone exchange in a
current organisation then no-one should question the provision of a library
service in a future one. This library must contain information about re-usable
elements of a design. A current example is the use of symbol libraries within
electronic assembly. Obviously there are already many other examples of
libraries and the concept will be extended into other areas in the future.

It follows that such libraries, which previously would have been considered
as “nice to have”, must now be considered as key sources of competitive
advantage. Libraries, and the processes to create, maintain and make them
available, might well be considered proprietary in the future, rather than
generic items to be provided at least cost, as they have been up to now. At the
moment libraries tend to contain only generic items. In the computer
industry this means commercially available components and commonly used
software routines. In the future one would expect the library to stretch
further up the value chain to contain information about complete sub-
assemblies and large software modules. These library items would be re­
usable by other projects, not because they were explicitly designed to be
packages, but because the process used in their design resulted in a re-usable
product whose attributes were stored in the corporate library.

Apart from provision of infrastructure services, another factor for success of
product or customer focused organisations is the flexibility of the workforce
and the nature of internal communication. This type of organisation involves
frequent changes of group size and composition and there must be no
barriers to prevent this. Examples of such barriers include: too many levels of
management, inappropriate objectives and budgets, and cultural expecta­
tions of organisation stability. These problems have been considered by
Drucker, who concludes that future organisations will be very flat, relying
much more heavily on IT systems for internal communication and control
rather than following existing hierarchical, objective driven models.

A third success factor is likely to be the level of internal communication
between members of different teams. Teams are unlikely to contain all of the

ICL Technical Journal November 1989 651

skills they need to solve all of the problems. At any given time the expert in a
particular field is likely to be in the wrong team. His expertise must be avail­
able to the person who needs it. This does not mean that the expert is a full
time consultant but where he can solve problems for other people quickly and
easily he should be able to do it. Similarly, it is the responsibility of everyone in
the organisation to know who are the experts in every field and be able to
approach them without going through formal processes. Just as the organisa­
tion must allow and encourage this networking to occur the ability to operate
in a network manner is a key attribute of every member of the workforce.

Possible research

Having considered these ideas, the workshop syndicate group dealing with
organisation felt that there was an opportunity for further research into the
relationship between organisation structures and information flows.

The information flows can be characterised as product related (vertical) and
skill or experience related (horizontal). Either the vertical or the horizontal
flows will encounter organisational boundaries depending on the form of
organisation (see Fig. 2). The research could examine the factors which
determine the effect of the boundaries on the information flows. These factors
could include information systems, networking skills, levels of management,
objective-setting processes, etc.

CUSTOMERS CUSTOMERS

U&ML........... m u
<— Barriers to

lllliillllKlWrt 1 product
-<— creation
1 related
<— information

r------- 1
f t f

Barriers to skill or experience
related information

Functional Organisation Customer Focused Organisation
Fig. 2.

Summary

• Functional organisations appear to be slower than product or customer
focused organisations for product development. Reasons may include
the complexity of dealing with many projects for many customers and
from many suppliers.

652 ICL Technical Journal November 1989

• Fast time to market therefore requires customer or product focused
organisations rather than functional ones.

• Organisations of this type do not offer the large enterprise obvious
economies of scale or competitive advantage.

• New sources of competitive advantage must be found for large enter­
prises. These could include libraries and infrastructure, information
systems to support new forms of organisation, networking skills of
individuals.

• Research opportunities exist to investigate the organisational factors
affecting information flows.

Acknowledgements

The principal speaker at the University Research Council Workshop on
“Time to Market in Manufacturing” was Professor Steven Wheelwright of
Harvard University. The members of the “Organisation” syndicate were:

Tony Dimond City University
Tim Gillespie ICL
Professor Tom Lupton Spain
John Panter ICL
Chris Phoenix ICL
David Saxl ICL
Dr Ulbo de Sitter Adviesgroep Koers
Professor Nigel Slack Brunei University
Greg Wojtan ICL

Appendix

The Marketing syndicate considered that there was considerable scope for
computer systems to aid the marketing process. Additionally, a large benefit
could be derived from having a clearly understood process model to remove
some of the uncertainty from the marketing process and allow for a closer
communication between marketing, design and manufacturing.

The Design syndicate considered that there was a large opportunity for
computer systems to aid the design process. The other conclusions, however,
were similar to those of the organisation syndicate, focusing on the need for
generalist skills and on the need for people to be process rather than
organisation focused.

The In-plant syndicate highlighted the need for appropriate performance
indicators to measure the manufacturing plant contribution to time to
market. Ideas for reducing time to market included concentrating on the
transfer of manufacturing experience to the design process, either by
transferring people or by creating design tools which contained manufactur­
ing experience. Another opportunity for research or collaboration seemed to
be the development of evolutionary software control systems, which would

ICL Technical Journal November 1989 653

allow the organisation to change and develop in line with changing
requirements, rather than be constrained by existing IT solutions.

The Logistics syndicate identified a special problem with the provision of
services which are very people-intensive. Even though it may be possible to
compress the time to market cycle for products, the cycle for services will be
extremely dependent upon people and the reprofiling of these people is
almost always a lengthy process.

654 ICL Technical Journal November 1989

DATA SECURITY

The VME High Security Option
Tom Parker

ICL Defence Systems, Eskdale Road,
Winnersh, Wokingham, Berkshire, England

Abstract

Criteria for evaluating the security properties of computer systems are
now well established and widely accepted. The security capabilities of
ICL’s VME Operating System have recently been enhanced in accor­
dance with the requirements they lay down, by the addition of a High
Security Option (the VME HSO). This paper describes the VME HSO
concentrating on the features that have enabled it to achieve a high
level of security certification by the British Government. The product is
also aimed at the commercial market, and the paper describes the
integrity, audit and usability features that have been provided to satisfy
requirements in this area.

1 Introduction

ICL’s VME Operating System has established itself over the years as being
one of the more secure commercial operating systems available. A previous
paper1 in the Technical Journal described the ways in which the software
and hardware architectures of VME and its host systems combine together
to provide the fundamental structure upon which secure higher level
functions can be built.

That paper was written seven years ago, and VME has since then
moved forward a long way. At the time of the paper, ICL was making
initial proposals to the Department of Industry (as it was then called) to
develop with their financial support a purchasable set of security enhance­
ments. The development was to be aimed at both the government and
commercial user populations; it was to provide usable security, offering a
great deal of flexibility in the choice of security policy; it was to provide
strong security conforming to recognised independent security quality
standards and it was to be evaluated by a recognised authority, resulting in
a written certificate that ICL could use in the marketplace. In December
1984 ICL had the go-ahead to develop the product, and work started in
1986.

The development came to be known as the VME High Security Option,
usually called the VME HSO. It is available on Series 39 machines.

ICL Technical Journal November 1989 657

On a large commercial computer system the amount of code to be executed
in the performance of its duties is typically very large indeed. It is responsible
for a wide variety of complex tasks aimed at helping the end user to do his
job but at the same time constraining him to use the system only in
authorised ways.

The operating system and the applications it is supporting act as both
policeman and provider, and it is often very difficult to examine the whole of
this complex mixture to make sure that the security it provides is acceptably
robust.

In the past, various techniques have been applied in a somewhat ad-hoc
manner to assess the quality of security provided by a system. Some
examples are:

straightforward functional testing of security features;
- examination of source code listings, sometimes aided by automatic tools;
- “tiger team” attacks in which security experts attempt to penetrate the

system in a simulated real-life situation;
consideration of architectural and design quality; a well designed and well
structured system is both easier to assess and more likely to be correct;

- formal verification of the security properties of the system using mathe­
matical techniques; such techniques are at present feasible only on small
systems designed and written in special languages.

2.1 Standard Evaluation Criteria

Until the 1980’s there was no way of obtaining a reliable standard measure
from these techniques; there was no concept of marks out of ten or position
on a scale of security. However in August 1983 the first official set of standard
criteria for the evaluation of computer security was published by the US
Department of Defense2. This standard is widely applied in US Government
procurements of secure systems and its influence is now pervading European
government and commercial requirements. Although the evaluation scale
has been subjected to criticism relating to its scope of application and its too
close coupling of functionality and correctness requirements, it is a remark­
able technical achievement. It represents the culmination of a decade of
research, and it is the only universally recognised scale available today.

The scale comprises the following set of levels, given in increasing order of
security quality:
Level D No security.
Level Cl Basic security, suitable for the control of a relatively benign user

population in low-risk environments.
Level C2 Strong conventional security. A discretionary security policy is in

force, under which each user is responsible for defining the access
controls that apply to the data he owns.

2 M easuring How Good it is

658 ICL Technical Journal November 1989

Level B1 Support of a mandatory centrally imposed security policy.
Defence against corrupt application code is possible.

Level B2 Level B1 strengthened by a more rigorous and comprehensive
approach and a better security structure.

Level B3 A system specially designed with security as its main overriding
priority. The security critical code is specially constructed to
make it as compact and easy to evaluate for correctness as
possible.

Level A1 Similar to B3, but all of the security critical code in the system has
been designed and built using a language to which mathematical
techniques can be applied for formally verifying the security
properties of the system.

A complex set of criteria apply at each level covering the system’s design,
functional capabilities, testing, development environment and documenta­
tion. The names of the levels are chosen to highlight fundamental differences
between the different letter categories. To increase a system’s security quality
from one overall category to another is intended to be a major step forward
(e.g. from D to Cl, or C2 to Bl).

An evaluation scale has also been developed by the British Government3.
This has built on the experience obtained from the American work and
is more flexible in its application. One important feature is its ability
to separate out questions about what the system does, from questions
about how well it does it. Other scales are emerging from the German
Government4 and from the Department of Trade and Industry in the
UK5.

Over a period of two years, starting in early 1987, the VME HSO has been
subjected to an intensive security evaluation by an independent technical
team of security experts funded and controlled by HMG. ICL’s aim was to
obtain certification for the system at a UK equivalent of level Bl on the
American scale, with a similar but more complex rating on the HMG scale.
This was successfully achieved in May 1989 for version SV221 of the system.
ICL is now discussing ways in which this certification can be carried forward
into subsequent versions.

At the time of writing this paper, ICL knows of no other proprietary general
purpose operating system which currently offers this level of security
functionality and assurance.

3 Level B Systems - Why So Much Better?

The single most significant advance in the transposition from a level C to a
level B system is the support of a centrally controlled Mandatory Access
Control Policy, which provides for data confidentiality without relying on
the good behaviour of either end users or the application software they
use.

ICL Technical Journal November 1989 659

Such a policy possesses three major features:
it allows a security manager to determine and mark the levels of
confidentiality of data held by the system;

- it allows the manager to determine and mark which users are cleared to
access what data according to its confidentiality markings; only if a user is
"cleared” to the level of confidentiality of the data is he permitted to read
it;

- using a rule known as the "information flow” rule it prevents untrusted
application code from circumventing the above checks by maliciously
copying data from a highly confidential file to a less confidential file which
a user with a low clearance can subsequently access. Such code (sometimes
called "Trojan Horse” code) may attempt to do this unknown to the user
for whom it is executing.

The first two features are relatively easy to provide. The standard approach is
to associate a confidentiality label with each data object (its “Classification”)
and with each user (his “Clearance”). When a user requests to read an object
his Clearance is compared with the object’s Classification and access is
permitted only if the former is higher than the lattert.

The third feature however, is at the same time the most significant and the
most difficult. Its significance lies in the fact that without it, it is not sufficient
to evaluate only some of the code in a system to be sure of the system's
security; without it, all code needs to be evaluated. The latter is one of the
major deficiencies of level C systems; the ability to distinguish between
“trusted” and “untrusted” code is the big leap forward that level B systems
make, both in terms of assurance and in terms of their basic evaluatability. It
is only on level B systems that a user can execute some unknown code on his
confidential file and be sure that its contents cannot be leaked by that code to
any user not permitted to see it.

The protection offered by information flow control is difficult to achieve
because its straightforward imposition can be too restrictive in real applica­
tion environments. An operating system cannot be expected to understand
the internal logic of all of the application code that might ever be executed on
it, so it must lay down information flow rules in ways that do not depend in
any way on such an understanding. These rules will necessarily be restrictive
in nature; they will be a blunt instrument that, unless used with great care,
might cause legitimate operations to fail because the system cannot be sure of
their legitimacy.

An example may help illustrate this point (see figure I). Suppose a particular
application is performing two "update by copy” operations in parallel. The

tM ore precisely, this rule and the information flow rule are defined in terms of a "dominance"
relationship between the security labels associated with the source and destination. The first
formal statement of the MAC rules was derived by two American researchers. Bell and
LaPadulaC

660 ICL Technical Journal November 1989

CONFIDENTIAL COPY CONFIDENTIAL
FILE “CA” *" FILE “CB”

(__
- l POSSIBLE VIOLATION

i__i_
PUBLIC qopy H PUBLIC
FILE -----------------------► FILE
“PA” “PB"

Fig. 1. Information Flow Example

first involves reading a confidential file CA and copying it with appropriate
changes to a second confidential file CB; the second involves reading a
publicly available file PA and selectively copying it to a similar public file PB.
Neither of these operations constitutes an information flow violation, but the
Mandatory Policy cannot permit the application simultaneously to open CA
for read access and PB for write access in case it maliciously, or accidentally
copies data from CA to PB. The operating system does not know that the
application will not do this, and it certainly does not trust it not to do it.
Indeed if the application had been tampered with and contained maliciously
written Trojan Horse code, it would be very likely to do something of this
kind.

So the problem is not that information flow security is difficult to achieve (at
least at B1 levels of assurance), but rather that it is difficult to be sure that
applications will still work when information flow controls are imposed.
More significantly, the working of the system itself might depend on the
continued functioning of standard system “application” processes which
might suffer at the hands of the information flow rule.

The next Section describes how ICL solved these problems in VME.

4 Usable Flow Controls

Naturally, the VME HSO supports a Mandatory Confidentiality Policy with
information flow controls. To do this it uses security labels along the lines
already described. The system is designed so that a security manager can
choose names for the labels that are appropriate for his needs, and they may
be chosen to describe either or both hierarchic confidentiality levels and non-
hierarchic confidentiality compartments. The basic flow control rules out­
lined above are applied, but enhanced in a number of ways which minimise
their impact on the system’s usability:
- it is possible for a suitably trusted user to mark code so that the Virtual

Machine it is executing in is permitted potentially to violate the informa­
tion flow rule. It is expected that installation management will themselves

ICL Technical Journal November 1989 661

ensure that no actual flow violations would occur. The legitimate applica­
tion in the example could be marked in this way to enable it to work, but
only after it had been suitably vetted to be trustworthy in this respect. For
this reason the marking is said to belong to a group of markings known in
VME as “trust” markings. VMs executing in possession of any of these
trusts are known as “Trusted Processes”.

- it is possible for a system administrator to run an application in a way
which allows it to continue to work as if no Mandatory Policy controls
were being applied, but which audits all cases where violations would have
been caused had these controls been in force. In the example application
the opening of PB for write access would trigger an audit message because
CA had already been opened for read access.
This information can be used in two ways: either the application can
be reorganised to complete and close down its PA to PB copying
before opening the confidential files - in which case not even a potential
violation is caused and the application can now be run under full
controls with no security problems, or the application can be marked as
trusted as described above, with the exact reason for the need for trust
having been identified and the verification of the code’s trustworthiness
having consequently been made easier. This “trial” mode method of
running an application is intended to be used primarily as a transition
aid.

- it is possible for a security manager to configure the Mandatory Policy for
the system so that flow control is not policed at all. For many commercial
systems who perceive that the threat of information comprise by this
means is small this would be an appropriate choice.

- it is possible for a security manager to constrain information flow to be
permitted potentially to occur only within a band of confidentiality levels.
In the example it could be arranged to permit potential CONFIDEN­
TIAL to PUBLIC information flow, but prevent any flow from, say,
SECRET files.

5 Integrity

Although secure commercial organisations have a strong interest in protect­
ing sensitive information from getting into the wrong hands, their major
motivation for obtaining and installing a secure system is usually that of
prevention of fraud. One of the technical consequences of this is that there is
a need to provide data integrity, and it is therefore at least as important for a
secure operating system to provide strong data integrity controls as it is to
provide strong data sensitivity controls. A particularly significant paper on
this topic was recently published by Clark & Wilson7.

Because of this importance, and despite there being no specific requirement
to do so in the American evaluation criteria, ICL has implemented a
Mandatory Integrity Policy in the VME HSO, to complement its Manda­
tory Confidentiality Policy. The integrity features closely parallel the confi­
dentiality features, and are as follows:

662 ICL Technical Journal November 1989

- the policy allows a security manager to determine and mark the level of
integrity of data held by the system.

- it allows the manager to determine and mark which users are cleared to
modify what data according to its integrity level. Only if a user’s integrity
clearance is higher than the integrity level of the data is he permitted to
modify it.

- it prevents high integrity data from being corrupted by low integrity
inputs; this rule is an integrity dual of the confidentiality information flow
rule. It is Trojan Horse data rather than Trojan Horse code which is
defended against here.

There is however an important difference between the two policies. The
Mandatory Confidentiality Policy has no interest in distinguishing between
different untrusted application code modules that may be used to access
highly confidential data; there is no concept of giving code a clearance. The
integrity policy does have this concept, and there is therefore a fourth feature:
- it allows the security manager to determine and mark which code modules

are cleared to modify what data according to its integrity level.
By making use of this rule the security manager can be sure that important
application data is operated upon only by the proper authorised application
code under the control of a properly authorised user. Furthermore, the
integrity flow rule prevents such an application being spoofed into running
with unauthorised input data.

The VME HSO allows the security manager a high degree of flexibility in the
way in which this policy is applied. The enforcement options are similar to
but separate from those available for the Mandatory Confidentiality Policy.
In particular the integrity information flow rule which prevents the flow of
low integrity data into high integrity data can in real situations be relaxed if
the code involved has been produced to defend itself against spoof input or
other low integrity input, or if other features of the operating environment
can be used to guard against supply of the wrong input data.

Finally a word about viruses: high integrity software on a VME HSO system
is protected against modification by the same integrity marking as that given
to that software when it is executing; in this way the Mandatory Integrity
Policy ensures that no software of lower integrity could modify it. This
means that a virus, which reproduces itself by copying itself from software
module to software module will always be confined to at most the integrity
level of the software module, within which it is introduced into the system.
The operating system code of the VME HSO is protected by a special
integrity label which customers do not use for their own data files. This code
is therefore protected against corruption from any viruses that may be
unknowingly introduced on customer program files. Similarly, a security
conscious customer site, by ensuring that all unknown software is introduced
only at a very low integrity level until it has been given a clean bill of health,
can guard its own software against viral attack

ICL Technical Journal November 1989 663

There is a variety of other ways in which it is useful, and sometimes essential
to allow the use of a Mandatory Confidentiality or Integrity Policy to be
applied to fit a particular installation’s needs.

Once the concept of being able to mark code, or nominate users, as trusted
has been implemented, one can identify a further set of privileged functions
that can be controlled using different trust markings. Examples of functions
that can be specifically controlled under the trust system of the VME HSO
are:
- the ability to change a confidentiality or integrity label,
- the ability to set and change security controls,
- the ability to set and change audit controls,
- the ability to change one’s own password,
- the ability to introduce alien magnetic tapes into the system,
- the ability to override the discretionary access control system.
Only users given the appropriate trust, using software marked with the same
trust, may perform any of the functions listed above. In total there are nearly
thirty different categories of trust supported on the VME HSO, allowing a
fine degree of tailoring to be applied. Services and Tasks can also optionally
be controlled by trust; for example users can be confined to a particular
Packaged MAC service when operating with a particular trust.

There are two points of particular interest in the examples above:
The first is the distinction that is possible between the audit and security
management functions; this distinction allows a clear separation of responsi­
bility to be enforced between these two important roles.
The second is the way in which trusts are used to strengthen the discretionary
access controls of the system. Is is now no longer possible to penetrate the
system by illegally obtaining access to the privileged SWITCH-USER or
SET-PERMISSION-OVERRIDES commands. Such commands are now
controlled under the Mandatory Policy. Only trusted users may use them,
and then of course only subject to the privileged library constraints that have
always applied. It is also worth noting that the power of these privileged
commands is anyway significantly reduced in VME HSO systems; even if an
untrusted user were to switch to become the Security Manager, he would be
unable to exercise the powers of that user since it is only that user’s
discretionary capabilities that are acquired. The intruder would not have
been given either the trusts or the clearances of the username to which he had
switched.

The trust system has been extended in other ways. It is possible to nominate
particular workstations as possessing or not possessing particular trusts. In
this way users can be controlled in their choice of workstation from which
they are permitted to perform their trusted actions. This idea is further

6 Other M andatory Policy Refinem ents

664 ICL Technical Journal November 1989

extended to encompass other communications devices like network gateways
and cluster controllers, so it is possible for example to prohibit any trusted
activities coming in from a gateway to a public X25 network.

The Mandatory Policy labelling scheme is also extended to cover communi­
cation devices and links, so it is possible to label a workstation with a
particular confidentiality or integrity clearance which limits the effective
clearance of users that use that workstation. For example, an installation
could limit work on data with integrity category of PAYROLL to those
workstations located in the payroll office.

Similarly, it is possible to mark devices like disc drives and line printers with
security labels which constrain them to handling data whose security
markings lie between defined boundaries. In this way, the printing of
confidential or high integrity data can be confined to one or more nominated
printers, and the storage of particularly sensitive files can be confined to
nominated disc or tape drives. This latter form of protection can also be
applied in terms of disc and tape partitions themselves, permitting fine grain
control over file placement.

Finally, it is possible to mark Services and Tasks with labels so that whatever
a user’s clearance, for certain types of Service and Task it can be bounded
according to the nature of the work being done.

7 Auditing

The ability to record for posterity what is happening on a system is almost as
important as the ability to control it in the first place. Auditors wish to make
system users accountable for their actions; they wish to analyse the ways in
which a system is being used or abused; they wish to be able to look back to a
record of previous events in order to assess damage done when a belated
discovery of an attack on the system has been made; they wish to be able to
monitor particular kinds of action or action by particular individuals or
action using particular system access points in order to forestall attacks on
the system; finally they wish to deter, to make sure that users know that their
actions are being watched and recorded.

With these wishes in mind, ICL decided to transform the Audit capabilities of
the system under the FISO. Existing audit facilities were supplemented by the
provision of a complete new set of security audit records with special message
types and subject to special protection.

The following events can be audited under the new scheme:
- attempted security violations,
- login, jobstart, session initiation and termination,
- submission of incorrect login data,
- changes to mandatory and discretionary security policy,

ICL Technical Journal November 1989 665

- changes to audit policy,
- the exercising of nominated types of trust under the mandatory policy,
- procurement of printed output,
- loading of code from nominated libraries,
- changes to passwords, but not the values involved,
- changes to security label values,
- any access by any user to any protected VME object.
The last of these event categories has the potential to generate an unaccept­
ably large amount of audit data, so a wide variety of subsetting options has
been made available to the audit manager.

These are:
- accesses by nominated users,
- accesses using nominated workstations,
- accesses using nominated services,
- accesses when code from a nominated library is available for execution,
- read accesses to objects whose confidentiality exceeds a nominated

threshold,
- write accesses to objects whose integrity exceeds a nominated threshold,
- accesses to particular nominated objects or object types.

Together, these features permit an Audit Manager to define the precise audit
profile he requires for his system. This can be varied on a day to day basis to
react to changing circumstances.

In designing the formats of the new audit records ICL had a choice to make
between human readable but large and therefore inefficient formats, and
compacted machine processable formats that are more difficult for a human
to interpret directly. ICL opted for the latter on the basis that in the future
the raw data from audit trails will increasingly require extensive machine pre­
processing in order to provide statistical data, to highlight significant events
and to analyse for unusual changes in user work patterns that may indicate
potential attacks on the system8. A demonstrator for analysing VME audit
trails has already been developed by Logica in the UK under the auspices of
the British Government’s Central Computer and Communications Agency
(CCTA).

8 Other Features

Space does not permit a full description of all of the security features of the
VME HSO; indeed, it is ICL’s policy to restrict the availability of full details
of the product to bonafide customers having a legitimate interest in it, and for
such customers a range of six security manuals has been produced. Other
enhancements to the system’s security have however been made in the areas
of authentication, security labelling of printed output, and the protection of
discarded data; this paper has only hinted at the full power of the "trusts”
system.

666 ICL Technical Journal November 1989

A range of enforcement options has also been implemented to permit a
customer to move gradually and painlessly into a secure mode of working
following purchase and installation of the HSO.

9 What is the customer to make of ail this complexity?

A question like this is understandable, and ICL has been very conscious that
the power and potential complexity of the features provided by the HSO can
be rather intimidating. The company has therefore provided a comprehen­
sive training and consultancy support programme to supplement the HSO
product itself. It should be remembered that it is very much in ICL’s interest
to make sure that the introduction of the leap forward in security that this
product represents is a success.

It is also very important to note that a customer’s philosophy when
implementing his particular security policy should be “keep it simple and
stupid!”. Although the VME HSO provides a rich and complex variety of
controls, they are there as a shopping list from which each different customer
is free to select his own simple profile; the complexity is ICL’s, not the
customer’s. If a system uses only a small proportion of the features offered by
the VME HSO, but as a result, sensitive and valuable information is
protected to a high level of assurance, then use of the product has been
worthwhile. A customer should not feel that in order to get value for money,
all of the security features of the system must be exercised to their fullest
extent, indeed such an approach would be likely to achieve just the opposite
effect.

10 What the VME HSO does not do

The VME HSO is an operating system development. It protects objects that
are understood by the basic VME operating system. This means it protects
things like whole files, libraries, disc partitions, communications devices and
magnetic tape drives. It does not directly protect application-level objects
like individual data items in an IDMS or Ingres database. To VME a
database is a file, or at most a few files. The database is protected therefore at
exactly that level of granularity and its individual data items are protected by
the HSO only as a consequence of the protection afforded to the files that
contain them.

Similarly, any software that runs on top of VME is treated by the VME HSO
as being untrusted unless it is explicitly told otherwise by the security
manager. This normally means all application packages and all superstruc­
ture products including TPMS, are treated by the VME HSO as untrusted.
This is not to say of course that these products are not worthy of any trust;
indeed many installations will utilise their protection features to supplement
the security provided by the VME HSO, whose features might then be
looked upon as providing the secure environment within which individual
applications can operate.

ICL Technical Journal November 1989 667

11 Next Steps

At the time of writing of this paper only a few customers have obtained
experience of this new product. Choice of future enhancements will therefore
depend very much on feedback which is yet to be obtained. There are
however two areas of future development which are worth highlighting:
The first is in the area of FTAM, or “File Transfer and Access Method”. An
early implementation of this feature on VME will permit VME HSO
customers to transmit a file’s security label along with the file, and therefore
allow such a file to be protected in its destination system in the same way as
on its source system.
The second development is in the area of user authentication. In the distrib­
uted systems of the future, users will wish to authenticate themselves once to
the system as a whole, and use the results of this to access all of the applica­
tions they wish, no matter which particular end systems contain them. ICL is
developing such a Network Authentication Server and the VME HSO will be
adapted to accept the resulting certified identities rather than repeal the authen­
tication process by engaging in VME login exchanges. VME usernames will
then become resources which individual users may or may not be permitted to
access. By this means accountability of individual human users will be
achieved no matter how many share the use of the same VME username.

12 Conclusions

The American evaluation scale and its UK equivalent represent a major step
forward in our understanding of what is required of a secure computer
system. Level B systems on these scales will give a significantly better level of
security protection than the conventional level C systems of today. These
benefits will not come without effort on behalf of both users in managing
their systems securely, and manufacturers in giving them the technical tools
with which to do this; the potential gain in our ability to protect data in
computer systems is however enormous.

Of prime importance is the support of a Mandatory Confidentiality Policy,
without which the higher level of security assurance provided by level B
systems cannot be obtained. The commercial world requires similar assur­
ances with respect to integrity, and it is possible to satisfy these requirements
by providing support for a Mandatory Integrity Policy. In both cases
however, the implementation needs to be rich and flexible; a simple
implementation would have unacceptable usability consequences.

Access control is not by itself sufficient; users must be made accountable for
their actions and an audit capability of similar power and flexibility is also
required.

The VME High Security Option provides these and other related security
facilities for ICL’s customers. It has passed its first hurdle: successfully

668 ICL Technical Journal November 1989

achieving British Government evaluation to the UK equivalent of B1 on the
US DoD scale. The next hurdles may be even more difficult: proving its
usability, manageability and security against real attack in real customer
environments.

References

1 PARKER, T.A.: Security in a large general-purpose operating system: ICL's approach in
VME/2900, ICL Tech. J„ 3(1), May 1982.

2 DOD 5200.28-STD.: Trusted Computer Systems Evaluation Criteria, Port George Meade
MD USA: National Computer Security Center, December 1985.

3 CESG: UK Systems Confidence Levels, CESG Computer Security Memorandum No. 3,
Issue 1.1, Feb. 1989.

4 GERMAN CIPHERBOARD: National Catalog of Criteria for the Evaluation of Trusted IT
Systems, Draft version, issued by the German Cipherboard, Federal Republic of Germany.

5 DTI: Evaluation and Certification Manual, V23 - Version3.0, one of five volumes produced
by the DTI Commercial Computer Security Centre, RSRE Malvern, Worcs.

6 BELL, D.E. and LAPADULA, L.J.: Secure Computer Systems: Unified Exposition and
Multics Interpretation, MTR-2997 Rev.l MITRE Corp., Bedford, Mass. March 1976.

7 CLARK, D.D. and WILSON, D.R.: A Comparison of Commercial and Military Computer
Security Policies, in Proc. Symp. on Security and Privacy, IEEE, April 1987.

8 TERESA F. LUNT: Automated Audit Trail Analysis and Intrusion Detection: A Survey, in
Proc. Uth National Computer Security Conference, Baltimore, October 1988.

ICL Technical Journal November 1989 669

Security aspects of the Fundamental
Association Model

Heather Alexander
STC Technology Ltd, Newcastle-under-Lyme

David McVitie
International Computers Ltd, West Gorton, Manchester

Abstract

This paper reports some results from the application of a formal
specification and prototyping method called me too [1,2] to aspects of
federated computer systems, based on a discussion document pro­
duced by ICL's Systems Architecture Group [3], It has been written in
the light of experience with me too specifications and prototypes of the
concepts in that paper, since the development of these more formal
specifications forced clarification of several key issues. This report
does not contain the actual specifications developed during this
collaboration, as it is essentially a rewritten version of [3], Details of the
specifications and how they influenced the contents of this report can
be found in [4],

1 Definition of concepts

1.1 Servers and environments

A federated system consists, amongst other things, of a number of Servers
which, as the name suggests, offer some kind of service to the overall system.
Servers operate within Environments, each of which may hold some data
concerning the operation of its servers and other servers in the system. For
example, part of the local data may describe routes between servers in the
various environments.

1.2 Initiators, Responders and Connecters

Every connection between two servers is asymmetric in that the server at one
end starts the connection process. This server is called the Initiator while that
at the other end is called the Responder. The term Connecter is used as a
general way of referring to either of these servers.

The Fundamental Association Model describes how two servers (a Respon­
der and an Initiator) become associated in the system. The Responder
decides to offer a service of some kind to the federated system and creates an

670 ICL Technical Journal November 1989

instance of that service (a Service Instance, or SI). It sends details about the
service availability to other servers in the system in a package of information
called a token. To create an association between the Responder and another
server, that server (the Initiator) must receive the token, note its details and
accept it into its pool of tokens. Communication between the associated
servers is only possible when a connection is established across the associa­
tion. Only one connection may exist across the association at a time, but
there may be many such connections during the lifetime of the association.
One aspect to be considered when creating a connection is security, the
subject of this paper.

1.3 Security aspects

Security is described by means of Security Levels, which may be possessed by
servers or by routes between servers (at this level of the model). However, it is
important to remember that the systems under consideration are federated
systems; that is, they are distributed systems with no central controller or
data store. Consequently, there is no single repository of wisdom about
security levels in the system. In order to assess the security level of an entity
in the system, we have to consider the various locally-held views of it. A local
view of a level is called a Rating; that is, a rating is a concrete indication of
how a server or route is seen - it has a particular value which can be set,
inspected and/or manipulated.

A rating is made up of Security Factors, where each factor can have one or
more values associated with it. Thus, a factor might be Colour with the
values red, blue, yellow, or Day with the single value Monday. A factor is
expressed as a set of such values (in the usual mathematical sense of an
unordered collection of unique elements). Thus, these factors can be written
as Colour = {red, blue, yellow} and Day = {Monday}. A rating is, in turn,
considered to be a set of factors associated with their names, so that one
server might have a rating of

{Colour = {red, blue}, Day = {Monday}}

while a second has

{Colour = {red}, Day = {Sunday, Monday...... Saturday}}

Intuitively, we would expect this to mean that these two servers could
communicate for activities rated

{Colour = {red}, Day = {Monday}}

but not for ratings which include the factors

Colour = {blue}

ICL Technical Journal November 1989 671

or

Day = {Tuesday}

These informal ideas for combining ratings and deciding on allowable
connections will be made more precise in sections below, but first some
terminology is required.

1.4 Exact and inexact factors and levels

A factor that contains a single value is called an Exact factor; a factor with
more than one value is Inexact. A level which is described by a rating
containing only exact factors is an exact level; any other level is inexact. An
inexact level may contain both exact factors and inexact factors.

1.5 Inclusion of ratings

If A and B are security ratings, then A includes B if each factor in B is present
in A, and if the values of each factor in B form a subset of the values for the
same factor in A.

1.6 Default ratings

There are some special cases to consider, each involving some omitted
information;

1 a connecter’s environment has no rating for some entity involved in the
connection process,

2 a rating omits one or more of the possible factors,
3 a rating contains a factor with no associated values.

There are two possible approaches to dealing with omissions: prohibitive
and permissive. That is, omission can mean “I cannot (or will not) talk to
anyone about this security rating or factor” or it can mean “I do not know
about this security rating or factor and, further, 1 do not care about it". The
approach taken here is generally permissive, with the result that an omitted
rating or factor is deemed to have been defaulted.

The rationale behind this treatment of defaulted factors is based on the view
that security is protected by the one who knows what is required and can
therefore take the responsibility for that security. If a factor is not known to
an object, its security rating cannot contribute to any discussion of that
factor, and so the factor is omitted. Thus, in building the composite picture of
a security level, those who know about a factor contribute that knowledge to
the level from their ratings. Where a factor is omitted by a requester of a
service (the Initiator), the success or failure of the request will depend on the
evaluation of that Initiator by other objects involved in supplying the service.
For example, suppose the Initiator omits the Colour factor in trying to talk

672 ICL Technical Journal November 1989

to a service supplier (the Responder) whose own rating contains that factor
with values {blue, green}. This will only succeed if the responder rates the
Initiator to include the factor with values {blue} or {green} or {blue, green}
or if it is defaulted.

Taking this view, the special cases listed above are handled as follows:

1 if a rating is omitted, this is equivalent to it being present with all factors
defaulted,

2 if a factor is omitted from a rating, this is equivalent to that factor being
present with all possible values; i.e. an omitted factor implies that the
factor does not constrain the security aspects of the connection,

3 a present but empty factor is not allowed. Prohibition can be explicitly
requested by the special factor value “NULL”, which says the object thus
rated will not talk to anyone who tries to mention that factor. An
alternative method is for individual ratings to include a special value
which they interpret as prohibitive values.

1.7 Trusted & untrusted connecters

A Trusted connecter is one that is able to discriminate between security levels.
This ability is indicated by the fact that its rating contains at least one inexact
factor. An Untrusted connecter is unable to discriminate security levels in any
way. It is constrained to operate at a single point in the multi-dimensional
space of possible security values; that point is defined by the exact factors
making up its rating. An alternative way of expressing this is that an
untrusted connecter must operate at an exact level.

Note that a connecter may be trusted with respect to some security factors
and not others - since some degree of trust is involved, it will still be referred
to as a trusted connecter. The environment containing a server may limit the
trust invested in it.

1.8 Quality of Service (QOS) parameters

A connection request may involve the specification of a Required Security
Level for the connection. This level may be exact or inexact. If an inexact level
is supplied, successful connection will result in the return of a Security Level
Achieved in order to inform the requester about any restrictions imposed.

It is assumed that parameter values are not expressed in terms of physical or
logical properties, but that levels are matched onto routes by ratings whose
values have taken these physical and logical properties into account.

1.9 Security ratings involved in connection

The security level of a server or a route is not known in an absolute manner
by a single authority. Rather, as a connection is made, various views (ie.

ICL Technical Journal November 1989 673

ratings) of the connecters and the possible routes are combined in order to
determine whether or not the connection may be made and at what security
level it may conduct its conversations.

Ratings are held as part of an environment, and may relate to any servers
in the system and to any routes from its servers to other servers. The
following list indicates various ratings which may influence the security level
achieved:

R1 the Initiator’s environment’s rating of the Initiator
R2 the Initiator’s environment’s rating of the Responder
R3 the Initiator’s environment’s rating(s) of the route(s) available to connect

to the Responder
- there will be one R3 rating for each available route

R4 the Responder’s environment’s rating of the responder
R5 the Responder’s environment’s rating of the Initiator
R6 the Responder’s environment’s rating of the route via which the Initiator

has connected.

Earlier versions of this list included local ratings held in the connecters. Since
a connecter is only as secure as the environment which is protecting it, this
general concept of local ratings has been removed.

1.9 Binding ratings together

The ratings for routes and connecters listed above have to be combined in
some way during a connection, a process called binding. In accordance with
the policy described in section 1.5, binding is permissive rather than
prohibitive.

The general rule is that, for factors in common, their common values are
retained in the result. The effect of binding therefore is to maintain or reduce
the trustedness in a security level, since values can only be kept or removed. If
the binding results in an empty factor, indicating that common factors had
no values in common, then the binding fails. Note that this rule applies
equally well to both exact and inexact factors.

Given that an omitted factor means it is present with all values of that factor,
factors which appear in one or other of the ratings look as if they are being
added to the result.

Some of the issues can be illustrated with an example. If A is the rating

{Day = {sat, sun, mon}, Colour = {red, blue}}

and B is the rating

{Day = {mon, tues}}

674 ICL Technical Journal November 1989

the result of binding them will be

{Day = {mon}, Colour = {red, blue}}

In this result, Colour has become explicit (where it was defaulted in B).
Moreover, the combined rating has reduced the trustedness involved in A
and B, since Day is now an exact factor and Colour is restricted to two values.

If one of the ratings is omitted, recall that this is treated as a rating with all
factors present and defaulted, so binding it with another rating does not
change that second rating at all.

2. Constructing a connection

This section describes how a connection takes place, showing how the
various ratings are combined, a route is chosen and the Security Level
Achieved is obtained.

First, though, consider the meaning behind all the activity involved in
connection. The overall purpose is to create a connection capable of handling
conversations at a particular security level, which may be exact or inexact,
across an existing association between an Initiator and a Responder. In that
connection, it is the responsibility of each end to protect its own security.
Connections will fail if either end believes its security to be compromised.

When the Initiator is requested to set up a connection, the request will
indicate the quality of the service required by means of “Quality of Service”
(QOS) parameters. One of the QOS parameters which may be specified in the
connection request is a particular security level (in this version of the model,
this is the only QOS parameter considered). The information in the QOS
parameter has to be combined with the Initiator’s environment’s views on
the security levels at which the Initiator and Responder may operate (R1 &
R2 in its environment). Binding QOS with R1 and R2 yields a composite
view of the level required which will have the same or less trust placed in it as
the QOS parameter requested.

The Initiator’s environment then has to select a route capable of carrying
conversation elements at that security level. If there is no such route, the
required security level may be further reduced in order to establish a
connection across one of the routes available. The result of this stage is a
proposed security level for the connection which may be transmitted to the
Responder end as part of the connection request.

The Responder and its environment also have views on the entities involved
in the connection, and these are combined with the transmitted level in order
to arrive at an overall agreed security level for the connection. If a connection
is established successfully, this result can be returned to the Initiator so that it
too knows at which level the connection is operating.

ICL Technical Journal November 1989 675

Diagrammatically, this process can be seen as shown below. Abbrevia­
tions refer to details of the steps, which are explained in the sections
below. The numbered elements indicate the order in which the activities
occur.

Initiator Environment 5 consider Responder Environment
. .,. . R3 for routesI-------- Initiator------ —---- 1 j . ------ Responder------ 1

6 . Connect Request
1. token a v a i l a b l e _______________ (may contain LA3)
2. need to connect 4. bind 7. bind R4. 8. consider RSL
3. QOS given R1 & R2 , R5 & R6 (creates SLA)

i i

10. confirm SI A ---' I
I— 1 9. Accept Connect L . J I

(may contain SLA) j

...........J L......................._J
Fig. 1.

This diagram is explained in more detail in the following sections. Sections
2.1-2.4 and 2.8 describe the work undertaken at the Initiator end of the
connection, while sections 2.5-2.7 describe the work undertaken at the
Responder end.

2.1 Initiator sets the Required Security Level (RSL)

This is simply the QOS parameter, if it has been supplied.

2.2 Binding in the Initiator’s environment (prior to choice of route)

The Initiator’s environment binds the RSL with R1 and R2. If the RSL was
defaulted, it will have no effect on the result of the binding; that is, it will not
constrain the connection process at all. The result of this process is called LA2
(Security Level Achieved at stage 2).

R2, the view of the Responder, is crucial to the success or failure of the
connection, since it is effectively the Initiator’s environment’s view of the
entire security discourse. In order to ensure that security is upheld, R2 should
contain all the factors about which the Initiator’s environment is concerned.
If this is the case, LA2 will contain all the factors relevant to the connection
with the Responder, be they exact or inexact, regardless of whether or not
they were defaulted in other ratings at this end of the connection.

2.3 Choosing the route

The Initiator’s environment now has to choose a route, based on the R3
ratings it has for possible routes. There will be a rating (R3,), possibly
defaulted, for each route i between the servers which are to be connected.

676 ICL Technical Journal November 1989

If a route i exists which can handle LA2 as it stands (that is, R3, includes
LA2), then that route is selected. Otherwise, the route ratings are each bound
in turn with LA2 to produce a series of LA3 ratings.

It is possible that there will still be an element of choice left after either of
these steps have been taken, ie. if there are several routes capable of handling
LA2 or several suitable LA3, are derived. In this case, a weighting scheme of
some kind can be devised to act as a tie-breaker, but the details of such
schemes are not relevant to this paper, since it suffices to note that a choice
must somehow be made.

Note, too, that in choosing a route, the user of the Initiator may be penalised
for “greed”, ie. asking for more than is needed. This penalty can arise because
the routes capable of handling the unnecessary levels may be more costly to
use. Alternatively, the connection may be refused if the Responder cannot
operate at the excessive levels requested or if there are no suitable routes to
the Responder.

Another issue concerns whether or not a route can be enhanced in some way,
that is, its security level can be changed by the use of some scheme, such as
encryption. Enhancements may be enabled in order to obtain a preferred
subset or may be necessary to make the connection possible at all. The
mapping of enhancement schemes onto existing ratings is undertaken by
the environment. This is not an explicit part of the current design, since, for
the purposes of modelling at this level of detail, a simpler view is adequate. In
this simplification, it is deemed that, to deal with the possibility of enhance­
ment, R3 includes explicit ratings for enhanced routes. For example, if a
route i can be enhanced in two ways, then it is considered that this produces
four possible routes: i alone, i with enhancement 1, i with enhancement 2, and
i with both enhancements. These four “routes”, with their individual ratings,
can then be treated in the normal way.

At the end of this route-selection stage, the value LA3 (possibly identical to
LA2) has been determined.

2.4 Requesting the connection

In the next stage, the Initiator’s environment requests the connection with
the Responder. In the process, it has to judge whether or not the Responder
can be trusted to receive information or make decisions about security levels.
This judgement depends on its view of the Responder, as held in R2. If
discussion is possible, security information from LA3 will be transmitted to
the Responder as part of the connection request.

Where the servers attempt any discussion of security, they must have an
appropriate overlap of concept, sharing the same security vocabulary. That
is, for any factor transmitted to the Responder, the Initiator and Responder
must agree on (at least a common subset of) the possible values of that factor.

ICL Technical Journal November 1989 677

At a minimum, this ensures that LA3 is understood at the Responder end
and that the Initiator understands any level returned to it.

If R2 is exact, the Initiator’s environment does not believe the Responder to
be capable of discussing security, and so does not transmit any security
information to it. In this situation, all the Responder’s environment can do
is ensure that its locally-held ratings (R4, R5 and R6) allow the connection
to be made. This implies that the connection works or fails on the basis
of local knowledge at each end without any interchange of security in­
formation. There is no need, therefore, for the two ends to synchronise
their security vocabulary (but they do need to consider the security implica­
tions of their ratings, since there is an implication of equality between the
ends).

If R2 is inexact, the Initiator’s environment thinks that the Responder end is
capable of discussing security levels and so it will transmit some or all of the
security information contained in LA3 to the Responder as its contribution
to that discussion. What is transmitted depends is based on the factors in R2.
The inexact factors in the R2 rating represent the Initiator’s environment’s
view of what the Responder has to comprehend about the required security
level. Consequently, all the factors of LA3 which correspond to inexact
factors in R2 are transmitted to the Responder end. Factors in LA3 which
correspond to exact factors in R2 are not transmitted, since R2 implies that
the Responder is not capable of discussing them. They can only impede
successful connection, and, as for an exact R2, it would be necessary to
ensure a common vocabulary across both connecters.

The net result is that the Initiator’s environment only sends that security
information from LA3 with which it believes the Responder can be trusted.
If it does not trust the Responder at all, it sends no security information
to it.

2.5 Binding in the Responder’s environment

The Responder’s environment binds LA3 (if sent), R4, R5 and the appro­
priate R6. The route has already been chosen by the Initiator, including
any enhancement, and R6 is the Responder’s rating of that choice. If the
route has been enhanced, the R6 rating used will take that into account.
The eventual result of this binding is LAS (Security Level Achieved at
stage 5).

2.6 Responder accounts for internaI rating

The Responder may have been given a rating for a particular Service
Instance when it was created. This is the only local rating considered in the
model, corresponding to the QOS parameter at the Initiator end. Once LA5
has been calculated, it is bound with this internal rating for the SI, resulting
in LA6 (Security Level Achieved at stage 6).

678 ICL Technical Journal November 1989

2.7 Informing Responder and Initiator of Security Level Achieved (SLA)

If the connection has not failed yet, it will succeed. The Responder was the
last object to handle the calculations of security levels so it is aware of the
level achieved. If the Initiator discussed security with the Responder, then it
has to be informed about what was achieved. The Responder knows when
this is the case, because it is indicated by the presence of security information
in the connection request. Thus, if some or all of LA3 was transmitted to the
Responder, then LA6 is transmitted back to the Initiator.

2.8 Back at the Initiator end

If the Initiator’s QOS parameter was inexact, then its environment must
inform the Initiator about the SLA. This is LA6 if returned from the
Responder, or LA3 if the Responder was not consulted. Of course, if the
connection failed, no level is achieved.

3 Example

In order to highlight any misconceptions, this section describes an example.
Consider documents to be sent across an email association, where the
documents carry security codes of red, blue or green. A connection capable
of carrying such documents from the email Initiator is requested, so that the
QOS parameter is Code = {red, blue, green}.

The Initiator’s environment agrees that the Initiator is cleared for these
codes; that is, R1 contains the factor Code = {red, blue, green}. However, it
considers that the Responder currently in use in the email association is only
cleared for blue and green documents; that is, R2 contains the factor
Code = {blue, green}. Accordingly, the Initiator reduces the security level, so
that LA2 contains Code = {blue, green}.

For simplicity, assume that there is a single route available, capable of
handling all three codings. In this case, the rating is unchanged by the choice
of route and so LA3 is the same as LA2. Because the Initiator’s environment
believes that the Responder can be trusted to discuss these colour codes, this
factor from LA3 is transmitted to the Responder as part of the target security
level for the connection.

Assume that the Responder end imposes no further constraints and that the
level LA6 achieved thus contains Code = {blue, green}. This is sent back to
the Initiator which deduces from the security level achieved that it is not free
to send red-coded documents across the connection.

This example has taken a simple case to begin with. Now consider some of
the alternatives which could occur:

• suppose that the Initiator ratings are as above, ie. it trusts the Responder
to know about blue- and green-coded documents. However, the Respon-

ICL Technical Journal November 1989 679

der knows it can only handle green codes (R4 contains Code = {green}).
The connection will succeed, though only allowing the Initiator to mail
green-coded documents, because the Responders knows the Initiator
was entitled to talk to it about such codes. If R4 had contained Code =
{yellow}, the connection would have failed, due to the binding rules.

• suppose the Initiator thinks (R2) that the Responder can only handle
green-coded documents, but all the other ratings are as in the original
case above. No security information will be sent in the connection
request, so that the Responder does not know at what level the Initiator
is operating. However, the local binding (of R4, R5 and R6) succeeds and
so, therefore, does the connection request. No SLA is returned.

• suppose now that R2 contains Code = {green} and that R4 & R5 both
contain Code = {pink}. This will succeed because all the ratings are
exact. No security information is transmitted to the Responder so it does
not know (or care) that the actual values are different.

• suppose that all the ratings at the Initiator end default the Code factor
(including the QOS parameter), so that it is asking to be able to use the
email association for any documents, regardless of colour coding. Since
the Initiator does not know that the Responder cares about this factor
(ie. it does not appear in R2), then the factor will not appear in the
transmitted request. Since the Responder rating (R4) does contain the
Code factor, the success of the connection depends on its rating of
the Initiator (R5), which must also default the factor or successfully bind
it with the values in R4.

4 Summary

This paper is seen as a step towards a detailed description of the security
aspects of the Fundamental Association Model, and is a contribution to the
high-level design of the federated architecture.

The description here is based on a formal specification in me too. In several
areas, it was the precision of the me too notation and the experience gained
from the prototype which led to this description. One example was the identi­
fication of the special case where disagreement over trust between connecters
should not fail the connection. Although me too does not figure explicitly in
this description of the model, it was essential to its clarification, illustrating one
potential use for formal methods in an existing development culture.

References

1 HENDERSON, P., (1986) “Functional programming, formal specification and rapid
prototyping" IEEE Transactions in Software Engineering SE-12, 2, 241 250.

2 HENDERSON, P., M1NKOW1TZ, C. J„ (1986) “The me too method of software design"
ICL Technical Journal 5, 64 95.

3 MCVITIE, D. G. (1987) “Quality of Service parameters for security control over
connections" Discussion paper, ICL West Gorton.

4 ALEXANDER H., JONES, V. M. (1989) — forthcoming Software Design and Prototyping
using me too. Prentice-Hall International, London, UK.

680 ICL Technical Journal November 1989

An Introduction to Public Key Systems
and Digital Signatures

Jim Press
ICL Network Systems, Jays Close, Basingstoke, Hampshire, RG22 4BY*

Abstract

The increasing spread of distributed systems has led to a growing
realisation of the need for security. Public key cryptography is
increasingly being used in modern computer security techniques and
international security standards. Yet, many people do not understand
what they are and how they can be used.

This paper is intended as a simple introduction to the basic concepts
of public key systems and some of their applications. Particular
attention will be paid to the concept of digital signatures.

1. Introduction

Traditionally, the use of computer security techniques has largely been
confined to the military and banking communities. With the advent and
widespread adoption of ‘Open Systems’ standards and media publicity about
the exploits of hackers and the threat of viruses, commercial companies are
gradually realising the value of the information in their systems and the need
to secure it from adverse influences.

Losses of information through fraud or malicious damage annually cost
some companies thousands of pounds and even have forced some into
bankruptcy, yet under 1 per cent of current UK networks have applied
suitable security mechanisms.

The security of a distributed system must be a total solution and must
address not only external threats to the system but also internal threats: up to
75 per cent of computer related crime is commited by ‘insiders’.

Security must encompass the physical security of the system, administrative
controls (roles, responsibilities, audit logs, etc), logical controls (who can
access what and when) and data protection (privacy, authentication, integ­
rity).

*Now working for ICL Cross Range Software and Services, Six Hills House, London Road,
Stevenage, Hertfordshire, SGI 1 YB.

ICL Technical Journal November 1989 681

The OSI Security Architecture [ref. 1] defines a number of optional security
related services to provide for the protection of information within an Open
Systems environment.

(a) Authentication Services
These provide authentication of communicating entities within an OSI
layer.
- Peer Entity Authentication: to verify, at the time of usage, the

identities of one or more communicating peers;
- Data Origin Authentication: to verify the source of received informa­

tion;

(b) Access Control Service
This provides protection against unauthorised use of resources accessi­
ble via OSI.

(c) Data Confidentiality Services
These protect data from unauthorised disclosure.

- Connection Confidentiality: to protect all user data on a connection;
- Connectionless Confidentiality: to protect connectionless user data;
- Selected Field Confidentiality: to protect selected fields within con­

nection-oriented or connectionless user data;
- Traffic Flow Confidentiality: to prevent any information being

gained by monitoring traffic flows;

(d) Data Integrity Services
These protect data against active threats such as modification, inser­
tion, deletion or replay of data.

Connection Integrity with/without recovery: to protect all user data
on a connection with or without attempted recovery;
Connectionless Integrity: to protect connectionless user data;

- Selective Field Integrity: to protect selected fields within connection-
oriented or connectionless user data;

(e) Non-Repudiation Services
Two kinds of non-repudiation service have been identified:

- Non-Repudiation with Proof of Origin: to provide the recipient with
proof of the origin of data which will protect against the sender
falsely denying the sending of the data;

- Non-Repudiation with Proof of Delivery: to provide the sender of
data with proof of its delivery which will protect against the recipient
falsely denying receipt of the data;

With the exception of the access control service, the mechanisms used to
implement these services are based upon data cryptography. This will be
illustrated in the following sections.

2. Security in open systems

682 ICL Technical Journal November 1989

3. Conventional cryptography

In a conventional or symmetric cryptosystem, the sender encrypts a message
(called the ‘plaintext’) by a transformation (the ‘cipher’) influenced by a secret
parameter called the ‘key’. The result of the encryption is the ‘ciphertext’
which is meaningless to anyone who does not know the value of the key.

The receiver of the ciphertext decrypts it by reversing the transformation
using the same key as the sender, to retrieve the original message.

As long as only the intended recipient shares the key with the sender, the
privacy of the communication is ensured (Data Confidentiality).

This process is illustrated in figure 1.

)
SENDER ! RECEIVER

PLAINTEXT \ CIPHERTEXT \ PLAINTEXT
---------------- ► ENCRYPT — f-------► DECRYPT) --------— ------ ►

L / i U l 7 r i i
KEY ! KEY

Figure 1 Conventional (Symmetric) Cryptography

The best known symmetric cryptosystem is ,DES, the Data Encryp­
tion Standard of the US National Institute of Standards and Technology
(NIST, formerly the National Bureau of Standards), published by ANSI
as X3.92 Data Encryption Algorithm. Other examples of symmetric crypto­
systems include the ICL proprietary cryptosystems IPACRYPT 100
and IPACRYPT 200.

4. Public key cryptography

In a symmetric cryptosystem, both the sender and receiver of a message must
share the same key which must be kept secret from anyone else. This gives
the problem of how to distribute the key in a secure manner.

In 1976, Whitfield Diffie and Martin Heilman [ref. 2] considered the
problems of key distribution for symmetric cryptosystems and came up with
a method of encrypting data so that there is no need to distribute secret keys.
Their ideas formed the basic concepts for Public Key Systems, also known as
Asymmetric Cryptosystems.

ICL Technical Journal November 1989 683

In a Public Key System, each user (whether this be a human, an application
or an entity in an OSI layer) generates two keys from a random seed using
trapdoor one-way functions. A Trapdoor One-Way function is a function
which is easy to compute but very difficult to reverse unless a certain piece of
information (the ‘trapdoor’) is known; for example looking up someone’s
name in a telephone directory to find the number is easy, but looking up the
number to find the name is hard. However, if you are told the first letter of
the person’s surname, then the problem is made a lot easier.

Since it is infeasible to compute one key from the other without the
‘trapdoor’ information which will be kept secret or even destroyed, there is
no danger in making one of the keys public knowledge. This ‘public’ key can
then be used by anyone wishing to send encrypted data to the user, who can
then use the other ‘secret’ key to decrypt the messages. Since only the
intended recipient knows the decryption key, privacy is ensured (Data
Confidentiality).

Figure 2 illustrates the process of public key cryptography, where the
trapdoor one-way functions used in the generation of the keys is denoted by
‘OWF.

i
SENDER | RECEIVERir~~~\ ; r^r\

PLAINTEXT \ CIPHERTEXT \ PLAINTEXT
---------------- ► ENCRYPT > ;------- ► DECRYPT)------ — ------ ►

PUBLIC i SECRET
KEY] I KEY

! OWF
1 —r~iii
! / _ RANDOM

-------------------------r \ O W F |--------- ------------------ SEED

Figure 2 Public Key (Asymmetric) Cryptography

The most popular Public Key System was invented by Rivest, Shamir and
Adleman, more commonly known as RSA [ref. 3]. A detailed description of
RSA is given in the appendix.

Owing to the complexity of the mathematics, Public Key Systems are
generally much slower than conventional (symmetric) cryptosystems and are
therefore unlikely to replace them for providing data encryption in high

684 ICL Technical Journal November 1989

speed communication networks. For example, the fastest RSA chips can
operate at around 64 K bits/second, whilst a modern symmetric cryptosys­
tem chip, such as ICL’s IPACRYPT 200 can easily exceed 10 M bits/second.

5. Data integrity

In the days before electronic communication, the integrity of a written letter
could be assured by sealing it with an unforgeable wax imprint. If upon
delivery of such a letter the seal was unbroken, the recipient could assume
that the letter had not been tampered with.

The integrity of electronic information can be assured by a digital seal which
is a function of the data and a secret key. When produced by symmetric
techniques, either by an authenticator algorithm or a cipher, it is called a
‘Message Authentication Code’ (MAC). The sender of a message would
append a seal, say of 128 bits, computed from its contents and a secret key.
The receiver verifies this by computing another seal from the contents of the
received message using the same key as the sender.

If the seals match it can be assumed that:
(a) neither the data nor the seal has been tampered with (Data Integrity);
(b) the message was sent by the only other entity to have knowledge of the

key (Data Origin Authentication);
Figure 3 illustrates an example where a timestamp has been included in the
message in order to detect replays of earlier transmissions.

GENERATOR VERIFIER

j STAMP j SEAL 1----->TdATA | j SEAL

________________/ \ /

-*• ALGORITHM S ------I L*. ALGORITHM »-SA,UE

V - M
KEY KEY YES/

NO
Figure 3 Use of a Symmetric Integrity Seal

A property of some Public Key Systems, including RSA, is that the
encryption and decryption functions are commutative. That is, the decryp­
tion function can be applied to a message to obtain a transformation to
which the encryption function can be applied in order to retrieve the original

ICL Technical Journal November 1989 685

message. Because such a transformation can only be generated by the holder
of the secret key, it is called a ‘Digital Signature’.

Figure 4 illustrates the basic principles of digital signatures, where the sender
of a message also sends a digital signature produced by applying the
decryption function on the message using his/her secret key. The receiver can
compare the received message with the result of applying the encryption
function to the signature using the public key of the sender.

If these match, the receiver can be confident that:
(a) the signed message has not been tampered with (Data Integrity);
(b) the message originated from the claimed entity and was not forged by

somebody else (Data Origin Authentication).

SENDER | RECEIVER
PLAINTEXT

I III
III

------► DECRYPT \ ^ - GNAnJR >̂ ENCRYPT \ - ^ SA,ME7 / 1 l—Z'..-/ i
SENDER’S | SENDER’S 1
SECRET | PUBLIC v l a /
KEY | KEY ^

Figure 4 Principles of Digital Signatures

With a symmetric seal, the receiver shares a key with the sender and is
therefore able to create valid seals on messages of its own choosing. The
sender could deny sending a message by claiming that the receiver must have
forged it.

With a digital signature, the sender cannot deny sending a message because
the received signature could only have been generated by the sender (Non-
Repudiation with Proof of Origin). In such a dispute, a third party arbitrator
would be able to verify the signature on a received message using the public
key of the alleged sender. Therefore in systems where non-repudiation is
important (e.g. banking, finance, retail), a record must be kept of all signed
messages as evidence in case of dispute.

Similarly, if the communications protocol always returns a signed acknowl­
edgement to a received message, the receiver cannot deny having received it
(Non-Repudiation with Proof of Delivery).

686 ICL Technical Journal November 1989

6. Digital signature standards

ISO are developing an International Standard to permit a small message to
be recovered directly from its digital signature (ref. [4]). In this RSA-based
scheme, the message to be signed must be less than half of the length of the
RSA modulus (see Appendix). The size of the message is doubled by adding 4
redundancy bits (a nibble) for every nibble of data, the value being dependent
upon the value of the data nibble. This is then signed under the sender’s
secret key.

The receiver of the signature applies the sender’s public key to retrieve the
padded message. If the correct redundancy is present, it is removed and the
resulting message accepted as valid.

In order to sign a message which is longer than the block length of the
cryptosystem, it is common practice to use a hash function in order to
condense the message to a single block which is then signed and appended to
the message. The receiver would compute a new hash from the received
message and compare it with the hash obtained by encrypting the signature
using the sender’s public key. If they match, the message can be accepted as
genuine. ISO will produce a standard for such a scheme after they have
developed a standard for hash functions suitable for use with digital
signatures (ref. [5]).

7. Security of digital signatures

Assuming that there are no flaws in the Public Key Cryptosystem used, the
strength of a digital signature relies on the security of the secret key and the
validity of the public key with which the signature is checked.

If another user can obtain somebody else’s secret key, then he/she can forge
signatures on messages which will verify as belonging to the original owner.
The solution to this problem is to design a system where only the processor
that performs the signing is allowed access to the secret key. For example, in
a smart card the secret key could be stored on the same chip as the processor
and not even the card holder would be allowed to see it (the smart card must
also be made physically secure).

It is also important that the public key used to verify a signature is genuine.
One way to ensure this is for a trusted ‘Certification Authority’ to certify a
public key by placing its digital signature upon it. The authenticity of a
public key can then be tested by checking the Certification Authority’s
signature on its certificate.

Before creating a certificate, the Certification Authority must be certain of
the user’s true identity. Besides containing the public key, each certificate
would contain additional information such as the identity of the Certification
Authority (there could be more than one), the identity of the user, the peiiod
of validity of the certificate and the algorithm used to sign the certificate.

ICL Technical Journal November 1989 687

8. Certificates and the OSI Directory

The OSI Directory (ISO 9594/CCITT X.500) is a proposed international
standard for a distributed database which allows a user to register its public
key certificate along with other communication details (network address,
etc). These can be accessed via the Directory enquiry service by other users
wishing to communicate with the user.

The Directory Authentication Framework (ref. [6]) allows certificates to be
created by several Certification Authorities and defines how ‘certification
paths’ can be set up to permit a user to authenticate a certificate created by a
different Certification Authority.

Once a user’s certificate has been authenticated, its public key can then be
used to encrypt messages that are sent to that user or to verify digital
signatures on messages received from that user.

Indeed this is the basis for a number of security services provided in the 1988
version of the CCITT Message Handling System X.400 (ISO 10021 Message
Oriented Text Interchange System).

9. Certificate based Peer Authentication and Key Distribution

The Directory Authentication Framework also defines how communicating
entities in the same OSI layer can mutually authenticate themselves using
digital signatures. This will be superseded by a separate standard for Peer
Entity Authentication. Currently drafts exist for standards for mechanisms
using symmetric cryptography (ref. [7]) and using Public key cryptography
with a two-way (ref. [8]) or three-way (ref. [9]) handshake. These will be
combined into a single international standard. Only the two-way handshake
mechanism will be described here for illustration.

In order for two entities with identities A and B to authenticate each other,
the following steps are performed: 1 2 3 4 5
(1) A requests B’s certificate from an Authentication Server (this could be

the Directory enquiry service).
(2) The Authentication Server (AS) returns B’s certificate to A.
(3) A validates B’s public key by checking the signature on the certificate

using the public key of the Certification Authority which created it.
(4) If the public key is valid, A sends to B its own certificate together with a

‘token’ containing B’s identity, a time and date stamp (to guard against
replays), and (optionally) some data protected by encryption under B’s
public key. The token is signed using A’s secret key.

(5) B validates A’s public key by checking the signature on its certificate
and then uses it to check the validity of the token. If the token is valid, B
accepts that it was sent by A. Any encrypted data is decrypted using B’s
secret key.

688 ICL Technical Journal November 1989

(6) B returns a new token to A containing A's identity, a time and date
stamp and (optionally) data encrypted under A’s public key. The token
is signed using B’s secret key.

(7) The returned token is validated by A by checking its signature using B’s
public key. If the token is valid, A accepts that it was sent by B. Any
encrypted data is decrypted using A’s secret key.

This is illustrated in figure 5.

> r ""
(1) B (2) Cert B

,,—

(3/ A (4) Cert A, Token AB f A(5)
I A ---------------- — ------------------ B

(6) Token BA_________ /

Figure 5 Peer Entity Authentication with a two-way Handshake

The tokens exchanged in a Peer Entity Authentication protocol can be used
to carry data encrypted under the recipient’s public key. This could be used
to distribute a key for use by a symmetric cryptosystem. Alternatively, both
entities could use these encrypted data fields to exchange keying information
that could be used in the generation of keys (e.g. by the concatenation of
random numbers).

The use of a certificate-based key distribution protocol has been adopted by
the U.S. OSI security initiative, the Secure Data Network System (SDNS),
and will probably be adopted by ICL for use in IPA security services.

10. Smart Cards and Intelligent Tokens

The most important application for digital signatures in the immediate future
is in the replacement of the magnetic striped credit card by more secure
‘Smart Cards’. These contain a microprocessor and memory and can be used
to generate digital signatures on messages. In retail and banking applica­
tions, the digital signature generated by a customer’s card on an electronic
message would authorize a transaction in the same way as a hand written
signature does today.

If a card is stolen, the thief can not use it unless he/she knows the customer’s
PIN which activates the device. The PIN and the secret key can not be read

ICL Technical Journal November 1989 689

out of the card except by reverse engineering, something that is out of the
capabilities and price of most thieves. Fake cards will be easily detected
because the signatures that they produce will not verify correctly against the
public key registered for that card.

Other applications for smart cards using digital signatures include:

(a) The identification of users when they log on to a computer system or
network, replacing the password which is far too often compromised by
unauthorized users.

(b) The operation of electronic door locks in restricted areas of buildings.

In 1982, ICL was one of the founding members of the Tokens and
Transactions Control Consortium (TTCC), under which the National Physi­
cal Laboratory developed an ‘intelligent’ token, a device more advanced than
a smart card with alphanumeric display and keypad that can produce a RSA
digital signature on a block of data.

In 1988, TTCC was disbanded and its successor the Advanced Tokens
Technology Club (ATTC) launched, ICL again being a founder member.
The principal aim of ATTC is to promote awareness of intelligent tokens
and their applications in areas such as access control and secure trans­
actions.

11. Summary

Although devised over ten years ago, it is only recently that technology has
allowed the practical and efficient implementation of public key systems.
Use of public key systems has been initially slow, but is now becoming
widespread partly due to the emergence and acceptance of the smart
card by financial institutions and by the development of security-related
standards.

In this article, it has been shown how Public Key Systems can be used to
provide the mechanisms upon which security services can be built. Public key
systems are unlikely to replace symmetric cryptosystems for providing data
confidentiality because they are comparatively slow. However, Public Key
Systems will become widely used to provide authentication and non­
repudiation mechanisms and in the distribution of keys for conventional
cryptosystems.

ICL is committed to Open Systems standards and will adopt and in many
cases contribute to the development of international Open Systems security
standards. Internal ICL standards addressing the use of Public Key Systems
already exist and several projects are under way which will implement and
use Public Key Systems, particularly for the purposes of Data Origin
Authentication, Non-repudiation, Peer Entity Authentication and Key Dis­
tribution.

690 ICL Technical Journal November 1989

1 ISO.TC97/SC21/WG1: ‘ISO 7498/part 2 - Security architecture', 1987
2 DIFFIE, W. & HELLMAN, M. E.: ‘New directions in cryptography’, IEEE Transactions

on Information Theory, 22(6), p. 644-654, 1976
3 RIVEST, R. L., SHAMIR, A. & ADLEMAN, L.: ‘A method for obtaining digital signatures

and public key cryptosystems’, Communications of the ACM, 21(2), p. 120-126, 1978
4 ISO DP 9798 ‘A Digital Signature Scheme with Direct Message Recovery using a Public

Key System’ (formerly ‘with Shadow’)
5 ISO DP 10118 ‘Hash Functions for Digital Signatures’
6 ISO DIS 9594/8 ‘OSI - The Directory - Authentication Framework’
7 ISO DP 9798 ‘Peer Entity Authentication Mechanisms using an N-bit Secret Key

Algorithm’
8 ISO DP 9799 ‘Peer Entity Authentication using a Public Key Algorithm with a Two-way

Handshake’
9 ISO DP 10117 ‘Peer Entity Authentication Mechanism using a Public Key Algorithm with

a Three-way Handshake'
10 GORDON, J.: ‘Strong RSA Keys’, IEE Electronic Letters, 20(12), p. 514-516, 1984

APPENDIX - The RSA Public Key Cryptosystem

The RSA Algorithm

The operation of RSA [ref. 3] is described below together with explanations
of the mathematics which may be unfamiliar to the reader:
(a) The user generates two large but random prime numbers P and Q;

these should be of the order of 150 decimal digits or more.
A ‘Prime Number’ is a number that has no factors except 1 and itself.

(b) The product of the prime numbers is computed N = P*Q, where **’
denotes multiplication.

(c) The user chooses an integer E such that it is ‘relatively prime’ to
(P-l)*(Q-\).
Two numbers X and Y are ‘Relatively Prime’ or ‘Coprime’ if they have
no common divisor except l,for example 16(2*8,4*4,1*16) and9(3*3,
1*9).

(d) The user computes an integer D such that it is the ‘multiplicative
inverse’ of E modulo (P-l)*(()-l).
X is the ‘Multiplicative Inverse’ of Y modulo Z if X * Y = 1 modulo Z.
That is, the remainder after dividing X*Y by Z is 1.
For example: let X = 3, Y = 7 and Z = 10.

3*7 = 21 = 1 modulo 10 (since 21/10 = 2 remainder 1)
Thus 3 is the multiplicative inverse of 7 modulo 10.

(e) The pair of values E and N are announced as the user’s public key,
whilst D and N are kept as the secret key. The prime factors of N are
kept secret to make factorization of N infeasible and thus prevent
determining the value of D from E.

References

ICL Technical Journal November 1989 691

(f) A message, when treated as an integer M numerically less than N, is
encrypted by raising it to the power of E (the encryption exponent)
modulo N, that is the ciphertext C is the remainder when M E is divided
by N:

C = M e modulo N
(g) The user decrypts the ciphertext C by raising it to the power D (the

decryption exponent) modulo N:
M = CD modulo N

RSA works due to Euler’s theorem, which states that if M is coprime to N:
MQ{N) = 1 modulo N (1)

Q(N) is the Euler Totient function and equals the number of positive integers
less than N that are coprime to N. If N = P*Q, the product of two primes,
then Q (N)= (P -\)* (Q -\) .

The generation of the keys centres on: E*D= 1 modulo Q{N).

Remembering that this result is the remainder of E*D after division by Q(N),
then this expression can be re-written:

E*D = K*Q(N) + 1, for some integer K. (2)
The decryption function is M = CD modulo N

= (M e)d modulo N
= M e*d modulo N
= m k'Q(N)+ 1 modulo N (from (2))
= M*(MK*Qim) modulo N
= M*(MQm)K modulo N
= modulo N (from (1))
= M (since M < N)

Security of RSA

There are no known attacks on RSA that are faster than factoring the
modulus. Currently numbers of between 90 and 100 decimal digits can be
factored in a couple of weeks using a network of several dozen powerful
workstations.

The most commonly used modulus length and the length recommended by
ISO is 512 bits (about 154 decimal digits). This is currently considered ‘safe’.

Unlike other Public Key cryptosystems, RSA is widely regarded as being
both secure and practical providing the following guidelines for key param­
eters are adhered to:
1. To make RSA secure against some well known attacks, the prime factors

P and Q must be ‘strong’ as defined by Gordon (ref. [10]) such that:

692 ICL Technical Journal November 1989

(i) P and Q are large randomly chosen primes;
(ii) \P — Q\ (the difference between P and Q) is large;
(iii) P + 1 has a large prime factor;
(iv) Q + 1 has a large prime factor;
(v) P — 1 has a large prime factor, R;

(vi) Q — 1 has a large prime factor, S;
(vii) R — l has a large prime factor;

(viii) S — 1 has a large prime factor;
2. Groups of users should not share a common modulus.
3. The encryption exponent should be greater than the length of the

modulus in bits. That is, low exponents should be avoided, a standard
exponent of 65537 (216 + 1) has been adopted by the EFTPOS UK and
TeleTrust/OSIS projects and recommended by ISO in the OSI Direc­
tory.

ICL Technical Journal November 1989 693

Security Classes and Access Rights in a
Distributed System

R. W. Jones
ICL Defence Systems, International Computers Ltd., Eskdale Road, Wokingham, Reading,

RG11 5TT, U K.

Summary

A model is described for the management and use of a network of
computing resources in which the control of security is to be explicit. It
is intended to be useful in military and civil applications. A generic form
for a security class is defined. Using this form a total security class for
a particular system may be defined in terms of attributes with agreed
meanings in the environment of the use of the system. The total class
contains subclasses which are used to classify all the components of
the system. A subclass is a class which is more specific than its
containing class. For each class a set of access rights is defined. An
access right is a set of operations which may be performed upon
components classified by the class of the access right. Components
include data items, computing resources and end users. An active
component (e.g. a computing resource) is one which may operate
upon other components. Each active component has a clearance
which is a class with associated access rights. An access right is a set
of operations which may be performed upon components classified by
the class of the access right. A security policy is a set of rules which
associates classification classes with maximum permitted clearances.

Communication between security domains is discussed in terms of the
model, as is secure system construction. The model is related to other
published models and standards.

The first version of this paper was presented at the Workshop on Data
Integrity held at Gaithersburg, USA, in January 1989 and organised by
the US National Institute of Standards and Technology. The present
version incorporates changes made as a result of that presentation
and commented on in a series of Notes at the end.

1. Introduction

1.1 Aims and summary of the paper

The paper describes a general design for a secure system which uses a
potentially distributed network of computing resources. The design is based

694 ICL Technical Journal November 1989

on the idea of a security class, a generic form for which is defined in the
paper. The generic form provides a notation which may be used to describe
specific security classes for an individual system. The paper describes a
model which applies both to the secure creation and management of a
system and to its secure use. It uses and builds on ideas described in ref. 1 and
ref. 2.

The aims of the paper are to:

(i) describe a general design for a secure system (covering civil and
military needs) and the means of tailoring it to a particular system,

(ii) provide a notation which enables the requirements of a secure system
to be related to its design,

(iii) clarify terminology and ideas in secure system design.

The paper is organised as follows.

Section 1.2 describes the context of the paper.
Section 2 defines some terms.
Section 3 defines a security class and explains its use.
Section 4 uses the idea of a security class to introduce access rights,
classifications and clearances, these being used to describe how security
relates to the components of a system.
Section 5 describes specific access rights which are useful in most
systems. They include those needed for:

change of security class (applicable to identification and authentica­
tion),
creating and controlling the components of a system,
delegation of authority.

Section 6 compares the model of this paper with other published models
and standards.
Section 7 provides examples in terms of the paper.
Section 8 defines security policies in terms of this paper.
Section 9 defines security domains in terms of this paper.
Section 10 describes secure system construction.
Section 11 draws conclusions and considers future work needed.

1.2 B ackground

In non-automated systems where people have to handle confidential infor­
mation it is customary to give the information a classification, for example,
‘company confidential’. The people are then also classified acording to the
amount of trust that should be placed in them. This takes into account both
the likelihood that they will abide by the rules which safeguard the
information and their need to know it in order to perform their function
properly. The people in such an environment, therefore, have both a
classification, based on their own trustworthiness, and a clearance which
describes the kinds of information they may handle.

ICL Technical Journal November 1989 695

There is a management function for the system which decides how informa­
tion and people are to be classified, what these classifications mean, in terms
of the characteristics of the people and the information and objects they
manipulate, and which classes of people may have which clearances. The
management also provides the classifications and clearances based on these
rules and changes and deletes them as necessary. The amount of formality
attached to this management function depends upon the environment. It
may be very informal in a small commercial firm and is very formal in the
armed forces (formal in the sense that the processes involved are performed
according to explicit rules).

If we now consider that a network of computer resources is to be used as
part of the system which handles information securely we see that we
need mechanisms which perform the equivalent of both the management
and the operational functions described above. They need not mimic them
exactly but it must be clear that they allow the system to be created,
managed and operated securely. If we provide the mechanisms which cause
the system to operate securely but provide them without using centrally
provided mechanisms, for example by building access control checks into
application code rather than by installing them into supporting control
software, we are in the position of the small firm mentioned above. Since
the computer system itself allows us to describe rules precisely and ensure
that they are obeyed we have the opportunity to make explicit both the
provision and the operation of the security mechanisms. This paper at­
tempts to contribute to this by describing a model on which mechanisms
can be based which perform both the management and operational security
functions.

The context, described more precisely, is a community of computer installa­
tions which communicate using telecommunications and agreed standard
protocols (for example those of ref. 3). Those standards formalise a computer
installation which communicates according to its standards as an ‘open
system’. They allow a single open system to support a number of software
entities and allow any entity in an open system to exchange messages with an
entity in another open system. This is illustrated in figure 1.

end
user-------------- r e s o u r c e ^

open system -------------network giving access
/ to other open systems

_________ re so u rc e ^ supporting resources

e n d _____________
user

Fig. 1.

696 ICL Technical Journal November 1989

2. Terminology [See Note 1]

In order to discuss the model a set of terms is now defined. The aim is to
depart from accepted usage only to avoid misunderstanding.

An end user is a person or entity which is not controlled by a resource of the
network, but which can communicate with a resource. An end user may be,
for example, a person sitting at a terminal.

A resource is a logical part of a computer system at one location which can
store data items, which can communicate with other such resources or with
end users and which has a current state which determines its actions.

A data item is an item of data which is created with a defined security class
and the parts of which necessarily have the same class. The term message is
used to mean a data item when it is sent from one resource to another.

A channel is the route by means of which a resource communicates with
another resource or with an end user.

An access right is a collection of operations which is defined for a particular
security class. The holder of an access right has permission to perform those
operations upon components which are described by the class in question.
Where there is no chance of confusion the term ‘right’ is used instead of
‘access right’. There may be more than one access right for any given class in
order to divide operations into groups and control access to groups
individually.

A component is any entity which has a security class. End users, resources,
data items, and channels, all have security classes and are therefore compo­
nents.

Components may be active or passive depending on whether they can hold
access rights. End users and resources and channels are active components.
Data items and access rights are passive components. A channel may only
hold access rights which enable it to transmit messages.

The components named above may be grouped diagramatically, therefore, as
follows: [See Note 2]

components

active components passive components

resources end users data items access
(messages) rights

channels
Fig. 2.

ICL Technical Journal November 1989 697

Refs 1 and 2 described a model in terms of rights which enabled access
control rules to be enforced. The present paper builds on these concepts and
adds to them the idea of security classes. These are compatible with and
include the concepts used in data classifications and subject clearances in
military systems and, with some modifications, in civil systems. Where there
is no chance of confusion the term ‘class’ is used rather than ‘security class’.
An exact meaning of the term is given in section 3, which also introduces
other terms for the purpose.

A classification is the security class of a component which determines
whether or not it may be operated on by another component. Every
component has a classification.

A clearance is the security class and associated access rights associated with
an active component which is used in determining whether or not the
component may operate on another object. An active component has a
classification and a clearance. A passive component has a classification but
no clearance. The relationships among a clearance, a classification and an
access right are described in section 3.

The term ‘system’ is used to mean a communicating set of components whose
access to each other is controlled by mechanisms which take account of their
security classes. There is no implication that the components are dedicated to
work which is all interrelated, although that is likely to be true in practice.

The term ‘subject’ is used to refer to an active component which performs an
operation upon another component.

The term ‘object’ is used to refer to a component (active or passive) upon
which an operation is performed.

3. Security Classes [See Note 3]

If we consider once more the non automated secure environment we can see
that one way of stating rules of access is to have a unique identity for each
object to which access is to be controlled and to provide each person with a
list of the objects he may access, together with, in each case, a list of the
operations he may perform. In order to provide clearances to the people,
they themselves are treated as objects and some manager has the list of
people to whom he may give a clearance or whose clearance he may amend.
The procedures needed, therefore, both to operate and to manage the secure
system in this simple way are similar. For each person who may perform
operations, a list of the permitted objects is needed and, for each of those, a
list of the operations which may be performed. This applies both to
operation and management.

In a more complicated system clearances are expressed in terms of attributes
of the objects accessed for two reasons:

698 ICL Technical Journal November 1989

(i) it enables objects to be grouped so that clearances are more concise,
(ii) the attributes of the object’s classification have meanings which have

a relationship to the attributes of the accessor’s classification (e.g.
an object with the attributes ‘payroll information’ is to be available
only to someone with the attribute ‘member of the payroll depart­
ment’).

The definition of a security class which now follows is based on attributes.
The meanings of individual attributes are not defined since they depend upon
and are agreed for a particular system. An attribute may define an object
uniquely or may describe one of its characteristics.

Extended Backus-Naur notation is used in the following definition, the meta­
symbols having the following meanings: [See Note 4]

:: = means ‘is defined as’,
| means ‘or’,
; terminates a syntactic rule
' angle quote symbols delimit items which appear as written in the rules

defined
* indicates one or more occurrences of the item to its left.

a string of (possibly hyphenated) letters is an identifier which is either
defined by one of the rules or is described informally

The generic form of a security class is then as follows:

class-definition:: = class-name lower-limitqualifier*;
class-name:: = name;
lower-limit:: = integer;
qualifier:: = class-name | attribute;
attribute:: = name

where 1 ^ lower limit ^ number of qualifiers.

An attribute is a name declared for the definition and control of the security
of the system, as described above.

A name is a sequence of characters generated according to some rule that
ensures that each name generated is distinct from all those generated
previously to describe the system’s security for the same purpose

A lower limit defines that at least that number of the defined qualifiers is
present in the class being defined or in one of its subclasses.

Two particular values of ‘lower limit’ are worth distinguishing:

(i) the value 1, where the class describes a collection of qualifiers, any one
or more of which may be present;

ICL Technical Journal November 1989 699

(ii) the value of ‘lower limit’ is equal to the number of qualifiers; this
describes a class in which all the qualifiers are present. A single case of
its use is where the qualifiers are attributes and describe all those which
must be present to define the class.

A subclass is derived from the definition of a class, with the restriction that
a subclass cannot be identical with the class from which it is derived [see
Note 5]

(i) by selecting n of its qualifiers such that b ^ n < q , where
b is the lower limit of the class from which the selection is made and
q is the number of qualifiers in the class from which the selection is
made,
and

(ii) by selecting a lower limit for the subclass such that b < lower limit ^ n.
A subclass is also a class. If a class S may be derived from a class C then C
will be called the containing class of S.

A subclass may also be derived by replacing one or more of the classes used
in the definition of a class by a subclass: see Fig. 3 and the subsequent
explanation.

The intention behind the definition of a class may be illustrated by a small
example. Let us suppose that a commercial firm creates documents, access to
which is to be controlled, depending on the trustworthiness and duties of the
accessors. The attributes ‘confidential’, ‘pay’ and ‘plans’ are used to classify
the documents so that security controls may be applied. Some documents
about pay are confidential; some are not. Some documents about plans are
confidential; some are not. Some documents are simply classified as confiden­
tial and these are not concerned with either pay or plans. The people who
may use the documents are cleared in terms of the documents they may
access as follows:

all documents,
all confidential documents,
confidential documents not concerned with pay or plans,
confidential documents about pay or plans or both,
only non-confidential pay documents,
only non-confidential plans.

The class needed to express these needs is as follows:

all: 1, all-conf, subjects;
all-conf: 1, conf, conf-subjects;
conf-subjects: 2, conf, subjects;
subjects: 1, pay, plans;

It is illustrated by the following graph:

700 ICL Technical Journal November 1989

all
1 .

all conf \
1 \
% \conf subjects \

2 \
▼ i S ' 4conf subjects

1

pay plans

Fig. 3.

[The graph makes it clear that the figure 1 could be replaced in each case by
the ‘inclusive or’ operation, meaning that one or more of the qualifiers must
be present, and the figure 2 by the ‘and’ operation, meaning that all the
qualifiers must be present. The generic form of the syntax could be rewritten
to match this and would be trivially different. The forms where the lower
limit lies between 1 and the number of qualifiers would be more cumbersome
to express.]

It will be seen from the above example that the derivation of a subclass
produces a more specific description in terms of security. The class ‘conf-
subjects’ has three subclasses illustrated graphically below.

subclass 1 subclass 2 subclass 3

/ X X X X X
conf subclass conf subclass conf subclass

of subjects of subjects of subjects
1 1 2

l I / \
pay plans pay plans

Fig. 4.

If a class from which subclasses may be derived is used to classify a
component it means that the component concerns any one or more of those
subclasses. It may be used also to describe the fact that an active component
has a multi-class clearance. This is described further in section 4.

A selected subclass may be equivalent to one defined explicitly and used as a
qualifier in the definition of the class from which the subclass derives, for
example in selecting the class ‘authorised’ from the class ‘accessors’, where
‘accessors’ is defined as
accessors: 1, authorised, unauthorised;
where ‘authorised’ is defined as;

ICL Technical Journal November 1989 701

authorised: 1, Alice, Bob, Charles;
and ‘unauthorised’ is an attribute defined for the system.

It may implicitly define, for example, the class obtained by deriving the
subclass ‘1, Alice, Bob’ from ‘authorised’.

A class is defined explicitly so that it may be used as a classification or
clearance of a component and in order to be able to define access rights and
operations for the class.

Two classes may contain the same subclass without themselves being
identical or one of them containing the other, for example the classes
‘1, Xusers, unauthorised’ and ‘1, Yusers, unauthorised’.

4. Classifications, Clearances and Access Rights

A class is defined for the total system. Each class used in the system is a
subset of this total class.

For each class of the system a set of access rights is declared. Each of these
access rights defines one or more operations for that class. (In refs 1 and 2 a
particular right applies to a single defined target resource. It is generalised
here to apply to a class, which may, in a particular case, be a class which is
used to classify only one component.)

Each component of the sysem has a classification which is a class. The classi­
fication defines the operations which may be performed upon the component
(those of its class) and the kind of component it is in terms of security (because
the attributes of its class have an agreed meaning). [See Note 6].

Each active component also has a clearance which is a class. The clearance
defines the operations which the component may perform upon other
components (those whose classifications or subclasses of whose classifica­
tions appear in its clearance). The clearance therefore defines the trust which
is placed in the component which possesses it. This is illustrated in figure 5.
[See Note 7],

classification--------------------active co m p o n e n t----------------------clearance of X
of X X ^

/
/ \ subclass subclass

/ \ A B

X has access N ,
to Y and Z

component Y component Z
(classification (classification
is class A) is class B)

Fig. 5.

702 ICL Technical Journal November 1989

It is necessary to provide different accessors with different rights in respect of
the same component accessed. Two methods of doing this are described here.

(i) The class used for the classification of the component to be accessed
may be a subclass of more than one other class. Each of the containing
classes has a set of rights which applies to its subclass. The union of
these sets of rights form the total set which applies to a component
classified by the subclass. This is illustrated in figure 6. [See Note 8].

c o n ta in in g -------------------rights to con ta in ing -------------------- rights to
class A subclass class B subclass

class of component to
be accessed

Fig. 6.

(In an implementation of the design operations other than the union of
the sets of rights may be used for efficiency; for example, the subclass
may define all the applicable rights and the containing classes those
which are not available via that containing class).

(ii) The clearance of a resource defines for its most general class and for its
subclasses individually the access rights which it is allowed to possess.
These are the total set or a subset of those defined for the class. For
some of its subclasses none may be allowed.

Notionally the second method is unnecessary since one may define a
containing class with the selection of rights needed. It implies that a class
may be created as needed and associated with the clearance. For the
purposes of this paper it is assumed that both methods are available.

By analogy with the idea of providing a clearance with a subset of the rights
defined for its class one might allow the classification of a component to have
a subset of the set of rights defined for its class, thus restricting the operations
available to all accessors. Again this is notionally unnecessary since a class
may be defined with the required rights. It may be useful in practice to avoid
a large number of classes.

Consider a class defined as follows:
accessors: 1, Alice, Bob, Charles, unauthorised;

There are four subclasses of interest, namely those defined by the single
attributes Alice, Bob, Charles; and ‘unauthorised’. Let us assume that the first
three of these more elementary classes are used to classify data from three
authorised users of the system and that ‘unauthorised’ is a class which
describes data from any unauthorised person who tries to access the system.
The resource which may be accessed by anyone who approaches the system
has ‘accessors’ within its clearance. It receives data from a user who wishes to

ICL Technical Journal November 1989 703

use the system via a channel whose clearance is ‘accessors’. The first message
it receives therefore has the class ‘accessors’, representing the fact that it may
come from any of those sources. The resource which is authorised to receive
such a message then (in our example) engages in some procedure (authorised
by one of its access rights) which allocates to the data received a subclass of
‘accessors’ (i.e. Alice, Bob Charles or ‘unauthorised’) representing the fact
that it has authenticated one of the authorised users or recognised an attempt
at a security breach.

There may be a resource between the accessors and the authorisation
resource which is used to relay the accessors’ messages but which is not
authorised to classify the messages as coming from a particular user or as
being unauthorised. This relay resource like the channel which carries the
messages, has the class ‘accessors’ withing its clearance but has no rights
which apply only to the subclasses (see figure 7).

0
___ | _______ relay _________________ _ authentication

1 resource resource
/ \

(clearance (clearance to
to transmit assign subset
class ‘accessors’) of class ‘accessors’)

Fig. 7.

Thus, by defining the most general class for which access rights may be
possessed and by defining rights for that class and its subclasses a clearance
may restrict its owner in both the generality and the particularity of the
classes which it may handle.

When a resource is created it is given a classification and a clearance as part
of the creation operation. The clearance must have the following properties.

(i) It must conform to the security policy (i.e. it must be allowed for a
resource of that classification, see section 8). It may be less than the
permitted clearance in terms of classes and/or access rights.

(ii) It must not contain class/access right combinations not possessed by its
creator.

A clearance shows the access rights which the holder of the clearance is
allowed to possess for each of the classes in the clearance. In order to use an
access right it must actually possess it. The right must be provided, either by
the resource’s creator or by some other resource with the right to do so (see
section 5.2). [See Note 9],

These two features: allowing a clearance to be less than that imposed by the
security policy and withholding the use of rights until they are supplied,

704 ICL Technical Journal November 1989

allow local control of security subject to an overriding central policy. Since
the ability to create a resource and provide it with a clearance may be
inherited a hierarchy of control over the assignment of clearances is possible.
At any level a creator may pass on a clearance which is less permissive than
the most permissive which it is allowed to pass on.

If a clearance contains conditions which depend upon the state of the
environment (for example that an access right is available only at certain
times of the day) this is not catered for by the model as described so far. This
kind of condition may be fitted into the general design by associating an
attribute of a class in a clearance with a procedure, whose result must be
compatible with the corresponding attribute in the classification of the
component accessed.

5. Specific Access Rights

In general the access rights and the operations which they provide are system
specific and not defined by the model. Some, however, are generally useful
and are described here.

5.1 R igh ts which a pp ly to data item s

Right to change classification
This right provides an operation to change the classification of a component
to a subclass or containing class of its current class. An example of change to
become a subclass has been given in Section 4. An example of change to
become a containing class occurs when a resource sends a message. The
classification of the message must be the class of a very general class in which
sensitive data is indistinguishable from any other (in practice because the
procedure which generalises the data involves encipherment).

5.2 R ights which apply to reso u rces a n d e n d u sers

These are rights which enable resources to be created and controlled and
which enable resources and end users to be provided with rights and to be
sent data. They are very similar to the rights described in refs 1 and 2,
modified to allow for the introduction of security classes. They are as follows.

Right to control resources
The right provides the following operation.
create resource this creates a resource of the designated class and with the

designated clearance.
activate this makes the resource available to holders of rights to

that class other than ‘control’;
suspend this makes the resource unavailable except to the holder

of its control right;
change this changes the resources code;
delete this withdraws the resource from service.

ICL Technical Journal November 1989 705

Right to authorise resources and end users [Set' Note 10]
The right provides the following operations.
supply This supplies to the target component a right held by the

supplier; when the operation has been successfully per­
formed both the supplier and the recipient possess the
right; the right supplied must be for a class within the
clearance of the target component. The supplier must be a
resource.

withdraw This withdraws from the target component a right pre­
viously supplied by the same resource.

Right to send messages to active components
This provides the following operation.
send message This sends a message to a resource of the appropriate

class. The message may instruct the resource to perform
an operation upon data, in which case the sender must
have clearance for the security classification of the data.

5.3 R ights which a pp ly to C la sses

Right to define classes
This provides the following operations
define class this defines the syntax of the class for which the right is

held. For a particular class only one active component
may hold the right.

create attribute this creates a new attribute by generating a name. The
attribute may be used when defining a class.

This right enables local dynamically defined classes to be created. An
example is where there is a need to create a file and exercise local control over
access to it by other resources. A class may be defined for this purpose, whose
only member is the file. In a more complicated case a resource may need to
create several resources and enable each of them to create files and control
access to them. This is achieved by passing on the right to define and create
components classified by particular subclasses defined for the purpose.

6 Comparison with other Models and Standards for Secure Systems

6.1 C om parison with the Lattice M odel o f Inform ation Flow

There are a number of significant differences between the model described
here and the lattice model described in ref. 4. They are as follows.
(i) A lower limit to the number of attributes of a class is stated in the

model described here. This enables a clearance to be given for a class
which is defined by a particular set of attributes without providing
clearance for the classes which are defined by fewer of those same
attributes. Thus clearance for the class '2, secret, pay’ does not provide
clearance for things described as just ‘secret’; only for those which also
relate to pay.

706 ICL Technical Journal November 1989

(ii) Particular rights are defined for individual subclasses in the present
model. They may be null or restricted in some clearances, to restrict the
power of the component.

(iii) In the present model a classification is distinguished from a clearance.

6.2 C om parison with the Clark-W ilson M odel

Ref. 5 describes a model for integrity. It has Constrained Data Items (CDIs)
which are operated on by Integrity Verification Procedures (IVPs) and
Transformation Procedures (TPs). The central ideas are:

(i) that data items whose integrity is to be protected are labelled as
Constrained Data Items (CDIs),

(ii) that all CDIs are confirmed as conforming to a defined integrity
specification by running Integrity Verification Procedures (IVPs),

(iii) that any CDI can be operated on to change its state only by a
Transformation Procedure (TP) which is certified to be valid for that
CDI,

(iv) that users, who must be authorised, are constrained to use only
specified TPs on specified CDIs.

Rules are defined to ensure that the mechanisms and programs needed are
certified as valid, that users are authenticated and that records are kept of the
operation of TPs.

The model described in this paper provides a basic framework, using which a
system which follows the rules of ref. 5 can be constructed. This is explained
as follows.

(i) A CDI is a classification of a data item in order to specify and constrain
the operations which may be performed upon it and corresponds to the
classification of a data item using a security class.

(ii) An IVP is a particular kind of operation in terms of the model
described here which should be controlled by an access right which is
available only to components with the correct clearance. It is a
particular feature of commercial systems that data is validated as a
separate operation before it is operated upon. This is not a fundamental
requirement of the model described here but the framework within
which it can be done is provided.

(iii) A TP is an operation, in terms of the model described here, which, like
an IVP, is controlled by an access right. A system which is to preserve
data integrity must insist that operations are performed, not only on
data of the correct kind but in the right order. This may be done, using
the model described here, by using a qualifier of the class which
classifies the data to prescribe the sequence in the following way.

Let us define a class as follows:
CDIX: 2, X, sequence
sequence: 1. unchecked, IVP, TPX1, TPX2, TPX3;

ICL Technical Journal November 1989 707

where X, let us say, means that the data belongs to project X and ‘sequence’ is
used to ensure that operations are performed in the right order. ‘X’, ‘IVP’,
TPX1’, ‘TPX2’ and ‘TPX3’ are attributes of the class which describes the
total system security.

An authorised user has a right to operate upon the subclass ‘2 X, un­
checked’. The only operation the right allows him is one which performs the
I VP operation. Part of the effect of this operation is to change the class of the
data to a new subclass of ‘CDIX’, i.e. ‘2, X, IVP’. The user has a right to this
class which enables the first appropriate TP to be performed. This similarly
changes the subclass to ‘2, X TPXT. In this manner the operations are
performed in the correct sequence. It may be noted that the correct order
depends upon the individual TPs behaving correctly. They operate in an
environment in which the whole class ‘CDIX’ is valid. If there is a risk that
the user of the managerial function which has the right to provide the TPs
will collude with the user the operations may be located in more than one
resource and the resources managed independently.
(iv) Users are constrained to use only specified TPs by providing a user

with a classification and a clearance. The compatibility of the classifica­
tion and the clearance are checked using the security policy (see
section 8).

6.3 R ela tionsh ip to the ECMA TC32/TG9 S ecurity M odel [See N ote 11]

The ECMA TC32/TG9 model is described in ref. 6. It is a long document and
it is not proposed here to explore in detail how it relates to the model of this
paper. However, a set of security facilities are central to the ECMA model.
This section therefore discusses them and relates them to the concepts
described here. The facilities, with comments on them are as follows.

(i) Subject sponsor facility
This sponsors the human user to the secure system during authentication
and monitors his subsequent activities. There is no distinguished separate
entity in the model of this paper which corresponds to this. A resource may
be created by any resource which has that right. The subject sponsor is a
resource fundamental to the type of system described by ref. 6, which is, in
this respect, a particular type of system which may be built using the model
described here.

(ii) Authentication facility
This authenticates human users and applications of the system. It is
represented in this model by resources which have a clearance which enables
them to change the classification of a message to the subclass which identifies
an individual user. In this model there is no insistence either that a single
resource should authenticate all users or that there be a class which defines
an individual user. Such requirements are essential for many systems and are
not precluded by the model.

708 ICL Technical Journal November 1989

(iii) Association management facility
This sets up and maintains a secure association between entities of a secure
distributed system which exchange information. In terms of this paper it is
part of the functionality which is implied by the acknowledgement that the
resources of the system may be distributed.

(iv) Security state facility
This records the current state of the system which is relevant to its security.
In terms of this paper it is part of the functionality which is implied to ensure
that a system operates correctly according to the model.

(v) Security attribute facility
This records the security attributes assigned to entities of the system. In
terms of this paper its functionality is implied by the classifications and
clearances of the components.

(vi) Access Control facility
This associates attributes with entities and also uses them to check whether
an access request is to be granted. In terms of this paper the first of
these functions is achieved by creating a resource with a particular classifica­
tion and clearance. The second function is implied when any access is
attempted.

(vii) Inter-domain facility
This controls access between entities in different security domains. Security
domains are defined in terms of this paper in section 9 (q.v.).

(viii) Security audit facility
This records information about the use of the security functions of the
system. This function is not explicit in the model of this paper. The model
makes explicit all operations relevant to security classes and access rights. A
security audit is provided by insisting that such operations are recorded, as is
necessary in a practical system.

(ix) Security recovery facility
This facility is to enable a security administrator to take corrective action in
case of a suspected breach of security. The model of this paper has nothing
explicit to say about this. The assumption is that the required functionality is
part of the definition of the individual system, which is built using the model
described.

(x) Cryptographic support facility
This provides the cryptographic functions needed for the operation of the
system. In terms of this paper it is a possible mechanism for implementing the
model.

In general the model of ref. 6 is a prescription of facilities which are needed to
provide a secure system of a particular kind which is likely to be frequently

ICL Technical Journal November 1989 709

needed. The model of this paper is more general in that it includes systems
which would not conform to ref. 6.

The model of this paper is more abstract than ref. 6 in that it does not
prescribe how the functionality needed should be provided. It is intended
that such a prescription should be given separately.

6.4 R ela tionsh ip to o ther standards a n d g u id elines for security

Ref. 7, the US Department of Defense ‘orange book’, describes ‘a uniform set
of basic requirements and evaluation classes for assessing the effectiveness of
security controls built into Automatic Data Processing (ADP) systems’ (ref. 7
foreword). The model described here aims to aid system design to provide
some of its requirements in an explicit manner. It is concerned in particular
with mandatory and discretionary access control in the terms of that
document.

Ref. 8 describes what is called a security architecture for the ISO reference
model for open systems interconnection. It is therefore worth exploring how
a model such as the one described here relates to it. The concerns of ref. 8 are:
(i) to describe appropriate security services and mechanisms,

(ii) to define where they may be provided in the reference model.

The security services described are grouped under the headings:

authentication,
access control,
data confidentiality,
data integrity,
non-repudiation.

All of these except the last relate directly to the model of this paper in that the
open system interconnection standards may be used to provide communica­
tion services between remote resources. The security services may then be
used to ensure that the communication is secure. The non-repudiation
service has no direct relationship to the model. Its functions are directly
relevant to system users in appropriate cases.

7 Examples of Use of Classifications, Clearances and Access Rights

Example I A class where all qualifiers are obligatory
Take the class defined as follows:
new product: 2, confidential, cars;
We may imagine that information of this class concerns a new product which
is confidential and relates to cars. Now a resource which had only the
clearance ‘conf, defined as:

710 ICL Technical Journal November 1989

conf: 1, confidential:
or ‘vehicles’, defined as:
vehicles: cars, buses;
would be unable to hold an access right to the information.
A resource which had the clearance ‘trusty’, defined as:
trusty: 1, confidential, cars; or
trusty: 1, confidential, vehicles;
with (vehicles) defined as above, would be able to handle information
which was classified by either or both of the attributes, provided it held the
appropriate access rights.

A resource which had the clearance ‘new product’ would be able, with ap­
propriate access rights, to handle information about the new product but not
other information concerned with vehicles or other confidential information.

Example 2 A class where all qualifiers are not obligatory
A data item is recorded in the system and, to be recognised as genuine, must
bear the signature of at least two of five possible signatories. Asume that
there is a resource to which such messages are sent which is able to decide if
the message is properly signed. This resource has, as part of its clearance, the
class ‘signed or unsigned’, defined as:
signed or unsigned: 1, signed, unsigned;
signed: 2, Alice, Bob, Charles, Don, Eliza:
where the people’s names are the attributes used to classify the signatories
and ‘unsigned’ is a class with a single attribute, used to record that a message
is not properly signed (including the case where it has only one genuine
signature). One of the access rights possessed by the resource which receives
the message permits it to perform an operation which classifies the message
as ‘signed’ or ‘unsigned’.

Example 3 A class where only one qualifier is obligatory
This is provided by the example in section 4 of a resource which communi­
cates with end users in order to authenticate them so that they may then
access parts of the system for which they are authorised. It must have within
its clearance at least the classes of the channels by means of which it is
accessed by the end users and, therefore, of the end users themselves. One of
its rights is the ability to assign to a message it receives a particular subclass,
which defines an end user.

Example 4 Classification of End Users
An end user may be given a classification which has a class with a single
attribute which uniquely defines the end user. He (she or it) communicates

ICL Technical Journal November 1989 711

via a channel which has the end user class within its clearance. The channel has
at least one other subclass to acknowledge the fact that the accessor may not
be recognised as the genuine end user. The end user’s clearance consists of the
class which classifies the resource with which the end user communicates.

Example 5 Registered ‘Users’
A likely design for a secure system that it records the clearance of each
individual user and ensures that an end user, when authenticated, can access
the parts of the system and the data for which he is cleared and nothing else.
Using the model described here the information about such a registered user
is a resource with a clearance which represents that of the user. The resource
accessed initially by the end user (or some other resource or resources with
which that in turn communicates according to the security rules of the
system) is trusted to perform the correct mapping between the end user with
his authenticated class and the class of the resource representing his use of
the system. There is not necessarily a one to one mapping. On the one hand
an end user may have more than one role to play in the system. On the other
hand several end users may perform the same work at different times, for
example in a system where shift work is needed.

Example 6 Hierarchical Classifications
In military security a document is given a classification of ‘unclassified’,
‘restricted’, ‘confidential’, ‘secret’ etc. A person who may read such a
document has a clearance, for example of ‘confidential’, which allows him, if
there are no other restrictions, to read documents whose classification is
equal to or less than his clearance (in this case the documents classified as
‘confidential’ or ‘restricted’ or ‘unclassified’). Using the model described here
this clearance is described by defining a class to represent it thus:
confidential-clearance: 1, confidential, restricted, unclassified;
where ‘confidential’ etc. are attributes of the system. It is, of course possible to
define classes that are not useful or which encourage insecurity, for example
combining ‘secret’ with ‘unclassified’ and omitting the intervening ones. For
this reason and for efficiency it is likely that the concept of hierarchies would
be built into a practical system.

8 Security Policies

In terms of this model the security policy of a system is defined as follows.
First define the total class of the system with each of its subclasses. For each
class thus defined state the classes of the system with accompanying access
rights, which may appear in the clearance of a component so classified.

This statement gives the maximum allowed clearance for any component. If a
class is to classify only a passive component its maximum allowed clearance
will be null. The total collection of maximum clearances for all classes is the
security policy.

712 ICL Technical Journal November 1989

An active component may be created with less than its maximum allowed
clearance in terms of classes, access rights or both. Since a component may
not create another with a clearance more powerful than it possesses itself, this
provides a way of creating locally security policies which are successively
more stringent.

A security policy stated in this form is meaningful if the attributes used to
define the classes of the system have a real meaning in terms of protection.
Thus for example, one might suppose that a resource class defined as ‘2,
class-A1, secure-location’ might be allowed a powerful clearance. There is a
very real difficulty in pinning down the needed attributes and their meanings
which is beyond the scope of this paper. Moreover, since the meanings given
to the term ‘security policy’ vary and are not always well defined it would be
rash to predict that the definition given here will cover all of them. It is
proposed as a tool for discussing security needs and consequent design.

A security policy can thus be represented diagrammatically as follows:

total security class (with clearance)

/ \ \
subclass subclass subclass (with clearance)
(with (with / \
clearance) clearance) S ' v

subclass subclass
(with (with
clearance) clearance)

and so on
Fig. 8.

9 Security Domains

Section 8 described a security policy in terms of the ideas of this paper. When
discussing secure distributed systems the term ‘security domain’ is often used
and is usually equated with a collection of communicating entities which are
subject to the same security policy. In the terms of this paper a security
domain is characterised by its security class and its security policy. This tells
us what kind of domain it is. To identify it uniquely we need to identify its
creator and, if necessary, the name given to it by its creator to distinguish it
from others.

We may now consider the possibility of communication between entities
which are in different domains. We may assume that there is a practical need
to do this if we consider that two different commercial organisations may set
up secure automated systems separately and may then develop the need to
communicate.

Let us assume that, in each case, a total class for the secure domain has been
defined, based on a set of attributes with a defined meaning in the

ICL Technical Journal November 1989 713

environment to be automated. For each class and subclass access rights are
defined which allow operations which are meaningful in the domain, either in
terms of software available to the resources or operations performed by
trusted personnel. For each class and subclass which can classify an active
component the maximum allowed clearance is defined. Now, for interdomain
communication a check must be performed that the clearance of the subject
in one domain is, in some sense, compatible with classification of the object
in the other domain.

For the sake of simplicity let us assume that all communication between the
two domains passes through a single entity, which will be called the
interdomain gateway (or simply the gateway when that is unambiguous). In
each of the domains the gateway has a classification which makes use of the
attribute ‘gateway’. Each resource which is allowed to communicate with a
resource in the other domain has, as one of the subclasses in its clearance, the
class which classifies the gateway and at least the access right which enables
it to pass data to the gateway. Conversely the gateway has a clearance for
each domain which enables it to access the resources which may take part in
interdomain communication. This is illustrated in figure 6.
The clearance of resource X to access other components is in terms of the
classes of domain 1. To enable X to access components in domain 2 the
gateway must contain information on the equivalence of classes and access
rights in the two domains. The simplest arrangement is a one to one
equivalence between a class/access right in domain 1 and a class/access right
in domain 2. There need not be an equivalence in each case. Thus there may
be classes in domain 1 which are inaccessible from domain 2 and vice versa.
Similarly not all of the access rights may be made available to the other
domain (e.g. information may be read but not changed from the other
domain).

It is conceivable that the gateway may need to recognise an equivalence
between class/access right combinations in the two domains where there is
not a simple one to one relationship. This is beyond the scope of this paper.

Thus the gateway must hold a table of equivalences which it consults,
together with the clearance of the would-be accessor, when access is
attempted. The table is agreed and installed by collaboration of the
management of the two domains. Secure domain construction and manage­
ment is discussed in section 10.

10 Secure System Construction

Reference l described the secure construction of a system, starting with a
completely trusted ‘management entity’ which had the power to create other
entities and to devolve rights to them. It did not deal in classes (or therefore
in classifications or clearances as described here). This section describes a
similar process to that of ref. 1, making use of these additional ideas. As a
preliminary it considers what it gained by the additions.

714 ICL Technical Journal November 1989

In the description in ref. 1 and here the starting ‘management entity’ which
creates a distributed system is an organisation of people which is trusted to
behave as a single entity to create those separate parts of the system which
cannot be created by entirely automated means. The people perform
procedures which correspond to the operations later performed by auto­
matic entities to produce resources under their control and distribute rights
among them. An elaboration of the concepts described in this paper is needed
to describe in detail the operations to be performed both by the trusted
people and by the automatic entities which they create. The comments made
in this section therefore apply to procedures both by people and by
automated resources.

The system of construction of ref. 1 provides the starting resource (‘the
management entity’) with the ability to:
(i) create other resources,

(ii) provide them with rights, including the right to create other resources
and to assign rights to them in their turn.

This produces a control hierarchy with which may be associated a complete
record of which resources assign and use all rights in the system. However it
lacks explicitly defined rules which state what rights may be assigned to
particular resources. The introduction of the notion of a class enables a
security policy to be defined in terms of the class and subclasses of the system
being constructed and their access rights. When any resource is created it
must be given a classification. Its maximum possible clearance is therefore
defined by the security policy and an attempt to give it a clearance which
does not accord with it is disallowed. In addition, each end user of the system
has a classification and a clearance which derive from the classes of
information he or she is allowed to receive from and send to the system and
the operations to be allowed. Since an explicit classification is given to the
resource which an end user may access a check is made when the end user
receives access rights that his clearance matches the classification of the
system he is allowed to access.

10.1 Creation of a Single Secure Domain

(i) A total class is defined for the domain which is to be created. For the
class and each of its subclasses a set of access rights is defined and for
each access right a set of operations.

(ii) A security policy is defined for the domain. It defines for each class (and
subclass)/access right combination of the domain the attributes which
must exist in the classification of the component which is cleared for
that combination.

(iii) The management entity for the new domain creates the resource which
it is to control directly, assigning to each of them a classification and a
clearance. In each case the compatibility of the classification and
clearance is automatically checked against the security policy. In the
case of a distributed system these directly controlled resources are

ICL Technical Journal November 1989 715

those which exercise local control at individual locations. There are
some resources (called basic resources in ref. 1) which are controlled by
the management entity and which exist before it has created any
resources of the domain. These correspond to the hardware and
software to be used and the newly created resources are given access
rights to them as appropriate. Their clearance to receive these rights is
checked automatically against the security policy. The classification of
these basic resources is decided by the management entity and is part of
the basic decision making on which the security of the system
ultimately depends. The attributes used to classify the basic resources
reflect the judgement of the management entity of the security features
needed in and provided by the equipment for the real world environ­
ment in which the security domain is used.

(i v) The directly controlled resources, thus created, create resources of their
own and assign rights to their end users and to each other, as
appropriate. These operations are automatically checked against the
security policy.

10.2 Establishment of Secure Communications between Two Domains

Let us say that domains X and Y are to communicate according to mutually
agreed rules of security. Then the following actions take place.

(i) The management entities of X and Y agree a correspondence of those of
their class/access right combinations which are to be used for intercom­
munication.

(ii) The gateway between the two domains is formally created by both
management entities and the table of correspondences is provided to it.

(iii) Within each domain separately access rights are provided to the
gateway and appropriate other resources so that interdomain commu­
nication can take place.

11. Practical Considerations and Conclusions

The model described in this paper has been developed bearing in mind the
following principles.
(i) Mechanisms which enforce security should be explicit in the system

and separate from other functionality (e.g. from application code and
system code which does not enforce security). There are a number of
motives for this. It is more likely to be right, it is easier to change for
those authorised, it may be made more difficult to change for those
unauthorised, it is easier to check.

(ii) The security enforcement mechanisms should be of as general an
application as is necessary. This has affected the model in three ways:
(a) the model is intended to apply to both military and civil applica­

tions and is therefore a superset of the features normally con­
sidered in relation to military systems;

(b) it unifies some of the concepts of secure systems which have been

716 ICL Technical Journal November 1989

elsewhere considered separately; authentication is treated as an
authorised change of classification;

(c) the model and the mechanisms which derive from it apply both to
the construction and management of a secure system and to its
subsequent use.

It is hoped to use the model both as the basis of the design of secure systems
and as a means of relating security requirements to system design. The most
immediate tasks are seen as a more rigorous description of the model and an
assessment of its usefulness by comparing it with practical systems.

Notes

As a result of the presentation of the original version of this paper at the Gaithersburg
W orkshop on D ata Integrity, January 1989, and of subsequent conversations with a number of
people, I have become aware of some mistakes which impeded understanding of the ideas in the
paper. I have therefore changed it in some places and I describe these changes in the following
notes. There are some cases also where comments might have caused me to describe things
differently in particular to use different terminology, but where I have left the text as it was,
thinking that a change might be confusing to readers of the first version; I give notes on such
cases also. There is also some text here which I om itted from the version submitted to the
Workshop, to shorten the paper.

1. (Section 2). The terms ‘security class’, ‘classification’ and ‘clearance’ have been criticised as
having military connotations. I have not changed them. The term ‘security category’ has
been suggested instead of ‘security class’ and ‘remit’ instead of ‘clearance’. In retrospect I
believe I should have avoided the term ‘classification’ or any substitute and described a
component as b e in g of a security category (which determines the operations which may be
performed upon it) and as h a v in g a clearance (or remit) which determines what it may do).

2. (Section 2). In the original paper an access right was described as a component. It no longer
is, as this seems clearer.

3. (Section 3). Some people have commented that the model I describe calls for capabilities to
describe access rights, but not access lists. There is no such intention. The model is intended
to be understood at a more abstract level. Both capabilities and access rights are possible
mechanisms for representing rights in an implementation.

4. (Section 3). In the original paper I tried to use Extended BNF to describe both the generic
form of a security class and for specific security classes and their relationship to each other.
Some mistakes crept in and, therefore, some misunderstanding. In the version of the paper
printed here I have tried to prevent the misunderstanding by using BNF only for the first
purpose and correcting the mistakes.

5. (Section 3). Some of the points made later in the paper could have been put more simply if
the term ‘subclass’ had been defined to include the containing class.

6. (Section 4). It is not intended that the mechanisms described here be the only means of
distinguishing individual components, rather that they be used to distinguish sets of
components which need to be distinguished for reasons of security.

7. (Section 4). If access is to be allowed the following must be true:

(i) there must be a class which is contained in both the accessor’s clearance and the
target component’s classification,

(ii) that identified class must have rights which are contained in the accessor’s
clearance and they must have been supplied to the accessor and not subsequently
withdrawn (see Section 5.2).

8. (Section 4). It is not clear in the paper when rights defined for a class should apply to its
subclasses and vice versa. I believe it is necessary to be able to define rights which applv
strictly to a class or to defined subclasses or to a class and its subclasses. More
consideration is needed of this.

ICL Technical Journal November 1989 717

9. (Section 4). One criticism made of the paper is that it is not obvious that a right which
appears in a clearance should also need to be ‘supplied’. The motive for the extra flexibility
is to enable components other than the original creator of a resource to provide and
withdraw rights, subject to predefined constraints. There is an analogy with mandatory
and discretionary access control in military systems.

10. (Section 5.2). It may be useful to be able to authorise a c la ss of components.
11. (Section 6.3). This section did not appear in the paper as presented at Gaithersburg.

References

1 JONES, R. W.: ‘The Design of Distributed Secure Logical Machines.’, ICL Technical
Journal, 1985 5(2).

2 JONES, R. W.: ‘The Creation and Use of Explicit Rights in a Distributed System.’,
Proceedings of the Fourth IF IP Conference on Information Systems Security.

3 International Standard ISO 7498. Information Processing Systems — Open Systems
Interconnection — Basic Reference Model.

4 D ENN ING, D. E. R.: ‘Cryptography and D ata Security’. Addison-Wesley, 1982.
5 CLARK, D. D. and W ILSON, D. R.: ‘A Comparison of Commercial and Military

Com puter Security Policies.’, IEEE Com puter Security Conference, 1987.
6 ECMA/TC32-TG9/87/60. Security Framework for the Application Layer of Open Sys­

tems.
7 Department of Defense Trusted Com puter System Evaluation Criteria. National Com­

puter Security Center, July 1986.
8 international Standard ISO 7498/2. Security Architecture.

7 1 8 ICL Technical Journal November 1989

KNOWLEDGE ENGINEERING

Building a Marketeer’s Workbench: an
expert system applied to the Marketing

Planning Process

Stephen Aitken
ICL Marketing Development & Training Wokefield Park, Reading, Berkshire

Harry Bintley
ICL Knowledge Engineering, Manchester

Abstract

The paper describes the planning, design, development and introduc­
tion of an expert system to support the marketing process in ICL; this is
part of an overall project to build a Marketeer’s Workbench. The aim of
the expert system is to improve the quality and productivity of the
marketing planning carried out by ICL's marketing managers. It
directly supports the company's planning procedures and comple­
ments the marketing training courses. The paper is in two parts: the
first (section 1) describes the requirements for and use of the expert
system, as seen by the marketeers; the second (sections 2-5), the
design of the system, as seen by the developer.

1 Requirements for, and use of, the expert system

1.1 Introduction

In 1982 ICL introduced a new programme of marketing training courses, the
aim of which was to introduce some new concepts and ways of working,
together with a new vocabulary of marketing terminology. In outline these
courses taught marketeers how to:

- identify opportunities from a scan of the environment
- define market segments
- project market and product life cycles
- develop a marketing mix over the life cycle

produce competitive marketing strategies.

They included relatively detailed and complex techniques, such as the use of
“perceptual maps”, the “efficiency frontier” and “Differential Resource
Analysis” (DRA) to arrive at competitive pricing and other strategies and to
predict market share. All these concepts and processes were documented and
explained, with examples, in the ICL Marketing Handbook.

ICL Technical Journal November 1989 721

In ICL, pricing strategies and world selling prices are determined in the
corporate Business Divisions and pricing tactics are implemented in the
countries around the world by the Sales Divisions; whilst the broad
commercial policy is determined by Group Commercial. In the spring of
1987 Group Commercial asked Marketing Development and Training
(MD&T) to re-examine the pricing course, as few of the marketeers, who had
been through the training, were using the new techniques when presenting
their rationale for prices for new products. The problem lay in the way the
marketeers presented and discussed the case for their prices, and there was
concern over whether Business Division marketeers had successfully taken
account of the different competitive conditions prevailing in different coun­
tries. This pricing concerned both individual products and services and
systems forming integrated business solutions.

1.2 Investigating the requirements

The initial reaction in MD&T was that it should develop or enhance the
existing training course so as to have more impact on the participants.
However, applying the marketing techniques that it teaches, it decided to
carry out some market research among the ICL marketing and pricing
community to determine how pricing was carried out; and during the
summer of 1987 had a student interview a number of marketing and
commercial managers across the company, both in Business Divisions and in
the Countries.

The results of this and other studies showed:

- the pricing process taught in the training was seen as great in theory but
not in practice. Those who had to carry it out did not always have the time
or the research techniques to discover and predict the decision factors that
buyers would use to evaluate products from competing suppliers. Even if
they did have this information the calculations required to determine price
were neither simple nor quick

—it was difficult for the marketeers in Business Divisions to obtain
competitive data, but relatively easy for those in the Countries

- Business Divisions received insufficient feedback from Countries on the
tactical implementation of their pricing policies

- after a product’s introduction, prices were reviewed regularly in Countries
but rarely in Business Divisions

- not all marketeers had pricing responsibility. In some areas a senior
marketeer had taken on the role or had been appointed to control and
coordinate the pricing and commercial policy for a group of people or
products. This was usually in order to ensure consistency in pricing a
range of products

- pricing was not always managed by only marketeers. In many Countries
the whole management team was involved in regular price reviews
covering new and existing products and services.

722 ICL Technical Journal November 1989

This market research activity provided a good statement of the target market
segment for the new training course; that is:

- the people who needed training: not just marketeers
- how many there were, and where they were located
- how they worked: the problems they faced in obtaining information about

their target market segments and about the competition, and what they
did to determine prices

- how often they were involved in pricing decisions
- who would buy the new training for them and why, and how loyal they

were to their current ways of pricing.

This definition of the market segment was put to a Human Factors
Workshop where the marketeer presented his findings to designers, to a
technical author and to Group Commercial. It was developed by the
workshop, the end users being described in more detail and also the things
they handled and the work they did. For example, three types of user were
identified: primary users who set prices, secondary users who ratify prices
and tertiary users who have a vested interest in prices. Thus the designer
became immersed in detailed discussions about end users and end use, and
the workshop team decided jointly on the areas to be investigated further
and on the areas to be addressed for maximum benefit.

As a result of this workshop it was decided to do the following three things:

1 To develop a Pricing Workshop for people from Countries and
Business Divisions who were concerned with a given pricing situation.
They would use their live situation as the core of the training, with the
workshop providing a controlled environment for a free exchange of
information.

2 To provide some kind of computer aid to support their thinking process,
to speed up the pricing calculations and to keep a record of their
thoughts. This tool would be introduced into the Pricing Workshop.

3 To improve the regular exchange of information between Countries and
Business Divisions.

The rest of the paper concentrates on item 2 of this list.

1.3 D eterm ining tools a n d priorities

Because there was only a small amount of funding immediately available it
was decided to develop a prototype to test ideas and to provide a
demonstration that could be used to get further funding. REVEAL on VME
was chosen as the prototyping tool because it was known to be fast, VME
time was available to MD&T and this would give some form of central
control during trials. It would also allow Workshops to be run in hotels
around the world, using a portable OPD connected to the VME machine at
Beaumont over the public network.

ICL Technical Journal November 1989 723

At about this time another group of mainly business planners and
marketeers was discovered, which had good divisional and corporate
representation. They were looking at the marketing process overall, seeking
ways to improve it. The pricing training team linked up with this group and
reviewed the priorities for investment by setting up a joint working group.

This working group met for the first time in October 1987, and was asked to
recommend which of the marketing processes and documents should be
tackled first. The main processes were:

segment selection and identification
- description of product requirements
- pricing policy
- promotion
- distribution channel

Differential Resource Analysis
- impact of market share on profit
- Profit and Loss (P&L)

and the documents to be considered were:

the Market Requirements Statement: to obtain initial funding for a new
product

- the Market Introduction Plan: to define, and gain company commitment
to, the introduction and life cycle management of the product

- the Market Introduction Document: to authorise release of the product to
nominated countries.

Each of these processes and documents was assessed against a number of
factors, including the following:

- was it a mandatory process?
- how difficult was it to create and update?
- what percentage of marketeers had to do this often?
- could it be easily implemented as a system?
- how quickly would benefits appear if it were implemented?
- would it provide data for other parts of the system?
- would its effective use depend on creating a database first?

The conclusion was to continue with pricing and a simple P&L as the
starting point, but to plan to gain funding for the whole exercise.

1.4 Introducing the prototype

Work started on the initial prototype in the autumn of 1987 and the first
two-day Commercial and Pricing Workshop was held in an hotel in January
1988. The prototype expert system CAPS - Computer Aided Pricing System
- was used for the first time: the meaning of the initials has been changed

724 ICL Technical Journal November 1989

since then to Computer Aided Planning System, as it now does much more
than just pricing. After presentations and discussions of markets, competi­
tors’ offerings and prices, CAPS was used to review the 1CL prices. From this
very first use of a fairly basic model the benefits of improving the quality of
the analysis and the speed of obtaining the results were obvious. The system
is described in section 4.1 below; this early version covered only parts of
items 3, 4, 5, 6 of the CAPS main menu, with very basic help screens. (See
Fig 1).

After use in a few more Commercial and Pricing Workshops the expert
system increased in scope and began to be used in Applied Marketing
Workshops, which cover the whole marketing planning process from
segment selection to Profit and Loss. A Marketing Facilitator leads the
group of segment and product marketeers and business consultants through
the marketing process, leaving them free to concentrate on providing
information for the plan.

When these workshops were first run they took four days; with experience in
setting up and running them, together with the use of CAPS, this is now
reduced to two days.

1.5 Use and benefits

Using CAPS during a workshop allows the participants to provide more
detailed information on a marketing plan and gives them the time to sub-
segment markets and so to develop more precise strategies. The overall
increase in the quality and productivity of the work done is probably factor
of two to three times, achieved because:

- CAPS does all the calculations, re-calculations and aggregations. Pre­
viously workshops could get bogged down in the calculations for just the
introduction phase of a marketing plan, and detailed planning for growth,
maturity and decline was rarely done during a workshop. If it was
suggested that the plan had assumed an incorrect market adoption cycle
there was no possibility of restarting without completely demoralising the
group. With CAPS the plan can be revised completely by changing only
one or two fields on the Market Size and Market Life Cycle screen

- information entered for one of the four phases of the market life cycle can
be copied across to another phase for discussion and development.
Similarly whole segment plans can be created by copying an existing plan
and modifying it. This is particularly useful when sub-segmenting

- sets of segments can be selected and aggregated at the P&L level,
supporting portfolio planning for both segment and product managers

- provided only that the user understands ICL’s marketing language CAPS
is easy to use, with good HELP facilities: these are described in section 4.3
below

- CAPS leads the user through the ICL marketing process; a route map is
provided to remind users where they are in this - see section 4.2. Some

ICL Technical Journal November 1989 725

fields must be completed before proceeding, and for key fields the
user must declare whether the information is soundly based or just a
guess.

To emphasise the reality of these benefits, one group of marketeers has
analysed 13 market segments in a series of workshops. As a result they have
decided to withdraw from 4 of these, to change the distribution channel to
third-party for 4 others and to resource the rest fully: the planned consequen­
tial increase in profit is £3m.

In its field trials to date CAPS has been used to help 32 users produce plans
for some 80 segments, the most active user having 24 segments. About a third
of these plans are in active use, the remainder concerning segments that have
been rejected for one reason or another. Benefits achieved by users outside
the workshop environment have not yet been surveyed.

1.6 Developing the marketing process

Applying computer aid to a process both scrutinises the logic of the process
and allows enhancements to be considered. The following enhancements to
the ICL marketing process have been introduced with CAPS:

- recording the marketeer’s level of confidence in the information he
provides. This can be used now in marketing audits, and potentially to list
areas for further market research and to provide an overall confidence
level for each plan

- introducing further P&L formats and analyses for different audiences, in
particular for third parties in the distribution channel

- allowing for weighting factors in the Differential Resource Analysis
(DRA), including default values. DRA is the process of comparing the
forecasts of competitors’ overall spends in the segment, broken down
by Product, Price, Promotion and Place (distribution) - sometimes
called the 4 Ps of marketing. This is used to determine market shares.
Use of weighting factors allows more emphasis to be placed on one
than on another - for example, on Price in a price-sensitive market.
Weighting can be applied also within a category - for example, within
Promotion by giving more weight to spending on extra sales staff than
on advertising

- because of the ability to iterate with ease, planning for a target market
share as well as deriving this from DRA.

1.7 Future developments

The CAPS expert system has proved its worth in its field trials and its future
development and adoption across the company has been agreed. The next
release will contain a number of improvements and enhancements whose
need was shown by the trials; these will include:

726 ICL Technical Journal November 1989

- easier sign-on
- faster navigation
- more sophisticated phasing of P&L
- interpretation of “efficiency frontier”
- obtaining feedback from users
- guidelines for optimisation in DRA
- options for line-printer listings.

Beyond this there are plans to:

- integrate with Officepower to support fully the creation of the documents
that are required

- port to the UNIX range, to provide an alternative to VME
- integrate with the company business planning processes and models.

There are longer term developments under discussion, to link more directly
with the external databases of independent service providers, with ICL’s own
systems such as Product Database and Configurer, and with other ICL
workbenches such as the future Designer’s Workbench.

2 Designing the Expert System

2.1 What is an Expert System?

An Expert System can be defined in broad terms as a computer system which
allows a user with no (or very limited) expertise in the field under consider­
ation to follow some sequence of questions or requests for input, about some
problem or situation, and arrive at a conclusion similar to that which would
be reached by an “expert” in the field.

The field of medicine has produced some well-known expert systems where a
junior or inexperienced doctor can be guided through stages of diagnosis to
arrive at the conclusion that would be reached by a senior consultant; the
expert system holds within itself the knowledge of the field (“domain of
knowledge”) possessed by the consultant.

2.2 The Knowledge Engineering situation

“Knowledge Engineering” is the term which has been given to the produc­
tion of Expert Systems; broadly speaking, it covers the two operations of
knowledge elicitation and of building the knowledge into the expert system.
Knowledge elicitation is the process by which the Knowledge Engineer
extracts from the “Expert” the domain knowledge possessed by the latter.
Often, this has never been formally set out, and the elicitation process is as
much a voyage of discovery on the expert’s part as on that of the knowledge
engineer. When a prima-facie version of the knowledge is clear, a prototype
expert system is built (using whatever tools appear best for the subject
concerned) and is tested against the real life situation. This process then

ICL Technical Journal November 1989 727

usually reveals gaps in either or both of the knowledge elicited or the expert’s
understanding of how he goes about his job; the “knowledge” is revised and
the expert system modified until the expert is content that the advice or
results given by the Expert System are near enough to what he would advise.

A number of working requirements for the knowledge engineering situation
become clear:

1 There must be an “expert” whose brain can be picked, or at the very
minimum some documentation of the expertise to be built into the expert
system.

2 The tools used to construct the expert system must allow rapid construc­
tion of the initial system (what is often called “fast prototyping”) and easy
subsequent amendment of the system.

3 The system must be able to provide an adequate interface between the
computer and the human being using it - i.e. the so-called man-machine
interface must permit of easy input and acceptable output.

4 The system must be capable of being used by the “computer illiterate”,
whose knowledge of how to use a computer need be no more than the
logging-in process.

3 The CAPS Expert System

3.1 The choice of REVEAL as a building tool

The decision was made to implement CAPS in ICL REVEAL. REVEAL is a
high-level language which had already been used in Knowledge Engineering
Business Centre (KEBC) to construct expert systems, a notable example
being VCMS, the VME Computer Monitoring System widely used by VME
customers and within ICL. REVEAL has a number of features which make it
suitable for the purpose:

1 Extensive facilities for getting, storing and manipulating both numeric
and textual data;

2 Menu-based user interfaces allowing input of data via screen menus and
forms;

3 The use of a high-level command language and an “amend and run” data
manipulation language, which together confer fast prototyping ability; and

4 it is available under both VME (on mainframe processors) and UNIX (on
DRS300 and Sun workstations) giving users potential access via a wide
range of devices.

4 Some basic principles of the CAPS system

4.1 Access and Navigation

The user requires a bare minimum of knowledge of the computer’s command
language to access CAPS. Thus in the case of the VME version, he needs to

728 ICL Technical Journal November 1989

know only how to log on to the host computer. Once accepted, he enters the
word CAPS, replies to a request for the name of his personal database, and is
presented with a CAPS welcome screen cum notice board which records any
recent updates to the system. The next screen is the MAIN MENU which
offers him a number of options; this is a screen to which the user will return
from time to time. When first displayed, most of the options are blocked off
from the user - these option numbers are displayed in brackets () and any
attempt to select them will result in a message that the option is not yet
available.

I.CAPSMAIN CAPS 01/08/89 15:49
MAIM MENU Database in use: CAPS

Options:
1 - Start a new Segment Marketing Plan
2 - Seiect a previous Segment Mkt Plan

(3) - Segment Definition
(4) - Market Life Cycle
(5) - Perceptual Maps
(6) - Efficiency Frontiers
(7) - Transfer Costs
(8) - Channel & Development Costs
(9) ~ Market Share by DRA

(10) - P & L and statistics
11 - Segment Aggregation

(IS) - Save the results of the session
13 - Delete segment data
Q - Quit i.e. leave CAPS

Option numbers in parentheses will not be accepted.

Option: t? ,

To access a routemap, enter ! on any screen other than this menu.
Fig. 1 CAPSMAINMENU as displayed on entry

As the options are successively worked through, the brackets are removed
(allowing the user to return to, and amend his input for, a previous option).
At the same time a column of asterisks and letters appears at the right hand
side of the main menu, showing which options have been completed. Some of
the options require data for the four different phases of the Market Life
Cycle, Introduction, Growth, Maturity and Decline, and entry for these is
indicated not by an asterisk but by the appropriate letter, I, G, M or D. Thus
the main menu for a retrieved, partly completed, segment model would
appear like Fig. 2.

Note that some options are available at all times - the workspace can be
loaded with an empty model “skeleton” (called a template) to allow the
creation of a new segment model; or an existing (perhaps only partially

ICL Technical Journal November 1989 729

IjCAPSMAIN CAPS 01/08/89 '14:54
MAIN MENU Database in use: CAPS

Options: DEMONSTRATION.10 is loaded
I - Start a new Segment Marketing Plan
i - Select a previous Segment Mkt Plan f
3 - Segment Definition $
4 - Market Life Cycle I
5 - Perceptual Maps IGMD
6 - Efficiency Frontiers IGMD
7 - Transfer Costs IGMD
8 - Channel & Development Costs IGMD
9 * Market Share by DRA IGMD

10 - P i L and statistics if
II - Segment Aggregation
18 - Save the results of the session
13 - Delete segment data
Q - Quit i.e. leave CAPS

Option numbers in parentheses will not be accepted.

Option: L? j

To access a routemap, enter ! on any screen other than this menu.
Fig. 2 CAPSMAINMENU partly completed

completed) segment model can be loaded; or an aggregation of a number of
segments can be set up and executed; or some housekeeping can be done,
such as the deletion of unrequired versions of a model.

Navigation from option to option depends on whether the user is creating a
new model from scratch, or whether he is revising or extending an existing
model. In the first case he is led from one option into the next automatically;
in the second, at the completion of an option he may choose to return to the
main menu, or by typing “>” he may proceed to the logically-next option. In
general, he may also review at any point the previous screen in a sequence of
screens, by entering He may also jump from an option to the main menu,
by typing CTRL/Q.

Those options that require similar operations for each of the four Market
Life Cycle phases start with a phase selection screen (see Fig. 2).
and they finish with a steering screen which allows the data entered for a
particular phase to be copied into any of the other phases (as a basis for rapid
completion of other phases (see Fig. 3)).

and they finish with a steering screen which allows the data entered for a
particular phase to be copied into any of the other phases (as a basis for rapid
completion of other phases (see Fig. 4)).

730 ICL Technical Journal November 1989

IjPHASE CAPS 01/08/89 14:57
DEMONSTRATION. 10 PERCEPTIONS - MLC PHASE

Please indicate the MLC phase for which you are going to
input Perceptions Data:

Options: 1 - Introduction

2 - Growth

3 - Maturity

4 ■ Decline

Q - Quit i.e. return to main menu

■?
L ' J

Fig. 3 PHASEMENU

IjEFSTEER CAPS 08/01/89 15:06
DEMONSTRATION.10 INTRO - 4 qtrs
£K , 1988 31 - 1988 Q4

Enter > to proceed to the transfer cost screen
or < to return to deal with another phase
or I,G,M or D to copy prices data to another phase
or Q to return to the main menu

J j
Fig. 4 EFSTEER

4.2 The ■ ‘WHERE A M I ’’ facility

The CAPS system involves some 45 different screens, seven data entry
sequences and four parallel paths. It would not be surprising if the user
sometimes forgot just where he was in the process, or the route by which he
had arrived at the present screen. To help him, a WHERE AMI route map is
provided. On any screen, a “!” may be typed in any position. The route map
is then displayed: see Fig. 5.

On the route map, which is essentially a flow diagram of the CAPS process,
the present position of the user is indicated by a !, and those options and
phases which have been visited during the present session are indicated with
asterisks.

ICL Technical Journal November 1989 731

L-UHERE AH I? ! = present position; * = previously visited this session -

The start NBI L , DDIOKSTRATION.10.pr
Define the market segment L
Input competitors names L j
Define the MLC and market share L A
Perceptual maps t , L , L , t J
E.F.: costs of ownership LJ LJ t J (by competitor)

E.F. displays . , L , L ,
cost of owning EL J , LJ t J LJ

Transfer costs L , L , L , L ,
Value of Market Share Point L ,
Promotions and staff costs t L L d L
Development & channel costs t t , L
Profit and Loss display L .,
DRA input l j . . l j l j
DRA market share t .,
Profit Impact of Market Share L .,
Segment aggregation L ,
Plan saving u .,

To RETURN, just SENS.
Fig. 5 ROUTEMAP showing a typical sequence

4.3 Two levels of help

Two different help mechanisms are available to the user. The REVEAL menu
facility provides an in-built mechanism whereby the input of a “?” on any
field on a screen causes a help display for the particular field. An example
field help screen is shown: see Fig. 6.

To avoid the use of programming effort in entering and revising field help, a
process was devised which will read a host-processor file and insert the help
data into the appropriate places in the individual REVEAL menu files. This
means that a master file can be maintained on a wordprocessor by the CAPS
system authority, who can arrange for the system to be updated without
requiring KEBC effort.

During development of the system, the need was identified for an overall help
system, to which was given the name “super help”. Rather than giving
specific help about the data to be entered in a specific field of a screen, it deals
with “topics”. This is a form of screen-available marketeer’s manual, where
the “topics” are essentially book chapters, each consisting of a number (up to
9) of pages. Each of the 45 different input screens in CAPS has associated
with it a number, of the form topic page. Keying CTRL/H on any screen
causes the appropriate topic page (not necessarily the first of the topic) to be
displayed. From that page it is then possible to navigate forwards (or
backwards) through the pages of the topic, to go to the HELP index, or to
return to the screen that was in use. An index screen is shown: see Fig. 7.

732 ICL Technical Journal November 1989

IjMKTSIZE PD : 16 DEC 38
HELP for NUMEER OF BUYERS

This is the total number <N) of purchasers in this Segment,
over all phases.

It will be multiplied by the average number of purchases (K)
to form the total available market (8) for ICL and its
competitors.

As this system allows easy aggregation of segments, the segment
should be chosen such that N is a viable number, possibly in
the range 50 - 300.

Press SEND to return t ,

Example: The segment consists of 120 large local authorities that could
each buy between 5 and 10 office automation departmental systems. He
enter 120 in this field, and set K at around 7.

Fig. 6 A FIELD HELP SCREEN FOR MLCMENU

i;.! CAPS - GENERAL HELP

Table of Contents

I Table of Contents 20 Market life Cycle
3 Scope of the CAPS system 22 ICL Target market share

24 Innovators/Qpinion leaders
5 Navigation

£6 Perceptual Axes
7 Item level HELP £7 Perceptual Map interpretation
9 General-'Context HELP

28 Efficiency Frontier
II Starting a new Segment 29 - Competitor price buildup
13 Retrieving a previous Seg 30 - Frontier interpretation
lb Segment definition 31 - ICL offer description
13 Competitors

more...,

Return R, Index I, Topic nn or nn.n, Back E, Continue ,
Fig. 7 A SUPERHELP INDEX SCREEN

ICL Technical Journal November 1989 7 3 3

Again, the principle that no programmer effort should be needed to maintain
or update the super help system is applied. The CAPS system authority can
maintain two wordprocessor files, one the pages of the help text and the
other a list of CAPS screen names and associated topic numbers. Two utility
programs can then be invoked to update the CAPS system with this data.

4.4 On-screen display of computed results

Most of the screens presented to the user require numerical input, on which
some kind of computation takes place. On a screen which is computationally
self-contained, it is general CAPS practice to display the result of the
computation on the screen and redisplay it to the user. He can then confirm
that his input is satisfactory, or can correct any error that the result has
shown.

An example of this kind is the “cost of ownership” screen, in which the user
enters a number of component costs, and possibly a discount percentage, and
sub-totals and totals are computed and displayed to him.

I.OWNERSHIP CAPS 02/08/89 13:54
DEMONSTRATION.10 COMPETITORS PRICES AND TCOO GROWTH - 4 qtrs
£K = = = = = = = = = = 1989 Q1 - 1989 @4
COMPETITOR 1 : MAXCQMM
Description: .PROJECT Q . Usage Life 4 years

Price per Periods Value Source ref. Cred.
Equipment S.P. L10 Lt . 10.0 LA .1,
Software OTLC .3 L1 . 3.0 LE .1,
Software ongoing ..25 .16 . 4.0 .C .Ij
Ongoing services - Equipt .1.5 .4 . 6.0 .D .1.

- Software support. .1 . . .
Professional services .3 .1 . 3.0 .E .1.
Training . L1
Other supplied products . .1 . . .
System discount .16 . .F .1.

SUBTOTAL - TCQP 23.4
Cust. o' heads - space . .1 . . .

- power and facilities . . 1
- communications . . 1 . . .
-staff .4 l2 . 3.0 .F .1.
~ other t j

TOTAL COST OF OWNERSHIP 1 " 31.4
To return to previous screen enter \ and SEND, or else SEND when complete

Fig. 8 OWNERSHIPMENU

A rather different kind of results display is used to display perceptual maps
and efficiency frontiers, marketing concepts which are based on estimates of
competitor performance on two parameters considered to be important to
the would-be buyer. Here the implementation problem is to construct an

734 ICL Technical Journal November 1989

adequate graphical display given the limitations of character terminals - the
following screens show examples of a perceptual map and an efficiency
frontier which are in practice found to be perfectly adequate.

IjPM CAPS 08/02/89 13:50
DEMONSTRATION.10 PERCEPTUAL MAP GROWTH - 4 qtrs
£K = = = = = 1989 Q1 - 1989 04

FUNCTIONALITY Key:
78+ I = IDEAL

I A = ICL
C l E = MAXCOMM

I C = TRUECOMM
I I D = ABC

62+
A I

D I
h--------------------- +----------1---------- 1--------------------- + KNOWLEDGE OF
1 3 1 5 7 BUSINESS

46+I1
B
I
I

30+

Enter < to modify perceptions; I,G,M or D to copy to another phase;
> to proceed to the efficiency frontier; or 'blank' to go to menu....L>j

Fig. 9 A VME-TERMINAL PERCEPTUAL MAP DISPLAY

5 Future enhancements

At the time of writing (May 1989) CAPS provides the marketeer with all the
facilities implied by the options listed in the main menu shown in section 4.1,
which is essentially the mechanisation of the numerical processes associated
with the assessment of ICL and competitor comparative performance, and
the consequent market share and contribution to the company’s Profit &
Loss account. This represents only a first phase of a Marketeer’s Workbench
- an important next stage is the integration of CAPS and intelligent
(“expert”) word processing, with access to company databases of marketing
data, to ease and simplify the production of marketing documents such as the
Market Requirements Statement.

Attention is being directed also to other delivery vehicles. Much of the initial
use of CAPS has been made with OPDs and a VME service located at ICL’s
Beaumont education and training centre; the use of more up-to-date local
computers and workstations is being investigated. This would give indepen­
dence from distant mainframes and communications links, except when some

ICL Technical Journal November 1989 735

j_,EF CAPS 88/02--39 14:01
DEMONSTRATION.̂ EFFICIENCY FRONTIER GROW- - 4 qtrs
iK ============== 1989 qi - ,989 Q4
FUNCTIONALITY ICL E.F. TCOO: 31.0; tactical range 27.5 to 22.3

'V I A ,
COOT

I . c
1 . Key:

I A = ICL
210+ . . E = MAXCOMM

! A TRUECOMM
D . . D = ABC PLC

140+
I . B
I
i . . I = IDEAL axis

70+
I
I
I .

01------- +-------- +-------- +--------+---------+-------- +
0 3 6 9 12 15 13 KNOWLEDGE OF BUSHES

Enter < to select another phase, or leave blank to continue: L ,
Fig. 10

kind of database access was required, and would allow the generation of
much more sophisticated graphical output.

Acknowledgements

Developing CAPS has been a somewhat iterative process, in which an initial
trial release was made when only a few facilities had been implemented, with
subsequent releases as facilities were amended or added. These partial
versions have been used in Applied Marketing workshops over a period of
about a year. Our thanks go to:

Colin Simmons, who has acted as facilitator during the workshops, as the
principal channel for bug information and has been the “expert” responsible
for the mass of “help” data built into the system

John Knott, who now manages the project on behalf of MD&T and whose
persuasiveness has guaranteed the funding for the development work

Harvey Dodgson, who provided the seedcorn money for the prototype and all
the members of the ICL Marketing Council, who have continued its funding.

736 ICL Technical Journal November 1989

The Knowledge Crunching Machine at
ECRC: A Joint R&D Project of a High

Speed Prolog System
H. Benker, M. Dorochevsky, J. Noye, B. O’Riordan*, A. Sexton, J.C. Syre

ECRC - European Computer-Industry Research Centre GmbH, Arabellastr. 17 D-8000
Munchen 81, West Germany

Abstract

The KCM (Knowledge Crunching Machine) system provides a fast and
user-friendly Prolog environment catering for both development and
execution of significant Prolog applications. It consists of the high
performance back-end processor KCM, coupled to a UNIXf desk-top
workstation. The most salient aspects of its hardware and software are
presented here. Some early benchmark results obtained on prototype
machines show that KCM compares favourably with other dedicated
Prolog machines and available commercial systems running on fast
general purpose processors. It runs at a peak speed of 833 Klips (Kilo
Logical Inferences per Second) on list concatenation.

1 Introduction

KCM (Knowledge Crunching Machine) is a research project carried out at
ECRC, the joint research centre of ICL, Bull, and Siemens in Munich, from
1987 to 1989. The main objective of this project was to develop of a high-
performance Prolog processor system.

The KCM system is designed as a single user, single task high-performance
back-end processor which, coupled to a UNIX desk-top workstation,
provides a fast and user-friendly Prolog environment catering for both
development and execution of significant Prolog applications.

KCM is a follower of two former projects in 1985 and 1986, investigating
different methods to design and connect a dedicated Prolog engine to a host
machine. These projects, called ICM3 and ICM4, led to the design and
simulation of two different architectures (a tightly coupled co-processor, and
a stand alone, RISC-like system). These designs were implemented on a CAD
system, and were simulated at the component level. An appropriate set of

*ICL Bracknell, Future Systems Technology, Lovelace Road, Bracknell RG12 4SN, England.
tU N IX is a registered trademark of AT&T.

ICL Technical Journal November 1989 737

software was written to produce microprograms, and executable object code
from the Prolog high level language (compiler, assembler,...). The evaluation
results appeared to be promising enough to go ahead with more ambitious
objectives. At that time, ICM3 was shown to deliver an average performance
one order of magnitude higher than available Prolog software systems (BIM,
Quintus, or IF Prolog), and a peak performance of 450 Klips (kilo inferences
per second), equivalent or better than all other Prolog hardware systems.

In February 1987, the decision was made by the shareholder companies to
pursue the research with an actual implementation of a slightly different
system that would connect to each of the shareholder UNIX workstations,
and whose performance objectives would be equivalent to ICM3 or higher.
The original aim defined KCM as a research project leading to three running
prototypes entirely developed at ECRC in 1988, and to the delivery of
around 50 pilot systems, manufactured by Siemens, and delivered by each
company to selected users of their choice. The project was viewed as a truly
integrated project, where Bull, ICL and Siemens would play a significant role
during the research and development phases, and a more crucial role in the
final steps of manufacturing and delivering the pilot systems.

At ECRC the project was made possible by the close teamwork of more than
ten people in the Computer Architecture Group led by Jean-Claude Syre. In
addition to the authors themselves the following people have also been
working as full time researchers on the KCM project: Jean-Michel Beacco,
Sylvie Bescos, Lindsay Errington, Thomas Jeffre, Anita Pohlmann, Bruno
Poterie, Olivier Thibault, and Gunter Watzlawik.

The KCM project has continuously received assistance and support from the
Logic Programming Group of ECRC. Special thanks are due to the team in
charge of the Sepia Prolog system, and particularly Micha Meier for his time
and expertise in all software aspects of advanced Prolog implementations.

Outside ECRC, numerous people in all three shareholder companies have
contributed to the success of the project. There has been joint development
work with Bull/GIPSI, Siemens and ICL for the KCM interface boards. The
memory boards were jointly designed by ECRC and Siemens, and were
manufactured at Siemens. The host-specific software was developed by
Bull/GIPSI, and tuned by people of each company for their particular
workstation. At Siemens in Munich, a team of four people, led by Walter
Woborschil and Peter Stock, has been working since October 1988, to
prepare the integration of the KCM machines at the factory in Augsburg.

We acknowledge the invaluable support of Bill O’Riordan of ICL, Chairman
of the KCM Project Board, created in early 1988 to manage and control the
development of the project and the relationships among the companies. The
KCM Board has provided the technical team at ECRC with important
technical and managerial decisions and has played a key role in the final
phases. The KCM Project could not have reached its current state without

738 ICL Technical Journal November 1989

the strong backing of Peter Mueller-Stoy, head of the SYS department at
Siemens Perlach, and Owen Evans of ICL Bracknell. Thanks are due too to
the people in Bull who gave their support to the project: Frangois Salle,
Frangois Anceau, and Peter Chan.

So far four prototype machines have been built. Operational since July 1988,
they have been tested and used at ECRC and Siemens. At the time of writing
of this paper (mid 1989) a full software environment is nearing completion.
At the Prolog level, this environment KCM-Sepia is based on Sepia
[Meier89 1989], a second generation Prolog system also developed at
ECRC.

The shareholder companies will deliver 50 KCM pilot systems, manufac­
tured and integrated by Siemens, at the end of 1989. Moreover, a Support
Group has been set up to complete the KCM systems with the appropriate
documentation, to provide their hardware and software maintenance, and to
start possible further developments. It is located at ECRC, and staffed with
people from all three shareholder companies. Headed by Thomas Jeffre, the
Support Group comprises Hans Johnen, Stefano Novello, Jonathan Price,
Karl-Heinz Seidel, and more people to come in 1989.

The paper is organized into several sections. Section 2 introduces the main
features of the KCM system architecture. Section 3 explores the different
hardware components of the KCM engine, and section 4 describes the
software architecture, and its different elements. Section 5 presents evalu­
ation results, and section 6 gives some conclusions about the KCM project, a
truly collaborative work between Bull, ICL, Siemens, and their research
centre, ECRC, and also an illustration of a fruitful cooperation among
people of different European countries for their mutual interest and benefit.

2 System architecture

2.1 A back-end processor

KCM is a back-end processor connected to a UNIX host rather than a
stand-alone workstation like PSI [Nakashima and Nakajima 1987] or a
coprocessor like X-l [Dobry 1987],

The stand-alone approach was discarded because it requires the develop­
ment of much peripheral hardware and the associated software. Also, in
order to use existing applications (e.g. databases, window manager) it is
necessary to port a standard operating system with its complete environment
to the machine.

In the co-processor approach, sharing the data between the host and the co­
processor requires identical data formats on both processors. This would be
a non-optimal architectural compromise for at least one of the processors. It
also means sharing the memory bandwidth between the two processors,

ICL Technical Journal November 1989 739

which we considered to be unacceptable as far as the performance require­
ments were concerned.

As a consequence KCM is equipped with its private memory and runs its
own operating system in an environment as shown in Fig. 2.1. The cost to be
paid for the loose coupling to the host are some limitations on the
granularity of host-KCM interactions.

_̂___________________LOCAL BUS___________________ ^

! HOST INTERFACE WITH ; PRIVATE j I KCM I
COMMUNICATION MEMORY ! !

[MEMORY ! |

HOST BUS

Fig. 2.1 The KCM system

So far, the hosts considered for the pilot systems are: ICL’s PWS (Intel 386
based),Siemens’ MX-300(NS 32032) and BULL’S DPX-1000(M68020),also
host of the prototype systems.

2.2 Performance, flexibility and functionality

A straightforward way to provide performance is to hardwire the “WAM”,
an abstract instruction set defined by D.H.D. Warren that has become the
most widely accepted implementation technology for Prolog [Warren 1983].
This has been the approach taken by PLM [Dobry et al. 1985] and X-l
[Dobry 1987]. This drastically limits the functionality and flexibility of the
machine. For instance, it provides neither basic facilities like simple arithme­
tic nor the mechanisms necessary to implement a complete Prolog runtime.

This has been overcome in PSI by implementing a number of basic built-in
predicates in microcode. However good the microprogramming environ­
ment is, this is bound to raise maintenance problems and is difficult to
upgrade.

Much care has been taken to keep the design of KCM as flexible as possible.
High-level instructions, the Prolog Instruction Set, implement the basic
Prolog mechanisms (unification, backtracking, indexing ...). These instruc­
tions define an enhanced version of the WAM, adapted for implementation
in hardware. Low level RISC-like instructions constitute a general purpose
instruction set, the Basic Instruction Set, used to implement the functionality
that the standard WAM does not provide. These instructions are in no way
tied to Prolog and make it possible to efficiently implement on KCM other
languages, e.g. Lisp or even C. To facilitate such implementations, the kernel
of KCM (providing I/O and memory management functions) and the low-
level code generation tools are language independent. As a result, though

740 ICL Technical Journal November 1989

KCM is dedicated to Prolog, it is not restricted to Prolog and can be seen as
a tagged general purpose machine with support for logic programming.

KCM has been designed not only to execute significant applications, but also
to take advantage of its high performance for development purposes. KCM-
Sepia provides the standard Prolog development facilities, i.e. an incremental
compiler and a powerful debugger.

It also includes advanced Sepia features, such as a sophisticated module
system, coroutining and event handling.

3 Hardware architecture of KCM

3.1 Technology

Physically the KCM system consists of three boards: the processor board,
the interface board and the memory board. All three together fit in a
workstation cabinet. The processor board has a size of 30 x 50 cm, whereas
the other boards are standard double-Europe format.

For the implementation of the KCM processor board we chose to use off-
the-shelf technology. Most of the glue logic is implemented in 74AS and 74F
series of chips and fast PALs (Programmable Array Logic). The core of the
CPU is built around the AMD29300 series of 32-bit components. In
addition two 1-5 pm CMOS ASIC chips are used to comply with the
restrictions in board space.

SMD technology with components mounted on both sides is used for the
memory board. One such board holds 32 MBytes, parity and the on-board
RAM controller. This is currently implemented with 1 Mbit chips, but the
layout of the board is compatible with the use of 4 Mbit chips to obtain
128 MBytes. Up to two such boards can be used with KCM.

3.2 Block diagram of KCM

The hardware architecture of KCM is based on the Harvard architecture, i.e.
it has two separate access paths to memory, one for code and one for data.
There are two independent caches, but physical memory is shared between
code and data. KCM shares this property with most RISC architectures as
well as some of the recent CISC designs (e.g. Motorola 88000 and 68030).

KCM is an entirely synchronous machine, controlled by a single central
control unit with a cycle time of 80 ns. Its microcoded operation allows rapid
change of control flow which is essential for an efficient implementation of
logic programming.

Operated by the control unit, the execution unit and the prefetch unit
perform the actual execution of the programs. Each of those units is

ICL Technical Journal November 1989 741

connected to its own cache. The prefetch unit is closely linked to the code
cache from which it prefetches instructions. Those instructions are then
executed in the execution unit, which accesses data in the data cache.

Both prefetch and execution units are directly connected to their respective
caches, i.e. there is no address translation involved in accessing the caches.
The memory management unit translates the virtual addresses to physical
addresses only when physical memory is accessed on a cache miss. Neverthe­
less it verifies the access rights, based on virtual addresses, for every access to
the data cache.

The block diagram of KCM in Fig. 3.1 shows how the different units are
connected together. All major buses in the machine are 64 bits wide to
transfer a complete word, including tag and value in a single cycle.

The WAM model of computation supposes tagged data words, i.e. a basic
entity consists of a value plus an additional tag field that gives information
on its type. As in SEPIA a length of 32 bits for each tag and value was
chosen, leading to a word length of 64 bits.

Now we can summarise the major characteristics of KCM:

• 64-bit tagged architecture
• conventional technology (TTL/CMOS) plus two CMOS-ASICs
• microcoded control
• 80 ns cycle time
• separate logical code and data caches, 8K words each
• private memory (32 Mbytes on one board)
• hardware support for the basic Prolog mechanisms (indexing, unifica­

tion, backtracking)
• verification of access rights to virtual addresses
• 4 Mbytes of dual-ported memory for communication with the host (on

the interface board).

3.3 The CPU

3.3.1 Basic data manipulation: Source and destination of all data manipu­
lation instructions are registers in the 64 x 64 bit register file. As with RISC
processors there no instructions to directly modify a memory location.

The instruction format of KCM allows specifying four addresses: two source
and two destination registers. Figure 3.2 shows how this can be used to
perform two register moves in one cycle: data are output on the buses ABUS
and BBUS. They are transferred via the ALUs ALU_C and ALU_D and
written back to the register file on the buses CBUS and DBUS respectively.

For arithmetic and other data manipulation the ALU D, the FPU, or the
TVM are used: the ALU_D supports 32-bit integer arithmetic; the FPU

742 ICL Technical Journal November 1989

--------------------, CONDITION CODE ---------------------
CONTROL ■* OFFSET EXECUTION

UNIT |BUS * UNIT

CBUS

PREFETCH ABUS_________
U N I T __________ DBUS

PBUS |---------

CODE f DATA
CACHE CACHE

I PBUS R B u i |

----- ̂ r-----
MMU

I
LOCAL BUS

Fig. 3.1 KCM top level architecture

implements floating point arithmetic on 32-bit IEEE format; and the Tag
Value Multiplexer TVM is a unit to do basic operations on 64-bit words and
thus make the tag part of a word accessible.

3.3.2 M e m o r y access: KCM supports three addressing modes: direct, pre­
address calculation and post-address calculation. All addressing modes allow
address computation in a single cycle. As on a RISC processor no complex
addressing modes that require microcoded calculation of the address are
supplied.

The direct addressing mode uses an instruction format that supplies an
absolute address of a memory location and a destination or source register
for a load or store operation respectively.

The pre- and post-address calculation instructions use an instruction format
with three register numbers and a signed 16-bit offset. The registers are:

• Ras - address source register
• Rad - address destination register
• Rds - data source register for store instructions
• Rdd - data destination register for load instructions.

The 16-bit offset is added to the contents of Ras and the result stored in Rad.
The cache is either addressed with the original address in Ras (pre-address
calculation) or the address that gets written into Rds (post-address calcula­
tion).

These addressing modes allow implementation of stacks that grow in either
direction. Pre-increment, post-increment, pre-decrement, post-decrement, as
well as an offset from the top of the stack are all supported.

ICL Technical Journal November 1989 743

3.3.3 Support for Prolog: An important feature of logic programming is
unification, a kind of two-way pattern matching. To efficiently support
unification it is essential to rapidly test the types (tags) of two objects stored
in the register file and to take appropriate action. In KCM this is
implemented using a 16-way branch facility in the microcode.

One of the characteristics of unification is to often create chains of pointers.
KCM allows following such chains of references (dereferencing) at the rate of
one pointer per cycle.

Prolog execution relies heavily on backtracking. This is a mechanism not
known in conventional programming languages that allows coming back to
the state of computation at a certain point and trying alternative solutions if
the preceeding attempts failed. The high memory bandwidth of KCM allows
saving and restoring of the state of computation in a minimum number of
cycles.

KCM has special hardware support to determine at what point of the
computation it is unavoidable to save the state. Using these techniques
known as shallow backtracking and delayed choice point creation much of the
saving and restoring overhead is avoided.

For more details refer to [KCM 1989].

IBUS

[. L — RAC |
i 1 ' B I [

!] /ii\ !
_________ [I I

I I I OFFSET

---- |jxjji ----- _ -----
H r ~t—t—1 r
RAD RDD

REGISTER FILE
RAS RDS TRAIL PSW

OFSBUS ABUS BBUS CONDITION CODE

\ aLUc 7 \ aLLLd/ \F P i j7 ^ MWAC
CBUS Idbus 1 I ______________

TO MEMORY SYSTEM

Fig. 3.2 The execution unit

744 ICL Technical Journal November 1989

3.4.1 The caches of KCM: Each of the two caches in KCM has a size of
8K x 64 bits. The line size in both caches is one.

Prolog shows a much higher rate of writes to memory than conventional
programming languages. Therefore it is important that the data cache be a
store-in cache which only accesses memory when a cache miss occurs. On the
other hand, almost all accesses to code are read operations and therefore it is
affordable to design it as write-through cache, i.e. each write to the cache will
also cause a write to main memory.

The standard WAM uses three stacks and KCM-Sepia uses up to seven
different stacks. Simulations showed that for accesses to data an associative
cache does not much improve performance as long as it is ensured that two
stacks do not compete for the same cache locations at any one time. As a
result the data cache of KCM is split into eight sections of 1K x 64 bits. Each
of these sections is allocated to a particular stack and therefore collisions
between different stacks are avoided.

3.4.2 Check of access rights at the logical level: Both caches are directly
connected to the CPU and are accessed using virtual addresses. The address
translation mechanism of the MMU is not accessed in that case, which
prevents it from using its page tables to determine whether an access is valid
or not. However, the MMU has the capability to watch the accesses to the
data cache and check their validity without access to the normal page tables.

This security mechanism protects the machine against stack overflows and a
number of software errors. Amongst other things it also verifies the type of
the address. If, for example, an attempt is made to use a floating point
number as an address, a trap will be generated.

4 Software architecture of KCM

The basic software architecture design of the KCM system was driven by the
goal to provide a fully interactive programming environment suitable both
for development and execution of large Prolog applications. This requires:

• on KCM: a complete Prolog system
• on KCM and the host: software to connect the Prolog system to the

outside world (keyboard and screen, file system, secondary storage, etc.).

An implementation of the Sepia (Meier89 1989] Prolog system, called KCM-
Sepia, runs on KCM. Sepia (Standard ECRC Prolog Integrating Advanced
Applications) has been developed at ECRC within the Logic Programming
Group for standard UNIX based workstations. Users of KCM-Sepia work
with a system that is fully equivalent to Sepia but gain a significant Prolog
performance speed-up.

3.4 The memory system of KCM

ICL Technical Journal November 1989 745

Prolog System Software

Kernel *"CM

KCM Emulator KCM Hardware

KCM Interface Software
----------------------- 1 I----------- ------------ 1 on

Host

' ” ” ~ I (MPS \ I Prolog Batch
Loader Agent Server j Compiler

|-' Monitor Agents j | TTY Agent [| Assembler

Symbol Server Agent File Agent Linker

Software Development Remote Servers Software
and Debugging Tools Generation Tools

Fig. 4.1 KCM software architecture

Figure 4.1 shows the different components of the KCM software.

The KCM-Sepia Prolog system constitutes the upper layer of the software on
KCM. The whole Prolog system resides on KCM and no interaction with
the host occurs during Prolog execution except for OS operations such as
I/O, paging, etc. The lower software layer on KCM, the kernel, carries out
OS tasks, essentially memory management including paging, communication
from and to the host, file and terminal access. The Prolog system is
completely separated from the kernel and uses system calls to access kernel
resources.

The central software component on the host is the message passing system
(MPS). A set of separate processes running on the host communicate to each
other and to KCM or provide services to KCM. These processes, called
agents, connect to the MPS and communicate to KCM either via messages
or by DMA under control of the MPS.

One of these agents, the KCM emulator, allowed validation of the abstract
machine and testing of major parts of the system long before the hardware
was available. It is still used to gather execution profile statistics for
evaluation and as a replacement for the KCM hardware.

Software development and debugging is made possible by a loader and
several monitor agents which are used to down-load a single program or the

746 ICL Technical Journal November 1989

kernel and to debug the system at different levels: microcode, macrocode or
Prolog level. Symbolic debugging is supported by a symbol server agent.

The fundamental remote servers for KCM are the file and tty agents. They
handle remote file and terminal I/O operations.

Besides the software connected to the MPS, a whole chain of software
generation tools has been developed on the host system: a Prolog batch
compiler, a preprocessor, a sophisticated macroassembler, a linker and other
debugging tools.

4.1 Prolog s y s te m

Sepia is a second generation, fully incremental Prolog system. New Prolog
procedures and already compiled ones can be dynamically added or replaced
using the incremental Prolog compiler. Sepia compares favourably in
performance to other commercial Prolog systems and exceeds them in
functionality and capability. On top of a classical Prolog system it offers
some particularly interesting features:

• a sophisticated module system
• delayed goal execution (coroutining)
• asynchronous and synchronous event handling.

Delayed goal execution may be used to significantly increase the performance
in generate and test problems and can preserve completeness by avoiding
infinite loops. Asynchronous and synchronous event handling is provided with
the goal to support real-time applications. Events may be signals (interrupts)
or errors (incorrect argument of a built-in predicate). On top of the asynchro­
nous event handling of Sepia a powerful windowing interface has already been
integrated. Sepia’s procedure based module system allows structuring of large
applications, supports privacy and information hiding but remains transparent
to non-modular applications when put in a unique module.

Functional differences between Sepia and the KCM-Sepia are limited to
cases where the back-end processor architecture forbids a direct mapping of
the Sepia functionality. Tight connections to C functions on the host or to
other processes via pipes cannot be provided for free as on a single UNIX
machine. A remote procedure call mechanism will nevertheless allow loose
coupling to server agents on the host.

However, there are differences in implementation between Sepia and KCM-
Sepia. The logical structure has been kept basically the same, but parts of
Sepia, which for efficiency reasons are implemented in C, have been directly
written in Prolog for KCM-Sepia. This approach costs less development
effort without affecting performance given that efficient Prolog execution is
guaranteed on KCM. Typical examples are the incremental Prolog compiler
and the Prolog reader and writer.

ICL Technical Journal November 1989 747

A clear separation between the Prolog and runtime layer is maintained in the
KCM-Sepia Prolog design. At system load time the Prolog layer is loaded
dynamically by the runtime layer which gives full flexibility for incrementally
extending the Prolog system.

4.1.1 Prolog layer: The Prolog layer consists of an incremental compiler, a
debugger and about 300 built-in predicates. The incremental Prolog com­
piler running on KCM corresponds basically to the batch compiler residing
on the host. It is a procedure compiler with the following features: indexing
on up to 2 arguments, source to source transformation of meta predicates
like if-then-else, or and negation by failure and inline compilation of simple
arithmetic or type testing predicates. The debugger is an extended 4 port
debugger which fully handles delayed goals. Most of the built-in predicates
are implemented in Prolog, only a small number had to be hand-coded in
KCML (KCM assembler).

Once the kernel is running on KCM, bootstrapping of the Prolog system
requires the batch compiler to be present on the host and the incremental
Prolog loader in the runtime layer. Prolog compiled on the host is assembled
to a binary object file. The kernel, responding to a keyboard request, loads
the essential core of the Prolog runtime system. The Prolog loader, part of
the Prolog runtime, loads the generated binary object files and inserts the
Prolog code on a procedure by procedure basis into the runtime structures.
Loaded Prolog procedures behave the same as incrementally compiled ones.
It is therefore possible to keep parts of the Prolog system or additional
Prolog packages under binary object form on the host. This has the
advantage that the system does not need to be recompiled each time it is
booted and that the Prolog sources can be kept away from the end user.

4.1.2 Runtime layer: The runtime layer is the core of the Prolog system. It
maintains the Prolog runtime structures which are the dictionary, the library
and the property lists and provides the incremental Prolog loader. The
dictionary contains the atom table and the library the procedure table and all
module information. The Prolog term database and the global variables and
arrays predicates are based on the property lists.

The Prolog runtime is implemented in KCML using a powerful preprocessor
which allows use of basic control structures of procedural languages like if-
then-else and while-do constructs.

4.2 System software

4.2.1 KCM kernel: The presence of the RISC-like instructions of the Basic
instruction set have made possible the implementation of a conventional
style operating system that provides features such as system calls, I/O
services, signal/exception delivery, debugging facilities, memory manage­
ment, paging, etc. Care has been taken in designing the operating system to

748 ICL Technical Journal November 1989

allow the implementation of different language systems such as Lisp or C as
well as Prolog.

Although the kernel does not provide multiprocessing facilities to user level
programs, the kernel multiprocesses itself in the form of a collection of
lightweight processes in order to avoid useless waiting until I/O requests can
be completed.

KCM has no peripherals of its own beyond access to a real time clock and
4 Megabytes of dual ported memory, the other side of which is accessible
from a host UNIX workstation. Thus KCM acts as a disk-less, terminal-less
machine with I/O operations supported through a remote file system and a
remote terminal system.

4.2.2 Host software: The UNIX host kernel contains a small driver to
support delivery of interrupts from KCM to a user process on the host and
mapping of the dual ported interface memory into the address space of user
level processes on the host. Aside from this driver, all host code for dealing
with KCM operates in user level in order to facilitate the connection of KCM
to different host machines.

A message passing system on the host is provided to allow a number of
processes to communicate with each other. Agents can be dynamically added
and removed from the system and message transfer can have blocking or
non-blocking semantics as and when required. This message passing system
is broadcast based with message filtering to reduce overheads. The fact that it
is broadcast based allows connection of a monitoring agent at any time that
monitors all, or some subset of, the message traffic to assist in debugging and
development. Messages consist of a 48 byte fixed length header and an
optional variable length body with a maximum length of approximately
4 Kbytes.

4.2.3 Communication between KCM and the host: There are two modes
for communication between KCM and the host software. The first mode is
used for initial booting of the operating system on KCM and for testing and
debugging of KCM at the microcode and hardware levels. In this mode it is
presumed that there is no kernel running on KCM. An agent wishing to
communicate (such as a monitor or a loader for stand alone binary files)
broadcasts their appropriate requests that are accepted and handled by a
hardware access manager agent (HAM). HAM knows how to do low level
operations such as starting KCM’s clock, loading microcode, stepping
through macrocode and accessing internal registers and memory.

In the second mode HAM is no longer necessary but instead requests are
handled by a kernel control agent (KCA). This agent knows only a protocol
for forwarding messages from KCM into the message passing system and
vice versa. This is the only agent that handles host interrupts generated by
KCM and that causes interrupts on KCM from the host. If an agent such as

ICL Technical Journal November 1989 749

the remote terminal handler or the remote file handler has data to be
delivered to KCM then the kernel on KCM will send a message to the agent,
via KCA, telling it to begin a DMA operation and giving it a physical
address at which to begin transfer to. While waiting for the operation to
complete, the KCM kernel can continue with other work (letting the Prolog
system continue if possible, if not then calculating and starting read ahead
operations or memory reorganizations, etc.). When the remote agent has
finished the operation (successfully or unsuccessfully) then it sends a message
to KCM giving the completion status and the KCM kernel can continue.

KCA and HAM together form the KCM interface software referred to in
Fig. 4.1.

5 Evaluation

Table 5.1 compares the peak performance of a number of major Prolog
machines, CHI-II [Habata et al. 1987], DLM-1 [Pudner 1987], IPP
[Kurosawa88 1988], AIP [Kawakita et al. 1988], KCM, PSI-II [Nakashima
and Nakajima 1987] and X-l [Dobry 1987]. The first figure gives the
performance of the machines on list concatenation, the second on the naive
reversal of a list. Both figures are standard figures used to assess the peak
performance of a Prolog machine.

Table 5.1 Comparison with other dedicated Prolog machines

Machine By Klips Word Comment

CHI-II NEC C&C 490-? 40 Back-end - multi-processing
DLM-1 BAe 800?-? 38 Back-end - physical memory
IPP Hitachi 1360-1197 32 Integrated in super-mini (ECL)
AIP Toshiba ?-620 32 Back-end
KCM ECRC 833-760 64 Back-end
PSI-II ICOT 400-320 40 Stand-alone multi-processing
X-l Xenologic 400? 32 SUN co-processor

Except for IPP, which is implemented in ECL (20 ns cycle time), DLM-1 is
the only machine which is claimed to reach the same level of performance as
KCM. However, DLM-1 is, to our knowledge, far from providing the
flexibility and the functionality of the KCM software environment.

Of course, KCM provides much more performance than high-end work­
stations. Table 5.2* compares the results of KCM and Quintus 2.0, one of the
best commercial systems, running on a SUN3/280 workstation (M68020
25 MHz, FPU 20 MHz, 16 Mbytes of main memory). On this standard
benchmark suite, initially used to assess the performance of PLM [Dobry et

*The holes in the table correspond to programmes which were too small to get significant
results.

750 ICL Technical Journal November 1989

al. 1985], the ancestor of X-l developed at U.C. Berkeley, KCM is, on
average, almost eight times faster. Further details were reported in a previous
paper [KCM 1989].

Table 5.2 Comparison with QUINTUS|SUN

Benchmark QUINTUS KCM Q/KCM

Program Inferences ms Klips ms Klips ms/ms

coni* 4 0006 666
con6* 12 0046 261
divide 10* 20 0-090 222
hanoi* 767 11-600 66 1-264 607 9-18
log 10* 12 0-039 308
mutest* 1365 41-500 33 4-644 294 8-94
nrevl* 497 3-300 151 0-649 766 5-08
ops8* 18 0-058 310
palin25* 323 9-330 35 1-220 265 7-65
pri2* 1233 30-500 40 5-239 235 5-82
qs4* 610 11-000 55 1-315 464 8-37
queens* 657 9010 73 1-182 556 7-62
query* 2888 128-170 23 12-605 229 10-17
times 10* 20 0-081 247

average 7-85

It is clear, that this gap is bound to be lowered (but not filled) with the new
generation of very fast RISC chips. For instance, Applied Logic Systems
(renowned for its very fast implementations of Prolog, using native code
compilers) claim that they will reach 500 Klips on the 25 MHz Motorola
88000. In terms of average performance, we assess that KCM will still be at
least three times as fast, although it was built using technology that is already
outdated. Interestingly, both machines use a Harvard architecture and
provide about the same memory bandwidth. Obviously, the micro-parallel­
ism and the tagged architecture of KCM make better use of the available
bandwidth.

Note also that there is still room for improvement by using faster chips,
especially on the critical data paths. Using such techniques, one of the
prototypes can run with a 60 ns cycle, leading to more than 1 MLips peak
performance. We assess that, with only slight architectural changes, this
figure could be easily multiplied by 3 by using up-to-date integration
techniques. This figure stems from a fine-grained evaluation of the architec­
ture, currently in progress, which aims at precisely determining the improve­
ment brought to the overall performance of the machine by its different units
and features.

It is still too early to comment on the behaviour of the system when
developing programs or executing highly interactive programs. However,
considering the effectiveness of currently available networked file or graphic

ICL Technical Journal November 1989 751

servers and the attention brought to KCM-Host communications, good
speed-up are expected in these cases too.

As for developing the system itself, the availability of the message passing
system has made facilities possible that would not have been feasible
otherwise: the whole connection to KCM via HAM and KCA can be
replaced by an emulator agent to assist in debugging. Although the emulator
only emulates the machine down to the macrocode level and not to
microcode it has still provide a workable environment for development and
debugging when there were not enough hardware machines available.

6 Conclusion

KCM has effectively demonstrated that appropriate hardware support of
basic logic programming mechanisms could break the 1 MLips barrier,
revealing the limitations of current RISC architectures in very high-level
language support.

On top of this hardware platform, a complete Prolog environment has been
implemented, in order to demonstrate and evaluate the capabilities of the
KCM Hardware Engine used as a loosely coupled Prolog coprocessor to a
UNIX host.

As it stands, KCM provides a high performance, high functionality environ­
ment to develop and execute time and space consuming Prolog applications.

It is also a system open for improvement and further research (e.g. X-
Windows server on the host, implementation of constraints, implementation
of other languages such as Lisp or C, etc.).

Last, but not least, KCM has been (and will still be with the pilot machines
release and support) an exciting joint effort of ECRC and its three European
industrial shareholders, ICL, Bull and Siemens. A small but important
advance in European collaboration.
BOXT

References

DOBRY, TEP: ‘A Coprocessor for AI; LISP, Prolog and Data Bases. In: Proceedings of Spring
Compcon ’87, pages 396-402. IEEE Computer Society, February 1987.

DOBRY, T.P., DESPAIN, A.M. and PATT, Y.N.: ‘Performance Studies of a Prolog Machine
Architecture’. In: The 12th Annual International Symposium on Computer Architecture,
pages 180-190. 1EEE/ACM, June 1985.

HABATA, S„ NAKAZAK.I, R„ KONAGAYA, A., ATARASHI, A. and UMEMURA, M.: ‘Co-
Operative High Performance Sequential Inference Machine: CHI’. In: Proceedings of
ICCD’87, New York. 1987.

KAWAKITA, S., SAITO, M., HOSHINO, Y„ BANDAI, Y. and K.OBAYASHI, Y.: ‘An
Integrated Al Environment for Industrial Expert Systems’. In: International Workshop on AI
for Industrial Applications 1988, pages 258-263. IEEE Computer Society, 1988.

BENKER, H., BEACCO, J.M., BESCOS, S„ DOROCHEVSKY, M„ JEFFRE, TH., POHL-

752 ICL Technical Journal November 1989

MANN, A., NOYE, J„ POTERIE, B., SEXTON, A., SYRE, J.C., THIBAULT, O. and WAT-
ZLAWIK, G.: ‘KCM: A Knowledge Crunching Machine’. In: IEEE (editor), The 16th Annual
International Symposium on Computer Architecture - ISCA’89, pages 186-194. June 1989.

KUROSAWA, K., YAMAGUCHI, S., ABE, S. and BANDOH, T.: ‘Instruction Architecture for
a High Performance Integrated Prolog Processor IPP\ In: A. Kowalski and A. Bowen
(editor), Proceedings of the 5th International Conference & Symposium on Logic Program­
ming, pages 1507-1530. Hitachi Research Lab., August 1988.

MEIER, MICHA, AGGOUN, ABDERRAHMANE, CHAN, DAVID, DUFRESNE, PIERRE,
ENDERS, REINHARD, HENRY DE VILLENEUVE, DOMINIQUE, HEROLD,
ALEXANDER, KAY, PHILIP, PEREZ, BRUNO, VAN ROSSUM, EMMANUEL and
SCHIMPF, JOACHIM: ‘Sepia An Extensible Prolog System’. In: (editor), Proceedings of
IFIP Congress 89, pages . IFIP, August 1989.

NAKASHIMA, HIROSHI and NAKAJIMA, KATSUTO: ‘Hardware architecture of the
sequential inference machine: PSI-II’. In: Proceedings - 1987 Symposium on Logic Program­
ming, pages 104-113. IEEE Computer Society, September 1987.

PUDNER, A.: ‘DLM A Powerful AI Computer For Embedded Expert Systems’. In: R.P. van
de Riet (editor), Frontiers in Computing, pages 187-201. December 1987.

WARREN, DAVID H.D.: ‘An abstract prolog instruction set’. Technical Report tn309, SRI,
October 1983.

ICL Technical Journal November 1989 753

‘FLAGSHIP’ PROJECT

Aspects of protection on the Flagship
machine: binding, context and

environment

S Holdsworth, J.A. Keane, and K.R Mayes
Department of Computer Science, University of Manchester

Abstract

The Flagship machine is a distributed system in which declarative
language programs are evaluated using graph reduction. The system
software faces two problems: handling state in a declarative world and
sharing resources in a distributed world. In order to solve these
problems, the Flagship system software makes use of non-declarative
features. However, these features are implemented using mechanisms
which ensure consistency of shared state and of distributed resources.
Aspects of protection are provided by binding and context mechan­
isms, and there is an explicit protection domain defined by the
environment of a computation.

1 Introduction

Flagship is a collaborative research project between the University of
Manchester, Imperial College, London, and International Computers Lim­
ited (ICL). Its aim is to produce a complete computing system based on a
declarative programming style. The project involves three major areas. First,
the exploration of the relationship between different declarative language
classes and the programming environments for such classes. Second, the
design of a machine architecture for the execution of computations in parallel
and of low-level computational models that can serve as targets for
translations of higher-level language systems. Third, the design of a software
environment for the parallel machine. The long term aim of the project is to
combine ease and correctness of programming with significant increases in
computing performance which can be expected from parallel computer
architectures.

The Flagship machine has a distributed physical architecture: a set of
processor-store pairs coupled together by a high bandwidth delta network.
Programs are evaluated using graph reduction (Peyton Jones, 1987), a
technique originally used for evaluating functional programs and which
provides a computational model for declarative languages. Each node of a
graph is held in a uniquely addressed store location as a packet. Each packet

ICL Technical Journal November 1989 757

has a header which contains information about the nature of the packet, and
a body which holds items containing addresses of, or pointers to, packets, so
forming the arcs of the graph. Packet items may also contain base values
(Banach et al., 1988). Graph reduction on Flagship occurs as fine-grain
transformations of the graph; these transformations are called graph rewrites
(Watson et al., 1986). For a description of the evaluation of functional
programs using graph rewriting on the Flagship machine, see Watson et al.
(1987) and Watson and Watson (1987).

There are two problems associated with such a distributed declarative system:

- the resources of each processing element must be shared between pro­
grams running on that processing element in a way which is compatible
with the declarative approach;

- each program running on the distributed system must be able to use the
distributed resources in a way which is efficient and maintains consistency.

These two problems have motivated the approach to the Flagship system
software and to the execution mechanism which supports it.

The architectural style of the Flagship system as viewed by language users
and compilers is guided by the Programmers Reference Model (PRM). The
PRM aims to provide a common set of high-level concepts which can be used
by all languages and application environments, so that interworking between
applications and between software components constructed using different
languages is facilitated. Therefore, it must specify in abstract form a large
part of the user interface to the Flagship system software. The high-level
concepts chosen to be represented in the PRM are intended to enable
application programmers and designers to take a more abstract view of
application design than in third and fourth generation systems, so that the
cost of application development is reduced. The Flagship system software
has two responsibilities (Broughton et al., 1987):

- The provision of the PRM both on the target machine and on host
operating systems, such as UNIX (a trademark of AT&T Bell Laborato­
ries) and VME, the ICL Mainframe Operating System (Warboys, 1980).
This part of the system software consists of a “library” of system functions
on the machine in addition to functions provided by the host. The host will
also provide system management.

- The management of system resources and provision of a secure multi-user
environment. A great majority of these duties require support from the
hardware or underlying system and will be defined in the Implementation
Specific Interface (ISI) particular to the Flagship machine or UNIX/VME
host system.

Since the machine is designed to execute declarative languages efficiently and
to exploit the parallelism available, the system software is also implemented
using a declarative language. Moreover, system software has traditionally

758 ICL Technical Journal November 1989

been seen as a notoriously difficult area of software engineering prone to
both serious and numerous errors. Given the claimed advantages of declara­
tive languages their use should ameliorate, to some extent, these problems.

The functional language HOPE+ (Perry, 1987a) based on HOPE (Burstall
et al., 1981) was chosen as the language of implementation. There are various
approaches to implementing operating systems using functional languages
but in particular there are two features of operating systems that do not fit
naturally onto functional languages:

- State: operating systems control access to non-shareable resources by
guarding them with mutable variables which have a single instance in the
system; functional languages do not have the concept of updatable state.

- Non-determinacy: operating systems need to respond to non-deterministic
actions, e.g. the typing of a character at a keyboard; programs written in
functional languages do not naturally deal with such non-determinism.

There are two major approaches to modelling state in a functional language:
continuations (Perry, 1987b) and streams (Henderson, 1982). Non-determin­
istic behaviour, the ability to respond to events in the order in which they
occur, may be supported in a purely functional way by adding information to
represent the passage of time (e.g. the hiatons approach of Wadge and
Ashcroft, 1985). Other approaches are “almost” functional: adding a non-
deterministic stream operator, merge (Henderson, 1982), which receives two
input streams and nondeterministically interleaves them into one output
stream (for a survey of these issues see Jones and Sinclair, 1989).

The Flagship approach is that it is considered both more natural and more
efficient to express the behaviour of operating systems using a collection of
state variables that are updatable over the course of time, and whose value at
any instant represents the state of the computation at that instant (Banach et
al., 1988). The unit of abstraction, design and decomposition for the system
software is the Flagship Abstract Data Type (FADT) (Leunig, 1987, 1988;
Boddy, 1988). In the general case, an instance of an FADT holds a state
variable accessed via a mechanism which has properties similar to the non-
deterministic merge operator.

The present paper examines the declarative and non-declarative aspects of
the system software, particularly from the point of view of protection and
binding. The paper considers the implementation of FADTs at three levels of
abstraction: the execution mechanism level; the PRM (user interface) level;
the system software level. In particular the lowest, kernel, level of the system
software is considered. Mechanisms for binding and for protection are
considered at each level. A binding mechanism (the Static Copy Environment
Table (SCET)) is introduced which enables efficient local access to code and
data, and provides a protection context analogous to a capability list. This
mechanism can be used in a purely declarative fashion and may be
generalised to handle non-declarative features cleanly and efficiently.

ICL Technical Journal November 1989 759

A subset of the kernel has been implemented on the Flagship emulator,
which consists of sixteen processing elements (Townsend, 1987), at ICL, West
Gorton. However, many of the ideas relating to SCETs and protection
discussed in this paper are not supported in that initial prototype.

2 The Flagship basic execution mechanism

In order to discuss the approach taken to the system software it is necessary
first to briefly consider the execution mechanism which supports it. The
Flagship Basic Execution Mechanism (BEM) (Watson, 1987b) supports both
declarative and non-declarative aspects of computation. The features of
present interest are those which deal with the problems associated with
distribution of a computation over multiple processing elements. These
features are:

- a rewrite is atomic: it is guaranteed that a rewrite is not interrupted by
another rewrite.

- a rewrite is localised to a single processing element in order to support
atomicity: selection of this processing element may be different in the
declarative and in the non-declarative case, as will be shown below.

These properties of locality and atomicity are used to provide a mechanism
for supporting state, as will be described in section 2.2.

2.1 Declarative aspects

Flagship is a graph reduction machine which executes a subset of DACTL
(Glauert et al., 1987) rewrite rules, so that all programs are compiled into
DACTL rewrites. The DACTL rewrites are implemented as graphs of
packets which are reduced by the execution of the rules associated with the
particular rewrite.

A particular programming paradigm (e.g. functional) is modelled in terms of
DACTL at the Computational Level (CL). The model for functional
programming at the CL is the supercombinator computational model
(Watson, 1987c). Beneath this level, the BEM provides the primitives for the
execution of actions defined at the CL.

In order to support the CL, the BEM “recognises” various packet types -
encoded in their header - with which the BEM associates different actions.
Banach and Watson (1988) pointed out that packet types fall into three
classes: function, constructor and stateholder. The first two of these classes
support a declarative style.

- Function class packets are application packets which appear at the roots of
rewritable subgraphs. These can contain a pointer to a built-in function or
a pointer to a CODE packet which contains executable machine code for
some defined function. “Firing” an application packet causes the subgraph

760 ICL Technical Journal November 1989

of which it is the root to be rewritten according to some rewrite rule
associated with the function.

- Constructor packets hold unalterable base values. They are used to
construct, for example, lists, or to hold the result of an evaluation.
Constructor packets can be copied, as when a particular constructor
packet in the store of one processing element is being accessed by another
processing element.

Declarative rewrites, not involving a stateholder, are localised to the
processing element of the root packet of the reducible subgraph.

2.2 N on-declarative a sp ec ts

In order to deal with state, the BEM supports MONSTR (Banach, 1987), a
subset of DACTL, which constrains the execution of rewrites involving
stateholder packets. The MONSTR model is designed to permit state to be
used in a clean and controlled way while eliminating opportunities for
performing side-effects through other mechanisms in the model (Banach and
Watson, 1988).

Stateholder packets represent state variables which have the properties:

- They cannot be copied, i.e. once a stateholder packet is created it is unique
and is located on a single processor-store unit.

- At most one state holder can be involved in a rewrite.

These two properties of stateholder packets, allied with the locality and
atomicity properties of a rewrite on the Flagship machine, allow serialized
update and interrogation of stateholder packets.

Non-declarative rewrites are localised to the processing element where the
stateholder resides.

The execution level constrains, in the general case, the implementation of
FADTs in two ways:

- The state of an FADT must be representable as a single stateholder packet.
- All operations on an FADT must be the size and complexity of a single

rewrite.

2.3 F lagship en v ironm en ts

The reduction of a graph of packets is performed in the environment of the
root packet. The concept of the static environment supports “system aspects”
of the computation (Marsh and Leunig, 1988).

- Scheduling controls - process information - the priority of the computa­
tion, the number of processing elements required, the limits on store size
and processing time for computation.

ICL Technical Journal November 1989 761

- Protection domains - the environment defines a “domain” of entities that
may be accessed by the computation - a protection domain, referenced by
an identifier.

- Name-binding context - there is a need for accessing global and/or local
resources in the environment distributed over multiple processing ele­
ments. The static environment provides the Static Copy Environment
Table - a means of accessing processing element-local copies of code and
static data. This SCET may be used either declaratively or non-declara-
tively and is discussed extensively below.

The environment of a rewrite is established by the BEM as part of the
“reduction cycle” during which a subgraph is reduced. It is represented by an
environment identifier located in the header of the root packet. This identifier
is an index into the environment table of the processing element.

2.4 Binding at the BEM level

An important consideration in distributed systems is the global-to-local
mappings that occur. Ideally, given the latency of the network, access to all
system facilities should be performed locally. There is thus a notion on
Flagship of static copying to provide local copies of static data and code. The
SCET mechanism was introduced (by Watson, 1987a) as a way of simplifying
the problem of obtaining and referring to (binding to) local copies of packets.
In addition to providing an efficient copying mechanism for static objects,
the SCET concept provides a flexible binding mechanism via an indirection.
Having one logical SCET per environment provides a local binding environ­
ment where the same SCET index will bind different objects in different
environments.

The logical SCET is a flat table used by the execution mechanism to translate
SCET pointers into local packet addresses. The implementation of this on
Flagship is that for each logical SCET there is a physical SCET on each
processing element in the neighbourhood associated with the environment.
When the translation of a SCET pointer to a local address takes place in a
rewrite, the physical SCET on the processing element performing the rewrite
is used.

The SCET mechanism is intended to be a demand copying mechanism, in
that copies are made to local SCETs when a rewrite on that processing
element accesses a SCET entry. This has both declarative and non­
declarative aspects (Keane, 1989).

2.4.1 SCET as a declarative mechanism: As explained above, a mechan­
ism is required which allows copying on demand of code and static data to
local stores and sharing of such copies within an environment. A SCET is
associated with each environment. Any static information is referred to via
an offset into this table (Fig. 1). The addresses held in the SCET are either
local addresses within a particular process store, or special NULL values

762 ICL Technical Journal November 1989

i @c -----------»-c value °f "c"

wish to reference "c"

index — *- entry

Fig. 1 A logical SCET showing the indirection mechanism. A reference to “ c” in the
environment i is resolved via an indirection to an offset in the SCET for environment /. The
SCET entry at offset 1 contains a pointer @c which references c so that its value may be
accessed.

indicating that no local copies exist. If such a NULL value is encountered
then a copy is made from the Master SCET which is located on the “root”
processing element of the neighbourhood of processing elements in which the
current computation may be executed (Fig. 2). A reference to the appropriate
SCET is stored in the environment table entry for this environment. The
basic execution mechanism of Flagship does not distinguish between “real”
addresses and the “indirect” address which is a SCET index.

These two means of addressing provide alternative ways of linking packets
together in a graph. The normal pointer mechanism allows one packet to
reference another packet by its global store address (pe, page, packet). The
SCET mechanism allows one packet to reference another packet by an index:
this index is a pointer into the SCET associated with the current environ­
ment, and provides the address of a local copy of the referenced packet.

The architecture allows many SCETs in the machine. The particular SCET
used during a reduction is obtained from the Static Environment for the
reduction; that is, from the Environment Table entry for the root packet of
the reduction. In this way, the root packet of a reducible subgraph can
identify the particular SCET with which its execution is to be associated.
Since the SCET mechanism is a means of addressing packets, the SCET
mechanism provides a binding mechanism which thereby supports the
context for a reduction. In the declarative world, such a binding mechanism
should be referentially transparent; the same SCET index should always be
bound to the same entity.

2.4.2 SCET as a non-declarative mechanism: Having a distributed im­
plementation of a logical SCET allows “nodal variants” to binding where
within a single environment, the same SCET index binds to different entities
in different processing elements. To further examine the use of the SCET
mechanism to access objects, it is possible to consider an FADT instance

Environment i

ICL Technical Journal November 1989 763

PE 1 (ROOT) PE 2

1 @c 1 NULL

Master SCET Local SCET

(a)

PE 1 (ROOT) PE 2

1 @c 1 @c'

Master SCET Local SCET

(b)

Fig. 2 Physical SCETs showing the effect of the copying mechanism before and after a
rewrite involving a reference to an entity c via a SCET index 1. The rewrite is executed on
processing element PE2and invokes the copying mechanism to obtain a copy of e from the
root processing element PE1.
(a) The Local SCET on PE2 has a NULL entry at index 1, indicating that no local copy of c
exists in that processing element. The entry at index 1 of the Master SCET on PE? contains
the physical address of c.
(b) After the rewrite referencing SCET index 1 is fired on PE2, a local copy of c, d, has been
made in the packet store of PE2.

representing a global resource manager. Such an FADT instance is invoked
when there is a need to co-ordinate kernel activity (that is, activity in the
lowest level of the system software) across two or more processing elements.
The stateholder for such a global manager instance is located on a particular
processing element, and consequently must be accessed on that processing
element. This represents a bottleneck if many requests to this global resource
manager are made, as the requests cannot be handled in parallel.

764 ICL Technical Journal November 1989

Consequently the resource managers have been structured so that most
activity can occur on a local (per processing element) level rather than
invoking global (involving at least two processing elements) activity. This has
manifested itself in the presence of local resource managers on each process­
ing element, each represented by an FADT instance. Given this structuring,
when such local resource managers are accessed, the particular instance
accessed is the instance on the current processing element. Each of these local
instances are addressed via the same index in the local SCET but each local
SCET contains a different reference bound to the local resource manager.

This introduces a nodal variant SCET. When the SCET entry is assigned, a
mapping between processing element and some local instance is used to place
the appropriate instance reference in the appropriate local SCET. This is so
that the usual SCET copying from the master SCET will be inhibited because
of the presence of a local copy before any reference is made to that entry. This
nodal variant SCET allows access to kernel interfaces to be done in an
efficient manner by avoiding communication across the network.

This method is very similar to the nodal store of the distributed VME model
(Warboys, 1985) in which identically named locations in every virtual
machine have different contents on different nodes. As with the notion of
keeping Flagship resource manger instances on a nodal basis, the contents of
VME nodal store are not of system-wide interest. In both cases, the nodal
variants are not visible outside the “owning” processing element. An
executable model for SCETs has been developed by Keane (1989).

. 2.5 Security /pro tec tion a t the BEM leve l

As noted in section 2.3, the environment of each computation defines a
“domain” of entities that may be accessed by the computation - a protection
domain. Thus, each entry in the environment table contains a protection
domain identifier. During the reduction cycle, the current protection domain
is established by the BEM from the current environment. This Flagship
protection domain is unlike that of “pure” capability machines (Levy, 1984),
where the protection domain is implicitly defined by the objects currently
accessible to a computation, where these objects are accessed by capabilities.
In contrast, the Flagship protection domain is explicitly identified by the
protection domain identifier.

Pointer items are tagged. Pointers of type cap can form the basis of a
protection mechanism. If the root packet of a rewrite references a packet in a
different protection domain, then that reference must be via a cap pointer.
Any reference which breaks this rule must cause an exception. In conven­
tional capability machines, capabilities are protected either by tagging or by
restricting them to capability segments (Levy, 1984). The presence of a cap
tag in a pointer item of a packet transforms that packet item into a capability
for the referenced packet. However, conventional capabilities are a pair
(AR, ID) (Corsini et al., 1984) rather than the </£>) of the cap pointer item.
This point is dealt with further at the kernel level (section 4.4).

ICL Technical Journal November 1989 765

The PRM (Thomson, 1987) is based on declarative programming, using
graph reduction as the computational mechanism. It is however recognised
that most real applications are not declarative; they need to represent entities
which have changeable state. The PRM deals with this directly by adding
ideas of state and change to the base idea of declarative programming.

The smallest entity which can have state is called an object; the action of
changing the state of an object is called an update. Introducing these ideas
forces a change on the computational mechanism, i.e. it is necessary for the
user to have control over whether a particular reduction is performed once
or many times and over the order in which reductions are performed.
Additionally, the reduction mechanism should be capable of producing
different results on different reductions of the same subgraph.

Clearly it is necessary to introduce a concept that deals with the concept of
objects and update in a controlled fashion. This concept is the atomic action
which packages up a collection of non-declarative actions into a single
operation which is effectively atomic, i.e. either all of it has happened or none
of it has. This atomicity implies that a transaction cannot be affected by
partial completion of another atomic action (Broughton et al., 1987).

FADTs above the kernel of the system software level are implemented using
this notion of objects and atomic actions. Objects and atomic actions allow
multiple operations on a single FADT and or on multiple FADTs to be
serialised. Objects (of some form) and atomic actions are available above the
kernel.

An executable model (Sa, 1987) and an operational semantics (Hussak, 1988)
have been developed for a substantial section of the PRM.

3.1 Secu rity a n d binding a t the PPM

As described earlier the PRM provides a model of objects and atomic actions
upon them. The security system is based upon this model. Objects are
accessed by computations. Computations occur within a process and inherit
the access rights of their owning process. A process receives its access rights
from the “principal” object under whose auspices it is run. A principal object
is the system representation of a user.

The access to objects is regulated in two ways (Thomson, 1987):

- statically: the static security system controls the kind of access which is
permitted to each object. For any two objects a and b, there is a set of
operations s that computations which derive their access rights from a are
allowed to perform on object b. When an operation o on object b is
requested by a computation, a check is made to see whether oes.

3 Flagship PRM

766 ICL Technical Journal November 1989

- dynamically: the dynamic security system has been based upon the US
Department of Defense “B2” class (DoD, 1983). A set of classifications is
used to limit the flow of information from highly classified objects to
objects of lower classification. Each object in the system has a classifica­
tion, and each process has a current classification and an upper limit
classification.
All computations are restricted to obtaining information only from objects
with a lower classification than the current classification of the process at
which it is rooted. If the accessed object’s classification is higher than the
processes current classification then the processes current classification is
set to the object’s classification.
Computations can only write to or destroy objects that have a classifica­
tion lower than the current classification of the process at which it is
rooted. It is possible to override the classification check in these circum­
stances if the static access permissions include a write down operation.

Security can be considered as dynamic binding. Both aspects of the security
system entail the possibility of the allowable operations on an object by a
process changing, either because of changes in the access rights or by a
change in the classification of either the object or the process. This can be
seen as a dynamic binding between objects and the operations applicable to
them within a particular process. A VDM (Jones, 1986) specification of most
aspects of the PRM security system has been given by Keane (1987).

There is a further aspect of binding at the PRM level: PRM objects may be
said to be bound together (Mayes, 1988b) in that they may be accessed by,
and will thus participate in, the same atomic action.

4 Flagship kernel

Having briefly reviewed the execution mechanism and the user-level PRM,
the system software can now be discussed. The system software on Flagship
has been viewed as a hierarchy of layers, where each layer is composed of
instances of Abstract Data Types (Leunig, 1988). FADTs allow concurrent
access to their interface operations, and are state-based.

An FADT is a template for a software entity that forms the basic building
block from which the system software of the Flagship machine is built. It is
important to note the use of the word “template” in that an FADT is simply
a description of how FADT instances will appear and behave. This is
analogous to how a type definition in a programming language is not itself
an instance of its type. An FADT consists of a public part and a private part.
The public part is the user’s view of the FADT and comprises the user’s
interface to the FADT; a set of operations which the FADT instance will
perform and which are called interface functions (or more strictly, pseudo­
functions - the interface function is not a pure function because its output is
not wholly dependent on its input). The private part comprises the body of

ICL Technical Journal November 1989 767

the FADT instance which consists of any state it controls together with the
code to implement the interface functions.

To the extent described above FADTs appear similar to classes in object
oriented languages such as Smalltalk (Goldberg and Robson, 1983). The
methods of a Smalltalk object are analogous to the interface functions of a
Flagship FADT instance. The difference between the two structures is a
result of the fact that FADTs must work in a parallel processing environment
and are therefore given the extra responsibility of having to deal with the
synchronisation issues thus introduced. For instance, it is conceivable that an
interface function of a specific FADT instance may be used before another
use of the same interface function of the same FADT instance has completed.
It is the FADT’s responsibility to deal with such concurrency in a well
defined and computationally useful manner.

FADTs are non-declarative entities and have the following properties
(Leunig, 1987):

- encapsulated state. Each instance of an FADT can have its own state. The
state is encapsulated in that access to it, from outside the FADT, can only
occur via the interfaces provided by the FADT. State is introduced as part
of the basic building block. Its encapsulation is based on the principle of
information hiding.

- A “state transition function” style of definition. The general form of an
FADT operation will b e / :S x /-> S x O , where/is the operation, S is the
type of the state of the FADT, / is the type of the input parameters and O
the type of the results of the operation.

- Procedure call interfaces. The interfaces provided by FADTs will be
procedural in style. The procedural style is considered to be a cleaner and
simpler style compared to the other alternatives such as message passing;
in particular it allows transparency of location within the Flagship
machine. The systems that may be used as hosts, e.g. VME and UNIX, are
both procedure call based. For the state transition function above, an
interface to the function would be / ’: I-*0.

- A mechanism to ensure the consistency of state.

The implementation of these features is:

- State is referrenced via a pointer to a stateholder packet.
- Procedure call interface is via a rewrite.
- Consistency of state is ensured by a “guardian mechanism”.

The mechanism supporting the FADT is built on the MONSTR model.
More specifically, FADTs at the kernel layer of the system software are
implemented using guardians, where a guardian is supported by the
MONSTR execution mechanism. Guardians are a technique which build a
stream processing function from a state transition function, and then hides
the stream from the interface seen by users (Broughton et al., 1987).
Guardians are described in the next section.

768 ICL Technical Journal November 1989

Guardians are the lowest level entities in the Flagship software environment
for implementing serialisability.

The term guardian in Flagship is used with reference to an implementation
mechanism which is used to realise certain types of FADT. It is essentially
the concept of guardian introduced by Dennis (1981), and has many
similarities to the concept of managers given by Arvind and Brock (1984). It
differs from the usage of Liskov and Scheifler (1983) where the term is used to
describe the encapsulation of a physical processing element and its associated
resources.

To its users a guardian appears identical to any other FADT; it presents to
them an interface consisting of a set of pseudo-functions and has all the other
properties of an opaque abstract type as described for FADTs. Indeed a
distinction between guardians and other FADTs need only be drawn when it
is necessary to consider their implementations. Each pseudo-function is
termed a currency, as described in the next section.

A Flagship guardian controls access to its encapsulated state by treating it as
a single non-shareable resource and by serialising access to it. This is done by
effectively allowing only one currency application of the guardian to be
active at any one time and waits until the currency has completed its
manipulation of the state before allowing any other currency application to
proceed.

The guardian mechanism is the piece of code which does the work of the
guardian. There are several types of guardian mechanism which determine
the behaviour of the guardian which they implement. Although all guardians
present the same currency style interface to their users, the user can expect
different scheduling policies for currency applications depending on the
guardian mechanism employed, e.g. a queue guardian ensures fairness of
handling requests to the guardian but does not allow pre-emption of a low
priority process by a high priority one. A pool guardian on the other hand
does allow pre-emption but cannot guarantee fairness. In terms of implemen­
tation a guardian mechanism is simply the code body of a CODE packet
whose execution makes available, to the state transition function, the state
component of that currency application - though this availability of the state
value is controlled by a queueing or pooling mechanism. Details of the
implementations of both a queue and pool guardian can be found in
Holdsworth (1988).

In essence, the guardian mechanism relies on the BEM “locality rule” to
enforce sequential access to the state. Since all accesses to state must occur on
the processing element of the stateholder, all guardian mechanism executions
on the same stateholder must occur on the same processing element and
must thus be serial.

4.1 The guardian mechanism

ICL Technical Journal November 1989 769

Access to the guardian is essentially by a non-deterministic merge of the
requests to its currencies (Fig. 3). The state of any FADT can be viewed as
being a special case of a stream in that it can be viewed as an infinite list
evaluated as and when the currencies are rewritten.

Currency Currency Currency

1 1i »i >i *i ______________ •i i
| c ! Guardian

S|ate “*"] *" lale | Mechanism
i Rewrite ii ii ---------------------- i
i ■t ii ■i n ■

Fig. 3 A guardian as a non-determ inistic merge of currency applications.

4.2 Im plem enta tion o f ke rn e l FADTs

The state of an FADT instance is represented by a stateholder, SH. The
representation of the state of an FADT instance may be accessed only by
operations (state transition functions, stfs) defined for the FADT. However,
not only is the state representation inaccessible to the caller, but so are the
stfs. The only visible “handles” on an FADT instance are a set of interface
functions (iffs) which have no explicit reference to the state in their signatures.
It is these iffs which are accessible to users of the FADT instance. The
transformation of an stf into an iff is achieved internally by a guardian
mechanism (g). This accesses the current state value in the stateholder, allows
the application of stf to this value, updates the state in the stateholder with
the new value and delivers the result of the stf to the user. This mechanism
ensures that access to the FADT instance is serial. Thus an FADT instance in
Flagship kernel may be said to consist of a set of iffs all of which refer
(internally) to the same stateholder (Fig. 4).

770 ICL Technical Journal November 1989

Currencies
_______________ (iffs)________

~ Q ^ - - - ► ! 1- - - 4 s t f l---------------- * n r ____________________
Cptr 1

\ i — " i- stfz - ~ H j
Cpir , ________ L--- j

----------------------\ J ̂ -------*■ stf3 !

' -------*- stf4 [; rr______________ ;
g ■» !I----------------------- » iii------------------------ 1 i

stateholder

Fig. 4 The implementation of an FADT instance. Interface operations (iffs) are implemented
as currencies. Each currency refers to the same stateholder (SH) and links to it a guardian
mechanism (g) and a specific state transition function (stf). Currencies are referenced B
Cptrs.

Each iff is a physical linking (g, stf, SH, .pp), where .pp represents invariant
parameters to the stf. Thus, for each FADT instance there is a set of iffs, each
referring to the same SH (the state of the FADT instance) and each stf
representing an allowed operation on that FADT. A pointer or a reference to
the iff is termed a Cptr. To make a “call” on an iff, a linking (Cptr, .in) is
required, where .in represents the parameters of the call (Mayes, 1988a). The
chosen implementation of an iff, that is the linking (g, stf, SH, .pp), is a
currency, the term being borrowed from VME. The rewrite representing the
call (shown diagrammatically in Fig. 5) is:

calW ,. .in) + currency (gjS(/,s//i ,pp) -+
currency-application (g,SI/,SH, + currency(g s(/ SH pp)

In terms of packet types, the currency is implemented as an application
packet without its full arity of arguments; that is, the stf requires the input
parameters of the call, .in.

The call to the currency is implemented as an application of an unknown
function; that is, the functions within the currency are hidden from the call
packet. In functional language terms, this represents the implementation of a
higher order function. Thus, FADT instances communicate by calling each
other’s operations, and this communication is implemented as a rewrite
involving these packets. The currency packet may persist, awaiting the next
call.

The currency application (g, stf, SH, .pp, .in) is an invocation of an operation
of a particular FADT instance.

ICL Technical Journal November 1989 771

Cplr .in

currency

g stf sil .pp

wV
currency application

g stf SH -PP in

currency

g stf SH .pp

Fig. 5 Packets involved in a call to a currency. Note that the currency application contains
both the invariant partial param eters .PP and the param eters specific to the call, .in. See
legend of Fig. 4 for the m eaning of the other symbols.

4.3 Binding in the kernel

4.3.1 Linking in currencies: As shown in the previous section, a currency
consists of code and data linked together. There are two reasons for this
linking:

- The computational model of Flagship provides a mechanism for the
packet implementation of a currency. A currency may thus be imple­
mented as a packet which consists of items referring to the guardian code,
the state transition function and the stateholder, and any parameters

call

772 ICL Technical Journal November 1989

whose values are the same for each call to the currency. The remaining
parameters, whose values are unique for each call to the currency, are
provided by a call packet.

- The concept of currency in Flagship has been (apparently) influenced by
analogy with the VME currency. This latter provides not only a way of
naming an object but also describes the object’s “correct” behaviour
(Warboys, 1980). This implies that permitted operations are implicitly
partially parameterised by the object. Accordingly a Flagship currency is
an operation with an implicit object associated with it. Upon instantiation
of the Guardian which implements a Flagship FADT instance, an stf is
partially parameterised with a pointer to the state as the bound argument.
This partial linking enhances both efficiency and security. Efficiency is
increased with the advantage of eager linking - linking need not occur at
call-time. Security is increased because the user has a reference to a specific
operation; this is further discussed in section 4.4.

4 .3 .2 B in d in g b e t w e e n c u r r e n c ie s to s u p p o r t F A D T in s ta n c e s : Binding
can be described as the act of choosing a specific lower-level implementation
of a particular higher-level semantic construct (Saltzer, 1978). Thus, the
components of a particular kernel FADT instance are bound together as a
set of iffs, where each iff is implemented as a physical linking called a
currency. Currencies implementing an FADT instance are bound together in
that they share the same stateholder. Even in the case where there might be
multiple copies of a currency implementing a particular FADT instance
distributed over the system, the BEM “locality rule” ensures that any rewrite
involving such a currency copy must be exported to the processing element
on which the referenced stateholder, and by implication the FADT instance,
resides.

4.3.3 B in d in g b e t w e e n F A D T in s ta n c e s : FADT instance FADT1 commu­
nicates with FADT instance FADT2 by executing a call to an FADT2
currency. Thus the “access domain” (which on Flagship is distinct from the
explicitly-defined protection domain) of instance FADT1 - the set of FADT
instances with which FADT1 may communicate - is represented by that set
of Cptrs which FADT1 may access.

This is similar in structure to the capability-list of capability machines (e.g.
HYDRA, Wulf et al., 1981). The capability-list provides a naming context
such that terse local names, indices into the capability structure, can be used
to name objects (Jones, 1978).

The set of Cptrs available to an FADT instance may be considered to be a
context component of the environment of an operation invocation. Thus the
basis of gaining context information is being in the correct environment.
Virtual addresses or local names may be resolved with respect to the context
component of the current environment. By switching environments, context
for binding virtual addresses/local names to Cptrs will change.

ICL Technical Journal November 1989 773

If a Cptr-list could provide the context of an invocation of an FADT instance
operation, and context is part of the environment of the FADT instance, then
the Cptr-list could reside in the static copy environment table (SCET) of that
environment. This would mean address/name binding to Cptrs by SCET
entries.

This is a further non-declarative use of the SCET enabling FADT instance-
specific name-binding. This use raises the issue of whether the currencies to
be accessed by resource managers can be placed in the SCET. Although there
is obvious inefficiency involved in making copies of currencies to processing
elements where they cannot be used, there is no necessity to restrict this
copying since the guardian/MONSTR mechanism ensures that the currency
cannot be activated on any but the processing element where the stateholder
referenced by the currency resides.

4.3.4 Kernal objects: As has been discussed in section 3, objects, referenced
by an object identifier, are the smallest entity at the level of the PRM that can
have state associated with them. This state can be changed during the lifetime
of the object. At the PRM level, object manipulation is restricted to occur
only in the context of an atomic action. In order to implement the PRM-level
atomic action there must be a set of primitives available which can be used to
manipulate objects directly. These primitives will still need to access objects
in a serialisable manner if constructive concurrency is to be supported. To
this end a set of primitives needs to be supplied at the kernel level which
support the PRM level.

FADT instances are bindings between currencies which consist of eagerly
linked code and data. However, the FADT mechanism is rather heavyweight
for use in supporting lightweight objects which may be short-lived. A more
realistic solution is to regard each object identifier as a pointer to a
stateholder packet which contains the type and value of the object. The view
of the system being composed out of a hierarchy of FADTs can then be
maintained by providing a new FADT which will not have any associated
controlled state. This FADT will provide as currencies all the necessary
manipulation functions on objects including the ability to create new objects.
Since this FADT does not have any associated state, it can exist in many
instances on the system. The only difference between this implementation of
objects and that of any other guardian based-FADT is the time at which the
stateholder is linked into the currency.

4.4 Security!pro tection in the ke rn e l

On Flagship, the issue of protection domains can be regarded as being
orthogonal to the issue of context switching. This is because an environ­
ment in Flagship carries resource, protection and context information as
separate components of the environment. This is in contrast to conventional
capability systems where the current protection domain and context of a
process are both defined by the current capability-list of that process.

774 ICL Technical Journal November 1989

Currencies on Flagship may provide a basis for name resolution/address
binding but do not support protection domains. The traversal of the
boundary of a protection domain is controlled by “capability packets” which
depend on the secure implementation of pointer and store management;
however, this protection model is not implemented on the emulator (Banach
et al., 1988).

As noted in section 2.5, pointer items are tagged, and pointers of type cap can
form the basis of a protection mechanism. The cap pointer tag transforms a
pointer item into a capability <ID>. However, unlike the conventional
capability <AR, ID) (Corsini et al., 1984) there is no access rights compo­
nent. However, a cap pointer item referencing a currency represents a
capability for a particular iff: only the stf referenced by the currency may be
applied to the state of the referenced FADT instance. Thus, the access right
(for the allowed operation) is implicitly defined. The early/eager linking in
currencies serves to increase security. A Flagship currency, like a VME
currency, represents an access to a single operation on a particular instance
of some entity.

A call on a currency represents a call on an interface between two FADT
instances. The rewrite representing that call consists of a call packet (at the
root of the rewrite) whose environment is that of the caller-FADT instance,
and a currency packet (and its child packets) whose environment is that of
the called-FADT instance. A call on a currency thus represents an environ­
ment switch; this switch may also represent a change from one protection
domain to another. In such a case, the Cptr item of the call packet must be a
cap pointer (Mayes, 1989).

5 Summary

Flagship is a distributed declarative machine. This imposes two problems for
the system software: sharing resources in a distributed world and handling
state in a declarative world. The problems associated with multiple process­
ing elements and state are solved by the Flagship execution mechanism and
the MONSTR language it executes. The Flagship guardian, based on these
low-level mechanisms, provides a means for implementing serialisability in
the software environment. Kernel FADTs, which represent the unit of
abstraction and design for the system software, are based on guardians. The
execution of FADT instance code occurs within a static environment. This
environment provides protection information and name-binding informa­
tion. Protection is based on explicitly identified protection domains and,
although not implemented, would be based on capability pointers. This
mechanism, plus the currency mechanism used to implement the interface
functions of FADT instances, is discussed with reference to the “capabilities”
of capability machines. Name-binding is provided by the SCET; this can
support both declarative or non-declarative contexts: that is, binding
contexts which may or may not be referentially transparent over a physically
distributed environment.

ICL Technical Journal November 1989 775

The authors would like to thank Professor Brian Warboys and the Flagship
teams at Manchester University and ICL, West Gorton. Steve Leunig, the
system software designer, Tom Thomson, the PRM designer, and Steve Prior
originated many of the ideas presented in this paper, though they cannot be
held responsible for any of our interpretations of them. Flagship is an Alvey
project, IKBS049. This work was supported by SERC grant GR/E 21070.

References

ARVIND and BROCK J.D. (1984). ‘Resource Managers in Functional Programming’. Journal
of Parallel and Distributed Computing 1, 5-21.

BANACH, R. (1987). ‘Formal specification of MONSTR’. Flagship document FS/MU/RB/010-
87, University of Manchester.

BANACH, R. and WATSON, P. (1988). ‘Dealing with State on Flagship: The MONSTR
Computational Model’. CONPAR 88, UMIST, Manchester.

BANACH, R., SARGEANT, J., WATSON, I., WATSON, P. and WOODS, V. (1988). ‘The
Flagship Project’. IEE/BCS UK IT 88, Conference Publication, University College, Swansea,
4-7 July 1988, 242-245.

BODDY, G.S. (1988). ‘The Use of VDM within the Alvey Flagship Project’. VDM - The Way
Ahead, R. Bloomfield, L. Marshall, R. Jones (eds.), Lecture Notes in Computer Science 328,
153 160.

BROUGHTON, P., THOMSON, C.M., LEUNIG, S.R. and PRIOR, S. (1987). Designing
System Software for Parallel Declarative Systems’, The ICL Fifth Generation Programme,
Special Issue of ICL Technical Journal 5, 541-554.

BURSTALL, R.M., MacQUEEN, D.B. and SANELLA, D.T. (1981). HOPE: ‘An Experimental
Applicative Language’. Proceedings of 1980 LISP Conference, Stanford, California, 136-143.

CORSINI, P., FROSINI, G. and LOPRIORE, L. (1984). ‘The implementation of abstract
objects in capability-based architecture’. Computer Journal 27, 127-134.

DENNIS, J.B. (1981). ‘Data Should Not Change: A Model for a Computer System’. Laboratory
for Computer Science, CGS Memo 209, MIT Cambridge, Mass.

DoD (1983). Department of Defense trusted computer system evaluation criteria. CSC-STD-
001-83, Department of Defense Computer Security Centre, Maryland.

GLAUERT, J.R.W., KENNAWAY, J.R. and SLEEP, M.R. (1987). ‘DACTL1: A Computational
Model and Complier Target Language based on Graph Reduction’. The ICL Fifth
Generation Programme, Special Issue of ICL Technical Journal 5, 509-537.

GOLDBERG, A. and ROBSON, D. (1983). ‘Smalltalk-80, The Language and its Implementa­
tion’. Addison-Wesley.

HENDERSON, P. (1982). ‘A Purely Functional Operating Systems’. Functional Programming
and its Applications, J. Darlington, P. Henderson and D.A. Turner (eds.), Cambridge
University Press, 177-189.

HOLDSWORTH, S. (1988). ‘The Implementation of Layers of Abstraction of Serialisability in a
Parallel Packet Rewrite Machine’. Transfer Report, Department of Computer Science,
University of Manchester.

HUSSAK, W. (1988). ‘Specification of the PRM’. Flagship Document, Department of Computer
Science, University of Manchester.

JONES, A.K. (1978). ‘Protection mechanisms and the enforcement of security policies'. Lecture
Notes in Comp. Sci. 60, 228-250.

JONES, C.B. (1986). ‘Systematic Software Development Using VDM’. Prentice-Hall Interna­
tional.

JONES, S.B. and SINCLAIR, A.F. (1989). ‘Functional Programming and Operating Systems'.
The Computer Journal 32, 162-174.

KEANE, J.A. (1987). ‘A VDM Specification of the PRM Security’. Flagship Document,
Department of Computer Science, University of Manchester.

6 Acknowledgements

776 ICL Technical Journal November 1989

KEANE, J.A. (1989). ‘Aspects of Binding in a Declarative System’. MSc. Thesis, Department of
Computer Science, University of Manchester, in preparation.

LEUNIG, S.R. (1987). ‘Abstract Data Types in the Flagship System Software’. Flagship
Document FLAG/DD/303.xxx, ICL.

LEUNIG, S.R. (1988). ‘Design Description of the System Software’. Flagship Document
FLAG/DD/3SD.016, ICL, with draft changes August.

LEVY, H.M. (1984). ‘Capability-based computer systems’. Digital Press.
LISKOV, B. and SCHEIFLER, R. (1983). ‘Guardians and Actions: Linguistic Support for

Robust, Distributed Programs’. ACM Transactions on Programming Languages and Systems
5, 381-404.

MARSH, A.H. and LEUNIG, S.R. (1988). ‘Flagship Emulator ISI Definition’. Flagship
Document FLAG/DD/3SD.018, ICL.

MAYES, K.R. (1988a). 'Currency as a Level of Abstraction in Flagship Kernel’. Flagship
Document FS/MU/KM/022-88, University of Manchester.

MAYES, K.R. (1988b). ‘A currency view of Flagship ADTs and objects’. Flagship Document
FS/MU/KM/023-88, University of Manchester.

MAYES, K.R. (1989). ‘Capabilities and Protection domains on Flagship’. Flagship Document,
University of Manchester.

PEYTON JONES, S.L. (1987). ‘The Implementation of Functional Programming Languages’.
Prentice-Hall International.

PERRY, N. (1987a). ‘HOPE + ’. Internal Document IC/FPR/LANG/2.5.1/7, Department of
Computing, Imperial College, London.

PERRY, N. (1987b). ‘HOPE + C’. Internal Document IC/FPR/LANG/2.5.1/21, Department of
Computing, Imperial College, London.

SA, J. (1987). ‘Interpreting PRM Expressions in a Functional Environment’. Flagship Docu­
ment, Department of Computer Science, University of Manchester.

SALTZER, J.H. (1978). ‘Naming and binding of objects’. Lecture Notes in Comp. Sci. 60,
99-208.

THOMSON, C M. (1987). ‘PRM Definition’. Flagship Document FLAG/DD/101.001, ICL.
TOWNSEND, P. (1987). ‘Flagship Hardware and Implementation’. The ICL Fifth Generation

Programme, Special Issue of ICL Technical Journal 5, 575-594.
WADGE, W.W. and ASHCROFT, E.A. (1985). ‘Lucid, the Dataflow Programming Language’.

APIC Studies in Data Processing No. 22, Academic Press.
WARBOYS, B.C. (1980). ‘VME/B A Model for a realisation of a Total System Concept’. ICL

Technical Journal 2, 132-146.
WARBOYS, B.C. (1985). ‘VME Nodal Architecture: a Model for the Realisation of a

Distributed System Concept’. ICL Technical Journal 4, 236-247.
WATSON, I. (1987a). ‘Environments and Contexts etc.’. Flagship Document FS/MU/IW/013-

87, Department of Computer Science, University of Manchester.
WATSON, P. (1987b). ‘The Flagship Basic Execution Mechanism’. Flagship Document

FS/MU/PW/018-87, Department of Computer Science, University of Manchester.
WATSON, P. (1987c). ‘A Super-Combinator Model of Computation’. Flagship Document

FS/MU/PW/021-87, Department of Computer Science, University of Manchester.
WATSON, P. and WATSON, I. (1987). ‘Evaluating Functional Programs on the Flagship

Machine’. Functional Programming Languages and Computer Architectures, G. Kahn (ed.),
Lecture Notes in Computer Science 274, 80-97.

WATSON, I., WATSON, P. and WOODS, V. (1986). ‘Parallel Data-Driven Graph Reduction’,
pp. 1-18 of Fifth Generation Computer Architectures, J.V. Woods (ed.), North-Holland, 1FIP.

WATSON, I., SARGEANT, J., WATSON, P. and WOODS, J.V. (1987). ‘Flagship Computa­
tional Models and Machine Architecture’. The ICL Fifth Generation Programme, Special
Issue of ICL Technical Journal 5, 555-574.

WULF, W.A., LEVIN, R. and HARBISON, S.P. (1981). ‘Hydra/C.mmp An experimental
computer system’. McGraw-Hill Book Company.

ICL Technical Journal November 1989 777

HISTORY OF ICL

ICL Company Research and Development
Part 3: The New Range and Other

Developments, 1968-85

Martin Campbell-Kelly
Department of Computer Science, University of Warwick, Coventry CV4 7AL

Abstract

This paper describes the principal R&D activities in ICL from its
formation in 1968 up to the STC takeover in 1984. For much of this
period, R&D was strongly focused on the development and subse­
quent enhancement of a new range of computers, launched as the
ICL 2900 series in 1974, and relaunched as Series 39 in 1985. The
development of the new range made enormous demands on every
division of ICL, and caused the company to neglect other aspects of
the computer business, such as small business systems and networks.
Consequently, ICL’s emphasis on mainframes left it ill-prepared to
meet the challenges of the 1980s. The paper concludes with a
discussion of the management changes and the new product and
marketing strategies that helped to achieve ICL’s recovery during
1981-84.

1 Introduction

As detailed in an earlier paper, the creation of ICL in 1968 was something of
a political act1. The company was set up as the national-flagship computer
firm with the general mission to compete with the American mainframe
manufacturers in the international market place, and with the specific
mission to develop a new range of computers for the 1970s. In order to
understand ICL’s development in the 1970s and 1980s, it is necessary to
understand the motives for its creation and its special relationship with the
government.

In October 1964, Harold Wilson’s Labour Government had come into office
convinced that “if action were not taken quickly, the British computer
industry would cease to exist”2. There were at that time two dominant
British computer firms: International Computers and Tabulators (ICT) and
the computer division of English Electric. The government view was that it
was imperative for ICT and English Electric to merge their computer
interests, so that they could combine their resources to meet the “American
challenge”. There was, however, a major impediment to such a merger: this

ICL Technical Journal November 1989 781

was that both companies had independently launched a full range of third-
generation computers in 1964-65. In the case of ICT, this was the 1900 series
launched in September 1964. The 1900 series was considered to have a
somewhat old-fashioned architecture, although it later proved highly suc­
cessful in the marketplace. In the case of English Electric, it had launched its
System 4 range in September 1965. System 4 was based on the RCA Spectra
70 range of IBM System/360 compatible computers, and although it had a
modern architecture the policy of selling IBM-compatible equipment was
always a controversial one. In 1965, both firms were irrevocably wedded to
their respective third-generation computer ranges and marketing strategies,
so that it seemed that a merger could not be contemplated until the time
came to develop a new range of computers in the 1970s.

By 1967, however, the climate of opinion within both companies had begun
to change. In particular, English Electric, which had sustained heavy losses
developing System 4, was keen to withdraw from direct involvement in the
EDP-computer business. And within ICT, there was a body of opinion which
considered that a concentration of the British computer industry was vital if
it was to survive the 1970s. As an inducement for the companies to merge, the
government held out the prospect of a non-repayable grant of the order of
£25-30 million towards the cost of developing a new range of computers.
This offer had the effect of precipitating the merger, although the amount of
money the government eventually provided was only £131 million3. Conse­
quently, for ICL the scene for the 1970s was set by a mission to develop a
new range of computers, but with R&D resources that were not really
sufficient.

2 The New Range Planning Organization

ICL began operating as a legal entity in September 1968, and within a month
or two serious thought was being given to the new range. It was always
realized that funding a new range would be difficult, and initially attempts
were made to share the cost with another mainframe manufacturer. In
November 1968, discussions were held with several United States firms,
including RCA, CDC and Burroughs, to see if it would be possible to find a
ready-made solution for the new range, or if a joint development would be
possible. None of these discussions produced any worthwhile result, how­
ever, and so it was decided that ICL would have to develop the new range
entirely from its own resources.

The specification of a completely new range of computers was a once-in-a-
lifetime opportunity, and inevitably the protagonists of the various architec­
tural solutions within ICL, and without, were anxious to see their particular
vision implemented. In particular, one faction within ICL was proposing
John Iliffe’s Basic Language Machine (BLM) architecture, while other people
were arguing for Manchester University’s MU5 computer architecture.
These were powerful intellectual and emotional positions. In order to defuse
the situation, and to avoid emotional commitment from determining the new

782 ICL Technical Journal November 1989

range architecture, it was decided to create a formal planning structure to try
to arrive at a rational solution.

The New Range Planning Organization (NRPO) was formed in January
1969, and the specification of the new range was to occupy most of that year.
During the first phase (January to April) the possible options for a new range
architecture were evaluated in the context of an assumed marketing environ­
ment. In the second phase, which occupied the remainder of 1969, detailed
specifications for the selected architectural option were elaborated and
implementation and introduction strategies explored.

The nucleus of the NRPO consisted of ICL planning staff (from both ICT
and English Electric), who had expertise in corporate planning, market
research and technical product planning. To this nucleus, staff with appropri­
ate expertise were added - manufacturing personnel, hardware and software
designers, sales staff, and so on. Altogether, some sixty people, and fifteen
staff-years of effort, went into the first phase of new range planning during
the first quarter of 1969. In addition, about a dozen senior academics were
retained as part-time consultants. The NRPO was divided into a dozen or so
small teams, none of them more than six people in size. These study groups
were broadly classified as “aims”, “options” and “assessment” teams. The
function of the “aims” teams was to determine the market environment from
the mid-1970s up to the mid-1980s. The job of each of the “options” teams
was to investigate in detail one of several possible architectural options for
the new range. Finally, the task of the assessment teams was to determine
criteria by which to measure the options, and to independently identify and
specify key criteria to be met by the new range - for example the need for
“bridging” techniques to ease transition from the current ranges, the need for
resilience and security, and the need for advanced database and compiler
techniques.

The first major assumption of the marketing environment in which the new
range would exist, was that IBM would dominate it, just as it had in the
1960s, with well over 50 per cent of the world market. On the other hand, no
assumptions could be made about IBM’s product strategy: its “future series”,
expected in the early 1970s, might be an enhancement of the System/360
architecture, or it might be an entirely new architecture with emulation and
other aids to assist the migration of users. A second major assumption of the
future computer market was that there would be a transition from primarily
batch-processing computers to primarily real-time transaction processing
systems. In evaluating the success of the new range it is important to
understand the uncertainties of the market environment for which it was
designed. As it happened, IBM did not change its machine architecture (and
at the time of writing still has not). Also, although large real-time computers
were a major growth area in the 1970s, a much bigger growth occurred in
small decentralized computers for which the 2900 series was not well adapted
(nor was System/360).

ICL Technical Journal November 1989 783

Altogether, seven “option” teams were established to evaluate different
architectural options for the new range, the only constraint being the
assumed marketing environment. Although there were seven options, they in
fact amounted to three basic choices: first, to enhance one of the current
ranges; second, to use an existing advanced architecture; and third, to
develop a new architecture. In fact the third choice was taken; the arguments
for this choice, are detailed below.

1 Options 1 and 2: enhancement of current ranges

The most conservative and cheapest choice was to enhance one of the
current ranges, the 1900 series or System 4. The “8-bit 1900”, as it was
called, was under active study in ICT long before the merger, both by
an internal team and externally by the Auerbach consultancy. The three
main problems with the 1900 series were its 6-bit character/24-bit word,
its lack of real-time capability, and the fact that it was perceived as old
fashioned. The first was easily put right, and both study teams recom­
mended a 32-bit word architecture downwards compatible with the 24-bit
1900. Enhancing real-time capability was also possible, although this was
less straightforward. But the 1900 series was an ageing architecture and
there was no real prospect of sustaining it beyond the mid-1970s. Conse­
quently there was little support for 1900 series enhancement, other than for
short term tactical purposes while some longer term range was under
development.

System 4 had real merit, even without enhancement, as ICL’s new range. It
already used an 8-bit IBM-compatible byte, and it had real-time facilities
that were much better than those of System/360. Moreover, a good deal of
work had been done on future development within English Electric, and ICL
had access to RCA’s new product line, then under development to replace
Spectra 70. The System 4 option consequently had strong support, especially
from the English Electric faction within ICL, and the technical arguments
were very strong. The principal argument against a 360-based architecture
was whether ICL should go IBM-compatible: the case against IBM compati­
bility was to prevail in ICL, just as it had in ICT.

2 O ptions 3 -6 : ex is ting a d va n ced ach itectures

If ICL was to adopt a new architecture, then there was some merit in using
an existing architecture, which would be less of a leap into the dark than
developing its own ab initio. In fact, there was no architecture to which ICL
had access that met all its requirements, so that the four architectures
examined served largely as inputs to the “synthetic option” (see below). The
four architectures studied were the “New Series Branch” option, the High-
Level Language option, the Manchester University option, and the Basic
Language Machine (BLM) option.

3 New range: the strategic options

784 ICL Technical Journal November 1989

The New Series Branch option began, in effect, as a shopping list from ICT
software writers of desirable features in a new range. It was a minor input to
the synthetic option, but was otherwise something of a paper tiger. The High-
Level Language option was to adopt the Burroughs’ design philosophy of a
machine oriented to a particular high-level programming language. On its
own, this design philosophy was insufficient for the market of the 1970s, but
as with the MU5 architecture (below) the need to execute high-level
languages efficiently was subsumed in the synthetic option.

Manchester University had had very close links with ICL (via ICT and
Ferranti) going back many years, so it was natural that ICL would seriously
consider its latest machine, the MU5, then coming into service as a successor
to the Atlas4. Designed for a “number crunching” environment, the architec­
ture was insufficient as the sole basis of a new range, but it contained many
useful innovations and was one of the two major inputs to the synthetic
option. Five of the Manchester University faculty held consultancies on the
design of the new range.

ICL’s own BLM project5 was the second major inspiration for the new
range, for it resolved in a very generalized but efficient manner problems of
data management, language processor technology and process management
for real-time working, that had been tackled in an ad hoc manner in existing
architectures.

3 Option 7: the syn th e tic option

The synthetic option, which was to be the basis of the new range, was
generated by a small team given the brief of bringing together the best of
current thinking on computer design to synthesize an architecture whose
only constraint was that of the assumed market environment (i.e. dominated
by real-time transaction processing systems, using high-level languages, and
large-scale databases). From BLM and MU5 came advanced process
management concepts that would dramatically improve the efficiency and
robustness of operating systems. (GEORGE 3 and OS/360 had both been
notoriously resource consuming and unreliable in their early days.) From
sources such as Burroughs and MU5 came concepts of efficient high-level
language execution. And from BLM and MU5 came ideas on data manage­
ment that would enhance the construction and efficiency of database systems.

Without any question, the new range architecture was masterly. It was elegant,
efficient, not in the least baroque, and in advance of anything offered by any
other manufacturer (and this arguably remains true in the late 1980s)6.

4 New range: implementation and introduction plans

The output of Phase I of the new range planning activity, which ended in
April 1969, was a large body of reports produced by the individual study
teams7. These reports were examined by, and presentations were made to,

ICL Technical Journal November 1989 785

ICL’s middle and senior management drawn from across the company. In
May 1969, the ICL board officially endorsed the decision to base the new
range on the synthetic option. The following month, ICL gave its first public
indication of its commitment to a new range by cancelling the 1908A - which
was to have been the top of the 1900 series - in favour of a new machine to be
known as Project 52 which would be available in 1973.

From mid-1969, the detailed specification of the new range began to take
shape. What had actually been produced by the synthetic option team up to
this point was a rather slim document describing the broad architectural
concepts. To develop a complete specification, the original option team of six
was expanded to a full-time team of 12. Team members worked closely with
Manchester University and the BLM group to distil their ideas into the new
range architecture.

In early 1970, work was started on a marketing plan for the new range. It was
intended to support a range of six processors (P0-P5) within the new range
architecture, ranging from a low power machine (P0) up to a machine several
times the power of the 1908A (P5). In fact, the low power P0 processor was
essentially seen as an entry level machine of limited appeal, and the P5
processor (Project 52) was seen as being too expensive to develop without a
guaranteed government purchase of at least ten machines, and it was never
much more than a paper exercise8. Attention was therefore focused on
processors PI to P4, which were viewed essentially in terms of a replacement
range for ICL’s current computers. For example, P4, the most powerful
processor (about ten Atlas power) would be targeted at existing 1906A users
and potential 1908A customers. P3 - with about the power of a 1906A
would be the natural upgrade for current 1904A and System 4-70 users. And
so on down the range.

The announcement strategy for the 2900 series received a great deal of
attention, since there was much accumulated experience in ICL’s planning
division of the problem of a collapsing order book following the introduction
of a new range. The essential problem was that if all the processors in the new
range were announced simultaneously, then “the effect on 1900 sales would
be catastrophic”9. Users of the 1900 and System 4 would naturally cancel
their orders until the new range was available, and ICL would have nothing
to sell during the two years it might take to switch production from the old
range to the new. The ingenious strategy was therefore adopted of a “top
down” introduction. The largest processors (P3 and P4) would be announced
first, thereby securing the all important 1904A and System 4-70 replacement
market. By demonstrating (hopefully) the ease with which users migrated to
the 2900 series, and by differential pricing, it was hoped to continue selling
the 1901A through 1904A until the PI and P2 processors became available.

Even though the new range development was now committed to only the
P1-P4 processors, funding remained a problem. ICL’s total R&D spend,
which was projected at about £90 million for the five-year period 1968-73,

786 ICL Technical Journal November 1989

had not only to support the new range development, but also the continued
enhancement of the current ranges. The negotiation for joint ventures with
other companies therefore continued, and were now focused on the French
national computing company CII, and the American company CDC. But, as
before, these talks came to nothing, although the effect of the negotiations,
which entailed many revisions of the new range specifications to accommo­
date different data standards and interfaces, was to hold back development of
new range almost completely during 1970. And during that period the
marketing environment itself had changed direction, and the industry was
about to fall into recession.

5 Government launching aid for the new range

The two-year period 1970-71 saw the first world-wide recession in the
computer industry10. The first major casualties of the recession were the
giant American company General Electric (GE), which sold its computer
interests to Honeywell in 1970; and RCA, which decided to sell its computer
interests to Sperry Rand the following year. The demise of GE and RCA as
computer manufacturers illustrates the fiercely competitive environment in
which ICL found itself in the early 1970s. It had always been realized in ICL
that developing the new range would stretch the company to the limit; but
the impact of the computer recession on turnover and profits meant that ICL
would eventually have to call on the government to provide launching aid in
addition to the £13½ million it had agreed to at the time of the merger. In fact,
an additional £40 million was eventually provided, but it did not come
straightaway and this made the early 1970s one of the most difficult periods
of ICL’s existence.

In June 1970, the new Conservative Government of Edward Heath was
elected. Unfortunately for ICL, the Heath Government had come into office
pledged to a disengagement from the direct intervention in industry that had
been so much a feature of the out-going Labour administration. This was the
famous “lame duck” policy. Consequently, when in early 1971 ICL faced an
impending financial crisis, it had to deal with it unaided: during the first half
of 1971 over three thousand workers were laid off, and R&D spending had to
be reined back. During this period, confidence of users and the City in ICL
was badly shaken; and eventually a change in the top management had to be
made to restore confidence.

Gradually, however, the political climate began to change in ICL’s favour -
particularly following the government rescue of Rolls-Royce in February
1971. In early 1971, an inquiry into the British computer industry was
conducted by the Select Committee on Science and Technology, and the
appearance of its report The Prospects for the United Kingdom Computer
Industry in the 1970’s provided a firm basis for government action. The
report was sharply critical of the government’s role: “We found it difficult to
describe present Government action regarding computer research and
development as a policy”11. It called for a much higher level of government

ICL Technical Journal November 1989 787

support for the computer industry, citing the evidence supplied to the sub­
committee by ICL on the much higher levels of support enjoyed by computer
companies in the United States, France, Germany and Japan:

We would not wish to put a figure on the scale of Government funded
research and development expenditure which is likely to be required but
we anticipate that the sum involved would be not less than ten times the
average sum spent by the Government in recent years on computer
research and development. We estimate this sum to be not less than £50
million per annum. Any delay in providing money will certainly mean
that not only is the objective of independence delayed but also that
larger sums will probably be needed to attain the objective at all. We
therefore urge prompt action12.

Even so, the government was reluctant to provide large-scale support for
ICL, and instead encouraged it to explore the possibility of merging with an
American or European computer manufacturer. These negotiations were to
prove very protracted, and in the meantime the government provided ICL
with a loan of £14.2 million “to maintain the momentum of its R&D” in July
197213. During the next year a great deal of management time was taken up
exploring merger possibilities. In conducting these negotiations, and in
accepting the £14.2 million loan, ICL agreed to government guidelines that
any partnership it entered into would both retain control of ICL in the UK
and would maintain a substantial British R&D capability. In the event, it
proved impossible to secure any kind of merger that met these guidelines. By
the summer of 1973, the government accepted this position, and agreed to
extend its loan to ICL to a total of £40 million. On 4 July 1973, in a statement
to the House of Commons, Christopher Chataway, the Minister of Industrial
Development, stated the terms of the government’s launching aid for ICL’s
new range:

The Government have agreed to provide a further £25.8 million in
support of the company’s research and development programme from
October this year until September 1976, making a total of £40 million in
all. ... As is normal with launching aid of this type, arrangements have
been agreed with the company for the recovery of this £25.8 million,
together with the £14.2 million I announced in July last year14.

The basis for the repayment had, in fact, been the subject of some hard
bargaining between ICL and the government. The agreement finally reached
was that during the seven year period commencing September 1977, ICL
would repay the government a proportion of its profits in excess of an agreed
minimum. (In fact, ICL never did make profits exceeding the agreed
threshold, and so nothing was ever repaid.)

6 The 2903: a computer for Europe

With funding for the new range assured, the R&D program could press
ahead with all speed. But, in fact, while the negotiations with the government

788 ICL Technical Journal November 1989

had been taking place, the computer market itself had been undergoing
change. This was a change of emphasis away from large centralized
mainframes, towards small decentralized computers. ICL’s response to this
market shift was the 2903 computer; and the 2903 was to provide a large part
of the revenue base that would help sustain the new range development15.

The 2903 project was very much a market-led and profit-oriented one, in
which technology was secondary. (Like the decision to launch the 1900 series
in 1964, ICL’s most commercially successful products have not generally
been ones that have stretched technology; and this is no doubt true of most
other manufacturers.) The origin of the 2903 computer was a project known
internally as PF73, which was ICL’s response to the introduction of the IBM
System/3 in 1969.

The IBM System/3 computer had been IBM’s own response to competitive
pressure on its low-end System/360 mainframes in the late 1960s. The
adherence of IBM’s small machines to the 360 architecture had made them
uncompetitive in terms of price/performance, and they were also too
sophisticated for small, first-time users. In order to address this problem,
IBM launched System/3 in July 1969; the new machine abandoned 360-
compatibility altogether and hence could be made to a much lower cost. The
IBM System/3 proved an extraordinarily popular machine. Its power and
simplicity of use, based on the RPG 2 programming language, combined
with low cost, opened up an entirely new market with small businesses that
had previously been using visible-record computers or accounting machines.
Over 1600 systems were sold in its first year of delivery, and a total of 25 000
systems were eventually sold.

The IBM System/3 had exposed two important new market opportunities,
which ICL was not yet effectively exploiting. The first was the very large
market of computer-naive small and medium-sized businesses currently
using visible-record computers and accounting machines. The second market
was for multiple small machines in large decentralized companies. If ICL
could develop a small machine, and sell it cheaply in high volume through its
new “customer centres” which were then just coming into operation, then it
offered the opportunity for the rapid revenue growth, especially in Europe,
that was its principal corporate objective: this was project PF73.

The two main product development priorities for PF73 were speed of
implementation and low cost. These two requirements ruled out using the
small P0 processor of the new range, since that was not scheduled for
completion until 1974 at the earliest. There was, however, a micro-coded
communications processor under development at Stevenage, known as
MICOS 1, which could be rapidly brought into production. It was decided to
use this processor to emulate the 1900 series instruction set for PF73, since
this would enable software developed for the small 1900 series machines to be
used with minimal rewriting; and also to make use of the RPG 2 compiler
which was then under development. (The view of some observers that the

ICL Technical Journal November 1989 789

2903 was simply a re-engineered 1900 did not appreciate the sophistication of
the microcoded processor. ICL had simply elected to use the 1900 series
instruction set for economy of software development. If the idea had been
more widely applied in the new range, its history might have been much less
fraught.) The MICOS 1 was a state-of-the-art processor, and actually a good
deal more powerful than was strictly necessary. Again, to maximize speed of
implementation and minimize development costs, all the peripherals were
based on existing products. These included a disc store of 60 megabytes,
which was twice the maximum capacity then being offered on System/3.
None of the processors or peripherals required an air-conditioned environ­
ment, so that the machine could be housed in any ordinary office (Fig. 1).

Fig. 1 ICL 2903, announced April 1973

In early 1973, the model number 2903 was selected for the new machine. This
designation was chosen to give a conscious blurring of the distinction
between the old and the new ranges, to create a sense that ICL’s new range
would not entail an abandoning of the old. This was a subtle and almost self­
contradictory objective, but it was achieved. The high 2900s (2950, 2960,...)
were used for the new range, and the low 2900s (2903,2904,...) were intended
for the small machines. (The numbers below 2903 were not used.)

The ICL 2903 was announced at the Hanover Fair, the main European
computer event, on 25 April 1973. The launch was an exceptionally slick

790 ICL Technical Journal November 1989

affair: glossy brochures were printed in nine languages, and a film presenta­
tion was given in the six principal West European languages. Orders poured
in, particularly from Western Europe, and within days the sales target was
raised from 1000 to 2000 systems.

7 New range developm ent

With ICL’s long-term R&D funding finally assured by the July 1973
government announcement, the new range took centre place in ICL’s five
year strategic plan for 1973-1978:

ICL’s five year plan essentially revolves around the success or otherwise
of the New Range strategy. New Range, in all of its complexity,
represents a fantastic challenge to ICL. No major computer manufac­
turer has announced, and successfully introduced, a new range of
computers in the last six years. ICL’s five year plan is based on the
assumption that ICL will announce, develop, manufacture and install
New Range systems with minimum difficulty. In achieving a smooth
transition to New Range systems in customer environments, the total
organization of ICL will be called upon to meet tremendous chal­
lenges16.

At this time, the new range was planned as a range of processors, from small
to large, P0 to P4, with small and large variants of the mid-range P2
processor (P2S and P2L). The concept of a “top-down” introduction
conceived in 1970, had been refined and detailed marketing plans evolved. It
was planned to announce the top two processors, the 2970 (P3) and the 2980
(P4) in October 1973 with deliveries in mid-1974.

Developing and launching the biggest processors first was both a major
technical advantage and disadvantage. The advantage was that by develop­
ing the largest processor first, developing the smaller processors later would
be relatively easy, since it was essentially a sub-setting process. (By contrast,
developing the large 1906 from the 1904 had been a formidable task since it
was necessary to enhance an architecture that was optimized for a mid-range
machine; IBM had similar problems with its large System/360 processors.)
The disadvantage was that all the most difficult development problems had
to be tackled immediately. Early software performance would be especially
important. The risk was that the entire series would be judged for a long time
on the early performance of the new range operating system, and the
experience of every manufacturer had shown that a new operating system
could take years to settle down. Again, it was imperative that transition aids
from the 1900 series and System 4 worked well, or sales of the current ranges
would be impacted.

To reduce the risk of an unsuccessful launch, it was decided to postpone the
original target date of October 1973 by a full year. On 9 October 1974, the

ICL Technical Journal November 1989 791

2900 series was finally announced at an invitation-only press conference at
ICL’s Putney head office. The launch in fact turned out to be a considerable
media event. Because of the government’s financial involvement in the new
range, the launch was of interest to a general audience, as well as to computer
professionals. The Press and TV reportage was wide and almost universally
favourable. On 24 October product presentations on the new range were
made simultaneously around the world to ICL customers. The 2900 series -
“which looked as if it was never coming” - received orders valued at £21
million the same day17.

The new range launch was, of course, only the end of the beginning. There
remained the monumental R&D and manufacturing challenge of actually
bringing the machines and software into the field. This task was to consume
most of ICL’s technical resources during 1975-78. At the time of the 2900
launch in October 1974, only the two largest models - the 2970 (proces­
sor P3) and the 2980 (processor P4) - were announced, the first deliveries
being made in December 1974 and June 1975 respectively (Fig. 2 and
Table 1). It had originally been planned to announce the mid-range 2900
series machines, the 2960 and the 2950 (both based on the P2 processor) in
spring 1975, with the 2940(PI) and the 2930(P0) following in 1976 and 1977,
but none of these deadlines were met.

I

Fig. 2 ICL 2970, announced October 1974

792 ICL Technical Journal November 1989

Processor Model Announced Delivered

P-series
P4 2980 Oct 1974 Jun 1975
P3 2970 Oct 1974 Dec 1974
P2L 2960 Mar 1976 Dec 1975*
P2S 2950 Cancelled
PI 2940 Cancelled
P0 2930 Cancelled

S-series
S4 Cancelled
S3 2966 Nov 1980
S2 2956 Nov 1980
SI 2950 Nov 1977 Jun 1978

Notes
Delivery dates are given for the first four principal processors in the new range, the 2970, 2980,
2960 and 2950. The P-series and S-series used MSI and LSI technology respectively. Other
models were derived from the S-series processors: from SI, model 2946; from S3, models 2955,
2977, 2988, and others.
*Sic; delivered early to fulfil a government contract.

The development delays were mainly due to the operating system software.
During the six year period of the new range development, 2900 software was
to consume 35 per cent, or £56 million, of ICL’s R&D expenditure, and the
operating systems were to account for most of this. This development was the
responsibility of the Software Development Organization - which consumed
prodigious amounts of computer power for new range software development
(Fig. 3). Two major operating systems were under development for the new
range; System B for the large processors, and System D for the mid-range
machines; these were later renamed VME/B and VME/K. The large-scale
operating system VME/B went the way of most major operating systems,
and it was released with a low efficiency and a large number of bugs. During
this period, VME/B’s under-performance started to cause a loss of confi­
dence in the new range. There were some lost orders, and in the case of some
installations extra hardware or software maintenance had to be given to get
the systems through their acceptance trials and to produce a flow of
revenues.

VME/B was a classic evolution-versus-revolution situation. American ven­
dors were supplying mature, stable and reliable operating systems aged seven
or eight years, based on older computer architectures though running on the
latest processor technology. In moving to a new architecture, ICL had been
forced to abandon its own acclaimed and fairly resilient GEORGE 3
operating system. The problems with VME/B had a knock-on effect on the
resources available for the VME/K operating system for the mid-range
machines. The 2960 and its VME/K operating system were only announced
in March 1976, a full year later than anticipated. Even then, VME/K gave
less than half of the performance of the equivalent IBM operating system.

Table I New range processors, 1974-80

ICL Technical Journal November 1989 793

Fi
g.

 3

B
ra

ck
ne

ll
 c

om
pu

te
r

ha
ll.

 1
97

4

There were also problems with the new range hardware. One of the key
problems was the rapid evolution of semiconductor technology from
medium-scale integration to large-scale integration throughout the 1970s. In
order to keep pace with the change of semiconductor technology, it was
decided in late 1975 to develop the SI and S2 processors in place of PI and
P2; this further delayed deliveries of mid-range machines until 1977 and
1978. As realistic development and manufacturing costs became available for
the S-series processors, it became clear that a true range-compatible proces­
sor (P0 or SO) for the small 2930 was not economically feasible, and it was
cancelled. This left an uncomfortable void between the small 2903 (which was
based on the 1900 series architecture), and the mid-range processors of the
new range. To bridge the gap, and provide a growth path for 2903 users, an
enhanced processor - the 2904 - was developed and announced in May 1976.
This was a very necessary market introduction, but coming only two months
after the 2960 announcement, it created some market confusion as to
whether ICL was introducing a new range top-down, or an old range
bottom-up: in fact it was doing both, and the success of the strategy, when the
two ranges finally met, would depend on producing good software transition
aids.

8 Sm all business system s and the S inger acquisition

In fact, while ICL’s R&D remained focused on the new range, the computer
market had continued on its trend towards small decentralized computers.
Moreover, as well as the traditional mainframe manufacturers, new competi­
tors had entered the field selling small business systems. These competitors
included firms such as Digital Equipment Corporation (DEC), Wang,
Hewlett-Packard, and Singer. These new suppliers were all offering low-cost
business systems based on minicomputers that came from a different
engineering tradition to the mainframe.

IBM was the first of the mainframe suppliers to respond to the changing
market for small business systems. Although IBM had had a strong presence
since 1969 in the small business computer market through its System/3, this
was - like the ICL 2903 - spiritually a mainframe, and very much at the top
end of the market. In January 1975, IBM launched its System/32, a much
lower cost computer which included a wide variety of applications packages
for specific industries, and a basic networking capability which provided
distributed, as opposed to merely decentralized, computing for large-scale
users. The other mainframe manufacturers quickly followed suit with their
new small business systems.

In response to the market pressures, ICL announced a low cost version of the
2903, the model 20, in October 1975. This was, however, not a particularly
competitive machine, and there is little doubt that ICL’s growth opportunities
would have been limited because of its over reliance on the mainframe market,
had it not been for what amounted to a piece of good luck. This was the chance
to acquire the international operations of Singer Business Machines.

ICL Technical Journal November 1989 795

The background of Singer Business Machines (SBM) is as follows18. Singer
diversified into the business equipment market in the early 1960s, at a time
when its sewing machine business was rapidly losing market share due to
competition from the Japanese sewing machine industry. With a sales force
of 81 000 people in 96 countries, Singer made several acquisitions to broaden
its product range and absorb its sales and manufacturing capacity. The most
important of these acquisitions was the purchase of Friden Inc. in October
1963, which manufactured low-cost business computers. At that time, only 22
per cent of Friden’s business was outside the United States, and the motive
behind the Singer acquisition was to use its sales force to bring this
proportion up to the order of 50 per cent.

During 1969-73, SBM developed from its Friden acquisition a very innova­
tive and successful range of products. These included the MDTS point-of-
sale terminal in 1969, which rapidly became a market leader with over 65 000
units installed. The System Ten computer, announced in April 1970, was the
first transaction processing oriented small business system to be introduced -
by 1975 some 3500 had been sold, 1400 of them overseas. In 1973, SBM
acquired the Cogar Corporation, which added the model 1500 intelligent
terminal system to its product portfolio. After this initially successful period,
however, SBM began to lose money as the market became more competitive.

In December 1975, Singer announced its intention to sell the business
machines division. Immediately following the announcement that SBM was
up for sale, talks were held between Singer and potential buyers who
included Univac, Honeywell, and Burroughs, and the computer press
speculated on many more possibilities. ICL was not, at first, a likely buyer:
for while it was enthusiastic about taking on the international division of
SBM, it did not want the US business which was considered non-viable -
especially for ICL. However, when no buyer for the entire operation
materialized, Singer agreed to sell the international division separately.

SBM’s three key products, in fact, fitted surprisingly well into ICL’s
portfolio. The System Ten computer, which was considerably smaller and
cheaper than the 2903, would enable ICL to cover the small business system
market much more effectively (Fig. 4). It also happened that System Ten had
a number of OEM peripherals in common with the 2903, so that the effect on
inventory would be minimal. The Singer 1500 series of intelligent terminals,
which had an installed base of 4800 units (2900 outside the United States),
were superior to ICL’s 7500 terminal system, and would reduce its continued
development. The Singer MDTS point-of-sale terminal, which had captured
50 per cent of the United States market, was recognized as the market leader;
ICL had no equivalent product and it promised to improve an already strong
position in retail systems.

In early 1976, there was an intense round of negotiations between ICL and
Singer, and on 18 March 1976 an agreement in principle was concluded for
ICL to acquire the international division of SBM. Subsequently, ICL also

796 ICL Technical Journal November 1989

Fig. 4 ICL/Singer System Ten computer, c. 1976

acquired SBM’s Utica, New York, manufacturing plant; this was a conscious
decision taken to ensure continuity of supply, and also to internationalize
manufacturing operations to make ICL less vulnerable to sterling exchange
rate fluctuations and labour unions. The integration of SBM into ICL was
achieved in approximately six months. The logistics of integrating the
operation into ICL were somewhat daunting, although ICL was perhaps well
prepared for it by its long history of merger activity. And unlike the English
Electric merger, the products were complementary rather than overlapping.
The SBM acquisition effectively doubled ICL’s small business systems
revenues.

9 New range: declining com petitiveness

The mid-1970s saw a quite unprecedented escalation in the pace of innova­
tion in the computer industry - and this escalation took place against a
background of declining profit margins. There were two causes of this

ICL Technical Journal November 1989 797

technological acceleration and erosion of profits. The first was the arrival of
new competitors supplying small business systems; the second was the
emergence of manufacturers of Plug-Compatible Mainframes (PCMs). Be­
cause of its Singer acquisition, ICL was fairly well placed to withstand the
former, but it was in no way prepared for the latter.

The PCM manufacturers began operations in the early 1970s, following the
launch of the IBM System/370, when it became clear that IBM was
committed to its 360-based architecture for the long term. The first of the
PCM manufacturers was the Amdahl Computer Corporation, which began
to market plug-compatible replacements for IBM’s largest mainframe in
1975. The Amdahl mainframes were developed using Fujitsu semiconductor
technology, which at that time was considerably in advance of IBM’s. (The
relationship between Amdahl and Fujitsu was thus rather like the one that
was to develop between ICL and Fujitsu in the 1980s.) The Amdahl PCMs
offered a factor of two or better price performance over the corresponding
IBM product, and they were an enormous commercial success. During the
next two years, several other manufacturers, from the United States and
Europe, but particularly from Japan, jumped onto the bandwagon and
began to market PCMs. The PCM concept was a turning point for the
Japanese computer industry, which for the first time became a significant
threat to IBM and the other mainframe manufacturers19. In the short term,
IBM responded in the only way it could - by cutting prices. This in turn
forced the other mainframe manufacturers, including ICL, to lower their
prices.

Because of the declining profits from mainframes, the continued enhance­
ment of the new range was to become increasingly difficult. Indeed, by 1977
the new range was already beginning to show several serious competitive
weaknesses. These included the non-availability of mid-range processors, the
inadequate software transition aids between the old and new ranges, the
ageing technology of the existing processors, and the lack of a communica­
tions architecture. These major problems were all in addition to the
reliability problems of the machines already in the field.

Since the new range launch in October 1974, only the top three members of
the series - the 2960, 2970 and 2980 - had been announced. This left a
vacuum between ICL’s small 2904 and the medium sized 2960 which left the
existing 1900 series customer base vulnerable to the competition. In
November 1977, ICL finally announced the 2950, based on the SI processor,
and a new small machine, the 2905, was announced at the same time.
These new products helped to close the gap, but a mid-range void still
remained.

Although the smooth transition from the 1900 series and System 4 to the
2900 series had always been a key objective in the new range strategy, it had
been mostly honoured in the breach and ICL was widely criticized for this.
Although ICL had actually developed a 1900 series emulator for the 2900

798 ICL Technical Journal November 1989

series, it had been restricted to in-house use and had not been marketed, since
it preferred to sell the 2900 on its technical merits rather than as a “hot tango
1900”. In response to increasing market pressures, however, ICL announced
its DME emulators in April 1977, for both 1900 and System 4 users. This
stopped some users defecting to the competition and some installations
continued to run their 1900 and System 4 programs in emulation mode
indefinitely. The move, however, added a further two operating systems to
the two that ICL was already supporting.

An important impact of the emergence of the PCM manufacturers had been
to make IBM assert its technological leadership, and to shorten the life-cycle
of its processor technology, from perhaps four to three years. ICL now
considered it was perhaps three years behind IBM on key aspects of
processor technology, and that progressive enhancement of all the P-series
processors had become urgent. During 1978, plans were laid for replacement
of the P3 and P4 processors by LSI processors (S3 and S4), and eventually by
full VLSI processors (S3L and S4L) during 1982-84. This evolution would
provide price/performance improvements of an order of magnitude over a
period of about five years.

Finally, the late 1970s saw a further acceleration of the trend towards
distributed computing and computer networks. Responding to the trend,
IBM had announced its Systems Network Architecture (SNA) as early as
1972, and the other suppliers were also introducing networks by the mid-
1970s. At this point in time, ICL’s networking strategy was embryonic to put
it at its best.

10 Other R&D projects

Although the new range development program represented the major part of
ICL’s R&D effort, it was by no means the whole of it. There was also an
urgent need to improve ICL’s small business systems, and to develop the
differentiated products DAP and CAFS.

In the five years following the launch of the ICL 2903 in April 1973, some
2600 systems had been sold, with sales growing at the rate of 39 per cent a
year. In spite of this it had never had a corresponding R&D effort invested in
it. In 1978, the 2903’s age finally caught up with it and sales actually fell 20
per cent over the previous year. This created an urgent need for a successor.
During 1978 enhanced versions (the 2903 models 25, 40 and 50) were
announced as a short-term response, but in the long term a completely new
processor was needed. To achieve a rapid development of the processor, it
was arranged to manufacture a little known American design under licence.
This was a universal emulator board, known as EMMY (for emulator),
created by an American west coast start-up, Palyn Associates. Integration of
this bare emulation logic in a full-scale system by ICL design staff led to the
ME29 computer launched in March 1980, and which was, in fact, highly
successful (Fig. 5).

ICL Technical Journal November 1989 799

Fig. 5 ICL ME29, announced March 1980

The System Ten inherited from Singer was also showing signs of age. As it
happened, Singer had already developed a successor, the System Ten-220,
that ICL was able to use with little development effort, but there was an
acute need to introduce cost-effective LSI technology into the processor.
Finally, in the small business systems area, enhancements were also needed
for the 1500-based and 7500-based systems so that ICL could make an
effective entry into the booming office automation market.

The exploitation of DAP and CAFS was to become one of ICL’s key product
strategies in the late 1970s. One of the consequences of the rise of the PCM
manufacturers had been that IBM-compatible mainframes were increasingly
becoming a commodity, and the only way of achieving competitive advan­
tage was in terms of price/performance. For the manufacturers of non-IBM-
compatible mainframes, product differentiation, which had always been at
least as strong a sales argument as price/performance, was now beginning to
take on a new importance. Probably the three manufacturers with the best-
differentiated mainframe products were ICL, Burroughs and Honeywell,
which all had architectures and operating software that were technically
superior to IBM. With the most modern architecture and the VME
operating systems, ICL was probably the best placed of any of the mainframe
manufacturers in this respect.

800 ICL Technical Journal November 1989

The falling cost of integrated circuits had also created another opportunity
for entry into the computer business by the late 1970s. This was the design of
processors with novel, or “non-Von Neumann”, computer architectures,
which would perform spectacularly well on certain narrow domains of
application. In the United States a number of firms began to market
products for matrix computation, vision processing, artificial intelligence,
and so on20. ICL’s Advanced Research Group had been working on two
such projects for a number of years, DAP and CAFS. By the mid-1970s the
time had come to exploit these innovations. A particular attraction of the
flexibility of the new range and the VME/B operating system was that special
purpose processors - “information engines” as they were coming to be called
- could be incorporated into a regular 2900 series mainframe in a straight­
forward way, enabling users in quite ordinary environments to get a
spectacular performance in certain applications.

The Distributed Array Processor (DAP) project had been started at ICL in
1972, with financial support from the government-funded Advanced Com­
puter Technology Project21. The DAP consisted of a matrix of processors
(initially 32 x 32) which enabled matrix calculations to proceed at several
hundred million computations per second, about three orders of magnitude
faster than a large conventional mainframe. The DAP was launched as a
product in April 1978. The DAP was highly acclaimed as a technical
innovation - it received the BCS/Computing magazine award for technologi­
cal achievement in 1979 - which was excellent for ICL’s image, but the
relatively narrow market meant that the financial impact on ICL was not
great.

The Content-Addressable File Store (CAFS) had the potential for a much
wider market. CAFS was actually conceived in 1962, but it was not actively
developed until 196922. The CAFS is an ingenious (and heavily patented)
mechanism that enables a disc store to be searched “on-the-fly” indepen­
dently of the main processor. This enables the CAFS to do searching at
speeds that otherwise could only be achieved by a colossal mainframe. In
1972 a prototype was completed, and field trials were conducted with the
Post Office Directory Inquiries project. The trials were so successful, giving a
hundred-fold improvement on conventional computer searching, that in
1975 a CAFS Exploitation Review Committee was established to bring it
into the ICL product line. A product, CAFS 800, was announced in 1979.
The CAFS products have been showered with technical achievement awards
- the British Computer Society Award in 1980, Computing magazine Product
of the Decade in 1983, and the Queens Award in 1985. All this, however, was
very much in the future in 1978; the problem then was paying for CAFS and
all the other developments.

11 An approach to the governm ent

In 1978 the central issue facing ICL, as in the past, was in selecting an
appropriate level of R&D expenditure and generating sufficient business to

ICL Technical Journal November 1989 801

sustain it. The R&D programs underway in 1978 (outlined in the previous
two sections) indicated swiftly rising costs, from £36 million a year in 1978
increasing to £89 million in 1983. During the previous five year period,
1973-77, total R&D expenditure had been £123 million, and this was now set
to more than double to £266 million in the next five year period, 1978-82.
This increase was only partly accounted for by inflation: most of it reflected
ICL’s broader spectrum of products, such as DAP and CAFS, and its entry
into networks and office systems; but the dominant costs were to maintain
the competitiveness of the 2900 series, especially the introduction of the LSI
processors.

Although in 1978 the funding of ICL’s R&D was difficult, it promised to
become very much worse in early 1979 when IBM responded to the
increasing competition from the PCM manufacturers by making its most
dramatic announcement of the decade. On 31 January 1979, it replaced its
System/370 mid-range processors with the 4300 series. The new machines
offered an unprecedented four-fold price/performance improvement over the
machines they replaced. IBM had achieved this leap in price/performance by
making a major investment in semiconductor fabrication, putting its technol­
ogy on a par with the best that Japan could offer. This was the first time that
IBM had ever exerted a technological leadership in semiconductors and the
impact on the rest of the industry was devastating. Of course the computer
industry would have been compelled to respond to the dramatic improve­
ments in semiconductors in the fullness of time, but the effect of the 4300
series announcement was to produce a step-function in the rate of change.
For all the mainframe manufacturers the 4300 launch created the competi­
tive environment of 1979. In effect, they were caught in the cross-fire between
IBM and the Japanese, and during the early months of 1979 they all cut
prices and announced new models.

By the summer of 1979 it was clear that ICL’s five-year R&D programme
was seriously endangered: profits had fallen, which in turn led to a shortfall
in the R&D budget of the order of 10-20 per cent. The major development
problem was that the S3 and S4 LSI processors, for the 2970 and 2980
replacements, would be approaching obsolescence by the time that they were
delivered. They either had to be expedited or dropped. It was therefore
decided to cancel the largest processor, S4, and to allocate the resources to S3
to bring it out as rapidly as possible. At the same time the S3L and S4L
programmes were accelerated to bring the VLSI processors out by 1983 or
1984.

ICL was still overspending on R&D, however, and it seemed likely
that it would eventually have to call on the government for some
financial support23. In fact, when government assistance became necessary, it
would not prove so straightforward as ICL had supposed. On 3 May 1979
Margaret Thatcher’s Conservative Government had been elected into power.
Like the Heath Government of 1971, the Thatcher administration was
pledged to a disengagement from direct involvement in industry.

802 ICL Technical Journal November 1989

During 1980 ICL’s position steadily worsened: profit margins continued to
be eroded, and the UK was now in the grip of a major economic recession.
By the new year, 1981, ICL’s internal forecasts were predicting a £25 million
loss for the half year, and £50 million for the whole year. It was at this point
that it was decided to approach the government for aid. By a rare piece of
good luck, ICL’s approach to the government coincided with the formation
of the new Department of Information Technology; information technology
was now high on the political agenda, and the minister Kenneth Baker was
to prove very supportive, notwithstanding the government’s general policy of
non-intervention in industry.

At this time, ICL’s major problem was the widening gap between its earnings
and the R&D expenditure necessary to keep its products competitive. Whilst
previous governments had provided direct R&D support, this was not the
route chosen by the new Thatcher administration. Rather, the view was
taken that ICL should explore the possibility of merging with another
mainframe company in order to achieve a larger market share to fund its
R&D. During the early months of 1981, a great deal of management time was
taken up in talking to several American companies, including Univac and
NCR, as well as Fujitsu in Japan. In fact, the American companies were
primarily interested in ICL’s customer base rather than in sharing R&D
costs, so that a merger would have been unacceptable both politically and
from a business viewpoint; this was of course a very similar outcome to the
merger talks that ICL had conducted in the early 1970s.

Once the possibilities of a merger had been explored and found unworkable,
it was accepted by the government that the solution to ICL’s problems would
have to be in the form of a cash injection - although the government
remained opposed to using its own money. In March 1981, in a meeting
between ICL, its bankers, and the government, a highly imaginative solution
to ICL’s cash problems was put forward in the form of a loan guarantee.
Provided ICL’s bankers would extend it the £200 million it needed, the
government would guarantee the loans against ICL’s defaulting. In fact a
total of £270 million was provided, of which the government guaranteed £200
million for a period of two years. Since ICL subsequently repaid the loans
and the guarantees never had to be called, the assistance given to ICL cost
the government not a penny-piece.

In reaching the decision to provide the loan guarantees, the government had
concluded - on the advice of management consultants - that ICL’s problems
were in large part managerial. The loan guarantees were therefore made
conditional upon ICL accepting a new management team. On 10 May 1981,
the new management team of Christopher Laidlaw (chairman) and Robb
Wilmot (managing director) was installed; and they were later joined by
Peter Bonfield (now chairman and chief executive of ICL).

Within a few days of taking office in May 1981, the new management began
to restructure ICL’s affairs, both operationally and in terms of products. The

ICL Technical Journal November 1989 803

operational measures taken were all very standard, very unpleasant, but
unavoidable if ICL was to become viable again: several plants were closed
and workers laid-off, short-time working and early retirement were intro­
duced, and inventories were slashed. The work force cutting continued
throughout the ICL recovery, the total headcount reducing from a peak of
33 000 in 1980 to about 20000 by 1985. The key to ICL’s survival, however,
lay in its products - and these in turn depended on getting the balance of
R&D right. Within six months, ICL’s product strategy had been radically re­
oriented around two themes: mainframe rationalization, and a new “Net­
worked Product Line”.

12 M ain fram e rationalization: DM/1 and Estriel

Immediately on taking charge of ICL in May 1981, the new management
team called for a review of ICL’s mainframe products, the unprofitable core
of its business. The review disclosed some alarming trends. First, the 2900
series accounted for a disproportionate fraction of ICL’s R&D spend:
mainframes which produced about one third of turnover, consumed two
thirds of overall R&D costs. This R&D burden was inhibiting ICL’s
participation in the market for small and micro computers, and office
systems. Second, market projections showed that mainframe sales were
essentially static, and there was no real prospect of greater volume to offset
the rising R&D costs. Further, as semiconductor technology moved towards
VLSI in the mid-1980s, ICL would not have the volume to justify in-house
semiconductor fabrication. Third, the forward plans for the 2900 series were
unrealistically ambitious for the market size. In 1981, ICL was supporting
five distinct 2900 series processors and two major operating systems.
Although there were plans for some degree of rationalization, the mainframe
hardware and software commitments were essentially unsupportable -
particularly with the shortening product life cycles, and the need for
networking software.

The short-term strategy for the 2900 series was therefore aimed at reducing
the on-going R&D commitment, and to divert resources to small systems.
On the hardware side, the entire 2900 range was reduced to two processors -
ME29-based small systems, and S3-based medium-size systems. Both the
ME29 and the S3 were, of course, fruits of an earlier period and would not
have existed if the R&D momentum had not been sustained in 1979-80. The
S3 was launched as the 2966 in June 1981, and derivative versions were
launched later in the year. Both the ME29 and the 2966 were major product
successes that generated the revenues that sustained ICL during the recovery
period. On the software side, the VME/K operating system was dropped
entirely in favour of VME/B, which was relaunched as VME 2900 in July
1981.

In the longer term, however, it was chip technology that was at the heart of
the problems of the 2900 series. Both the VME architecture and operating
system were well proven and competitive, but ICL lacked the semiconductor

804 ICL Technical Journal November 1989

technology to manufacture systems price competitive with IBM. In October
1981, ICL - assisted by some behind the scenes activity from the government
- succeeded in obtaining an agreement with Fujitsu to obtain access to its
semiconductor technology. A key feature of the Fujitsu collaboration was
what ICL was to call “technology intercept”. ICL would obtain access to
Fujitsu’s emerging technologies, typically one year before general availa­
bility. Fujitsu’s technology was considered the best in the world, and
certainly better than IBM’s - which was what mattered. By designing
products based on the best emerging technology, rather than current
technology, it was hoped to extend the product life cycle from three to
perhaps five years. The technology intercept concept was relatively risky,
however, since if the technology did not emerge then neither would the
product.

Table 2 ICL-Fujitsu agreement, October 1981

Processor Mips Architecture Design Software Manufacture Technology

DM/11 0-8-2-6 ICL ICL ICL ICL Fujitsu
Estriel2 7-20 ICL ICL ICL Fujitsu Fujitsu
Atlas 103 15-25 Fujitsu Fujitsu Fujitsu Fujitsu Fujitsu

Notes
'Announced as Series 39 level 30, April 1985.
2 Announced as Series 39 level 80, April 1985.
3 Announced as Atlas 10, models 15 and 25, May 1981.

The ICL-Fujitsu agreement fell into three broad areas (Table 2), correspond­
ing to three main product lines: the small DM/1 distributed mainframe, the
medium-sized Estriel processor, and the large Atlas 10 IBM-compatible
mainframe.* The DM/1 processor would be the replacement for ME29 users
and small/medium 2900s. All the architecture, design, software, and manu­
facturing would remain in Britain, with Fujitsu supplying semiconductor
design tools and components. DM/1 was to be based on Fujitsu’s state-of-
the-art 8000 gate CMOS technology. By exploiting the flexibility of the VME
nodal architecture, DM/1 would be capable of multi-processor configura­
tions giving a performance range of 0.8 to 2.6 mips, which was a substantial
portion of the lower-mainframe spectrum. The Estriel processor was to be a
VLSI replacement for the existing S3 processor. Again, all architecture and
design control would remain with ICL, with Fujitsu being responsible for the
semiconductor technology. Estriel was to be based on very fast ECL
technology using Fujitsu’s “top hat” air-cooled technology, which had been
proven on its own mainframes (Fig. 6). To minimize production costs and
lead times, and to increase Fujitsu’s own production volume, the heart of the
processor would be manufactured in Japan. Again, by using the VME nodal
architecture, Estriel could be configured to give models with a performance
in the range of 7 to 20 mips. It was this flexibility of the VME architecture

*DM/1 and Estriel were new names for the S1L and S3L processors. The name Estriel arose
because the Japanese had difficulty in getting their tongues around ess-three-el.

ICL Technical Journal November 1989 805

Fig. 6 Fujitsu ECL sem iconductor chip used in ICL Series 39 m ainfram es

that enabled an entire mainframe range to be based on just two processors -
a major advantage over ICL’s competitors.

The third part of the ICL-Fujitsu agreement was for ICL to market Fujitsu’s
largest M380 and M382 IBM-compatible mainframes as the ICL Atlas 10
series. This agreement did not really harmonize with ICL’s mainframe range,
but it was part of the give-and-take between Fujitsu and ICL. It was never
anticipated that ICL would sell more than about two dozen machines, but it
did offer a “top cover” for ICL’s largest users and there was a business
opportunity for sales in mixed ICL/IBM sites. As was noticed by press
commentators, Atlas 10 left the option open for an eventual move to IBM-
compatible mainframes, although this was too far in the future to be an
explicit strategy. In fact, the Atlas 10 was a marketing failure and ICL
withdrew in 1984. This effectively closed any future likelihood of ICL
becoming IBM compatible.

The DM1 and Estriel processors were eventually launched in August 1985 as
the first two members (levels 30 and 80 respectively) of Series 39 - the
successor to the 2900 series (Fig. 7). The ICL-Fujitsu agreement was
perceived as an exceptionally innovative solution to ICL’s mainframe
challenge, and has since come to be regarded as a classic example of
technology transfer in the 1980s24.

13 NPL: the Networked Product Line

The Networked Product Line was ICL’s strategy both to address the
technical deficiencies of its product line, and to seize a new marketing
opportunity in office systems. The NPL concept is encapsulated in Figure 8,

806 ICL Technical Journal November 1989

Fig. 7 ICL Series 39, announced April 1985. The use of Fujitsu sem iconductor technology
brought about a dram atic improvem ent in perform ance and reduction in size of VME
m ainfram es. The photograph show s the relative sizes of the Series 39 p rocessors com pared
with the powerful 2966 introduced in 1981: the level 80 with four tim es the processing power
of the 2966 occupied only half the floor space, while the level 30 with a half of the power was
only one-fifth the size. The model 30 used Fujitsu's relatively inexpensive VLSI CMOS
technology, while the model 80 used expensive, but much faster, ECL chips

which was first used for publicity purposes in autumn 1981. At that time only
a few of the products illustrated had become a reality. An entry into the office
systems market had, of course, been a key feature of ICL’s product strategy
since the late 1970s, but it had been overshadowed by mainframes. The
essential change was to shift resources away from mainframes and towards
distributed systems based on small and micro computers.

The first product announcements were made in the second half of 1981
(Table 3). In June, System Ten was relaunched as System 25 and provided
with networking capabilities so that it could be linked to either ICL or IBM
mainframes. In September, the small 7500/1500 computers were relaunched
as a fully networked “Distributed Resource System”, DRS 20. System 25 and
the DRS line were to become major new earners for ICL during the 1980s.

Although rationalization of the mainframe programmes had effectively
doubled the resources available for the NPL, it was still necessary both for
reasons of development cost and lead-times to make collaborative or

ICL Technical Journal November 1989 807

Fig. 8 Networked Product Line, October 1981

Table 3 ICL Networked Product Line

Product Date announced Origin

System 25 Jun 1981 Singer System Ten
DRS 20 Sep 1981 Derived from ICL 7500/1500 small computers
PERQ Sep 1981 Bought/made under licence from Three Rivers Corp, USA
DNX-2000 Oct 1981 Mitel Corp, Canada
PC Apr 1982 Made under licence from Rair
Wordskil Apr 1982 ICL 7500/1500, Logica VTS, and Nexos
One-Per-Desk Nov 1984 Derived from Sinclair (hardware) and Psion (software)

licensing deals to fill out the product range. The first of these collaborations,
announced in September 1981, was with the Three Rivers Computer
Corporation, an American manufacturer of scientific/engineering work
stations. This agreement gave ICL the manufacturing and marketing rights

808 ICL Technical Journal November 1989

(excluding the United States and Japan) to the PERQ work station, which at
the time was far in advance of anything being made in Britain. A second
collaboration was made with the Mitel Corporation of Canada in October
1981 to market its digital telephone exchanges. The DNX 2000 private
branch exchange was a major component in the NPL infrastructure, and was
a significant step in the convergence of telecommunications and computing.
To enter the office automation market, a major need was for specialized
wordprocessing software and workstations - these were both acquired
through a collaboration with Logica and by acquiring the Nexos office
automation company. Again, ICL lacked both the expertise and the develop­
ment time to make a rapid entry into the personal computer market. An
agreement was therefore made with the small UK manufacturer Rair to
manufacture its “Black Box” micro computer under licence. The ICL PC was
announced in April 1982, which made it a late entrant into the market,
although only a year behind IBM. Another innovative product was the One-
Per-Desk (OPD), which achieved a convergence of communications and
computing in a low-cost, full-function computer/telephone (Fig. 9). To
expedite development, the OPD hardware and software were largely derived
from the Sinclair QL micro computer (which in turn derived its software
from the British software house Psion).

Fig. 9 One-Per-Desk manufacture, 1984

To achieve the networking of the entire ICL product range called for further
internal development and external collaboration. The software resources
released by the cancellation of VME/K in September 1981 were immediately
put to work on the accelerated development of I PA, the Information
Processing Architecture for VME mainframes. A key aspect of ICL’s

ICL Technical Journal November 1989 809

networking strategy was to help establish and implement international “open
networking standards” through the OSI standards organization with other,
mainly European, manufacturers. This was in sharp distinction to the
American manufacturers - such as IBM, DEC and Wang - who all had
proprietary network architectures, designed in part to lock-in existing
customers. By conforming to international standards, ICL would be able to
have its products and terminals “surrounding enemy machines”, and would
also be able to use the products of other manufacturers to fill the gaps in its
own product range. Writing in the late 1980s, the development of OSI IT
standards, in which ICL has been a major force, seems to have been one of
the most important developments of the decade25. The OSI standards will
enable European suppliers to compete with the American and Japanese
giants, not by the physical merging of companies, but by a loose and informal
federation. Individual members of the federation will be able to gain
economies of scale by achieving high volumes on a limited number of
products which, by adhering to OSI standards, they will be able to integrate
with the products of other suppliers.

14 Convergence: the STC takeover

In 1980, ICL and all the other mainframe manufacturers had been faced with
two major challenges, one short-term and one medium-term. The short-term
problem was to come to terms with the lower profit margins caused by the
price-war between IBM and the Japanese plug-compatible mainframe
manufacturers. The medium-term problem was to respond to the coming
convergence of computers and communications: this convergence implied
not merely developing networked computer systems, but also achieving
strategic alliances or mergers with telecommunications firms.

During 1981-82, while ICL was tackling its short-term problem of recovery
in the marketplace, the medium-term issue of a large-scale convergence had
to remain a consideration for the future. Of course, at the product level,
convergence was very much to the fore and was implicit in the whole
technical and marketing concept of the Networked Product Line. During the
recovery period, talks were held at the top level with a number of
telecommunications firms with a view to achieving technological con­
vergence and the benefits of greater scale; but nothing materialized - and
ICL was in any case then negotiating from a position of weakness. None of
the talks, incidentally, involved STC which was to launch a takeover bid in
1984.

By 1983 ICL was seen to have turned the corner; it had returned to profit and
was now set for growth. The company embarked upon a £2 million
advertising campaign devised by J. Walter Thompson to restore its public
image, and to promote itself as “a total systems supplier” through its
Networked Product Line, with the slogan “We should be talking to each
other”. The campaign was memorable and expensive, and marked a turning
point for ICL’s renaissance in the market place.

810 ICL Technical Journal November 1989

On 26 July 1984, entirely out of the blue, a takeover bid was received from
STC. The motive for the takeover bid was the coming convergence of
telecommunications and computers. The inevitability of this convergence
had long been accepted in ICL; consequently, although the STC bid came as
a surprise, it was not altogether unwelcome and meshed well with the long­
term direction of the information business. After the usual haggling over
price, ICL recommended acceptance of the offer and gave a detailed
rationale:

The technology of computers and telecommunications is converging
rapidly. Many of the components, manufacturing techniques, research
and development programmes and human skills are now shared by both
technologies. At the same time, customers are seeking integrated
networks of computers and telecommunications equipment.

The merger will combine the strengths of ICL in computer systems and
software and of STC in network and transmission systems, thus
providing an exciting opportunity to create a group capable of offering a
broad range of information technology products and services, including
integrated voice and data communication systems.

The combination of STC and ICL will create a strong British group
with the resources to meet the challenge of international competition
and strongly placed to take advantage of many growth opportunities in
the converging computer and telecommunications markets26.

On Monday 10 September 1984, STC had acquired over 80 per cent of ICL
ordinary shares, and the takeover was declared unconditional; ICL now
became part of the STC Group, and on 15 April 1985 its name was changed
to STC International Computers Limited. As a part of the STC Group, the
company was now embarked on one of the most exciting periods in its
history, although a short-lived financial crisis in 1985 provided a salutary
reminder that in spite of its greater scale, the STC Group remains a relatively
small player on the world stage.

Since STC and ICL joined forces in 1984, there have been tangible benefits in
terms of operational rationalization and product development. But from the
R&D viewpoint the major benefits of convergence lie in the future; and
doubtless in ways that cannot be easily foreseen today - for, if one clear
lesson emerges from the history of R&D in ICL, it is that the future course of
the information business is very difficult to predict.

Acknowledgem ents

The research for this series of papers in the ICL Technical Journal and for my
forthcoming book ICL: A Business and Technical History would not have
been possible without the help of many people. These include some thirty
people, from inside ICL and without, who were interviewed in depth; many

ICL Technical Journal November 1989 811

people who answered written questions or volunteered information; and
several readers in ICL and in the academic community who criticized early
written drafts. Full acknowledgements to these people will be made in my
book, but I would particularly like to record here my indebtedness to the
following ICL people who have supported me during the four years I have
been researching and writing the history of the company. David Marwood
and Gordon Bates, company secretaries; Gordon Collinson, manager of the
ICL Historical Collection; Jack Howlett, editor of the ICL Technical
Journal', and Arthur Humphreys, managing director 1968-72, and deputy
chairman 1972-81.
BOXT

References

This article is based on interviews, documents in the ICL Archives and in the ICL Historical
Collection, as well as the open literature. The references below are intended to be representative
of the major documentary sources used, rather than an exhaustive listing. Full references will
appear in the author’s forthcoming book on the history of ICL.

1 CAMPBELL-KELLY, M.: “ICL Company Research and Development, Part 2: Mergers
and Mainframes, 1959-68”, ICL Technical Journal, Vol. 6, 1988, pp. 171-99.

2 WILSON, H.: “The Labour Government 1964-1970”, Weidenfeld and Nicolson and
Michael Joseph, London, 1971, p. 8.

3 “Industrial Investment: The Computer Mergers Project”, Comnd. 3660, HMSO, London,
1968.

4 IBBET, R.N. and TOPHAM, N.P.: “Architecture of High Performance Computers, Vol. 1:
Uniprocessors and Vector Processors”, Macmillan, London, 1989.

5 ILIFFE, J.K.: “Basic Machine Principles”, Macdonald, London, 1968.
6 BUCKLE, J.K.: “The ICL 2900 Series”, Macmillan, London, 1978.
7 Dozens of reports were prepared in the course of new range planning. The two most

important summary documents in the ICL Archives are: “Introduction and Summary
Documents”, Book 1, 30 April 1969; and “Phase II: Situation Report”, 20 October 1969.

8 “Project 52”, [“strictly confidential, and distribution is on a limited basis”], ICL, May
1971. (J.M.M. Pinkerton Papers.)

9 “ICL New Range Introduction Strategy”, 1 December 1971, p. 28. (ICL Archives.)
10 FISHER, F.M., McKIE, J.W. and MANCKE, R.P.: “IBM and the U.S. Data Processing

Industry”, Praeger, New York, 1983.
11 Select Committee on Science and Technology (Sub-Committee A), Session 1970-71, “The

Prospects for the United Kingdom Computer Industry in the 1970’s, Vol. 1: Report”,
HMSO, London, 1971, p. lx, para. 255.

12 Ibid., p. lx, para. 258.
13 Hansard, 3 July 1972, col. 34.
14 Hansard, 4 July 1973, col. 530.
15 A detailed history of the ICL 2903 is given in a report entitled “International Computers

Limited”, April 1976, submitted for the 1976 Award for the Institute of Marketing. (ICL
Historical Collection.)

16 “Five Year Strategic Plan, 1973/4 to 1977/8”, 30 August 1973, p. 11. (ICL Archives.)
17 “Viewpoint: Great expectations?”, Data Processing, November-December 1974, p. 361.
18 FALTERMAYER, E.K.: “Its a Spryer Singer”, Fortune, December 1963, pp. 145-8,

154-68. Reprinted as chapter 18 of H.I Ansoff, “Business Strategies: Selected Readings”,
Penguin, Harmondsworth, 1969.

19 SOBEL, R.: “IBM vs. Japan”, Stein and Day, New York, 1986.
20 An excellent exposition of the ICL view of non-Von Neumann architectures is given in

M.D. Godfrey, “Innovation in Computational Architecture and Design”, ICL Technical
Journal, Vol. 5, 1985, pp. 18-31.

812 ICL Technical Journal November 1989

21 A brief history of DAP appears in: “ICL Takes World Lead”, ICL News, April 1978,
pp. 1-2. See also many papers on DAP exploitation in the ICL Technical Journal.

22 CARMICHAEL, J.W.S.: “History of the ICL Content-Addressable File Store (CAFS)”,
ICL Technical Journal, Vol. 4, 1985, pp. 352-7.

23 The best account of ICL’s crisis of the early 1980s is: D.C.L. Marwood, “ICL: Crisis and
Swift Recovery”, Long Range Planning, Vol. 18, 1985, pp. 10-21.

24 See, for example: M. Pastalos-Fox, “How to Buy Technology”, Management Today,
December 1983, pp. 78-81. A. Cane, “State of the Art at ICL”, Financial Times, 25 April
1985, p. 40.

25 For a discussion on standards see: K. Flamm, “Creating the Computer”, Brookings
Institution, Washington D.C., 1988, pp. 242-6.

26 “STC Bid for ICL”, ICL Press Announcement, 16 August 1984. (ICL Archives.)

Editor’s Note

MARTIN CAMPBELL-KELLY’S ICL: A Business and Technical History is to be published
shortly by Oxford University Press. Publication details will appear at the time of publication in
the STC Gazette and in the ICL Technical Journal.

ICL Technical Journal November 1989 813

Notes on the authors

S.J.R. Ait ken
Stephen Aitken read Mechanical Engineering at Imperial College, London
and gained his initial industrial experience with GEC. He joined ICT in 1967
and worked in sales and support and then in consultancy and business
planning. During this period he returned to Imperial College to obtain a
Master’s degree in Operational Research and Management Science.

Over the last 15 years he has worked in a number of product and industry
marketing roles in both Country and Business Divisions, concentrating
mainly on applications software. It was during a secondment to Marketing
Development and Training that he initiated work on the Marketeers’
Workbench. He is now Marketing Manager in STC Networks Industry,
which is responsible for developing information systems business with Public
Network Operators worldwide.

Dr. H. Alexander
Heather Alexander joined ICL in 1977, having graduated in Computing
Science and Mathematics from the University of Stirling. She was involved
in database system development until 1984 when she was awarded an ICL
educational scholarship at Stirling to undertake software engineering re­
search. During this time she transferred to STC Technology Ltd. and
participated in the Alvey-sponsored me too project. This work involved
collaborative studies with development groups within ICL. At the end of the
project she joined British Telecom’s System and Software Engineering
Centre in Glasgow where she is now manager of a development project.

H. Benker
Hans Benker, born in 1959, has been a researcher at ECRC since 1985 where
he has worked on hardware architectures for logic programming systems. He
holds a degree in electrical engineering from the University of Erlangen
(FRG). His research interests include hardware support for symbolic
processing.

Dr. M. Campbell-Kelly
Martin Campbell-Kelly graduated from the University of Manchester in
1968 with a B.Sc. in Computer Science and received a Ph.D. in History of
Science in 1980. He is now Lecturer in the Department of Computer Science
at the University of Warwick. He is Editor of the Charles Babbage Institute

814 ICL Technical Journal November 1S89

Reprint Series for the History o f Computing and of the Collected Works of
Charles Babbage and is also an editor of the Annals of the History of
Computing. He is presently engaged in a number of computer history
projects, and in particular has recently completed a corporate history of
ICL, to be published before the end of 1989.

M. Dorochevsky
Michel Dorochevsky, born in 1960, has been a researcher at ECRC since
1987 where he has worked on Prolog compilation and runtime systems. He
holds a degree in computer science from the Technical University of Munich
(FRG). His research interests include the design and implementation of logic
programming systems.

S. Holdsworth
Sean Holdsworth graduated in 1984 with a B.Sc. in Computational Science
from the University of St. Andrews. He joined the Computer Science
Department of the University of Manchester in 1987 after working as a
systems programmer in the National Computer Centre’s OSI communica­
tions group. At Manchester he has worked in the systems software group
of the Alvey Flagship project, and is currently a Research Associate
working on kernel software for the Esprit European Declarative System
project.

R. W. Jones
Roy Jones is a security consultant in ICL’s Defence Technology Centre. He
has a degree in Modern Languages from Nottingham University and has
worked as a systems designer since 1956. He has been concerned with secure
systems and the use of encipherment in computer architecture since 1975,
first as a consultant with CCTA and then, since 1977, within ICL. He is a
member of the BSI committee 1ST 20, whose task is to produce standards for
the use of encipherment, and of the corresponding international committee
ISO/SC 20.

J.A. Keane
John Keane has been a Research Associate in the Department of Computer
Science at the University of Manchester since July 1987. He is presently
employed on the European Declarative System project, after having worked
on the software for a parallel, declarative machine (Flagship) for two
years.

He has a B.Sc. in Computation from the University of Manchester
(UMIST). His career has included various spells in industry both pre- and
post-graduation, including a period with ICL in the VME Director project.
Before taking up his present position he was a Research Assistant in the
Department of Computation at UMIST working on non-procedural
modelling systems.

ICL Technical Journal November 1989 815

Dr. K.R. Mayes
Ken Mayes has a B.Sc. and a Ph.D. in Zoology from the University of
Nottingham and an M.Sc. in Computation from the University of Man­
chester (UMIST). He worked for several years in physiological research at
the University of Wales College of Medicine, Cardiff, and has spent periods
teaching and lecturing in Britain and abroad. He joined the Alvey Flagship
project software team at the University of Manchester in 1987, working on
the Flagship kernel. He is currently working on the kernel for the Esprit
European Declarative System project.

D.G. McVitie
David McVitie joined ICL in 1967 after receiving an M.Sc. from the
Department of Computing at the University of Newcastle upon Tyne. He
worked on several (then) futuristic projects on database and language
integration. In 1970 he left ICL to work as a consultant with Software
Sciences on contracts concerning operating systems, languages and data­
bases. Returning to ICL in 1972, he has been involved ever since then with
the system design and architecture of the VME operating system and of
ICL’s Networked Product Line. He is currently concerned with distributed
systems and security.

J. Noye
Jacques Noye, born in 1959, has been a researcher at ECRC since 1985
where he has worked on instruction set design and compilation for logic
programming systems. He holds a degree in engineering from the “Ecole
Centrale de Lyon” and a computer science degree from the “Ecole Nationale
Superieure de l’Aeronautique et de l’Espace” . His research interests include
the design and implementation of logic programming systems.

T.A. Parker
Tom Parker graduated from Downing College, Cambridge, with a degree in
Mathematics in 1963. He first worked for Ferranti as a technician on a large
in-flight simulator for the Bloodhound Mk II missile before joining Fisons in
1966 as Systems Analyst and then Chief Programmer. He joined ICL in 1971
and worked on early design of major 2900 Series operating systems before
transferring to Bureau West, where he was responsible for operating system
support and for design and development of new security features. He is now
a Security Consultant responsible for consultancy on all aspects of technical
security within ICL.

He was responsible for the inception and for much of the design of the
High Security Option of ICL’s VME operating system, and is chairman of
ICL’s corporate Technical Security Strategy Subcommittee. He is actively
involved in the design of high security network architecture within both ICL
and standards organisations in Europe. He has written a number of technical
papers on security and has lectured both in Europe and in America.

816 ICL Technical Journal November 1989

/) . / . Saxl

David Saxl joined IC1 from the engineering company Rubery Owen in 1973.
As a Manufacturing Systems Consultant he was responsible for the imple­
mentation of OMAC 29 and other manufacturing systems, both for ICL
customers and for ICL’s own use within Manufacturing and Logistics (M &
L). During 1987 he was manager of the Artificial Intelligence Centre within
M & L and is now responsible for the exploiting of M & L’s systems and for
the development of strategy.

A. Sexton
Alan Sexton, born in 1961, has been a researcher at ECRC since 1987 where
he has designed and implemented the operating system of K.CM. He holds a
degree in physics from Trinity University Dublin. He worked at an
applications development company where he helped build a multidimen­
sional decision support system before joining ECRC as systems programmer
in 1985. His research interests include operating systems and compiler
theory.

Dr. J.C. Syre
Jean-Claude Syre, born in 1948, is the Leader of the Computer Architecture
Group of ECRC. He holds a computer science degree from ENSEEIHT
Toulouse (1971), and a Ph.D. degree from University of Toulouse (1980).
He began research on Data Flow systems in 1971 at ONERA CERT
(Toulouse), and built the LAU multiprocessor prototype system. From 1981
to 1984, he was Professor of Computer Science at the “Ecole Nationale
Superieure de l’Aeronautique et de l’Espace” in Toulouse. In 1984 he joined
ECRC to start and manage research projects in Computer Architectures for
A1 and Symbolic Processing. He is a member of ACM and IEEE. He was
Program Co-chairman of the ESPRIT-sponsored PARLE 89 Conference,
and Program Chairman of the 1989 IEEE/ACM International Symposium
on Computer Architecture.

Professor S.C. Wheelwright
Steven Wheelwright is Class of 49 Professor of Business Administration at
the Harvard Business School. Since receiving a B.S. in mathematics from the
University of Utah in 1966 and both an M.B.A. and a Ph.D. in Business
from Stanford University in 1970 he has taught at INSEAD (Fontainbleau,
France), at Stanford Graduate School of Business and at Harvard. He has
also worked for a year as Vice President of Marketing and Sales in a family-
owned firm. His most recent teaching assignments have been in the areas of
manufacturing strategy, technology, economics, forecasting and planning,
and in production/operations management.

Professor Wheelwright’s publications include Dynamic Manufacturing:
Creating the Learning Organization, co-authored with Professors Robert
Hayes and Kim Clarke of Harvard University (Free Press, 1988) and
Restoring Our Competitive Edge: Competing Through Manufacturing, co-

ICL Technical Journal November 1989 817

authored with Professor Robert Hayes (John Wiley & Sons, 1984). He has
published several articles in the Harvard Business Review and in other
journals. He is the co-author with Spyros Makridakis of several books on
forecasting, including The Handbook of Forecasting (2nd edition, Wiley
1987) and Forecasting Methods in Management (5th edition, Wiley 1989).
His research interests deal with issues that relate a manufacturing functional
strategy to the business and corporate strategies. Of particular interest are
the management of technology for competitive advantage and the interface
between design engineering and manufacturing required for effective new
product introduction.

818 ICL Technical Journal November 1989

iCL
TGCHfllCfll
j o u R n n i

P a g e s c o n t a i n e d in e a c h i s s u e

(1) 1 - 2 0 3 (3) 4 0 7 - 6 2 1
(2) 2 0 5 - 4 0 5 (4) 6 2 3 - 8 1 8

Subject index
Volume 6

A A L V E Y (D i r e c t o r a t e)
T h e ‘D e s i g n to P r o d u c t ’ A l v e y D e m o n s t r a t o r

B u r r o w , L.D. 1 9 8 9 (3) 5 9 8 - 6 1 6
K A N T - a K n o w l e d g e A n a l y s i s T o o l

S t o r r s , G .E . a n d B u r t o n , C .P . 1 9 8 9 (3) 5 7 2 - 5 8 4
T o o l s , M e t h o d s a n d T h e o r i e s : a p e r s o n a l v i e w
o f p r o g r e s s t o w a r d s S y s t e m s E n g i n e e r i n g

T a l b o t , D .E . 1 9 8 9 (3) 4 0 9 - 4 1 6
Architecture
A n a r c h i t e c t u r a l f r a m e w o r k f o r s y s t e m s

H e n d e r s o n , P. a n d W a r b o y s , C .P . 1 9 8 9 (3) 4 3 5 - 4 4 6
A s p e c t s o f p r o t e c t i o n o n t h e F l a g s h i p m a c h i n e :
b i n d i n g , c o n t e x t a n d e n v i r o n m e n t

H o l d s w o r t h et at. 1 9 8 9 (4) 7 5 7 - 7 7 7
O p e n s y s t e m s a r c h i t e c t u r e fo r CIM

R u s s e l l , P .J . 1 9 8 8 (2) 2 3 3 - 2 6 4
T h e a r c h i t e c t u r e o f a n a u t o m a t e d q u a l i t y
m a n a g e m e n t s y s t e m

W a l k e r , J .F . a n d K i t c h e n h a m , B .A . 1 9 8 8 (1) 1 5 6 - 1 7 0

O Cabling (building)
U n i v e r s a l c o m m u n i c a t i o n s c a b l i n g : a b u i l d i n g
uti l ity

F l a t m a n , A .V . 1 9 8 8 (1) 1 1 7 - 1 3 6

ICL Technical Journal November 1989 819

CAPP (Com puter A ided Process Planning) -
see PROCESS PLANNING
C A R R E F O U R S (F r e n c h h y p e r m a r k e t)
L a s o l u t i o n ICL c h e z C A R R E F O U R S a O r l e a n s

P i s i g o t , Y. 1 9 8 9 (3) 5 0 0 - 5 1 0
CASE - Computer A ided Support Environm ent
T h e c a s e fo r C A S E

R u s s e l l , A .J . 1 9 8 9 (3) 4 7 9 - 4 9 5
CIM - Computer Integrated M anufacture
O p e n s y s t e m s a r c h i t e c t u r e f o r CIM

R u s s e l l , P .J . 1 9 8 8 (2) 2 3 3 - 2 6 4
Communications - see Networks
Cryptography - see Encryption

D Database
I n g r e s P h y s i c a l D e s i g n A d v i s e r : a p r o t o t y p e
s y s t e m fo r a d v i s i n g o n t h e p h y s i c a l d e s i g n o f
a n I n g r e s r e l a t i o n a l d a t a b a s e

G u n n e r , M. 1 9 8 9 (3) 5 5 7 - 5 6 1
U s e o f i n t e g r a t e d e l e c t r o n i c m a i l w i t h i n
d a t a b a s e s t o c o n t r o l p r o c e s s e s .

P a s s , D .A . 1 9 8 8 (2) 3 0 0 - 3 1 0
Design topics
T h e K n o w l e d g e C r u n c h i n g M a c h i n e a t EC R C : a
jo in t R & D p r o j e c t o f a h ig h s p e e d P r o l o g s y s t e m

B e n k e r , H. et at. 1 9 8 9 (4) 7 3 7 - 7 5 3
T h e D e s i g n t o P r o d u c t A l v e y D e m o n s t r a t o r

B u r r o w , L.D. 1 9 8 9 (3) 5 9 8 - 6 1 6
A s p e c t s o f p r o t e c t i o n o n t h e F l a g s h i p m a c h i n e :
b i n d i n g , c o n t e x t a n d e n v i r o n m e n t

H o l d s w o r t h , S . et at. 1 9 8 9 (4) 7 5 7 - 7 7 7
L Encryption

A n i n t r o d u c t i o n t o p u b l i c k e y s y s t e m s a n d
d ig i t a l s i g n a t u r e s

P r e s s , J. 1 9 8 9 (4) 6 8 1 - 6 9 3
ECRC (European Computer Research Centre,
Munich)
T h e K n o w l e d g e C r u n c h i n g M a c h i n e a t EC R C : a
jo in t R & D p r o j e c t o f a h ig h s p e e d P r o l o g s y s t e m

B e n k e r , H. et at. 1 9 8 9 (4) 7 3 7 - 7 5 3
Expert systems - see Knowledge

F Flagship Project
A s p e c t s o f p r o t e c t i o n o n t h e F l a g s h i p m a c h i n e :
b i n d i n g , c o n t e x t a n d t h e e n v i r o n m e n t

H o l d s w o r t h , S . et at. 1 9 8 9 (4) 7 5 7 - 7 7 7

820 ICL Technical Journal November 1989

Form al Methods
A f o r m a l l y s p e c i f i f i e d i n - s t o r e s y s t e m f o r t h e
r e ta i l s e c t o r

J o n e s , V. 1 9 8 9 (3) 5 1 1 - 5 4 1
S e c u r i t y a s p e c t s o f t h e f u n d a m e n t a l a s s o c i a t i o n
m o d e l

A l e x a n d e r , H. a n d M c V i t t i e , D. 1 9 8 9 (4) 6 7 0 - 6 8 0

G Geographic Information Systems
... t o w a r d s a G e o g r a p h i c I n f o r m a t i o n S y s t e m

Q u i n n , J . M . P . 1 9 8 9 (3) 5 4 2 - 5 5 6

H History of ICL
P a r t 2: M e r g e r s a n d M a i n f r a m e s 1 9 5 9 - 6 8 1 9 8 8 (1) 1 7 1 - 1 9 9
P a r t 3: T h e N e w R a n g e a n d o t h e r d e v e l o p m e n t s 1 9 8 9 (4) 7 8 1 - 0 0 0

M. C a m p b e l l - K e l l y
Human Factors
O n t h e h u m a n s i d e o f t e c h n o l o g y

K o c h a n , T. 1 9 8 8 (2) 3 9 1 - 4 0 0

Income Tax
T h e UK I n la n d R e v e n u e o p e r a t i o n a l s y s t e m s

W i l s o n , E. 1 9 8 9 (3) 4 9 6 - 4 9 9
INGRES (database)
I n g r e s P h y s i c a l D e s i g n A d v i s o r : a p r o t o t y p e
s y s t e m f o r a d v i s i n g o n t h e p h y s i c a l d e s i g n o f
a n I n g r e s r e l a t i o n a l d a t a b a s e

G u n n e r , M. 1 9 8 9 (3) 5 5 7 - 5 7 1
IPSE - Integrated Project Support Environment
A n i n t r o d u c t i o n to t h e I P S E 2 . 5 p r o j e c t

S n o w d o n , R .A . 1 9 8 9 (3) 4 6 7 - 4 7 8
T w e n t y y e a r s w i th S u p p o r t E n v i r o n m e n t s

W a r b o y s , B .C . a n d V e a s e y , P .W . 1 9 8 9 (3) 4 4 7 - 4 6 6

J JIT - ‘Just in T im e’ (in manufacturing)
JIT a n d IT

W e s t b r o o k , R. 1 9 8 9 (2) 2 8 0 - 2 9 1

K Knowledge analysis, processing
B u i l d i n g a M a r k e t e e r ’s W o r k b e n c h : a n e x p e r t
s y s t e m a p p l i e d t o t h e m a r k e t i n g p l a n n i n g
p r o c e s s

A i t k e n , S . a n d B i n t l e y , H. 1 9 8 9 (4) 7 2 1 - 7 3 6

ICL Technical Journal November 1989 821

T h e K n o w l e d g e C r u n c h i n g M a c h i n e a t E C R C : a
jo in t R & D p r o j e c t o f a h i g h s p e e d P r o l o g s y s t e m

B e n k e r , H. et al. 1 9 8 9 (4) 7 3 7 - 7 5 3
C o l l e c t i n g a n d g e n e r a l i s i n g k n o w l e d g e
d e s c r i p t i o n s f r o m t a s k a n a l y s i s d a t a

J o h n s o n , P. et at. 1 9 8 8 (1) 1 3 7 - 1 5 5
K n o w l e d g e e n g i n e e r i n g a s a n a i d t o t h e s y s t e m
s e r v i c e d e s k s

M itc a l f , J .D . 1 9 8 8 (1) 5 7 - 6 3
K n o w l e d g e b a s e d s y s t e m s in c o m p u t e r b a s e d
m a n u f a c t u r i n g

N a g a r k a r , S . 1 9 8 8 (2) 2 1 9 - 2 3 2
M A E S - a n e x p e r t s y s t e m a p p l i e d t o t h e
p l a n n i n g o f m a t e r i a l s u p p l y in c o m p u t e r
m a n u f a c t u r i n g

S a x l , D. et at. 1 9 8 8 (2) 2 6 5 - 2 7 9
K A N T - a K n o w l e d g e A n a l y s i s T o o l

S t o r r s , G .E . a n d B u r t o n , C .P . 1 9 8 9 (3) 5 7 2 - 5 8 4

L Logic (analyser, language)
L o g i c a n a l y s e r s fo r s y s t e m p r o b l e m s o l v i n g

P a r k e r , B. 1 9 8 8 (1) 6 4 - 8 0
P u r e L o g i c L a n g u a g e

B a b b , E. 1 9 8 9 (3) 5 8 5 - 5 9 7

M MAES - MRP Actions Expert System
M A E S - a n e x p e r t s y s t e m a p p l i e d to t h e
p l a n n i n g o f m a t e r i a l s u p p l y in c o m p u t e r
m a n u f a c t u r i n g

S a x l , D. et al. 1 9 8 8 (2) 2 6 5 - 2 7 9
Maintenance, Support, Supporting services
F o r e w o r d : ICL S u p p o r t a n d M a i n t e n a n c e

P r o c t o r , J .M . 1 9 8 8 (1) 1
ICL S e r i e s 3 9 s u p p o r t p r o c e s s

A l l i s o n , R. 1 9 8 8 (1) 2 - 1 6
R e p a i r - p a s t a n d f u t u r e

C o i l e y , G .M . 1 9 8 8 (1) 8 1 - 8 7
ICL S e r v i c e s P r o d u c t C e n t r e

G r if f i th s , M .D . 1 9 8 8 (1) 3 3 - 5 6
K n o w l e d g e e n g i n e e r i n g a s a n a i d t o t h e s y s t e m
s e r v i c e d e s k s

M itc a lf , J .D . 1 9 8 8 (1) 5 7 - 6 3
L o g i c a n a l y s e r s fo r s y s t e m p r o b l e m s o l v i n g

P a r k e r , B. 1 9 8 8 (1) 6 4 - 8 0
T h e ICL S u p p o r t C e n t r e O r g a n i s a t i o n

Y o u n g , J . 1 9 8 8 (1) 1 7 - 3 6

822 ICL Technical Journal November 1989

M a t e r i a l s e v a l u a t i o n
B i l l i n g t o n , S . R . 1 9 8 8 (2) 3 7 7 - 3 9 0

Manufacturing
F o r e w o r d : ICL M a n u f a c t u r i n g a n d L o g i s t i c s

S w e e n e y , E. 1 9 8 8 (2) 2 0 5
M a n u f a c t u r i n g a t IC L ’s A s h t o n p l a n t

F i s h e r , R .W . 1 9 8 8 (2) 2 0 9 - 2 1 8
A r t w o r k s p e c i f i c a t i o n s in P r o l o g

Hill , E .F . 1 9 8 8 (2) 3 2 1 - 3 3 5
O n t h e h u m a n s i d e o f t e c h n o l o g y

K o c h a n , T. 1 9 8 8 (2) 3 9 1 - 4 0 0
C o m p u t e r a i d e d p r o c e s s p l a n n i n g : e x p e r i e n c e
a t D o w t y F u e l S y s t e m s

J a c k s o n , G . 1 9 8 8 (2) 2 9 2 - 2 9 9
V a l u e e n g i n e e r i n g , a t o o l fo r p r o d u c t i o n c o s t
r e d u c t i o n

L y n n , S . 1 9 8 8 (2) 3 1 1 - 3 2 0
K n o w l e d g e b a s e d s y s t e m s in c o m p u t e r b a s e d
m a n u f a c t u r e r

N a g a r k a r , S . 1 9 8 8 (2) 2 1 9 - 2 3 2
U s e o f i n t e g r a t e d e l e c t r o n i c m a i l w i t h in
d a t a b a s e s t o c o n t r o l p r o c e s s

P a s s , D .A . 1 9 8 8 (2) 3 0 0 - 3 1 0
O p e n s y s t e m s a r c h i t e c t u r e fo r CIM

R u s s e l l , P .J . 1 9 8 8 (2) 2 3 3 - 2 6 4
M A E S - a n e x p e r t s y s t e m a p p l i e d to t h e
p l a n n i n g o f m a t e r i a l s u p p l y in c o m p u t e r
m a n u f a c t u r i n g

S a x l , D. et al. 1 9 8 8 (2) 2 6 5 - 2 7 9
T h e D e s i g n t o P r o d u c t A l v e y D e m o n s t r a t o r

B u r r o w , L .D . 1 9 8 8 (3) 5 9 8 - 6 1 6
T i m e t o M a r k e t in m a n u f a c t u r i n g

S a x l , D. 1 9 8 9 (4) 6 4 7 - 6 5 4
T i m e t o M a r k e t in n e w p r o d u c t d e s i g n

W h e e l w r i g h t , S . C . 1 9 8 9 (4) 6 2 5 - 6 4 6
M arketing
B u i l d i n g a M a r k e t e e r ’s W o r k b e n c h : a n e x p e r t
s y s t e m a p p l i e d t o t h e m a r k e t i n g p l a n n i n g
p r o c e s s

A i t k e n , S . a n d B i n t l e y , H. 1 9 8 9 (4) 7 2 1 - 7 3 6
F o r e w o r d : T i m e t o M a r k e t

D i c k s o n , J .T . 1 9 8 9 (4) 6 2 3
T i m e to M a r k e t in m a n u f a c t u r i n g

S a x l , D. 1 9 8 9 (4) 6 4 7 - 6 5 4
T i m e to M a r k e t in n e w p r o d u c t d e v e l o p m e n t

W h e e l w r i g h t , S . C . 1 9 8 9 (4) 6 2 5 - 6 4 6
M aterials Science, Properties
M a t e r i a l s e v a l u a t i o n

B i l l i n g t o n , S . R . 1 9 8 8 (2) 3 7 7 - 3 9 0

ICL Technical Journal November 1989 823

R e l i a b i l i t y o f s u r f a c e - m o u n t e d c o m p o n e n t
s o l d e r e d j o i n t s p r o d u c e d b y v a p o u r p h a s e ,
in fr a r e d a n d w a v e s o l d e r i n g t e c h n i q u e s

H a r m a n , H .C . a n d T a n n e r , C .G . 1 9 8 8 (2) 3 6 5 - 3 7 6

N Networks, Networking
A n e t w o r k t o s u p p o r t a p p l i c a t i o n s o f t w a r e
d e v e l o p m e n t

B o d s w o r t h , V. 1 9 8 8 (1) 1 0 7 - 1 1 6
U n i v e r s a l c o m m u n i c a t i o n s c a b l i n g : a b u i l d i n g
uti l ity

F l a t m a n , A .V . 1 9 8 8 (1) 1 1 7 - 1 3 6
O SI m i g r a t i o n

H o u l d s w o r t h , J. 1 9 8 8 (1) 8 8 - 1 0 6

P Printed C ircu it Boards
E l a s t o m e r t e c h n o l o g y fo r p r o b i n g h i g h d e n s i t y
p r i n t e d c i r c u i t b o a r d s

C a l a m , C .B . 1 9 8 8 (2) 3 3 6 - 3 4 1
A S P : A r t w o r k S p e c i f i c a t i o n s in P r o l o g

Hill , E .F . 1 9 8 8 (2) 3 2 1 - 3 3 5
Process Planning
C o m p u t e r A i d e d P r o c e s s P l a n n i n g (C A P P) :
e x p e r i e n c e a t D o w t y F u e l S y s t e m s

J a c k s o n , G . 1 9 8 8 (2) 2 9 2 - 2 9 9
PROLOG
T h e K n o w l e d g e C r u n c h i n g M a c h i n e a t E C R C : a
jo in t R & D p r o j e c t o f a h ig h s p e e d P r o l o g s y s t e m

B e n k e r , H. et at. 1 9 8 9 (4) 7 3 7 - 7 5 3
A S P : A r t w o r k S p e c i f i c a t i o n in P r o l o g

Hill , E .F . 1 9 8 8 (2) 3 2 1 - 3 3 5

Q Quality
T h e a r c h i t e c t u r e o f a n a u t o m a t e d q u a l i t y
m a n a g e m e n t s y s t e m

W a l k e r , J .F . a n d K i t c h e n h a m , B .A . 1 9 8 8 (1) 1 5 6 - 1 7 0

R Repair
R e p a i r - p a s t a n d f u t u r e

C o i l e y , G .M . 1 9 8 8 (1) 8 1 - 8 7
Retail Systems
A f o r m a l l y - s p e c i f i e d i n - s t o r e s y s t e m fo r t h e
r e ta i l s e c t o r

J o n e s , V. 1 9 8 9 (3) 5 1 1 - 5 4 1

824 ICL Technical Journal November 1989

L a s o l u t i o n ICL c h e z C A R R E F O U R S a O r l e a n s
P i s i g o t , Y. 1 9 8 9 (3) 5 0 0 - 5 1 0

S Security (of data, inform ation)
S e c u r i t y a s p e c t s o f t h e f u n d a m e n t a l a s s o c i a t i o n
m o d e l

A l e x a n d e r , H. a n d M c V i t t i e , D. 1 9 8 9 (4) 6 7 0 - 6 8 0
S e c u r i t y c l a s s e s a n d a c c e s s r ig h t s in a
d i s t r i b u t e d s y s t e m

J o n e s , R .W . 1 9 8 9 (4) 6 9 4 - 7 1 8
T h e V M E H ig h S e c u r i t y O p t i o n

P a r k e r , T. 1 9 8 9 (4) 6 5 7 - 6 6 9
A n i n t r o d u c t i o n t o p u b l i c k e y s y s t e m s a n d
d ig i t a l s i g n a t u r e s

P r e s s , J. 1 9 8 9 (4) 6 8 1 - 6 9 3
Soldering
R e l i a b i l i t y o f s u r f a c e m o u n t e d c o m p o n e n t
s o l d e r e d j o i n t s p r o d u c e d b y v a p o u r p h a s e ,
in fr a r e d a n d w a v e s o l d e r i n g t e c h n i q u e s

H a r m a n , H .C . a n d T a n n e r , C .G . 1 9 8 8 (2) 3 6 5 - 3 7 6
System topics
F o r e w o r d : I n f o r m a t i o n S y s t e m s in o r g a n i s a t i o n s

D i c k s o n , J .T . 1 9 8 9 (3) 4 0 7
T o o l s , M e t h o d s a n d T h e o r i e s : a p e r s o n a l v i e w
o f p r o g r e s s t o w a r d s S y s t e m s E n g i n e e r i n g

T a l b o t , D .E . 1 9 8 9 (3) 4 0 9 - 4 1 6
A n a r c h i t e c t u r a l f r a m e w o r k fo r s y s t e m s

H e n d e r s o n , P. a n d W a r b o y s , B .C . 1 9 8 9 (3) 4 3 5 - 4 4 6
A f o r m a l l y s p e c i f i e d i n - s t o r e s y s t e m fo r t h e
r e ta i l s e c t o r

J o n e s , V. 1 9 8 9 (3) 5 1 1 - 5 4 1
S y s t e m s i n t e g r a t i o n

L u c a s , R. 1 9 8 9 (3) 4 1 5 - 4 3 4
... t o w a r d s a G e o g r a p h i c I n f o r m a t i o n S y s t e m

Q u i n n , J .M .P . 1 9 8 9 (3) 5 4 2 - 5 5 6

Task Analysis
C o l l e c t i n g a n d g e n e r a l i s i n g k n o w l e d g e
d e s c r i p t i o n s f r o m t a s k a n a l y s i s d a t a

J o h n s o n , P. et al. 1 9 8 8 (1) 1 3 7 - 1 5 5
Tax System - see INCOME TAX
Testing (h a r d w a r e , m a t e r i a l s)
M a t e r i a l s e v a l u a t i o n

B i l l i n g t o n , S . R . 1 9 8 8 (2) 3 7 7 - 3 9 0
E l a s t o m e r t e c h n o l o g y fo r p r o b i n g h i g h d e n s i t y
p r i n t e d c i r c u i t b o a r d s

ICL Technical Journal November 1989 825

C a l a m , C .B . 1 9 8 8 (2) 3 3 6 - 3 4 1
T h e e f f e c t s o f b a c k - d r i v i n g s u r f a c e m o u n t e d
d i g i t a l i n t e g r a t e d c i r c u i t s

S h e r r a t t , C .J . a n d T o m l i n s o n , R. 1 9 8 8 (2) 3 4 2 - 3 6 4

V VME (ICL m ainfram e operating system)
T h e V M E H ig h S e c u r i t y O p t i o n

P a r k e r , T. 1 9 8 9 (4) 6 5 7 - 6 6 9

826 ICL Technical Journal November 1989

Author index
Volume 6

A A IT K E N , S . a n d B IN T L E Y , H.: B u i l d i n g a
M a r k e t e e r ' s W o r k b e n c h : a n e x p e r t s y s t e m
a p p l i e d t o t h e m a r k e t i n g p l a n n i n g p r o c e s s 1 9 8 9 (4) 7 2 1 - 7 3 6

A L E X A N D E R , H. a n d M cV IT T IE , D.: S e c u r i t y
a s p e c t s o f t h e f u n d a m e n t a l a s s o c i a t i o n
m o d e l 1 9 8 9 (4) 6 7 0 - 6 8 0

A L L I S O N , R.: ICL S e r i e s 3 9 s u p p o r t p r o c e s s 1 9 8 8 (1) 1 2 - 1 6

B B A B B , E.: P u r e L o g i c L a n g u a g e 1 9 8 9 (3) 5 8 5 - 5 9 7
B E N K E R , H., D O R O C H E V S K Y , M „ N O Y E , J „

O ’R I O R D A N , B „ S E X T O N , A. a n d S Y R E , J .C .:
T h e K n o w l e d g e C r u n c h i n g M a c h i n e a t E C R C :
a j o in t R & D p r o j e c t o f a h i g h s p e e d P r o l o g
s y s t e m 1 9 8 9 (4) 7 3 7 - 7 5 3

B IL L IN G T O N , S .R . : M a t e r i a l s e v a l u a t i o n 1 9 8 8 (2) 3 7 7 - 3 9 0
B IN T L E Y , H.: s e e A IT K E N a n d B IN T L E Y 1 9 8 9 (4) 7 2 1 - 7 3 6
B O D S W O R T H , V.: A n e t w o r k to s u p p o r t

a p p l i c a t i o n s o f t w a r e d e v e l o p m e n t 1 9 8 8 (1) 1 0 7 - 1 1 6
B U R R O W , L.D.: T h e ‘D e s i g n t o P r o d u c t ’ A l v e y

D e m o n s t r a t o r 1 9 8 9 (3) 5 9 8 - 6 1 6
B U R T O N , C .P . : s e e S T O R R S a n d B U R T O N 1 9 8 9 (3) 5 7 2 - 5 8 4

0 C A L A M , C .B .: E l a s t o m e r t e c h n o l o g y f o r p r o b i n g
h i g h d e n s i t y p r i n t e d c i r c u i t b o a r d s 1 9 8 8 (2) 3 3 6 - 3 4 1

C A M P B E L L -K E L L Y , M.: ICL C o m p a n y R e s e a r c h
a n d D e v e l o p m e n t . P a r t 2: M e r g e r s a n d
M a i n f r a m e s 1 9 5 9 - 1 9 6 8 . P a r t 3: T h e N e w
R a n g e a n d o t h e r d e v e l o p m e n t s 1 9 8 9 (4) 7 8 1 - 0 0 0

C O IL E Y , G .M .: R e p a i r - p a s t a n d f u t u r e 1 9 8 8 (1) 8 1 - 8 7

D D I C K S O N , J .T .: F o r e w o r d : s y s t e m c o n c e p t s 1 9 8 9 (3) 4 0 7
F o r e w o r d : T i m e t o M a r k e t 1 9 8 9 (4) 6 2 3
D O R O C H E V S K Y , M.: s e e B E N K E R et al. 1 9 8 9 (4) 7 3 7 - 7 5 3

ICL Technical Journal November 1989 827

F F IS H E R , R.W .: M a n u f a c t u r i n g a t IC L 's A s h t o n
p l a n t 1 9 8 8 (2) 2 0 9 - 2 1 8

F L A T M A N , A .V .: U n i v e r s a l c o m m u n i c a t i o n s
c a b l i n g : a b u i l d i n g u t i l i ty 1 9 8 8 (1) 1 1 7 - 1 3 6

G G R IF F IT H S , M .D.: ICL S e r v i c e s P r o d u c t C e n t r e 1 9 8 8 (1) 3 3 - 5 6
G U N N E R , M.: I n g r e s P h y s i c a l D e s i g n A d v i s e r : a

p r o t o t y p e s y s t e m fo r a d v i s i n g o n t h e p h y s i c a l
d e s i g n o f a n I n g r e s r e l a t i o n a l d a t a b a s e 1 9 8 9 (3) 5 5 7 - 5 7 1

H H A R M A N , H .C . a n d T A N N E R , C .G .: R e l i a b i l i t y o f
s u r f a c e m o u n t e d c o m p o n e n t s o l d e r e d j o i n t s
p r o d u c e d b y v a p o u r p h a s e , i n f r a - r e d a n d
w a v e s o l d e r i n g t e c h n i q u e s 1 9 8 8 (2) 3 6 5 - 3 7 6

H E N D E R S O N , P. a n d W A R B O Y S , B .C .: A n
a r c h i t e c t u r a l f r a m e w o r k f o r s y s t e m s 1 9 8 9 (3) 4 3 5 - 4 4 6

HILL, E.F.: A S P : A r t w o r k S p e c i f i c a t i o n s in
P R O L O G 1 9 8 8 (2) 3 2 1 - 3 3 5

H O L D S W O R T H , S . , K E A N E , J .A . a n d M A Y E S ,
K.R .: A s p e c t s o f p r o t e c t i o n o n t h e F l a g s h i p
m a c h i n e : b i n d i n g , c o n t e x t a n d e n v i r o n m e n t 1 9 8 9 (4) 7 5 7 - 7 7 7

H O U L D S W O R T H , J.: O SI m i g r a t i o n 1 9 8 8 (1) 8 8 - 1 0 6

J J A C K S O N , G.: C o m p u t e r A i d e d P r o c e s s
P l a n n i n g (C A P P) : e x p e r i e n c e a t D o w t y F u e l
S y s t e m s 1 9 8 8 (2) 2 9 2 - 2 9 9

J O H N S O N , H.: s e e J O H N S O N , P. et at. 1 9 8 8 (1) 1 3 7 - 1 5 5
J O H N S O N , P „ J O H N S O N , H. a n d R U S S E L L , F.:

C o l l e c t i n g a n d g e n e r a l i s i n g k n o w l e d g e
d e s c r i p t i o n s f r o m t a s k a n a l y s i s d a t a 1 9 8 8 (1) 1 3 7 - 1 5 5

J O N E S , R .W . S e c u r i t y c l a s s e s a n d a c c e s s
r ig h t s in a d i s t r i b u t e d s y s t e m 1 9 8 9 (4) 6 9 4 - 7 1 8

J O N E S , V.: A f o r m a l l y s p e c i f i e d i n - s t o r e s y s t e m
fo r t h e r e ta i l s e c t o r 1 9 8 9 (3) 5 1 1 - 5 4 1

K K E A N E , J .A .: s e e H O L D S W O R T H , et at. 1 9 8 9 (4) 7 5 7 - 7 7 7
K IT C H E N H A M , B .A .: s e e W A L K E R a n d

K IT C H E N H A M 1 9 8 8 (1) 1 5 6 - 1 7 0
K O C H A N , T.: O n t h e h u m a n s i d e o f t e c h n o l o g y 1 9 8 8 (2) 3 9 1 - 4 0 0

L L U C A S , R.: S y s t e m s i n t e g r a t i o n 1 9 8 9 (3) 4 1 5 - 4 3 4
L Y N N , S .: V a l u e e n g i n e e r i n g , a t o o l fo r

p r o d u c t i o n c o s t r e d u c t i o n 1 9 8 8 (2) 3 1 1 - 3 2 0

828 ICL Technical Journal November 1989

M M A Y E S , K .R .: s e e H O L D S W O R T H et al. 1 9 8 9 (4) 7 5 7 - 7 7 7
M cVITTIE, D.: s e e A L E X A N D E R , a n d M cVITTIE 1 9 8 9 (4) 6 7 0 - 6 8 0
M IT C A L F, J .D .: K n o w l e d g e e n g i n e e r i n g a s a n

a id t o t h e s y s t e m s e r v i c e d e s k s 1 9 8 8 (1) 5 7 - 6 3

N N A G A R K A R , S . : K n o w l e d g e - b a s e d s y s t e m s in
c o m p u t e r - b a s e d m a n u f a c t u r i n g 1 9 8 8 (2) 2 1 9 - 2 3 2

N O Y E , J.: s e e B E N K E R et al. 1 9 8 9 (4) 7 3 7 - 7 5 3

O O ’R I O R D A N , B.: s e e B E N K E R et al. 1 9 8 9 6 4 7 3 7 - 7 5 3

P P A R K E R , B.: L o g i c a n a l y s e r s f o r s y s t e m
p r o b l e m s o l v i n g 1 9 8 8 (1) 6 4 - 8 0

P A R K E R , T : T h e V M E H ig h S e c u r i t y O p t i o n 1 9 8 9 (4) 6 5 7 - 6 6 9
P A S S , D .A .: U s e o f i n t e g r a t e d e l e c t r o n i c m a i l

w i t h i n d a t a b a s e s t o c o n t r o l p r o c e s s e s 1 9 8 8 (2) 3 0 0 - 3 1 0
P H IL IP S , R.: s e e S A X L et al. 1 9 8 8 (2) 2 6 5 - 2 7 9
P IS I G O T , Y.: L a s o l u t i o n ICL c h e z

C A R R E F O U R S a O r l e a n s 1 9 8 9 (3) 5 0 0 - 5 1 0
P R E S S , J. : A n i n t r o d u c t i o n to p u b l i c k e y

s y s t e m s a n d d ig i t a l s i g n a t u r e s 1 9 8 9 (4) 6 8 1 - 6 9 3
P R O C T O R , J .M .: F o r e w o r d : S u p p o r t a n d

M a i n t e n a n c e 1 9 8 8 (1) 1

Q Q U I N N , J .M .P . : ... t o w a r d s a G e o g r a p h i c
I n f o r m a t i o n S y s t e m 1 9 8 9 (3) 5 4 2 - 5 5 6

R R U D D , B.: s e e S A X L et al. 1 9 8 8 (2) 2 6 5 - 2 7 9
R U S S E L L , F.: T h e c a s e fo r C A S E 1 9 8 9 (3) 4 7 9 - 4 9 5
R U S S E L L , F.: s e e J O H N S O N et al. 1 9 8 8 (1) 1 3 7 - 1 5 5
R U S S E L L , P .J . : O p e n s y s t e m s a r c h i t e c t u r e fo r

CIM 1 9 8 8 (2) 2 3 3 - 2 6 4

S S A X L , D.: T i m e to M a r k e t in m a n u f a c t u r i n g 1 9 8 9 (4) 6 4 7 - 6 5 4
S A X L , D ., P H IL IP S , R. a n d R U D D , B.: M A E S -

a n e x p e r t s y s t e m a p p l i e d t o t h e p l a n n i n g o f
m a t e r i a l s u p p l y in c o m p u t e r m a n u f a c t u r i n g 1 9 8 8 (2) 2 6 5 - 2 7 9

S E X T O N , A.: s e e B E N K E R et al. 1 9 8 9 (4) 7 3 7 - 7 5 3
S H E R R A T T , C .J . a n d T O M L I N S O N , R.: T h e

e f f e c t s o f b a c k - d r i v i n g s u r f a c e m o u n t e d
d i g i t a l i n t e g r a t e d c i r c u i t s 1 9 8 8 (2) 3 4 2 - 3 6 4

ICL Technical Journal November 1989 829

830 ICL Technical Journal November 1989

S N O W D O N , R .A .: A n i n t r o d u c t i o n t o t h e IP S E
2 . 5 p r o j e c t 1 9 8 9 (3) 4 6 7 - 4 7 8

S T O R R S , G .E . a n d B U R T O N , C .P . : K A N T - a
K n o w l e d g e A n a l y s i s T o o l 1 9 8 9 (3) 5 7 2 - 5 8 4

S W E E N E Y , E.: F o r e w o r d : ICL M a n u f a c t u r i n g
a n d L o g i s t i c s 1 9 8 8 (2) 2 0 5

S Y R E , J .C .: s e e B E N K E R et al. 1 9 8 9 (4) 7 3 7 - 7 5 3

T A L B O T , D .E .: T o o l s , M e t h o d s a n d T h e o r i e s : a
p e r s o n a l v i e w o f p r o g r e s s t o w a r d s S y s t e m s
E n g i n e e r i n g 1 9 8 9 (3) 4 0 9 - 4 1 6

T A N N E R , C .G .: s e e H A R M A N a n d T A N N E R 1 9 8 8 (2) 3 6 5 - 3 7 7
T O M L I N S O N , R.: s e e S H E R R A T T a n d

T O M L I N S O N 1 9 8 8 (2) 3 4 2 - 3 6 4

V V E A S E Y , P .W .: s e e W A R B O Y S a n d V E A S E Y 1 9 8 9 (3) 4 4 7 - 4 6 6

W W A L K E R , J .F . a n d K IT C H E N H A M , B .A .: T h e
a r c h i t e c t u r e o f a n a u t o m a t e d q u a l i t y
m a n a g e m e n t s y s t e m 1 9 8 8 (1) 1 5 6 - 1 7 0

W A R B O Y S , B .C . a n d V E A S E Y , P .W .: T w e n t y
y e a r s w i t h S u p p o r t E n v i r o n m e n t s 1 9 8 9 (3) 4 4 7 - 4 6 6

W A R B O Y S , B .C .: s e e H E N D E R S O N a n d

W A R B O Y S 1 9 8 9 (3) 4 3 5 - 4 4 6
W E S T B R O O K , R.: JIT a n d IT 1 9 8 8 (2) 2 8 0 - 2 9 1
W H E E L W R I G H T , S .C . : T i m e to M a r k e t in n e w

p r o d u c t d e v e l o p m e n t 1 9 8 9 (4) 6 2 5 - 6 4 6
W I L S O N , E.: T h e UK I n la n d R e v e n u e

o p e r a t i o n a l s y s t e m s 1 9 8 9 (3) 4 9 6 - 4 9 9

Y Y O U N G , J.: T h e ICL s y s t e m s s u p p o r t c e n t r e
o r g a n i s a t i o n 1 9 8 8 (1) 1 7 - 3 6

