
idTecmicflijouRnni

Volume 5 Issue 4 November 1987

Published by
INTERNATIONAL COMPUTERS LIMITED

at
OXFORD UNIVERSITY PRESS

(Cl
TGCHIUCFIL
JOURnflL

The ICL Technical Journal is published twice a year by
International Computers Limited at Oxford University
Press.

E d ito r
J. Howlett
ICL House, Putney, London SW15 ISW, UK

E d ito r ia l B o a rd

J. Howlett (Editor) F.F. Land
H.M. Cropper (F International) (London School of Economics &
D.W. Davies, FRS Political Science)
G.E. Felton K.H. Macdonald
M.D. Godfrey M.R. Miller
(Imperial College, London (British Telecom Research
University) Laboratories)
C .H .L . G o o d m a n J .M .N . P in k e r to n
(Standard Telephone
Laboratories and Warwick
University)

E.C.P. Portman

All correspondence and papers to be considered for publication should be
addressed to the Editor.

The views expressed in the papers
necessarily represent ICL policy.

are those of the authors and do not

1987 subscription rates: annual subscription £32 UK, £40 rest of world, US
$72 N. America; single issues £17 UK, £22 rest of world, US $38 N. America.
Orders with remittances should be sent to the Journals Subscriptions
Department, Oxford University Press, Walton Street, Oxford 0X2 6DP, UK.

This publication is copyright under the Berne Convention and the Interna­
tional Copyright Convention. All rights reserved. Apart from any copying
under the UK Copyright Act 1956, part 1, section 7, whereby a single copy of
an article may be supplied, under certain conditions, for the purposes of
research or private study, by a library of a class prescribed by the UK Board
of Trade Regulations (Statutory Instruments 1957, No. 868), no part of this
publication may be reproduced, stored in a retrieval system or transmitted in
any form or by any means without the prior permission of the copyright
owners. Permission is, however, not required to copy abstracts of papers or
articles on condition that a full reference to the source is shown. Multiple
copying of the contents of the publication without permission is always
illegal.
© 1987 International Computers Limited

Printed by H Charlesworth & Co Ltd, Huddersfield ISSN 0142-1557

SCL
Contents TGcmtcni

jouRnfli
Volume 5 Issue 4

Foreword
D.J. McLauchlan 609

NETWORKING AND INTERWORKING

Open Distributed Processing
J.B. Brenner 613

The Advanced Network Systems Architecture Project
A. Herbert 638

Community management for the ICL networked production line
A.R. Fuller 652

The X/OPEN Group and the Common Applications Environment
C.B. Taylor 665

Security in distributed information systems: needs, problems
and solutions
C. W. Blatchford 680

Cryptographic file storage
D. King 699

OFFICE DOCUMENTATION AND AUTOMATION

Standards and office information
G. Ringland 713

Introducing ODA
I. Campbell-Grant 729

The Technical and Office Protocols-TOP
P.J. Robinson 743

ICL Technical Journal November 1987 I

X.400 - international information distribution
D.M. Elliott 754

INTERFACE AND PROGRAMMING LANGUAGES

A general purpose natural language interface: design and application as
a database front end
B.G.T. Lowden, A.N. De Roeck, D.J. Phipps and R. Turner 763

DAP-Ada: Ada facilities for SIMD architectures
L.M. Delves and M. McCrann 778

Quick language implementation
H. Gardiner, R.W. Lyttle, P. Milligan and R.H. Perrott 789

Notes on the authors 807

Subject index to Volume 5 813

Author index to Volume 5 825

ii ICL Technical Journal November 1987

Forew ord

This issue of the ICL Technical Journal is dominated by the theme of
standards in communications and allied protocols and the key role which
they play in creating systems which are able to interwork readily.

The increasing need to be able to create complex systems to meet the needs of
users is a major driving force towards an acceptance of the importance of
creating standards. These standards must be internationally accepted and in
the public domain.

This has led to the rapid acceptance of open systems standards as the means
preferred both by industry and by its users to ensure that systems can be
built.

The approach is of particular importance to ICL and its customers since we
have chosen to focus our energies on supplying systems solutions to serve
specific markets. It is not surprising, therefore, that the company has played a
leading role in establishing the world-wide acceptance of this design ap­
proach. In this, we are following a commitment to standards which dates
back to the earliest days of ICL.

It is gratifying to see the rapid way in which these exceedingly complex
standards are being generated and are gaining acceptance. They are appear­
ing as mandatory requirements for the I.T. systems of a growing number of
major customers. This is one more measure of the increasing maturity of
what is still a very young industry, and one in which our systems designers
rightly take pride.

DJ. McLauchlan
Director of Technology and Engineering

ICL Technical Journal November 1987

NETWORKING AND INTERWORKING

Open Distributed P rocessing

J.B. Brenner
ICL Marketing and Technical Strategy, Bracknell

Abstract

The subject of Open Distributed Processing (ODP) standardisation is
at a formative stage in ISO. An analysis of the nature of distributed
systems is presented in this context, together with a survey of current
research findings.

1 Introduction

The purpose of this paper is to explain some of the technical thinking that
underpins the Open Distributed Processing (ODP) standardisation1 that
started this year in ISO, the International Organisation for Standards.

Readers of the ICL Technical Journal will probably already be aware of the
existing standardisation for Open System Interconnection (OSI)2,3. The
ODP standardisation extends far beyond the scope of OSI. It is concerned
with how to build distributed systems, and how to integrate software across
them. Its focus is to be an ISO Reference Model for Open Distributed
Processing, scheduled for completion in 1989.

The European Computer Manufacturers Association (ECMA) has been
studying this area for several years and has recommended a set of technical
assumptions4 on which to base the Reference Model. The author is
Convener of the ECMA group directly concerned (TC32-TG2); and the
content of this paper is closely related to the ECMA work.

The pace of change in information technology is very rapid, and probably
nowhere more so than in the field of distributed systems. The impact of some
of these changes amounts to paradigm shifts in which the changes overwhelm
the basis for existing patterns of thought, and different patterns must take
their place. As explained in Kuhn31, there is great difficulty in recognizing
and accommodating to such discontinuities. This is what we face here when
trying to visualise Open Distributed Processing in the 1990s.

The subject area has traditionally been viewed mostly in terms of networking
and data communications, rather than programming-in-the-large, and lan­
guages and compilation systems. This emphasis is now being reversed.

ICL Technical Journal November 1987 613

Another big change is that integration of multi-media information (e.g. voice
telephone + data) is likely to become commonplace during the lifetime of
Open Distributed Processing standards. The integrated handling of real time
voice, video and image is a relatively new subject.

A further broadening of horizons is inherent in the enormously large and
varied field of application of distributed systems. Table 1 gives an indication
of its breadth and diversity.

Table 1 Some fields of application for distributed systems.

Administrative Systems Radio/TV/Hi-fi
Business Management Office Systems
Command and Control Process Control
Engineering Computation Scientific Computation
Factory Automation Telecommunications
Image Manipulation
Knowledge Engineering

Technical Design

Our belief is that across an immense field there is a convergence of
techniques, such that it is possible to construct a relatively small core of
concepts sufficient to achieve a near universal basis for distributed informa­
tion systems. The existence of this completeness of distributed systems
techniques is substantiated in the “Survey of Techniques” in section 4. This
gives a summary of research results and practical experience in distributed
systems which ECMA proposes as the technical basis of the standards. The
sources which it references are a basic reading list for the whole distributed
systems subject area.

But before looking at these research results, we need to explore the nature of
the subject area. This is done in two stages. “Understanding the Problem”,
section 2, seeks to identify the essentials of distributed systems. “Modelling
the Problem”, section 3, introduces techniques for modelling distributed
systems. These are major steps towards construction of the Reference Model
for Open Distributed Processing.

Finally, a view of the technical content of the emerging architecture and
standards is summarised in the “Expectations”, section 5. This emphasises
that Open Distributed Processing standardisation will be an evolutionary
development, making good use of existing standards.

2 Understanding the Problem

2.1 Introduction

We need to develop an understanding of the fundamental issues particular to
distributed systems, so that these can be recognised in the Reference Model
for Open Distributed Processing.

614 ICL Technical Journal November 1987

A preliminary point is that no special distinction of scope or applicability is
intended by calling the ISO work item “Open Distributed Processing”, not
“Open Distributed Systems”.

2.2 Definitions

The first task is to define what we mean by “distributed systems” in the
context of the Reference Model for Open Distributed Processing. We begin
with some general definitions.

system: a composite whole.
component: a participant in a composite whole.

The components are the resources from which a system is composed, and the
elements into which it may be decomposed. The structure of this composition
and decomposition is the essence of systems. It leads us to the definition of
architecture in this context.

system architecture: systematic and formulated knowledge of the com­
position and decomposition of a system.

These concepts of components and systems are recursive, in that a system
may be a component (subsystem) of some larger system, which in turn may
also be a subsystem of some other system; i.e. systems can be viewed at
different degrees of granularity. Typically system composition has a hierar­
chic structure, with complex components which can be decomposed into less
complex components, possibly through many levels. This kind of hierarchic
composition and decomposition is fundamental to human understanding,
and to the management of complexity.

It is possible for something to be a component of more than one system.
Furthermore, if something else interacts with a system, it and that system can
be viewed as components of some larger system (e.g. system A and an
observer or user of it become components of some larger system B).

The above definitions are general to many kinds of systems (e.g. astronomical
systems, biological systems, social systems, mechanical systems), so the next
step is to concentrate our view onto information systems.

information system: a system which manipulates information (abbrevi­
ated here to “system” when the prefix “information” is apparent from
the context).

By this definition, the inherent and distinctive characteristics of information
systems are information and some means of action to manipulate it. Similarly,
these are inherent characteristics of each component of an information
system.

ICL Technical Journal November 1987 615

Some further definitions enable us to distinguish between various levels of
abstraction.

abstract system: a system defined without reference to realisation.
logical system: a system defined with reference to its realisation, but
without reference to its physical realisation.
physical system: a system defined with reference to its physical realisation.

Any realisation of an information system may be viewed at all of these levels
of abstraction. A physical system is defined mostly at the boxes and wires
level. A logical system is defined in terms of functional units, software
modules, interface specifications, protocols, etc. An abstract system is an
implementation-independent view of a system. This abstraction is the essence
of the system, without extraneous detail. The term “abstract” as used here
does not have the connotation “unreal” or “unrealisable”.

The next step is to define separation properties with respect to the two
distinctive characteristics inherent in information systems, i.e. information
and action. This is where we begin to identify properties that are fundamental
to distributed systems.

information separation property: a property of a set of two or more
entities, such that any information integral to an entity is disjoint from
that integral to the other entities.
action separation property: a property of a set of two or more entities,
such that any ability for action integral to an entity is disjoint from that
integral to the other entities.

These separation criteria are used here to define the separation of compo­
nents within a distributed system, and this gives us precise definitions for
distributed information systems.

distributed system: an information system, of which all the components
visible at the chosen level of abstraction and granularity have, with
respect to each other, the information separation property and the action
separation property.
open distributed system: a distributed system conforming with particular
open standards.

The separations which by this definition are axiomatic to distributed systems
are illustrated in Fig. 1. The example is a distributed system composed from
the separated components A, B, C, and D, with various bindings between
them.

The example also illustrates that a component of a distributed system, such
as component D, is not necessarily separate from further components, such

616 ICL Technical Journal November 1987

not necessarily separate.

X

Fig. 1 Axiomatic Separation Properties of a Distributed System

as X and Y, which were deemed not to be visible at the chosen level of
granularity. Mutual separation with respect to each other is the necessary
and sufficient condition, and global separation from all other components
cannot be required as the general case.

Our definition of (open) distributed systems is applicable at all the levels of
abstraction; i.e. there can be abstract distribution (the disjointness is mani­
fested as separation defined within the specifications), logical distribution (the
disjointness is manifested as separate implementation modules), and physical
distribution (the disjointness is manifested as physically separate units). It also
includes temporal distribution, in which the disjointness is by displacement in
time (e.g. interaction is via store and forward mechanisms). Distribution at
one level of abstraction does not necessarily imply distribution at others; e.g.
a logically distributed system may consist of physically co-located compo­
nents.

This tight definition of distributed systems is not applicable to all kinds of
distributed systems. Some useful and important distributed systems do not
have these separation properties. For example, there is no significant

ICL Technical Journal November 1987 617

separation of information in the combination of a remote terminal and a
computer which echoes onto the terminal screen the characters entered on
the terminal keyboard. Similarly, there is incomplete separation of informa­
tion where software is partitioned into physically separate modules with
global variables common to them (distributed global memory). A case where
there is no significant separation of action is a remote slave device such as a
monitor display. The legitimacy of such configurations is not an issue here,
and these examples are all about realisation details not visible at our level of
abstraction.

Abstract distribution is the most general case, and is appropriate to an
architectural and implementation-independent view of distributed systems.
Being at this level of abstraction, and being concerned with the fundamentals
of separation, the Reference Model for Open Distributed Processing is
essentially about system modularity and structure, not spatial or temporal
dispersion.

2.3 Separation

In addition to the axiomatic separation properties (i.e. the information
separation property and the action separation property), the components of
distributed systems may have other derived separation properties. The
complete list of separation properties and their characteristics and deriva­
tions is given below.

Information separation property. Independent existence of components
is inherent in this axiomatic separation property.

Action separation property. Potential for autonomous action by compo­
nents is inherent in this axiomatic separation property.

Explicit communication property. Explicit communication for interac­
tions between components is inherent in the two axiomatic separation
properties, individually and in combination.

Location property. Distinctions of location are inherent in the combina­
tion of the two axiomatic separation properties; also locations might
change (relocation).

Identity property. Distinctions of component identity (i.e. the ownership,
authority and accountability of components) are inherent in the two
axiomatic separation properties, individually and in combination.

Isolation property. Potential for isolation of components by control over
their accessibility is inherent in the combination of the two axiomatic
separation properties. This, together with the identity property, is a
basis for security.

Concurrency property. Potential for parallel activity is inherent in the
action separation property.

618 ICL Technical Journal November 1987

Partial failure property. Potential for a system to continue in operation
after the failure of individual components is inherent in the combination
of the two axiomatic separation properties.
Incremental change property. Potential to incrementally add, or remove,
or replace components is inherent in the combination of the two
axiomatic separation properties.
Heterogeneity property. Potential for diversity of implementation is
inherent in the combination of the two axiomatic separation properties,
and is enhanced by the incremental change property.

From these considerations, two issues emerge. The first is how the conse­
quences of distribution are to be treated; see §2.4 and §2.5. The second is how
to exploit the features of distribution to achieve desirable quality attributes;
see §2.6.

2.4 Distribution Transparency

A major system and application design issue is whether or not to hide spatial
separation and its consequences (e.g. explicit communication and partial
failures). The term distribution transparency is used here for discussing the
visibility of separation within distributed systems.

Arguments for distribution transparency. It can be advantageous if all the
consequences of distribution are made transparent. This hides complex­
ity, simplifies the task of applications designers and enhances the re­
usability of existing system components. Evolution of existing products
based on centralized systems is then inherently straightforward. A
successful experiment with such transparency is Unix United14.
Arguments against distribution transparency. Full distribution transpar­
ency, which completely conceals distribution, can be relatively expensive
in terms of the underlying implementation effort and performance
overheads. Moreover, it denies designers the opportunity to exploit the
consequences of distribution via explicit fault management and the
decentralization or replication of control, or data, or both.

System design choices lead to different transparency requirements; and ful'
distribution transparency is not always necessary. Therefore, the Reference
Model for Open Distributed Processing should structure these transparency
choices and not pre-empt them.

2.5 Kinds of distribution transparency

It is well established that distribution transparency is made up of a number
of separate elements41 which are described here in terms of the conditions
necessary to achieve full distribution transparency:

ICL Technical Journal November 1987 619

Access transparency: Concealing the use of communications when
accessing remote resources (such as programs, data and devices).
Location transparency. Enabling the use of a resource, independent of
the placement of that resource in the distributed system.
Migration transparency. Enabling the migration or reconfiguration of
resources in a distributed system.
Replication transparency. Enabling the use of multiple instances of a
resource for such purposes as enhancing dependability and perfor­
mance.
Concurrency transparency. Avoiding inconsistencies due to parallel
execution, by using concurrency control techniques.
Fault transparency. Concealing faults by using error processing tech­
niques.
Performance transparency. Minimizing the performance penalties as­
sociated with using remote resources.
Scaling transparency. Concealing variations in system behaviour due to
scaling up to large or busy or turbulent systems, and scaling down to
small or placid systems.

Transparency issues are demonstrated in the following example, in which a
network of small personal computers is used by a group of currency dealers.
The dealers need to share access to a simple database of currency prices and
deals in progress. The structure of the program in each personal computer is
shown in Fig. 2. There are two modules in the program: a database access
module that manages access in the shared database, and a currency
application module.

Currency dealer Personal Computer

Fig. 2 Program structure of distribution transparency example

A design aim of this system is that the currency application module should
not be affected by the distributed nature of the system. This requires that the
database access module should provide full distribution transparency (i.e. it
completely hides from the application module all distribution of the data­

620 ICL Technical Journal November 1987

base). Depending upon how the system as a whole is structured, different
strategies will be adopted for the database access module.

Centralized structure. The database is on a central database server which
manages concurrent access to the database. The database access module
communicates with this remote server, and conceals this use of commu­
nications, thereby providing access transparency.
Partially distributed structure. The database is on a central ‘remote disc’
server. The database access modules in each personal computer must
now cooperate with one another to preserve consistency of the database.
They hold locks, which they set and release in some coordinated way.
They conceal this from the currency application module. They thereby
provide concurrency transparency (which was previously provided for
them by the centralised database), in addition to the access transparency.
Fully distributed structure. A copy of the database is stored on the local
disc of each personal computer. The database access modules in the
personal computers each arrange that their copy of the database is kept
in step by using, for example, Birman’s ‘Bulletin Board’ protocols7. They
hide this replication, and thereby provide replication transparency. With
the database replicated, it is possible for the system to remain in
operation despite the failure of individual copies. The database access
modules do the necessary error processing to conceal the faults, and
thereby provide fault tranparency. The database may be too large to
store on each local disc, in which case it can be partitioned and each
local disc keeps only some fraction of the whole. By handling and
concealing this discontinuity of scale, the database access modules
provide scaling transparency. Responsiveness will be enhanced if the
personal computer for each dealer stores locally the database partitions
that he uses most frequently. The database access modules thereby
minimise the performance penalties associated with using remote re­
sources, and provide performance transparency. Responsiveness may be
further enhanced if the partitioning can be reconfigured when usage
patterns change. The database access modules conceal this, and thereby
provide location transparency and migration transparency.

It is evident that as the degree of distribution increases, the database access
module has to provide a greater number of transparency attributes to meet
the transparency requirement of the currency application module. Open
Distributed Processing standards should specify how to achieve these
transparency attributes.

2.6 Quality attributes

The commercial and technical viability of Open Distributed Processing
standards will be critically dependent on quality attributes. Systems de­
signers using the standards should be able to achieve high levels for the
quality attributes of importance to them, and should be able to make

ICL Technical Journal November 1987 621

tradeoffs between quality attributes and other commercially important
factors, such as cost.

The following quality attributes are considered to be highly important in this
context:

Dependability. Every improvement in dependability (i.e. reliability,
availability, maintainability, safety, security)34 is a potential increase in
applicability.

Efficiency. Every improvement in performance with a given resource is a
potential increase in applicability and a potential reduction of cost.

Scaling. Every improvement in the ability to scale up and to scale down
is a potential increase in applicability and in-service flexibility.

For all quality attributes there are threshold levels to be achieved for
viability in particular fields of application; e.g. for process-control applica­
tions there are usually critical requirements for response times, continuous
operation, stability at peak loads and safety.

Experience abundantly demonstrates that the most demanding aspect of
system design is achieving the quality attribute targets. Qualitative factors
most therefore have a dominant role in the design of the Reference Model for
Open Distributed Processing.

Potential for manipulating quality attributes is inherent in the separation
properties and distribution transparencies of distributed systems. For exam­
ple, reliability and availability may be improved by exploiting the partial
failure property and fault transparency and replication transparency; secu­
rity may be enhanced by exploiting the isolation property; and performance
may be improved by exploiting the concurrency property and concurrency
transparency. Qualitative excellence is an inherently achievable goal for
Open Distributed Processing Standardisation.

2.7 Generic Functions

Some functions are common to all distributed systems, independent of the
field of application. They can be classified as Generic Functionality and
Generic Attribute Controls.

The Generic Functionality may be classified as follows.

Supportive services. There is necessarily an infrastructure of common
supportive services to overcome the obstacles inherent in separation; e.g.
directory services, authentication services and time services.

Management mechanisms. There are common management concepts
and functions such as domains of control and control points relating to

622 ICL Technical Journal November 1987

them. Similarly, there are management functions which should be
common to all components; e.g. accounting, security, configuration
control, fault management and diagnostic controls.
Data storage mechanisms. There should be generic functions for remote
data access, data distribution, data consistency, etc.
Human-computer interfacing mechanisms. There should be common
mechanisms for information presentation, dialogue structure, and user-
oriented modelling of applications.

Generic Attribute Controls are concerned with how well the distributed
system operates. Quality attributes and transparency attributes should be
manipulated on the basis of system design policies relating to transparency,
efficiency, dependability and scaling. These qualitative control mechanisms
should be generic to all components of distributed systems, and should be
distinct from, and orthogonal to, the specific functionality of components.

2.8 Summary

This analysis of the nature of distributed systems may be summarised as
follows:

All systems are composed from components.
Distributed information systems have 10 distinctive component separa­
tion properties, axiomatic and derived.
The visibility of the separation is defined and manipulated as 8 kinds
distribution transparency.
The separation properties and distribution transparencies provide op­
portunities for distributed systems to have enhanced quality attributes.
All distributed systems have essentially the same needs for comprehen­
sive Generic Functionality and Generic Attribute Controls.

With this understanding of what is to be modelled by the Reference Model
for Open Distributed Processing, we can now consider how to do the
modelling.

3 Modelling the Problem

3.1 General

The main content of the Reference Model for Open Distributed Processing
should be an architecture of abstract distributed systems; and this is
essentially about separation and its consequences.

The view taken here is that a well formed abstract architecture for this
purpose should be constructed from two ingredients:

ICL Technical Journal November 1987 623

a theory which captures the separation properties that are the essence of
distributed systems;

a framework of abstractions within which to position and use this
theory, and thereby to provide a language for describing and under­
standing the structure of distributed systems.

Both these ingredients should be consistently and completely applicable
across the whole field of abstract distributed systems (and thereby all
modular systems). The architecture should have a basis in formal notation
that avoids the dangers of ambiguity and inconsistency.

This structure should draw from the theoretical and practical results
summarised in the Survey of Techniques in section 4. Some specific proposals
are advanced here.

3.2 Object Theory

The concept of “objects”29 is now generally held to have a crucial role in the
structuring of modular systems.

The term object theory is used here for discussing object concepts in the
context of system modelling, as distinct from use of essentially the same
concepts in programming languages23 and operating systems12. Object
theory provides a theoretical basis for the structuring of abstract systems. It
is independent of whether or not object-oriented programming languages or
object-oriented operating systems are used in implementations. Object
theory objects visible at the level of distributed system granularity may be
termed coarse grained objects, as distinct from fine grained objects that are
only visible in implementation software.

In this object theory, an object in an abstract system is any component which
is of significance to an observer and contains information and the means of
acting upon it. Objects encapsulate the internal representation of their
information and the implementation of their actions, so that these are not
externally visible. An object is therefore a model of a component with the
axiomatic separation properties, plus crucially important hiding of implemen­
tation detail. Object theory is mainly about the modelling of interactions
between such separate objects.

Information within an object is typically persistent, but may be volatile, as
required. The observable actions of an object are its operations. This is a term
taken from abstract data type (adt) theory. Viewed this way, an object is a
data abstraction, and the operations on it define its behaviour (strictly, its
behaviour type), adt theory and concepts have a formal mathematical basis,
and are pervasive throughout high level languages. However, as we will see,
object theory consists of more than just data abstraction.

624 ICL Technical Journal November 1987

The external visibility of an object is a set of individually named interfaces to
its operations. An interface provides a service consisting of a defined set of
operations. Objects interact by sending and receiving messages which carry
information between them. These are generally termed operation invocations
and operation responses. The content and dialogue structure of these
message exchanges must conform to the specification of the interface being
used.

Objects offer their services to other objects by publishing their interfaces in
some appropriate way. Objects gain access to the services provided by other
objects by means of the published interfaces of these other objects. The terms
export and import are used for this way of establishing access. Object theory
includes client/server and producer/consumer relationships between interac­
ting objects. There may be many-to-one and many-to-many relationships.
These are all aspects of object bindings. As a practical matter, client/server
models are already coming into general use in OSI standardisation; e.g. in
standards for Office Applications19 and the OSI Directory Service28.

For some objects many instances may exist. So a distinction is made between
object types (sometimes called classes) and object instances. An object type is
a description of the generic observable characteristics of members of a set of
objects with identical behaviour type. An object instance is one of a set of
objects of the same object type. Object types are not necessarily completely
different, and are usually derived from existing object types. Accordingly
there are subtype inheritance concepts (this inheritance of behaviour descrip­
tion is not to be confused with the inheritance of implementation methods in
some object-oriented programming languages).

In addition to their specific interfaces, objects may have a generic manage­
ment interface, consisting of a set of management operations common to all
objects. Objects can therefore be managed objects which are the component
resources of managed systems.

Objects may also be characterised by various object properties which
position them in an external framework of abstractions (see §3.3).

In summary, Object theory is a particular combination of:

data abstraction + type concepts + subtype inheritance concepts + object
interface concepts + object binding concepts + object properties concepts.

Object theory can be applied to most aspects of computer systems; e.g.
human/system interfacing, system/system interfacing, software/software
interfacing, software/hardware interfacing. It is a useful way of structuring
because it can prevent the designer’s intentions from being distorted by
visibility of implementation mechanisms. Moreover, people have an oppor­
tunity to understand their information systems without needing to under­
stand the technicalities of the implementation mechanisms.

ICL Technical Journal November 1987 625

The primary test of whether Object theory should be at the heart of the
Reference Model for Open Distributed Processing is: does it model the
separation properties? A secondary test would be: does it have a sufficient
formal basis? Another would be: does it fit comfortably into the world of high
level languages? Also is it sufficiently general to include important kinds of
interactions that are outside the scope of most programming languages
today; e.g. voice interactions? The answers are all in the affirmative; therefore
object theory is expected to be the fundamental theory used in the Reference
Model for Open Distributed Processing.

3.3 Framework of Abstractions

The framework is intended to provide a consistent way of positioning objects
in models of information systems. This explicit positioning should help the
designer to explain why an object has been introduced into the design of his
particular system, and how it relates to other objects. It also helps us to
understand and to relate together different systems, because their component
objects can be directly compared via their positioning within the one
common framework of abstractions.

The framework can be visualised as a multi-dimensional design space. Each
object is positioned relative to every dimension (except that for many
purposes the position on a dimension will be the null “dont care” value).
These are linguistic dimensions rather than geometrical dimensions; the
framework is a language for describing the design space, rather than a
cartesian grid.

The dimensions chosen should be those inherent in all objects. This is an
important consideration in the choice of dimensions summarised below.

Topology dimension. This dimension is concerned with the configuration
of objects in the model of a system. In this dimension there are zones
corresponding to the three levels of abstraction already discussed:
physical topology, logical topology and abstract (or service) topology.
Configurations may have tree and network mesh topologies, with
subdivision into separate or nested domains.
Composition dimension. This dimension is concerned with object com­
position and decomposition. As the level of composition increases, the
objects in a model become more complex but fewer in number. There
are recipies to apply structure to a group of objects (i.e. components)
and thereby compose a higher level object (i.e. a system or subsystem),
and vice versa for decomposition. These recipes include client/server
relationships, producer/consumer relationships, and replicated object
troupe concepts.
Infrastructure dimension. This dimension is concerned with the organi­
sation of the object-support infrastructure. Most objects are at the far
end of this dimension, in that they sit on top of the abstract machine and

626 ICL Technical Journal November 1987

object-interpreter environment supported by this infrastructure (the
nucleus described in §5). At the other end of this dimension are the
heterogeneous objects that come from outside the architecture and
provide the basic resources (heterogeneous language systems, operating
systems, processors, storage, communications networks, etc). Next to
these are positioned homogeneous objects which overlay the heteroge­
neity to provide a homogeneous abstract machine and object-inter­
preter. Then there are local objects which provide specialised local
support for an interpreter; and finally, global objects (e.g. directories)
which are not tied to a particular interpreter.
Human interface dimension. This dimension is concerned with the
visibility of an object from the viewpoint of human users of systems. It
allows a separation of concerns between various aspects of the very
complex matters of human interfacing, and between these and all the
rest of a system. At one end of this dimension is the human user
(modelled as an object); at the other end are resource objects that should
know almost nothing of the complexities of human interfacing (e.g. file
servers, and the majority of objects). In between are zones in which
intermediary objects are concerned with: the interface devices (e.g.
keyboards and screens); the presentation of information (e.g. windows,
menus, command line parsers, etc.); the dialogue structure along the
whole of this human interfacing dimension; and transposing of the
underlying resources into cognitive models suitable for the human user
(e.g. the desktop paradigm).
Communications dimension. This dimension is concerned with classify­
ing the communications functionality of objects. Most have none (other
than that inherent in all object interfaces) and would therefore be at
layer 7 of this dimension, the whole of which would be expressed in
terms of the OSI layering.
Evolution dimension. This dimension is concerned with controlling
changes in the architecture (e.g. version 1, version 1.1, etc.).
Temporal dimension. This dimension is concerned with the life-cycle of a
system as it is built up and modified to meet changing requirements.

Each object can be visualised as having a label (a properties list) visible on its
surface, declaring its position on these dimensions, and declaring its name(s).

4 Survey of Techniques

4.1 Introduction

Now that we have some idea of the general structure of the architecture, we
can populate it with more detailed technical content.

The standards should draw upon known techniques rather than indulge in
unnecessary invention. Fortunately, there is a large body of mature tech­

ICL Technical Journal November 1987 627

niques that have been developed and explored in the distributed systems
research community. Many have yet to appear in standards, but most are
already appearing in proprietary forms. These techniques have originated
from a considerable experience with system design33, and are well matched
to the technical requirements of Open Distributed Processing.

4.2 Interaction style

Object theory defines interactions as Operations at a level of abstraction that
is independent of important issues of notation and implementation.

A notation and interaction style already well established in the world of open
standards is that of the OSI Remote Operations technique, for which there is
now a draft joint CCITT recommendation and ISO standard25, based on the
existing CCITT Recommendation X.41013. This is a means for rigorous
definition of the structure and syntax of the invocations and responses of
operations on remote objects, with automatic derivation of the OSI proto­
cols to support these interactions. The technique is now used for almost all
OSI application protocol standards. Another relevant notation for specifying
object operations and interfaces is the LOTOS formal description tech­
nique27, which allows formal definition of the semantics and temporal
ordering of operations, not just their syntactic structure. These two tech­
niques should be used to complement each other, and not as mutually
exclusive alternatives.

An asynchronous message-passing style of implementation is generally
applicable to most kinds of remote interactions, and has been used in many
successful distributed systems designs. Remote procedure call is an appropri­
ate implementation technique for synchronous remote interactions, see §4.3.

4.3 Remote procedure call

Much of the research into distributed systems has focussed on bringing
software engineering techniques to bear on the problems of building,
operating and managing distributed systems.

A major breakthrough came with the maturing of remote procedure call
(RPC) techniques, bringing together programming languages and datacom-
munications via process-to-process communications, as in Birrell and Nel­
son9. In an RPC system a program (the client) can call a procedure, defined
at the language level, which is executed by another program (the server),
which is potentially remote.

The major feature of RPC is that it allows the programmer to construct
application protocols in terms of his normal language construct for interac­
tions between modules, i.e. the procedure call (and function call). RPC also
provides flexibility in the configuration of distributed applications, since the

628 ICL Technical Journal November 1987

choice of physical co-location or remoteness for sets of procedures need not
affect the programmer, and can be deferred.

An RPC package inherently consists of three parts:

an RPC protocol
a runtime library
a program module linker

The RPC protocol is responsible for the transfer of RPC request and
response messages between client and server. RPC protocols are optimized
for short response times and minimizing the number of packet exchanges.
This is in contrast to traditional general purpose protocols which are usually
optimized for continuous bulk transfer. RPC protocols mask failures so that,
in the absence of catastrophic failure, remote calls are executed exactly once
(i.e. like local calls). RPC protocols can be based on simple recoverable
connections with ultimate responsibility for recovery vested in the client.
RPC protocols may also be built using conventional connection-oriented
interconnection.

The runtime library consists of two parts: marshalling and dispatching.
Marshalling is the process of taking the arguments and results of a procedure
call and assembling them into packets for transmission by the RPC protocol,
and then disassembling them. RPC marshalling is optimized to improve
responsiveness by minimizing the complexity and overheads of buffer
management. Dispatching is the process of selecting the correct procedure to
invoke on receipt of a remote call.

Despatching relies upon a binding being set up between client and server. A
server program (or support software associated with it) exports information
about the procedures it offers; and similarly a client imports such informa­
tion. The imported information specifies procedure identifiers to be inserted
in requests for decoding by the despatcher.

The job of the program module linker is to automatically replace calls to
remote procedures by calls on the local marshalling routines and RPC
service, but without explicit programmer involvement. These calls are often
realised via what are termed stub procedures. The linker also generates the
runtime binding information needed for imports and exports, and will exploit
the local programming language modularization features to delimit client
and server procedures. Complete stub procedures can be generated automat­
ically by software tools systems.

A notable feature of the RPC protocol in Birrell10 is that it is very well
integrated with an authentication and encryption system providing secure
communications.

Since procedure calls wait until a result is returned, RPC systems are ideally

ICL Technical Journal November 1987 629

based on a lightweight process structure so that many remote procedure calls
can be active simultaneously in systems where asynchrony is required.

ECMA has recently completed a remote procedure call protocol standard20,
which uses the OSI Remote Operations notation and protocol.

4.4 Consistency

Distributed processing has led to much research into the problems of
consistency. In distributed processing there is true parallelism, and the
execution of processes in separate machines may overlap. Correctness
requires that each process should see a consistent view of the data structures
and state of the computation, and therefore the parallelism must be
constrained.

To this end, much work has been done on transaction-based systems using
the concept of transactions from the database world24. Transactions are
atomic actions, their effects are all-or-nothing. In the ARGUS system36
sequences of program statements, including calls of remote procedures, can
be labelled as an atomic action. The ARGUS compiler and runtime system
are jointly responsible for providing stable storage, and for managing
read/write locks and running two-phase commitment protocols to achieve
atomicity. Atomic actions in ARGUS may be nested so that a programmer
can build atomic actions around any sequence of statements, including
nested sub-actions.

Following on from the ARGUS work, other research groups have recognized
that greater parallelism can result by using application-oriented locking
strategies rather than by automatic nested compositions of read/write locks.
An example is the TABS system46. Another approach for enhancing
parallelism is that of optimistic concurrency strategies where processes are
allowed to proceed until a conflict is detected and recovery invoked32.

Another characteristic of distributed programs is the potential to increase
dependability and performance by replicating parts of the program. Birman’s
ISIS system6 provides an efficient implementation of resilient objects. Such
an object is implemented as a group of replicated co-operating objects. If a
member fails or becomes overloaded, another in the group will take over.
The system is based on a suite of optimized atomic broadcast protocols7. A
similar scheme is Cooper’s replicated distributed programs17. This is an RPC
system that supports active replication of both client and server in order to
achieve increased dependability.

The treatment of replication in distributed systems is now being made
systematic by the recognition that the style of interaction between replicates is
the advisory style typical of producer-consumer interactions, in comparison to
the imperative style typical of client-server interactions. There are also well
defined concepts, terminology and techniques for fault-tolerant systems34.

630 ICL Technical Journal November 1987

4.5 Operating systems

As well as language oriented developments there have been many innova­
tions in operating system technology to accommodate distribution.

The ACCENT system42 is an example of a network operating system. The
inter-process message system of the ACCENT kernel is extended across a
network by a ‘network process’. To their users, remote services are made to
appear as local ports. The network process is responsible for bringing the
remote ports into the local address space and for isolating inter-process
communication from the details of network communications.

The V-system15 has followed a different approach. In order to optimize
performance, communications are an integral part of its kernel. Because of
the efficiency of this, the V-system is able to use the local area network for
page swapping between disc-less workstation and file servers. The V-system
includes the notion of a ‘process group’ as a set of processes that can be
addressed as a single entity, even if they are distributed across several sites.
This notion therefore provides system level support for some of the
replication techniques mentioned in §4.4 above.

A number of operating systems have been based on the object-oriented
model of computation: the disjoint address spaces of multiple sites matches
the encapsulation of state concept that underpins objects29. The best known
example of this approach to operating systems is Eden12. All programs in
Eden are objects with well-defined external interfaces. Remote interactions
take the form of one object invoking an operation at another, using RPC-like
protocols. In Eden objects have logical addresses so that they can be accessed
without knowledge of their location, enabling dynamic reconfiguration of the
system. Eden specifies a number of generic functions that can be applied to
any object. These generic functions are mostly to do with unified manage­
ment of objects.

The Cambridge Distributed System38 explored the possibility of dynamic
instantiation of services upon demand, using a pool of uncommitted
processors. Requests for service are directed to a resource manager which
finds an appropriate free processor, loads it with the required service, and
transparently reconnects the user to the newly made service. The operation
of this processor pool is dependent upon remote debugging, automated
service management and remote access security.

The LOCUS system49 is an example of how a derivative of Unix can be
implemented as a distributed operating system. The LOCUS kernel goes to
great lengths to insulate the applications programmer from the effects of
distribution. This distribution transparency has the great merit that applica­
tions previously written for ordinary Unix can run unchanged in the
distributed environment, which offers more capacity and dependability than
a single node Unix system. The negative aspects of complete distribution

ICL Technical Journal November 1987 631

transparency are that applications cannot exploit the distribution they
cannot see, and that the needs of system management (particularly failure
diagnosis and reconfiguration) are in conflict with the transparency.

There has been much debate on what kinds of distribution transparency
should or should not be provided in distributed systems (see §2.4 and §2.5).
This debate reinforces the recommendation in §2.4 that standards be flexible
enough to support variable distribution transparency.

4.6 Protocols

Many aspects of protocol design have been revisited using systems engineer­
ing techniques rather than traditional communications engineering. The
application of the ‘end-to-end’ principle44 has led to a focus on reducing the
processing and buffer management overheads at network nodes. The out­
come has been a move away from strict layering of protocol implementa­
tions, with simplification of protocols so that they can be moved out of
general purpose processors into network interface units. This simplifity also
enables small machines, such as personal computers, to support complete
implementations of the protocols.

At the present time attention is being given to the requirements of very high
bandwidth networks (e.g. lOOMbits/sec LANs), and high bandwidth com­
bined with long delay (e.g. satellite channels)35. In these networks, many of
the assumptions that are fundamental to traditional protocols are being
undermined. Fast networks can bombard a node with data faster than the
data can be processed. By the time the situation is recognized and the
processor reacts, the amount of data in transit may be immense, leading to
severe buffering problems (especially at intermediate gateways), with conse­
quent instability in congestion control algorithms. Preliminary work sug­
gests that rate controlled protocols, which inherently avoid overcommitment
of network nodes and consequent feedback oscillations, will be more stable
and achieve better throughput16.

4.7 Multi-media interactions

Communication can be classified as isochronous (for real-time voice or video,
etc.) and anisochronous (for text, data, stored graphics and stored image, etc.).
Several systems have been built that provide for interactions in which all
these forms of information are handled in an integrated fashion, for example
multi-media conferencing applications21,5.

The integration of isochronous and anisochronous interactions is stressful
for communications and processing. Progress in this area is predicated upon
real-time performance guarantees from networks, processors and operating
systems, and consequently many of the performance optimisation techniques
described above will be essential.

632 ICL Technical Journal November 1987

Multi-media interactions can be accommodated within object theory. The
fundamentals of object theory (e.g. encapsulation, the modelling of interfaces,
and the way in which objects form relationships via the publishing of
interfaces) are invariant to such details.

4.8 Heterogeneity

There has been considerable attention to the problems of accommodating
heterogeneous systems on a network. An important theme has been common
services to provide links between islands of homogeneity. For example there
have been many designs of system-independent file servers39,47 and compre­
hensive work on directory services and authentication11. The latter is based
on practical experience with very large distributed systems.

Important experience has been obtained in software tools to support RPC
between programs in different languages, executing in different kinds of
computers, and communicating across different networks30,22.

4.9 Security

Most attention in the area of security has been directed towards the use of
encryption for communications security. A substantial survey is given by
Voydock and Kent48.

As well as being a means of achieving data integrity, encryption has been
used as a means of ‘sealing’ data in authentication protocols37.

Encryption has been made an integral part of RPC protocols to defend them
against a wide range of network level attacks10. The design and operation of
authentication services11 has been explored in some detail. Work has also
been done on the exploitation of separation in distributed systems to achieve
isolation and enforcement of security policies43.

4.10 Large systems

The research community has not confined itself to laboratory-sized systems.
Many of the research systems have grown to considerable size and operate in
service on a production basis. An example of this scaling up of research
experiments is the Grapevine mail system on the Xerox Internet8,45, which
provided many lessons for future systems. Several research projects have
been based on extensive wide area networks, including the ARPA network in
the USA and satellite systems35.

A number of academic institutions are engaged in setting up large distributed
computer workstation networks as an integral part of their infrastructure to
support teaching and research; e.g. Project athena at mit and the Informa­
tion Technology Center at Carnegie-Mellon University40.

ICL Technical Journal November 1987 633

5. E xpectation s

Given the above technical assumptions for Open Distributed Processing
standardisation, we can now speculate about the technical content of future
Open Distributed Processing standardisation.

The likely abstract architectural structure of the Reference Model for Open
Distributed Processing is illustrated in Fig. 3. The components of systems are
modelled and encapsulated as objects (a), for which there are concepts and
formalisms for object derivation, specification, composition, decomposition
and inter-relationships. Each object is positioned in a universal multi­
dimensional framework of abstractions (b), which defines object properties,
both absolutely and relative to all other objects. The objects interact via
some kind of object-support nucleus (c).

The nucleus is the sole means for an object to publish its interfaces, names
and properties, and to find out about those of other objects, and to access
other objects. It also provides the means of manipulating the distribution
transparencies and quality attributes of interactions, and is oriented towards
object implementation in high level languages.

A vital constraint on the nucleus is that it should evolve from existing open

634 ICL Technical Journal November 1987

standards, and be able to co-exist with proprietary standards. The concepts
and protocols in the nucleus should be oriented towards high level program­
ming languages, and be network-independent, operating system-indepen-
dent, and language-independent. They would thereby have the potential to
co-exist and interwork with other kinds of networking. A key to achieving
this is seen to be the OSI Remote Operations technique25. By an interesting
combintion of forsight and good fortune, it is directly on the evolutionary
path into the new kind of language-oriented integration of distributed
systems.

In ecma this nucleus has been called dase, the Distributed Applications
Support Environment18. An ecma dase standard is scheduled for completion
in 1988.

Acknowledgements

Most of the ideas presented in this paper have been refined and articulated
via the Advanced Network System Architecture project, Alvey ANSA26, and
in particular Andrew Herbert.

Clarification of the technical approach owes much to the expertise and the
patient committee work of my ECMA colleagues over several years,
especially David Robinson of GEC Marconi.

I would also like to thank Graham Crisp of Plessey for his exposition to
ANSA on Object Theory, which I have drawn on here.

References

1 ISO.; “Proposed revised text for the NWI on the Basic Reference Model for Open
Distributed Processing”. ISO/TC97/SC/21 N1889. April 1987.

2 HOULDSWORTH, J.; “Standards for Open-Network operation”, ICL Tech. J.,
November 1978.

3 BRENNER, J.B.; “1PA networking architecture”, ICL Tech. J., 1983, 3 (3), 234-349.
4 “Proposed Technical Assumptions for Open Distributed Processing”. ECMA, Geneva,

April 1987.
5 AGUILAR, G., GARCIA-LUNA-ACEVES, J , MORAN, D„ CRAIGHILL, E. and

BRUNGARDT, R., “Architecture for a Multimedia Teleconferencing System”, ACM
Computer Communications Review, 16 (3), 126-136 (August 1986).

6 BIRMAN, K., “Replication and Fault Tolerance in the ISIS System”, ACM Operating
Systems Review, 19 (5), 79-86, (December 1985).

7 BIRMAN, K., JOSEPH, T. and STEPHENSON, P., “Programming with Shared Bulletin
Boards in Asynchronous Distributed Systems”, Technical Report TR86-776, Department
of Computer Science, Cornell University (August 1986).

8 BIRRELL, A., LEVIN, R., NEEDHAM, R. and SCHROEDER, M., “Grapevine: an
Exercise in Distributed Computing”, Communications of the ACM, 25 (4), 260-274, (1982).

9 BIRRELL, A. and NELSON, B., “Implementing Remote Procedure Calls”, ACM
Transactions on Computer Systems, 2 (1), 39-59 (February 1984).

10 BIRRELL, A., “Secure Communications Using Remote Procedure Calls”, ACM Trans­
actions on Computer Systems, 3 (1), 1-14 (February 1985).

11 BIRRELL, A., LAMPSON, B., NEEDHAM, R. and SCHROEDER, M., “A Global

ICL Technical Journal November 1987 635

Authentication Service Without Global Trust”, Proceedings IEEE Security and Privacy
Conference, Oakland, California, USA, 223-230 (1986).

12 BLACK, A., “Supporting Distributed Applications”, ACM Operating Systems Review, 19
(5), 181-193 (December 1985).

13 CCITT Red Book, Volume VIII, Fascicle VIII.7, Data Communications Networks,
Message Handling Systems, Recommendation X.410, CCITT, Geneva, 1985.

14 BROWNBRIDGE, D.R., MARSHALL, L.F. and RANDELL, B., “The Newcastle Con­
nection or UNIXes of the World Unite!”, Software - Practice and Experience, 12 (12),
1147-1162 (December 1982).

15 CHERITON, D., “The V Kernel: A Software Base for Distributed Systems”, IEEE
Software, 1 (2), 19-42 (April 1984).

16 CLARK, D., Presentation on “Rate Controlled Protocols”, ARPA Internet End-to-end
Task Group Protocols Workshop, University College, London, (August 1986). Unpub­
lished.

17 COOPER, E., “Replicated Distributed Programs”, ACM Operating Systems Review, 19
(5), 63-78 (December 1985).

18 “Distiributed Applications Support Environment (DASE)”. ECMA/TC32/TG2/86/91,
ECMA, Geneva, December 1986.

19 “Framework for Distributed Office Applications”. ECMA, Geneva, June 1987.
20 “Basic Remote Procedure Call (RPC) Protocol using OSI Remote Operations”.

ECMA, Geneva, December 1986.
21 FORSDICK, H., “Explorations into Real-time Multimedia Conferencing”, Proceedings of

IFIP TC 6 International Symposium on Computer Message Systems, Washington, D.C.,
USA, 331-347 (September 1983).

22 GIBBONS, P.H., “A Stub Generator for Multilanguage RPC in Heterogeneous Environ­
ments”. IEE Transactions on Software Engineering, Vol. SE-13, No. 1, Jan. 1987.

23 GOLDBERG, A. and ROBSON, D., “Smalltalk-80. The Language and its Implementa­
tion”. Addison Wesley, 1983. ISBN 0-201-11371-6.

24 GRAY, J., “Notes on Database Operating Systems”, in Bayer, R., Graham, R.M. and
Seegmuller, G., (eds.), “Operating Systems: An Advanced Course”, Springer-Verlag, 1979.

25 ISO 7092. “Draft International Standard: Information Processing Systems-Text Proces­
sing-Remote Operations Part 1: Model, Notation and Service Definition”; “... Part 2:
Protocol Specification”. ISO, Geneva, March 1987.

26 HERBERT, A.J., “The Advanced Network Systems Architecture Project”, ICL Tech. J.,
November 1987.

27 ISO 8807. “Information Processing-Open Systems Interconnection-LOTOS-A Formal
Description Technique Based on the Temporal Ordering of Observational Behaviour”,
DP8807, ISO, Geneva.

28 ISO DP 9594. “Directory Standard.”. ISO, Geneva, September 1986.
29 JONES, A., “The Object Model: A Conceptual Tool for Structuring Software”, in Bayer,

R., Graham, R.M. and Seegmuller, G., (eds.), “Operating Systems: An Advanced Course”,
Springer-Verlag, 1979.

30 JONES, M.B., RASCHID, R.F., THOMPSON, M.R., “Matchmaker: An Interface Specifi­
cation Language for Distributed Processing”. Proceedings 12th. ACM Symposium on
Principles of Programming Languages, Jan. 1985.

31 KUHN, T., “Structure of Scientific Revolutions” (2nd edition), University of Chicago
Press, 1970.

32 KUNG, T. and ROBINSON, J., “On Optimistic Methods for Concurrency Control”,
ACM Transactions on Database Systems, 6, 213-266 (June 1981).

33 LAMPSON, B., “Hints for Computer System Design”. ACM Operating Systems Review,
17 (5), 33-48 (October 1983).

34 LAPRIE, J., “Dependable Computing and Fault Tolerance: Concepts and Terminology”,
Proceedings 15th Annual International Symposium on Fault Tolerant Computing, Ann
Arbor, Michigan, USA, 2-11 (June 1985).

35 LESLIE, I., NEEDHAM, R„ BURREN, J., COOPER, C. and ADAMS, C., “The
Architecture of the Universe Network”, ACM Computer Communication Review, 14 (2),
(June 1984).

36 LISKOV, B. and SCHEIFLER, R., “Guardians and Actions: Linguistic Support for

636 ICL Technical Journal November 1987

Robust Distributed Programs”, ACM Transactions on Programming Languages and
Systems, 5 (3), 381-404 (July 1983).

37 NEEDHAM, R. and SCHROEDER, M., “Using Encryption for Authentication in Large
Networks of Computers”, Communications of the ACM, 21 (12), 993-999 (December
1978).

38 NEEDHAM, R.M. and HERBERT, A.J., “The Cambridge Distributed System”, Addison-
Wesley (1982).

39 MITCHELL, J. and DION, J., “A Comparison of Two Network-based File Servers”,
Communications of the ACM, 25 (4), 233-245 (December 1982).

40 MORRIS, J., SATYANARAYANAN, M., CONNER, M„ HOWARD, J., ROSENTHAL,
D. and DONELSON-SMITH, F., “ANDREW: A Distributed Personal Computing
Environment”, Communications of the ACM, 29 (3), 184-201 (March 1986).

41 POPEK, G„ WALKER, B., CHOW, J., EDWARDS, D., KLINE, C., RUDISIN, G. and
THIEL, G., “LOCUS: A Network Transparent, High Reliability Distributed System”,
ACM Operating Systems Review, 15 (5), 169-177 (December 1981).

42 RASHID, R. and ROBERTSON, G., “Accent: A Communications Oriented Network
Operating System Kernel”, ACM Operating Systems Review, 15 (5), 64-75 (December
1981).

43 RUSHBY, J. and RANDELL, B., “A Distributed Secure System”, IEEE Computer, 16 (7),
55-67 (July 1983).

44 SALTZER, J., REED, D. and CLARK, D., “End-to-End Arguments in System Design”,
ACM Transactions on Computer Systems, 2 (4), 277-288 (1984).

45 SCHROEDER, M., BIRRELL, A. and NEEDHAM, R., “Experience with Grapevine: the
Growth of a Distributed System”, ACM Transactions on Computer Systems, 2 (1), 3-21,
(February 1984).

46 SPECTOR, A.Z., BUTCHER, J., DANIELS, D.S., DUCHAMP, D.J., EPPINGER, J.L.,
FINEMAN, C.E., ABDELSALAM, H. and SCHWARZ, P.M., “Support for Distributed
Transactions in the TABS Prototype”, IEEE Transactions on Software Engineering,
SE-11 (6), 520-530 (June 1985).

47 SVOBODOVA, L., “File Servers for Network-based Distributed Systems”, ACM Comput­
ing Surveys, 16 (4), 353-398 (December 1984).

48 VOYDOCK, V. and KENT, S., “Security Mechanisms in High-level Network Protocols”,
ACM Computing Surveys, 15 (2), 135-171 (December 1978).

49 WALKER, B., POPEK, G., ENGLISH, R., KLINE, C. and THIEL, G., “The LOCUS
Distributed Operating System”, ACM Operating Systems Review, 17 (5), 49-70 (October
1983).

ICL Technical Journal November 1987 637

The Advanced Networked System s
Architecture Project

Andrew Herbert
ANSA, 24 Hills Road, Cambridge CB2 1JP

Abstract

The A dvanced N etworked Systems A rch itecture Pro ject is an Alvey
pro ject involving STC/ICL, BT, D igita l, GEC, Hewlett Packard, In form a­
tion Techno logy pic, Olivetti, Plessey and Racal.

The purpose o f the pro ject is to p roduce standards fo r the next
genera tion of d is tribu ted app lica tions fo r d ig ita l networks, exp lo iting
advanced results from the fie lds o f systems architecture, com pu te r and
networked systems research and m odern netw orking technology.

1 Introduction

The goal of the ANSA project is to lead the IT industry towards establishing
definitive international standards for advanced networked systems by the

ANSA is concerned with networks that support distributed processing
applications. These are applications in which discrete components of the
overall application may be located in more than one system, at more than
one geographical location, or where there is any reason which necessitates
explicit communication among the components.

Fig. 1 Distributed processing

The important feature of this definition is the focus on systems supporting
some overall application, such as the automation of an office or factory. This

1990s.

♦
overall activ ity

638 ICL Technical Journal November 1987

distinguishes distributed processing from the less intimate networking style
of open systems interconnection (OSI) between autonomous systems with
separate, individual objectives.

Distributed processing has a very wide field of application including:
administration systems
business management systems
command and control systems
factory automation systems
image manipulation systems
radio/tv/hi-fi distribution systems
office systems
process control systems
telecommunications systems
scientific computation systems

2 Integration through distributed processing

Distributed processing is important not only within each of these fields of
application, but also as a bridge between them. Many organizations
already have information systems that use distributed processing to
support a variety of internal functions. For example, a manufacturing
company may have a distributed word processing system in the administra­
tion department, a network of CAD workstations in the design shop and an
automated factory floor. There are organizational advantages to be gained
from the integration of these separate functions into a single, large scale,
distributed system oriented towards achieving maximum effectiveness for
the company.

• linking together independent systems in an organization

Fig. 2 Integration through distributed processing

Integration is necessary between separate organizations as well as within a
single organization. Electronic trading, for example, leads to a distributed
system spanning traders, customers and banks. This level of integration is
much harder, since no single authority can control the entire activity of the

• linking together autonomous organizations

ICL Technical Journal November 1987 639

system. Instead ways must be found to maximize the ability of independent
authorities to interwork, without jeopardizing their concerns and interests.

These forms of integration will inevitably lead to heterogeneous systems
containing a wide variety of computer and networking technologies, supplied
by a multiplicity of IT vendors. The reasons for this are several:

• Many distributed applications are highly specialized and require differ­
ent environments, with conflicting constraints in terms of such factors as
real-time response, throughput, security, reliability and so forth. For
example, a safety critical application in a factory may require fault-
tolerant and replicated hardware, whereas in an office environment
continuous availability is less of a concern.

• Distributed systems grow and evolve over time. New computers and
services are connected, new applications are installed. All of these are
required to coexist and interwork with older equipment. It is very
common to discover distributed systems continuing to use an obsolete
item of equipment because it supports a key application which cannot
easily be moved to newer components. The owners of distributed
systems will come to expect gradual (and continuous) evolution of their
systems, rather than the periodic total replacement approach of the past.

• It is unreasonable to assume that any single vendor will be able to offer a
complete solution to all distributed application needs in addition to the
major systems vendors there will always be specialist vendors in niche
markers (such as CAD) and start-up vendors selling innovative system
components.

3 Homogeneity through standards

It has been accepted for some time that the solution to the problem of
heterogeneity lies in the use of open standards, such as OSI. Open standards
are agreed in a public forum and represent an industry consensus. Open
standards help the customer by giving him access to a greater number of
vendors and help the vendor by enabling him to sell competitively to the
entire information technology marketplace.

Standards are about agreeing interfaces between system components to
achieve compatibility. This begs several questions. Which system functions
are candidates for standardization? What sort of compatibility is desired? At
what level of abstraction should an interface be defined?

Figure 3 shows some possible answers to these questions.

• Human-computer interface standards prescribe how applications should
appear on the user’s terminal and how the user should interact with the
computer. These sorts of standards can bring great uniformity to a wide
range of quite distinct applications and reduce the degree of user training
necessary before a new application can be used. This is illustrated by the

640 ICL Technical Journal November 1987

• human-
computer
interface

• operating
system
interface

• external
physical
storage
interface

Q E
Fig. 3 Kinds of interface abstractions

program­
matic
interface

physical
medium
interface

success of window, icon and menu based systems such as the Apple
Macintosh.

• Programmatic standards specify the languages in which applications
should be written and the subroutine libraries to be provided. These
standards provide application portability across a wide range of systems.

• Operating system standards provide a common application environment
by defining application services such as I/O, filing and database.
Operating system standards enable interworking between applications
written in diverse languages. This level of standardization is very
powerful, which explains the thrust behind initiatives like X/Open.

e OSI provides standards for a physical communications interface so that
different systems may interchange data and support common services
such as transaction processing. It thus enables interconnection of
heterogenous computer systems via digital communications networks.

• Standards for the organization and encoding of data on external
physical storage such as discs and tapes are another example of an
information interchange interface, but in this case not dependent upon a
communications link between systems.

Thus it can be seen that all of these different levels of abstraction have their
merits, since each achieves a different sort of compatibility. The system
designer seeks to achieve a balance between all these levels so that the
systems he designs offer the greatest compatibility for the customer. The
designer therefore needs to know the relationships and dependencies between
interfaces at different levels of abstraction and how to build system compo­
nents that support standard interfaces.

The sorts of consistency requirements that face the system designer are
shown in Fig. 4.

• At the top level the designer needs to be assured that his design does
meet the overall system objective and that he has proposed the most
cost-effective solution.

• When assigning interfaces for a function, the designer is concerned to

ICL Technical Journal November 1987 641

• meets
system
objectives

• interface
suits the
function open read

close write

• components • between
iprovide the

function
linked
interfaces I

Fig. 4 Consistency requirements

choose an appropriate interface. For example, an information storage
function could be met either by a filing system or by a database, both of
which have rather different characteristics.

• The designer needs to select an appropriate combination of components
to achieve a desired interface. He is aided if there is a repertoire of system
building blocks and an understanding of how basic building blocks can
be combined to meet higher level requirements.

• Finally, and perhaps the most difficult of all, the designer wants to be
sure of compatibility for linked interfaces - for example that a program­
ming language library is compatible with an operating system’s interface,
or that an operating system’s interprocess communication system can be
extended over a network to link processes in separate machines.

4 Architecture

The solution to these problems of design and consistency is to present the
designer with an architecture to help him in his task.

The purpose of an architecture is to provide a common basis for design and
to impose a common style on all systems derived from the architecture.

The benefits of an architecture are the family resemblance of the systems
derived from it and confidence in the consistency of those systems.

Fig. 5 Architecture

Figure 6 illustrates the major elements of an architecture for distributed
processing.

642 ICL Technical Journal November 1987

• defined
concepts and
terms

• models for
distributed
processing

• framework for
relating
interfaces and
components

• specification
of basic
building
blocks

Fig. 6 Architectural elements

• The designer requires a base of well-defined concepts and terms within
which he can describe and explain his system.

• To support the description and design of systems he needs formal models
of how system components can be related to one another and from
which the behaviour of a system predicted.

• A framework of levels of abstraction will guide the designer by position­
ing system building blocks and interfaces relative to one another.
(Possibly the best known example of such a framework is the OSI
Reference Model which positions various communications functions
into a hierarchical series of layers.)

• Finally, the designer needs specifications for the basic building blocks
out of which he can build practical systems.

Distributed processing architectures can be divided into two kinds. There are
many which are specific to a particular field of application. For example, a
distributed office architecture may be concerned with workstations, file
servers and print servers. The concern of ANSA is with the generic aspects of
distribution that are common across all fields of application. This is shown
diagrammatically in Fig. 7.

Generic

Domain specific

Fig. 7 Kinds of architectures

ICL Technical Journal November 1987 643

The benefit of a generic architecture is that it brings the domain specific
architectures closer together by providing a common shared framework and
common foundation of basic building blocks.

It is important not to confuse an architecture with a system. A system is a
single solution to a single problem. An architecture is an orderly package of
solutions to a range of problems. It is naive to imagine that a single system
could meet all application requirements. Indeed, this has already been given
as an argument in favour of heterogeneity in distributed systems. It is,
however, plausible to consider a generic architecture spanning many fields of
application provided there is some criterion for deciding what is a generic
function.

5 Transparency

The key to understanding generic functions for distributed processing is the
concept of distribution transparency.

A system is described as having distribution transparency if it conceals the
consequences of distribution from applications and users - that is to say, the
users perceive the system to be a single whole rather than merely a collection
of independent resources.

The sources of generic functions associated with distribution transparency
are best illustrated by examples.

Suppose a hospital wishes to provide hospital staff (doctors, nurses, adminis­
trators, technicians etc.) with online access to hospital and patient records. A
distributed solution to this information processing problem is illustrated in
Fig. 8. Every user has been given access to a personal computer and because
of distribution transparency the users are given the impression that there is a
single “logical” database common to all the machines, even though in
actuality the data is spread out over all the local discs.

logical shared dat

Fig. 8 Distributed processing

644 ICL Technical Journal November 1987

The first form of distribution transparency evident in this diagram is access
transparency: the users see a single logical database; there is no distinction
between local and remote data, although access may be restricted by access
controls in support of some suitable security policy.

5 5
Fig. 9 Access transparency

The next transparency is that of location - the users do not have to know
which parts of the database are stored on which machines. Instead, they
identify data by logical or functional names and it is left to the system to
translate these names to actual database record addresses.

"Mr Smith”

Fig. 10 Location transparency

Since there are potentially many users of the database active at once, the
logical database manager must coordinate the parallel activity among the
users and ensure that a consistent database image is presented at all times.

In a distributed system there is an opportunity to keep redundant copies of
the material in the database and to provide surplus processing resources.
This replication may be active in the sense that all the replicates are
operating simultaneously to provide increased availability, or voting for

ICL Technical Journal November 1987 645

5

Fig. 11 Concurrency transparency

increased confidence in the results. Alternatively the replication may be
passive in the sense that only one replicate is in service and the others are in
“standby mode”.

logical shared database

5 5 5 5
Fig. 12 Replication transparency

This concept leads naturally into failure transparency. One of the applica­
tions of replication is to provide continuous service, or to enable recovery
and switchover to an alternate.

Fig. 13 Failure transparency

646 ICL Technical Journal November 1987

Related to replication transparency is migration transparency in which it is
possible to relocate parts of the database to adapt to changing circumstances,
or to move a service dynamically from one machine to another.

5 5
Fig. 14 Migration transparency

By combining these various sorts of transparency it is possible to achieve a
significant degree of performance transparency - that is to say, a distributed
system that appears to be as powerful to the user as if he had a dedicated
machine working just for him. For example, the parts of the logical database
most heavily accessed by a user can be kept on his local disc to optimize
access time and response by exploiting migration transparency. Consistency
processing can often be a background asynchronous task if appropriate
algorithms are chosen.

Fig. 15 Performance transparency
r ^

Finally, well-designed distributed systems have scaling transparency, that is
to say the system can be expanded or contracted arbitrarily without change
to its structures and algorithms.

From an analysis of distribution transparency it is possible to draw up the
following list of generic functions for distributed systems:

access transparency
- communications and security mechanisms

ICL Technical Journal November 1987 647

logical shared database

4 "O - O D■O --O -
rW

-O
I

G"0 - "O '■ O -‘"O '-OU O liTO LiiU ULiO LLT
 ̂ £ I I I

Fig. 16 Scaling transparency

location transparency
- naming, addressing and routing
concurrency transparency
- synchronization and event ordering mechanisms
replication transparency
- active and passive replication mechanisms
failure transparency
- fault management and recovery mechanisms
migration transparency
- configuration and dynamic configuration mechanisms

Performance and scaling transparencies do not lead to distribution mechan­
isms per se, but rather towards strategies for global system optimization.

In different fields of application, different combinations and degrees of
distribution transparency will be appropriate and at different levels of
abstraction, leading to different combinations of mechanisms or basic
building blocks.

Thus the job of a distributed processing architecture such as ANSA is to
provide a model and framework for using these building blocks (i.e.
transparency mechanisms) at all levels of abstraction.

6 The ANSA culture

The illustration in Fig. 17 shows how the ANSA project is approaching
design of the architecture.

648 ICL Technical Journal November 1987

Architectural
Concepts

Human Centred
Design Concepts

Distribution
Concepts

Research
& Technology

ANSA Project

Standards Architecture System Building
BlocksContributions

ISO SC21
Open Distributed

Processing

Experimental
Prototypes

Fig. 17 The ANSA culture

The outputs of the ANSA project are the architecture itself in the form of a
published document - the ANSA Reference Manual - contributions to the
standards process and also experimental prototypes of the mechanisms or
building blocks necessary to support the implementation of practical distrib­
uted systems.

The standards target for ANSA is the “Open Distributed Processing” New
Work Item established by ISOXTC97 SC21 WG1. This has scope and
direction similar to ANSA and is the logical progression within open systems
standardization from open systems interconnection (OSI).

The initial target for the experimental prototypes is C and Unix since this is
an important and widely available environment, enabling the sharing of
experience and transfer of technology between the ANSA project and the
sponsoring companies.

The inputs to the ANSA project - perhaps best styled as “the ANSA culture”
- include the architectural and distribution concepts explained in earlier
sections.

A further important thread to ANSA is human centred design. All systems
exist to support a human enterprise and to satisfy human concerns. By
understanding the needs of enterprises and the concerns of people who use

ICL Technical Journal November 1987 649

distributed systems it is possible to understand that many of the variations
between otherwise similar mechanisms exist because of different perceptions
of the human concerns involved. It is therefore important that ANSA should
include these factors in its framework to help the designer select the
appropriate mechanism to meet a particular requirement.

An architecture is crucially dependent upon assumptions about technology
and its development. The technological assumptions adopted by ANSA are
those in Brenner’s paper “Open Distributed Processing” pp 613-637.
Included among these assumptions is the observation that recent research
work in the field of distributed operating systems and communications places
many significant and useful results in the hands of the system designer.

7 The ANSA Reference Manual

The ANSA Reference Manual is organized as a seven part document as
follows:

Part I: Overview
Part II: Technical background

a summary of the concepts that underpin the design of ANSA;
essentially a greatly expanded version of this paper

Part III: Concepts and definitions
a complete set of concepts and definitions for distributed system
terms; almost an encyclopaedia of distributed processing

Part IV: Models and framework
a formal definition of the models and framework used in ANSA

Part V: System building blocks - description
descriptions and implementation guides to the ANSA distributed
system building blocks

Part VI: System building blocks - specifications
detailed formal specifications of the system building blocks described
in Part V

Part VII: Examples
illustrated examples of systems building using ANSA, based upon the
building blocks of Parts V and VI and the experimental prototypes
constructed during the course of the project.

8 Project profile

The ANSA Project is an Alvey project supported by British Telecom, Digital
Equipment Corporation, GEC, Hewlett-Packard, Information Technology
pic, Plessey, Racal and STC/ICL.

The project team consists of approximately fifteen staff (some consultants,
some seconded, others directly hired) working at a single project office in
Cambridge, England. This central structure is quite unique among Alvey and

650 ICL Technical Journal November 1987

ESPRIT projects and has worked very well for the development of ANSA
and the establishment of cohesion among the project team.

The project is funded at approximately £1 million per year through to mid
1989.

The approximate project timescales are shown in Table 1.

Table 1 Timescales

Date Timescale

June ’87
December ’87
March ’88
December ’88
March ’89
June ’89
June ’89
June ’91

Manual Part 1 to 4 to be written
Manual reviewed and accepted by collaborators
Prototype test bench environment available
ANSA in active use by collaborators
Major prototype demonstrations working on the test bench
Manual Part 1 to 5 complete
ISO ODP Reference Model to first DP
ISO ODP Reference Model Standard

9 Further information

Further details about ANSA, including copies of the ANSA Reference
Manual which explains the technical content of ANSA in depth, are freely
available from the Project Director, Bill Talbot, or the Chief Architect,
Andrew Herbert, at the ANSA Project office in Cambridge (tel: 0223 323010).

ICL Technical Journal November 1987 651

Community m anagem ent for the ICL
networked product line

Alan R. Fuller
ICL, Marketing and Technical Strategy, Bracknell, Berkshire, England

Abstract

ICL’s Networked P roduct Line (NPL) is the p roduct realisation of ICL’s
In form ation Processing A rchitecture. NPL C om m unity M anagem ent
addresses the m anagem ent of a set of networked p roducts together
w ith the underlying netw ork com ponents, the networked services and
their access. This paper outlines the scope of C om m unity M anage­
ment and describes the way in w hich the M anagem ent of a to ta l
Com m unity of networked end systems may be realised.

1 Introduction

1.1 Context

The transfer of all types of information, speech, still- and moving-pictures, as
well as simple text can be accomplished over short and over very long
distances. The technology to accomplish all of these types of transfer is
available at some cost.

For some types of information transfer (for example, speech, and data in the
form of text), not only is the technology available and well understood but
the cost of providing it has permitted the widespread introduction of facilities
based on this technology. Telephone networks and telex networks are
undeniably successful.

In contrast, the use of data transfer techniques in the direct support of, for
example, distributed office functions is much less widespread. The implemen­
tation of a number of distributed office systems (which cater for the
information transfer needs in a modest way) has shown that they too are
undeniably successful. Nevertheless, one of the most important factors
contributing to limit the success of both worldwide telephone networks and
small distributed office systems is the problems of management.

In each of the above examples, the management problems are not always the
same - in the case of large networks, a number of the management problems
arise from the sheer size of the network. Simply keeping track of the

652 ICL Technical Journal November 1987

maintenance state of the many thousands of network components is a major
management problem. In the case of smaller networks of nodes which form,
for example, the elements of a distributed office, maintaining the complex
information structures in a consistent state is again a major management
problem.

The major challenge of NPL Community Management is to help solve the
management problems arising from size and complexity.

1.2 Scope

Size and complexity are only two dimensions of management problems.
Three further dimensions of interest are skill level, the networked elements
subject to the management discipline, and the life cycle of networks and
distributed systems.

If one looks at the components of distributed systems, four categories are
readily identified as shown below:

- Subnetwork Components
- End systems connected via subnetworks
- Applications running on and systems providing services to end users
- End users.

Further, the management tasks are often carried out by different people
because different skills are necessary to accomplish the tasks.

A second major challenge for NPL Community Management is to provide
facilities to support people with appropriate skills in the task of managing all
four categories of managed components.

Each of the areas is discussed in further detail.

Networks have traditionally been considered as composed primarily of those
elements involved in the transmission and switching of streams of informa­
tion. Typical examples include point-to-point circuits, packet switching
nodes, wide band transmission facilities, circuit switches, modems and
multiplexing plant.

In a number of instances a valid view of the network can be obtained by
aggregating the view seen from end systems attached to the network, as in the
case of end systems interconnected by a local area network.

The familiar ‘boundary’ problems associated with end system-to-subnetwork
connection have led to the inclusion of end systems themselves in the
problem space to be managed. This initially implied just the communications
elements of end systems such as couplers, line drivers and associated software
and firmware. Increasingly, all components of the end system are being

ICL Technical Journal November 1987 653

considered, for example, closely associated with communications subsystem
is buffering for messages being transmitted and the buffering is one aspect of
the storage on an end system. If information transfer fails or is degraded as a
result of problems with such storage, this too needs to be managed. In much
the same way, if information is transferred from a file on a magnetic disc on
one end system through a network to a peer system and the ‘effective’ transfer
is limited by contention for disc channel capacity with other processes, this
too needs to be within the scope of management.

The applications running on end systems attached to subnetworks have
tended to be a ‘province unto their own’. This is understandable since most
applications are run on a single end system with networked access via
terminals. Distributed applications (of which the most important examples
are probably management applications!) have a number of characteristics
that are such that the applications themselves too have to be within the scope
of management.

A familiar distributed application is electronic mail.

Electronic mail involves the distribution of information to named individuals
at specified addresses. The information used to achieve the distribution (even
when the underlying subnetwork is static) is subject to change. People
change locations, new recipients are added to the information network and
correspondents leave the network. Further, new facilities may be added to
the applications such that only compatible versions in different end systems
are able to provide these new facilities. Such characteristics as these mean
that not only the distributed applications but their associated datastores
need to be managed for the distributed application to be effective.

Finally, the services (and component applications) within distributed systems
are provided for the benefit of the end users accessing them. Unfettered access
by users to distributed systems is clearly undesirable on a number of grounds:
privacy of confidential information, the cost constraints are two important
examples. Consequently, the mechanisms whereby users access systems need
to be policed, which is equivalent to management of the end users.

All four categories of components of networked systems which constitute a
‘Community’ have to be managed for total systems management. NPL
Community Management is appropriate to all four categories.

The scope of management is equally wide as far as the life cycle of systems is
concerned.

The list below gives the typical stages through which either total networks or
elements of networks pass during their overall life cycle.

Planning
Definition

654 ICL Technical Journal November 1987

Generation
Distribution
Installation
Monitoring
Operational Control
Fault Resolution and Diagnosis
Evaluation/Enhancement Planning.

To ensure that an adequate service is provided, networked systems should be
planned well from the earliest possible stage. This includes a number of
modelling activities so as to ensure correct functionality at each node in the
network. Correct interworking capability, correct logical addressing, capacity
in terms of storage on the end systems, connectivity, multiplexing capability
(where appropriate), bandwidth between subnetwork nodes and appropriate
traffic capacity at switching nodes all have to be taken into account.

Once the overall network has been planned, the detailed definition in terms of
product-specific components has to be achieved and from the detailed
definition the precise details of the networked systems is generated. This
includes selection of options which, although necessary, do not materially
affect the overall system. It also includes specification of some options which
realise the principles embodied in the modelling phase.

Next, the parametric information has to be transferred to the location where
it is to be used - a process of distribution. The final act prior to use of the
information in a live system is a process of incorporation into the running
system - a process of installation.

The phases in the life cycle so far can be collectively termed administrative
processes; the subsequent stages are conveniently termed operational pro­
cesses - the main difference between the two sets of processes being the level
or degree of unplanned activity involved. Almost by definition, administra­
tion is the execution of planned processes whereas operational processes are
required to respond to the un-planned event. In the scope of operational
processes are monitoring processes which ensure the correct functioning of
the total set of network components. In the case of unforeseen events, the
operational control processes are invoked to effect, for example, bypass
mechanisms or standby facilities. Once such unplanned events have been
signalled, fault diagnosis and resolution facilities may be employed to
determine the cause of any malfunction and bring into operation any
remedial action.

As part of the monitoring activity both long term trends in the form of
statistics and isolated incidents in the form of network alerts can be
important.

The operational aspects relating to satisfactory resolution of a problem span
the whole spectrum of managed components. For example, standby facilities

ICL Technical Journal November 1987 655

may be invoked, routing tables may be changed, network tasks may be
deleted or re-created, the availability of a service may be suspended or
resumed and the permissions for a user to access a service may be suspended
or re-instated.

The same basic facilities used to plan and define the networked system are
employed in the enhancement planning phase of networked systems to cater
for growth (or decline in usage) of systems.

All functions in the life cycle of distributed networked systems have to be
catered for in order to manage systems in an effective manner.

In terms of people involved in each of the stages of the life cycle, a variety of
skills is required. In the early planning stages, imagination tempered with
what can be achieved in practical situations is required. In the definition and
generation stages, a more detailed product knowledge and methodical
(almost mechanical) approach is demanded. In operational management
assertiveness coupled with an ability to think laterally is essential to problem
resolution.

In each of these areas, the skills necessary are not only different but they are
in short supply. NPL Community Management concentrates on assisting the
skilled tasks making skilled people more effective rather than de-skilling the
tasks - in any case, the techniques involved in making skilled personnel more
effective are a necessary precursor to de-skilling the tasks themselves.

2 Principles

2 .1 Mechanisms and building blocks

From an analysis of the tasks involved in supporting the total life cycle of
distributed networked systems two points are evident:

a number of tasks require the transfer of information.
- a number of tasks require a means by which pieces of information in

different components of the total system are kept consistent.

The two major divisions are inter-related. Further detailed analysis of the
needs for information transfer indicate three broad categories namely:

(a) bulk data transfer of files of information
(b) a message passing system to signal, for example, some malfunction or to

signal correct functioning of some system - “I am working correctly”.
(c) a means by which system components may be operated from a remote

point.

The tasks which require consistent information are best thought of in terms
of conventional database technology:

656 ICL Technical Journal November 1987

(d) the early stages in the life cycle of networked systems require some
means by which the network definition can be held.

(e) the operational stages require a central point for information relating to
network problems.

Each of these five basic enabling mechanisms is able to support a far more
diverse set of network management applications.

(a) Bulk data transfer encompasses the processes involved in transferring
files of accounting information, files of statistics for fault trend analysis,
files of configuration data and so on.

(b) The messaging system permits the malfunctioning not only of a
network level component to be signalled, for example of a modem or a
multiplexor, but also that of a total end system or a communications
coupler. It also enables the criticality of buffering in an end system to
be brought to someone’s attention. It enables end system-related
problems to be recognised - for example, file store is becoming full.
Further, application-detected problems are within its scope and
last, but not least, attempted security violations may be raised as an
alert.

(c) In much the same way the remote operation of distributed components
has a wide range of applicability. Access via a network to networked
components enables faults to be diagnosed, possibly by running diag­
nostic tests including boundary tests. Once the cause of a problem has
been determined, the corrective action may be taken remote from the
point where the problem occurred.

(d) The sets of managed components (subnetwork, end system, application,
end users) work together in a well defined logical manner - users access
services and applications, the applications reside on end systems, the
applications interwork with each other (which means that end systems
intercommunicate) and they are inter-connected by a variety of sub­
network components. Both the logical and physical relationships be­
tween all the managed components are required to be consistent.

(e) Once the distributed system is operational and events (not necessarily
malfunctions) occur it is highly desirable to have a single point where
information is held to assist in the initial stages of problem resolution.

For each of these five basic mechanisms, NPL Community Management has
defined a general solution.

2.2 Bulk data transfer

Although the transfer of bulk data is well understood, using for example ISO
FTAM as the transfer mechanism, further attributes of the management
process are important. For example the fact that a bulk data transfer was
successful (or not) is an important management aspect. Further, it is
frequently the case that a group of file transfers (and the status of the set) is
more important than any one transfer. Typically, the availability of several

ICL Technical Journal November 1987 657

files of accounting information is necessary before a process which relies on
the complete data set can be run.

NPL Community Management provides such a managed bulk data transfer
facility; it is termed Community File Transfer.

2.3 Messaging systems

The wide scope of events which may be signalled by a messaging system has
already been described. Not only is it necessary to signal problems - the
negative side of an event - but it is sometimes necessary to signal the absence
of problems - a watchdog capability - such that as the number of operational
problems diminishes the correct working state of a system may be positively
determined.

NPL Community Management provides such a messaging facility; it is
termed Community Alert Management.

2.4 Remote operation

The provision of remote operation is probably the simplest of facilities. The
complexity arises from the diversity of systems for which remote operation is
applicable, together with the diversity of end system support tools available.

NPL Community Management provides a remote operation facility; it is
termed Remote System Support.

2.5 Consistency of network related data

Although the need for consistency of network related data has already been
covered, there are many complex attributes. The consistency needs to cover
the logical network components (which services interwork with each other)
as well as the physical components (which sub-network elements inter­
connect which end systems). The realisation of the physical components in
terms of hardware, and the logical components in terms of software is an
issue of consistency of network-related data. At any instant the total
logical/physical/hardware/software description of a distributed system can
be held in a database. It is changes to this definition that need to be managed.
For example, the network definition yesterday which is different from that
today, which is different again from the planned definition tomorrow is an
issue which has to be managed.

NPL Community Management provides a database to maintain these many
facets of network definition in a consistent manner; it is termed Network
Definition Database.

ICL Technical Journal November 1987

2.6 Single point of contact

It is commonplace that a problem received by one user is frequently
encountered soon afterwards by another. Many problems have just a single
cause. Many problems are not problems in that a fault condition persists -
users may simply misunderstand information they are given; the inability to
follow the instructions is a problem in their eyes. Research has shown that as
much as 80% of seemingly network-related problems can be resolved
through use of a single point of contact. The single point of contact may be
accessed by telephone or via the network and the simple point of contact is
ideally supported in its function by a database used to store the problem
reports as they arise. A wide variety of reports may be generated from an
analysis of the database relating to who is responsible for resolving a
problem, detailed description of the problem, and when, how and by whom a
problem has been resolved.

NPL Community Management provides a database to support a single
point contact; it is termed the User Help Desk.

2.7 Integration of different management disciplines

Historically, different management disciplines have been developed for
specific technologies. Typical diverse examples are the management disci­
plines involved in voice networks and, in contrast, the disciplines involved in
managing the software comprising distributed applications. From the de­
scription of the basic enabling mechanisms it can readily be seen that they are
applicable to a wide range of management disciplines.

As will be seen later, this is only one of several features of NPL Community
Management which brings a unifying influence to the diverse management
disciplines.

3 Architectural framework

The generic solutions to some basic management problems described in the
previous sections can each be used in isolation. For the maximum benefit to
be obtained, a number of the mechanisms may be used in combination within
the architectural framework within which the mechanisms were conceived.

From previous discussion, the scope of the managed components includes
the network, end systems, applications and users - the set of managed
components being termed a ‘Community’.

The architectural framework is based on the premise that management is a
hierarchic discipline. The hierarchy may be ‘flat’ - a one-to-many relation­
ship; or it may be ‘tree-structured’ with several branches to the managed
‘leaves’. The leaves of the tree are termed Community Management Subsidi­
aries (CMS) and the entity which exercises control over these subsidiaries is

ICL Technical Journal November 1987

termed the Community Management Administration Centre (CMAC). This
is shown schematically below:

The hierarchy of a single Administration Centre with several Subsidiaries is a
‘flat’ realisation of the hierarchy and is called a management ‘domain’; a
series of Administration Centres in a hierarchy can be logically extended to
any appropriate depth. In this case, the intermediate Administration Centre
is a sub-CMAC and it contains elements of both CMAC and CMS
functionality but co-located.

The Community Management Presentation Centre (CMPC) is where the
management information is presented and this is logically separated from the
Administration Centre where the management decisions are taken.

The former (termed the Community Management Presentation Centre) will
be co-located with the CMAC in a number of instances.

The lines between CMAC, CMS and CMPC indicate logical network links.
This implies that management information transfers pass over the sub­
network connecting the networked elements. This is frequently the case, but
a number of system functions can still be adequately managed even when the
distributed system elements are not networked on a permanent basis.

The managed components in many instances are the hardware and software
components of end systems and subnetwork components. In these instances
they are equivalent to Subsidiaries.

The facilities provided by NPL Community Management map onto the
architecture in the following way:

Community File Transfer - the transfers occur between the Administration

660 ICL Technical Journal November 1987

Centre and the Subsidiary and they are managed by the Administration
Centre.

Community Alert Management - the messages are passed between Adminis­
tration Centre and the Subsidiaries and the major management decisions are
made at the Administration Centre.

Remote System Support - Subsidiaries are managed from the Administration
Centre.

The Network Definition Database and the User Help Desk are located on the
Administration Centre.

From the architectural approach, a number of points are worthy of note.

The architecture shows an Administration Centre as logically responsible for
a number of subsidiaries. It is convenient to partition management functions
in this manner, for example to provide one Administration Centre for
Directory Management, one for Database Management, one for Modem
Management and so on. However, the architecture permits these to be not
only separate logical relationships but also separate physical Administration
Centres. This facilitates a distributed approach to management in harmony
with the perceived need to enable users of management facilities to partition
management as they desire.

One of the driving forces in this task of partitioning is the desire to permit
skilled staff (who are in short supply) to be located where they can most
effectively accomplish their management tasks. Should a more centralised
approach be desired, the logical management domains may be co-located at
a single Administration Centre.

4 Towards open management

One of the real driving forces behind Open Systems Interconnection
standards is the need for information transfer between different vendors
equipment. Multivendor interconnection is a goal of OSI; multivendor
management is a goal of NPL Community Management. For this reason the
information transfer mechanisms within Community Management have
been firmly based on open multivendor transfer mechanisms. Where fully
ratified standards are not available, practical intercepts of these standards
have been adopted. ICL is committed to migrate to appropriate standards
when they are available.

4.1 For the Managed Bulk Data Transfer

The current file transfer mechanism is the Network Independent File
Transfer protocol (NIFTP). The international file transfer protocol (ISO

ICL Technical Journal November 1987 661

FTAM) is now well understood and this is the target protocol for Commu­
nity File Transfer.

4.2 For the Community Management Alerting protocol

No international standard currently exists, although the OSI Management
protocol is similar to the Alerting protocol, OSI Management (as currently
specified) has a narrower scope in terms of the managed objects over which it
exercises control. The same underlying protocol elements are appropriate to
both OSI Management and Community Management Alerting Protocol. As
the OSI Management protocol reaches maturity, it is expected that there will
be significant commonality with the Alerting protocol and the Remote
System Support described below. Community Alert Management will em­
ploy the OSI Management protocol in appropriate circumstances.

4.3 The Remote System Support facility

This currently employs the NPL/IPA facility Remote Session Access. The
Remote System Support Function may be achieved by several open mechan­
isms. Firstly, via the virtual terminal protocol and secondly via the standar­
dised ‘command/response’ elements of the OSI management protocols. Both
mechanisms will be employed when the standards are mature.

The consequence of basing NPL Community Management on open transfer
mechanisms are clear - NPL Community Management is one step closer to
open management.

5 The relationship to management standards initiatives

There are a number of significant management standards initiatives which
either have had an impact on, or which are closely related to, NPL
Community Management. They include:

1 IEEE 802.1 Layer management
2 MAP/TOP Management
3 ISO OSI Management
4 ANSA Management
5 Distributed Systems Management.

In very general terms, management interactions in many instances can be
modelled in terms of an application layer protocol which is used to
manipulate managed objects in subnetwork elements and end systems.

The IEEE Project 802 defined a protocol for managing objects representing
entities associated with the protocols which form one realisation of the lower
two layers of the ISO reference model with specific reference to local area
networks. NPL Community Management collects information about some

662 ICL Technical Journal November 1987

of the managed objects defined by IEEE for products in which IEEE
protocols are employed.

As part of the evolutionary process to OSI management standards, the
General Motors MAP specification, initially at version 2.1, employed the
protocol developed by IEEE and extended the scope of the managed objects
to cover protocols realising all the layers of the 7 layer OSI protocol stack. At
version 3.0, the specification has evolved to intercept the emerging OSI
Management protocol (although the latter is still incomplete in some ways)
and a wide range of managed objects has been defined.

Much of the detailed definitions of managed objects within NPL Community
Management is aligned with the specification of managed objects defined by
General Motors in the MAP specification.

OSI Management has an elegant structure for its protocol (which shows
some similarities to the IEEE protocol) and it is structured into a number of
component parts. These support different functional areas of management
including accounting management, configuration management, fault man­
agement, performance management and security management. A further
component supports features common to all functional areas of manage­
ment.

In each of the three areas above (IEEE, MAP/TOP, OSI), the model
employed is similar to the architectural model employed for NPL Commu­
nity Management although the scope of the managed components over
which management control may be exercised is somewhat larger for NPL
Community Management.

In architectural terms, NPL Community Management aligns very closely
with the management architecture developed for ANSA - the Advanced
Network Systems Architecture for future networking developed under the
auspices of the UK Alvey Directorate. This is an advanced research project
funded by the UK Government. However, the ANSA project has to date not
defined the protocols employed to achieve the management functions.

In the UK, an ad hoc group has been working on a model for Distributed
Systems Management (DSM). The scope of this work and NPL Community
Management is well aligned.

6 Conclusions

NPL Community Management addresses today the need to manage distri­
buted multi vendor systems. An open approach and a strategy of intercepting
standards has been adopted.

An intercept approach inevitably involves an element of risk. It also involves
contributing to the rapid progress towards international standards by

ICL Technical Journal November 1987 663

making substantial contributions to the standardisation bodies. ICL staff
actively contribute to the work in the European Computer Manufacturers’
Association (EMCA) and the British Standards Institution (the UK national
member of ISO) and through these to ISO itself.

7 Acknowledgements

Some parts of this paper will be recognised by a number of colleagues. Many
people from several Divisions in ICL have contributed to this paper - many
of them without knowing it! Without a team effort that this paper represents,
the paper would not have been possible.

References

1 IEEE Project 802. Local Area Network Standard. 802.1 Part B, Systems Management
(Draft M, January 1987).

2 Manufacturing Automation Protocol. Version 3.0 Implementation Release. Chapter 11.
3 ISO/TC 97/SC 21/WG 4 N. Recommendations of the Third SC 21/WG 4 Meeting, Tokyo,

June 1987.
4 The ANSA project; Andrew Herbert, This issue of this journal.
5 A report on Distributed Systems Management, April 1987, M. Sloman (editor), Depart­

ment of Computing, Imperial College, 180 Queensgate, London SW7 2BZ.

664 ICL Technical Journal November 1987

The X/OPEN Group and the Common
Applications Environment

C.B. Taylor
ICL X/OPEN Technical Manager, Office Systems, Bracknell

Abstract

The X/OPEN(tm) G roup form ed in 1984 is a un ique g roup ing of m ajor
Com puter System M anufactu re rs tha t is ded icated to the developm ent
of “ Open Systems” th rough the crea tion of a C om m on A pp lica tions
Environm ent (CAE) w hich is availab le on m achines from all member
com panies. The founda tions of the C om m on A pp lica tions Environ­
ment are interfaces from the UNIX(tm) System V O perating System and
the C language, but th is is being greatly extended to cover all the
facilities necessary to provide a com prehensive environm ent fo r the
support o f com m ercia l portab le app lica tions. The CAE interface
defin itions and portab ility gu idelines are published in “ The X/OPEN
Portability Guide".

At the time of w riting the X/OPEN G roup has grow n to include eleven
m ajor com panies: AT&T, Bull, DEC, Ericsson, HP, ICL, N ixdorf, Olivetti,
Philips, Siemens and Unisys.

1 Introduction

The formation of the X/OPEN Group was a direct result of two major
changes in the Information Technology industry in the early 1980s, a
growing user resistance to the long term lock-in effects of proprietary
operating systems, and the emergence of the “Department” as a large scale
user of computer systems.

1.1 Proprietary Operating Systems

Traditionally a computer system has been controlled by a proprietary
operating system developed by the manufacture of the hardware. This has
unfortunate effects for the purchaser:

(a) The investment made in applications, programmer training and
operating procedures tends to cause a lock-in to a particular manu­
facturer. Changing supplier requires a substantial re-investment in
time and money, and systems from different suppliers cannot easily be
mixed.

ICL Technical Journal November 1987 665

(b) Because of the relatively small population of machines with a specific
proprietary operating system, there is little incentive for the software
industry to develop applications, and hence the application software
tends to be limited to that developed by the manufacturer, or tailor
made (and financed by) the user.

This means that most computer manufacturers find themselves caught in the
trap of insufficient generally available applications to extend the base of
installed systems, and too small a base to tempt the independent software
industry to develop applications for it.

1.2 The Departmental Computer

The availability of 8-bit microprocessors in the late 70s gave rise to the
Personal Computer explosion. These systems were not only cheap to
produce, but also cheap to develop, and many start up companies were
created. To reduce development costs these companies tended to use
generally available operating systems such as CP/M and MSDOS, which,
combined with the few standard microprocessors, meant that there were
large populations of compatible systems. This in turn attracted a large
number of software writers to develop general applications which further
increased the market for personal computers, and a virtuous circle was
created. As these systems relied on binary compatibility for application
portability, there was later a tendency to standardise on the Intel micropro­
cessors and MSDOS (and derivatives), largely influenced by IBM adopting
these components.

This Personal Computer explosion highlighted two things:

• The computing power that could be brought to the desktop at low cost
by use of microprocessors.

• The virtuous circle created by Industry Standards when the volume/cost
equations are favourable.

The emergence of 16 bit, and more importantly 32 bit, microprocessors of
ever increasing power meant that a similar scenario could be applicable to
Departmental computing. It was now possible to service the computing
needs of a Department at low, and therefore acceptable, cost. Market
research firms predicted rapid growth in this area, and this “middle ground”,
which lacked a dominant operating system regime, was identified as a major
area of opportunity by virtually every computer manufacturer in the world.

The situation was however more complex than it was for Personal Compu­
ters. The requirements of a Department are for sharing of information
between users, concurrent access to the information and the ability to carry
out multiple tasks simultaneously from the same workstation. The systems
must also be flexible and expandable over a wide range, as Departments vary
significantly in size. A simple control program, like MSDOS, was therefore

ICL Technical Journal November 1987

not satisfactory; a full multi-user, multi-tasking operating system was
required; and the wide scope meant that standardisation on a single
microprocessor at the binary level was not possible.

The result was that the leading contender, adopted by most manufacturers,
was the UNIX operating system (and its derivatives). It had been designed to
be multi-user, multi-tasking and flexible, and had been written in the C
language to be easily portable to many different hardware architectures.

2 The birth of X/OPEN

A problem with UNIX was that, although it largely fitted the requirement, it
had not been rigidly controlled with regard to standard interfaces. Initially
even releases from AT&T had not guaranteed upwards compatibility
(although by UNIX System V this was committed), and there were several
quite different flavours from other sources, notably Berkeley University and
Microsoft (XENIX(tm)).

During the first half of 1984, ICL approached the other major European
computer manufacturers with the view to ensuring not only that there would
be a single standard at the UNIX level, but also that a complete Common
Applications Environment should be defined covering the basic operating
system, data management, integration of applications, data communications,
distributed systems, high level languages, “internationalisation” and all the
many other aspects involved in providing a comprehensive interface for
portable applications. This effort was to be seen as a complementary plank in
the “Open Systems” movement to ISO Open Systems Interconnect (OSI).

Initial discussions were difficult, as amongst the companies all three major
flavours - UNIX System V, Xenix and Berkeley - were strongly entrenched,
but by mid year sufficient interest had been generated for Bull, ICL and
Siemens to start detailed studies. They were joined shortly afterwards by
Olivetti and Nixdorf, and the group, known by the codename BISON, was
formerly constituted and in full operation by the autumn. This codename
lasted until Philips and Ericsson joined, by which time the name X/OPEN
had been adopted and registered.

3 Achievement and growth

The first phase of work, covering the basic “system calls and libraries”, the C
language, an ISAM file access definition, COBOL, FORTRAN and source
code transfer, was completed by May 1985, a remarkably short space of time.
It was published in the form of “The X/OPEN Portability Guide” in August,
the period between May and August being devoted to turning the bald
technical specifications into a polished quality publication.

The results of the second phase, covering “Commands and Utilities”, the
terminal interface, internationalisation, SQL and PASCAL, were published,

ICL Technical Journal November 1987 667

along with enhancements to the earlier material, as Issue 2 of the Portability
Guide in January 1987.

Over this period there was a major influx of US companies (Digital, Unisys,
Hewlett-Packard and AT&T), which was a measure of the early success,
added great strength to the Group, and widened its scope outside Europe.

4 The common applications environment

X/OPEN is not a standards creation body; it is concerned with standards
selection, refinement and adoption. It is similar in nature to the SPAG
(Europe) and COS (USA) activities for OSI, in that it is putting together a
tightly defined set of standard interfaces that will be present on all member
systems (and wider). The Group is a pragmatic organisation. The members
are not interested in the definition of esoteric standards which bear no
resemblance to available products. The philosophy is to define portability
standards that can be achieved in practice within a short time.

The general policy is to adopt International Standards, and refine their
usage, and to adopt de facto standards where an International one does not
(yet) exist. Only in areas where there is not even a de facto standard does it do
creative work, and even then the general policy is to work with other
standards activities (eg /usr/group). In all areas, though, the intention is to
have a strong influence on the evolution of the standards.

The overall aim is to put in place a complete environment, “The Common
Applications Environment” (CAE), that will exist on systems from all
X/OPEN members such that applications can be written to run with­
out change on all the machines. In addition, by placing these definitions in
the public domain, it is expected that many other systems will also adopt
the interfaces and take advantage of applications conforming to the
standards.

5 The X/OPEN Portability Guide — Issue 1

The first steps taken were tentative but were important because they
demonstrated clearly that the Group was achieving its aims and because they
established a way of working which allowed difficult issues to be resolved by
consensus rather than by majority voting.

By mid 1985, the Group had agreed common positions in a number of areas
and these were recorded in the first Issue of The X/OPEN Portability Guide:
a massive document comprising over 600 pages and setting new standards
for the quality of UNIX documentation.

The individual parts are briefly described in the following sections:

668 ICL Technical Journal November 1987

5.1 The X/OPEN System V Specification

The most important decision taken during the first year was to agree on a
standard “dialect” of the operating system to be supported on X/OPEN
systems. Gaining consensus to base the definitions on (a sub-set of) the
UNIX System V interfaces was a major step forward, and one that was taken
well before publication of the AT&T System V Interface Definition. It is very
important here to note that all the X/OPEN CAE definitions are about
interfaces, and not about the underlying product. For example the Group has
never jointly agreed to adopt the AT&T UNIX System V product, but
merely some of its interfaces.

The first task undertaken by the Group was the definition of System V system
calls and library routine calls. (For readers not familiar with the UNIX
Operating System, these comprise a comprehensive set of operating system
services invoked directly from within programs written in the C language.)
When this work was nearing completion, AT&T published the first issue of the
System V Interface Definition (SVID). The Group immediately recognised the
danger of splitting the market if the two definitions were not converged, but
also found themselves unable to adopt the SVID as published in its entirety. As
a compromise, X/OPEN adopted the majority of the SVID definitions, but
annotated where necessary to provide a definition to which all members felt
able to commit. The differences were in fact small and largely in the
presentation. All technical differences were explicitly referred to on the
appropriate page of the Portability Guide. A small number of UNIX System V
calls, that had not been included in the SVID, were also adopted by X/OPEN,
some of which have been added in later editions of the SVID.

5.2 The C Language

Most of the existing UNIX applications and virtually all of the systems
software are written in the C language. The American National Standards C
Language Committee (X3J11) is working towards an accepted definition for
the language. This is still in draft form and evolving. However, the version of
the C language defined in the AT&T UNIX System V Programming Guide is
commonly supported by a wide range of C compilers and was adopted as the
basis of the X/OPEN definition.

As it is possible, in fact quite easy, to write non portable code in C, the
Portability Guide includes advice on how to ensure that applications are
portable. Also included are guidelines regarding pitfalls that could be
encountered when the definition moves to that of ANSI X3J11, once it is
ratified and conforming compilers are freely available.

5.3 FORTRAN

The X/OPEN definition of Fortran is simply the ANS FORTRAN-77
standard with no extensions, which is supported by the majority of current
FORTRAN compilers.

ICL Technical Journal November 1987

5.4 COBOL

The work of defining portable COBOL was a little more difficult. The widely
accepted standard at the time of publication was the American National
Standard X3.23-1974 (COBOL 1974). Although widely supported it was
becoming out of date in a number of ways:

• It includes features (such as SORT) which are now regarded as supplied
by free standing routines or operating system facilities.

• It does not include facilities for the support of the online user (interactive
input/output at a terminal).

The view of X/OPEN was that any COBOL portability definition which
excluded screen handling was totally lacking in credibility. All current
compilers do in fact support interactive input/output, most of them via
extensions to the ACCEPT and DISPLAY statements. Unfortunately, not
all of these extensions are compatible, and it was necessary to choose one for
the X/OPEN definition. The one adopted was a de-facto standard, the form
of ACCEPT and DISPLAY supported by the MicroFocus LEVEL II
COBOL(tm) compiler.

It is important to recognise the difference between the adoption of (a subset
of) the interface represented by a particular product and the product itself.
There are now a number of different compilers which also support the
X/OPEN definition of ACCEPT and DISPLAY. These are equally accept­
able as components to support the Common Applications Environment.
Conversely, the MicroFocus product included other extensions beyond the
ANSI standard, which were not adopted as part of the X/OPEN definition.

5.5 Data Management

Data management is a key component of commercial applications and hence
also of the Common Applications Environment. In the longer term, it was
recognised as being necessary to support full database management inter­
faces, but at the time that Issue 1 of the Portability Guide was published,
there was a state of anarchy among the database management systems with
no common interfaces between them.

5.5.1 Indexed Sequential Access Method (ISAM) As an important first
step, the Group adopted a set of portable interfaces for record access to
Indexed Sequential Files (ISAM).

The C-ISAM(tm) product from Relational Database Systems Inc. (now
Informix Corporation) was a clear market leader. In the absence of any
international standard, a subset of the interfaces of the C-ISAM product
were adopted as the basis of the X/OPEN ISAM definition.

A number of C-ISAM interfaces were excluded because they related too

670 ICL Technical Journal November 1987

specifically to that product, and/or were not necessary as part of the
standard.

5.6 File Transfer

A major irritant to application software developers was found to be the
difficulty of transferring files, specifically text files containing source pro­
grams, between different machines. X/OPEN therefore defined standard
media formats which would be supported where possible. It was not possible
to give absolute commitments in this area because of differences at the
hardware level and also in the nature of systems.

Many systems support a 5.25 inch floppy disc drive, but the number of
sectors per track varies from 8 to 10; the most common version is generally
compatible at the hardware level with the IBM PC-AT, and has 9 sectors per
track. For machines with a suitable floppy disc drive, X/OPEN defined a
common 80 track format (conforming to ECMA-78) to assist in the moving
of source code.

Many systems support a 9 track half inch magnetic tape deck. For machines
with a suitable tape deck, X/OPEN defined a common 1600 bpi Phase
Encoded format (with optional identification label.)

Many machines also support quarter inch cassette (or cartridge) tapes. These
popular low-cost devices are supplied by a number of manufacturers but the
recording format differs from one manufacturer to the next. Hence there was,
and still is, no possibility of an X/OPEN definition for such devices.

6 A period of consolidation

The next stage was a period of consolidation during which five principal
activities took place:

• Initiation of marketing activities to encourage Independent Software
Vendors, Government procurement agencies and large users to adopt
the X/OPEN Common Applications Environment.

• The growth of the Group to ten members, and the inclusion of major
United States based companies.

• Extension of the Common Applications Environment into additional
important areas, roughly doubling its scope.

• The development of a verification suite that would verify conformance to
the published CAE.

• Working towards the delivery of compliant member systems.

The UNIFORUM conference and exhibition in Anaheim in February 1986
was very important for X/OPEN and clearly showed that the Group had
become a major force in the UNIX world. X/OPEN did not have a stand at
the exhibition, nor were any papers presented at the conference. However, a

ICL Technical Journal November 1987 671

large number of other speakers made reference to the Group identifying it as
having a significant influence. Also Issue 2 of the AT&T System V Interface
Definition was launched at the show, and it was clear that the X/OPEN
Portability Guide had influenced the revision of the previous Issue.

It was at UNIFORUM that X/OPEN was able to announce the extension of
the group to the USA, with DEC becoming the first non European member.
DEC was rapidly followed by the Sperry Corporation (soon to become
Unisys following the merger with Burroughs) and Hewlett-Packard.

On the technical front, an update to Issue 1 of the Portability Guide was
published in the summer of 1986, and a second complete edition of the
Portability Guide was published in January 1987.

The exact way in which the verification suite will be used has not been finally
resolved at the time of preparing this paper. In the short term, its use will
certainly remain under the control of the X/OPEN members; there are no
immediate plans to issue the verification suite as a product.

7 The X/OPEN Portability Guide - Issue 2

Issue 2 of the X/OPEN Portability Guide was launched at the Uniforum
show in Washington in January 1987. This edition, presented in five volumes,
included a revised reprint of all the material included in Issue 1, and therefore
replaced rather than complemented it.

A number of lessons had been learned from Issue 1. The form of presenta­
tion retained the same high quality paper and two-colour printing, but
the binding was changed to a form which allowed the material to lie flat. The
division into separate smaller volumes made it more manageable for the
users, and easier to update and extend.

In comparison with Issue 1, the price has been increased only slightly,
although the Portability Guide itself contains more than three times as much
material. This is to ensure the widest possible distribution.

7.1 The X/OPEN System V Specification

In Issue 2, the X/OPEN System V Specification is extended beyond the
definition of “system calls and libraries” into a number of additional areas,
the most important being “commands and utilities”, and “internationalisa­
tion”.

7.1.1 System Calls and Libraries The definition of system calls and
libraries included in the first edition of the Portability Guide was reissued
substantially unchanged. There were some minor changes to correct errors
reported and to reflect the evolution of the IEEE “POSIX” standard, but the
level of change was not significant.

672 ICL Technical Journal November 1987

7.1.2 Commands and Utilities “Commands and utilities” differ from the
“system calls and libraries” in the way in which they are invoked. They are
primarily designed to be invoked via a command interpreter.

While the definitions of the system calls and library calls are reasonably
stable, the same cannot be said of commands and utilities. The current UNIX
commands have been developed in an ad hoc manner over a long period with
no consideration of producing an Industry Standard. As a result, the current
command definitions are inadequate in a number of ways:

• The commands themselves are often over-complex with a large number
of interrelated options, many of which are hardly, if ever, used.

• The definitions are in many cases not rigorous, and are neither an
accurate definition of the behaviour of the command nor a suitable basis
for verification that the command operates correctly.

• Much of the behaviour is machine dependent and inhibits portability.

In the short term, the X/OPEN Group have prepared a definition of
commands based on existing documentation, but, recognising the shortcom­
ings, have liberally annotated the definitions with warnings where behaviour
cannot be guaranteed across all systems. While the eventual aim must be to
“rebuild the road”, an exercise to place warning signs in front of the holes is a
necessary and valuable short term expedient.

In the future, X/OPEN will take an active part in the precise definition of a
set of standard commands, particularly those which may be invoked directly
by (portable) applications.

7.1.3 Inter-Process Communication In Issue 1 of the Portability Guide,
System V routines relating to shared memory and inter-process communica­
tion were excluded. The Group believed, and continues to believe, that more
generalised procedures are necessary in this area. However, there are classes
of applications (such as data management) where there is a need for such
facilities now. In recognition of this need, Issue 2 of the Portability Guide
incorporated the System V inter-process communication interfaces, but
included caveats to the effect that some of the facilities are system specific and
their presence cannot always be guaranteed across all X/OPEN systems.

7.1.4 Terminal Interfaces Although the Group continues to search for
common high level user interface capabilities, many applications are cur­
rently being built using a library of routines (known as the “curses” library)
that is being assembled, to achieve a degree of independence from the actual
terminal type in use. X/OPEN has defined a set of curses routines which will
be supported across all systems, and has given advice regarding the problems
that can be encountered when using such facilities with synchronous (block­
mode) terminals, or asynchronous terminals connected via networks.

ICL Technical Journal November 1987 673

7.2 Internationalisation

From the beginning, the X/OPEN Group recognised the importance of
facilities to allow the user of the system to operate in his own native
language. This implies a number of major requirements:

• The ability to input and output messages in the appropriate language.
• The ability to process the character set in use correctly according to the

language and country involved (character type testing such as “is it a
number”, or “is it alphanumeric”, conversions between upper and lower
case, collating sequences, etc.).

• The ability to support the user’s cultural conventions (date format,
currency symbols, etc.).

• The ability to mix languages, so for example a French secretary using a
machine in Italy can write a letter to a German company.

X/OPEN has defined a set of application interfaces for international
operation. They were derived from the interfaces of the Native Language
Support system developed by the Hewlett-Packard Company of Palo Alto,
California. They have been further enhanced by X/OPEN and have been
modified to be compatible with the Internationalisation proposals of the
Draft Proposed American National Standard for the C Programming
Language.

The initial system is defined to operate with 8-bit coded character sets, but
the definitions are believed to be upwards compatible to 16-bit code sets
later. Different codesets can be used to cover the many different geographical
groupings. All codesets must have 7 bit ASCII in the LHS (top bit of
character 0), but this is consistent with the rules for most internationally
defined codesets.

7.3 Programming Languages

The C language, COBOL and FORTRAN definitions were included in Issue
2 of the Portability Guide with very little change from the previous issue.
PASCAL was introduced for the first time.

The C language definition was changed in a small number of areas to reflect
the evolution of the draft ANSI X3J11 standard.

The presentation of the COBOL definition in Issue 1 proved to be over­
complex. The actual definition published in Issue 2 was substantially the
same as that in Issue 1, but the presentation of the material was simplified
considerably. Advantage was taken to eliminate some obsolete constructs
(defined so in the new 1985 COBOL standard) from the X/OPEN definition.
Advice relating to the use of COBOL in a UNIX environment was
introduced.

674 ICL Technical Journal November 1987

The X/OPEN Group has adopted the ISO standard for PASCAL without
any extensions.

7.4 Data Management

Data management was significantly enhanced by the inclusion of an
embedded SQL definition for access to relational databases.

The ISAM definition was unchanged in Issue 2, with the minor exception
that some routines which were defined as optional in Issue 1, pending a
thorough examination, have now been adopted as mandatory components.

7.4.1 Relational Database Language (SQL) The availability of high
quality relational database management systems with good performance,
and the fact that the relational model is inherently simple and easy to
understand, are such that they are now the preferred form of database
system.

Initially, the available relational products incorporated proprietary applica­
tion interfaces. However, a standard was developed by the American
National Standard Institute, Relational Database Language (SQL) Commit­
tee (X3H2), and the rate of conformance towards this standard has been
dramatic. This can be attributed to its adoption as a procurement standard
by the US government and other influential bodies.

Immediately following the publication of the first Issue of the Portability
Guide, the X/OPEN Group carried out a survey of the available principal
relational databases, and it was clear that the emerging SQL standard would
be a suitable basis for a portable definition.

The group carefully tabulated the capabilities of the market-leading products
against the ANSI standard as it moved towards adoption, and, over a period
of six months, addressed the many places where one or more product
deviated from it. At a number of stages, the conclusions of the working group
and the proposed definition were reviewed with the principal suppliers of the
systems, and the final output was the X/OPEN definition for embedded
SQL.

It would have been ideal had the group been able to adopt the ANSI
standard (X3.135-186) in its entirety, but as all the major product suppliers
do not fully conform, this was not considered practical. It was also believed
that the standard would change in some of these areas. Furthermore it was
considered desirable to include certain extensions to reflect common usage.

The ANSI standard allows two levels of compliance. The X/OPEN definition
is based on level 1. To achieve level 1, some functions have to be present, but
the actual method of implementation is not defined. The X/OPEN definition
has included a common method of implementation.

ICL Technical Journal November 1987 675

In areas where existing popular products do not comply with the ANSI
definition the X/OPEN definition includes warnings to application devel­
opers indicating facilities which are not universally supported in a consistent
manner.

The full relationship to the ANSI standard is given in an appendix to the
X/OPEN definition.

8 1987 and beyond

The immediate future for the X/OPEN Group looks extremely healthy.

The growing importance of X/OPEN was underlined at Uniforum 1987 in
Washington where AT&T’s membership of the Group was announced and
people were besieging the X/OPEN stand for details of the Group and how
to join.

In February 1987, X/OPEN was able to demonstrate the practical applica­
tion of the X/OPEN philosophy at the headquarters of the European
Commission in Luxembourg. A single application, complying to the X/OPEN
Portability Guidelines, was successfully ported to machines from all of the
member companies in a high-profile demonstration to press and major users
from across Europe.

The Group now has a membership of eleven, with other companies eager to
join. The policy of the Group is that membership is open. However, the
actual expansion of the Group will be controlled to avoid any impact on
effectiveness from an uncontrolled membership explosion. The other factor
which could restrict the size of the Group is the “membership fee”. The
Group has an ambitious technical programme for the years ahead and this
needs to be funded from members’ contributions. To ensure that this does
not prevent the Group gaining valuable input from smaller companies, it is
intended that a series of liaison groups will be established.

At the time of writing, it is not possible to forecast when the third edition of
the Portability Guide will be published or what it will contain. However it is
possible to give some general statements of the direction that the work is
taking.

8.1 IEEE POSIX

The IEEE has a committee, known as P1003, working on a standard for a
“Portable Operating System for Computer Environments” which defines a
set of interfaces that are largely based on those of the UNIX operating
system. The shortform name for this standard is “POSIX(tm)”. A document
covering the System calls and Libraries aspects was published widely as a
“trial use” standard in April, 1986, and there have been several working
drafts since then.

676 ICL Technical Journal November 1987

POSIX was developed from the earlier work carried out by the /usr/group
technical committee in the USA, which was also a major input to the AT&T
System V Interface Definition, and to the development of the X/OPEN
definition. The intention is that POSIX will be used as the basis of an ISO
standard.

In January 1987, along with a large number of companies and other
organisations, X/OPEN expressed its support for the “POSIX” activity, and
declared its intent to converge with “POSIX” as and when it achieves “full-
use” status. X/OPEN, as an institutional member of the IEEE, is playing an
important role in moving POSIX towards final acceptance.

As stated earlier in this paper, the current definition of “commands and
utilities” is not adequate. Rather than work independently, the Group
intends to co-operate with the IEEE P1003.2 sub-committee to produce an
agreed standard for “The Shell as a Programming Language”. This co­
operation will include major technical input and the allocation of skilled
resources to work with IEEE.

8.2 Networking

The provision of appropriate networking interfaces is seen as a high priority
by the Group. However, working in this area, X/OPEN found itself trying to
run faster than the International Standards bodies, which in this case is not
desirable.

1987 is likely to see the publication of an X/OPEN definition for an
application interface to the ISO/OSI level 4 transport service.

Other work in the networking area is proceeding, but to give details at this
stage would be premature. Areas being investigated include:

• Application to application interfaces (OSI level 7, peer to peer).
• Application interfaces to X.400 mail.

8.3 Feasibility Studies

X/OPEN is currently examining the requirements for standardisation in a
number of areas. These include:

• User Interface (in particular graphics windowing systems).
• Transaction Processing,
e Security.

It is likely that working papers (“White Papers”) will be issued for comment
relating to a number of these areas during 1987.

ICL Technical Journal November 1987 677

9 C on clusion

The X/OPEN Common Applications Environment is rapidly becoming a
reality with major importance for users and application developers.

Users can buy departmental systems with confidence. The manufacturer no
longer has control over the user’s future. At any time a change can be made
to another supplier, or systems from different suppliers can be mixed, without
penalty because there are now at least 11 major suppliers of X/OPEN
compliant systems.

Users can safely invest in the development of applications in the knowledge
that the investment is protected. A serviceable application will not have to be
reimplemented just to change to a larger or more up-to-date machine, and
there will be a wide portfolio of application products available from the
independent software vendors.

Independent Software Vendors can see X/OPEN systems as a very signifi­
cant coherent market, rather than as a series of small incoherent proprietary
market fragments. This will make it much easier to recognise a sound
business case for the development of applications.

Many of the definitions included in the X/OPEN Portability Guide are also
supported by products on other operating regimes. Currently, the language
and data management definitions are widely supported. The availability of
applications using these interfaces in UNIX environments will indirectly
benefit users of other regimes because of the reduced cost of porting. The
UNIX Common Applications Environment will become a standard porting
base from which ports to other environments will become more widespread.

The X/OPEN networking facilities supporting ISO/OSI protocols will
ensure that X/OPEN UNIX based systems can communicate not only
between themselves, but also with other machines both large and small. Thus
a whole range of departmental applications which are able to complement
mainframe systems will become available.

The X/OPEN Portability Guide, Issue 2 is available as a five volume set
ISBN: 0-444-70179-6, from booksellers or directly from the publisher:

Elsevier Science Publishers, Book Order Department,
PO Box 211, 1000AE Amsterdam, The Netherlands.

Acknowledgement

Mike Lambert, the X/OPEN Chief Technical Officer, and I are founder
members of X/OPEN, and have been joint editors of the Portability Guide.
We have both written several papers describing the aims, objectives and
achievements of the Group and have freely interchanged material. This

678 ICL Technical Journal November 1987

current paper is no exception and I am indebted to Mike for much of the
wording.

Trademarks

UNIX is a registered trademark of AT&T in the USA and other countries.

X/OPEN is a licensed trademark of the X/OPEN Group members.

POSIX is a trademark of The Institute of Electrical and Electronic Engineers
Inc.

XENIX and MSDOS are trademarks of the Microsoft Corporation.

CP/M is a trademark of Digital Research Inc.

ICL Technical Journal November 1987 679

Security in distributed information
system s: needs, problem s and solutions

C.W. Blatchford
Manager, ICL Secure Network Systems, Bracknell, Berkshire

Abstract

The paper discusses the risks to w hich in fo rm ation held in com puter
systems, especially in d istributed systems, is vu lnerab le and ind icates
the means tha t are being developed by na tiona l and in te rna tiona l
o ffic ia l bodies and by the IT industry to ensure tha t the desired integrity
and con fiden tia lity of this in fo rm ation are preserved.

1 The problem

The criminal may be considered as the individual most responsive to the
changes taking place in any society. Protect society with guns, then the
criminal will attack with guns. Store valuable assets in ‘robust’ safes then the
criminal will use dynamite. Control society through information held in
computers and telecommunications systems, then the criminal will turn to
information technology itself through which to perpetrate the crime.

Ignorance of such advanced technology has been considered an elfective
barrier against the malefactor. This is no longer true. The emphasis on the
harmonisation and standardisation of computing procedures; the large
number of young trained personnel; but above all the ubiquitous, user
friendly workstation with its access to many services around the world could
pose significant threats to society.

Comprehensive research being undertaken by key computer users and
vendors alike has revealed some disquieting facts that constitute threats to
Computer Systems.1 In summary

(i) Some 30%, or more, of computer users, in one large UK sample, had
experienced some form of computer crime.

(ii) Over 75% of crimes are perpetrated by ‘authorised insiders’, where
control systems of user identification and authentication apparently
have not been compromised.

(iii) Crimes are increasingly in the form of malicious damage to the
information, there being no obvious financial benefit to the perpetrator.

680 ICL Technical Journal November 1987

This makes detection of the crime easy but apprehending the criminal
very difficult.

(iv) Crimes are increasing in technical content, making resolution (and even
quick detection) less achievable without the involvement of high cost,
scarce, information consultancy resources, and/or fundamental system
changes.

The information technology industry has worked closely with the other
interested commercial sectors (Accounting firms, etc.) to establish stringent
administrative procedures surrounding the information asset. Such pro­
cedures, even where comprehensive, require effective implementation, careful
monitoring and regular updating. This requires consistently applied human
resource, but here is a paradox: crimes are committed by ‘authorised insiders’
who can be the same people as are being asked to police the systems. What
can be done?

The Information Technology industry is exploring facilities that will allow
the consistent operational enforcement of the detailed security policies
through the basic systems’ hardware/software components. The computer
vendors are increasingly turning for technical guidance to the Defence
authorities, where such problems have been recognised and tackled in a
rigorous fashion.

These Information Security or ‘Infosec programmes’ can give direction on
how to create technical solutions to combat the computer crime in the
commercial world. The creation of ‘Commercial Security Cells’ in both UK
and USA, organisationally aligned with the defence community, is helping to
focus the problem and recommend guidelines and even acceptable solutions
to the market place.

2 Definition

The theory of computer security is imprecise, relying on a common
understanding of the problems of computer crime. The balance between
information systems functionality, assurance and underlying mechanisms
needs to be better understood. Some broad classifications, however, are
possible.6

Security concerns may be analysed into:

(a) Privacy - ensuring the confidentiality of information (and associated
processes). Information has not been read and understood by the
unauthorised.

(b) Integrity - ensuring that information and processes have not been
exposed to alteration or destruction, whether accidental or by intent.
This may range from ‘simple’ malicious damage through to complex
information manipulation to effect a financial or asset fraud.

(c) Denial or deterioration of service - using associated information

ICL Technical Journal November 1987 681

processing resources so that the legitimate user may not have access to,
or use of, a desired, pre-agreed level of a specific service.

The IT vendor requires the generic categorisation of computer crime so as to
achieve focused hardware/software solutions, supported as necessary by
user-driven administrative controls.

It is difficult to categorise computer crimes precisely. Specific recorded
incidents are a mixture of intellectual creativity coupled with one or more of
the following ‘security’ exposures.2,7

(a) Data diddling - changing information, the input/output procedures
being driven through the work station: creating the false transaction, a
dummy file, etc.

(b) Salami techniques - the thefts of small amounts of similar assets without
apparently impacting the whole - the unauthorised collection of small
amounts of data, the rounding to the nearest penny.

(c) Trojan horse - unauthorised, covert placement of computing code that
can manipulate information or processes. These may either support, or
be supported by, (d) or (e).

(d) Logic bombs - unauthorised computing to be executed periodically,
based on some threshold level (date, value), that will cause some system
malfunction.

(e) Trap doors - ‘holes’ in existing application or operating systems,
utilities, etc. that allow additional authorised code to be eased in later
but which by their nature will simplify unauthorised, logical access into
the computer system.

(f) Superzapping - unauthorised use of computer programs that will by­
pass controls to modify or disclose any of the contents of the system.

(g) Asynchronous attacks - interrupting or changing the sequence in which
transactions are processed so as to create unacceptable conditions. This
may be in a single computer or, more likely, in a distributed network
environment.

(h) Scavenging - searching for a ‘debris’ left over from previous processes -
from the waste bin to the residue of earlier application programs in the
computer.

(i) Data leakage - the physical or electronic removal of data or copies of
data or processes from the electronic service.

(j) Piggybacking - replacing an authorised use or service, etc. with an
unauthorised one in an unterminated operation.

(k) Masquerading (impersonation) - by humans, computer services, hard­
ware devices (computer, telecoms, etc.), assuming the identity of another
(usually authorised) subject.

(l) Wiretapping - electronic tapping of data within a single physical
location or via a gateway (public or private networks).

(m) Electronic eavesdropping (originally a subset of Scavenging) - unau­
thorised picking up the radio emissions from an electronic device and
reconstituting the signal to obtain information.

682 ICL Technical Journal November 1987

(n) Simulation and modelling (a pseudo-crime) - the parallel interpretation
of restricted data or processes in an unauthorised manner (the ‘home
mini-computer’ with company data).

This list is not exhaustive - it could become longer, depending on the
ingenuity of the criminal mind: thus the use of Artificial Intelligence or
Knowledge Engineering techniques may result in many more, novel, criminal
opportunities.

Any comprehensive taxonomy of the types, structure and impact of com­
puter crime is classified by the relevant national authorities. Non-Govern­
ment data available to the commercial sector is limited. Analysis of threats
against architectural/technical solutions is underway.

3 User-corporate security policy

Security to protect against computer crime must be considered integral to an
overall corporate administrative programme. Such a programme should
have three major concerns:

- the Information policy (what information is required, how is it stored, for
how long, how is it labelled, who owns it, how is it processed, etc.

- the Security policy (who/what can access what, when or how, in the
context of both information and processes).

- the Electronic Resource policy (what objects are distributed, where to
effect the processing).

An understanding of the importance of the information asset as the lifeblood
of any organisation, of its relationship to corporate resources and the
vulnerability of computer in an increasingly competitive business world is
essential before the corporate security programme can be defined. A
hierarchy of security statements is necessary including

(a) Policy - does the user wish to protect the assets, and from whom?
(b) Standards - to what extent is the user willing to protect and at what

cost?
(c) Procedures - can the solution be administered by humans and sup­

ported by technology to an agreed level of functionality and assurance?

A corporate security policy may take a number of forms - but as a minimum
it should address:

(a) Integrity/confidentiality of information
(b) Integrity/confidentiality of services/control functions provided by the

system (both human and machine)
(c) Independent guarantees of operations/transactions (usually in real time)
(d) Authentication of users (not just end ‘human’ users)
(e) Access Authorisation Control, to services, functions, information

ICL Technical Journal November 1987 683

(f) Audit/Monitoring of services, functions, information.

The policy must be supported by Corporate Management and not left to
lower management to define. The policy, if rigorously implemented, may
have a profound impact on the human, as well as electronic systems,
relationships and organisation.

One survey into Corporate security policies in 1985 showed that fewer than
half of organisations in the UK had such statements and in no more than
12% had Corporate Management given a positive lead in operational
enforcement. Recent, well publicised crimes (especially by authorised people
inside the Financial sector) will have more clearly focused management
attention.

4 Security solutions

Past computer security solutions have depended upon robust administrative
processes with ad hoc implementation of selected computer technology
(information encryption, etc.). More sustainable solutions will require a
consistent understanding of computer security principles embracing all
aspects of physical, administrative, and logical access control and of data
storage and structure.

The proliferation of information systems down to the local user or worksta­
tion level has reduced the opportunities for stringent administrative and
physical control. Greater reliance must therefore be placed on the logical
access control systems (and supporting encryption processes), the security
rules definition and the machine-based enforcement.

A ‘shorthand’ checklist has been prepared to facilitate validation of suitable
security procedures. It is based on the language of the 3‘A’s and 5S’s.

4.1 Logical access control

The 3A ’s - Authentication, Authorisation and Audit (Accountability) - The
logical access controls over the information system.

4.1.1 Authentication: Establishes the validity of a claimed identity.3 It is
the procedure by which the system user or service identifies and validates
the corresponding party in any two-way communication. It is primarily
used for agreeing the human user but increasingly is necessary to check the
service or computer in the communication process. Crimes have been
committed by the correct end user being duped into interacting with a ‘false
service’ on the computer and giving out information which could be
collected, subsequently, by the criminal to perpetrate a fraud (‘scavenging
for authorised passwords’).

Human authentication mechanisms have fallen into two prime catagories.

684 ICL Technical Journal November 1987

(a) Authenticating against ‘What you have got’: the credential - signature,
token, knowledge (e.g. secret password), etc.

(b) Authenticating against ‘What you are’: physiological properties -
fingerprints, retina scan, voice, etc.

The human signature is the familiar mode of authentication. There are major
legal and commercial processes built around its use. The wide use of IT may
undermine its value because it can be reproduced automatically. It may be
considered to fall into both categories within computer authentication systems.
It is a credential that can be learned, but masquerading is very difficult in the
dynamic action of signing, even for the most experienced forger.

The advent of voice pattern analysis and keystroke dynamics opens up other
control opportunities. Both have the characteristics of continuous, covert
verification during an entire workstation session rather than verification at a
single instance. This is significant progress in achieving authentication that
protects against ‘piggybacking’ in addition to human masquerading.

Research into the area of keyboard dynamics has established that we each
have a unique mode of operating a workstation. An initial profile, compiled
from some 100 typed words, is stored in the computer for future operational
comparison. It is of significant interest in financial and electronic office
systems (Electronic Mail) where users are primarily a stable population of
company staff.

The communicating of the resulting confidence in the identity of the human
user to ensure accountability for actions is a major system problem requiring a
consistently applied set of control procedures. Authentication between com­
municating services or computers is based on token exchange, usually in an
encrypted form. The international standards and protocols for this process are
currently being developed between vendors as part of the Open System
Interworking and Secure Network Architecture activities. The OSI Associa­
tion Control Service Elements standard recognises a graded authentication
from weak to strong depending upon the application of encryption technique.

4.1.2 Authorisation: Access to data, processes and resources may or may
not be authorised; the statement of what constitutes ‘authorisation’ is the
cornerstone of the Information System Security Policy.4'’5 Access to an object
potentially implies access to the information that it contains.

Access is a general word for the variety of types of interaction between a
subject (an active entity in the form of a person, process or device) and an
object (a passive entity - files, services, devices, etc.) that cause information
flow or to alter the system state; and these can be as complex in a computer
system as they are in any human administrative world.

A comprehensive authorisation model may be considered fundamental and
integral to the architectural framework of any large information system,

ICL Technical Journal November 1987

whether in one computer or distributed around a complex network.6
Historically, user authorisation structures have been vendor-dependent,
usually built around the features of specific operating systems and associated
computer utilities. This can restrict the view of the control processes to many
disparate ‘DOMAINS’. Large users, as they merge applications to create
large distributed information systems, will gradually move to a homogene­
ous understanding of the Authorisation process. This single, open, but secure
‘DOMAIN’ will be driven by a ‘Universal Authorisation Model’.

Authorisation rules are made in the context of systems-perceived character­
istics possessed by the entities involved, of the state of the processing
environment at the time, and of the type of operational access to data and
processes that is requested. The characteristics of the entities are represented
by the following classification of electronic data:

(a) Authorisation attributes associated with the subject (privilege attributes).
The subject’s name(s), its perceived role in the system and its trustworth­
iness

(b) Authorisation attributes associated with the object (control attributes).
The object’s name(s), its perceived role in the system and its degree of
sensitivity or required integrity

(c) Context within which the request is being made. The time of day, the
communications route involved, or the accesses currently being made to
other objects by this and other subjects.
The overall systems architecture and the supporting Open Standards
will constrain and possibly modify the context of the access, especially in
a policy of controlled entities such as protected operations or applica­
tions.

(d) The kind of access being requested: read, modify, use, know-about, etc.

The rules of the authorisation policy are applied to values from these four
categories and the result is essentially either ‘access permitted’ or ‘access
denied’. The algorithm representing the rules is typically complex, involving
combinations of multiple entries from each category.

The existing ad hoc Authorisation methodologies available from vendors
may be considered to bracket a spectrum of control opportunities. The
extreme categories range from an object access authorisation being given to a
subject (capability) through to a subject name and access authorisation
assigned to an object (Access Control list).

In these identity based authorisation modules, the subjects or objects in the
system have specific individual entity or data attributes. They do ‘know’ each
other administratively and have corresponding identity labels attached (e.g.
Joe can access File A). Increasing research is going into the administrative
and control benefits of authorisation models where the subjects and objects
in the system do not know each other. Labels, based on subject clearances
and object classification, are used to elfect dynamic coupling in the system

ICL Technical Journal November 1987

(e.g. Joe is Top Secret and therefore can access Top Secret File A). The
Information Security policy may be applied as a set of rules against these
labels to establish a complex hierarchy/matrix of relationships, at differing
levels of control granularity.

The Defence community use the identity-and-label based authorisation
models to support a further classification of Access Control into Discretion­
ary (identity based, either subjects and/or groups) where a subject can pass
on access permission to another unless constrained by Mandatory controls
(label based, clearance/classifications). The non-defence sectors are currently
exploring more flexible interpretations of Mandatory and Discretionary
principles.8

Early simple, standalone information systems usually follow an identity
based authorisation policy. Large distributed systems, operating with a
volatile population of subjects and objects depending upon corporate
organisational needs, will support label based processes, against specific
rules, to allow effective multi-domain administration.

Experience with use of the VME High Security option5 (in 1987/88) will feed
into an Open System interpretation of the Universal Authorisation frame­
work. The indication, however, is that many of the apparent administrative
differences between Discretionary/identity based and Mandatory/label based
processes could become superficial in some systems implementations.

It has already been established that one specific implementation of a Manda­
tory authorisation policy will give users unique non-hierarchic individual
clearances. The clearances will then become equivalent to user IDs and the
corresponding object classifications are simplified Access Control Lists (ACL).

The civil world will build upon guidelines, especially on the Defence
Community - DOD - Trusted Computer Security evaluation criteria (ref.
‘Orange Book’), to create a flexible rule-based labelling system for wide,
networked application.6,8 ICL has already undertaken preliminary studies
into the extension of labelling and control to cover processes and procedures
in addition to data and resources.

Functionally rich Authorisation models working within a distributed ser­
vices environment require protection over the transmission of these labels.
There needs to be a high level of assurance that the labels are held, managed
and applied correctly and thoroughly against a set of protected rules. The
adoption of operating systems that allow stringent protection of processes
that manage and apply the rules in physically discrete networks or nodes is
considered essential to a secure information processing environment (ref.
VME-HSO).

4.1.3 Audit: (Accountability) is the recording (either historical or, increas­
ingly, real time) of what is going on in the system. It is inextricably bound up

ICL Technical Journal November 1987 687

with the system resource management processes (e.g. community/network
management, etc.). In addition to the obvious recording of the key end user
transactions, database access, etc. it must monitor the integrity of the
underlying security services. This will include:

(a) Changes to the security policy (privacy, integrity, etc.)
(b) Use of the logical access mechanisms (authentication, authorisation,

access to and use of audit itself)
(c) Security violations at the logical access control (both actual and

attempted)
(d) Job initiation and termination in the system
(e) Rule/label based system changes to security controls (including the

subject/object clearances, classification labels, etc.).

The volume of historical data accumulated by the Audit process is becoming
a significant operational issue. Industry/discipline profiles are being com­
piled to highlight those information, process or resource/network manage­
ment issues that need to be actively and speedily addressed. Analysis tools
are fundamental to good security management.

There is an increasing interest in real time security monitoring with the
immediate notification of the malefactor in the system to a security manager;
the subsequent operational action is a sensitive yet critical issue in informa­
tion systems management.

There has been limited research into the full capability of computers/
networks to detect anomalies in their usage and operation. The development
of ‘real time’ intrusion detection systems using expert techniques will be given
a high priority in conjunction with selected Accounting firms. This will
become integrated into existing networking alerting products.

4.1.4 The packaging of the Access Control: The Authentication, Authori­
sation and Audit processes act as a troika, each supporting and complement­
ing the others. For example - the Authentication process may identify the
user (from some token/biometric properties, etc.) but if the communication
has come from an unlikely physical location, the process could then allocate
a less comprehensive privilege set. This could subsequently modify the
subject labels and hence the ability to access objects in a rule-based
authorisation model.

In some ‘insider Crimes’ the authentication and authorisation processes may
not be compromised yet a crime has still been committed. The Audit process
must then be able to store information in a highly confidential, tamperproof
facility - the information system equivalent of the ‘Black Box Flight
Recorder’, the information being made available only to the nominated,
authorised ‘Human Auditing’ function.

The Secure Architecture will define the scope, role and positioning of the 3

688 ICL Technical Journal November 1987

‘A’s in the ICL Networked Product Line solutions. The current hierarchical
architecture sets the 3 ‘A’s as the prime responsibility of end systems
operating environments, usually at the corporate level supplemented by the
local work station as the network access capability.

The USA DOD Trusted Computer Security Evaluation Criteria - ‘Orange
Book’ - and its MOD interpretation have set guidelines on the evaluation
criteria that could be used to assess the degree of trust one could place on a
computer system to protect classified data.6 The scale, as defined, applies
primarily to trusted, commercially available systems, covering functional and
assurance requirements in general purpose operating systems. Specific, special
environments (e.g. communication processors, process control computers and
embedded systems) will be more adequately covered in further ‘colour books’.

ICL has recognised the advantage of multilevel, secure, multipurpose
operating systems running at the approximate equivalent of B1 plus on the
scale, to support both end user applications and vendor-supplied operating
software against the authorised, technically competent, criminal. This will
reduce the chance of successful technical crimes from masquerading, Trojan
horses, debris scavenging, superzapping, etc. by protecting the services and
mechanisms of the 3 ‘A’s.

The major ICL operating systems will include secure variants (e.g. VME
HSO and Secure UNIX).5'7 These will facilitate such protection by effectively
partitioning any services associated with the 3 ‘A’s in a processing node from
any end user application software.

4.2 Secure communication

Distributed systems require effective and secure information management
both within and between administrative domains. The controls can become
quite complex if implemented fully and would embrace the storage and
retrieval of information in addition to the communication between remote
services.

4.2.1 The 5 ‘S ’s: Secret, Sealed, Signed, Stamped, Sequenced.

These terms were originally coined to support the secure communication of
information, either by human or electronic means, between remote locations.9

(a) Secret

(b) Sealed

(c) Signed

(d) Stamped

- the sending of the message in a form that cannot be
interpreted by the unauthorised (privacy/confidentiality)

- the message had been structured to detect (and possibly
rectify) tampering (integrity)

- the identity of the message sender can be guaranteed
(authentication, etc.)

- the confirmation of receipt of the message (service related
issues)

ICL Technical Journal November 1987

(e) Sequenced - the message(s) have been received in order consistent
with the wishes of the sender (integrity, service related
issues, etc.)

These 5 ‘S’s can be combined with the 3 ‘A’s within a single information
processing environment to create a blueprint for an integrated model of the
security controls (as in the protection of control attributes and privileges in
label-based Authorisation models).

Effective physical security (e.g. management of magnetic media), robust
message syntax and protocols, ‘hashing’ of information, and encryption,
should achieve the necessary level of security control.

4.2.2 Open System s security: The Open System, ISO 7498/2 security
addendum10 defines the Security services required at each level and will
influence the protocols and mechanisms necessary to achieve the level of
secure association/connections between communicating systems.

The addendum satisfies the goals of defining the security services and
outlining where they could be placed; however, the addendum is not exact
enough for an implementor of security in the OSI architecture. It would be
too expensive to provide all security services at all possible layers allowed in
the addendum. In addition, if one implementor chose to implement a service
at one layer and another implementor chose to implement the same service at
a different layer, the goal of compatibility between peer layers of OSI would
not be achieved. Standards for implementing the services are not yet fully
specified; however ICL is working with standards bodies to ensure a realistic
intercept strategy.

Priority has been set to achieve:

(a) Authentication (signed) - Peer entity and Data origin.
(b) Confidentiality (secret) - User data, Traffic flow. The services only being

differentiated by layer, not by mode (connection/connectionless of
operation).

(c) Integrity (sealed) - Connection/connectionless with recovery.

The services are being set at as low a layer as possible in the OSI model.

ICL encryption of the information will be used to support confidentiality/
integrity requests. Authentication (at all layers) will be a consistent approach
with possible industry specific standards implementation.

4.2.3 The ICL positioning of network security services: The level of
desired control may influence the positioning of the selected subset of
security services and the mode of operation of the transmission service.

The ISO Transport layer 4 has been selected for initial security implementa­

ICL Technical Journal November 1987

tion within ICL. The early development of layer 4 Security standard is
facilitated by the stability of the Transport layer and its fundamental
importance in networking.10,11

A Transport layer Security Service can provide

(a) Integrity Service - an integrity service using a connection-oriented mode
can achieve the protocol richness of both ‘sealing’ and ‘sequencing’ the
information packets.
The Financial System applications (e.g. EFTPOS) can be used to
prototype the necessary control syntax (e.g. a ‘hashed’ message authenti­
cation code computed for each Transport data unit).

(b) Confidentiality Service - data can be maintained as secret in a network
using encryption as part of an overall encipherment service. This is
normally confined to the user data so that heading and control data are
left as clear text to facilitate routing.
It is possible to determine who is communicating and how much data is
being transferred, thus highlighting opportunities for malicious damage,
etc. This traffic flow analysis can be overcome by encrypting at OSI
layer 2. This would allow confidential communication hops but gives no
protection in the intervening gateways.

(c) Peer Authentication Service - the signing/stamping processes can be
supported by security protocols that have been defined for OSI
Transport layer, assuring that peer layers have been mutually identified
and that connections between them are current and not a replay of
something earlier. This process can be duplicated throughout the ISO
layers. The encryption procedures use random numbers and keys to
avoid replay and the setting up of the control parameters (encrypted
tokens, etc.) uses a separate connection process to maintain privacy.

4.2.4 Data Encipherment Service (encryption): An Encipherment Service
consists of the data encryption/decryption algorithms, key distribution
processes and physical/administrative packages and controls.10,12

There are two prime forms of data encryption:

(a) Symmetric, where the algorithm and key are the same for sender and
receiver - so that a mechanism for regular key change and distribution is
necessary to ensure secrecy. This is the secret key system.

(b) Asymmetric, where the algorithm is the same for sender/receiver but
where the mathematics embody certain properties that allow multiple
keys - some private, some public. This is the public key system.

The latter procedure is currently based around the difficulties of factorising
large numbers (over 80 digits), the best-known implementation being the
Rivest, Shamir, Adlenan (RSA) algorithm. As a privacy/secret mechanism,
public keys may be prone to future mathematical breakthroughs which could
invalidate the process. The method is, however, very valuable in establishing

ICL Technical Journal November 1987 691

valid authentication between remote location humans/messages (digital
signatures).

The symmetric encryption system is more difficult to manage. A consistent
systems architecture, a comprehensive encipherment service with regular
changing of encryption algorithms can, however, be applied. The major
control characteristics of such a system are the type and extent of the key
distribution procedures. A limited number of low usage computer services,
physically well protected, supporting a small controlled population of human
end users, may be able to be managed with few changes of key. Physical
insertion of keys from a portable key gun by the security administrator in
some defined period may be adequate. However for most widely distributed
systems the basis of control is through a transaction/session key, electroni­
cally distributed to the communicating services, as and when required. The
maintenance of the confidentiality and integrity of such a key is considered a
prime requirement.

The main operational components and protocols of a ‘hierarchical’ multipur­
pose, high security symmetric encryption key system, to meet both LAN and
WAN encipherment services, will include:

(a) Physically secure implementation of master keys in all communicating
devices and/or associated controllers (Human action).

(b) OSI protocols consistently applied to ensure adequate peer-to-peer
authentication.

(c) Secure OSI Connections specifying the class of Service Request (initially
at layers 4 and 3).

(d) Key Distribution Centre(s)/KDC - either centrally or distributed
- under master key management
- detection of replay and intrusion attempts
- KDC accountable session keys (and integral device address informa­

tion).
(e) Multidomain, remote secure peer-to-KDC communication and privi­

lege transfer (especially within WANs or LAN/WANs).

ICL have developed a key management protocol - the Baxter/Jones solution.12
It is currently being proposed as one of a number of suitable key manage­
ment standards to the Open Standards community.

Baxter/Jones is suitable for both Local (Closed Domain), Wide Area
Network (Open Domain) and any combination of networks in a complex
customer network. Its use is consistent with the Secure Distributed Services/
Network Architecture.

Future encryption will be implemented in VLSI. The algorithms will not be
published for debate in the ‘public domain'. They will be registered for
inclusion in a list of security services under the coordination of a recognised
ISO body.

ICL Technical Journal November 1987

4.2.5 Service management: Security Management is management of both
Services and the supporting mechanisms. It covers the management of
security and the use of the security services to effect management control.

The quality of security required for any communication is driven directly
through the layer management entities (LME) from a trusted Management
Information Base (MIB). This may be stored in a secure end system
(Multilevel Security, minimum B1 on the DODTCSEC scale) or on a
standalone secure file server.

The current ISO Transport Level Connection security is specified qualita­
tively by selecting one of four protection parameters.11

(a) no protection features
(b) protection against passive monitoring (privacy/secret)
(c) protection against modification replay, addition and deletion

(integrity/sealed).
(d) both b and c.

The driving of the Layer Management Entity from the (LME) management
information base (as a constituent of Association Management) will allow
additional parameters to be specified (e.g. for routing control, etc.). This
procedure is characteristic of the ICL flexible approach to ISO standards
implementation.

The Secure Distributed Services architecture will force the System Manage­
ment Process from a closed proprietary system environment into the Open
Systems public arena. Parallel work in secure government networking will
facilitate this move.

4.3 Secure distributed services architecture

A consistent security philosophy, supported by the overall logical access
control methodology, can be the basis for agreeing a consistent architecture
for distributed services and networked information.

In Open Systems, security is recognised as a pervasive culture: only
authorised data services or data entities must be allowed to connect and
communicate. Adequate security is secondary only to the basic activity of
communication itself. In this respect, security can be used as the validation of
the structure of the information system, for both the user applications and
the underlying enabling products (operating systems, utilities, physical
devices, etc.) supplied by the vendor.

4.3.1 Architectural phasing: ICL has adopted the following architectural
phasing for Secure Distributed Services/Networking, recognising the control
characteristics of existing products and services.

ICL Technical Journal November 1987

Phase 1 - Secure Open Systems with a philosophy of trusted end user
systems (computers) complemented as necessary by trusted communication
networks. This supports the current ICL architectural blueprint of Corpo­
rate, Departmental and Local processing environments.

End systems will be associated with each other through a set of recognised
correct routes, some protected by encryption, connection details of which are
maintained in the end systems. The final security control of any single object
remains with the host domain where the access rules are explicitly stated and
maintained. There may be many separate discrete implementation of security
policies with administration specific to each end system.

S e c u re node
d o m a in

S e c u re n e tw o rk
d o m a in

In s e c u re n o d e
d o m a in

M u lt i le v e l s e c u r ity ■
m a n d a to ry o p e ra tin g

s y s te m s

L o g ic a l c o n tro l
f i l t e r s

E n c ry p t io n (e n d /e n d)

S in g le le v e l
d is c re t io n a ry o p e ra tin g

s y s te m s

Fig. 1 Secure distributed architectures, Phase 1

The following technical facilities are required

(a) High Security/Trusted Operating Systems (DOD TCSEC-B level) both
at the node and, increasingly, in a network configuration.

(b) Authorisation model offering a range of control opportunities from
identity to capability based. The label based options would embrace
both subject privilege attributes and object control attributes, with some
flexible interpretation of identity/service relationships for ‘commercial’
Orange Book implementation.

(c) Standard ‘Open Systems’ association processes between communicating
system (ISO 7498/2 with secure protocols). The mode of operation being
flexed by the security needs (connection v connectionless issues, etc.).
The current networking protocols at all layers in the OSI model are
being reviewed to establish a capability for transfering security attri­
butes in the form of protected labels.

(d) An encipherment service with selected encryption techniques to protect
control/privilege transfer and, if necessary, end user information transfer
between application services.

694 ICL Technical Journal November 1987

These vendor-supplier enablers must be complementary to the range of end
user application software.

Phase 2 - A new architectural definition for information processing systems
is being sought, especially with the advent of the distributed, end user driven
automated office. End system services originally managed ‘hierarchically’ in a
large centralised computer will in future be extensively distributed through
the network. This Open System approach should eventually lead to homo­
geneous application of security policies and standards across most, if not all,
end system domains in a network; yet still allowing some local control over
specific mechanisms such as authentication or encryption algorithms.

‘ I n t e l l ig M t ’ m u lt i- le v e l s e c u re n e tw o rk s

■ D is tr ib u te d s s rv ie s s /s s rv s rs

■ ‘c e r t i f ie d ’ s e rv e r s e c u r ity

★ A pproved F ram ew ork of S ecu rity F ac ilitie s ★

Fig. 2 Secure distributed architectures, Phase 2

The International standards community, primarily through ISO/ECMA with
substantial ICL support and commitment, are defining this Phase 2 distrib­
uted processing environment. The analysis is currently underway;4,10 early
output from the various working parties indicates the following directions:

(a) Logical segregation of services into: PRODUCTIVE - end user contex­
tual (applications, data bases, electronic mail, etc.); SUPPORTIVE-
systems contextual enablers that are transparent to the end user but
ensure the correct management and control of the application processes
(services include authentication, directories, network management
timers, etc.). Security services are considered primarily supportive.

(b) A USER SPONSOR, a high integrity software package, residing in a
local workstation, that acts as the agent for the end user in interfacing
with the various productive and supportive services. It sets up the
environment, provides interfaces to the underlying facilities (including
secure routing in association management), manages the menu selection
and task specific service agents and audits.
This sponsor has two prime security responsibilities: monitoring the
user’s continuing presence (break in/out procedures, time out, etc.) and

ICL Technical Journal November 1967 695

organising relations with the various supportive security services be­
tween use of productive applications.
The user sponsor is supplied with other information to support the
desired level of control: terminal attachment, route to the sponsor,
identification of the individual (parameters include details of role,
identity, access privileges, route, etc.).

(c) Specific Security Services - These are ISO layer 7 application level
services and associated protocol. This is the current atomic list. In any
specific implementation some may be merged (ref. Authentication and
Attribute allocation in a PERSON SERVER facility).

• Authentication - accepts and checks subject credentials.
• Attribution - provides subject-related access privilege data and

object-related access control data.
• Association Management - provides a secure way in which a

subject accesses and acts on an object.
• Security State - records the current security conditions of the

subjects within the system.
• Authorisation facility - actioning the ‘Universal’ authorisation

model in some trusted environment.
• Interdomain (Gateway) - controls communication between do­

mains of differing security policies in a distributed system. (These
gateways may reflect different services authorisation models or
mechanisms.)

• Security Audit/Recovery - current/past use of the security facilities
in the systems and the procedures available to the security adminis­
trator to take corrective action (increasingly in real time).

• Encryption support - those encipherment services classified/graded
for Productive Services and Support Services to maintain integrity
and confidentiality.

4.3.2 Policy implementation: The Security Policy is translated into
specific controls. These are then structured into Management Information
Bases either end system hosted or distributed around the network (ref. OSI
Management/ISO 7498 security addendum). Operational Management is via
standard application level protocols.

The security policy for these security services may be more rigorously
applied, and at a higher level of control (e.g. encryption as mandatory
between distributed security services) than for the end user application
services. The functionality of the services, their relationship, the positioning
vis-a-vis the ICL NPL range and other regimes, the assurance associated
with the underlying ICL mechanisms (operating systems, encryption) will
give a uniquely powerful, Open, yet Secure, distributed services architecture.

Some secure distributed systems are being developed around physically
separate, standalone servers divorced from the end systems hosting the user
applications and productive services (e.g. as in cryptographic service man­
agement and end user authentication). Other solutions are recognising the

696 ICL Technical Journal November 1987

inherent power and processing economics of the large nodal/end systems
computers by hosting the various open systems services under a rich secure
operating system (e.g. VME High Security Option).

The rigorous application of such architectural principles to computer
systems will gradually improve the overall integrity and reliability of
information processing, not withstanding the external threat. The aim is for
users eventually to have simple security blueprints, flexed by industry or
discipline, which if followed will guarantee the quality of the administrative
controls. A secure architecture endorsed by the international standards
community, the vendors and, above all, the various national governmental
authorities would create a firm base on which to build the information
processing applications of the future. An architectural solution will protect us
all from the technically competent, yet criminally minded insider.

5 Physical security - the new problems

Any secure architecture based on a combination of human and machine
administered logical access rules and cryptomathematics needs to face a real
world security test - can it protect the electronically stored information from
technically less sophisticated attack or from those new types of crimes
currently emerging in our society?

The last two years have seen a resurgence in the fundamental issue of
physical security, i.e. in the physical and electronic characteristics of the
equipment itself. There is a recognition that

(a) Servers in a distributed network may be physically small, easily portable
and intrinsically vulnerable to physical tampering (the storage media,
encryption chips, control panels, etc.).

(b) High speed electronic devices will radiate emissions which can be detected
and, in the case of simple ‘serial’ signals, reconstituted with low cost, easily
built eavesdropping equipment.13 The Central Government/Defence
solutions of administrative separation and physical barriers with equip­
ment radiation hardening (to ‘Tempest’ standards) may not be politically
acceptable or economically viable in the commercial sector.

In addition, are there fundamental changes in the way in which information
is stored and processed that could change the long term control needs? The
burgeoning portable intelligent token or ‘SMART CARD’ is of particular
relevance. This can combine the properties of a physical access control key, a
robust standalone active logical authentication service and large volume of
personal, historical data.

6 Conclusion

Changes in society dictate that information technology and security should
be the two fastest growing industry sectors. They need to be aligned more

ICL Technical Journal November 1987 697

effectively than in the past. Only then can we resolve the many complex
social issues.

In Security, any mechanistic solution can be considered a temporary
expedient. The philosophy, architecture, standards and specific products, at
best, just increase the relevance and length of this control cycle in addressing
criminal acts. The Market Research undertaken into the Security needs of its
customers by ICL in 19851 indicated that some 25% of users where already
stating that control (Assurance) was as important as functionality in
information systems; but the two were expected to achieve equivalent status
in procurement decisions by 1990. This has been recognised in the ICL
Information Security Programme.

Acknowledgements

Good security, as a pervasive culture, will impact all ICL products and
services, hence the development of the material behind this article has been a
Team effort of many ICL Divisions. The Technical Security Standard
subgroup (TS3) especially Tom Parker the Chairman, and other key
members, A.C. Gale (NS), D. McVitie (MS), B Fairmaner and A. Somerville
(M & TS) deserve special mention.

References

The ICL Security strategy embodied in this article has benefited from many sources - only the
most significant, externally presented and published material is listed.

1 ICL-UKL (Northern Region): Corporate Information Systems and Security (Market
Research), 5/1986.

2 BLATCHFORD, CLIVE W„ ICL-M & TS: Towards the Secure Electronic Office,
Computer Crime Forum, 4/1987.

3 USA Department of Defense: Password Management Guideline, CSC-STD-002/85.
4 PARKER, THOMAS A., ICL: Defence Systems, Security in Open Systems, A Report on

the Standards Work of ECMA’s TC 32/TG9, DOD/NBS X Annual Conference, 9/1987.
5 ICL: Introduction to the VME High Security Option, ICL Manual R30159.
6 USA Department of Defense: Trusted Computer Systems Evaluation Criteria, CSC-STD-

001-83 (plus 85 update).
7 BLATCHFORD, CLIVE W„ ICL-MTS: Secure UNIX and X-OPEN Stockholm, 6/1986.
8 CLARK, DAVID D. (M.I.T.) and WILSON, DAVID R. (Ernst & Whinney): A comparison

of Commercial and Military Computer Security Policies, IEE E 1987 Security Conference,
4/1987.

9 BRANSTAD, DENNIS K.: Considerations of Security in the OSI Architecture, Institute
for Computer Sciences and Technology, National Bureau of Standards Gaithesburg
Maryland, 9/1986.

10 ISO TG97-ISO 7498/2: Security Addendum and the various working papers from: °ISO
TC 97/SC 21/WG1, Architecture; SC 20/WG3, Encryption; SC 18, Text and Office
Systems.

11 ISO 8072: ISO Transport Service standard.
12 JONES, R. and BAXTER, M., ICL: Defence Systems, The Role of Encipherment Services

in Distributed System, Advances in Cryptology, Eurocrypt ’85 Lienz Austria.
13 VAN ECK, W.: Electromagnetic radiation from video display units (Neher Laboratories),

4/1985.

ICL Technical Journal November 1987

Cryptographic file s to rage

David King
ICL Defence Systems, Winnersh, Berks RG11 5TT

Abstract

The s ign ificance o f th is paper is th a t it describes a cryp tog raph ic system
th a t has been built. It is based on w o rk by G iffo rd 1 a lthough it derives its
arch itectu re from DSS (D istributed Secure System)5. The a rch itectu re is
LAN-based and com prises am ongst o ther th ings a file server and a key
server. The files are stored in ‘post-box ’ fash ion and in tegra l use is m ade
o f pub lic key encryption to govern read and w rite contro ls.

Keys are categorised as e ither sub ject o r ob jec t keys and are stored in
key envelopes on the key server. M ethods o f con tro lling access to keys
are based upon G iffo rd ’s sealing primitives. Keys are p laced on a key
server via a com p ila tion process w hose source is a specifica tion of
p ro tection in a language ca lled PROSP. The p rocedure is illustra ted in
an example and the file access p rocedure com prises a sequence of
requests and replies between bo th servers, the specia l in terface to the
netw ork and the w orksta tion. It is possible to represent a variety of
p ro tection polic ies using the PROSP script. This sim plifies verifica tion by
tak ing advantage of fa il safe properties of a c ryp to g ra ph ic system.
Further developm ents m ight be to include a more refined set o f access
modes.

1 Introduction

This paper describes a system which has been implemented by the author in
order to illustrate the ideas for using cryptography to protect information
within a system rather than between systems.

The system is called PROSP and it is believed that a system of this nature
can obtain a higher security assurance at a lower cost than similar systems
based upon active controls only.

The implementation is similar to the Distributed Secure System in architec­
ture5 for the reason that physical separation of workstations linked by an
ethernet only provides a secure processing base, whereas temporal separa­
tion of processing, as found in multi-tasking systems, requires a considerable
amount of development effort to attain the same degree of assurance. The
distributed architecture plays an essential role in PROSP for providing this
additional security assurance.

ICL Technical Journal November 1987

The next section introduces the background of the system. The LAN
architecture of the PROSP system is then described. The storage of files on
the file server is covered, and then the key distribution and key recovery
procedures, which govern who may access what, are described. Placing keys
on the key server is done by producing the keys ‘database’ from a
specification. The PROSP specification language is detailed in section 6, and
the paper closes with an example and some conclusions.

2 Background

Protection of information can be seen to be either active or passive. By active
protection we mean that access to information is controlled by an intermedi­
ary which mediates between the accessor and the object being accessed. This
approach has been adopted in most multi-user computing systems. Passive
protection is quite different in that information is ‘sealed’ (or encrypted) and
access to it is governed by knowledge of a cryptographic key to unseal it. It is
believed that the term was first introduced into the literature by Gilford1.

The PROSP system is a hybrid system manifesting both active and passive
protection, and it has been of considerable interest to see the extent to which
passive protection can provide controls in a system which permits the
sharing of information. A particular advantage of using passive protection is
that the absence of a mediating party eliminates the threat of it being
bypassed.

3 Architecture

PROSP is a distributed system based upon a Local Area Network of
Honeywell Micro-System Executives (running Concurrent CP/M) arranged
in an ethernet. Attached to the network are a number of workstations, a file
server and a key server. The workstation provides users of the system with
processing and some temporary local storage, while the file server stores files
which can be shared by the user community. The key server is a repository of
cryptographic keys which are used by the system for protecting and
controlling access to information on the file server. It stores all its keys in
encrypted form. The system master key grants access to all of these keys.

In addition, between the network and each workstation is a TNIU (Trusted
Network Interface Unit) which ensures that all information which is passed
on to the network is encrypted, and that no encrypted information is passed
on to the user’s workstation. It is the only place in the system where
encryption keys are stored, albeit temporarily, in cleartext, and thus the
TNIU has to be tamper-proof.

TNIUs are not needed to interface betweeen the servers and the network
since it is required that information passing on to the file server remains
encrypted, and in the case of the key server the keys are stored already sealed,
and no further encryption is required. Thus each user can be sure that once

700 ICL Technical Journal November 1987

information has passed out from his TNIU it will be cryptographically
protected. However, in spite of all traffic on the network being in encrypted
form, it is necessary for each TNIU to be mutually authenticated to each
server. To implement this, handshaking to establish session keys between
each pair of communicating parties has been implemented.

Production of the keys and registration of users is the responsibility of the
system administrator. He therefore has access to the system master key and,
in addition, the software for installing keys on the key server.

Each user who is registered to use the PROSP system is issued with a key
card which contains that user’s personal key. The card is placed into the
TNIU for the duration of the user’s session. The TNIU reads the key from
the card and uses it to recover further keys from the key server.

The organisation of PROSP, a name which refers to the system as a whole, is
illustrated in Fig. 1.

Fig. 1

The aim of PROSP is to provide an implementation of various protection
policies through the organisation of cryptographic keys. This is the single
most important feature of PROSP, and attention will be paid to this aspect
in the remainder of this paper. However we will first outline the basic
elements of PROSP in a little more detail.

4 File storage

Files are stored either remotely on the file server or locally on the user’s
workstation. The purpose of the file server is to enable a variety of users to be
able to share information with each other according to a particular
protection policy. The files are stored within the server in encrypted form.
Access to a file is determined by the user’s ability to obtain the decrypting
key for the file. The names of the key(s) used for encrypting and decrypting
the file are stored with the file itself2.

ICL Technical Journal November 1987 701

In security policies, it is usual to speak in terms of ‘Subjects’, ‘Objects’ and
‘Relations’ governing access rights of subjects to objects. In what follows, we
adopt this model, defining subjects of the system to be users and the user
processes which run on the users’ workstations, and objects of the system to
be files. The keys which are used to encrypt and decrypt files are called
‘Object Keys’. Files which have the same protection requirements are
encrypted with the same object keys. However there are two different ways of
protecting a file depending upon whether the subjects who can write to the
file are different from those who can read it.

Public key systems provide a mechanism for implementing the latter, in
which one key pair half is used for encrypting the data (writing it to the file
server) and the other half for decrypting the data.7

5 Key organisation

Associated with subjects and objects are corresponding subject keys and
object keys. Subject keys are given to users on the basis of their rights to
access data. The users are provided with magnetic strip cards which store the
user’s subject key. Object keys are stored on the key server in encrypted form.
We refer to such object keys as being contained within ‘envelopes’. See Fig. 3.
Access to any object key requires knowledge of a subject key, or a
combination of subject keys, which will open the envelope.

Gifford1 defines Key-And and Key-Or functions. Basically, a Key-And
function allows an object key to be accessed if and only if a specific collection
of subject keys is available. The object key is encrypted with each subject key
in turn, and thus recovery of the object key depends upon knowledge of all

702 ICL Technical Journal November 1987

OBJECT KEYS IN ‘ENVELOPES’

K1a K1b K2a K2b K3 K4a K4b

--------S1- --------S1- ------- S2- ------- S3- ------- S1- ------- S3- ------- S2-
_________KEYSERVER
TNIU/USERS KEYCARD

Fig. 3

the subject keys. The Key-Or function permits an object key to be accessed if
any one of a set of subject keys is available. The object key is copied as many
times as there are subject keys which will grant access to it. Each copy is
encrypted with each subject key in turn. Thus knowledge of any of these
subject keys will grant the subject access to the required object key. See Fig. 4.

K K K

-------------------- Ki- --------------------KlJ ------------ kJ
k2j

K=K, and K2 K=K| or K2

Fig. 4

Other methods of implementing Key-And and Key-Or are considered3,4.
However, the encryption of keys with other keys to form key envelopes has
been adopted and implemented in PROSP.

5.1 Key recovery procedure

The recovery of a key is triggered automatically by the TNIU on receiving a
file access request. The TNIU request identifies the name of the object group
key, either by asking the file server, or by asking the user via his workstation.
The key envelope containing the object group key is then loaded into the
TNIU from the key server, and the TNIU attempts to decrypt it with the
subject keys it knows about.

ICL Technical Journal November 1987 703

This procedure is recursive in that if subject keys are not known, then the key
server is questioned to see if the subject key is stored within an envelope. If
the object group key cannot be recovered, because some subject group keys
are unavailable, then the fact is reported back to the user’s workstation.

Clearly, the control of keys upon the key server, and which keys are placed in
envelopes that can be opened by other keys, determines which objects can be
recovered by which subjects, and is largely determined by the protection
policy. The entry of keys onto the key server, and the construction of key
envelopes, is performed automatically by translating a specification of the
protection policy (in PROSP script) into the keys and key envelopes.

6 The PROSP language

The purpose of the PROSP language is to get keys on to the key server. The
language is a specification language and is non-procedural. It describes the
protection policy in terms of cryptographic keys and dictates how the keys
and the key envelopes are to be produced.

The system administrator constructs a PROSP script to reflect the desired
protection policy. This is placed on the key server and compiled to produce
the key envelopes. Once this has been done, the users are issued with key
cards and the whole system is ‘switched on’. This section describes in some
detail some of the features of the PROSP language. The language allows the
declaration of keys, which during compilation are generated by a key
generator associated with the key server, and statements relating to the
production of key envelopes to reflect the desired protection policy.

The structure of a PROSP script can be seen in Example 1. The first section
is the TYPE section in which keys are declared to be of a particular type, for
example ‘DES’ for Data Encryption Standard and ‘RSA’ for the RSA public
key cryptosystem. The SUBJECTS section lists those keys which are
identified with subject groups, and users who are members of a particular
subject group will be given access to the key identified with that subject
group. Similarly, the OBJECTS section lists the keys associated with object
groups. Thus an object within that group will be encrypted with the key
associated with the object group.

Keys declared in the TYPE section which do not appear in either the
SUBJECTS or OBJECTS section can be used as intermediate keys which in
some circumstances can simplify the readability of a specification.

6.1 Declaration of keys

Keys are declared in the TYPE section and the syntax depends upon the key
type. Conventional keys are declared as follows:

tutor, student: DES;

704 ICL Technical Journal November 1987

Example 1

POLICY Timetables;
TYPE

tutor,
student :DES;

(timetable_read, timetable_write): RSA

SUBJECTS
tutor,
student

OBJECTS
(timetable_read, timetable_write)

RELATIONS
timetable_read := student OR tutor;
timetable write—tutor

END.

This statement would declare two keys with the names tutor and student of
type DES. The declaration of a public key pair is shown in the following
example:

(timetable_read, timetable_write): RSA;

This statement declares a public key pair, one half called timetable_read, the
other, timetable_write.

6.2 Declaring subjects and objects

The SUBJECTS section consists of a list of key names which refer to the
subjects in the desired protection policy, e.g.

SUBJECTS—Student, Demonstrator, Lecturer

Single halves of key pairs may be included in the list, and each item must be
separated by a comma. The OBJECTS section consists of a list of key names
related to objects in the policy, e.g.

OBJECTS—(Exercise, SeUExercise), Scratchpad

For any public key pair associated with an object, both names must appear
in the list. The convention is to use one key pair half for encrypting the object
and the other for reading it (the read key is always declared before the write
key). Thus both halves are always associated with the object.

ICL Technical Journal November 1987 705

6.3 Relating subjects to objects

The RELATIONS section contains statements about the access of subjects
to objects. The basic statement consists of the name of an object key, the
operator ’ and the name of the subject key, e.g.

Exercise — Everybody;

This states that a user with access to the key Everybody can access objects
associated with Exercise. There are two boolean infix operators, AND and
OR, which apply to subjects, e.g.

Staff—Demonstrator OR Student;
Area—Classified AND Dept_A;

The object group, Area, can be accessed by a subject with access to both of
the keys, Classified and Dept_A. The object group, Staff, can be accessed by a
user with access to either the Demonstrator or Student keys.

6.4 Compilation procedure

The compiler generates keys according to the names in the TYPE section.
Each name is associated with a key, and for public key pairs each name is
associated with a key pair half. The keys which are to be used for encrypting
information are tagged. These keys are those which are listed in the
OBJECTS section and are either DES keys or the second in the pair of public
keys. For example in the following objects section:

OBJECTS—(Exercise, Set Excrcise), Scratchpad

Set_Exercise and Scratchpad are tagged as being encryption keys. (Exercise
and Scratchpad are using for decrypting information.) The RELATIONS
section determines which keys are to be contained in key envelopes. The keys
on the left of the symbol, —, are to be encrypted, (placed in envelopes), with
the keys on the right of the symbol according to Gifford’s method of
implementing Key-And and Key-Or. How this is done is illustrated in the
following example.

7 An example

We now turn to an example to illustrate how these syntactic pieces can be
put together to create a meaningful protection specification. The example is
taken from a typical teaching environment in which there is a lecturer, a
demonstrator and a group of students.

A protection mechanism is required to provide an environment in which
students can develop solutions to workshop exercises and submit their
solutions to a lecturer or demonstrator for marking. The exercises, set by the

706 ICL Technical Journal November 1987

lecturer, are to be stored on line for the students to read. The students’
solutions are to be handed in to the lecturer on line. In addition, provision
should be made for the lecturer or demonstrator to develop their own
example solutions.

Example 2

1 POLICY
2 TYPE
3
4

Workshop;

(Attempts_Out, Attempts_In),
(Exercise, Set_Exercise):RSA;

5
6
7

Example_Solution, Scratchpad,
Student, Demonstrator, Lecturer,
Staff, Everybody :DES

8 SUBJECTS
9 Student, Demonstrator, Lecturer

10 OBJECTS
11
12
13

(Exercise, Set_Exercise),
(Attempts_Out, Attempts_In),
Example_Solution, Scratchpad

14 RELATIONS
{Set up generic groups of users)

15
16

S taffs Demonstrator OR Lecturer;
Everybody— Student OR Staff;

{Describe mechanism for a lecturer to distribute exercises to students &
others)

17
18

Set_Exercise := Lecturer;
Exercise >= Everybody;

{Now describe the mechanism for students to hand in their work)

Attempts_In—Student;
Attempts_Out := Staff;

{Students can share a scratchpad)

21 Scratchpad := Student;

{Staff can store an example answer)

22 Example_Solution >= Staff

23 END.

The script for this scenario is shown in Example 2. We now look at what is
described in the script. The keys Set_Exercise and Exercise are used to
encrypt the exercise and read the exercise respectively. The students can
obtain the key Everybody (line 16) and thus obtain the key Exercise (line 18)
which they use to read the exercise. The students then develop their solutions

ICL Technical Journal November 1987 707

on their respective workstations. When a student is ready to hand in his
exercise he sends his solution to the file server encrypted with Attempts_In,
which he can access (line 19). Both the lecturer and the demonstrator can
obtain Attempts_Out and can therefore mark the work; they have access to
the key Staff (line 15) and therefore can access the key Example_Solution
(line 22) which can be used by them to prepare an example solution.

The keys and key envelopes which are generated by the compilation of this
script are shown in Fig. 5.

Staff Staff

------------ Lecturer - ------Demonstrator -

Everybody Everbody

-------------Student - ---------------- Staff -
(Public Key pair)

Scratchpad +W Attemps-Out * ^Attemps-ln +W

-------------Student - ----------------Staff - -------------Student -
(Public Key pair)

Example-Solution +W
----------------- — i
Exercise *■ Set-Exercise +W

----------------Staff------ -------------Student - ------------ Lecturer -

+W:
The keys are ‘tagged’ to enable them
to be used for encrypting & writing
information to the file server

Fig. 5

8 Conclusion

A system called PROSP has been built which uses the distribution of
cryptographic keys as the basic mechanism for controlling access to files. The
production of the keys in order to reflect controls for specific protection
policies has been achieved by designing a compiler which takes as its source a
protection specification in PROSP, and produces a ‘database’ of keys which
reside in key envelopes on the key server.

The system has been tested with various scripts describing a variety of
existing protection policies, in particular the Bell and LaPadula protection
model6. In addition it has been used to investigate new types of protection
policy3.

A weakness of the system is its inability to distinguish between commonly

708 ICL Technical Journal November 1987

available file access modes, e.g. append, execute and delete. However, it is
believed that the system as described could be integrated with a capability-
based system in which capabilities would be associated with access modes.
The specification language could be extended to cater for these modes.

References

1 GIFFORD, D.: Cryptographic Sealing for Information Secrecy and Authentication, Com-
mACM, 25(4), April 1982.

2 GUDES, E.: The Design of a Cryptography Based Secure File System, IEEE Trans, on
Software Engineering, SE-6(5), September 1980.

3 KING. D.: Passive Protection for Controlling Access to Information in a Shared File
Storage System, Ph.D. Thesis, University of Birmingham, Edgaston, Birmingham, 1987.

4 KING, D. and JARRATT, P.: An Algebra to Represent Security Policies for Cryptography-
Based Secure Storage Systems, Int. J. Computer Mathematics (Awaiting publication).

5 WOOD, J. and BARNES, D. H.: A Practical Distributed Secure System, SYSTEM
SECURITY Online Conference, London, September 1985.

6 BELL, D. E. and LAPADULA, L. J.: Secure Computer Systems: Mathematical Foundations
and Model, M74-244, The MITRE Corp. Bedford, MA., May 1973.

7 DENNING, D. E.: Cryptography and Data Security, Purdue Univ. Addison-Wesley Pub.
Co., 1982, ISBN 0 201 10150 5.

ICL Technical Journal November 1987 709

OFFICE DOCUMENTATION
AND AUTOMATION

S tandards and Office Information

Gill Ringland
General Manager, Office Information Systems Business Centre, ICL, Bracknell, Berks

Abstract

In ternational S tandards fo r o ffice systems are now being im plem ented
to tack le tasks visible to end users - fo r instance the transfe r o f
docum ents inco rpo ra ting im ages and w ord processed source text over
e lectron ic mail networks. This paper exam ines some o f the socia l and
techn ica l fac to rs w h ich have given im petus to th is activity, and the
e ffect th is has a lready had, and w ill have in the future, on the rate and
nature o f the evo lu tion o f systems fo r w orkers in offices.

1 Introduction

1.1 Standards - the changing perspective

Today, few would disagree with the proposition that international standards
are essential if information technology is to be fully exploited. Equally few,
however, recognise just how significant the impact of those standards is likely
to be. Users who accept the limitations of information islands, and manufac­
turers who dismiss full open systems integration as science fiction, are those
who have not understood the recent pace of events in the international
standards world.

The evidence is there for all to see. More has been achieved in the past four
years of computing standards development than in the previous thirty. The
same pressures which converted the great stationary steam engines of 19th
Century factories into today’s profusion of specialised electric motors and
petrol engines, is at work in the IT industry.

Comparing the DP mainframe with the stationary steam engine is not so far­
fetched. Power generated centrally was distributed by a series of belts to
machines distributed around the factory. The distribution overhead was such
that for small low-powered applications it was ineffective. If the central
power source broke down, the whole factory ground to a halt and changing
the system or adding new machinery was difficult.

The same way with information technology: the large, inflexible, and general
is giving way to the local, the specific, and as small as possible. Chosen to
meet very individual needs, departmental applications have become more

ICL Technical Journal November 1987 713

specialised. Yet the users expect a wider set of services, not limited by
departmental interests, PC power or central DP convenience.

Users want information in understandable, usable forms, together with a
wide range of services and applications. Unconcerned about information’s
origins or system topography, their view is the workstation and the services
on the network behind it. They want electronic mail, access to remote or
local databases and decision support. They are fiercely protective of their
right to choose the very best system to suit their own needs, but they also
expect full integration of applications, services and data within the system as
a whole.

For the IT strategist it is far from easy to reconcile these interests. The key
considerations today are networking communications and application inter­
working. Both are complex and evolving rapidly. Computers as mere service
providers is a new concept and causes a revision of thinking and planning
scenarios.

1.2 The role of customers in demanding standards

At the same time as the user perspective of the role of computing is changing,
specialisation has become the name of the game for system vendors. Focus
on market segments or specific technologies is the only way to achieve the
excellence the market demands. Yet isolated solutions are rightly judged
unacceptable. So there is growing pressure on manufacturers, from their
customers, to develop standards which ensure that specialisation is compat­
ible with system integration.

1.2.1 The need: IT strategists, particularly those in large organisations,
have therefore formed the view that the essential, critical success factor
within the strategy has to be the interworking infrastructure.

While mainframe DP environments will remain the backbone of an IT
strategy for some time to come, the fastest rate of change is in focused
departmental systems. Manufacturing, CAD/CAM, R&D, Retail and Office
Systems all now require specialisation.

But clearly these segregations do not stand up in a changing environment, or
in large organisations. Many manufacturers are also retailers, most have
R&D facilities, all control stock and manipulate complex information
processes within their office environment. The overlap of such disciplines is
very wide. Good management of information is as important to a health
authority as it is to a bank. And for each department, information generated
in one, say personnel, will directly affect other departments, like accounts.

1.2.2 The initiatives: Manufacturers were among the first large user
groups to recognise that information captured on computer systems was an
infinitely precious resource. Two initiatives looked at the information flow

714 ICL Technical Journal November 1987

within manufacturing organisations and decided that data once captured
should be available for use by both humans and machines throughout the
organisation.

MAP1, initiated by General Motors, looked at information generated by
CAD/CAM systems and how this could be made available to a variety of
manufacturing processes. The second and later initiative, TOP2, was origi­
nated by Boeing. It looked at how information could be made available to all
applications and services from CAD/CAM through to Office Systems.

With the pressure of worldwide competition behind them, both MAP and
TOP made very rapid headway in selectively applying general standards
created by CCITT (Comite Consultatif International Telegraphique et
Telephonique), ISO (International Standards Organisation), and others. This
selectivity, with concentration on functionality observable to the end user,
has created an invaluable focus for the propagation of systems that work,
built to open standards.

Curiously, many of the collaborators in these groups such as Ford and
General Motors, Boeing and McDonnell Douglas are deadly rivals. It is
worthy of consideration that such titans are willing to subordinate individual
advantage to create an environment in which the IT industry can service
their real needs. The importance they place on ‘open’ standards should not
be ignored by any players in this industry who wish to remain players in the
next decade.

1.3 The evolution of standards

It is unlikely that IT standards will ever be finalised as long as there is scope
for innovation. So those who wait until all standards are fully specified and
ratified are going to be left on the sidelines.

ICL and other vendors active in the standards arena have adopted an
intercept strategy. Armed with early information about any future standard,
ICL takes known elements relevant to its particular applications and
develops software based on these elements. They are designed so that when
the standard is ratified, the proprietary version can easily be updated to
conform to the final specification.

This allows product development to take place in parallel with a standards
development, benefitting ICL and its customers. And with real systems being
field tested in advance of the standards publication, information and ideas
are fed back to the standards bodies themselves.

Another good reason for developing conforming systems today is that user
driven initiatives such as TOP and MAP have clearly identified what the
market wants. This has enabled subsets of wider standards to be created
which meet the majority of these needs, so reducing development and testing

ICL Technical Journal November 1987 715

requirements. So it is cheaper and quicker to conform than would have been
possible previously. Customers know that systems bought today can be
upgraded to standard profile compatibility when required.

The business of collaboration between suppliers is greatly simplified, so it is
easier to produce more complex and comprehensive systems. Yet at the same
time it is easier for vendors to specialise in the areas they know best without
fear of being left out of mainstream development.

That there is market demand for fully integrated and compatible systems is
not in doubt. The speed with which major users have moved to develop
industry specific standards is evidence of their desire to have such systems in
operation as quickly as possible.

1.4 The European approach

MAP and TOP are initiatives by private industry in the US to push strongly
towards the implementation of pillars of International Standards for build­
ing systems in specific environments. The US Government equivalent is
GOSIP3, which is a Federal Government procurement profile for open
systems network products for use in the office environment.

Has Europe now been replaced by the US as the forcing house for open
standards? The answer must be, to an extent, yes.

In Europe, the CEC has defined an ‘Information Architecture’4 which
overlaps partially with the specifications in TOP and US GOSIP, but
includes also aspects of application architecture.

The Standard Promotion and Application Group (SPAG5) took a lead on
electronic mail in 1986 with the first X.400 electronic mail certification
process, as a natural extension of its work in establishing implementation
profiles since the early 1980s. SPAG will operate a ‘green dot’ procedure, in
X.400 mail as in other protocols, which certifies that a supplier meets the
standards. This procedure is in line with the verification procedures of the
Corporation for Open Standards Interconnection (COSI), the most similar
US-based organisation to SPAG.

The UK government (via CCTA)6 has recently issued a working paper
defining the UK Government OSI Profile (UK GOSIP) which aims to
extend the base standards into more precise definitions (i.e. profiles) to meet
the requirement that separately procured Departmental systems can work. It
is a ‘narrow stack’ of OSI protocols for administrative IT services, including:

• electronic mail/messaging
• file transfer and management
• terminal oriented interaction
• revisable text and composite document interchange

716 ICL Technical Journal November 1987

• graphics interchange
• formatted data interchange

Clearly the convergence of the CEC Architecture, US GOSIP, TOP and UK
GOSIP profiles is important to us as a European supplier.

2 ‘Office standards’

2.1 Social and technical factors

Standards related to office systems have been adopted particularly rapidly.
This can be attributed to a number of social and technical factors.

2.1.1 Social factors: During the last few decades, the pattern of employ­
ment has changed. Service industries and white collar jobs now provide over
two thirds of all jobs in most industrial countries, up from less than half over
the last four decades. Traditionally, service industries - retailing, hotels,
education - have not been capital intensive. The level of capital investment
associated with white collar jobs is widely quoted as £2000 compared with 20
or 30 times that in agriculture.

Since 1955, white collar workers have increased from 10% of the population
- these figures are based on US data - to 25% of the population and rising
fast. At this rate, the entire population will be white collar workers in due
course.

Of course, it won’t happen. The pressure to be competitive, to increase
productivity in commerce, in industry and in government, means that
technology is exploited, and will increasingly be exploited in the office, to
improve the effectiveness of information workers.

Now, the personal computer has been mooted as the office automation tool
for the professional. Certainly the growth has been phenomenal, from the
hobbyist in garages plugging pieces onto a S100 bus, to a £20 000m industry,
in 10 years. Is this a pretaste of the future? Will the growth go on at the same
dizzying rate? The answer is that the market is flagging. There are signs of
market saturation.

Those who need a personal computer will soon have one or more. The
hurdles are claimed to be twofold. One is the learning time for the use of
applications. The other is the inclination for information workers to
incorporate information technology into their work. Industry is improving
its offerings to tackle these hurdles, for instance with friendlier software, more
vertical applications, better support. But I would like to pick out another
aspect. There is one part of the PC business which is booming - personal
computers used to improve communications.

Let me give some examples.

ICL Technical Journal November 1987 717

Firstly, when we were trialling One Per Desk most of the first triallists
already had PCs which were, like 9 out of 10 PCs, on the shelf not in constant
use. But One Per Desk comes with an integral modem and links to mail
services like Quikcomm.

The usage pattern of those trialled One Per Desks is that more than a year
later, 9 out of 10 of them were used more than once per week.

What is the difference? Mostly they are used for sending messages to other
people within or outside the organisation using the electronic mail system:
that is, they are used for communication.

Secondly, researchers reported by Infoworld estimate that less than 30% of
all personal computers are equipped with modems, yet business users
overwhelmingly name communications as the capability they would most
like to improve in their computing system. The communications technology
will clearly be added soon.

So there are two indications that the future of information technology in the
office in its widest sense is bound up with communications, and that
communications facilities are needed by office and information workers as
these social trends evolve.

2.1.2 Technological factors: Figure 1 represents one of the many techno­
logically driven features which have shown exponential trends since the
1940s. It could be the cost of a given unit of processing power, as in Grosch’s
law, the acreage required for a single transistor as in Moore’s law, or as in
this case the decreasing number of relative failures per gate as technology
evolves from transistors, through SSI and LSI to VLSI.

During the forty years shown here, these changes - in price, in size, in
reliability and in processing power of electronic components - have taken
information technology from a back room speciality into a pervasive
technology central to any business, organisation, or country.

This technological capability is exploited for instance:

• Processing power: by 1995, a single integrated circuit selling for a few
hundred dollars will deliver more computing power than that from a
clutch of $5 million super computers today;

• Storage: memory chips with Megabyte capacity will sell for a few dollars,
and disks will continue to develop higher and higher densities, decreas­
ing costs of storage by 34% a year;

• Transmission Media: the throughput of conventional copper hasn’t
changed, but high-speed LANs using coaxial cable, optical fibre links
with low loss rates, mean that the costs of networking are dominated
now by building and laying costs rather than cable costs;

• Scanning and printing: the spread of non impact (e.g. laser) printing

718 ICL Technical Journal November 1987

Reliability & cost of technology
Relative rate of failure per gate

technology opens possibilities for colour and image printing which are
yet to be exploited. The use of technology for scanning of documents on
input, using OCR with assistance from image processing technology to
replace keyboarding, is in early stages of development.

These projects suggest that the basic technology and components will be
there to support users’ ambitions: but will the systems be there to support
their ambitions? That is, will our systems support the following:

• mixing of text and data in a meaningful way
• integration of voice mail and conventional electronic mail
• speech expression of text
• command recognition
• editable graphics
• access to remote services for data

The X.400 and ODA standards discussed below tackle the first two areas of
application.

2.2 Electronic mail

Many applications like spreadsheet or wordprocessing work well in a
standalone environment, though results or documents may .well need to be

ICL Technical Journal November 1987 719

shared. Electronic mail, on the other hand, is a classic example of an
application which is singularly pointless without other users. So before the
advent of IT standards, the simplest way for organisations to achieve an
electronic mail environment was to build proprietary in-house systems.

Very quickly, however, it became apparent that the cost of supporting these
was far too high. Each required specific training for users and system
engineers alike. Every time extra facilities like security or distribution lists
were required, they had to be specifically designed and developed.

Then there was the need to communicate between different systems within
the organisation. Even when the mainframe, minis and PCs had the same
origins it was difficult enough, and certainly costly.

Once this was solved there was the business of gearing up to be able to
communicate with customers, suppliers, bankers and commercial collabora­
tors worldwide. The need to communicate effectively was growing rapidly.
With the speed of commerce increasing, the opportunity to speak to
colleagues or customers was decreasing. Time zone differences, even within
countries like the USA, postal delays and travelling time were rapidly
becoming incompatible with effective management.

The only real answer was a single international standard that would enable
manufacturers to create systems able to communicate naturally between
private domains. Such standards resolve many of the problems experienced
with proprietary electronic mail systems in private domains.

One of the remarkable aspects of X.4007, as the standards have become
known, is the sheer speed with which the industry moved to implement them.
Once European Computer Manufacturers’ Association, (ECMA), and
CCITT had established a common understanding, things moved very
quickly indeed.

The standards were first published in 1983. It was a mere 18 months before
the world’s first commercial system was demonstrated at ICL’s Networked
Office launch at Bracknell in April 1985. In fact ICL had been working
closely with CCITT, ECMA, and ISO to develop the standard and had a
head start. By the time of the Hanover Fair in March of 1987, fourteen
manufacturers and network suppliers including DEC, HP, Bull, XEROX,
Olivetti and ICL were able to demonstrate multi-vendor electronic mail in
action, based on product offers.

IBM also has announced availability of an X.400 compatible electronic mail
product, by the end of 1988.

2.3 Supporting protocols

2.3.1 Wide area networks: Of course X.400 is only part of the solution.

720 ICL Technical Journal November 1987

Occupying levels 5-7 of the OSI model, it does not deal with actually getting
the information from one place to another.

Increasingly, to create cost effective wide area networks, X.25 is being
employed. Traditionally this packet switching protocol has been used by
large scale public networks such as national PTTs and high-value private
networks, such as those operated by banks. This was because both the
intelligent switching and the encoding/decoding units required were expen­
sive.

However, the ability of packet switching networks to reroute data automati­
cally to avoid line failures or traffic congestion and their low cost of
transmission, were ideal for electronic mail systems. There are other advan­
tages too. Because messages are encapsulated in identical packages, X.25
provides a high standard of multi-vendor capability. Intelligent switches
check for errors and correct en-route, so corruption is minimised.

X.25 technology is now less expensive and looks very attractive as a carrier
for wide area X.400 electronic mail systems.

2.3.2 Terminals: There is clearly a need for terminals to recognise and be
recognised by other unlike applications and systems. The standard called
Virtual Terminal Protocol (VTP) links terminals logically to the system. It
describes how they should recognise information presented by other systems
and ensures that it is displayed coherently, despite differences in MMI.

VTP is becoming important because with X.25, X.400 and other standards a
greater volume of information is moving between unlike systems. With PCs
everywhere it is imperative that they be connected to the network irrespec­
tive of manufacture. Previously, proprietary protocols like IBM’s 3270 or
ICL’s C03 were used, which limited the type of terminals that could be
connected. But VTP also offers another major advantage. By standardising
terminal protocols, it reduces the communication overhead in protocols such
as X.25, making them more effective.

2.3.3 ISDN: Based on a set of standards recommended by CCITT Inte­
grated Services Data Network (ISDN)8 will permit data, text, graphics, and
voice to share the same network infrastructure. The type of terminal used will
be the sole determinant of the network’s function, which means that a
facsimile machine, PC, or telephone can be plugged into the same socket. A
split bus structure will allow more than one terminal to be used at the same
time; thus, a user interrogating a database will be able to discuss the
information on the screen with a colleague on the other side of the building
or on the other side of the world.

ISDN has recently been endorsed as a European standard. The twelve
countries that comprise the European Community have agreed to introduce
a single version of ISDN: the agreement is in the form of a ‘recommendation’,

ICL Technical Journal November 1987 721

which was recently passed by the European Parliament. It sets deadlines for
the specification and implementation of a limited number of ISDN services.
The idea is to encourage member countries to spend, collectively, $6 to $7
billion on ISDN by 1993 in the hope that demand will then take off for what
would be a universal set of data, text, voice, and image transmission services
- all accessible over, and supported by, the same ISDN access wires.

Phase One of the program calls for all EEC countries to provide, by the end
of 1988, a circuit-switched 64-kbit/s ‘bearer’ service that is transparent to user
traffic.

By the same deadline, four basic applications, or ‘teleservices’, are to be
accessible through, and supported by, the 64-kbits/bearer channel:

• basic voice-grade analog-channel capability
• CCITT Group IV facsimile transmission
• Teletex
• A mixed-mode Teletex and facsimile transmission service/capability

In addition to bearer channel support for these services, a number of
‘supplementary’ services are also to be provided or supported. These are call
waiting, caller identification, direct dial-in, and closed user group facility.
Phase one further calls for the universal provision by year-end 1988 of
adapters for existing analog, X.21, and X.25 customer terminal equipment.

The provision of ISDN services in Europe clearly opens the gates to the
exchange of information in a variety of forms, across national boundaries.

2.4 Office Document Architecture

Office Document Architecture9 probably represents the most significant
standards initiative of all those in the office arena. Designed to allow images
in both raster and vector form, data, text, voice and video to be communi­
cated between systems from different vendors, it is a very powerful set of
standards. By describing information logically both in content and format,
ODA ensures it is communication in a form that can be edited, manipulated
and used in other applications.

The fallback standard is ASCII. This 7 bit code carried no logical informa­
tion about the data carried, merely identifying each character space and what
goes in it. So if communications were taking place between a traditional 80
character landscape screen and an A4 portrait word processing screen, a
large proportion of the data would have nowhere to go and would simply be
lost.

By defining logical structures for information, ODA allows the reformatting
necessary to achieve a different layout automatically, as shown diagrammati-
cally in Fig. 2.

722 ICL Technical Journal November 1987

EFFECTIVE COMMUNICATION
REQUIRES UNDERSTANDING OF

STRUCTURE AS WELL AS CONTENT

ASCII ODA

STANDARD SCREEN A4 SCREEN STANDARD SCREEN A4 SCREEN

Fig. 2

ODA divides into two parts, descriptions of document content, and docu­
ment structure.

Under document content, we have today standards for transmitting charac­
ter text and photographic (or facsimile) images. They will be extended to
cover:

graphics - both image forms and forms capable of being processed.
These will include constructions formed from elements such as lines,
circles and ellipses, and extensions are expected to handle composite
constructs formed from such elements;
data capable of being processed (typically numeric data and computable
expressions);
sound, especially for spoken annotation of documents.

Under document structure, standards are currently available covering three
applications:

imaging: the transmission of a text image in such a way that what the
recipient receives is exactly the same as the original;
formatting: the transmission of a text image in such a way that the
recipient can re-format the text for his own purposes (for example, to
merge the whole or part of it into one of his own documents);
editing: includes all the editing controls in the original, thus supporting
amendment of the document by the recipient and automatic revision of
the page layout accordingly.

This standard also caters for the inclusion of application-specific information
structures: this will be done through use of a specially developed language
called SGML (for Standard Generalised Mark-up Language).

ICL Technical Journal November 1987 723

Future standards will provide for filing and retrieval, and for particular
constructions using multiple modes of data, such as spreadsheets and
business graphics.

The status of ODA is that facilities ratified by ECMA in 1985 formed the
basis of the ISO and CCITT work. CCITT has an existing standard - teletext
- which is a subset of ODA - and is looking at issuing an incremental
standard to cover ODA facilities. ISO have issued a DP based on the ECMA
standard, and ratification is expected in 1988.

3 Exploitation of standards

3.1 Communication of information

All the evidence points to the fact that the inability of existing systems such
as telephone, traditional mail, telex and secretarial services to match the
speed and flexibility of today’s commercial environment, is proving to be a
major source of aggravation in the ‘information age’.

A number of technologies and services have sprung up to fill the gap, such as
couriers and telephone answering machines. They can only be regarded as
stop-gap in nature however. Communications within the office are just as
problematical. Historically one could rely on meeting frequently enough in
corridors to ensure that colleagues were kept up to date. Now, with
devolution of business functions to remote sites, this is no longer the case.
Managers are working faster, longer and are more mobile.

Traditional secretarial services falter when managers do much of their
administrative work out of office hours or at home. It becomes more difficult
to telephone busy executives, even more difficult to arrange a meeting
between several.

What’s more, the emphasis in organisations of all types is increasingly on
management. Most companies that need them have payroll, accounts,
invoicing, and other clerical tasks computerised. Many have production
processes, retail systems, stock control, distribution and other industry
specific routines well served by departmental systems. Yet very few today
have comparable levels of IT support for what is probably the most
important part of any company.

White collar information workers of all types, from secretaries to profession­
als and senior executives, in sales, marketing, finance and personnel, need
better tools with which to tackle their tasks. They have historically been
undercapitalised compared with other workers, and handicapped by inade­
quate services.

The failure of the PC to help in this situation suggests that the ability to
perform tasks more rapidly is only part of the solution. The problem is

724 ICL Technical Journal November 1987

communications based. The solution must meet both communications and
applications needs equally.

3.2 Information is 'multi-media'

We are already seeing the first manifestations of a new generation of
communication tools. Imaging systems, mobile telephones, radio paging,
facsimile, electronic mail and viewdata, all tackle discrete elements of the
problem. A lasting solution will clearly depend on convergence of the
technologies.

But few want to make the first move. Pioneers in any area are notorious for
making the headlines, then meeting the official receiver. What everybody
wants is the reassurance that when they make a decision about office systems,
it will be in fine with whatever the industry as a whole decides. Choosing the
best system is simply not enough. It also has to be compatible with systems
adopted by other departments or companies in the group and with those of
customers, suppliers and collaborators.

3.3 de facto standards

One way of ensuring this is to buy the same systems throughout the
organisation as those used by business partners and customers. But, even
within the same organisation, history usually dictates that several systems
will need to co-exist, and specialist requirements will dictate that new systems
may be supplied from more than one source.

Another approach is to depend on systems which depend on de facto
standards. These will naturally be of a proprietary nature and future systems
planning will naturally be dictated by the commercial interests of the
individual computer manufacturer. Product ranges, operating systems and
specialist applications will be developed or not, according to that vendor’s
perception of market needs. And the interworking standards will be under
private, rather than public, change control.

Most users today find this an unacceptable constraint on their corporate
sovereignty. With information, especially computer based information,
rapidly being recognised as any organisation’s most valuable resource, the
freedom to choose how it is exploited is paramount.

Freedom of choice means alternative suppliers, specialist services, specialised
applications and a variety of approaches to any problem. Only international
standards, under public change control and adhered to by the majority of
relevant suppliers, can create an environment in which users can control their
own destiny in this way. Only international standards can ensure the degree
of integration between the different communication media required.

ICL Technical Journal November 1987 725

3.4 Standards as a facilitator for niche and new technology

Several factors make inevitable the emergence of international standards as
the single most important development for IT this decade. One such is the
rapidity with which computing technology is being developed, it is relevant
to a wider range of applications almost every day. It is impossible for any
manufacturer to meet every market opportunity, nor is it desirable.

There is therefore an almost infinite number of openings for dedicated
specialist vendors to meet new demands. But inevitably, isolated solutions
have limited markets, limited futures. Each tends to fulfil its true potential
only as part of a larger system. But which, and from which manufacturer?
International standards remove the need to answer such questions in detail,
by ensuring compatibility with a wide range of systems.

By encouraging new and independent suppliers the standards will help
produce more relevant systems, which will encourage market growth. This
will in turn encourage systems integrators to develop more comprehen­
sive, complete and usable systems which will also encourage market
growth.

By removing the system planning dilemmas common to users and manufac­
turers alike, standards will speed the arrival of new systems. And by
encouraging free competition and reducing development costs, they will
cause the price of systems to fall. This too will fuel market expansion.

3.5 OSI and obsolescence

There are other advantages for users. No vendor, however large, can meet a
user’s entire need. So the ability to mix and match systems from the market
as a whole is an attractive option, allowing the users to get the best value for
money and the best tool for the job in each area. The risk of incompatibility
can be minimised, allowing users to develop systems at their own rate to meet
very specific needs.

By increasing systems integration, international standards will minimise the
number of terminals on the office worker’s desk. They will eventually ensure
that all services, whether image, text, data or voice based, are available
through a single workstation.

Another phenomenon, IT obsolescence, will be dramatically reduced. Re-use
of systems in new, often unpremediated situations will be made far easier to
achieve. And systems will be generally more easily reconfigurable to meet
new demands, new initiatives or reorganisations.

For instance, the FOCUS Private Sector Users Committee on Standards10,
has enumerated a number of potential benefits. The conclusions of their
Report are that open, multivendor standards facilitate:

726 ICL Technical Journal November 1987

• Communications within an office and between (internal) offices.
• Communication with other offices and organisations.
• Minimum number of terminals on an office desk.
• Planned migration paths to new equipment, with minimal hardware and

software obsolescence.
• Unplanned migration paths which may be needed - through takeover,

reorganisation, commercial or other reasons - are easier to accommo­
date.

• Ability to ‘mix and match’ equipment from different suppliers, so as to
get the best value for money for each item of equipment.

It is clearly impracticable to quote universally applicable savings figures but
the FOCUS committee estimated that, in roughly quantified terms, this
could mean a 15% saving in overall users’ costs.

But to regard such savings as the achievement of the standards initiative
would be to miss the point entirely. The real benefits lie in the exponential
rise in the value of information owned by organisations, and their greatly
enhanced ability to use it effectively.

4 Conclusion

Good management is the key to success for any business. But good
management needs accurate, timely information, responsible administrative
backups and effective communications. That, quite simply, is what office
systems exist to provide, not in isolation but in conjunction with a variety of
other application specific systems.

As each new generation of office systems delivers more facilities, handles
more information faster, so its relevance to other specialist systems increases.
The result is such natural integration into the fabric of the organisation that
people come to rely totally on the services provided. The organisation’s
future and its office systems become inextricably entwined.

During the early stages of an industry’s development, time is clearly of the
essence. But as our industry matures - and the evidence for the increasing
maturity of our industry is the technology curves we looked at earlier - the
demands of users for the availability of interworking between kit from
different suppliers strengthens the push for standards compared with the
strength of the push for ad hoc solutions or proprietary protocols.

The concerted multivendor approach to Open Standards is called Open
Systems Interconnection (OSI). The OSI route offers in addition to the above:

• It makes the standards offerings and direction openly visible: no fine
print reserving the right to change at the whim of a vendor.

• It allows no arbitrary impositions of direction: all debate and change
control are in the public domain.

ICL Technical Journal November 1987 727

Open Systems Interconnection Standards offer the freedom to choose
vendors, systems, and approaches according to specific needs. They enable
users to plan systems and information strategies with confidence. And
confidence is the key to the market explosion in office systems.

References

1 MAP: ‘Manufacturing Automation Protocol’, General Motors Corporation, ADMES
A/MD-39, GM Technical Center, Warren, MI 48090-9040.

2 TOP: ‘Technical Office Protocol’, Robinson P.J., ICL Technical Journal, November 1987.
3 US GOSIP: ‘Government Open Systems Interconnection Profile’, FIPS PUB draft, April

1987.
4 CEC Information Architecture: Document IX/E-6(86) S10-1140 provides a preamble to the

Architecture requirements for 1986-1991.
5 SPAG: ‘Guide to the Use of Standards’, Standards Promotion and Application Group,

North Holland, 1986.
6 UK GOSIP: ‘UK Government OSI Profile’, Working Paper 3: CCTA, February 1987.
7 X.400: ‘X.400, the post facilitator’, Elliott D.M., ICL Technical Journal, November 1987.
8 ISDN: ‘ISDN on Trial’, S. Lffiderwood, Datamition, February 1987.
9 ODA: ‘ODA Document Standards’, Campbell-Grant I.M., ICL Technical Journal,

November 1987.
10 FOCUS Private Sector Users Committee, ‘The Benefits of Standards’, Department of

Trade & Industry Report, 1984.

728 ICL Technical Journal November 1987

Introducing ODA

Ian Campbell-Grant
Manager, Advanced Products Sector, ICL Office Systems, Bracknell, Berks

Abstract

The paper gives an in troduc tion and ou tline gu ide to the in te rna tiona l
s tandard ISO DIS 8613, “ O ffice D ocum enta tion A rch itecture (ODA)
and In te rchange Form at” . The aims, genera l concepts and key
p rincip les o f th is s tandard are described, and its re lation to ICL’s
previously p roduced Norm alised D ocum enta tion Form at (NDF) d is­
cussed; there is a note on fu tu re developm ents.

Introducing ODA

What is ODA?

ODA, the ‘Office Document Architecture’ is an international standard (ISO
86131) which represents the latest, and probably the most significant,
advance towards a standard means for integrating office systems since the
inception of the Open Systems Interconnect (OSI) initiative. ODA is an
interchange standard for multi-media documents which has been produced
in order to allow such documents to be exchanged between conforming
computer systems anywhere in the world.

One feature of the ODA standard is that it allows the document to be
presented to the recipient with the same layout as that prepared by the
originator. More importantly, because the ODA definition provides for the
logical structures of the information to be exchanged, the documents can be
edited or reformatted or the information contained can be used within other
applications.

Recent OSI standards - notably File Transfer Access and Management
(FTAM) and X.400 (electronic mail) have dramatically increased our ability
to transfer data between unlike systems. This has highlighted the need for the
originator and recipient to have a common understanding of the semantics of
this data, in order to provide for information transfer, so that the information
can be understood, can be manipulated and can be re-used by the recipient.

Sitting above the communication standards in the ISO Open Systems
Interconnection model, and employing them, ODA provides the basis for
such information transfer. ODA documents can contain information content

ICL Technical Journal November 1987 729

represented in the form of character text, raster graphics and geometric
graphics. Extensions to the standard are planned to add ODA information
content types for computable data and sound, allowing these types of
information to be incorporated within such documents.

In addition, ODA provides for the various pieces of information content in
the document to have their layout and logical inter-relationships repre­
sented. By agreement on a generic document type definition, ODA can be
used between any pair of applications which understand this particular type
of document. In particular, ODA defines standard rules for editing and
formatting applications, so these become standard applications.

ODA is designed to support the needs of a wide variety of different cultures,
including the western, Arabic and Japanese requirements. Thus, using the
ODA standard electronic documents can be used and transferred worldwide,
being imaged (e.g. printed or displayed) or processed (e.g. edited or refor­
matted) by the recipient according to the intentions of the originator. For
example, a document can be imaged without any need for the recipient to
first format or reformat the received document.

Not surprisingly, ODA has been enthusiastically received by manufacturers.
It’s early days yet, as ODA has some way to go in gaining wide user
exposure, but the signs are that it is destined to be the basis of the open
systems information architecture which is needed for true office automation.

The 1986 DTI report, ‘Profiting from Office Automation: the way forward’
revealed that lack of product compatibility was of major concern to
managers. The importance of achieving complete document (or spreadsheet,
or graphics) interchange was highlighted by Roger Pye, who put together the
DTI report. He says:

“Standards are dull but essential. They should mean that all documents
are sendable, readable and modifiable in any software setup.”

It is this order of compatibility that ODA sets out to provide.

Who benefits?

The ability to communicate between a diverse range of office products, and
to edit, amend and process information easily at either end, will bring huge
advantages both to users and to manufacturers.

The user gains time. A document can be edited on the receiving system
without, as was formerly the case, having to re-format, re-paginate and re-set
margins or tabs following amendments. As any secretary will testify, this
represents a considerable saving in time and effort.

But there are other benefits, like lower transmission overheads. Text

730 ICL Technical Journal November 1987

designed for printing on pre-printed stationery can be sent without the
human operator being required to format the information, as would
otherwise be necessary. And it offers easy laser printing. The requisite
‘stationery information’ can be sent with the text, eliminating the need for
complicated printer set-up procedures.

Editing is also faster and easier. A modern, easy-to-use system such as an
ICL DRS Office System can present the structure of an ODA document,
such as a company report, at the user interface. Editing to this standard can
then be accomplished by means of menu-driven prompts, so that the process
becomes fast and foolproof.

The manufacturer gains too, because ODA’s information architecture can be
used as a framework for developing a set of office system products such that
each can communicate with, and take advantage of, the others’ facilities. This
saves much reinvention of wheels and reduces overheads.

Thus, manufacturers and system integrators can specialise, confident in the
knowledge that their products will integrate within larger systems. ODA also
enhances the potential of existing office products. No radical revision of
office product architecture is necessary to ensure compatibility with a variety
of different systems. All that is necessary is that products have been designed
to provide ODA compatibility.

Of course all users, suppliers, vendors, systems integrators, manufacturers or
end users, benefit from the security of a single, open standard which
guarantees multi-vendor interworking and which is under public change
control. It encourages investment in new equipment, unhampered by incom­
patibility caution. Conformance to the ODA standard will link today’s
purchase with the products of the future.

The standards bodies

The main standards bodies involved in the development of ODA are ISO,
CCITT and ECMA; these are introduced here as they are referred to
extensively below.

ISO (the International Standards Organisation) coordinates the work of the
various national standards bodies, including BSI for the UK, AFNOR for
France, DIN for Germany, ANSI for US and establishes International
Standards by agreement between its member bodies.

CCITT (the International Telegraphic and Telephone Consultative Commit­
tee), which is part of the UN structure and is the focus for standards for the
world’s PTTs, is responsible for international telecommunications standards.
CCITT is primarily concerned with communications between systems
operated by the national carriers. Many of the CCITT standards also get
passed to ISO.

ICL Technical Journal November 1987 731

Recently in a number of areas, including ODA and message handling
systems, CCITT and ISO have been working in very close collaboration to
establish equivalent standards.

ECMA (the European Computer Manufacturers’ Association) is a trade
association representing and producing standards primarily for the com­
puter industry in Europe. A primary aim of much work in ECMA is to assist
the rapid development of ISO standards for Open Systems Interworking.
ECMA ratifies its own standards too. Although ECMA standards are often
identical to those of ISO, they can usually be introduced more quickly.

ECMA is the body that initiated work on ODA and has been working to
assist ISO and CCITT to complete the ODA standard.

The Office Document Architecture standard

The International Standards Organisation, from its Geneva headquarters,
and the CCITT, operating from headquarters, also in Geneva and neigh­
bouring those of ISO, are jointly formulating the definitive ODA standard.

ODA will be documented as an international standard by the International
Standards Organisation in its specification IS 8613 and by the CCITT in its
T.410 series of Recommendations2. Both of these are planned to be ratified in
1988 and to be exactly equivalent specifications. ECMA-1013, published in
1985 and forming the first version of the ODA standard will then be updated
to fully align with the ISO and CCITT specifications.

For communication purposes, the ODA standard falls within the seventh
layer of the ISO reference model for Open Systems Interconnection (OSI).
ODA can be conveniently divided into three types of standards:

- document structure standards
- document content standards
- document distribution standards

This division is followed below in examining the ODA standard in more
detail.

Document structure standards

Document structure standards provide a general document architecture
which:

- governs the interrelationship of a number of different forms of information;
- provides a standard means of expressing specialist concepts and informa­

tion structures for particular applications such as document editing,
formatting, or filing and retrieval - such specialist concepts and structures

732 ICL Technical Journal November 1987

include for example, identation, columnar layout definition or retrieval
keywords;

- provides a standardised means of describing the structure of generic
document types, such that groupings of information appropriate to a
particular application, or to a group of applications, can be modelled - in
this case ODA can be used between applications which understand a
particular document type.

Document content standards

Document content standards enable information to take the following forms:

- character text;
- facsimile images (raster graphics);
- diagrams (geometric graphics).

In addition, extensions to ODA are planned to incorporate:

- computable data (used to support spreadsheet or business graphics);
- sound.

ODA governs the definition and means of manipulating of the document
structures and of each of these forms of information within electronic
documents.

Document distribution standards

For the case of distribution of documents using Open Systems Interconnec­
tion a number of standards are defined to specify means for accessing and
transmitting documents, as a whole or in part. These standards cover:

- the encoding standards for documents or parts of documents in terms of
an abstract syntax notation.

- remote access to whole documents.
- partial document transfer, such as only the completed fields in a form.
- interactive access to documents.

ODA and existing communications standards

In order to facilitate interworking with standards which are already in use,
ODA encompasses some existing standards, by defining them as subsets of
ODA.

In order to understand how ODA relates to other communications stan­
dards, it is useful to bear in mind the division into standards for document
content, structure and distribution.

ICL Technical Journal November 1987 733

Document content and structure

October 1984 saw the ratification by CCITT of a standard which made
provision for the transmission of a document to include mixed media and
imaging control information (CCITT Recommendation T.73). This enables
the recipient to image the text with the same layout as the original. The
information content types included the CCITT standards for character text
and raster graphics content architecture.

The current ISO/CCITT Office Document Architecture standard, includes
the T.73 specification as a subset. The ODA character content architecture is
a superset of the CCITTs, providing some additional processable character
text interchange facilities.

Both the ISO and CCITT raster graphics content architecture include levels
which are fully aligned with the CCITT recommendation T.4 and T.6, known
as ‘Group 3 Facsimile’ and ‘Group 4 Facsimile’. These levels are defined
subsets of ODA.

The character content information type is aligned with that of ‘Teletex’
(CCITT Recommendation T.62).

Because of these relations to pre-existing standards, the construction of
convertors between ODA and telex, Teletex and facsimile will be substanti­
ally simplified.

Document distribution

In the case that ODA is used for transfer of documents in OSI systems, ODA
is regarded as forming part of the ISO Open Systems application layer. For
this purpose, ODA is designed to use levels 1 to 6 of the ISO seven layer
model for communications. It has in common with both file transfer (FTAM)
and electronic mail (X.400) the use of Abstract Syntax Notation One (ASN.l)
in the presentation layer. ODA can use either FT AM or X.400 as a transport
system. At a lower level still, ODA can be carried by any transparent
communications protocol, such as X.25.

ICL’s Normalised Document Format (NDF) and ODA

ICL has long been committed to the concept of ODA and in 1982,
recognising both the importance of document interchange and the long
timescales to which international standards bodies necessarily work, devel­
oped an architecture which formed an early intercept of the work on ODA.
This, Normalised Document Format (NDF)4, made possible the interchange
of documents between office products in the ICL product range, and in fact
became the kernel from which the international standards have grown.

NDF, first developed in response to a need to interchange documents

734 ICL Technical Journal November 1987

between 8800 wordprocessors and 2900 series mainframes, facilitates imag­
ing and editing by the recipient in line with the intentions of the originator.
The level of interchange offered is impressive but ICL recognises that NDF is
nevertheless a proprietary standard restricting interchange to ICL systems;
so it is intended to extend the system to achieve full conformity with the
ODA standard, with the aim that users shall be able to connect NDF systems
to ODA-compatible systems, retaining NDF characteristics over ODA
networks.

ICL has played a leading role throughout the development of the ODA
standard, providing technical specialists for the ECMA, ISO and CCITT
technical committees and the current chairman of the ECMA Technical
Committee TC 29 on ‘Document Architecture and Interchange’ and the
editors of several of the key standards documents, including the ISO ‘Future
developments of ODA’.

Market acceptance

Aircraft manufacturers Boeing are promoting the Technical Office Protocol
(TOP) as the way forward to fully integrated office systems. Using selected
standards from each layer of the ISO seven layer Open Systems Interconnec­
tion model, TOP seeks to provide a comprehensive model for interworking,
from physical connection, through transport to the application levels. TOP
enables one set of information to be shared by, for example, the chief designer
using word processing software, and the technical drawing office, using a
CAD/CAM facility.

TOP, an increasingly important standards initiative in its own right, utilises
ODA based document interchange5. So ODA compatible systems will also
be TOP compatible.

The enthusiastic support shown by the TOP initiative for ODA demon­
strates the urgent need for such comprehensive interworking standards.
ODA’s key role in TOP highlights just how many crucial interworking issues
are addressed by the standard. A host of collaborators like Ford, Kodak and
Dupont in the TOP initiative leave little room for doubt about market
acceptance.

ODA standards: who is doing what

Document structure standards
The standard specifies a document architecture covering three applications:
imaging, formatting and editing. The standard provides for the control
information required for each application to be transmitted with the
document.

- For the imaging application - text can be imaged by the recipient with the
same layout as prepared by the originator;

ICL Technical Journal November 1987 735

- F o r the formatting application - text can be reformatted (for example to
merge the whole or part of it into another document);

- For the editing application - the document can be amended, keeping
within the structure rules specified by the originator for the particular class
of document and the text layout can be automatically revised accordingly.

Parts of the ISO standard Individual CCITT Recommendations

DIS 8613/1:
Introduction and general principles

Draft Recommendation T.411:
Introduction and general principles

DIS 8613/2:
Document Structures

Draft Recommendation T.412:
Document Structures

DIS 8613/4:
Document Profile

Draft Recommendation T.414:
Document Profile

DIS 8613/5:
Office Document Interchange Format

Draft Recommendation T.415:
Office Document Interchange Format

Document content standards

The standard specifies three content architectures covering character text,
raster graphics and geometric graphics. The document structure standards
allow for documents to have mixed types of document content, all types are
able to be mixed and mutually positioned within a single document.

Parts of the ISO standard Individual CCITT Recommendations

DIS 8613/6:
Character Content Architecture

Draft Recommendation T.416:
Character Content Architecture

DIS 8613/7:
Raster Graphics Content Architecture

Draft Recommendation T.417:
Raster Graphics Content Architecture

DIS 8613/8:
Geometric Graphics Content Architecture

Draft Recommendation T.418:
Geometric Graphics Content Architecture

How does ODA work?

ODA is a software coding method, which allows documents generated on
any office system to be converted to a common form known as Office
Document Interchange Format (ODIF). Following transmission in this
format, the document is re-converted to an appropriate form at the
receiving system. The conversion software is system-specific, so that
manufacturers can design their own converters; in order to achieve
document interchange it is not necessary that the rest of the design of the
system be ODA compatible.

736 ICL Technical Journal November 1987

Document structure

ODA supports two parallel and interconnected views of document architec­
ture. The logical structure relates the content of a document to objects such
as paragraphs, headings and footnotes. The layout structure relates content
to objects such as type fonts and pagination. This structural model is very
precise and detailed and is the key to ODA interworking.

The rules for structuring a document are described by grouping logical or
layout objects into ‘class descriptions’. So a series of paragraphs (logical
objects) forming a section of a document can be described by a logical class
description for a paragraph. In the same way, a group of layout objects such
as pages with the same column layout and fonts can be described by a layout
class description for such a page. Objects are grouped in this way to simplify
the creation of documents, improve transmission efficiency and ensure that
the internal document structure is maintained following editing.

ODA offers a high degree of flexibility, allowing different rules to be
developed for any type of document. So ODA does not prescribe document
structures, but provides a framework within which to create them.

The relationship between logical and layout structures is recorded in a
‘layout directive’. Layout directives are important because they allow
designers to specify rules for layout, for example that if a document is edited
each chapter should always start on a new page, or that the footnotes be at
the bottom of the pages.

A second type of relationship is recorded in a ‘presentation style’. Presenta­
tion styles are used to specify rules for presentation aspects of information,

ODA
LAYOUT STRUCTURE

ICL Technical Journal November 1987 737

ODA
GENERIC LOGICAL STRUCTURE

ODA STRUCTURE

for example the font which is to be used, or how character text is to be
positioned with respect to tabulation points.

Each document must carry with it a document profile. This is designed to
hold attributes which relate to the document as a whole, such as its title,
author and copyright notices. The profile also specifies whether the docu­
ment contains specifications for layout or logical structure, or their class

738 ICL Technical Journal November 1987

descriptions. It may additionally incorporate information relating to the
document’s history and details needed for indexing and filing.

Systems design requirements

In product terms, a document processor is needed to coordinate the editing
of the various information content types; one editor is used to control editing
of the overall document structures and to coordinate a series of other editors,
one for each of the forms of information.

To enable ODA to manage the presentation of the document in its original
form by the recipient’s system and his subsequent editing of it, three types of
facility are needed:

- The document editing facility provides for a document to be created or
modified. It is required to include both content editors, to cope with
creation or amendment of individual pieces of document content such as
the content of a figure or a paragraph, and a logical structure editor to
cope with changes such as inserting a new figure or deleting a paragraph
and substituting two more.

- The document layout facility provides for the layout of a document to be
generated, it allows systems to cope with problems such as splitting
paragraphs across pages. This process allocates the logical structure to the
physical page layout, using the results of the editing facility as input.

- The document presentation facility uses the layout structure and layout
class descriptions to define how the document is to be imaged.

Where is ODA today?

With some ODA standards at draft stage, and others already ratified,
commitment to using the ODA standards is growing.

ODA demonstrated at Hanover

Despite the fact that the ISO standard has not yet achieved full International
Standard status, visitors to this year’s CeBIT Hanover fair were able to see
ODA prototype systems being demonstrated. In this international collabora­
tion, Britain’s ICL, France’s Bull, Italy’s Olivetti and Germany’s Siemens
were able to interchange documents between very different word processing
systems.

This widely acclaimed demonstration was based on the use of ODA as an
interchange format between the word processing systems of the four
companies. The WP systems used were independent products of the various
companies, not varieties of the same generic product, and the interworking
demonstration was achieved without any modifications to the products
involved.

ICL Technical Journal November 1987 739

ISO 8613 ratification

The ISO sub-committee 18 ‘Text and Office Systems’, which has two working
groups focused on the development of document and content architectures
respectively, will meet again in November 1987. This meeting is planned to
complete ISO 8613 defining ODA.

In February 1988, CCITT plans to ratify the T.410 series of Recommenda­
tions which parallel this ISO work, as well as the application profiles
allowing facsimile and interactive Videotex to use the ODA standards. In
addition, CCITT also plan to agree some further Recommendations, includ­
ing some complementary distribution standards.

The future for ODA

All three of the main standards bodies (ISO, ECMA and CCITT) have
ambitious plans to extend the ODA standards over the next three to four
years6,7. They will continue to work together within the same area making
sure that their standards are aligned before being ratified. All these exten­
sions are being developed so as to be purely additive extensions to ODA, not
amending any existing features. The standards planned fall into the ODA
areas of document content, structure and distribution.

Document content

Plans to develop a unique method to image colour, independently of the
content architecture, are receiving high priority attention, and may well fully
complete the standardisation process by mid-1989. This will incorporate
provision of grey scale for monochrome imaging.

In the longer term, standards for audio content architecture, designed
particularly for the inclusion of spoken annotations in documents will be
developed. A new dynamic graphics architecture will enable the processing of
moving images. These two new content architectures will take the concept of
document interworking into new realms of sophistication.

Structure

High priority is being given to development of rules to govern the transfer of
computable data, derived from calculations, to form part of the logical
structure of a document. This will assist in the interworking of document
processing and data processing applications.

Such support for data will provide for forms, which will allow for the
interchange of documents containing objects representing data fields, which
may be defined as formatted or processable and which control aspects such
as permissible field content and size.

740 ICL Technical Journal November 1987

The presentation of data will use existing information content types and data
will be able to be reflected either textually, as tables or in forms such as
spreadsheets, or graphically, including provision of a business graphics level
of facility.

Several other extensions to the standard are also planned, to cater for the
efficient interchange of as wide a range of documents as possible. These
extensions include:

- providing a general means for ODA to be used for application integration,
such that multiple applications can identify and manipulate relevant parts
of ODA documents, and such that ODA documents can form the basis for
further automation of office procedures;

- providing a high level of facility for the processing of tables and tabluar
material;

- supporting multiple sets of annotations and allowing annotations to be
optionally imaged with the document;

- providing for different security attributes for designated parts of docu­
ments, such as the generic document definition or for signatures within
documents;

- allowing documents to include by reference all or parts of other ODA
documents;

- extending layout facilities to allow representation of all features associated
with high facility print formats, or page description languages.

Distribution

Existing media and file standards will be used to facilitate a new standard
governing document interchange on physical storage media such as floppy
discs. This is being given high priority and may fully complete the standardi­
sation process by mid-1989.

Also being treated as high priority are application layers protocols for
document distribution. These will allow both partial document transfer, and
remote interactive access to documents. CCITT may complete ratification of
some of these aspects in 1988.

Conclusion

That there is considerable commitment to ODA, from both the manufac­
turers and the standards bodies, is beyond question. ODA is the first Open
Systems standard to provide an information architecture, a framework for
developing products which not only communicate but which offer full
interworking. ODA opens the way for a new generation of fully integrated
office automation systems.

The environment in the more technically advanced societies is moving into
one in which information is the commodity, telecommunications is the

ICL Technical Journal November 1987 741

means of distribution and the application and interpretation of the informa­
tion is the value added. Manufacturers and users alike who do not make use
of ODA standard will forfeit competitive advantages.

In order to protect IT investments against erosion by rapidly advancing
technology, manufacturers and users both need stable interworking stan­
dards, changed only by common consent. ODA not only provides this but
also combines design freedom with maximum functionality and flexibility:
the plans for ODA’s future development show that these will be even further
enhanced.

References

1 ISO DIS 8613, Parts 1.2, 2.2, 4.2, 5.2, 6.2, 7, 8, ‘Office Document Architecture (ODA) and
Interchange Format’.

2 CCITT Draft Recommendations T.400, T.411, T.412, T.414, T.415, T.416, T.417, T.418, form
the series of Recommendations ‘Document Transfer Access and Manipulation (DTAM)’.

3 ECMA-101, ‘Office Document Architecture’.
4 PSD 1060, ‘NDF 0, Subset one’.
5 T O P Specification version 3.0 - Implementation release - April 1987’ - MAP/TOP users

group.
6 ‘Future developments of ODA, Issue 2’, ISO/TC97/SC18/WG3, editor I.R. Campbell-

Grant.
7 ‘Extensions to ODA’, ECMA TC29.

742 ICL Technical Journal November 1987

The Technical and Office Protocols - TOP

P. J. Robinson
Advanced Products Sector, Office Information Business Centre, Office Information Systems

Division, Bracknell, Berks.

Abstract

Today the biggest obstacle to fu ll exp lo ita tion o f in fo rm a tion w ith in
o rgan isa tions is the num ber of d iffe ren t com puter systems w ith
incom patib le protocols. Even different systems from the same vendor
often have problem s in com m unica ting . OSI s tanda rds fo r com m un i­
ca tion exist, the question is w h ich to choose and w hether they can be
met com m ercially. By a selective use of OSI and o ther standards, TOP
aim s to provide a fram ew ork w h ich a llow s com prehensive o ffice
systems to be built from o ff-the-she lf com ponents, econom ically.

Introduction

The Technical and Office Protocols (TOP) is a set of standard communica­
tion protocols for specifying multi-vendor distributed information systems
used for business and technical operations. Dedicated to improving the
effectiveness of office based information systems, TOP has its roots firmly
embedded in the manufacturing industry.

It is accepted today that there is more to manufacturing than just making
things. Successful manufacturers are as concerned with research, design,
marketing and sales management as they are with production processes.

Each discipline uses different information and information in different ways.
Yet most information is relevant to other departments, and often it is
duplicated.

Often it is input many times, on different systems throughout the organisa­
tion. The more often it is input, the greater the opportunity for error and
inconsistency. Most information changes with time, and controlling change
is a major issue with manufacturers of all types.

Manufacturing processes are increasingly complex, and the rate at which
products and markets change is escalating. For large combines the problem
is particularly acute. With large numbers of departments each depending on
the others for information, the potential for losing, delaying or corrupting
data is almost infinite.

ICL Technical Journal November 1987 743

M anufacturing app lication protoco ls

In 1984, General Motors began an initiative to enable integrated multi­
vendor information systems to be created around manufacturing processes.
Manufacturing Application Protocol (MAP), as this standardisation initia­
tive was called, concentrated on allowing information from drafting or design
systems to interwork with automated production systems. Robotics, process
control, stock control and a range of other systems were destined to
interwork fully, despite their different vendor origins.

The concentration was natural in an organisation dedicated to high volume
automobile production. Aircraft production however, has different priorities,
different problems. Aircraft are still basically hand crafted in low volumes.
Many of the processes involved are reliant on human skills. But the number
of components required for an airliner can run into millions. Audit trails for
each must be kept, and the results of the slightest error in handling the vast
quantity of information required can have tragic consequences.

A Boeing 747 requires over 250000 pages of information for users and
maintenance engineers. Customers can decide the way they want information
presented and in what language. By any standards, document production is a
big issue. Add to that the sophistication of the aviation market, the complex
R & D, design, pricing and sales organisations required and it becomes
obvious why the Boeing Aircraft Corporation decided to initiate a parallel
and complementary standards initiative to MAP, for the office.

Technical and Office protocols

Called the Technical and Office Protocols (TOP) programme, the initiative
followed MAP’s lead by forming groups of collaborators with similar
interest. The decision was taken early to work within the developing Open
Systems Interconnect standards as far as possible and make all standards
produced non proprietary.

At the time the only practical way of creating networked systems was to use
components from a single or a very limited number of vendors. If a range of
different vendors’ systems were required to create a solution, it involved
developing custom hardware and software. This clearly adversely affected
cost effectiveness and often reliability too.

Users were under pressure to choose systems for their connectivity to existing
systems rather than for fitness-for-purpose. This led to ‘islands of automa­
tion’ which were expensive and difficult to integrate. OS

OS I standards offered a chance to work towards full integration of office
systems. The problem was that, not designed to deal with office automation
they were too broad, too complex and insufficiently specific to be a complete
solution. It was simply too expensive to build full OSI compatibility into all

744 ICL Technical Journal November 1987

products. Even if it were technically possible, which in itself was in doubt, it
would create serious delays in product development and would be commer­
cially unsupportable.

•
It became clear that it was possible to identify subsets of the OSI standards
which would allow Office Systems networks to be created, without requiring
component systems to conform to every standard. These centred around
levels 5, 6 and 7, dealing with session, presentation and application respec­
tively.

What was important was that if subsets were to be used, they should meet the
majority need for such systems and be agreed and clearly identified. Only
then could vendors develop specialist sub-systems which would be compat­
ible within larger networks, and users be guaranteed interworking.

Under Boeing’s leadership, the TOP Users Group was formed in 1985. Its
first meeting hosted over 200 representatives of organisations worldwide.
After extensive seminars and working sessions a structure for TOP technical
subcommittees was defined, and vendors and users alike encouraged to
participate.

From those committees has sprung the concept of standards pillars, or
stacks, within OSI. Each level is addressed with respect to office systems
requirements and relevant standards identified. At the lower levels 1-4
dealing with datalinks, networking and transport, the key standards include
X.251, CSMA/CD CSMA/CD2, Token Ring3 and Token Bus4.

At levels 5-7 the emphasis is on information interchange by electronic mail5
and file transfer6. Above these layers the emphasis is on interchange between
applications - for example between document processing systems using
Office Document Interchange Format (ODIF)7 or graphics systems using
Computer Graphics Metafile Interchange Format (CGMIF)8.

In addition, protocols to ensure that terminals display information to
standard formats (VTP)9 are included. Services like Network Management,
Directory and Remote File Transfer are all included in the upper levels.

TOP building blocks

Representing a functional specification for discrete subsystems within
the TOP standards, the building block approach simplifies the choices
faced by system designers and users. It provides for the specification of a
commonly used function which may use several different standards
across more than one OSI layer.

For example a TOP application system may incorporate the

ICL Technical Journal November 1987 745

TOP-PILLARS THROUGH OSI’s
7 LAYER MODEL

LAYER 4
T R A N S P O R T

LAYER 3
N E TW O R K

LAYER 2
DATALINK

LAYER 1
PH Y S IC A L

X-25

CSMA/CD TOKEN
RING

TOKEN
BUS

CARRIER SENSED MULTIPLE
ACCESS WITH COLLISION

DETECTION e g.
ETHERNET & OSLAN •

TOKEN RING
SUBNETWORK

ACCESS
e g. IBM PC
NETWORKS

TOKEN BUS
SUBNETWORK

ACCESS
eg MAP
SYSTEMS

PACKET
SWITCHING
NETWORK
ACCESS

BUILDING BLOCK LEGEND
GKS/INTF—COM PUTER GRAPHICS APPLICATION INTERFACE
FTAM/INTF—REMOTE FILE TRANSFER APPLICATION INTERFACE
VTP—VIRTUAL TERMINAL PROTOCOL
CGMIF—COMPUTER GRAPHICS METAFILE INTERCHANGE FORMAT
PDIF—PRODUCT DEFINITION INTERCHANGE FORMAT
O D IF -O F F IC E DOCUMENT INTERCHANGE FORMAT (ODA)

Fig. 1

CSMA/CD Subnetwork block, the Remote File Access block and the
Computer Graphics Metafile Interchange Format (CGMIF) block.

Blocks are described by three attributes:

1 Function - what the building block will accomplish on a TOP
system for the user.

2 Specification Reference - a reference to an international standard
together with a set of selected options and parameters based on
established implementation agreements for Open Systems Intercon­
nection Protocols.

746 ICL Technical Journal November 1987

3 Binding Rules - the technical constraints that define the associations
of the building block with other building blocks in forming valid
TOP combinations.

The particular set of options and parameter values of an international
standard defined for use in a TOP conforming system is termed an
Application Profile (AP).

It is worth examining two of the TOP building blocks in more detail.
These are the blocks which include Office Document Interchange
Format and the Electronic Mail Building Block.

Office Document Interchange Format Building Block (ODIF)

This provides a common format and encoding for transfer of compound
office documents in revisable or formatted form containing characters,
geometric graphics and raster graphics. The TOP AP for ODIF:

- enables users to interchange documents such as memos, letters and
reports

- refers to the ISO 8613 standard and subsets the full capabilities of this
by specifying values for the document architecture, the content
architecture levels such as character, geometric graphics and raster
graphics subsets, the document profile and the interchange format

- can be used in conjunction with the electronic mail and remote file
access building blocks.

Electronic Mail Building Block

This provides TOP-conforming systems with the capability for store-
and-forward handling of messages between end users and applications.
It offers to the electronic mail user the functions necessary to post and
receive interpersonal messages.

Messages may be ASCII text or any of the interchange formats for
computer graphics, product definition or office documents. TOP sys­
tems supporting this building block can be used as message transfer
agents within a multi-vendor private domain or as one of a set of private
message handling domains.

The TOP AP for electronic mail requires only the support of the
mandatory and optional essential service elements of the Message
Transfer Service and the Interpersonal Messaging Service of the CCITT
X.400, the interpersonal messages that can be sent/received using TOP
electronic mail include simple lines of ASCII text; telex; computer
graphics using CGMIF; and ODA office documents using ODIF,

Electronic mail may be used in conjunction with the following:

ICL Technical Journal November 1987 747

- Computer Graphics Metafile Interchange Format Building Block
- Product Definition Interchange Format10 Building Block
- Office Document Interchange Format Building Block.

Electronic mail must be used in conjunction with at least one of the
following:

- CSMA/CD Subnetwork Access Building Block.
- Token Passing Ring Subnetwork Access Building Block.
- X.25 Packet Switching Subnetwork Access Building Block.

Other building blocks include:

Remote Terminal Access Building Block

This provides for communications between different terminals and
applications based on host computers. It supports four modes of
terminal working - asynchronous, scroll mode with local echo control,
paging/scrolling with local printer and CCITT X.3 packet assembly/
disassembly.

Remote File Access Building Block

This allows TOP application systems to access or manage files held on
unlike systems, remotely. It likewise provides other systems with the
capability to access locally held TOP application files.

Computer Graphics Metafile Interchange Format Building Block

This allows graphic images to be generated, manipulated and communi­
cated between TOP compatible systems.

Product Definition Interchange Format Building Block

This provides a common format for transfer of data required for
analysis, design, manufacture and testing required over the life cycle of
products.

Network Directory Building Block

Enabling TOP systems to access remote network directories, this block
allows users to refer to applications by their names. It also allows the
directory to retrieve current application addresses.

Network Management Building Block

Remote application and server systems can be managed using this block.
It also enables configuration, fault and performance management.

74« ICL Technical Journal November 1987

X.25 is familiar as the packet switching protocol used in many wide area
networks employing intelligent switches to route communications. It
offers en-route error correction, automatic re-routing to avoid conges­
tion and line breaks, and a low cost of transmission.

Token Ring provides access to local area subnetworks of systems such
as IBM PCSs. Token Bus provides access to MAP systems and
CSMA/CD allows Ethernet systems to be connected.

X.25, Token Ring, MAP Token Bus and CSMA/CD Building Blocks

TOP user applications

The number of office based tasks which can be aided by computers is
increasing almost daily. In defining what is and what is not office automa­
tion, definitions necessarily become blurred. In fact the impossibility of
precisely defining such segregations serves to underline the need for integra­
tion of information within organisations.

What is clear is that TOP does not address Manufacturing Automation,
process control or robotics. Many office functions are common to most com­
mercial and government organisation. TOP focuses on these, which include:

- Electronic mail
- Word processing
- Text/Graphics
- Database Access
- File transfer
- Distributed CAD/CAM
- Spreadsheet Exchange
- Banking Transactions
- Electronic Funds transfer
- Distributed Manufacturing Business Systems
- Peripherals and resource sharing

although not all of these are separately defined functions within TOP.

The area of distributed CAD/CAM is on the key area of overlap with the
MAP initiative. MAP took information from CAD/CAM applications and
applied it to numerical control systems, robotics and factory automation.
For TOP users the data created by CAD/CAM applications can be
compatible with all the associated office applications. The information from
the drawing office can be taken through buying departments, research and
development, senior management, sales and marketing. Once entered it is
available to all office workers, unconstrained by technologies like wordpro­
cessing, imaging or data processing.

ICL Technical Journal November 1987 749

Moreover, a specification can be taken from an engineering drawing and
used as logical data for typed specification on ordering applications. With
the links to the MAP standards, a vector curve from the same drawing could
be used to drive production tools or potentially, to conduct sophisticated
data searches.

The user group

COLLABORATIVE^
IDEAS AND PROPOSALS

Fig. 2

Following the lead given by General Motors and the MAP initiative, TOP
set up its Executive Committee to manage the technical planning, adminis­
tration and promotion of the standards. Under the auspices of the Commit­
tee Chairman, four Vice Chairs each handle specific areas of the initiative.

The first is Membership and Training, which includes promotions and
recruitment of corporate affiliates. The Vice Chair of Programs and Products
monitors TOP compatible products, maintaining a current list of new and
existing systems. This chair is also responsible for arranging agendas for
TOP User Group meetings. The third Vice Chair is Standards and Associa­
tions, which monitors and liaises with other relevant standards bodies.

The Vice Chair of Technical and Test manages and structures the technical
subcommittees. Responsible for monitoring vendor tests, this chair also
identifies new projects and subcommittees.

The business of standards production, functional specifications, conformance

750 ICL Technical Journal November 1987

test specification and change control, is handled by the subcommittee
structure. These are also the channels for collaborative ideas and proposals.

All Vice Chairs liaise directly with their opposite numbers in the MAP User
Group. Both initiatives share a joint MAP/TOP steering committee, co­
existing under an umbrella organisation which is able to ensure an equitable
representation for all parties’ interests.

The TOP User Group has established firm relationships with other stan­
dards bodies such as ISO, CCITT (International Telegraph and Telephone
Consultative Committee), ANSI (American National Standards Institute),
IEEE (Institute of Electrical and Electronics Engineers) and ECMA (Euro­
pean Computer Manufacturers Association). The SME (Society of Manu­
facturing Engineers) acts as the User Group’s secretariat, administering
meetings, agendas and disseminating information.

TOP today

There can be little doubt about the momentum behind TOP today. Members
include well known companies like General Motors, Boeing, McDonnell
Douglas, Proctor and Gamble, Eastman Kodak and in Europe, ICL and
AEG. Their interest is based on solid commercial realities.

Non-proprietary international office system standards offer an opportunity
to create better integrated information systems. The pay-off is in both better
communication within and outside their organisations, and greater respon­
siveness to market opportunities. It frees users from dependence on any one
supplier and creates an environment in which information system planning is
simpler.

It is early days yet, but the first full functional specification called ‘TOP V3.0’
was released this year. In accordance with its policy of avoiding unnecessary
differences with the MAP specification it is compatible with ‘MAP V3.0’.

TOP is building on the work done by MAP and incorporates many OSI
standards. Among these is the CCITT X.400 electronic mail and messaging
standard and the Office Document Architecture (ODA) for the Office
Document Interchange Format, already adopted by ECMA, ISO and
CCITT.

Future developments

The TOP initiative plans to sponsor an Enterprise Network Event in 1988. It
will demonstrate the interworking capabilities of TOP compatible systems.
This event is still in the early stages of planning. However, the capabilities of
TOP could be demonstrated by an aircraft component design, complete with
documentation, being created between the design offices of Boeing and
McDonnell Douglas. Designs could then be transmitted electronically to

ICL Technical Journal November 1987 751

BAC in the UK, where they could be manufactured. Finally, the part would
be flown back to the US to be built into an aircraft.

An integral part of ICL’s open systems

Clearly any company selling in today’s office systems market must conform
to OSI standards. Few users are prepared to tolerate a future locked into a
single IT vendor, unable to communicate freely with their customers or
suppliers.

As is the case with all IT suppliers, for ICL the question is selecting which
standards to concentrate on. This is the real relevance of the TOP initiative.
By creating a set of priority standards and conformance specifications agreed
between vendors and users, the process of adoption can be greatly speeded
and simplified. The faster and simpler the adoption process, the more
vendors will be encouraged to conform and the lower the cost to users.

In 1986 ICL became the first European IT systems supplier to declare its
support for TOP. ICL had of course played a leading role in the establish­
ment and development of the OSI standards. Whilst this was primarily a
European based initiative, the US has been quick to pick up the standards
baton, giving it fresh impetus and relevance. ICL’s role in TOP is a
recognition of the importance of broadening the standards movement
worldwide.

Another significant TOP characteristic is that like MAP it is user-led. Many
of its key members are not computer system vendors, but users. They have
sizeable IT environments and development programmes of their own. All
recognise that the early adoption of innovative products into their system
and the ability to communicate and interwork between systems is crucial in
maintaining a competitive edge.

For ICL, TOP offers an opportunity to become a major participant in the
newly emerging worldwide electronic communications structure. The
ICL/STC relationship clearly has much to gain from a resolution of the
computer and telecommunications industries into a single coherent force.

Perhaps the single most important achievement of the TOP initiative is to
remove any doubt about the future of international standards under public
change control. The amazing rapidity with which some of the world’s largest
computer users and vendors are developing and adopting these office
systems standards has disabused any illusions about the future of proprietary
standards.

Clearly it is becoming increasingly difficult for users to justify purchases of
major systems that are out of step with the international standards move­
ment.

752 ICL Technical Journal November 1987

R e fer e n c es

1 CCITT Recommendation X.25 (1984), Interface between Data Terminal Equipment and
Data Circuit-Terminating Equipment for Terminals Operating in the Packet Mode and
Connected to Public Data Networks by Dedicated Circuit.

2 IEEE 802.3; Local Area Networks - Carrier Sensed Multiple Access With Collision
Detection (CSMA/CD) Method and Physical Layer Specification [ISO 802/3],

3 IEEE 802.5; Local Area Networks - Token Passing Ring Access Method and Physical
Layer Specification [ISO 802/5].

4 IEEE 802.4; Local Area Networks - Token Bus Access Method and Physical Layer
Specification [ISO 802.4].

5 CCITT X.400 (Red Book, 1984), Message Handling Systems: System Model - Service
Elements.

6 ISO DIS 8571 (August 1986), Information Processing - Open Systems Interconnection -
File Transfer Access and Management.

7 ISO DIS 8613 (June 1987), Information Processing - Text and Office Systems Office
Document Architecture (ODA) and Interchange Format.

8 ISO DIS 8632 (1987), Information Processing - Computer Graphics - Metafile for the
Storage and Transfer of Picture Description Information (CGM).

9 ISO 9041, Information Processing Systems - Open Systems Interconnection - Virtual
Terminal Protocol - Basic Class.

10 IGES V3.0, ANS Y14.26 M-1987, American National Standards.

ICL Technical Journal November 1987 753

X.400 - International information
distribution

Dorothy M. Elliott
Electronic Mail Marketing Manager, Office Information Business Centre, ICL, Bracknell, Berks.

Abstract

The evolution and accep tance of the X.400 in te rna tiona l standard for
e lectron ic mail has progressed more rap id ly than m ight have been
expected. This paper exam ines some o f the in fluences on the progress
path and describes the ICL role and approach.

1 Introduction

The pace of commercial life in the 1980s has vividly illuminated the flaws in
traditional communications. The most rapid, like the telephone, require both
parties to be present, in possession of the facts and free to talk. The cheapest,
like the post, are slow, unreliable and insecure. Even telex, so rapid between
operators, somehow fails between mailroom and desk.

Now a new medium, electronic mail, offers a service compatible with today’s
communication needs. Able to transmit text and data of any length as
documents, letters or messages almost instantly anywhere in the world: it is a
remarkably powerful facility.

But to work, it is essential that all users and carriers conform to international
standards. Only then can mail travel almost at the speed of light through
public and private networks, beating time zone differences by store-and-
forward techniques and verify its arrival to the sender. Only when otherwise
incompatible computer systems conform, can electronic mail span the
multitude of different terminals, mainframes and minis in use worldwide.

X.400 focuses this requirement into a single set of internationally agreed
standards which enable this to become a reality.

2 History

X.400 comprises a series of recommendations, developed between 1980 and
1984 by the International Telegraph and Telephone Consultative Committee
(CCITT). Ratified in 1984, they define a set of standards governing message
handling systems (MHS).

754 ICL Technical Journal November 1987

The X.400 standard represents a natural progression of the work undertaken
by CCITT earlier this century, developing international telephony standards.
By specifying telephone network construction and how messages should be
addressed, transmitted and switched, they laid the foundations for today’s
international service.

We now take it for granted that we can speak to anyone in the world by
picking up a telephone and dialling a number. X.400 is designed to create an
environment in which, using electronic text, communications will be just as
natural, just as easy.

Work began on the X.400 series of recommendations to ensure Open
Systems Interconnection for electronic mail. Until X.400 most electronic mail
systems were incompatible with one another. With organisations building
larger networks, often installing a range of manufacturers’ equipment,
integrating office systems was becoming increasingly difficult. Islands of
electronic text messaging communities, each using different equipment or
services, were isolated from one another. X.400 was designed to enable all the
different mail and messaging systems already in place to be linked.

A number of issues had to be tackled to ensure that full international
electronic mail could become a reality. It had to be possible to:

- link equipment which may have been bought at different times from
different manufacturers

- connect independently purchased personal computers into central office
automation systems

- link with other electronic mail systems of customers, suppliers and
collaborators

- connect into public electronic mail networks in different countries
- provide store and forward facilities to cope with time differences, manage

the different transmission speeds of various systems and ensure that when
an addressee’s equipment is temporarily unavailable, mail is not lost.

- establish simple and universal addressing techniques
- provide protocols to monitor the arrival and acceptance of mail.

The key to the compatibility of any private or public MHS defined by X.400
lies in the addressing and routing system which X.400 provides. Users of an
X.400-compatible system each have a personal User Agent (UA) attached to
Message Transfer Agent (MTA). One MTA can service several UAs on the
same system. A mail item is submitted to the system via a UA which passes it,
including the recipients’ addresses, to the MTA.

The address of a recipient is coded hierarchically by country, carrier,
organisation, department and personal name. The MTA analyses the address
in order to route the mail item to the mailbox of the appropriate UA.

If the mail item is addressed to a recipient on a different system, the MTA

ICL Technical Journal November 1987 755

X-400

USER
AGENT (UA)USER

Fig. 1

time- and date-stamps it before passing it on to the next MTA on the route, as
specified by the routing tables. That MTA will, in turn, route it on to another
MTA on a store-and-forward basis, until the MTA serving the recipient UA is
reached. At each stage of its journey, the mail item contains a record of its
route through the system. If, at any stage, the mail item requires different
routes to reach different recipients, then it is split, with each copy identifying
just those recipients for which the next MTA is responsible for routing further.

3 The making of the standard

Any standard, if it is to be relevant and accepted by the majority of suppliers,
requires lengthy consultation processes. Those affected must have a say in
the formulation. Although a slow process, it is the only way to provide the
stability and security required for users and the IT industry to make long­
term plans and investments.

The recognised authority for X.400 is CCITT, which primarily represents the
PTTs who will provide an integrated, world-wide, public electronic mail
service. CCITT did take soundings from computer manufacturers during the
process of developing the X.400 standard. ICL, in particular, contributes
technical specialists to CCITT working parties.

Because the X.400 standards are complex, implementing them is both time-
consuming and costly. And because X.400 allows for options within the
standards, achieving cross-range compatibility between different equipment
is not always easy. One manufacturer may interpret the standard in a slightly
different way to another, so while the products of both are X.400-compatible,
they are not necessarily compatible with each other.

Several bodies in different parts of the world have addressed the issue of
X.400 complexity, to make life easier for the X.400 implementors. In Europe,

756 ICL Technical Journal November 1987

a group of twelve leading IT suppliers, including ICL, formed the Standards
Promotion and Application Group (SPAG). SPAG realised that Functional
Standards were needed in order to provide a common X.400 interpretation.
They pioneered ‘profiles’ which define a consistent implementation for the
message handling function. Other groups have since adopted the profile
approach and more bodies have become involved in the process of ratifying
the standard.

In January 1985, three companies, including ICL, defined the SICOB profile
and this was developed by SPAG and issued as a SPAG Purple Profile in the
Guide to the Use of Standards (GUS) in July 1985. Since SPAG’s objective
was to have these adopted as European norms, they were fed into the
European Committee for Standardisation (CEN/CENELEC), a European
Commission initiative.

Using the profile technique and incorporating the SPAG profile, CEN/CEN­
ELEC issued their profile in February 1986. This became a pre-standard in
May 1986 and a mandatory requirement for public procurement.

The European Conference of Postal and Telecommunications Administra­
tions (CEPT) have also issued their own profile. CEPT is a grouping of
European Post, Telegraph and Telephone authorities (PTTs) - among them
British Telecom - who ensure that national telephone and data transmission
services interwork. CEPT harmonises the services offered by the European
PTTs, building upon the CCITT recommendations. With electronic mail,
their profile covers the interworking between PTTs and also between a
PTT’s public messaging system and a private messaging system.

In mid 1985, the North American computer companies set up their SPAG
equivalent, the Corporation for Open Systems (COS). Significantly ICL was
the first European computer manufacturer to join this group. In January
1986 COS announced that they would be setting up test laboratories and
tools for CCITT conformance validation.

At Berne, conformance test services have also been set up under COMTEX-
LAB, part of the SWISS PTT COMTEX project. ICL is one of the active
testers, contributing to the specification of the tests, particularly to the P2
test suite. COMTEX-LAB are targetting for a Message Handling Test
Service in 1988.

In the UK, British Telecom have played an important role in making X.400
available as a public message carrier. In January 1986, they announced a £5
million plan to set up a nationally managed network service to carry X.400
messages. Additionally BT plans to incorporate telex, teletex and facsimile
facilities in their service, launched as GOLD400. So users of X.400 compat­
ible systems should also gain access to these facilities worldwide. TELE-
PRO VE, British Telecom’s test house, is offering a new testing service to
serve the growing X.400 market.

ICL Technical Journal November 1987 757

Throughout the 1984-88 work study period, CCITT have been reviewing
extensions and enhancements to their X.400 recommendations of 1984. With
co-operation for ‘common text’ between CCITT and the International
Organization for Standardization (ISO), the 1988 recommendations have yet
to be ratified by these two groups, but guaranteed interworking capability
between implementations completed to these and to the ’84 recommenda­
tions provide a broader and sensible platform upon which manufacturers can
base their decision as to when to incorporate extensions such as

interconnection to the postal system
distribution list facilities
secure messaging
message store access (MSA) and management access of MSA

into their existing X.400 offerings.

Thus from 1980-88, we see a period which has introduced a standard for
inter-personal messaging. Many groups have made significant contributions
to its improvement and understanding, culminating in formal refinements
and extensions in an agreed and cooperative manner. Let us now look at the
reaction of the suppliers.

4 The acceptance of the standard

ICL was one of three companies to take part in the world’s first public
demonstration of multi-vendor X.400 interworking at the SICOB exhibition
in Paris in 1985. Since then, X.400 has been moving fast. At Hanover Fair, in
1987, fourteen major international companies proved that the age of
electronic mail for offices has arrived by demonstrating

- communication between public and private electronic mail systems
- direct communications between different private electronic mail systems
- international relaying via multiple public systems

The companies taking part at Hanover were:

British Telecom
Data General
Digital
ICL
Nixdorf
Philips
Sydney

Bull
Deutsche Bundespost
Hewlett Packard
NTT
Olivetti
Siemens
Xerox

Although notably absent from the Hanover demonstration itself, IBM have
announced their intention to introduce an X.400 compatible message handling
system late in 1988. This should allow direct connection between SNA-based
DISOSS (Distributed Office Support System) and other X.400 Systems.

758 ICL Technical Journal November 1987

Also at Telecom ’87 in Geneva, a large group of administrations and service
providers from Europe, Japan and North America demonstrated their X.400
interconnection ability.

The overall commitment of major service providers and suppliers all over the
world to X.400 significant not only in implicit agreement, but in terms of
practical and commercial reality in such a short timespan indicates that this
fundamental part of the electronic office was eagerly awaited and has been
put quickly in place. Therefore the tasks in future relate not only to the
evolution of the standard but to its exploitation in terms of increasing
benefits to offices and staff.

5 ICLMAIL

X.400 is expensive. Because of its complexity as a standard, understanding
and actually implementing it can be a major investment for any organisation.
It can take up to three years, and just testing the combinations in one area of
X.400 can take a considerable time. So, although the benefits it offers are
invaluable, many vendors were understandably reluctant to invest in X.400
in 1984, even though committed to it in principle.

ICL, acknowledging the crucial importance of OSI, launched ICLMAIL in
1985. This employs central and distributed servers based on VME and DRX
as Message Transfer Agents (MTAs). Electronic mail access points were
made available incrementally from a range of workstations, including PCs,
OPDs, DRS20s, DRS300s, word processors and “glass teletype” devices.
Currently, it is available on ICL’s UNIX-based office systems, with inte­
grated mail access from the OFFICEPOWER and OFFICEPOWER-
PARTNER software systems. This means that ICL VME mainframes and
DRS and CLAN distributed systems can all interwork using X.400; and that
all users, whether clerical, secretarial, professional or managerial, grouped in
areas, departments or corporately, can intercommunicate effectively both
nationally and internationally through electronic mail.

This approach to X.400 concentrates on visual ergonomics and simplicity of
use. After all, there is no value in having the capability to send documents
around the world if one cannot remember how to do this; it has been said
that there are two types of users of office computers, the naive and the
sophisticated: the naive can remember three commands, the sophisticated,
seven.

6 Summary and conclusion

X.400 as an internationally recognised and accepted standard has achieved
remarkable success in the last three years. Major administrations and service
providers have launched their X.400 service - major suppliers have produced
end-user systems - conformance test centres have been set up.

ICL Technical Journal November 1987 759

In addition, it must be remembered that X.400 is not restricted to electronic
mail, that is to inter-personal messaging. It offers a common Message
Transfer service, which may be used to carry any sort of data. One of the next
candidates for standardisation is the carriage of Electronic Business Data,
such as invoices and orders.

However, X.400 will only achieve total success if it offers dividends for the
end-user organisation. If the dividends are observable or quantifiable by
whatever means deemed appropriate then the supplier and the standard will
have been effective.

Companies and organisations are often more impressed and learn better
from others with effective working models than they do from text-based
standards. Clearly this cannot be achieved quickly; if the communication
barriers of inherent cultural differences can be overcome with X.400, then
there is a genuine advantage in offering key additional features. If that
foundation can be achieved and confidence be given to all to participate then
the richer basis of comparison may provide a more effective and stronger
critical mass or base.

This threshold of opportunity brings the communication benefits of the
electronic office into commercial reality and enables suppliers of X.400
systems to generate a positive and profitable impact on the business and
organisation of offices worldwide.

References

X.400

CEN/CENELEC

CEPT

GUS

CCITT RED BOOK Volume VIII - FASCICLE VIII.7 Data Communi­
cation Networks Message Handling Systems (October 1984).
ENV 41201 - Private Message Handling System: User Agent and
Message Transfer Agent: Private Management Domain to Private
Management Domain (June 1986).
ENV 41202 - Message Handling Systems: User Agent and Message
Transfer Agent accessing to an Administration Management Domain
(July 1987).
Guide To The Use Of Standards (S.P.A.G. - 1986).

760 ICL Technical Journal November 1987

INTERFACE AND PROGRAMMING
LANGUAGES

A general purpose natural language
interface: design and application a s a

d a tab ase front end

B.G.T. Lowden, A.N. De Roeck, D.J. Phipps, R. Turner
Department o f Computer Science, University o f Essex, Wivenhoe Park, Colchester C04 3SQ

Abstract

The aim o f th is paper is to give an overview of the w o rk carried ou t by
Essex University, under ICL G ran t UE2, on the design and developm ent
o f a N atu ra l Language Front End System (NLFES) based on form al
semantics. The pro to type system, curren tly im plemented, incorpora tes
an im proved version o f the REMIT paraphrase r m odu le in itia lly
developed under an earlier ICL G ran t and described fu lly in [Low den
and De Roeck 1986a, 1986b].

1 Introduction and overall system design

Typically for most existing natural language (NL) query systems, the user can
ask a question in a human language and the system reports on the question’s
interpretation with little or no user intervention in respect of the interpreta­
tion process. This type of system is subject to a number of criticisms. First of
all, there is an underlying suspicion that NL systems, with or without
paraphraser feedback, may induce a false sense of security. Because front
ends of this kind can deal with some human language input, the user’s
threshold of what to expect becomes higher. He may become careless in how
he formulates his queries and may ask questions that either the system, or
indeed the database management system itself, cannot handle. If the user’s
needs are not central to the development and design of interfaces, then the
value of the system itself becomes at best academic. Secondly casual users, in
particular, are not helped to any great extent by simple NLFES for query
evaluation unless they are also offered a number of other facilities which are
at least as crucial. For example some way is needed for finding out exactly
what sort of information the database contains. Thirdly, although para­
phrases of the system’s interpretation of a query may be a significant
improvement, it is only a single example of the various types of feedback a
casual user will find useful.

This paper deals with the design and implementation of a more complex type
of interface to relational databases. The ELITE system (English Language
Interpreter, Translator and Evaluator) is characterised by autonomy of the

ICL Technical Journal November 1987 763

natural language module which is not only database - or querylanguage -
independent, but also independent of the task the NL input is to fulfil. The
output of the NL component is the starting point for the other parts of the
system, including a query system, a meta-query handler, a paraphraser and
an error recovery module which monitors feedback to the user. The fact that
the NL component is a general one, however, extends its use beyond
processing database questions and makes it possible to augment this system
with other components accessed through the medium of human language.

Central to the system described here lies the assumption that human
language is a suitable medium for man-machine communication. By no
means does this assertion preclude other means of interaction; it merely
illustrates our point of view that interfaces including natural language
facilities are useful by virtue of the fact that language is a form of
communication with which people are familiar.

The main benefit of this approach is that it separates the NL component
from its traditional role of merely serving as a processing channel for
database queries. Thus NL expressions are mapped into a meaning represen­
tation sufficiently flexible to cope with the different input needs of the
interface as a whole, i.e. whether it is a straightforward database query, a
meta-query about the organisation of the database or a modal question
about whether certain states of affairs are allowable within the database.

Equally important is the assumption that it is impossible to construct a
unified interface of this kind without insight into the semantics of human
languages. Most work on semantics has been done in the Montague
tradition. Montague grammar typically analyses the meaning of a fragment
of language by mapping it compositionally onto expressions in intensional
logic. These expressions are then interpreted using the full power of higher
order functions and the onthology of possible worlds. However, there are
serious theoretical drawbacks to the use of Intensional Logic as a vehicle for
semantic interpretation - particularly in computer based interfaces. First of
all, intensional logic is computationally intractable. Secondly, its notion of
intension is secondary and derived from a notion of extension. This leads to
counterintuitive equivalences between meanings. These considerations led to
the development of T Theory [Turner 1987] which retains the notions of
compositionality and the division between structural and lexical aspects of
meaning, but which does not use types. It also has a valid notion of inference
for certain classes of expressions and regards intensions as primary notions, a
feature which makes the theory intuitively more attractive.

In the ELITE system, the natural language component consists of a
compositional mapping between a fragment of English and a language called
PC-DET (Predicate Calculus with Determiners) which is a weaker version of
T Theory. The compositional mapping is given by a set of context free
grammar rules generating a fragment of English, each associated with a
semantic translation rule. The PC-DET expressions (which are reducible to

764 ICL Technical Journal November 1987

first order) capture the structural build up of the meaning of the original
expression, and they are the starting point for the other components of the
system.

Since the NL component does not interpret the input in terms of a particular
task which must be performed, it is possible to use it in conjunction with any
module performing a duty which can support NL communication with the
user. For instance, it could be positioned to the front of a query language
tutor. However, the immediate aim of the project was to build a front end for
database query evaluation. The present system, therefore, comprises (Fig. 1) a
database query system which maps PC-DET expressions first into the
relational calculus (to enhance portability) and then into Querymaster
formulae which can be handled by the ICL DBMS; a modal meta-query
handler which provides the user with feedback on which possible states of
affairs are allowable within a particular database; a paraphraser which
reports to the user how his question has been understood, offering him a
choice in case of ambiguous input and finally a recovery module which
intercepts those questions which the system cannot handle for any reason.

User Input

< Grammar - Compositional Mapping

User Dialogue

t
/

/ PC-DET
4*

Recovery
Module < ------------------

*
\ Paraphraser

-Model of the Database

Relational Calculus

Querymaster Meta-Query Handler
Fig. 1

2 NLFEs as a series of mappings

Writing a NL front end can conveniently be thought of as writing a program
that will execute a mapping between a NL and a formal language suitable for
querying a database. In this particular case, the NL has been identified as
English, and the formal language as Querymaster [ICL 1985],

When defining the mapping one should remember that it must be able to
extract from statements in English exactly that information which is
appropriate for database interrogation. However, it is desirable that it also
meets a number of other criteria. First of all, it would be appropriate if the
mapping were not totally dependent upon a particular database. It is, we

ICL Technical Journal November 1987 765

believe, impossible to deliver front ends which are totally database indepen­
dent. Still, it is perfectly feasible to restrict database dependency to isolated
parts of the system which can be independently modified should the system
be interfaced to a different datamodel. Furthermore, there are considerable
advantages with systems that are portable across different querylanguages.
Again, some aspects of the front end will have to be query language
dependent, but it is possible to isolate that dependency within a specific
component. Thirdly, it would be desirable if the system could be used not
only to interrogate databases, but could also be adapted to interface with
modules performing other sorts of tasks.

In trying to cater for the above portability criteria, the basic mapping
between English and Querymaster devised for this system has been divided
into four major stages. Each stage is characterised by specific aspects of
dependency upon either of the input or output languages, or upon the
database itself. In order to achieve this one must distinguish between those
aspects of meaning which are universally valid and those which depend upon
particular tasks to be performed.

In the present system that particular distinction is reflected in two consecu­
tive mappings. First, English expressions are translated into First Order
Predicate Calculus (FOPC) via an intermediary representation based on T
Theory. The FOPC expressions reflect only those aspects of meaning of the
input which are structurally determined on the basis of English syntax. They
do not attempt to resolve word meaning as the precise way in which the
content of words is to be interpreted must depend upon the context of use, i.e.
the system one is interfacing to, on the one hand, and the domain it covers on
the other (e.g. what “part” means will be different for an expert system
concerned with aeroplane fault finding and for a supplier database). Lexical
aspects of meaning are to be provided by a task and domain dependent
model (in this case a datamodel over the ICL SCOPE database).

The resolution of word meaning will thus result in a representation which, in
contrast to the FOPC, is no longer independent of these factors. In the
present system this means that the FOPC representations will be translated,
with the help of a model, into expressions of a typed (still first order) calculus
sensitive to the use of the interface as a database front end and to the domain
of customers and products as seen through SCOPE.

These two steps constitute the most difficult parts of the interface. They
require insight into the semantics of English and necessitate the development
of adequate models.

In the third stage, the typed expressions are mapped into the Relational
Calculus. This part of the mapping is also sensitive to the sort of task the
system will have to perform, in this case database interrogation. Further­
more, this intermediary step guarantees that the system can be easily adapted
to work for different query languages. Only in the last stage, during which

766 ICL Technical Journal November 1987

Relational Calculus expressions are mapped into Querymaster statements, is
the system linked to a particular query language. These last two mappings
can be defined as pure syntactic transductions. As a consequence, their
implementations have been relatively easy.

2.1 Overview of mappings and their implementation

Mapping English into FOPC Initially, statements in English (the input
language) are mapped into expressions of the FOPC. There is a sense in
which the FOPC is such an obvious candidate as an intermediary represen­
tation in systems of this kind that the choice needs no further motivation.
The employment of FOPC as a representation language is widespread in
Artificial Intelligence. It has become a basic tool in a wide variety of AI work
and can be seen as the common denominator among an ever increasing
range of computer applications. It has served as the basis for the design of
programming languages and has the capacity of representing knowledge.
Furthermore, it includes a valid notion of inference which means that, apart
from providing a means of representing knowledge, it also defines formal and
rigorous ways of arriving at new knowledge from known facts. It forms the
base of a variety of representation mechanisms such as frames, scripts,
semantic nets etc. Practically speaking, the choice of FOPC as an intermedi­
ary representation opens up a large number of possibilities in terms of the
sort of system to which this part of the front end can be interfaced.

There are, however, basic difficulties in defining a mapping between natural
languages and the FOPC. In particular there are problems in defining a
simple compositional translation based on the syntax of both languages.
Essentially the syntax of English (and indeed NL in general) differs consider­
ably from that of the calculus, especially with respect to quantificational
structure.

To overcome this it was necessary to devise a version of the Predicate
Calculus, already referred to as PC-DET, that has a quantification structure
resembling that of NL. We introduce into the FOPC two new syntactic
classes. These classes are DETERMINERS and SET TERMS. They are
designed to reflect the way in which NL quantification works. Nouns will be
translated as set terms. NL quantifiers will be translated as determiners,
which behave according to the principles of generalised quantifiers.

The translation between English and expressions of PC-DET is defined by
means of a set of rules. Each rule has two parts: a context free grammar rule
which will characterise a wellformed substring of English and a translation
rule which allows for determining a subexpression in PC-DET which reflects
the meaning of that substring. Since the translation rule only applies when
the syntactic grammar rules does, the design guarantees that the mapping
will be executed compositionally; this is in keeping with the traditions of both
computational linguistics and computer science. The mechanism that exe­
cutes the rules is a bi-directional chart parser [Steel and De Roeck 1987].

ICL Technical Journal November 1987 767

Explaining the differences between ordinary and bi-directional chart parsers
and the advantages of the latter in terms of space and computing time would
take us beyond the scope of this paper. Note, however, that the parser will
produce all alternative solutions which can be detected at this stage.
Syntactically ambiguous input strings will result in the production of more
that one PC-DET expression.

The resulting PC-DET representation must then be translated into FOPC.
The mapping at this stage is one to one (no additional ambiguity can be
discovered) and is easily defined by a set of (compositional) translation rules.
The implementation is fairly straightforward and takes the shape of a simple
syntactic transduction.

The expressions now obtained do not include any reference to a particular
domain as might be covered by a database, nor to any knowledge about the
task on hand (i.e. interrogating databases). It would thus be possible to use
this part of the mapping to “front end” other types of system as long as the
task performed can be modelled by first order formalisms (e.g. inference
engines, tutoring aids etc.).

Mapping FOPC into a typed first order calculus In mapping English into
the FOPC, the resulting representation has been stripped of all structural
syntactic information that characterises English. Nevertheless, the predicates
in the expressions are just English words; this is in keeping with the
distinction made earlier between structural and lexical aspects of meaning. In
the second mapping to be described here, those predicates will be unpacked
in terms of what they are taken to mean with respect to a particular
application over a specific domain. This part of the process draws heavily on
domain dependent information which has been cast as a “conceptual” model
over the SCOPE database containing information about products, orders,
stocks, warehouses and customers.

At this stage, the FOPC expressions are mapped into a typed first order
predicate calculus, PC-TYPED. The typing was introduced because it offers
a convenient (and traditional) way of distinguishing between different kinds
of objects and relationships between objects in a domain of application. The
translation process between FOPC and PC-TYPED expressions is sensitive
to the fact that the necessary “conceptual” information must be cast into a
relational datamodel. In this particular implementation, the domain know­
ledge is taken from a relational datamodel over SCOPE which was also used
for the NEL system [West 1986]. Since the datamodel itself is not database
or domain dependent (though its content is), it is easy to see how this part of
the system may be adapted to work for any database for which a relational
model can be defined. More importantly, relational datamodels can be
devised for as many domains as may be addressed by different types of
application. The fact that the system implemented here is intended to
function as a front end to an actual database is coincidental. The NLFE itself
can be interfaced to any system performing any task over any domain, for

768 ICL Technical Journal November 1987

which a relational model can be devised, by merely presenting it with such a
model.

To provide all the information needed at this stage, the SCOPE datamodel
must be supplemented by a dictionary which defines the relationship between
English words (FOPC predicates) and constructs in the model. The current
implementation relies on a dictionary which associates words with data­
model objects and constructs of varying degrees of complexity. Some nouns
(e.g. “client”) may be associated with simple database relations or attributes
whereas some verbs are taken to correspond to a variety of permitted access
paths within the SCOPE model. Such a dictionary inevitably has to be
constructed afresh for each application.

The FOPC expressions output by the first stage are explicitly structured to
express the scope of quantifiers and logical connectives. They can be seen
conveniently as right branching trees where the predicates, quantifiers,
variables, connectives and constants occur as leaves. The translation into
PC-TYPED, which must preserve scope of quantifiers and connectives,
proceeds compositionally by recursive rule application which terminates at
the leaf nodes of the given tree.

Taken in isolation, the translation of a predicate leaf node is simply the set of
all objects associated with it in terms of a given database as defined by the
dictionary. In the case of unary predicates which refer to simple database
objects, the node is tagged with an interpretation type as assigned by the
dictionary and the model. Hence the translation of name(x) may be:

{[[CUST-NAME(x)], attribute], [(PRODUCT-DESC(x)], attribute],
[[SUPPLIER-NAME(x)], attribute]}

In the case of n-ary predicates expressing relationships between items, leaf
nodes translate to a set of primitive “meanings” compatible with the
database as a whole. Thus the translation of the binary predicate at(x, y) may
be:

{LOCATIONS, y) TIME(x, y)}

In both cases,, therefore, translation of leaf nodes is simply a function of
dictionary/datamodel look-up.

As the recursion unwinds, the rules for parent nodes are applied to their, now
instantiated, leaf node arguments until, at the outer level, the rule for the root
node (the whole expression) is finally applied. Having translated the leaf
nodes, a given parent node in the parse tree now consists of the set of each
possible interpretation of a given FOPC n-ary predicate over each member
of the set comprised by the Cartesian product (A1 x A2 x ... x An) of the sets,
A1... An, of the possible values of the n FOPC unary predicates to which the
n variables in the n-ary predicate refer.

ICL Technical Journal November 1987 769

Translation of such nodes involves checks on the compatibility of the
arguments with the predicate using the tagged database types together with
checks, where appropriate, on whether a path generated by linking, in the
case of attribute or value arguments, the owning relations or, in the case of
relation arguments, the arguments themselves, would be permitted in the
context of the given database. In the process of translation, therefore, all
incompatible interpretations are eliminated. The resulting PC-TYPED
formulae are expressions of database entities and paths between them cast in
terms of equalities of key attributes.

As an example translation, consider the following query in English which
relates to the SCOPE database.

Show all names at BRA01.

‘BRA01’ is a value of the attribute CODE in the WAREHOUSE relation.
Note that this sentence is underspecified with respect to much of the
information necessary to cast the question in formal terms. Translation to
FOPC yields the tree:

(3 x 1(x 1 =you) a (Vx2 (name) x2) a (3 x3 bra01(x 3) a beat(x 2, x 3)))
->show(x1, x2)))

where x n are variables. Mapped into PC-TYPED, the expression becomes:

3x12 PRODUCTf x 12) a V x 2 PRODUCT-DESC(x 2) a have(x 12, x 2) a

3a1 #product(a1) a have(x 12, a1) a
3r1 STOCK(r1) a 3b1 #product(b1) a have(r1, b1) a (a1 =b1) a

3d #warehouse(c1) a have(r1, cl) a

3 x 13 WAREHOUSE(x 13) a 3d1 # warehouse(dl) a have(x 13, d1) a (c1 =d1) a

3x3 CODE(x 3) a have) x 13, x 3) a (x 3 = BRA01)
list(X 2)

Predicate names starting with # are key attributes in the SCOPE database.
Scope of quantifiers is given by linear order and insignificant bracketing over
“ a ” has been left out to improve readability.

From the above translation it becomes clear that the TIME sense of‘at’ (beat
in the FOPC expression) was rejected in the above context and only the
LOCATION sense succeeded. Similarly the only sense of ‘name’ that met the
constraints of the system was PRODUCT-DESC (product description), i.e.
only PRODUCTS can be located in WAREHOUSES, not CUSTOMERS or
SUPPLIERS. The path through the database linking the PRODUCT and
WAREHOUSE relations via the STOCK relation is described by the
equality of key attributes, # product, # stock and # warehouse.

Mapping PC-TYPED into the relational calculus Translation of the above
PC-TYPED expression into Tuple Relational Calculus is now straightfor­
ward. The translation of ‘show(x 1, x 2)’ in FOPC (where x 1 is predicated

770 ICL Technical Journal November 1987

over as ‘you’ and x 2 as ‘name’) into ‘list(x 2)’ in PC-TYPED indicates that
x 2 must be rendered as a free variable in the relational calculus (RC)

expression. ‘PRODUCT-DESC’ will thus be placed in the target list of the
RC query as follows:

{PRODUCT. PRODUCT-DESC: (3r1e STOCK) (3 x 13 e WAREHOUSE)
((PRODUCT. # product = r1. # product) a

((r1. # warehouse = x 13. # warehouse) a

(x 13.CODE = BRA01)))}

The clear advantage of the above approach to supplying domain dependent
interpretations is that, for any given expression, all possible meanings in
terms of a given defined domain are produced. In many cases only one
interpretation may emerge from the mapping process. Where an expression is
ambiguous, with respect to a database, the user himself can decide which
meaning he intended since a paraphrase of each alternative can now be
presented. This is obviously an improvement on traditionally conceived
systems which remove from the user all control over the disambiguation
process, and which may, therefore, ultimately lead to the retrieval of
misleading information.

3. Other system components

3.1 The paraphraser

The QUERYMASTER command, that is delivered by the last stage of the
mappings executed by the natural language component, is passed on to a
paraphraser. Its task is to give the user an English description of what the
system has taken a question to mean. In cases where the front end has
produced multiple interpretations, each of the QUERYMASTER commands
is paraphrased in turn and the user is given a choice as to which particular (if
any) reading is the one he intended.

The paraphraser embodied in this system is the same one as described in
[Lowden and De Roeck 1986a, 1986b]. It maps the QUERYMASTER
command first into the relational calculus, then into a predicate argument
representation of the final text with the help of the data model, and then into
a paragraph of English. We refer the interested reader to the above reference
for more information.

The fact that the paraphraser works from relational calculus expressions, and
the fact that a trivial mapping exists between each relational query language
and the calculus means that neither the front end nor the paraphraser is
dependent on the use of QUERYMASTER as the query language. In the
present system, it would be possible for the paraphraser to work from the re­
lational calculus expression delivered by the front end rather than the
generated QUERYMASTER command. There are two reasons why that
approach was not adopted.

ICL Technical Journal November 1987 771

Firstly, the system as a whole caters for users who wish to use QUERY-
MASTER directly, without using the NLFE. A casual user may feel
confident enough to use the query language, but may still want the option of
verifying whether his question has been adequately formulated and corre­
sponds to what he intended. Secondly, although the relational calculus can
accommodate the whole of QUERYMASTER, it is not the case that
QUERYMASTER equates with the whole of the calculus. Users may ask
queries that can be represented in the calculus but not in the query language.
In that case, the user will be given an appropriate error message. Because we
believe it is important that the system can report only on those questions
which it can retrieve an answer for, it is imperative that the final translation
into QUERYMASTER be effected before paraphrasing is initiated.

3.2 The meta-query handler

Little has been said so far regarding the handling of requests for meta
information about the database. The reason is simply that the front end does
not distinguish this type of question from other input it may receive. The
approach is a consequence of our aim to build a general system which does
not assume database interrogation as its sole purpose.

Meta queries typically are cast as modal questions. The present implementa­
tion only deals with the “can” modal but, with the necessary modification of
the grammar dictionary and datamodel, other modals could also be in­
cluded. A typical question for the present implementation might be:

“Can a credit limit exceed one million pounds?”

The question is passed through the various mappings by the natural
language component and is ultimately rendered as a relational calculus
expression with an empty left hand side (a closed predicate). That expression
is then passed on to the meta query handler, a component which clearly is
domain and task specific. An adequate reply to the question should not just
be cast in terms of “yes” or “no”, but must include an exhaustive list of
conditions under which that answer holds, as well as exceptions when
recorded. Providing an adequate reply to questions of this kind requires
access to information on constraints regarding data integrity.

However, SCOPE, in common with many other databases, has constraints
on data integrity built into the system in low level code. There are a number
of practical disadvantages to this approach. Adding, changing and deleting of
constraints typically involves manual (therefore costly and error prone)
checking to see whether a modification will clash with other constraints
already in place. No user access to rules is permissible and, more impor­
tantly, low level built in constraints cannot be used for any other purpose
than to guarantee data consistency.

Recently, attempts have been made to use techniques developed in Artificial

772 ICL Technical Journal November 1987

Intelligence in order to build more flexible integrity checking mechanisms.
The basic principle behind these new approaches is to state constraints as
rules (i.e. declaratively) against which modifications to the database must be
evaluated. The consequence is not only a lesser workload for systems
professionals, but an increased potential in user facilities. Because the rules
are separately stated they can be put to uses of their own. They can become
part of a rule based inference mechanism, which can derive “new” constraints
that are a consequence of existing ones. In effect, this means that a question
concerned with a state of affairs for which no direct, immediately relevant
rule is present can still be answered by evaluating the consequences of those
rules which are in place. This task can be envisaged as part of the wider
perspective of creating an intelligent knowledge base to act as a mediator
between users and machines.

The meta query handler thus consists of a series of declaratively stated rules
defining the constraints that the information stored in the database must
conform with, and a mechanism for comparing information represented in
the question with those rules. The kinds of questions which can be handled
by the present implementation include:

- general questions of possibility
e.g. Can a manager earn more than 20 000 pounds?

- existential modal questions of possibility
e.g. Can Jones earn more than 20 000 pounds?

- modal commands
e.g. Get all the customers whose credit limit can exceed 1000000 pounds.

Note that for the second query it is necessary to perform a database retrieval
first in order to find out Jones’s category.

The Modal Query interpreter operates on the assumption that to ask a query
of a constraint base is logically equivalent to an attempt to assert an
additional constraint into the base corresponding to the transformation of
the query into an assertion. There are three possible outcomes that may arise
from attempting to assert a new constraint w into an already consistent set of
constraints W.

(a) W->w. This would mean that ITu{w} characterises exactly the same
valid database states as w and, thus, since nothing would be added or
taken away from the constraint base by asserting w, the answer to the
equivalent query to w is ‘Yes’.

(b) W-*~iw. This would mean that the assertion of w would lead to an
inconsistent set of constraints and that the reply to the equivalent query
to w should be ‘No’.

(c) Neither (a) nor (b) is true, in which case the assertion of w would give rise
to a new expanded consistent constraint base. The reply to the equiva­
lent query to w would, in this case, be ‘I don’t know’.

ICL Technical Journal November 1987 773

These three outcomes follow the pattern established by Green (1969) for
deductive first order question answering systems. There is a case, however, in
a question answering system, for further dividing outcome (c) into two
separate outcomes, (cl) and (c2):

(cl) There are rules in W which are logically related to w but neither (a) nor
(b) follows from them. The reply to the equivalent query to w would then
be ‘Cannot be determined from existing rules’.

(c2) There are no rules in W which are logically related to w. In this case the
reply to an equivalent question would be, ‘There are no rules to this
effect’.

This distinction is observed in the system described here as a means of
providing more specific information to the user and as a means of identifying
questions (possible constraint assertions, not identified by outcome (c)) which
may not make sense in terms of the current definition of the database. The
distinction arises naturally as a consequence of the implementation. Modal
queries in extended relational calculus, output by the natural language
component, are converted into hypothetical constraint assertions in clausal
form and matched with existing constraints. If a match is obtained, a
declarative rule packet is evoked which, using theorem proving techniques,
establishes whether outcome (a), (b) or (cl) applies. If no match is obtained,
then condition (c2) applies by default.

As an example consider a constraint base consisting solely of the rule:

‘The maximum salary of managers of less than grade 15 is £40K’

which is represented in list form as follows:

[manager(x), grade(x, z), z< 15, salaryfx, y), y < = 40]... (1)

If the question,

‘Can managers of grade 17 earn more than £45K?’,

which can be mapped into a pattern like:

[manager(X), grade(X, Z), Z= 17, salary(X, V), Y > 45]...(2)

were asked of the system, the match between (1) and (2) would succeed, and
thereby evoke a comparison rule which would assess whether adding (2) to a
constraint base consisting of (1) would result in outcome (a), (b), or (cl). In
this case the result would be (cl), since (2) is neither derivable nor falsifiable
from (1).

If no applicable rules exist in the current constraint base for evaluating a
question, the result would be outcome (c2).

774 ICL Technical Journal November 1987

The actual answers output by the system in response to outcomes (a) and (b)
are more sophisticated than simple yes/no replies. In the case of outcome (a)
extra information such as maxima and minima and other conditions are
provided using canned English in conjunction with instantiated variables. In
the case of a ‘No’ answer, exceptions to the rule are also given but, at present,
this aspect of the system is trivial as exceptions are not built into the logic of
the system but only into canned replies. Complex queries involving more
than one constraint in the base are answered by itemising the replies
generated by each rule comparison.

In the present system, existential questions of possibility are answered by
retrieving the relevant details from a specially constructed prolog database in
order to convert the question into a general one. For instance:

‘Can Jones earn more than £30K?’

might be converted to

‘Can a manager of Grade 14 earn more than £30K?’

by retrieving the fact that Jones is a manager of Grade 14. In a future
integrated system, however, it should be possible to retrieve such information
directly from the main database by generating a command in the appropriate
query language.

In general, the Modal Query Interpreter described here is simply a proto­
type, implemented to explore the potential of natural languages for more
sophisticated query processing. To this extent, the approach employed to
date seems promising.

3.3 A personalised interface

The individual needs of every NLFE user are different. Each tends to express
himself by selecting different words and can be expected to use different
constructions. This applies to ordinary everyday conversation, and it is to be
expected that the same will happen when communicating with machines.

It is practically impossible to foresee the particular needs of each and every
front end user and to anticipate the words he will be likely to employ.
Furthermore, if one tries to cater for the needs of all individuals, one may
complicate the natural language component unnecessarily. For instance, if
two people wish to use the same word consistently to refer to different things,
then catering for both will result in a lexical ambiguity (although as far as the
users are concerned there is no need to do so). This in turn will require the
user to choose which interpretation he requires time and time again.

The most common solution to this problem involves restricting the vocabu­
lary and syntax which all users are allowed to draw from. Although effective,

ICL Technical Journal November 1987 775

the result is definitely not user friendly. The system described here adopts a
very simple but far more satisfactory solution. The main dictionary, gram­
mar and datamodel are to be seen as the “core” system, the basic mechanism
which is common to all users. Additionally, each user has a personal
dictionary and grammar and also a personal datamodel/dictionary which
allows him to choose which constructions and words (with associated word
meanings) he prefers to use without unnecessarily complicating the overall
system. Since these personal components are kept apart from those of other
individuals, a change or addition to one of them cannot affect the environ­
ment defined by other users.

Personalised components are read in together with the core system whenever
a user is recognised as a particular individual (upon logging into the front
end).

3.4 Communication with knowledge engineers

In order to develop personal system components as described in the previous
section, it is necessary that users have ways of communicating with the
knowledge engineers responsible for introducing the changes the user
requires. Furthermore, in order to improve overall system performance and
record errors, there must be a way to trace anomalies when they occur.

In order to cater for the above tasks, a number of knowledge engineer
communication files have been built into the present program. When a word
is used that is not recognised by the front end, the user is asked whether he
wants it included in his personalised dictionary. If so, he is asked to repeat
the word and a context of use making clear which interpretation he wishes it
to receive. The information is written to a file which the knowledge engineer
can then consult.

A similar approach is adopted with input which the parser fails to recognise.
If all the words in the input are known, but no satisfactory analysis can be
found, the user is asked to record the sentence that caused the problem.

Various other sorts of errors can be recorded in the same way and the
approach has the advantage that a user can report on an anomaly the very
moment it occurs. The overall result is a more user-friendly system.

4. Conclusions

The system described is a first implementation of a prototype design. It was
intended to verify the practical feasibility of constructing a generalised
NLFE; however, the requirement to produce a working system in a relatively
short timescale has necessarily meant that certain components are not fully
developed.

For example the module catering for communication between user and

776 ICL Technical Journal November 1987

knowledge engineer could be made far more sophisticated. To take full
advantage of such a facility, the core NL program (described in section 2)
should be implemented in a more flexible way allowing for various check­
points which could be reported on to the user.

The paraphraser incorporated in the system has been developed separately
to report on QUERYMASTER and relational calculus commands. Its
design reflects this aim to some extent and a more general text generator
could be produced allowing modal queries to be reported on in a more
flexible way. Furthermore, since QUERYMASTER cannot cope with uni­
versal quantification in the queries it allows, the paraphraser was not
designed to cater for such expressions. This restricts the portability of the
present system to query languages of the same type.

The implementation has also shown that the relational calculus is not
necessarily the most appropriate means of expressing modal queries which
could be better represented in the typed predicate calculus.

Despite these shortcomings no serious design problems have emerged and an
efficient implementation of the current prototype would result in a flexible
front end that compares favourably with more traditional systems in terms of
portability and extensibility and in terms of the assistance it offers to casual
users.

References

GREEN, C.: “Theorem Proving by Resolution as a Basis for Question Answering Systems”,
M a c h i n e I n t e l l i g e n c e , 1969.
INTERNATIONAL COMPUTERS LTD.: “Using Querymaster (Q.M.250)”, P u b l i c a t i o n

R 0 0 4 3 3 / 0 1 , 1985.
LOWDEN, B.G.T. and DE ROECK, A.N.: “REMIT: a natural language paraphraser for
relational query expressions”, I C L T e c h n i c a l J o u r n a l , Vol. 5, Issue 1, 1986a.
LOWDEN, B.G.T. and DE ROECK, A.N.: “The REMIT Systems for Paraphrasing Relational
Query Expressions into Natural Language”, in P r o c e e d i n g s o f t h e 1 2 t h I n t e r n a t i o n a l C o n f e r e n c e

o n V e r y L a r g e D a t a B a s e s , Kyoto, Japan, 1986b.
STEEL, S. and DE ROECK, A.N.: “An Efficient Bidirectional Chart Parser with Heuristic Rule
Application”, P r o c e e d i n g s o f A I S B , 1987.
TURNER, R.: “Towards a New Foundation for Semantic Theory” in Turner, Chierchia and
Partee (eds.), P r o p e r t y T h e o r y a n d S e m a n t i c s , MIT Press (forthcoming).
WEST, V.: “Natural Language Database Enquiry” in I C L T e c h n i c a l J o u r n a l , Vol. 5, Issue 1,
1986.

ICL Technical Journal November 1987 777

DAP-Ada: Ada Facilities for SIMD
Architectures

L.M. Delves and M. McCrann
Centre for Mathematical Software Research, University of Liverpool, Liverpool, England

Abstract

We describe a package o f facilities coded w ho lly w ith in s tandard Ada,
w hich provide language extensions to A da aim ed at expressing SIMD
a lgorithm s. The package is in tended to com plem ent the MIMD (task­
ing) facilities o f Ada; the extensions are m odelled after those provided
by DAP-FORTRAN, an extended Fortran d ia lec t developed fo r the ICL
D istributed A rray Processor. Examples of the use of the extensions are
given.

1 Introduction

Parallel architectures are becoming increasingly common. The architectures
being proposed, built, and in some cases even sold, are very diverse; but they
come in three recognisable flavours:

Vector, or pipelined (Cray-1 etc, Cyber 205,)
SIMD (ICL DAP, Goodyear MPP)
MIMD (Intel Hypercube, FPS T-Series; other transputer-based ma­
chines

Expressing algorithms in vector or parallel form for these machines is not
possible without suitable language facilities; to date, manufacturers have
usually provided ad hoc extensions to Fortran, with the extensions being
naturally both tailored to their own machines, and incompatible with others.
The result has been a growing collection of Fortran dialects, and a growing
portability problem. As parallel machines become the rule rather than the
exception, it will be imperative to provide standard language facilities
capable of expressing naturally the contructs handled efficiently by all three
classes of machine. These constructs fall rather naturally into two classes;
a) MIMD machines; can run multiple, unrelated, concurrent processes.
b) Vector and SIMD machines: can perform parallel (or at least especially

efficient) operations, of various types, on vectors and matrices.

ICL has spun out an independent company, Active Memory Technology Limited, to develop,
manufacture and market DAP products. All enquiries should be directed to AMT Ltd. 65
Suttons Park Avenue, Reading RG6 1AZ.

778 ICL Technical Journal November 1987

A general purpose language should provide both types of construct. This is
so only partly because of the need to cater for the newer architectures; just as
importantly, there are many algorithms which are most easily expressed in
matrix and vector form, independently of the hardware on which the
algorithm is to run; while others are better expressed in the language of
separate and concurrent tasks, even if they are to run on a serial machine.
The language should also be widely available in a standard form. Currently,
no language satisfies both of these criteria. The most widely used (for
scientific purposes), Fortran, has a revised standard (Fortran8X) in prepar­
ation; the revision contains quite extensive SIMD (array and vector process­
ing) facilities, based quite closely on those in DAP FORTRAN (which in turn
were in part based on those in APL). But FORTRAN8X (at least as at
January 1987) has no multi-tasking syntax - an omission which will be felt as
soon as, or before, the standard is issued. The most likely alternative for a
standard, widely available, scientific language, is Ada. Ada has well devel­
oped MIMD facilities (Ada tasking). It contains only rudimentary array-
handling facilities.

Embedding SIMD facilities in an existing language can always be done by
providing a long enough list of “system functions”. Such extension are not
very friendly in use. However, we have argued elsewhere [Delves and
Mawdsley (1985)] that quite reasonable array handling facilities can be
defined within an existing high level language, provided that the language is
extensible in providing facilities for introducing new types, and for defining
operations on those types. In [Delves and Mawdsley (1985)], a set of SIMD
extensions were given for Algol68, the results exemplifying what can be
achieved in providing a reasonably natural user image for the new facilities.
Ada is in some respects more suitable than Algol68, and in others more
limiting, for this kind of extension. Certainly, it is likely to be more widely
used. In this paper, we look at the problem of defining DAP-Fortran like
vector and array handling facilities wholly within standard Ada, and describe
briefly an Ada package (“DAP-Ada”) which implements these facilities. We
give only a summary of the facilities here; for full details, see [Delves and
McCrann (1985)]. A fuller motivation for the work is given in [Delves and
Mawdsley (1985)], and the current paper follows the format of that reference
closely.

Because Ada was designed to accept user-defined extensions, the extensions
can be (and are) written wholly in Ada. Thus, SIMD programs can be
developed using DAP-Ada even on serial machines. On parallel machines,
the programs will run efficiently provided that the DAP-Ada package is
implemented efficiently for the architecture involved; the compiler writer for
the parallel machine may recognise the extensions explicitly and generate
parallel inline code for them, or the procedures in the package may be
handcoded. It is our belief that a set of “standard” SIMD extensions for Ada,
should be developed; they could then reasonably be expected to be available
on all machines supporting Ada. The facilities we describe show what can be
achieved; but the package presented is not intended to be viewed as a draft

ICL Technical Journal November 1987 779

for a standard, since we have consciously omitted many details, and skimped
on the facilities in a number of places, in a package developed originally for
teaching purposes. We comment later on what we believe to be the most
important omissions.

2 DAP-AOA

The extensibility of Ada lies in the ability of the user to define new data types;
to extend the meaning of the built-in operators acting between variables of
either new or existing types; and to overload user-defined function and
procedure names. It is not possible to extend the syntax of Ada, and this has
an obvious effect on the way in which user facilities can be provided.

In addition, Ada provides a “Generics” capability: an ability to write code in
terms of abstract data types, with specific types provided as parameters when
the code is “instantiated”. This capability has been used in implementing
DAP-Ada; however, it does not influence the design of the facilities in DAP-
Ada, and we avoid explicit comment on its use.

In this section, then, we recall briefly the additional facilities introduced into
FORTRAN by DAP-FORTRAN, and describe their equivalents in DAP-
Ada.

2.1 Array operations

The most basic feature of the DAP is its ability to process whole arrays (of
size up to 64 x 64) in parallel. DAP-FORTRAN reflects this ability by
allowing the user to write whole-array operations, and operations on
subsections of an array (“slices”). Table 1 gives examples, together with the
equivalent code in DAP-Ada. We make the following comments on these
examples:

1) apart from trivial representational differences (: = for assignment) the
facilities for whole array operations look the same in the two languages.

2) Whole array assignment is already part of the Ada language. Arithmetic
operations between arrays are not predefined, but the ability to define
them is there. Thus, in the first five lines of Table 1, the operators x, + ,
and * have been defined as extensions to the language. We note that the
operation * is defined as pair-wise multiplication between matrix
elements, rather than as an algebraic multiplication of the two matrices,
because that is how it is defined in DAP-FORTRAN. Note also that the
result of the matrix arithmetic operations is another matrix, space for
which is generated automatically; this ability to generate storage as
required, and to define functions returning matrix-valued results, is
crucial to the DAP and to DAP-FORTRAN; it is already present in
Ada. Similar facilities are available for Integer and Logical matrices, and
for one-dimensional vectors.

3) Unlike DAP-FORTRAN (and Algol68), Ada does not provide syntax

780 ICL Technical Journal November 1987

for referring to a row or a column of a matrix (multi-dimensional slicing).
All (Ada) scientific programmers regret this oversight even on serial
machines; we have had to introduce the functions ROW, COL to
provide a suitable facility.

4) It is evident from Table 1 that the equality comparison operator is
treated non-uniformly: this non-uniformity stems from a recognised
design defect in Ada, which provides default (and not always useful)
definitions of equality between data types, and forbids re-definition
(save in circumstances which are not useful here).

Table 1 Array arithmetic and comparison facilities in DAP-FORTRAN and DAP-Ada

Operation DAP-FORTRAN DAP-Ada

Array assignment A = B A: = B
Array addition A = B + C A: = B + C
Array multiplication A = B*C
Slicing a row U = V + A (I,) U: = V + ROW(A,I)
Slicing a column U = V + A(,1) U: = V + COL(AT)
Array or Vector A.GT.B A > B
Comparisons U.LE.V U < = V
Array Equality A .EQ. B EQUAL(A,B)
Vector Equality U .EO. V EQUAL(U,V)
Logical operations A.AND.B A AND B

U.AND.V U AND V
.NOT.A NOT A
.NOT.V N O TV

A, B, C are assumed to be real or integer matrices. U, V are one-dimensional vectors.

2.2 System functions

Although DAP-FORTRAN significantly extends the standard FORTRAN
syntax, it still provides a large number of operations via “system functions”:
pre-defined functions which can be called by the user. These are all very useful,
but from the point of view of the present paper not very interesting: we merely
have to provide routines which carry out the same operations, in Ada. The
only feature of note is that DAP-FORTRAN allows the “overloading” of
procedure names; that is, a given procedure name can refer to two or more
procedures which expect different types of arguments and yield possibly
different types of results. This facility allows, for example, the same name to be
used for the procedure to sum the elements of a real matrix (SUM) as for the
versions to sum the elements of an integer or logical matrix, or of a real, integer
or logical vector. In Algol68, procedure names cannot be overloaded, but
operators may; most of the system functions were therefore implemented as
operators in DAP-Algol, leading to a notational difference (infix notation) for
two-parameter generic functions, and to non-uniformity for functions with
more than two parameters, for which alternative versions had to be given
distinct names. Ada allows the overloading of function and procedure names;
it also provides a “default value” capability for input arguments which is
helpful. Hence, the system functions look neater in Ada than in Algol68.

ICL Technical Journal November 1987 781

A partial list of some of the more commonly used system functions, is given
in Table 2; a full list is given in [Delves and McCrann (1985)].

Table 2 A partial list of system functions

DAP-FORTRAN DAP-Ada Type of result Comments

ABS (ne) ABS (ne) same as argument
EXP ATAN SIN COS SQRT LOG also provided
FIX (re) FIX (re) ie
FLOA (ie) FLOAT (ie) re
ALL (le) EVERY (le) Is logical AND of

components (ALL is an
Ada reserved word)

MERGE (ae, ae, le) merge (ae, ae, le) ae merges first two
depending on third
argument

The allowable types of arguments are indicated as follows: s = scalar, v = vector, m = matrix,
e = any of these, r = real, i = integer, 1 = logical, a = any of these, n = real or integer

2.3 Subscripting facilities

In DAP-FORTRAN, the FORTRAN concept of a subscript is generalised.
In addition to the traditional use to specify a particular element of a vector or
a matrix

A(iJ); V(i)
it is possible to specify a row or a column, and to provide integer and logical
vectors and matrices as suffixes. The resulting facilities are extremely useful
for specifying quite general DO loops without having to introduce an explicit
loop. It is not possible within Ada to use the DAP-FORTRAN syntax as it
stands; however it is straightforward to define new functions SUB, SUBR,
SUBC which accept logical and integer vector and matrix arguments, and
perform the same selecting actions as the “extended suffixing” provisions of
DAP-FORTRAN. A list of the facilities is given in Table 3, together with
their DAP-Ada equivalent.

Table 3 Subscript facilities available in DAP-FORTRAN and DAP-Ada

DAP DAP MEANING
FORTRAN Ada

A(,i) COL(A,i) iTH column of A
A(i,) ROW(A,i) iTH row of A
A(LA,) SUBR(A,LA) (These forms each return a vector whose
A(,LA) SUBC(A,LA) components are a selection from the elements of
A(,IV) SUBR(A,IV) A or V. For details, see [ICL 1978]
A(IV,) SUBC(A,IV)
V(LV) SUB(V,LV)

(LV is a logical vector, LA a logical matrix, IV an integer vector).

782 ICL Technical Journal November 1987

2.4 Shift facilities

In DAP-FORTRAN there are facilities which enable users to perform
datashifts on vector and matrix values. These shifts are performed by a set of
pre-defined functions, each of which shifts either vector or array data
between processors in the DAP processor array, in a horizontal
(“EAST/WEST”) or vertical (“NORTH/SOUTH”) direction. The length of
the shift is a parameter of the function; a simpler facility (“shift-indexing” -
see below) is provided for shifts of length 1. Shifting a DAP-sized row of data
one place to the right (say) introduces a blank in position 1, and shifts the
right most data element out of the DAP processor array. How these edge
effects are treated depends on the setting of what DAP-FORTRAN refers to
as the GEOMETRY:

CYCLIC GEOMETRY: data shifted out are wrapped round and
shifted back in at the other end.

PLANE GEOMETRY: data shifted out are lost; zeros or FALSEs are
shifted in at the other end.

At any time, there is a standard geometry, set separately (and resettable) for
the N-S and E-W direction. The shift operations themselves either impose an
explicit temporary geometry, or use the default geometry. The facilities
provided are listed in Table 4, with DAP-Ada equivalents; DAP-FORTRAN
provides a separate function for each shift direction and shift geometry, while
DAP-Ada provides a single SHIFT function, with the direction and geome-

Table 4 Shift operators

DAP-FORTRAN DAP-Ada Operation

SHNC(me,is) SHIFT(mc,is,N,C) Shift North Cyclic
SHNP(me,is) SHIFT(mc,is) Shift North Planar
SHSC(me^s) SHIFT(mc,is,S,C) Shift South Cyclic
SHSP(me,is) SHIFT(mc,is,S) Shift South Planar
SHWC(me,is) SHIFT(mcjs,W,C) Shift West Cyclic
SHWP(me,is) SHIFT(mc,is,W) Shift West Planar
SHEC(me,is) SHIFT(mc,is,E,C) Shift East Cyclic
SHEP(me4s) SHIFT(mc,is,E) Shift East Planar
SHLC(ve or me,is) SHIFT(vc,is,N,C) Shift Left Cyclic
SHLP(ve or me,is) SHIFT(vc,is) Shift Left Planar
SHRCfve or me,is) SHIFT) vc,is,S,C) Shift Right Cyclic
SHRP(ve or me,is) SHIFT(vc,is,S) Shift Right Planar
A(+ ,) NORTH(A) or NORTH)A,1)
A((—,) SOUTH(A) Suffixed elements move in the stated
A(, +) WEST) A) direction with the default geometry.
A(, —) EAST) A) All versions may have 1 or 2 args
V (+) WEST(V) etc.
V (-) EAST(V)
A(—, +) EAST(SOUTH)A))

The allowable types of argument are as follows: s = scalar, v = vector, m = matrix, a = any of
these, r = real, i = integer, b = boolean, e = any of these, c = r or b. An entry c for DAP-Ada
implies we have not bothered to implement the integer equivalent.

ICL Technical Journal November 1987 783

try specified by additional arguments which default to NORTH, PLANE.
The Ada facilities seem more uniform at least to us.

DAP-FORTRAN also provides Left and Right shifts for matrices; these treat
the matrix as a long vector. This concept has not been mimicked in DAP-
Ada, nor is it needed since DAP-Ada shift operators accept any length
vector.

DAP-FORTRAN also permits the use of + and — as array subscripts to
indicate a shift. This facility is provided in DAP-Ada by defining functions
NORTH, SOUTH, EAST and WEST. The geometry of these shifts is given
by the current geometry, as set in the global variables NSGEO and
EWGEO. These can be altered at any time by either a straightforward
assignment of the form:

NSGEO : = PLANE (or CYCLIC);
or by calling a procedure GEOMETRY which takes a boolean vector
argument of any size and sets either the NS, or both the NS and EW
geometrys (see [ICL 1978]).

2.5 Masked assignments

The concept of a “Logical Mask” is a very important one in DAP-
FORTRAN. A logical mask is a matrix of logical values which is used to
determine which of the DAP processors shall be active during a given
operation; examples of the use of such masks during subscripting operations,
are given in the previous section. Equally important is their use during
assignments: it is very common to find that time can be saved by computing a
whole matrix of values, and then throwing away the unwanted ones during
the assignment of the results to storage. In DAP-FORTRAN, the syntax for
such a masked assignment is not distinguished from that for masked
suffixing; the difference is detected by the compiler from the context.

In DAP-FORTRAN, a masked assignment takes the form:
A(MASK) = matrix-expression

which assigns the values of the components of the matrix expression to the
elements of the matrix A, but only for those elements for which the
corresponding element of the logical matrix MASK is TRUE.

The simplest way to provide masked assignments in Ada is via an ASSIGN
procedure with argument list as for MERGE;

ASSIGN(A, matrix expression, MASK);
It is unfortunate that this lacks some of the mnemonic succinctness of the
DAP-FORTRAN equivalent, and DAP-Algol was able to get closer to the
original. However, Ada does allow us to provide a way of associating a matrix
and a logical mask, and manipulating these together. We introduce the types.

784 ICL Technical Journal November 1987

MASKED_MATRIX, MASKED VECTOR
(which are records containing the relevant two fields)
and can then provide (masked) arithmetic operations between variables of
these types, and mixed operations between masked and unmasked vectors
and matrices. For example, if MA, MB are masked matrices, the constructs

MA + B; MA*MB; A — MA; etc
are accepted, returning in each case a masked matrix. The assignment:

ASSIGN) A, masked_matrix_expression);
ASSIGN) V, masked_vector_expression);

are also accepted.

DAP-FORTRAN also accepts a number of other forms of masked assign­
ments. Again, the syntax cannot be followed directly; but the constructs can
all be expressed reasonably naturally within the DAP-Ada facilities already
provided.

DAP-FORTRAN DAP-Ada

A(LV,) : = matrix-expression ASSIGN(A, mat exp, COL(ELN(LV)))
A(,LV) : = matrix-expression ASSIGN(A, mat exp. ROW(ELN(LV)))
A(IV,) : = vector-expression ASSIGN(A, mat exp, COL(IV))
A(,IV) : = vector-expression ASSIGN(A, mat exp, ROW(IV))

and other variants.

2.6 Other features

DAP-FORTRAN contains other facilities (see ICL (1978)]). Most of these
have close equivalents in DAP-Ada (see [Delves and McCrann (1985)], with
the following exceptions:
1) Variable length reals and integers are not currently supported.
2) The debug facilities are not supported.
3) There is no equivalent of a FORTRAN COMMON block, and the

distinction between DAP and HOST code is not maintained. Therefore, the
conversion routines between DAP and HOST formats are not mimicked.

We hope to remedy 1) in due course; 2) and 3) are deliberate, since the
intention is not primarily to mimick the DAP, but to provide general SIMD
language facilities.

3 An Example

We illustrate the correspondence between DAP-Ada and DAP-FORTRAN,
with an example: we compare two programs which perform a bubble sort on

ICL Technical Journal November 1987 785

N < = dapsize'2 elements, assumed provided in the first N locations of a
DAPSIZE x DAPSIZE matrix and padded out (in the DAP-FORTRAN
version) with dummy (large) values.

DAP-FORTRAN version, taken from [Gostick (1979)]

REAL MATRIX FUNCTION BUBBLE (VALUE)
REAL VALUE),)
LOGICAL MASK),),CHANGE),)
MASK = ALTR(l)

1 CHANGE = VALUE.LT. VALUE(+)
IF(.NOT.ANY(CHANGE)) GOTO 10
CHANGE = CHANGE.AND.MASK
CHANGE = CHANGE.OR.CHANGE(-)
VALUE(CHANGE) = MERGE(VALUE) +),VALUE(-),MASK)
MASK = .NOT.MASK
GOTO 1

10 BUBBLE = VALUE
RETURN
END

DAP-Ada version

PROCEDURE Bubble_Sort (a: In OUT INT_VEC) IS

a_prime: INTJVEC(a'RANGE);
hiding__mask: BOOL_VEC(a'RANGE);

change: BOOL_VEC(a'RANGE);
BEGIN

hiding_mask : = NOT Alt) 1);
change : = a < West(a); change(change'LAST) : = FALSE;

WHILE Any(change)
LOOP

a_prime : = a;
change : = change AND hiding_mask;
a : = Merge(West)a), a, change);
a : = Merge(East(a_prime), a, East(change);
hiding_mask : = NOT hiding_mask;
change : = a < West(a); change(change'LAST) : = FALSE;

END LOOP;

END BUBBLE_sort;

Although these two codes were written independently, rather than the Ada
being a transliteration of the FORTRAN, the correspondence between them
is very close, with the exception that we have used a WHILE loop in DAP-
Ada to avoid the two GOTOs of DAP-FORTRAN. Note however that the
DAP-FORTRAN code assumes that the data to be sorted is in a DAP
matrix, which it then treats as a vector (“long-vector” in DAP notation). This

786 ICL Technical Journal November 1987

standard trick will be familiar to all FORTRAN users, but comes as a
surprise to programmers from other languages; in DAP-Ada, arbitrary
length vectors are accepted and the data required can therefore be provided
in a vector.

4 Timings

DAP-Ada was originally developed as a teaching tool for an M.Sc class in
parallel processing. The package therefore includes a pseudo timer; a global
variable called TIME is updated whenever any of the DAP-Ada procedures
or operators are entered, by the time taken for the equivalent facility on the
DAP. Interrogating the timer then allows estimates of the speed of the
corresponding DAP code. For the example given here, with DAPSIZE = 64,
we obtain the timings given in Table 5. We see that the pseudo times are
about 10% too slow. This is quite good enough accuracy to compare
algorithms, since a 10% change in the speed of an algorithm is rarely
significant in practice.

Table 5 Timing Results

Code DAP-Fortran time DAP-Ada pseudo timer

Bubble sort, N = 256 79.2 86.0
512 158.3 172.0

1024 316.6 344.1
2048 633.2 688.1
4096 1266.4 1376.3

DAP-FORTRAN times obtained on the ICL DAP at QMC London. DAP-ADA run on a DEC
microVAX II with DEC Ada. Times are in msec.

5 Comments

The facilities provided by DAP-Ada are, as the example shows, sufficiently
close to those in DAP-FORTRAN that it is possible to develop DAP
algorithms quite naturally in DAP-Ada and then translate line-by-line. The
development is in practice aided considerably by the relatively good accuracy
of the pseudo timer.

We achieve this timing accuracy because most DAP programs consist mainly
of calls to array features, which are trapped by the pseudo-timer, and have
relatively few sections of “serial” code in them which are replaced in DAP-
Ada by standard Ada and hence are not timed. This in turn reflects the
success of DAP-FORTRAN in expressing the operations which are needed
for parallel processes on this type of machine; and suggests that facilities such
as those in DAP-Ada would, if implemented efficiently, provide an appropri­
ate Ada-based language for the DAP and other SIMD machines. However,
we should point to two related limitations of the facilities described:
1) No allowance has been made for handling parallel three-dimensional

ICL Technical Journal November 1987 787

matrices. This limitation is perhaps natural on the DAP, which has only
two-dimensional parallelism; but it is often necessary to declare multi­
dimensional arrays, even if only a two-dimensional slice is handled at
one time. The lack of a built-in slicing operation in Ada makes this a far
from trivial type of extension to provide, whereas DAP-Algol was able to
point to the Algol68 slicing mechanism as providing such an extension
automatically.

2) The “pseudo-slicing” operations ROW, COL, which were introduced
specifically to extract a row or column from a matrix, do so by copying.
This provides a reasonably satisfactory facility for use on the right hand
side of an assignment:

V : = ROW(A,i)

but not on the left hand side:

ROW(A,i) : = v

does not have the “obvious” effect.
3) As with DAP-Fortran, all of the facilities are fairly profligate with the use

they make of memory: space for vectors and matrices is generated
whenever it is convenient to do so. This is probably acceptable in a
strictly two-dimensional set of extensions: copying or generating three-
dimensional matrices would need rather more careful justification.

References

DELVES, L.M. and MAWDSLEY, S. (1985). DAP-Algol: a development system for parallel
algorithms. Computer Journal 28, 148-154.

DELVES, L.M. and McCRANN, M. (1985). DAP-Ada Users Manual. Technical Report,
Department of SCM, University of Liverpool.

ICL (1978) DAP-FORTRAN Language Manual, ICL Technical Publication 6918.
MAWDSLEY, S. (1983). DAP-Algol Users Manual, Technical Report, Department of SCM,

University of Liverpool.
GOSTICK, R.W. (1979). Software and Algorithms for Distributed Array Processor, ICL

Technical Journal 1(2) . 116-135.

788 ICL Technical Journal November 1987

Quick Language Implementation

H. Gardiner, R.W. Lyttle, P. Milligan and R.H. Perrott
Department of Computer Science, The Queen’s University of Belfast, Belfast BT7 f NN,

N. Ireland

Abstract

This paper concerns an im plem entation o f a para lle l Pascal based
language fo r the ICL DAP. This has been achieved by using the
existing h igh-level language o f the DAP, DAP FORTRAN, as the target
language in a transla to r. The benefits o f th is app roach have been to
give early experience o f the use o f the new language before proceed­
ing w ith a fu ll im plem entation. The deta ils o f the trans la tion are given.

1 Introduction

Advances in the development of parallel architectures have not been matched
by corresponding advances in the design of programming languages which
would enable programmers to express problem solutions in a straightfor­
ward manner. Invariably the only language available to the programmer is a
variant of FORTRAN, such as CFT1 or DAP FORTRAN.3 These languages
contain constructs reflecting the underlying architecture so that portability
of programs is not readily possible.

Whilst it is a relatively simple process to design a new computer program­
ming language, problems arise when attempting to implement such a
language on machines whose underlying architecture and machine code are
not sympathetic. The well known alternative implementation technique of
generating pseudo-code which is then interpreted is not applicable to
supercomputer language implementations due to the relative slowness of
execution and the fact that the hardware of the machine is not being fully
exploited.

In this paper we describe a further approach, translation of a parallel Pascal
based language, Actus II4, into an existing dialect of FORTRAN, DAP
FORTRAN. The translated source program is then compiled and executed
on the ICL DAP. The translation is achieved by scanning the syntax graph,
produced by the Actus II compiler, and inserting calls to routines which

ICL has spun out an independent company, Active Memory Technology Limited, to develop,
manufacture and market DAP products. All enquiries should be directed to AMT Ltd. 65
Suttons Park Avenue, Reading RG6 1AZ.

ICL Technical Journal November 1987 789

generate the required DAP FORTRAN. This approach2 obviates the need
for the implementor to have an in-depth knowledge of the machine
architecture (with all of the complexities that this entails), rather all that is
necessary is an understanding of the target language. It will of course be
argued that a translation such as this reduces the portability aspect outlined
above. However for an experimental language, such as Actus II, the
experience gained in being able to exploit fully the parallel nature of the
machine is a major factor.

2 Actus II and DAP FORTRAN

Actus II is a Pascal based language designed for implementation on array
processors. It is a refinement of Actus5,6 which was designed to be portable
over vector and array processors and has all of the main advantages of
Pascal, such as meaningful data structures, error detection and diagnostic
facilities. The language constructs of DAP FORTRAN constrain the maxi­
mum ‘extent of parallelism’ (e-o-p) to a maximum of either 64 elements in the
case of vector processing, or 4096 (64 x 64) elements in the case of array
processing. Thus the e-o-p is the maximum number of elements which can be
processed in parallel at any one time. An ideal implementation of Actus II
will translate the user-defined parallelism of the problem solution into the
physical parallelism provided by the number of processing elements in the
hardware. As the strategy for mapping data structures whose size is greater
than that of the physical hardware is both complex and time consuming, we
will, for the purposes of this quick implementation, restrict the maximum size
of an Actus II parallel data structure to conform to that of the target
language, DAP FORTRAN.

2.1 Arrays

The array data declaration in Actus II is used to define those data items
which may be manipulated in parallel. The sequential dots ‘ ’ in an array
declaration indicate that the array is to be processed one element at a time. If,
during the array definition, these sequential dots are replaced by parallel dots
‘ : ’ then this indicates that the array index may be manipulated in parallel.
For example

SEQ: array[1..64] of INTEGER;

defines a non-parallel array of 64 elements

PARA: array[l:64] of INTEGER;

defines a one-dimensional parallel array of 64 elements, all of which may be
accessed simultaneously. The declaration

PARB: array[l:64, 1:64] of INTEGER;

defines a two-dimensional parallel array with a total of 4096 elements, all of
which may be accessed simultaneously.

790 ICL Technical Journal November 1987

Sequential vectors and arrays are translated into similar DAP FORTRAN
constructs, thus the DAP FORTRAN equivalent of the vector SEQ would be

INTEGER SEQ(64)

In keeping with the two-dimensional nature of DAP FORTRAN, and to
facilitate a uniform translation scheme, all Actus II parallel vectors are
translated into two-dimensional DAP FORTRAN arrays, the vector being
stored in the first column of the array, e.g.

INTEGER PARA(,)

Two-dimensional parallel Actus II arrays are translated into their equivalent
DAP FORTRAN constructs, thus PARB becomes

INTEGER PARBQ

2.2 Index Sets

To allow simultaneous access to all or selective elements of a parallel
variable, Actus II retains the index set concept of Actus but introduces a
greater degree of flexibility. In Actus II there are two types of index set, viz.,

(a) explicit index sets which remain constant throughout their defining
block, e.g.,

index
ONE_TO_64: 1:64 ;

Note that it is also possible to define index sets with a regular increment,
such as

EVENS: 2:[2]64 ;
which represents the indices 2, 4, 6 ... 64
‘Broken’ and ‘random’ ranges can also be formed using the set operators
‘ + ’ and ‘—’ as in

RANGE_A: 2:2 + 4:4 + 6:6 ;
RANGE_B: 1:10-5:5 ;

The intersection of two index sets can be achieved by use of the
intersection operator ‘*’.

(b) redefinable index sets which enable the selection of different portions of a
parallel variable, thus an index set defined as follows

index
IS1: INTEGER ;

must have values assigned to it in a using statement (see below).
In keeping with the philosophy whereby Actus II parallel vectors are
represented by DAP FORTRAN arrays, index sets are translated into DAP
FORTRAN parallel arrays of type LOGICAL. The presence of an index set

ICL Technical Journal November 1987 791

value is denoted by the value TRUE in the DAP FORTRAN logical array.
These values are determined by a run-time support routine COL_MATRIX
(written in DAP FORTRAN). This routine creates the required index set by
constructing a logical matrix with the values TRUE and FALSE in the
appropriate places in the columns of the logical matrix. Thus for the above
Actus II index sets the translator generates

ONE_TO_64 = COL_MATRIX(1,64,1)
EVENS = COL_MATRIX(2,64,2)
RANGE_A

COL_M ATRIX(2,2,1) .AND.
COL_MATRIX(4,4,l).AND.
COL_M ATRIX(6,6,1)

RANGE_B

COL_MATRIX(1,10,1).AND..NOT.
COL_M ATRIX(5,5,1)

2.3 Parallel Constants

In addition to scalar constants, Actus II allows the definition of parallel
constants which define a sequence of values and which may be used to assign
initial values to a parallel index of an array, e.g.,

parconst
EVENS = 2:[2]20;
ODDS = 1:[2]9;
BOTH = 1:[2]9, 2:2[2]10 ; (where V acts as a

catenation operator}

Parallel constants are stored as two-dimensional parallel arrays, but in this
case the actual values of the parallel constant are stored in the appropriate
positions in the columns of the array.

2.4 Parallel Statements

The assignment statement and the if, case, and while constructs of Actus are
expanded in Actus II to cater for the expression of two-dimensional
parallelism. In practice the e-o-p for these statements is first established by
what is called a using statement and is subsequently manipulated by the
particular statement type.

A using statement defines the e-o-p for the statements which it encloses. It
has the following form:

using index-specification do statement;

The index-specification contains either explicit index identifiers which have
already been given values at their point of declaration, or redefinable index

792 ICL Technical Journal November 1987

identifiers with an associated set of values, or a mixture of both. A maximum
of two index identifiers may be present in the index-specification, in keeping
with the array processing nature of Actus II. Thus a using statement
constructs either a one-dimensional or two-dimensional mask for its follow­
ing statements.

The e-o-p’s formed whenever extent setting statements are encountered are
represented as logical two dimensional parallel arrays whose elements are set
to either TRUE or FALSE depending upon the presence or absence of an
element in the e-o-p. For example an Actus II using statement of the form

using IS1 : = 1:4, IS2 : = 2 :5 -3 :3 do

would be translated into the following DAP FORTRAN

RMATRIX = .FALSE.
CMATRIX = .FALSE.
CMATRIX = COL_MATRIX(1,4,1)
RMATRIX = ROW_MATRIX(2,5,l).AND.NOT.

RO W_M ATRIX(3,3,1)
EOP = CMATRIX.AND.RMATRIX
IF (.NOT.ANY(EOP)) GOTO {end of using statement}

The logical matrix function ROW_MATRIX (which is a complementary
function to the earlier COL_MATRIX function) constructs a matrix with the
value TRUE in the appropriate rows. These functions are used to form two
grid masks, one for each index set in the using statement. These masks are
superimposed to determine the correct e-o-p. Only if at least one element of
the e-o-p is TRUE will the statement part of the using statement be executed.
Thus the above example, assuming an 8 x 8 DAP configuration, can be
represented as

CMATRIX RMATRIX

T T T T F F F F F F F F F F F F

T T T T F F F F T T T T T T T T

T T T T F F F F F F F F F F F F

T T T T F F F F T T T T T T T T

T T T T F F F F T T T T T T T T

T T T T F F F F F F F F F F F F

T T T T F F F F F F F F F F F F

T T T T F F F F F F F F F F F F

ICL Technical Journal November 1987 793

E-O-P

F F F F F F F F

T T T T F F F F

F F F F F F F F

T T T T F F F F

T T T T F F F F

F F F F F F F F

F F F F F F F F

F F F F F F F F

Assignment to a parallel structure is achieved by subscripting the structure
with the appropriate index set identifiers. For example given the following
declarations

var
PARB: array[l:5, 1:10] of INTEGER ;

index
ROWS: 1:5 ;
COLS: 1:10;

then the assignment

using ROWS, COLS do
PARB[ROWS,COLS] : = 0 ;

will initialise all 50 elements of PARB to zero simultaneously, and will be
translated into the following DAP FORTRAN

PARB(EOP) = 0

where EOP is a two dimensional logical matrix representing the e-o-p.

Assuming the Actus II declarations

var
PARA: array[l:64] of INTEGER ;
PARB: array[l :64,1:10] of INTEGER ;

index
FIRST: 1:64 ;
SECOND: INTEGER ;

the following are examples of Actus II using statements and their translated
DAP FORTRAN CODE

794 ICL Technical Journal November 1987

using FIRST do
PARA[FIRST] := 1 ; { set all 64 elements of PARA to 1 }

CMATRIX = COL_MATRIX(l, 64, 1)
RMATRIX = ROW_MATRIX(1, 64, 1)
EOP = CMATRIX.AND.RMATRIX
IF (.NOT.ANY(EOP)) GOTO 1
PARA(EOP,l) = 1

using FIRST, SECOND : = 1:10 do
PARB[FIRST,SECOND] : = 5 ;

CMATRIX = COL_MATRIX(1,64,1)
RMATRIX = ROW_MATRIX(1,10,1)
EOP = CMATRIX.AND.RMATRIX
IF (.NOT.ANY(EOP)) GOTO 2
PARB(EOP) = 5

2
It is permissible to nest using statements to any depth, but only those index
identifiers associated with the nearest enclosing using statement are avail­
able for use at any stage, for example

using IS1 do
begin
{ statements involving IS1 }
using IS2 do

begin
{ statements involving IS2 }
end

{ current e-o-p is IS1 }
end

— stack IS1

— stack IS2

— unstack and discard
— IS2

— unstack and discard
— IS1

Access to the diagonal components of an array is achieved by using the same
index set for both indices, e.g.,

var
PARC: array[l:64,1:64] of INTEGER ;

index
IS1: 1:64;

begin
using IS1, IS1 do

PARC[IS1,IS1] : = 0 ; { zeroise the array }
using IS1 do

PARC[IS1,IS1] := 1 ; { set the leading diagonal of PARC to 1 thus
creating the identity matrix }

end ;

ICL Technical Journal November 1987 795

This is translated into the following DAP FORTRAN code

CMATRIX = COL_M ATRIX(1,64,1)
RMATRIX = ROW_MATRIX(l,64,l)
EOP = CMATRIX.AND.RMATRIX
IF (.NOT.ANY(EOP)) GOTO 1
PARC(EOP) = 0

1 CMATRIX = COL_MATRIX(1,64,1)
RMATRIX = RO W_M ATRIX(1,64,1)
EOP = CMATRIX.AND.RMATRIX
IF (.NOT.ANY(EOP)) GOTO 2
PARC (DIAGONAL(1,64,1,EOP)) = 1

2

where the run-time routine DIAGONAL returns a logical matrix with the
necessary elements of the leading diagonal set to true. Thus in the above
example the call to DIAGONAL (1, 64, 1, EOP) results in the following
logical matrix being formed

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2.5 If Statement

If the boolean-expression of an if-statement yields a parallel result (i.e. a set of
boolean values) then this set is used as the e-o-p for the then clause and the
else clause is executed with the complementary set of boolean values, for
example

var
PARD, PARE: array[l :30,1:30] of INTEGER ;

index
IS1, IS2: 1:30;

begin
using IS1, IS2 do

if PARD[IS1,IS2] > 0
then

PARE[IS1,IS2] : = 1
else

PARE[IS1,IS2] := PARE[IS1,IS2] + 1
end ;

796 ICL Technical Journal November 1987

Here the components of PARE for which the corresponding components of
PARD are positive (if any) are assigned the value 1 and the remaining
components (if any) are incremented by 1. The DAP FORTRAN generated
for this is as follows:

Code for using statement
CMATRIX = COL_MATRIX(1,30,1)
RMATRIX = ROW_MATRIX(1,30,1)
EOP = CMATRIX.AND.RMATRIX
IF (.NOT.ANY(EOP)) GOTO 1
CALL STACK(EOP)

Code for if test
EOP = EOP. AND.(P ARD(,) .GT.O)
IF (.NOT.ANY(EOP)) GOTO 2
Code for then part
PARE(EOP) = 1

Construct e-o-p for else limb
2 EOP = (.NOT.EOP).AND.EOPSTACK(„STACKTOP)

IF (.NOT.ANY(EOP)) GOTO 3
Code for else limb

PARE(EOP) = PAREQ + 1
C end of using statement, remove e-o-p
3 CALL UNSTACK(EOP)
1

The point to note about the if statement is that two different e-o-p’s are used,
the first in the then clause and the second, which is the complement of the
first, in the else clause. In general, whenever a using statement is encountered
the e-o-p associated with it is evaluated and placed onto a stack. If, during
the execution of a using statement, another extent setting statement is
encountered which results in the modification of the current e-o-p (such as
the if statement in the above example), then the e-o-p on top of the stack is
combined with this new e-o-p for the next group of statements.

2.6 Case Statement

A case statement has the general form:
case selector of

case-label-listl : SI ;

case-label-listn : Sn
end ;

If the selector expression yields a parallel result, then the e-o-p of the selector
expression is distributed among the case limbs by comparing the value of the
selector expression for each element with the appropriate case label. Thus
each case limb will have a different e-o-p associated with it.

ICL Technical Journal November 1987 797

The case statement can be considered as an extended form of the if statement.
Whereas in the if statement the requisite e-o-p’s are evaluated before each
limb is executed, in the case statement all possible e-o-p’s are evaluated and
stored (in a queue) before each limb of the statement is executed. It would be
possible to use a stack as opposed to a queue to store the e-o-p’s but for ease
of implementation and to facilitate the production of the DAP FORTRAN
code in the same order as the Actus II code, this alternative data structure
has been chosen. Prior to the execution of each limb the e-o-p at the head of
the queue is removed, checked to ascertain whether it contains any elements
and if so used as the e-o-p for the current limb.

For example

var
PARH: array[l:4,l:4] of 0..4 ;

index
IS1, IS2: 1:3 ;

begin
using IS1, IS2 do

case PARH[IS1,IS2] of
0..3: PARH[IS1,IS2] : = 0 ;
4 : PARH[IS1,IS2] : = 1

end
end.

is translated to

CMATRIX = COL_MATRIX(1,3,1)
RMATRIX = ROW_MATRIX(1,3,1)
EOP = CMATRIX. AND.RMATRIX
IF (.NOT.ANY(EOP)) GOTO 1
CALL STACK) EOP)
CALL QUEUE(EOP.AND.(PARH(,).GE.O).AND.PARH(,).LE.3))
CALL QUEUE(EOP.AND.(PARH(,).EQ.4))
CALL UNQUEUE(EOP)
IF (.NOT.ANY(EOP)) GOTO 2
PARH(EOP) = 0

2 CALL UNQUEUE(EOP)
IF (.NOT.ANY(EOP)) GOTO 3
PARH(EOP) = 1

3 CALL UNSTACK(EOP)
1

2.7 While Statement

As with if and case statements, the boolean-expression associated with a
while statement may yield a parallel result which determines the e-o-p for its
enclosing statements, for example

798 ICL Technical Journal November 1987

var
PARF, PARG: array[l:7,l:7] of INTEGER ;

index
IS1, IS2: 1:7;

begin
using IS1, IS2 do

begin
PARG[IS1,IS2] : = 0 ;
while PARF[IS1,IS2] < > 0 do

begin
PARG[IS1,IS2] : = PARG[IS1,IS2] + 1 ;
PARF[IS1,IS2] : = PARF[IS1,IS2] - 2 ;
end

end
end ;

Here the body of the while statement is repeatedly executed while at least one
component of the array PARF is non-zero. At each iteration the loop body,
the components of PARF which do not satisfy the condition are removed
from the e-o-p and execution of the loop body terminates whenever the e-o-p
becomes empty. This is translated into the following DAP FORTRAN code.

CMATRIX = COL_MATRIX(1,7,1)
RMATRIX = ROW_MATRIX(1,7,1)
EOP = CMATRIX.AND.RMATRIX
IF (,NOT.ANY(EOP)) GOTO 1
PARG(EOP) = 0
CALL STACK(EOP)
EOP = EOP.AND.(PARF(,).NE.O)
IF (.NOT.ANY(EOP)) GOTO 2

3 PARG(EOP) = PARGQ + 1
PARF(EOP) = PARFQ - 2
EOP = EOP.AND.(PARF(,).NE.O)
IF (ANY(EOP)) GOTO 3

2 CALL UNSTACK(EOP)
1

2.8 Subprograms

All subprograms can take parallel arrays as parameters and, in addition,
functions can return parallel arrays as results. These parallel result arrays
must be subscripted, as in

using IS1, IS2 do
A[IS1,IS2] := F (parameters)[ISl,IS2]

The translation from Actus II procedures and functions to DAP FORTRAN
subroutines and functions is quite straightforward. The main point to note is

ICL Technical Journal November 1987 799

that because of the parameter passing mechanism of FORTRAN, it is
necessary to take a copy of all Actus II value parameters on entry to a
subprogram block and to replace all references to these value parameters by
references to a copy of the parameter.

Functions which return parallel arrays as results cannot be directly tran­
slated into DAP FORTRAN, instead a temporary variable is created to hold
the result of the function call and this is used in subsequent expressions. For
example the following Actus II function returns an array each of whose
elements is the square of the corresponding element of the input parameter.

type
PARARRAY = array[l :32,1:32] of INTEGER ;

function SQUARE (A: PARARRAY): PARARRAY ;
index

IS1, IS2: 1:32 ;
begin
using IS1, IS2 do

SQUARE[IS1,IS2] : = A[IS1,IS2] * A[IS1,IS2]
end ;

The DAP FORTRAN code generated for this subprogram is as follows:

INTEGER MATRIX FUNCTION SQUARE (A)
LOGICAL RMATRIXQ, CMATRIXQ, EOP(,)
INTEGER A(,)
INTEGER PARAM_A(,)

Copy the input parameter
PARAM_A = A

CMATRIX = .FALSE.
RMATRIX = .FALSE.
CMATRIX = COL_MATRIX(l,32,l)
RMATRIX = ROW_MATRIX(1,32,1)
EOP = CM ATRIX. AND. R MATRIX
IF (,NOT.(ANY(EOP)) GOTO 1
SQUARE(EOP) = PARAM_A(,) * PARAM_A(,)

1 RETURN
END

A call of this function such as

using IS1 : = 1:32, IS2 : = 1:32 do
B[IS1,IS2] : = SQUARE(A)[IS1,IS2]

Results in the following DAP FORTRAN being generated

{ construct the EOP }
TEMP = SQUARE(A)
B(EOP) = TEMP

800 ICL Technical Journal November 1987

2.9 Data Alignment

Two data alignment operators (shift and rotate) are present in the language
and operate upon index sets. The shift operator causes movement of data
within the declaration range of the e-o-p whilst the rotate operator causes the
data to be shifted circularly (wrap-around) with respect to the current e-o-p.

Shifting and rotating of index-sets are achieved by invoking run-time
functions, written in DAP FORTRAN, which take, as parameters, the
structure which is to be manipulated, the current e-o-p and the direction and
amount of the shift or rotate.

2.9.1 Shifting

This is the most straightforward of the two data alignment operations. The
run-time routine merely invokes an appropriate combination of the standard
DAP FORTRAN functions SHNP, SHSP, SHEP or SHWP, which causes
the 64 x 64 array of values to be shifted in a N, S, E or W direction
respectively. For example an Actus II statement of the form

using IS1 : = 2:4, IS2 : = 2:4 do
AA[IS1,IS2] : = BB[IS1 shift 1, IS2 shift - 1]

results in the following assignments being performed

AA[2,2] : = BB[3,1] AA[2,3] : = BB[3,2] AA[2,4] : = BB[3,3]
AA[3,2] : = BB[4,1] AA[3,3] : = BB[4,2] AA[3,4] : = BB[4,3]
AA[4,2] : = BB[5,1] AA[4,3] : = BB[5,2] AA[4,4] : = BB[5,3]

A run-time support routine, written in DAP FORTRAN, is called on each
occasion that a shift operation is to be performed. The sign of the amount of
the shift signifies the direction of the shift.

2.9.2 Rotating

When applying a shift operation to an e-o-p non-active elements of the e-o-p
may become active, for example in a using statement of the form

using IS1 : = 1:[2]5 do

the active elements are 1, 3 and 5. Shifting this e-o-p two places to the right
results in the elements 3, 5 and 7 becoming the active elements. This is
possible when a shift operator with a distance 2 is applied to the e-o-p, but
when the rotate operation is applied no non-active elements may become
active, the current elements are merely rearranged. Thus a more complex
algorithm has to be implemented to cater for rotation.

For example assume that we have the following 5 x 5 array, A A

ICL Technical Journal November 1987 801

1 2 3 4 5

3 5 7 9 11

5 8 11 14 17

7 11 15 19 23

9 14 19 24 29

then the using statement

using IS1 : = 2:4, IS2 : = 2:4 do
AA[IS1,IS2] : = AA[IS1 rotate 1,IS2 rotate — 1]

will result in the following assignments being made

AA[2,2] : = AA[3,4] AA[2,3] : = AA[3,2] AA[2,4] : = AA[3,3]
AA[3,2] : = AA[4,4] AA[3,3] : = AA[4,2] AA[3,4] : = AA[4,3]
AA[4,2] : = AA[2,4] AA[4,3] : = AA[2,2] AA[4,4] : = AA[2,3]

This is achieved as follows:

(a) The “active” elements of AA are moved from their original position within
the array to the top left hand corner of a new temporary array, viz

5 7 9 0 0

8 11 14 0 0

11 15 19 0 0

0 0 0 0 0
0 0 0 0 0

(b) A horizontal rotate (of 1) is then performed upon this temporary array by
using planar shift operations (i.e. the values shifted in at the edge of the
matrix will be zero) to give the result

9 5 7 0 0
14 8 11 0 0
19 11 15 0 0

0 0 0 0 0

0 0 0 0 0

(c) This temporary result is then subjected to a vertical rotate (of — 1), again
by using planar shifts to give the final result of the rotation, viz

802 ICL Technical Journal November 1987

14 8 11 0 0

19 11 15 0 0

9 5 7 0 0

0 0 0 0 0

0 0 0 0 0
(d) This final result is then slotted into its correct position in the original
array, viz

1 2 3 4 5

3 14 8 11 11

5 19 11 15 17

7 9 5 7 23

9 14 19 24 29
This series of steps is dictated by the nearest neighbour connection scheme of
the ICL DAP and the fact that not all the processing elements are active in
the rotation process. A run-time support routine INTEGER_ROTATE,
written in DAP FORTRAN, performs all of the above operations and
returns the rotated matrix.

3 Input and Output

The execution of any program on the ICL DAP can be considered as a three
stage process

Stage 1: input the program data
Stage 2: run the program
Stage 3: output the results

Where Stages 1 and 3 are performed on the host machine and Stage 2 is
performed on the DAP itself. Data is passed between the host and the DAP
via parameter lists or, more usually, via common blocks. As Actus II permits
input and output to be performed anywhere within a user program and
READ and WRITE statements are not present in DAP FORTRAN, a
problem is apparent. Output is achieved by translating, as far as possible,
Actus II write statements into DAP FORTRAN TRACE statements. READ
statements do however cause problems and at present no satisfactory
solution has been discovered other than a user being forced to set up all
program data by assigning values to appropriate variables at the start of a
program run. The disadvantages associated with this are apparent.

4 Conclusions

In this paper we have illustrated how it has been possible to implement a high
level structured parallel processing language for an array processor by

ICL Technical Journal November 1987 803

employing a less sophisticated high level language as the target language.
Consequently the “time before use” of the language has been dramatically
reduced resulting in earlier “hands on” experience for potential users.

Coupled with the relative ease of implementation, an evaluation of the
usefulness of the language can be performed at an earlier stage in its
development process. Therefore any identified problems can be ameliorated
before the rigours of implementation proper commence.

Acknowledgement

This work was supported by U.K. Science and Engineering Research
Council Grant No. GR/C/19819.

References

1 Cray-1 FORTRAN (CFT) Reference Manual. Cray Research, Inc. 1979.
2 CROOKES, D.: Implementation of a vector processing language on the Cray 1. BCS

Parallel Processing Specialist Group Meeting, Imperial College London, September 1986.
3 ICL DAP: FORTRAN Language. ICL Technical Publication TP 6918 1981.
4 PERROT, R.H., LYTTLE, R.W. and DHILLON, P.S.: ‘The Design and Implementation

of a Pascal based language for Array Processor Architectures’. Journal of Parallel and
Distributed Computing (accepted for publication).

5 PERROTT, R.H.: ‘A Language for Array and Vector Processors’ ACM TOPLAS. 1979,
1(2), 177-195.

6 PERROTT, R.H., CROOKES, D. and MILLIGAN, P.: ‘The Programming Language
Actus’ Software — Practice and Experience Vol. 13, 1983, 305-322.

Appendix

The following is an example of Cannon’s parallel matrix multiplication
algorithm written in Actus II, and the corresponding DAP FORTRAN
generated by the translator. The resulting code enables the two languages to
be compared.

Actus II Version

program CANNON(INPUT,OUTPUT) ;

const
N = 3 ;

var
B, C, RESULT: array[l:N,l:N] of INTEGER ;
K: INTEGER ;

index
IS1, IS2, IS3, IS4: INTEGER ;

804 ICL Technical Journal November 1987

begin
{ input the arrays B and C }
for K : = 1 to (N — 1) do
begin
using IS1 : = (K + 1):N , IS2 : = 1:N do

B[IS1,IS2] : = B[IS1,IS2 rotate 1] ;
using IS3 : = 1:N , IS4 : = (K + 1):N do

C[IS3,IS4] : = C[IS3 rotate 1.IS4]
end ;
using IS1 : = 1:N, IS2 := 1:N do

begin
RESULT[IS1,IS2] : = B[IS1,IS2] * C[IS1,IS2] ;
for K : = 1 to (N - 1) do

begin
B[IS1,IS2] : = B[IS1,IS2 rotate 1] ;
C[IS1,IS2] : = C[IS1 rotate 1,IS2] ;
RESULTS[IS 1 ,IS2] : = RESULT[IS1,IS2] +

B[IS1,IS2] * C[IS1,IS2]
end

end ;

{ output the result }
end { Cannon } .

DAP FORTRAN Version

In this translated version of the algorithm, the system variables which are
necessary for stacking and unstacking e-o-p’s have been omitted as they are
not used in program.

ENTRY SUBROUTINE ACTUS_PROGRAM
CALL CANNON
STOP
END

SUBROUTINE CANNON
LOGICAL EOP(,)
LOGICAL RMATRIXQ, CMATRIXQ
INTEGER B(,), C(,), RESULTQ
INTEGER K
INTEGER LOOPSTEP8L, LOOPSTEPIOL
INTEGER LOOPEND9L, LOOPEND11L

K = 1
LOOPEND9L = 3 - 1
IF (,NOT.(K.LE.LOOPEND9L)) GOTO 5
LOOPSTEP8L = 1

6 RMATRIX = .FALSE.
CMATRIX = .FALSE.

ICL Technical Journal November 1987 805

CMATRIX = COL_MATRIX(K + 1,3,1)
RMATRIX = ROW_MATRIX(1,3,1)
EOP = CMATRIX.AND.RMATRIX
IF (.NOT.ANY(EOP)) GOTO 7
B(EOP) = INTEGER_ROT ATE(B,EO P,0,1)

7 CONTINUE
RMATRIX = .FALSE.
CMATRIX = .FALSE.
CMATRIX = COL_MATRIX(1,3,1)
RMATRIX = ROW_MATRIX(K + 1,3,1)
EOP = CMATRIX.AND.RMATRIX
IF (.NOT.ANY(EOP)) GOTO 8
C(EOP) = INTEGER_ROT ATE(C,EOP, 1,0)

8 CONTINUE
IF (K.EQ.LOOPEND9L) GOTO 5
K = K + LOOPSTEP8L
IF (K.LE.LOOPEND9L) GOTO 6

5 CONTINUE
RMATRIX = .FALSE.
CMATRIX = .FALSE.
CMATRIX = COL_MATRIX(1,3,1)
RMATRIX = ROW_MATRIX(1,3,1)
EOP = CMATRIX.AND.RMATRIX
IF (.NOT.ANY(EOP)) GOTO 9
RESULT(EOP) = B(,) * C(,)
K = 1
LOOPEND11L = 3 — 1
IF (.NOT.(K.LE.LOOPENDllL)) GOTO 10
LOOPSTEP10L = 1

11 B(EOP) = INTEGER_ROTATE(B,EOP,0,1)
C(EOP) = INTEGER_ROT ATE(C,EOP, 1,0)
RESULT(EOP) = RESULT),) + B(,) * C(,)
IF (.EQ.LOOPEND11L) GOTO 10
K = K + LOOPSTEPIOL
IF (K.LE.LOOPEND11L) GOTO 11

10 CONTINUE
9 CONTINUE
C Print results

RETURN
END

806 ICL Technical Journal November 1987

Notes on the authors

C.W. Blatchford

Clive Blatchford is Manager, Secure Systems in the ICL Marketing and
Technical Strategy Division. In this capacity he has staff responsibility for
definition, development and marketing of security in all ICL products and
services. Particular emphasis is placed on multi-level security operating
systems, secure networking (including encipherment) and physical and
electronic hardening of work stations; the development of secure Open
Systems Architecture, with supporting standards and procedures, has been
given a high priority in which to map specific customer solutions.

He plays an active role in both National and International standards
organisations and has lectured extensively in Europe, North America and
Australia; he is currently Vice-Chairman of the USA Department of Com-
merce/National Bureau of Standards Special Interest Group on Security.
Previous to joining ICL he had senior management experience in datapro-
cessing and/or security with Xerox Corporation and with Chase Manhattan
Bank.

J.B. Brenner

John Brenner joined ICL in 1961 after graduating from Cambridge. He held
a series of appointments in technical support, software development, consul­
tancy, account management and project management within the UK sales
organisation. In 1972 he moved into development and managed reliability
improvement programmes for all ICL large systems. Between 1974 and 1977
he worked on an advanced development of fault-tolerant distributed systems.
He has had an active role in OSI standardisation and managed ICL’s
network architecture activity from 1982 to 1984. Since then he has been
concerned with strategy development for distributed processing.

I.R. Campbell-Grant

Ian Campbell-Grant works as manager of the Advanced Products Sector
within ICL’s Office Information Systems Business Centre, ODS. He was
instrumental in the development of the application-level standards currently
used for interconnecting ICL office systems product and has been active also
in developing the ODA standard specified here. He was the editor and led the
task group that produced the first version of ECMA-101, the Office

ICL Technical Journal November 1987 807

Document Architecture standard, which was ratified in June 1985, and now
chairs the ECMA Technical Committee working in this area. He is also the
editor of those parts of the ISO and CCITT standards that deal with the
document architecture.

Professor L.M. Delves

Professor Delves graduated from Oxford with a D.Phil. in Theoretical
Physics in 1960. After appointments in New South Wales and at Sussex
University he was appointed to the Chair of Computing Science (now
Computational Mathematics) at Liverpool in 1969.

Dorothy M. Elliott

Following a childhood spent in Illinois, Dorothy Elliott read Maths at
University in Ireland. She has been involved in Office Automation and
networking for seven years and with the development and marketing of
electronic mail since 1983. She is particularly interested in multi-vendor
interworking to international standards and is a Director of the European
Electronic Mail Association.

A.R. Fuller

Alan Fuller graduated from the University of Hull with an honours degree in
chemistry and gained his doctorate from research into high temperature
explosions - an ideal grounding for industry! However, this was not to be: he
changed career after doing this research and joined the University of Oxford
Computing Laboratory as a systems programmer, writing parts of
GEORGE 3 and software for a front-end processor on CTL hardware. In
1977 he joined ICL and has worked in several parts of the company, from
pre-sales consultancy through to his current position where he is part of the
group in Marketing and Technical Strategy responsible for determining the
company’s Networked Product Line strategy.

A.J. Herbert

Andrew Herbert is Chief Architect of the Alvey Advanced Networked
Systems Architecture (ANSA) project. After graduating in Computational
Science at Leeds University he went on to complete a Ph.D. in computer
science at Cambridge, where he remained as a lecturer and researched in
various aspects of distributed computing and software engineering. He
became Chief Architect of ANSA in 1985.

David King

David King has recently joined the Secure Network Systems group in ICL
Defence Systems. He graduated at the University of Birmingham in Com­

ICL Technical Journal November 1987

puter Science and Software Engineering, and received a Ph.D. in Computer
Science for work in cryptography and data security.

H. Gardiner

Helen Gardiner received the B.Sc. degree in Physics and Computer Science
from the Queen’s University of Belfast in 1985. For the subsequent year she
was a Research Assistant in the Computer Science department at QUB where
she implemented the Actus II to DAP FORTRAN translator. She is now
employed in the Missile Systems Division of Short Brothers PLC in Belfast.

B.G.T. Lowden
Barry Lowden graduated from King’s College, London in 1964 with a first
degree in physics. He then joined the Plessey Company where he worked in
Computing for eight years, being finally responsible for all systems develop­
ment at the Ilford site. In 1972 he studied for an M.Sc. in Computer Science at
London, which he gained with distinction. Since then he has been first a
Lecturer and then a Senior Lecturer at the University of Essex. His main
research interests lie in the areas of information retrieval, relational databases
and query languages. For the last two years he has been funded by the ICL
University Research Council to carry out work on natural language front ends
to relational systems. The research team at Essex is currently developing a
front end to support queries both on and about the data held in the database.

R. Lyttle

Robert Lyttle is a research officer in the department of Computer Science at
the Queen’s University of Belfast, having received the B.Sc. and Ph.D. degrees
in Computer Science from the same university in 1980 and 1985 respectively.
His initial research work was in the area of abstract data types and in the
design and implementation of “small core” general purpose programming
languages extendible in terms of their own language constructs. Since then
his research interests have been centred on the use of the multi-tasking
features of Ada for the implementation of parallel algorithms.

M.P.O. McCrann

Mike McCrann graduated in Computer Science at Liverpool in 1985, then
studied for an M.Sc. in Computational Mathematics while working as a
Research Assistant in the Centre for Mathematical Software Research. He
now works for Evans and Sutherland Limited, Cambridge, as a Systems
Analyst. The work reported here was carried out as part of his M.Sc. studies.

P. Milligan

Peter Milligan received the B.Sc. and Ph.D. degrees from the department of
Computer Science, the Queen’s University of Belfast in 1977 and 1987
respectively. After a period as a Programmer and a Research Assistant, he is

ICL Technical Journal November 1987 809

now a Lecturer in the Computer Science department at QUB. His research
interests centre on programming methodology, language design, language
implementation with specific application to concurrent systems, and software
support environments. He is a member of the British Computer Society.

Professor R.H. Perrott

Ronald H. Perrott is currently Professor of Software Engineering at the
Department of Computer Science, the Queen’s University of Belfast, where
he has been a staff member since 1969. His current research interests include
programming languages for multiprocessor, distributed, and array and
vector processor configurations and the design and analysis of parallel
algorithms. He has also been involved in the design and development of
several operating systems and software engineering projects. He is author of
Parallel Programming published by Addison-Wesley, Co author of Pascal for
FORTRAN Programmers published by Computer Science Press, Editor of
Software Engineering and Co-editor (with C.A.R. Hoare) of Operating
Systems Techniques both of which have been published by Academic Press.
He is a member of the IEEE Computer Society and the British Computer
Society.

D.J. Phipps

David Phipps graduated from Sussex in 1979 with a degree in Psychology.
After spending some time working in the psychiatric services he took an
M.Sc. in Computer Studies at Essex in 1984. Since then he has remained at
Essex, first as a Senior Research Officer, participating in an ICL-funded
contract to provide a natural language front end to databases, and more
recently as a Temporary Lecturer.

Mrs. G.M. Ringland

Gill Ringland has been General Manager of Office Information Systems
Business Centre since it started operation in May 1984. In this role she has
responsibility for the office automation strategy, and for the specification,
development, marketing and introduction of office automation systems
including word processing, language translation, electronic filing, electronic
mail, viewdata and the integrated office.

After a childhood spent in England and Australia, and a degree in Physics
from Bristol University (where she met her husband), she learnt to program
in 1964 on the early Atlas computers. Research in theoretical physics at
Oxford University and two years at the University of California, Berkeley,
were followed by 10 years in the UK and California with systems house CAP,
two years with semi conductor manufacturer Inmos during startup and three
years managing the European operation of the Florida based minicomputer
company Modcomp.

810 ICL Technical Journal November 1987

She joined ICL from Modcomp in 1982, initially with responsibilities for
database systems.

P.J. Robinson

Peter Robinson has been in computing for 20 years, the last 10 with ICL. He
has a background that includes compilers for real-time programming
languages and the design of mainframe operating systems. In the last four
years he has worked in the Office Information Systems Division where in
addition to his involvement in TOP his duties include acting as the ICL
representative on the ECMA committee which published the first ODA
specification, ECMA-101. He is the convenor of the ECMA task group
defining a standardised Page Description Language.

A.N. de Roek

Anne de Roek graduated from the University of Leuven, Belgium, in 1979
with a degree in Linguistics, English and Dutch. After a year wih the Belgian
Telecommunications, working in the field of library automation, she joined
ISSCO, a research institute of the University of Geneva, where she partici­
pated in the development of a number of machine translation systems. In
1984 she obtained a M.Sc. in Computer Studies at Essex and has remained
there, first as a Research Officer and then as a Lecturer in Computer Science.
She has participated in two ICL contracts on natural language front ends to
databases and is currently working on database front ends that rely on
formal semantic representations.

C.B. Taylor

Colin Taylor is a Technical Strategy Manager in ICL’s Office Systems
Division. He is a graduate of Manchester University, and a Fellow of the
British Computer Society. He has held senior positions in the development of
many of the major well known ICL product ranges from 1900 onwards in
both systems design and development management roles. He was one of the
originators of the VME/2900 architecture and was chairman of the
companywide group that laid down the supervisor interfaces and architec­
ture definitions. His team created and developed the DME and CME
systems, and he was Technology Centre manager responsible for the
architecture of the ME29. Over the last few years he has been particularly
concerned with the world UNIX scene, and ICL’s UNIX technical strategy.
He is a founder of the X/OPEN Group and the ICL representative on its
Technical Management committee.

Professor R. Turner

Raymond Turner has been Lecturer/Professor in Computer Science at the
University of Essex since 1973. His appointments during this period include
Sloan Fellow, University of Massachusetts (1982); Visiting Professor, Uni­

ICL Technical Journal November 1987 811

versity of Rochester, New York (1982); Visiting Fellow at the Stanford
Centre for the Study of Language and Information, Stanford University,
USA (1984). A graduate of Queen Mary College, London, with a B.Sc. in
Mathematics and a Ph.D. in Theory of Computation, he also holds an M.A.
in Philosophy and a Ph.D. in Formal Logic from Bedford College, London.
He has broad research interests which include various aspects of formal logic
and the theory of computation. He has been invited to give talks in his
subjects in the USA and in the UK and is the author of over 25 papers and
publications.

812 ICL Technical Journal November 1987

i d
TECHNCfll
JQURnfll

Pages contained in each issue

(1) 1-166 (3) 357-608
(2) 167-356 (4) 609-829

Subject index
V o lu m e 5

A Ada
DAP-Ada: Ada facilities for SIMD architectures

Delves, L.M. and McCrann, M.
ANSA
The advanced networked systems architecture
project

Herbert, A.
Architecture
Innovation in computational architecture and
design

Godfrey, M.D.
Message structure as a determ inant of
message processing system structure

Ackerman, D.J.
What is Fifth Generation? - the scope of the
ICL programme

Proctor, B.J. and Skelton, C.J.
PISA - a Persistent Information Space
Architecture

Atkinson, M.P., Morrison, R. and Pratten, G.
Designing system software for parallel
declarative systems

Broughton, P., Thomson, C.M., Leunig, S.R.
and Prior, S.

1987 (4) 778-788

1987 (4) 638-651

1986 (1) 18-31

1986 (1) 147-157

1987 (3) 360-370

1987 (3) 477-491

1987 (3) 541-554

ICL Technical Journal November 1987 813

Flagship computational models and machine
architecture

Watson, 1., Sargeant, J., Watson, P.
and Woods, V.

Flagship hardware and implementation
Townsend, P.

GRIP: A parallel graph reduction machine
Peyton-Jones, S.L., Clack, C. and
Salkild, J.

Array processor(s)
Innovation in computational architecture and
design

Godfrey, M.D.
see DAP
Alvey (Directorate)
Guest editorial

Oakley, B.W.
What is Fifth Generation? - the scope of the
ICL programme

Proctor, B.J. and Skelton, C.J.
The Alvey DHSS Large Demonstrator Project

Portman, E.C.P.
PARAMEDICL: a computer-aided medical
diagnosis system for parallel architectures

Cutcher, M.G. and Rigg, M.J.
S39XC - a configurer for Series 39 mainfram e
systems

Bartlett, C.W.
The application of knowledge based systems to
computer capacity m anagem ent

Small, M.
On knowledge bases at ECRC

Nicolas, J.-M.
Logic languages and relational databased: the
design and implementation of Educe

Bocca, J.
The semantic aspects of MMI

Pratt, J.M.
Language overview

Babb, E.
PISA - a Persistent Information Space
Architecture

Atkinson, M.P., Morrison, R. and
Pratten, G.

Software developm ent using functional
programming languages

Darlington, J.

1987 (3) 595-599

1986 (1) 18-31

1987 (3) 357-358

1987 (3) 360-370

1987 (3) 371-375

1987 (3) 376-384

1987 (3) 385-403

1987 (3) 404-420

1987 (3) 421-424

1987 (3) 425-450

1987 (3) 451-471

1987 (3) 471—476

1987 (3) 477-491

1987 (3) 492-508

1987 (3) 555-574

1987 (3) 575-594

814 ICL Technical Journal November 1987

Dactl: a computational model and com piler
target language based on graph reduction

Glauert, J.R.W., Kennaway, J.R. and
Sleep, M.R.

Designing system software for parallel
declarative systems

Broughton, P., Thomson, C .M ., Leunig, S.R.
and Prior, S.

Flagship computational models and machine
architecture

Watson, 1., Sargeant, J., Watson, P.
and Woods, V.

Flagship hardware and implementation
Townsend, P.

GRIP: A parallel graph reduction machine
Peyton-Jones, S.L., Clack, C. and
Salkild, J.

Communications
Message structure as a determ inant of
message processing system structure

Ackerman, D.J.
Performance of OSLAN local area network

Maynard-Smith, A.
Cryptography
Cryptographic file storage

King, D.
see Security
Capacity management
The application of knowledge based systems to
computer capacity m anagem ent

Sm all, M.
Configurer (system)
S39XC - a configurer for Series 39 m ainframe
systems

Bartlett, C.W.

D DACTL
Dactl: a computational model and com piler
target language based on graph reduction

Glauert, J.R.W., Kennaway, J.R. and
Sleep, M.R.

DAP
Suggested extension of ICL DAP parallelism

Page, R.M.R. and Baddiley, E.

1987 (3) 509-540

1987 (3) 541-554

1987 (3) 555-574

1987 (3) 575-594

1987 (3) 595-599

1986 (1) 147-157

1986 (2) 326-343

1987 (4) 699-709

1987 (3) 404-420

1987 (3) 385-403

1987 (3) 509-540

1986 (1) 158-162

ICL Technical Journal November 1987 815

Experience with programming parallel signal­
processing algorithms in Fortran 8X

Wilson, A.
DAP-ADA: Ada facilities for SIMD architectures

Delves, L.M. and McCrann, M.
Quick language implementation

Gardiner, H., Little, R.W., M illigan, P.
and Perrott, R.H.

Database
REMIT: a natural language paraphraser for
relational query expressions

Lowden, B.G.T. and de Roeck, A.N.
Natural language database enquiry

West, V.
Global Language for Distributed Data
Integration

Stocker, P.M.
Logic languages and relational databased: the
design and implementation of Educe

Bocca, J.
Decision conferencing
Managing change and gaining corporate
commitment

Hall, P.
Data compression
Recent developments in im age data
compression for digital facsimile

Holt, M.J.J. and Xydeas, C.
Diagnosis (medical)
PARAMEDICL: a computer-aided medical
diagnosis system for parallel architectures

Cutcher, M.G. and Rigg, M.J.
DHSS (Demonstrator Project)
The Alvey DHSS Large Demonstrator Project

Portman, E.C.P.
Distributed Array Processor
see DAP
DRS 300
The ICL DRS 300 m anagem ent graphics system

Bunyan, R.J.

Encipherment
see Cryptography, Security
Expert System s
PARAMEDICL: a computer-aided medical
diagnosis system for parallel architectures

Cutcher, M.G. and Rigg, M.J.

1986 (2) 344-350

1987 (4) 778-788

1987 (4) 789-806

1986 (1) 32—45

1986 (1) 46-63

1986 (2) 274-290

1987 (3) 425-450

1986 (2) 213-227

1986 (1) 123^146

1987 (3) 376-384

1987 (3) 371-375

1986 (2) 317-325

1987 (3) 376-384

816 ICL Technical Journal November 1987

S39XC - a configurer for Series 39 mainfram e
systems

Bartlett, C.W.
The application of knowledge based systems to
computer capacity m anagem ent

Sm all, M.

F o rm a l m ethods
Formal specification - a sim ple exam ple

Duce, D.A. and Fielding, E.V.C.
Mathem atical logic in the large practical world

Babb, E.
Functional languages
The m e too method of software design

Henderson, P. and Minkowitz, C.
Software development using functional
programming languages

Darlington, J.
Flagship
What is Fifth Generation? - the scope of the
ICL programme

Proctor, B.J. and Skelton, C.J.
Flagship computational models and machine
architecture

Watson, 1., Sargeant, J., Watson, P.
and Woods, V.

Flagship hardware and implementation
Townsend, P.

Designing system software for parallel
declarative systems

Broughton, P., Thomson, C .M ., Leunig, S.R.
and Prior, S.

"Fifth G e n e ra tio n "
Guest editorial

Oakley, B.W.
What is Fifth Generation? - the scope of the
ICL program m e

Proctor, B.J. and Skelton, C.J.
The Alvey DHSS Large Demonstrator Project

Portman, E.C.P.
PARAMEDICL: a com puter-aided medical
diagnosis system for parallel architectures

Cutcher, M.G. and Rigg, M.J.
S39XC - a configurer for Series 39 m ainfram e
systems

Bartlett, C.W.

1986 (1) 96-111

1986 (2) 309-316

1986 (1) 64-95

1987 (3) 492-508

1987 (3) 360-370

1987 (3) 555-574

1987 (3) 575-594

1987 (3) 541-554

1987 (3) 357-358

1987 (3) 360-370

1987 (3) 371-375

1987 (3) 376-384

1987 (3) 385-403

1987 (3) 385-403

1987 (3) 404-420

ICL Technical Journal November 1987 817

The application of knowledge based systems to
computer capacity m anagement

Sm all, M.
On knowledge bases at ECRC

Nicolas, J.-M.
Logic languages and relational databased: the
design and implementation of Educe

Bocca, J.
The semantic aspects of MMI

Pratt, J.M.
Language overview

Babb, E.
PISA - a Persistent Information Space
Architecture

Atkinson, M.P., Morrison, R. and
Pratten, G.

Software developm ent using functional
programming languages

Darlington, J.
Dactl: a computational model and compiler
target language based on graph reduction

Glauert, J.R.W., Kennaway, J.R. and
Sleep, M.R.

Designing system software for parallel
declarative systems

Broughton, P., Thomson, C .M ., Leunig, S.R.
and Prior, S.

Flagship computational models and machine
architecture

Watson, 1., Sargeant, J., Watson, P.
and Woods, V.

Flagship hardware and implementation
Townsend, P.

GRIP: A parallel graph reduction machine
Peyton-Jones, S.L., Clack, C. and
Salkild, J.

Fortran
Experience with programming parallel signal­
processing algorithms in Fortran 8X

Wilson, A.

G Graphics
The ICL DRS 300 m anagem ent graphics system

Bunyan, R.J.
Graph reduction
Dactl: a computational model and compiler
target language based on graph reduction

Glauert, J.R.W., Kennaway, J.R. and
Sleep, M.R.

1987 (3) 425-450

1987 (3) 451-471

1987 (3) 471-476

1987 (3) 477-491

1987 (3) 492-508

1987 (3) 509-540

1987 (3) 541-554

1987 (3) 555-574

1987 (3) 575-594

1987 (3) 595-599

1986 (2) 344-350

1986 (2) 317-325

1987 (3) 509-540

1987 (3) 404-420

1987 (3) 421-424

818 ICL Technical Journal November 1987

Flagship computational models and machine
architecture

Watson, 1., Sargeant, J., Watson, P.
and Woods, V.

GRIP: a parallel graph reduction machine
Peyton-Jones, S.L., Clack, C. and
Salklld, J.

Graphics Kernel System (GKS)
Formal specification - a sim ple exam ple

Duce, D.A. and Fielding, E.V.C.

H History (of ICL)
ICL Company research and development,
1904-1959

Cam pbell-Kelly, M.

I Image compression
Recent developments in im age date
compression for digital facsimile

Holt, M.J.J. and Xydeas, C.
Inspection (Software)
The effects of inspections on software quality
and productivity

Kitchenham, B.A., Kitchenham, A.P.
and Fellows, J.P.

IPSE
Preparing the organisation for IPSE

Veasey, P.W. and Pollard, S.J.
PISA - a Persistent Information Space
Architecture

Atkinson, M.P., Morrison, R., and
Pratten, G.

K Knowledge base
The application of knowledge based systems to
computer capacity m anagement

Small, M.
On knowledge bases at ECRC

Nicolas, J.-M.

L Logic (mathematical)
Mathem atical logic in the large practical world

Babb, E.
Languages (computer)
REMIT: a natural language paraphraser for
relational query expressions

Lowden, B.G.T. and de Roeck, A.N.

1987 (3) 555-574

1987 (3) 595-599

1986(1) 96-111

1986 (1) 2-17

1986 (1) 123-146

1986 (1) 112-122

1986 (2) 253-273

1987 (3) 477—491

1987 (3) 404-420

1987 (3) 421-424

1986 (2) 309-316

1986 (1) 22-45

ICL Technical Journal November 1987 819

Natural language database enquiry
West, V.

The m e too method of software design
Henderson, P. and Minkowitz, C.

Global Language for Distributed Data
Integration

Stocker, P.M.
Experience with programming parallel signal­
processing algorithms in Fortran 8X

Wilson, A.
Logic languages and relational databases: the
design and implementation of Educe

Bocca, J.
Software development using functional
programming languages

Darlington, J.
Dactl: a computational model and compiler
target language based on graph reduction

Glauert, J.R.W., Kennaway, J.R. and
Sleep, M.R.

DAP-ADA: Ada facilities for SIMD architectures
Delves, L.M. and McCrann, M.

Quick language implementation
Gardiner, H., Little, R.W., M illigan, P.
and Perrott, R.H.

A general purpose natural language interface:
design and application as a database front end

Lowden, B.G.T., de Roeck, A.N., Phipps, D.J.
and Turner, R.

1986 (1) 46-63

1986 (1) 64-95

1986 (2) 274-290

1986 (2) 344-350

1987 (3) 425-450

1987 (3) 492-508

1987 (3) 509-540

1987 (4) 778-788

1987 (4) 789-806

1987 (4) 763-777

M Management
The M anagem ent Into the 1990s Research
Program

Scott Morton, M.S.
Managing strategic ideas: the role of the
computer

Eden, C.
A study of interactive computing at top
m anagem ent levels

Martin, C.J.
A m anagem ent support environment

Austin, N.C.
Managing change and gaining corporate
commitment

Hall, P.
An approach to information technology
planning

Pollard, S.J. and Crawford, C.R.

1986 (2) 169-172

1986 (2) 173-183

1986 (2) 184-195

1986 (2) 196-212

1986 (2) 213-227

1986 (2) 228-252

820 ICL Technical Journal November 1987

“M e to o ”
The m e too method of software design

Henderson, P. and Minkowitz, C.
M M I
The semantic aspects of MMI

Pratt, J.M.
M essag e processing
Message structure as a determ inant of
message processing system structure

Ackerman, D.J.
‘‘M IN ”
The M anagem ent Into the 1990s Research
Program

Scott Morton, M.S.

N N etw orks
Performance of OSLAN local area network

Maynard-Smith, A.
Open distributed processing

Brenner, J.B.
The advanced networked systems architecture
project

Herbert, A.
Community m anagem ent for the ICL networked
product line

Fuller, A.R.
Security in distributed information systems:
needs, problems and solutions

Blatchford, C.W.
The X/OPEN group and the common
applications environment

Taylor, C.B.

O ODA
Introducing ODA

Campbell-Grant, I.
O S LA N
Performance of OSLAN local area network

Maynard-Smith, A.
O pen system s
Open distributed Processing

Brenner, J.B.
The X/OPEN Group and the common
applications environment

Taylor, C.B.

1986 (1) 64-95

1987 (3) 451-471

1986 (1) 147-157

1986 (2) 169-172

1986 (2) 326-343

1987 (4) 613-637

1987 (4) 638-651

1987 (4) 652-664

1987 (4) 680-698

1987 (4) 665-679

1987 (4) 729-742

1986 (2) 326-343

1984 (4) 613-637

1987 (4) 665-679

ICL Technical Journal November 1987 821

p Parallel system s
Innovation in computational architecture and
design

Godfrey, M.D.
What is Fifth Generation? - the scope of the
ICL programme

Proctor, B.J. and Skelton, C.J.
The Alvey DHSS Large Demonstrator Project

Portman, E.C.P.
PARAMEDICL: a computer-aided medical
diagnosis system for parallel architectures

Cutcher, M.G. and Rigg, M.J.
S39XC - a configurer for Series 39 m ainframe
systems

Bartlett, C.W.
The application of knowledge based systems to
computer capacity m anagem ent

Small, M.
On knowledge bases at ECRC

Nicolas, J.-M.
Logic languages and relational databased: the
design and implementation of Educe

Bocca, J.
The semantic aspects of MMI

Pratt, J.M.
Language overview

Babb, E.
PISA - a Persistent Information Space
Architecture

Atkinson, M.P., Morrison, R. and
Pratten, G.

Software development using functional
programming languages

Darlington, J.
Dactl: a computational model and compiler
target language based on graph reduction

Glauert, J.R.W., Kennaway, J.R. and
Sleep, M.R.

Designing system software for parallel
declarative systems

Broughton, P., Thomson, C.M., Leunig, S.R.
and Prior, S.

Flagship computational models and machine
architecture

Watson, 1., Sargeant, J., Watson, P.
and Woods, V.

1986 (1) 18-31

1987 (3) 360-370

1987 (3) 371-375

1987 (3) 376-384

1987 (3) 385-403

1987 (3) 404-420

1987 (3) 421-424

1987 (3) 425-450

1987 (3) 451-471

1987 (3) 471-476

1987 (3) 477-491

1987 (3) 492-508

1987 (3) 509-540

1987 (3) 541-554

1987 (3) 555-574

822 ICL Technical Journal November 1987

Flagship hardware and implementation
Townsend, P.

GRIP: A parallel graph reduction machine
Peyton-Jones, S.L., Clack, C. and
Salkild, J.

PARAMEDICL
PARAMEDICL: a computer-aided medical
diagnosis system for parallel architectures

Cutcher, M.G. and Rigg, M.J.
PISA
PISA - a Persistent Information Space
Architecture

Atkinson, M.P., Morrison, R. and
Pratten, G.

Q Quality (software)
The effects of inspections on software quality
and productivity

Kitchenham, B.A., Kitchenham, A.P.
and Fellows, J.P.

R REMIT
REMIT: a natural language paraphraser for
relational query expressions

Lowden, B.G.T. and de Roeck, A.N.

S Security
The design of distributed secure logical
machines

Jones, R.W.
Security in distributed information systems:
needs, problems and solutions

Blatchford, C.W.
Cryptographic File Storage

King, D.
Series 39 (ICL)
S39XC - a configurer for Series 39 mainfram e
systems

Bartlett, C.W.
Standards
Open distributed processing

Brenner, J.B.
Community m anagem ent for the ICL networked
product line

Fuller, A.R.

1987 (3) 376-384

1987 (3) 477-491

1986 (1) 112-122

1986 (1) 22-45

1986 (2) 291-308

1987 (4) 680-698

1987 (4) 699-709

1987 (3) 385-403

1987 (4) 613-637

1987 (4) 652-664

1987 (3) 575-594

1987 (3) 595-599

ICL Technical Journal November 1987 823

Standards and office information
Ringland, G.

Introducing ODA
Cam pbell-Grant, I.

X.400 - International information distribution
Elliott, D.M.

The Technical and Office Protocols - TOP
Robinson, P.J.

The X/OPEN Group and the common
applications environment

Taylor, C.B.

V VME
The effects of inspections on software quality
and productivity

Kitchenham, B.A., Kitchenham, A.P.
and Fellows, J.P.

X X-OPEN
The X/OPEN Group and the common
applications environment

Taylor, C.B.
X.400
X.400 - International information distribution

Elliott, D.M.

1987 (4) 713-728

1987 (4) 729-742

1987 (4) 754—760

1987 (4) 743-753

1987 (4) 665-679

1986 (1) 112-122

1987 (4) 665-679

1987 (4) 754-760

824 ICL Technical Journal November 1987

Author index
V o lu m e 5

A ACKERMAN, D.J.: Message structure as a
determ inant of message processing system
structure

ATKINSON, M.P., MORRISON, R. and
PRATTEN, G.: PISA - a Persistent
Information Space Architecture

AUSTIN, N.C.: A m anagem ent support
environment

B BABB, E.: Language overview
BABB, E.: Mathem atical logic in the large

practical world
BADDILEY, E.: see PAGE and BADDILEY (1986)
BARTLETT, C.W.: S39XC - a configurer for

Series 39 m ainfram e systems
BLATCHFORD, C.W.: Security in distributed

information systems: needs, problems and
solutions

BOCCA, J.: Logic languages and relational
databases: the design and implementation of
Educe

BRENNER, J.B.: Open distributed processing
BROUGHTON, P„ THOMSON, C .M ., LEUNIG,

S.R. and PRIOR, S.: Designing system
software for parallel declarative systems

BUNYAN, R.J.: The ICL DRS300 m anagem ent
graphics system

C CAMPBELL-GRANT, L: Introducing ODA
CAMPBELL-KELLY, M.: ICL company research

and development, 1904-1959
CLACK, C.: see PEYTON-JONES e t a l. (1987)
CRAWFORD, C.R.: see POLLARD and

CRAWFORD (1986)

1986 (1) 147-157

1987 (3) 477-491

1986 (2) 196-212

1987 (3) 471-476

1986 (2) 309-317

1987 (3) 385-403

1987 (4) 680-698

1987 (3) 425-450
1987 (4) 613-637

1987 (3) 541-554

1986 (2) 318-325

1987 (4) 729-742

1986 (1) 2 -17

ICL Technical Journal November 1987 825

CUTCHER, M.G. and RIGG, M.J.:
PARAMEDICL: a computer-aided medical
diagnosis system for parallel architectures

D DARLINGTON, J.: Software developm ent using
functional programming languages

DE ROECK, A.N.: see LOWDEN and DE ROECK
(1986)

DE ROECK, A.N.: see LOWDEN e t a l. (1987)
DELVES, L.M. and MCCRANN, M.: DAP-Ada:

Ada facilities for SIM D architectures
DUCE, D.A. and FIELDING, E.V.C.: Formal

specification - a sim ple exam ple

E EDEN, C.: Managing strategic ideas: the role of
the computer

ELLIOTT, D.M.: X.400 - International
information distribution

F FELLOWS, J.P.: see KITCHENHAM e t al. (1986)
FIELDING, E.V.C.: see DUCE and FIELDING

(1986)
FULLER, A.R.: Community m anagem ent for the

ICL networked product line

G GARDINER, H., LITTLE, R.W., MILLIGAN, P.
and PERROTT, R.H.: Quick language
implementation

GLAUERT, J.R.W., KENNAWAY, J.R. and
SLEEP, M.R.: Dactl: a computational model
and com piler target language based on
graph reduction

GODFREY, M.D.: Innovation in computational
architecture and design

H HALL, P.: Managing change and gaining
corporate commitment

HENDERSON, P. and MINKOW ITZ, C.: The m e
too method of software design

HERBERT, A.: The Advanced Networked
Systems Architecture Project

HOLT, M.J.J. and XYDEAS, C.: Recent
developments in image data compression for
digital facsimile

1987 (4) 778-788

1986(1) 96-111

1986 (2) 173-183

1987 (4) 754-760

1987 (3) 376-384

1987 (3) 492-508

1987 (4) 652-664

1987 (4) 789-806

1987 (3) 509-537

1986 (1) 18-31

1986 (2) 213-227

1986 (1) 64-95

1987 (4) 638-651

1986 (1) 123-146

826 ICL Technical Journal November 1987

J JONES, R.W.: The design of distributed secure
logical machines

K KENNAWAY, J.R.: see GLAUERT e t a l. (1987)
KING, D.: Cryptographic file storage
KITCHENHAM, B.A., KITCHENHAM, A.P. and

FELLOWS, J.P.: The effects of inspections on
software quality and productivity

KITCHENHAM, A.P.: see KITCHENHAM e t al.
(1986)

L LEUNIG, S.R.: see BROUGHTON e t a l. (1987)
LITTLE, R.W.: see GARDINER e t al. (1987)
LOWDEN, B.G.T. and DE ROECK, A.N.: REMIT:

a natural language paraphraser for
relational query expressions

LOWDEN, B.G.T., DE ROECK, A.N., PHIPPS,
D.J. and TURNER, R.: A general purpose
natural language interface: design and
application as a database front end

M MCCRANN, M.: see DELVES and MCCRANN
(1987)

MARTIN, C.J.: A study of interactive computing
at top m anagem ent levels

MAYNARD-SMITH, A.: Perform ance of OSLAN
local area network

MILLIGAN, P.: see GARDINER e t al. (1987)
MINKOW ITZ, C.: see HENDERSON and

MINKOW ITZ (1986)
MORRISON, R.: see ATKINSON e t al. (1987)

N NICOLAS, J.-M.: On knowledge bases at ECRC

P PAGE, R.M.R. and BADDILEY, E.: Suggested
extension of ICL DAP parallelism

PERROTT, R.H.: see GARDINER e t al. (1987)
PEYTON-JONES, S.L., CLACK, C. and

SALKILD, J.: GRIP: a parallel graph
reduction machine

PHIPPS, D.J.: see LOWDEN e t at. (1987)
POLLARD, S.J.: see VEASEY and POLLARD

(1986)

1986 (2) 291-308

1987 (4) 699-709

1986 (1) 112-122

1986 (1) 32-45

1987 (4) 763-777

1986 (2) 184-195

1986 (2) 326-343

1987 (3) 421-424

1986 (1) 158-162

1987 (3) 595-599

ICL Technical Journal November 1987 827

POLLARD, S.J. and CRAWFORD, C.R.: An
approach to information technology planning

PORTMAN, E.C.P.: The Alvey DHSS Large
Demonstrator Project

PRATT, J.M.: The semantic aspects of MMI
PRATTEN, G.: see ATKINSON e t al. (1987)
PRIOR, S.: see BROUGHTON e t at. (1987)
PROCTOR, B.J. and SKELTON, C.J.: What is

Fifth Generation? - the scope of the ICL
programme

R RIGG, M.J.: see CUTCHER and RIGG (1987)
RINGLAND, G.: Standards and office

information
ROBINSON, P.J.: The technical and office

protocols - TOP

S SALKIND, J.: see PEYTON-JONES e t at. (1987)
SARGEANT, J.: see WATSON e t al. (1987)
SCOTT MORTON, M.S.: The M anagem ent Into

the 1990s Research Program
SKELTON, C.J.: see PROCTOR and SKELTON

(1987)
SLEEP, M.R.: see GLAUERT e t a l. (1987)
SMALL, M.: The application of knowledge

based systems to computer capacity
m anagem ent

STOCKER, P.M.: Global Language for
Distributed Data Integration

T TAYLOR, C.B.: The X/OPEN group and the
common applications environment

THOMSON, C.M.: see BROUGHTON e t al.
(1987)

TOWNSEND, P.: Flagship hardware and
implementation

TURNER, R.: see LOWDEN e t a l. (1987)

V VEASEY, P.W. and POLLARD, S.J.: Preparing
the organisation for IPSE

W WATSON, I., SARGEANT, J., WATSON, P. and
WOODS, V.: Flagship computational models
and machine architecture

1986 (2) 228-252

1987 (3) 371-375
1987 (3) 451-467

1987 (3) 360-368

1987 (4) 713-728

1987 (4) 743-753

1986 (2) 169-172

1987 (3) 404-418

1986 (2) 274-290

1987 (4) 665-679

1987 (3) 575-594

1986 (2) 253-273

1987 (3) 555-574

828 ICL Technical Journal November 1987

WATSON, P.: see WATSON e t a l. (1987)
WEST, V.: Natural language database enquiry
WILSON, A.: Experience with programming

parallel signal-processing algorithms in
Fortran 8X

WOODS, V.: see WATSON e t al. (1987)

X XYDEAS, C.: see HOLT and XYDEAS (1986)

1986 (1) 46-63

1986 (2) 344-350

ICL Technical Journal November 1987 829

1

