iClL

- TECHNICAL

JOURNAL

Volume 5 Issue 4 November 1987

Published by
INTERNATIONAL COMPUTERS LIMITED
at
OXFORD UNIVERSITY PRESS

iCL

TECHﬂICﬂL The ICL Technical Journal is published twice a year by
International Computers Limited at Oxford University

JOURnﬁL Press.

Editor
J. Howlett
ICL House, Putney, London SW15 ISW, UK

Editorial Board

J. Howlett (Editor) F.F. Land

H.M. Cropper (F International) (London School of Economics &
D.W. Davies, FRS Political Science)

G.E. Felton K.H. Macdonald

M.D. Godfrey M.R. Miller

(Imperial College, London (British Telecom Research
University) Laboratories)

C.H.L. Goodman JM.N. Pinkerton

(Standard Telephone E.C.P. Portman

Laboratories and Warwick
University)

All correspondence and papers to be considered for publication should be
addressed to the Editor.

The views expressed in the papers are those of the authors and do not
necessarily represent ICL policy.

1987 subscription rates: annual subscription £32 UK, £40 rest of world, US
$72 N. America; single issues £17 UK, £22 rest of world, US $38 N. America.
Orders with remittances should be sent to the Journals Subscriptions
Department, Oxford University Press, Walton Street, Oxford OX2 6DP, UK.

This publication is copyright under the Berne Convention and the Interna-
tional Copyright Convention. All rights reserved. Apart from any copying
under the UK Copyright Act 1956, part 1, section 7, whereby a single copy of
an article may be supplied, under certain conditions, for the purposes of
research or private study, by a library of a class prescribed by the UK Board
of Trade Regulations (Statutory Instruments 1957, No. 868), no part of this
publication may be reproduced, stored in a retrieval system or transmitted in
any form or by any means without the prior permission of the copyright
owners. Permission is, however, not required to copy abstracts of papers or
articles on condition that a full reference to the source is shown. Multiple
copying of the contents of the publication without permission is always
illegal.

© 1987 International Computers Limited

Printed by H Charlesworth & Co Ltd, Huddersfield ISSN 0142-1557

iCl

Contents T%E%%TL

Volume 5 Issue 4

Foreword
D.J. McLauchlan
NETWORKING AND INTERWORKING

Open Distributed Processing
J.B. Brenner

The Advanced Network Systems Architecture Project
A. Herbert

Community management for the ICL networked production line
A.R. Fuller

The X/OPEN Group and the Common Applications Environment
C.B. Taylor

Security in distributed information systems: needs, problems
and solutions
C.W. Blatchford

Cryptographic file storage
D. King

OFFICE DOCUMENTATION AND AUTOMATION

Standards and office information
G. Ringland

Introducing ODA
I. Campbell-Grant

The Technical and Office Protocols-TOP
P.J. Robinson

ICL Technical Journal November 1987

609

613

638

652

665

699

713

729

743

X.400 - international information distribution
D.M. Elliott 754

INTERFACE AND PROGRAMMING LANGUAGES

A general purpose natural language interface: design and application as
a database front end

B.G.T. Lowden, A.N. De Roeck, D.J. Phipps and R. Turner 763
DAP-Ada: Ada facilities for SIMD architectures

L.M. Delves and M. McCrann 778
Quick language implementation

H. Gardiner, RW. Lyttle, P. Milligan and R.H. Perrott 789
Notes on the authors 807
Subject index to Volume 5 813
Author index to Volume 5 825

fi ICL Technical Journal November 1987

Foreword

This issue of the ICL Technical Journal is dominated by the theme of
standards in communications and allied protocols and the key role which
they play in creating systems which are able to interwork readily.

The increasing need to be able to create complex systems to meet the needs of
users is a major driving force towards an acceptance of the importance of
creating standards. These standards must be internationally accepted and in
the public domain.

This has led to the rapid acceptance of open systems standards as the means
preferred both by industry and by its users to ensure that systems can be
built.

The approach is of particular importance to ICL and its customers since we
have chosen to focus our energies on supplying systems solutions to serve
specific markets. It is not surprising, therefore, that the company has played a
leading role in establishing the world-wide acceptance of this design ap-
proach. In this, we are following a commitment to standards which dates
back to the earliest days of ICL.

It is gratifying to see the rapid way in which these exceedingly complex
standards are being generated and are gaining acceptance. They are appear-
ing as mandatory requirements for the L.T. systems of a growing number of
major customers. This is one more measure of the increasing maturity of
what is still a very young industry, and one in which our systems designers
rightly take pride.

D.J. McLauchlan
Director of Technology and Engineering

ICL Technical Journal November 1987 609

NETWORKING AND INTERWORKING

Open Distributed Processing

J.B. Brenner
ICL Marketing and Technical Strategy, Bracknell

Abstract

The subject of Open Distributed Processing (ODP) standardisation is
at a formative stage in 1SO. An analysis of the nature of distributed
systems is presented in this context, together with a survey of current
research findings.

1 Introduction

The purpose of this paper is to explain some of the technical thinking that
underpins the Open Distributed Processing (ODP) standardisation’ that
started this year in ISO, the International Organisation for Standards.

Readers of the ICL Technical Journal will probably already be aware of the
existing standardisation for Open System Interconnection (OSI)*?. The
ODP standardisation extends far beyond the scope of OSI. It is concerned
with how to build distributed systems, and how to integrate software across
them. Its focus is to be an ISO Reference Model for Open Distributed
Processing, scheduled for completion in 1989.

The European Computer Manufacturers Association (ECMA) has been
studying this area for several years and has recommended a set of technical
assumptions* on which to base the Reference Model. The author is
Convener of the ECMA group directly concerned (TC32-TG2); and the
content of this paper is closely related to the ECMA work.

The pace of change in information technology is very rapid, and probably
nowhere more so than in the field of distributed systems. The impact of some
of these changes amounts to paradigm shifts in which the changes overwhelm
the basis for existing patterns of thought, and different patterns must take
their place. As explained in Kuhn?!, there is great difficulty in recognizing
and accommodating to such discontinuities. This is what we face here when
trying to visualise Open Distributed Processing in the 1990s.

The subject area has traditionally been viewed mostly in terms of networking
and data communications, rather than programming-in-the-large, and lan-
guages and compilation systems. This emphasis is now being reversed.

ICL Technical Journal November 1987 613

Another big change is that integration of multi-media information (e.g. voice
telephone + data) is likely to become commonplace during the lifetime of
Open Distributed Processing standards. The integrated handling of real time
voice, video and image is a relatively new subject.

A further broadening of horizons is inherent in the enormously large and

varied field of application of distributed systems. Table 1 gives an indication
of its breadth and diversity.

Table 1 Some fields of application for distributed systems.

Administrative Systems Radio/TV/Hi-fi
Business Management Office Systems
Command and Control Process Control
Engineering Computation Scientific Computation
Factory Automation Telecommunications
Image Manipulation Technical Design

Knowledge Engineering

Our belief is that across an immense field there is a convergence of
techniques, such that it is possible to construct a relatively small core of
concepts sufficient to achieve a near universal basis for distributed informa-
tion systems. The existence of this completeness of distributed systems
techniques is substantiated in the “Survey of Techniques” in section 4. This
gives a summary of research results and practical experience in distributed
systems which ECMA proposes as the technical basis of the standards. The
sources which it references are a basic reading list for the whole distributed
systems subject area.

But before looking at these research results, we need to explore the nature of
the subject area. This is done in two stages. “Understanding the Problem”,
section 2, seeks to identify the essentials of distributed systems. “Modelling
the Problem”, section 3, introduces techniques for modelling distributed
systems. These are major steps towards construction of the Reference Model
for Open Distributed Processing.

Finally, a view of the technical content of the emerging architecture and
standards is summarised in the “Expectations”, section 5. This emphasises
that Open Distributed Processing standardisation will be an evolutionary
development, making good use of existing standards.

2 Understanding the Problem

2.1 Introduction

We need to develop an understanding of the fundamental issues particular to
distributed systems, so that these can be recognised in the Reference Model

for Open Distributed Processing.

614 ICL Technical Journal November 1987

A preliminary point is that no special distinction of scope or applicability is
intended by calling the ISO work item “Open Distributed Processing”, not
“Open Distributed Systems”.

2.2 Definitions

The first task is to define what we mean by “distributed systems” in the
context of the Reference Model for Open Distributed Processing. We begin
with some general definitions.

system: a composite whole.

component: a participant in a composite whole.

The components are the resources from which a system is composed, and the
elements into which it may be decomposed. The structure of this composition
and decomposition is the essence of systems. It leads us to the definition of
architecture in this context.

system architecture: systematic and formulated knowledge of the com-
position and decomposition of a system.

These concepts of components and systems are recursive, in that a system
may be a component (subsystem) of some larger system, which in turn may
also be a subsystem of some other system; i.c. systems can be viewed at
different degrees of granularity. Typically system composition has a hierar-
chic structure, with complex components which can be decomposed into less
complex components, possibly through many levels. This kind of hierarchic
composition and decomposition is fundamental to human understanding,
and to the management of complexity.

It is possible for something to be a component of more than one system.
Furthermore, if something else interacts with a system, it and that system can
be viewed as components of some larger system (e.g. system A and an
observer or user of it become components of some larger system B),

The above definitions are general to many kinds of systems (e.g. astronomical
systems, biological systems, social systems, mechanical systems), so the next
step is to concentrate our view onto information systems.

information system: a system which manipulates information (abbrevi-
ated here to “system” when the prefix “information” is apparent from
the context).

By this definition, the inherent and distinctive characteristics of information
systems are information and some means of action to manipulate it. Similarly,
these are inherent characteristics of each component of an information
system.

ICL Technical Journal November 1987 615

Some further definitions enable us to distinguish between various levels of
abstraction.

abstract system: a system defined without reference to realisation.

logical system: a system defined with reference to its realisation, but
without reference to its physical realisation.

physical system: a system defined with reference to its physical realisation.

Any realisation of an information system may be viewed at all of these levels
of abstraction. A physical system is defined mostly at the boxes and wires
level. A logical system is defined in terms of functional units, software
modules, interface specifications, protocols, etc. An abstract system is an
implementation-independent view of a system. This abstraction is the essence
of the system, without extraneous detail. The term “abstract” as used here
does not have the connotation “unreal” or “unrealisable”.

The next step is to define separation properties with respect to the two
distinctive characteristics inherent in information systems, i.e. information
and action. This is where we begin to identify properties that are fundamental
to distributed systems.

information separation property: a property of a set of two or more
entities, such that any information integral to an entity is disjoint from
that integral to the other entities.

action separation property: a property of a set of two or more entities,
such that any ability for action integral to an entity is disjoint from that
integral to the other entities.

These separation criteria are used here to define the separation of compo-
nents within a distributed system, and this gives us precise definitions for
distributed information systems.

distributed system: an information system, of which all the components
visible at the chosen level of abstraction and granularity have, with
respect to each other, the information separation property and the action
separation property.

open distributed system: a distributed system conforming with particular
open standards.

The separations which by this definition are axiomatic to distributed systems
are illustrated in Fig. 1. The example is a distributed system composed from
the separated components A, B, C, and D, with various bindings between
them.

The example also illustrates that a component of a distributed system, such
as component D, is not necessarily separate from further components, such

616 ICL Technical Journal November 1987

Information
and Action

Information
and Action

integral to A, integral to B,
separated separated
from B,C,D. from A,C,D.

Information
and Action

Information

and Action integral to D,

integral to C, separated

separated from A,8,C.

from A,B,D. : - Y
Other components are

not necessarily separate.

Fig. 1 Axiomatic Separation Properties of a Distributed System

as X and Y, which were deemed not to be visible at the chosen level of
granularity. Mutual separation with respect to each other is the necessary
and sufficient condition, and global separation from all other components
cannot be required as the general case.

Our definition of (open) distributed systems is applicable at all the levels of
abstraction; i.e. there can be abstract distribution (the disjointness is mani-
fested as separation defined within the specifications), logical distribution (the
disjointness is manifested as separate implementation modules), and physical
distribution (the disjointness is manifested as physically separate units). It also
includes temporal distribution, in which the disjointness is by displacement in
time (e.g. interaction is via store and forward mechanisms). Distribution at
one level of abstraction does not necessarily imply distribution at others; e.g.
a logically distributed system may consist of physically co-located compo-
nents.

This tight definition of distributed systems is not applicable to all kinds of
distributed systems. Some useful and important distributed systems do not
have these separation properties. For example, there is no significant

ICL Technical Journal November 1987 617

separation of information in the combination of a remote terminal and a
computer which echoes onto the terminal screen the characters entered on
the terminal keyboard. Similarly, there is incomplete separation of informa-
tion where software is partitioned into physically separate modules with
global variables common to them (distributed global memory). A case where
there is no significant separation of action is a remote slave device such as a
monitor display. The legitimacy of such configurations is not an issue here,
and these examples are all about realisation details not visible at our level of
abstraction.

Abstract distribution is the most general case, and is appropriate to an
architectural and implementation-independent view of distributed systems.
Being at this level of abstraction, and being concerned with the fundamentals
of separation, the Reference Model for Open Distributed Processing is
essentially about system modularity and structure, not spatial or temporal
dispersion.

2.3 Separation

In addition to the axiomatic separation properties (i.c. the information
separation property and the action separation property), the components of
distributed systems may have other derived separation properties. The
complete list of separation properties and their characteristics and deriva-
tions is given below.

Information separation property. Independent existence of components
is inherent in this axiomatic separation property.

Action separation property. Potential for autonomous action by compo-
nents is inherent in this axiomatic separation property.

Explicit communication property. Explicit communication for interac-
tions between components is inherent in the two axiomatic separation
properties, individually and in combination.

Location property. Distinctions of location are inherent in the combina-
tion of the two axiomatic separation properties; also locations might
change (relocation).

Identity property. Distinctions of component identity (i.e. the ownership,
authority and accountability of components) are inherent in the two
axiomatic separation properties, individually and in combination.

Isolation property. Potential for isolation of components by control over
their accessibility is inherent in the combination of the two axiomatic
separation properties. This, together with the identity property, is a
basis for security.

Concurrency property. Potential for parallel activity is inherent in the
action separation property.

618 ICL Technical Journal November 1987

Partial failure property. Potential for a system to continue in operation
after the failure of individual components is inherent in the combination
of the two axiomatic separation properties.

Incremental change property. Potential to incrementally add, or remove,
or replace components is inherent in the combination of the two
axiomatic separation properties.

Heterogeneity property. Potential for diversity of implementation is
inherent in the combination of the two axiomatic separation properties,
and is enhanced by the incremental change property.

From these considerations, two issues emerge. The first is how the conse-
quences of distribution are to be treated; see §2.4 and §2.5. The second is how
to exploit the features of distribution to achieve desirable quality attributes;
see §2.6.

2.4 Distribution Transparency

A major system and application design issue is whether or not to hide spatial
separation and its consequences (e.g. explicit communication and partial
failures). The term distribution transparency is used here for discussing the
visibility of separation within distributed systems.

Arguments for distribution transparency. It can be advantageous if all the
consequences of distribution are made transparent. This hides complex-
ity, simplifies the task of applications designers and enhances the re-
usability of existing system components. Evolution of existing products
based on centralized systems is then inherently straightforward. A
successful experiment with such transparency is Unix United4.

Arguments against distribution transparency. Full distribution transpar-
ency, which completely conceals distribution, can be relatively expensive
in terms of the underlying implementation effort and performance
overheads. Moreover, it denies designers the opportunity to exploit the
consequences of distribution via explicit fault management and the
decentralization or replication of control, or data, or both.

System design choices lead to different transparency requirements; and ful’
distribution transparency is not always necessary. Therefore, the Reference
Model for Open Distributed Processing should structure these transparency
choices and not pre-empt them.

2.5 Kinds of distribution transparency

It is well established that distribution transparency is made up of a number
of separate elements*! which are described here in terms of the conditions
necessary to achieve full distribution transparency:

ICL Technical Journal November 1987 619

Access transparency: Concealing the use of communications when
accessing remote resources (such as programs, data and devices).

Location transparency. Enabling the use of a resource, independent of
the placement of that resource in the distributed system.

Migration transparency. Enabling the migration or reconfiguration of
resources in a distributed system.

Replication transparency. Enabling the use of multiple instances of a
resource for such purposes as enhancing dependability and perfor-
mance.

Concurrency transparency. Avoiding inconsistencies due to parallel
execution, by using concurrency control techniques.

Fault transparency. Concealing faults by using error processing tech-
niques.

Performance transparency. Minimizing the performance penalties as-
sociated with using remote resources.

Scaling transparency. Concealing variations in system behaviour due to
scaling up to large or busy or turbulent systems, and scaling down to
small or placid systems.

Transparency issues are demonstrated in the following example, in which a
network of small personal computers is used by a group of currency dealers.
The dealers need to share access to a simple database of currency prices and
deals in progress. The structure of the program in each personal computer is
shown in Fig. 2. There are two modules in the program: a database access
module that manages access in the shared database, and a currency
application module.

Currency Database
Application Access
Module Module L -
Currency dealer Personal Computer

Fig. 2 Program structure of distribution transparency example

A design aim of this system is that the currency application module should
not be affected by the distributed nature of the system. This requires that the
database access module should provide full distribution transparency (i.e. it
completely hides from the application module all distribution of the data-

620 ICL Technical Journal November 1987

base). Depending upon how the system as a whole is structured, different
strategies will be adopted for the database access module.

Centralized structure. The database is on a central database server which
manages concurrent access to the database. The database access module
communicates with this remote server, and conceals this use of commu-
nications, thereby providing access transparency.

Partially distributed structure. The database is on a central ‘remote disc’
server. The database access modules in each personal computer must
now cooperate with one another to preserve consistency of the database.
They hold locks, which they set and release in some coordinated way.
They conceal this from the currency application module. They thereby
provide concurrency transparency (which was previously provided for
them by the centralised database), in addition to the access transparency.

Fully distributed structure. A copy of the database is stored on the local
disc of each personal computer. The database access modules in the
personal computers each arrange that their copy of the database is kept
in step by using, for example, Birman’s ‘Bulletin Board’ protocols’. They
hide this replication, and thereby provide replication transparency. With
the database replicated, it is possible for the system to remain in
operation despite the failure of individual copies. The database access
modules do the necessary error processing to conceal the faults, and
thereby provide fault tranparency. The database may be too large to
store on each local disc, in which case it can be partitioned and each
local disc keeps only some fraction of the whole. By handling and
concealing this discontinuity of scale, the database access modules
provide scaling transparency. Responsiveness will be enhanced if the
personal computer for each dealer stores locally the database partitions
that he uses most frequently. The database access modules thereby
minimise the performance penalties associated with using remote re-
sources, and provide performance transparency. Responsiveness may be
further enhanced if the partitioning can be reconfigured when usage
patterns change. The database access modules conceal this, and thereby
provide location transparency and migration transparency.

It is evident that as the degree of distribution increases, the database access
module has to provide a greater number of transparency attributes to meet
the transparency requirement of the currency application module. Open
Distributed Processing standards should specify how to achieve these
transparency attributes.

2.6 Quality attributes

The commercial and technical viability of Open Distributed Processing
standards will be critically dependent on quality attributes. Systems de-
signers using the standards should be able to achieve high levels for the
quality attributes of importance to them, and should be able to make

ICL Technical Journal November 1987 621

tradeoffs between quality attributes and other commercially important
factors, such as cost.

The following quality attributes are considered to be highly important in this
context:

Dependability. Every improvement in dependability (i.c. reliability,
availability, maintainability, safety, security)®# is a potential increase in
applicability.

Efficiency. Every improvement in performance with a given resource is a
potential increase in applicability and a potential reduction of cost.

Scaling. Every improvement in the ability to scale up and to scale down
is a potential increase in applicability and in-service flexibility.

For all quality attributes there are threshold leveis to be achieved for
viability in particular fields of application; e.g. for process-control appiica-
tions there are usually critical requirements for response times, continuous
operation, stability at peak loads and safety.

Experience abundantly demonstrates that the most demanding aspect of
system design is achieving the quality attribute targets. Qualitative factors
most therefore have a dominant role in the design of the Reference Model for
Open Distributed Processing.

Potential for manipulating quality attributes is inherent in the separation
properties and distribution transparencies of distributed systems. For exam-
ple, reliability and availability may be improved by exploiting the partial
failure property and fault transparency and replication transparency; secu-
rity may be enhanced by exploiting the isolation property; and performance
may be improved by exploiting the concurrency property and concurrency
transparency. Qualitative excellence is an inherently achievable goal for
Open Distributed Processing Standardisation.

2.7 Generic Functions

Some functions are common to all distributed systems, independent of the
field of application. They can be classified as Generic Functionality and
Generic Attribute Controls.

The Generic Functionality may be classified as follows.

Supportive services. There is necessarily an infrastructure of common
supportive services to overcome the obstacles inherent in separation; e.g.
directory services, authentication services and time services.

Management mechanisms. There are common management concepts
and functions such as domains of control and control points relating to

622 ICL Technical Journal November 1987

them. Similarly, there are management functions which should be
common to all components; e.g. accounting, security, configuration
control, fault management and diagnostic controls.

Data storage mechanisms. There should be generic functions for remote
data access, data distribution, data consistency, etc.

Human-computer interfacing mechanisms. There should be common
mechanisms for information presentation, dialogue structure, and user-
oriented modelling of applications.

Generic Attribute Controls are concerned with how well the distributed
system operates. Quality attributes and transparency attributes should be
manipulated on the basis of system design policies relating to transparency,
efficiency, dependability and scaling. These qualitative control mechanisms
should be generic to all components of distributed systems, and should be
distinct from, and orthogonal to, the specific functionality of components.

2.8 Summary

This analysis of the nature of distributed systems may be summarised as
follows:
All systems are composed from components.

Distributed information systems have 10 distinctive component separa-
tion properties, axiomatic and derived.

The visibility of the separation is defined and manipulated as 8 kinds
distribution transparency.

The separation properties and distribution transparencies provide op-
portunities for distributed systems to have enhanced quality attributes.

All distributed systems have essentially the same needs for comprehen-
sive Generic Functionality and Generic Attribute Controls.

With this understanding of what is to be modelled by the Reference Model
for Open Distributed Processing, we can now consider how to do the
modelling.

3 Modelling the Problem

3.1 General

The main content of the Reference Model for Open Distributed Processing
should be an architecture of abstract distributed systems; and this is

essentially about separation and its consequences.

The view taken here is that a well formed abstract architecture for this
purpose should be constructed from two ingredients:

ICL Technical Journal November 1987 623

a theory which captures the separation properties that are the essence of
distributed systems;

a framework of abstractions within which to position and use this
theory, and thereby to provide a language for describing and under-
standing the structure of distributed systems.

Both these ingredients should be consistently and completely applicable
across the whole field of abstract distributed systems (and thereby all
modular systems). The architecture should have a basis in formal notation
that avoids the dangers of ambiguity and inconsistency.

This structure should draw from the theoretical and practical results
summarised in the Survey of Techniques in section 4. Some specific proposals
are advanced here.

3.2 Object Theory
The concept of “objects”2? is now generally held to have a crucial role in the
structuring of modular systems.

The term object theory is used here for discussing object concepts in the
context of system modelling, as distinct from use of essentially the same
concepts in programming languages?® and operating systems'Z. Object
theory provides a theoretical basis for the structuring of abstract systems. It
is independent of whether or not object-oriented programming languages or
object-oriented operating systems are used in implementations. Object
theory objects visible at the level of distributed system granularity may be
termed coarse grained objects, as distinct from fine grained objects that are
only visible in implementation software.

In this object theory, an object in an abstract system is any component which
is of significance to an observer and contains information and the means of
acting upon it. Objects encapsulate the internal representation of their
information and the implementation of their actions, so that these are not
externally visible. An object is therefore a model of a component with the
axiomatic separation properties, plus crucially important hiding of implemen-
tation detail. Object theory is mainly about the modelling of interactions
between such separate objects.

Information within an object is typically persistent, but may be volatile, as
required. The observable actions of an object are its operations. This is a term
taken from abstract data type (ApT) theory. Viewed this way, an object is a
data abstraction, and the operations on it define its behaviour (strictly, its
behaviour type). ADT theory and concepts have a formal mathematical basis,
and are pervasive throughout high level languages. However, as we will see,
object theory consists of more than just data abstraction.

624 ICL Technical Journal November 1987

The external visibility of an object is a set of individually named interfaces to
its operations. An interface provides a service consisting of a defined set of
operations. Objects interact by sending and receiving messages which carry
information between them. These are generally termed operation invocations
and operation responses. The content and dialogue structure of these
message exchanges must conform to the specification of the interface being
used.

Objects offer their services to other objects by publishing their interfaces in
some appropriate way. Objects gain access to the services provided by other
objects by means of the published interfaces of these other objects. The terms
export and import are used for this way of establishing access. Object theory
includes client/server and producer/consumer relationships between interac-
ting objects. There may be many-to-one and many-to-many relationships.
These are all aspects of object bindings. As a practical matter, client/server
models are already coming into general use in OSI standardisation; e.g. in
standards for Office Applications'® and the OSI Directory Service?®.

For some objects many instances may exist. So a distinction is made between
object types (sometimes called classes) and object instances. An object type is
a description of the generic observable characteristics of members of a set of
objects with identical behaviour type. An object instance is one of a set of
objects of the same object type. Object types are not necessarily completely
different, and are usually derived from existing object types. Accordingly
there are subtype inheritance concepts (this inheritance of behaviour descrip-
tion is not to be confused with the inheritance of implementation methods in
some object-oriented programming languages).

In addition to their specific interfaces, objects may have a generic manage-
ment interface, consisting of a set of management operations common to all
objects. Objects can therefore be managed objects which are the component
resources of managed systems.

Objects may also be characterised by various object properties which
position them in an external framework of abstractions (see §3.3).

In summary, Object theory is a particular combination of:

data abstraction + type concepts + subtype inheritance concepts + object
interface concepts + object binding concepts + object properties concepts.

Object theory can be applied to most aspects of computer systems; e.g.
human/system interfacing, system/system interfacing, software/software
interfacing, software/hardware interfacing. It is a useful way of structuring
because it can prevent the designer’s intentions from being distorted by
visibility of implementation mechanisms. Moreover, people have an oppor-
tunity to understand their information systems without needing to under-
stand the technicalities of the implementation mechanisms.

ICL Technical Journal November 1987 625

The primary test of whether Object theory should be at the heart of the
Reference Model for Open Distributed Processing is: does it model the
separation properties? A secondary test would be: does it have a sufficient
formal basis? Another would be: does it fit comfortably into the world of high
level languages? Also is it sufficiently general to include important kinds of
interactions that are outside the scope of most programming languages
today; e.g. voice interactions? The answers are all in the affirmative; therefore
object theory is expected to be the fundamental theory used in the Reference
Model for Open Distributed Processing.

3.3 Framework of Abstractions

The framework is intended to provide a consistent way of positioning objects
in models of information systems. This explicit positioning should help the
designer to explain why an object has been introduced into the design of his
particular system, and how it relates to other objects. It also helps us to
understand and to relate together different systems, because their component
objects can be directly compared via their positioning within the one
common framework of abstractions.

The framework can be visualised as a multi-dimensional design space. Each
object is positioned relative to every dimension (except that for many
purposes the position on a dimension will be the null “dont care” value).
These are linguistic dimensions rather than geometrical dimensions; the
framework is a language for describing the design space, rather than a
cartesian grid.

The dimensions chosen should be those inherent in all objects. This is an
important consideration in the choice of dimensions summarised below.

Topology dimension. This dimension is concerned with the configuration
of objects in the model of a system. In this dimension there are zones
corresponding to the three levels of abstraction already discussed:
physical topology, logical topology and abstract (or service) topology.
Configurations may have tree and network mesh topologies, with
subdivision into separate or nested domains.

Composition dimension. This dimension is concerned with object com-
position and decomposition. As the level of composition increases, the
objects in a model become more complex but fewer in number. There
are recipies to apply structure to a group of objects (i.e. components)
and thereby compose a higher level object (i.. a system or subsystem),
and vice versa for decomposition. These recipes include client/server
relationships, producer/consumer relationships, and replicated object
troupe concepts.

Infrastructure dimension. This dimension is concerned with the organi-
sation of the object-support infrastructure. Most objects are at the far
end of this dimension, in that they sit on top of the abstract machine and

626 ICL Technical Journal November 1987

object-interpreter environment supported by this infrastructure (the
nucleus described in §5). At the other end of this dimension are the
heterogeneous objects that come from outside the architecture and
provide the basic resources (heterogeneous language systems, operating
systems, processors, storage, communications networks, etc). Next to
these are positioned homogeneous objects which overlay the heteroge-
neity to provide a homogeneous abstract machine and object-inter-
preter. Then there are local objects which provide specialised local
support for an interpreter; and finally, global objects (e.g. directories)
which are not tied to a particular interpreter.

Human interface dimension. This dimension is concerned with the
visibility of an object from the viewpoint of human users of systems. It
allows a separation of concerns between various aspects of the very
complex matters of human interfacing, and between these and all the
rest of a system. At one end of this dimension is the human user
(modelled as an object); at the other end are resource objects that should
know almost nothing of the complexities of human interfacing (e.g. file
servers, and the majority of objects). In between are zones in which
intermediary objects are concerned with: the interface devices (e.g.
keyboards and screens); the presentation of information (e.g. windows,
menus, command line parsers, etc.); the dialogue structure along the
whole of this human interfacing dimension; and transposing of the
underlying resources into cognitive models suitable for the human user
(e.g. the desktop paradigm).

Communications dimension. This dimension is concerned with classify-
ing the communications functionality of objects. Most have none (other
than that inherent in all object interfaces) and would therefore be at
layer 7 of this dimension, the whole of which would be expressed in
terms of the OSI layering.

Evolution dimension. This dimension is concerned with controlling
changes in the architecture (e.g. version 1, version 1.1, etc.).

Temporal dimension. This dimension is concerned with the life-cycle of a
system as it is built up and modified to meet changing requirements.

Each object can be visualised as having a label (a properties list) visible on its
surface, declaring its position on these dimensions, and declaring its name(s).

4 Survey of Techniques
4.1 Introduction

Now that we have some idea of the general structure of the architecture, we
can populate it with more detailed technical content.

The standards should draw upon known techniques rather than indulge in
unnecessary invention. Fortunately, there is a large body of mature tech-

ICL Technical Journal November 1987 627

niques that have been developed and explored in the distributed systems
research community. Many have yet to appear in standards, but most are
already appearing in proprietary forms. These techniques have originated
from a considerable experience with system design®3, and are well matched
to the technical requirements of Open Distributed Processing.

4.2 Interaction style

Object theory defines interactions as Operations at a level of abstraction that
is independent of important issues of notation and implementation.

A notation and interaction style already well established in the world of open
standards is that of the OSI Remote Operations technique, for which there is
now a draft joint CCITT recommendation and ISO standard?®, based on the
existing CCITT Recommendation X.410'3, This is a means for rigorous
definition of the structure and syntax of the invocations and responses of
operations on remote objects, with automatic derivation of the OSI proto-
cols to support these interactions. The technique is now used for almost all
OSI application protocol standards. Another relevant notation for specifying
object operations and interfaces is the LOTOS formal description tech-
nique®’, which allows formal definition of the semantics and temporal
ordering of operations, not just their syntactic structure. These two tech-
niques should be used to complement each other, and not as mutually
exclusive alternatives.

An asynchronous message-passing style of implementation is generally
applicable to most kinds of remote interactions, and has been used in many
successful distributed systems designs. Remote procedure call is an appropri-
ate implementation technique for synchronous remote interactions, see §4.3.

4.3 Remote procedure call

Much of the research into distributed systems has focussed on bringing
software engineering techniques to bear on the problems of building,
operating and managing distributed systems.

A major breakthrough came with the maturing of remote procedure call
(RPC) techniques, bringing together programming languages and datacom-
munications via process-to-process communications, as in Birrell and Nel-
son®. In an RPC system a program (the client) can call a procedure, defined
at the language level, which is executed by another program (the server),
which is potentially remote.

The major feature of RPC is that it allows the programmer to construct
application protocols in terms of his normal language construct for interac-
tions between modules, i.c. the procedure call (and function call). RPC also
provides flexibility in the configuration of distributed applications, since the

628 ICL Technical Journal November 1987

choice of physical co-location or remoteness for sets of procedures need not
affect the programmer, and can be deferred.

An RPC package inherently consists of three parts:

an RPC protocol
a runtime library
a program module linker

The RPC protocol is responsible for the transfer of RPC request and
response messages between client and server. RPC protocols are optimized
for short response times and minimizing the number of packet exchanges.
This is in contrast to traditional general purpose protocols which are usually
optimized for continuous bulk transfer. RPC protocols mask failures so that,
in the absence of catastrophic failure, remote calls are executed exactly once
(i.e. like local calls). RPC protocols can be based on simple recoverable
connections with ultimate responsibility for recovery vested in the client.
RPC protocols may also be built using conventional connection-oriented
interconnection.

The runtime library consists of two parts: marshalling and dispatching.
Marshalling is the process of taking the arguments and resuits of a procedure
call and assembling them into packets for transmission by the RPC protocol,
and then disassembling them. RPC marshalling is optimized to improve
responsiveness by minimizing the complexity and overheads of buffer
management., Dispatching is the process of selecting the correct procedure to
invoke on receipt of a remote call.

Despatching relies upon a binding being set up between client and server. A
server program (or support software associated with it) exports information
about the procedures it offers; and similarly a client imports such informa-
tion. The imported information specifies procedure identifiers to be inserted
in requests for decoding by the despatcher.

The job of the program module linker is to automatically replace calls to
remote procedures by calls on the local marshalling routines and RPC
service, but without explicit programmer involvement. These calls are often
realised via what are termed stub procedures. The linker also generates the
runtime binding information needed for imports and exports, and will exploit
the local programming language modularization features to delimit client
and server procedures. Complete stub procedures can be generated automat-
ically by software tools systems.

A notable feature of the RPC protocol in Birrell!® is that it is very well
integrated with an authentication and encryption system providing secure
communications.

Since procedure calls wait until a result is returned, RPC systems are ideally

iCL Technical Journal November 1987 629

based on a lightweight process structure so that many remote procedure calls
can be active simultaneously in systems where asynchrony is required.

ECMA has recently completed a remote procedure call protocol standard?®,
which uses the OSI Remote Operations notation and protocol.

4.4 Consistency

Distributed processing has led to much research into the problems of
consistency. In distributed processing there is true parallelism, and the
execution of processes in separate machines may overlap. Correctness
requires that each process should see a consistent view of the data structures
and state of the computation, and therefore the parallelism must be
constrained.

To this end, much work has been done on transaction-based systems using
the concept of transactions from the database world?*. Transactions are
atomic actions, their effects are all-or-nothing. In the ARGUS system3¢
sequences of program statements, including calls of remote procedures, can
be labelled as an atomic action. The ARGUS compiler and runtime system
are jointly responsible for providing stable storage, and for managing
read/write locks and running two-phase commitment protocols to achieve
atomicity. Atomic actions in ARGUS may be nested so that a programmer
can build atomic actions around any sequence of statements, including
nested sub-actions.

Following on from the ARGUS work, other research groups have recognized
that greater parallelism can result by using application-oriented locking
strategies rather than by automatic nested compositions of read/write locks.
An example is the TABS system*S. Another approach for enhancing
parallelism is that of optimistic concurrency strategies where processes are
allowed to proceed until a conflict is detected and recovery invoked>2.

Another characteristic of distributed programs is the potential to increase
dependability and performance by replicating parts of the program. Birman’s
ISIS system® provides an efficient implementation of resilient objects. Such
an object is implemented as a group of replicated co-operating objects. If a
member fails or becomes overloaded, another in the group will take over.
The system is based on a suite of optimized atomic broadcast protocols’. A
similar scheme is Cooper’s replicated distributed programs!”. This is an RPC
system that supports active replication of both client and server in order to
achieve increased dependability.

The treatment of replication in distributed systems is now being- made
systematic by the recognition that the style of interaction between replicates is
the advisory style typical of producer-consumer interactions, in comparison to
the imperative style typical of client-server interactions. There are also well
defined concepts, terminology and techniques for fault-tolerant systems>*,

630 ICL Technical Journal November 1987

4.5 Operating systems

As well as language oriented developments there have been many innova-
tions in operating system technology to accommodate distribution.

The ACCENT system*? is an example of a network operating system. The
inter-process message system of the ACCENT kernel is extended across a
network by a ‘network process’. To their users, remote services are made to
appear as local ports. The network process is responsible for bringing the
remote ports into the local address space and for isolating inter-process
communication from the details of network communications.

The V-system'> has followed a different approach. In order to optimize
performance, communications are an integral part of its kernel. Because of
the efficiency of this, the V-system is able to use the local area network for
page swapping between disc-less workstation and file servers. The V-system
includes the notion of a ‘process group’ as a set of processes that can be
addressed as a single entity, even if they are distributed across several sites.
This notion therefore provides system level support for some of the
replication techniques mentioned in §4.4 above.

A number of operating systems have been based on the object-oriented
model of computation: the disjoint address spaces of multiple sites matches
the encapsulation of state concept that underpins objects?®. The best known
example of this approach to operating systems is Eden!2. All programs in
Eden are objects with well-defined external interfaces. Remote interactions
take the form of one object invoking an operation at another, using RPC-like
protocols. In Eden objects have logical addresses so that they can be accessed
without knowledge of their location, enabling dynamic reconfiguration of the
system. Eden specifies a number of generic functions that can be applied to
any object. These generic functions are mostly to do with unified manage-
ment of objects.

The Cambridge Distributed System®® explored the possibility of dynamic
instantiation of services upon demand, using a pool of uncommitted
processors. Requests for service are directed to a resource manager which
finds an appropriate free processor, loads it with the required service, and
transparently reconnects the user to the newly made service. The operation
of this processor pool is dependent upon remote debugging, automated
service management and remote access security.

The LOCUS system*® is an example of how a derivative of Unix can be
implemented as a distributed operating system. The LOCUS kernel goes to
great lengths to insulate the applications programmer from the effects of
distribution. This distribution transparency has the great merit that applica-
tions previously written for ordinary Unix can run unchanged in the
distributed environment, which offers more capacity and dependability than
a single node Unix system. The negative aspects of complete distribution

ICL Technical Journal November 1987 631

transparency are that applications cannot exploit the distribution they
cannot see, and that the needs of system management (particularly failure
diagnosis and reconfiguration) are in conflict with the transparency.

There has been much debate on what kinds of distribution transparency
should or should not be provided in distributed systems (see §2.4 and §2.5).
This debate reinforces the recommendation in §2.4 that standards be flexible
enough to support variable distribution transparency.

4.6 Protocols

Many aspects of protocol design have been revisited using systems engineer-
ing techniques rather than traditional communications engineering. The
application of the ‘end-to-end’ principle*# has led to a focus on reducing the
processing and buffer management overheads at network nodes. The out-
come has been a move away from strict layering of protocol implementa-
tions, with simplification of protocols so that they can be moved out of
general purpose processors into network interface units. This simplifity also
enables small machines, such as personal computers, to support complete
implementations of the protocols.

At the present time attention is being given to the requirements of very high
bandwidth networks (e.g. 100Mbits/sec LANSs), and high bandwidth com-
bined with long delay (e.g. satellite channels)3. In these networks, many of
the assumptions that are fundamental to traditional protocols are being
undermined. Fast networks can bombard a node with data faster than the
data can be processed. By the time the situation is recognized and the
processor reacts, the amount of data in transit may be immense, leading to
severe buffering problems (especially at intermediate gateways), with conse-
quent instability in congestion control algorithms. Preliminary work sug-
gests that rate controlled protocols, which inherently avoid overcommitment
of network nodes and consequent feedback oscillations, will be more stable
and achieve better throughput'®.

4.7 Multi-media interactions

Communication can be classified as isochronous (for real-time voice or video,
etc.) and anisochronous (for text, data, stored graphics and stored image, etc.).
Several systems have been built that provide for interactions in which all
these forms of information are handled in an integrated fashion, for example
multi-media conferencing applications?!:3,

The integration of isochronous and anisochronous interactions is stressful
for communications and processing. Progress in this area is predicated upon
real-time performance guarantees from networks, processors and operating
systems, and consequently many of the performance optimisation techniques
described above will be essential.

632 iCL Technical Journal November 1987

Multi-media interactions can be accommodated within object theory. The
fundamentals of object theory (e.g. encapsulation, the modelling of interfaces,
and the way in which objects form relationships via the publishing of
interfaces) are invariant to such details.

4.8 Heterogeneity

There has been considerable attention to the problems of accommodating
heterogeneous systems on a network. An important theme has been common
services to provide links between islands of homogeneity. For example there
have been many designs of system-independent file servers*®>*” and compre-
hensive work on directory services and authentication'’. The latter is based
on practical experience with very large distributed systems.

Important experience has been obtained in software tools to support RPC
between programs in different languages, executing in different kinds of
computers, and communicating across different networks*®-22,

4.9 Security

Most attention in the area of security has been directed towards the use of
encryption for communications security. A substantial survey is given by
Voydock and Kent*8,

As well as being a means of achieving data integrity, encryption has been
used as a means of ‘sealing’ data in authentication protocols*”.

Encryption has been made an integral part of RPC protocols to defend them
against a wide range of network level attacks'®. The design and operation of
authentication services!! has been explored in some detail. Work has also
been done on the exploitation of separation in distributed systems to achieve
isolation and enforcement of security policies*?.

4.10 Large systems

The research community has not confined itself to laboratory-sized systems.
Many of the research systems have grown to considerable size and operate in
service on a production basis. An example of this scaling up of research
experiments is the Grapevine mail system on the Xerox Internet®#°, which
provided many lessons for future systems. Several research projects have
been based on extensive wide area networks, including the ARPA network in
the USA and satellite systems?>.

A number of academic institutions are engaged in setting up large distributed
computer workstation networks as an integral part of their infrastructure to
support teaching and research; e.g. Project ATHENA at MIT and the Informa-
tion Technology Center at Carnegie-Mellon University*°.

ICL Technical Journal November 1987 633

5. Expectations

Given the above technical assumptions for Open Distributed Processing
standardisation, we can now speculate about the technical content of future
Open Distributed Processing standardisation.

The likely abstract architectural structure of the Reference Model for Open
Distributed Processing is illustrated in Fig. 3. The components of systems are
modelled and encapsulated as objects (a), for which there are concepts and
formalisms for object derivation, specification, composition, decomposition
and inter-relationships. Each object is positioned in a universal multi-
dimensional framework of abstractions (b), which defines object properties,
both absolutely and relative to all other objects. The objects interact via
some kind of object-support nucleus (c).

another object

interactions
An Object T :
(a)

obfecfbrbperties

another object

Multi-dimensional
framework of abstractions

Fig. 3 Open Distributed Processing abstract architecture

The nucleus is the sole means for an object to publish its interfaces, names
and properties, and to find out about those of other objects, and to access
other objects. It also provides the means of manipulating the distribution
transparencies and quality attributes of interactions, and is oriented towards
object implementation in high level languages.

A vital constraint on the nucleus is that it should evolve from existing open

634 ICL Technical Journal November 1887

standards, and be able to co-exist with proprietary standards. The concepts
and protocols in the nucleus should be oriented towards high level program-
ming languages, and be network-independent, operating system-indepen-
dent, and language-independent. They would thereby have the potential to
co-exist and interwork with other kinds of networking. A key to achieving
this is seen to be the OSI Remote Operations technique?®. By an interesting
combintion of forsight and good fortune, it is directly on the evolutionary
path into the new kind of language-oriented integration of distributed
systems.

In ECMA this nucleus has been called DasE, the Distributed Applications
Support Environment'®. An ECMA DASE standard is scheduled for completion
in 1988.

Acknowledgements

Most of the ideas presented in this paper have been refined and articulated
via the Advanced Network System Architecture project, Alvey ANSA?26, and
in particular Andrew Herbert.

Clarification of the technical approach owes much to the expertise and the
patient committee work of my ECMA colleagues over several years,
especially David Robinson of GEC Marconi.

I would also like to thank Graham Crisp of Plessey for his exposition to
ANSA on Object Theory, which I have drawn on here.

References

1 ISO.; “Proposed revised text for the NWI on the Basic Reference Model for Open
Distributed Processing”. ISO/TC97/SC/21 N1889. April 1987.

2 HOULDSWORTH, J; “Standards for Open-Network operation”, ICL Tech. J,
November 1978.

3 BRENNER, J.B; “IPA networking architecture”, ICL Tech. J., 1983, 3 (3), 234-349.

4 “Proposed Technical Assumptions for Open Distributed Processing”. ECMA, Geneva,
April 1987.

5 AGUILAR, G, GARCIA-LUNA-ACEVES, J., MORAN, D. CRAIGHILL, E. and
BRUNGARDT, R., “Architecture for a Multimedia Teleconferencing System”, ACM
Computer Communications Review, 16 (3), 126-136 (August 1986).

6 BIRMAN, K., “Replication and Fault Tolerance in the ISIS System”, ACM Operating
Systems Review, 19 (5), 79-86, (December 1985).

7 BIRMAN, K., JOSEPH, T. and STEPHENSON, P., “Programming with Shared Bulictin
Boards in Asynchronous Distributed Systems”, Technical Report TR86-776, Department
of Computer Science, Cornell University (August 1986).

8 BIRRELL, A, LEVIN, R, NEEDHAM, R. and SCHROEDER, M., “Grapevine: an
Exercise in Distributed Computing”, Communications of the ACM, 25 (4), 260-274, (1982).

9 BIRRELL, A and NELSON, B, “Implementing Remote Procedure Calls”, ACM
Transactions on Computer Systems, 2 (1), 39—59 (February 1984).

10 BIRRELL, A, “Secure Communications Using Remote Procedure Calls”, ACM Trans-
actions on Computer Systems, 3 (1), 1-14 (February 1985).

11 BIRRELL, A, LAMPSON, B, NEEDHAM, R. and SCHROEDER, M., “A Global

ICL Technical Journal November 1987 635

12

13

15

16

18

19
20

21

2
23
24

25

26

27

28
29

30

31
32
33
34

35

36

Authentication Service Without Global Trust”, Proceedings 1EEE Security and Privacy
Conference, Oakland, California, USA, 223-230 (1986).

BLACK, A., “Supporting Distributed Applications”, ACM Operating Systems Review, 19
(5), 181-193 (December 1985).

CCITT Red Book, Volume VIII, Fascicle VIIL.7, Data Communications Networks,
Message Handling Systems, Recommendation X.410, CCITT, Geneva, 1985.
BROWNBRIDGE, D.R., MARSHALL, L.F. and RANDELL, B., “The Newcastle Con-
nection or UNIXes of the World Unite!”, Software — Practice and Experience, 12 (12),
1147-1162 (December 1982).

CHERITON, D, “The V Kernel: A Software Base for Distributed Systems”, IEEE
Software, 1 (2), 19-42 (April 1984).

CLARK, D, Presentation on “Rate Controlled Protocols”, ARPA Internet End-to-end
Task Group Protocols Workshop, University College, London, (August 1986). Unpub-
lished.

COOPER, E, “Replicated Distributed Programs”, ACM Operating Systems Review, 19
(5), 63-78 (December 1985).

“Distiributed Applications Support Environment (DASE)”. ECMA/TC32/TG2/86/91,
ECMA, Geneva, December 1986.

“Framework for Distributed Office Applications”. ECMA, Geneva, June 1987.

“Basic Remote Procedure Call (RPC) Protocol using OSI Remote Operations”.
ECMA, Geneva, December 1986.

FORSDICK, H., “Explorations into Real-time Multimedia Conferencing”, Proceedings of
IFIP TC 6 International Symposium on Computer Message Systems, Washington, D.C,,
USA, 331-347 (September 1983).

GIBBONS, P.H., “A Stub Generator for Multilanguage RPC in Heterogeneous Environ-
ments”. IEE Transactions on Software Engineering, Vol. SE-13, No. 1, Jan. 1987.
GOLDBERG, A. and ROBSON, D., “Smalltalk-80. The Language and its Implementa-
tion”. Addison Wesley, 1983. ISBN 0-201-11371-6.

GRAY, J., “Notes on Database Operating Systems”, in Bayer, R., Graham, R.M. and
Seegmiiller, G, (eds.), “Operating Systems: An Advanced Course”, Springer-Verlag, 1979.
ISO 7092. “Draft International Standard: Information Processing Systems-Text Proces-
sing-Remote Operations Part 1. Model, Notation and Service Definition™; “... Part 2:
Protocol Specification”. ISO, Geneva, March 1987.

HERBERT, AJ., “The Advanced Network Systems Architecture Project”, ICL Tech. J,,
November 1987.

ISO 8807. “Information Processing-Open Systems Interconnection-LOTOS-A Formal
Description Technique Based on the Temporal Ordering of Observational Behaviour”,
DP8807, ISO, Geneva.

ISO DP 9594. “Directory Standard.”. ISO, Geneva, September 1986.

JONES, A, “The Object Model: A Conceptual Tool for Structuring Software”, in Bayer,
R, Graham, R M. and Seegmiiller, G., (eds.), “Operating Systems: An Advanced Course”,
Springer-Verlag, 1979.

JONES, M.B, RASCHID, R.F., THOMPSON, M.R,, “Matchmaker: An Interface Specifi-
cation Language for Distributed Processing”. Proceedings 12th. ACM Symposium on
Principles of Programming Languages, Jan. 198S.

KUHN, T., “Structure of Scientific Revolutions” (2nd edition), University of Chicago
Press, 1970.

KUNG, T. and ROBINSON, J.,, “On Optimistic Methods for Concurrency Control”,
ACM Transactions on Database Systems, 6, 213-266 (June 1981).

LAMPSON, B., “Hints for Computer System Design”. ACM Operating Systems Review,
17 (5), 3348 (October 1983).

LAPRIE, 1, “Dependable Computing and Fault Tolerance: Concepts and Terminology”,
Proceedings 15th Annual International Symposium on Fault Tolerant Computing, Ann
Arbor, Michigan, USA, 2-11 (June 1985).

LESLIE, I, NEEDHAM, R, BURREN, J., COOPER, C. and ADAMS, C., “The
Architecture of the Universe Network”, ACM Computer Communication Review, 14 (2),
(June 1984).

LISKOV, B. and SCHEIFLER, R., “Guardians and Actions: Linguistic Support for

ICL Technical Journal November 1987

37

38
39

41

42

43

45

46

47

48

49

Robust Distributed Programs”, ACM Transactions on Programming Languages and
Systems, 5 (3), 381-404 (July 1983).

NEEDHAM, R. and SCHROEDER, M., “Using Encryption for Authentication in Large
Networks of Computers”, Communications of the ACM, 21 (12), 993-999 (December
1978).

NEEDHAM, R.M. and HERBERT, A J,, “The Cambridge Distributed System”, Addison-
Wesley (1982).

MITCHELL, J. and DION, J, “A Comparison of Two Network-based File Servers”,
Communications of the ACM, 25 (4), 233-245 (December 1982).

MORRIS, J., SATYANARAYANAN, M., CONNER, M,, HOWARD, J., ROSENTHAL,
D. and DONELSON-SMITH, F., “ANDREW: A Distributed Personal Computing
Environment”, Communications of the ACM, 29 (3), 184-201 (March 1986).

POPEK, G., WALKER, B, CHOW, J., EDWARDS, D., KLINE, C., RUDISIN, G. and
THIEL, G., “LOCUS: A Network Transparent, High Reliability Distributed System”,
ACM Operating Systems Review, 15 (5), 169-177 (December 1981).

RASHID, R. and ROBERTSON, G., “Accent: A Communications Oriented Network
Operating System Kernel”, ACM Operating Systems Review, 15 (5), 64-75 (December
1981).

RUSHBY, J. and RANDELL, B, “A Distributed Secure System”, IEEE Computer, 16 (7),
55-67 (July 1983).

SALTZER, J., REED, D. and CLARK, D., “End-to-End Arguments in System Design”,
ACM Transactions on Computer Systems, 2 (4), 277-288 (1984).

SCHROEDER, M,, BIRRELL, A. and NEEDHAM, R., “Experience with Grapevine: the
Growth of a Distributed System”, ACM Transactions on Computer Systems, 2 (1), 3-21,
(February 1984).

SPECTOR, A.Z., BUTCHER, J., DANIELS, D.S., DUCHAMP, D.J., EPPINGER, J.L.,
FINEMAN, C.E., ABDELSALAM, H. and SCHWARZ, P.M., “Support for Distributed
Transactions in the TABS Prototype”, IEEE Transactions on Software Engineering,
SE-11 (6), 520-530 (June 1985).

SVOBODOVA, L., “File Servers for Network-based Distributed Systems”, ACM Comput-
ing Surveys, 16 (4), 353-398 (December 1984).

VOYDOCK, V. and KENT, S., “Security Mechanisms in High- level Network Protocols™,
ACM Computing Surveys, 15 (2) 135-171 (December 1978).

WALKER, B., POPEK, G., ENGLISH, R., KLINE, C. and THIEL, G,, “The LOCUS
Distributed Operating System”, ACM Operating Systems Review, 17 (5), 49-70 (October
1983).

ICL Technical Journal November 1987 637

The Advanced Networked Systems
Architecture Project

Andrew Herbert
ANSA, 24 Hills Road, Cambridge CB2 1JP

Abstract

The Advanced Networked Systems Architecture Project is an Alvey
project involving STC/ICL, BT, Digital, GEC, Hewlett Packard, Informa-
tion Technology plc, Olivetti, Plessey and Racal.

The purpose of the project is to produce standards for the next
generation of distributed applications for digital networks, exploiting
advanced results from the fields of systems architecture, computer and
networked systems research and modern networking technology.

1 Introduction

The goal of the ANSA project is to lead the IT industry towards establishing
definitive international standards for advanced networked systems by the
1990s.

ANSA is concerned with networks that support distributed processing
applications. These are applications in which discrete components of the
overall application may be located in more than one system, at more than
one geographical location, or where there is any reason which necessitates
explicit communication among the components.

. .. 3
- overall activity .

LI .

-@<=0 .

Fig. 1 Distributed processing

The important feature of this definition is the focus on systems supporting
some overall application, such as the automation of an office or factory. This

638 ICL Technical Journal November 1987

distinguishes distributed processing from the less intimate networking style
of open systems interconnection (OSI) between autonomous systems with
separate, individual objectives.

Distributed processing has a very wide field of application including:

administration systems

business management systems
command and control systems
factory automation systems
image manipulation systems
radio/tv/hi-fi distribution systems
office systems

process control systems
telecommunications systems
scientific computation systems

2 Integration through distributed processing

Distributed processing is important not only within each of these fields of
application, but also as a bridge between them. Many organizations
already have information systems that use distributed processing to
support a variety of internal functions. For example, a manufacturing
company may have a distributed word processing system in the administra-
tion department, a network of CAD workstations in the design shop and an
automated factory floor. There are organizational advantages to be gained
from the integration of these separate functions into a single, large scale,
distributed system oriented towards achieving maximum effectiveness for
the company.

® linking together independent systems in an organization
® linking together autonomous organizations
Fig. 2 Integration through distributed processing

Integration is necessary between separate organizations as well as within a
single organization. Electronic trading, for example, leads to a distributed
system spanning traders, customers and banks. This level of integration is
much harder, since no single authority can control the entire activity of the

ICL Technical Journal November 1987 639

system. Instead ways must be found to maximize the ability of independent
authorities to interwork, without jeopardizing their concerns and interests.

These forms of integration will inevitably lead to heterogeneous systems
containing a wide variety of computer and networking technologies, supplied
by a multiplicity of IT vendors. The reasons for this are several:

e Many distributed applications are highly specialized and require differ-
ent environments, with conflicting constraints in terms of such factors as
real-time response, throughput, security, reliability and so forth. For
example, a safety critical application in a factory may require fault-
tolerant and replicated hardware, whereas in an office environment
continuous availability is less of a concern.

e Distributed systems grow and evolve over time. New computers and
services are connected, new applications are installed. All of these are
required to coexist and interwork with older equipment. It is very
common to discover distributed systems continuing to use an obsolete
item of equipment because it supports a key application which cannot
easily be moved to newer components. The owners of distributed
systems will come to expect gradual (and continuous) evolution of their
systems, rather than the periodic total replacement approach of the past.

o Itis unreasonable to assume that any single vendor will be able to offer a
complete solution to all distributed application needs — in addition to the
major systems vendors there will always be specialist vendors in niche
markers (such as CAD) and start-up vendors selling innovative system
components.

3 Homogeneity through standards

It has been accepted for some time that the solution to the problem of
heterogeneity lies in the use of open standards, such as OSI. Open standards
are agreed in a public forum and represent an industry consensus. Open
standards help the customer by giving him access to a greater number of
vendors and help the vendor by enabling him to sell competitively to the
entire information technology marketplace.

Standards are about agreeing interfaces between system components to
achieve compatibility. This begs several questions. Which system functions
are candidates for standardization? What sort of compatibility is desired? At
what level of abstraction should an interface be defined?

Figure 3 shows some possible answers to these questions.

e Human-computer interface standards prescribe how applications should
appear on the user’s terminal and how the user should interact with the
computer. These sorts of standards can bring great uniformity to a wide
range of quite distinct applications and reduce the degree of user training
necessary before a new application can be used. This is illustrated by the

640 ICL Technical Journal November 1987

¢ human-
computer
interface

® program-
matic
interface

. ph{is_ical
meagium
medum =57, 5

® operating
system
interface

® external
physical
storage
interface

Fig. 3 Kinds of interface abstractions

success of window, icon and menu based systems such as the Apple
Macintosh.

e Programmatic standards specify the languages in which applications
should be written and the subroutine libraries to be provided. These
standards provide application portability across a wide range of systems.

e Operating system standards provide a common application environment
by defining application services such as I/O, filing and database.
Operating system standards enable interworking between applications
written in diverse languages. This level of standardization is very
powerful, which explains the thrust behind initiatives like X/Open.

e OSI provides standards for a physical communications interface so that
different systems may interchange data and support common services
such as transaction processing. It thus enables interconnection of
heterogenous computer systems via digital communications networks.

e Standards for the organization and encoding of data on external
physical storage such as discs and tapes are another example of an
information interchange interface, but in this case not dependent upon a
communications link between systems.

Thus it can be seen that all of these different levels of abstraction have their
merits, since each achieves a different sort of compatibility. The system
designer seeks to achieve a balance between all these levels so that the
systems he designs offer the greatest compatibility for the customer. The
designer therefore needs to know the relationships and dependencies between
interfaces at different levels of abstraction and how to build system compo-
nents that support standard interfaces.

The sorts of consistency requirements that face the system designer are
shown in Fig. 4.

e At the top level the designer needs to be assured that his design does
meet the overall system objective and that he has proposed the most
cost-effective solution.

e When assigning interfaces for a function, the designer is concerned to

ICL Technical Journal November 1987 641

® meets @ ® interface %
Storage
s){,s_ten? suits the
objectives @ function open read

close write

....... ’O
® components i ® between
provide the @ linked ‘
function interfaces $

Fig. 4 Consistency requirements

choose an appropriate interface. For example, an information storage
function could be met either by a filing system or by a database, both of
which have rather different characteristics.

The designer needs to select an appropriate combination of components
to achieve a desired interface. He is aided if there is a repertoire of system
building blocks and an understanding of how basic building blocks can
be combined to meet higher level requirements.

Finally, and perhaps the most difficult of all, the designer wants to be
sure of compatibility for linked interfaces — for example that a program-
ming language library is compatible with an operating system’s interface,
or that an operating system’s interprocess communication system can be
extended over a network to link processes in separate machines.

4 Architecture

The solution to these problems of design and consistency is to present the
designer with an architecture to help him in his task.

The purpose of an architecture is to provide a common basis for design and
to impose a common style on all systems derived from the architecture.

The benefits of an architecture are the family resemblance of the systems
derived from it and confidence in the consistency of those systems.

Architecture

Style Framework

Fig. 5 Architecture

Figure 6 illustrates the major elements of an architecture for distributed
processing.

iCL Technical Journal November 1987

e defined T— e models for
concepts and _— distributed
terms - processing

e framework for ® specification
relating of basic
interfaces and building
components blocks

Fig. 6 Architectural elements

o The designer requires a base of well-defined concepts and terms within
which he can describe and explain his system.

o To support the description and design of systems he needs formal models
of how system components can be related to one another and from
which the behaviour of a system predicted.

o A framework of levels of abstraction will guide the designer by position-
ing system building blocks and interfaces relative to one another.
(Possibly the best known example of such a framework is the OSI
Reference Model which positions various communications functions
into a hierarchical series of layers.)

e Finally, the designer needs specifications for the basic building blocks
out of which he can build practical systems.

Distributed processing architectures can be divided into two kinds. There are
many which are specific to a particular field of application. For example, a
distributed office architecture may be concerned with workstations, file
servers and print servers. The concern of ANSA is with the generic aspects of
distribution that are common across all fields of application. This is shown
diagrammatically in Fig. 7.

Generic

wZ2oAmrm—
<IO=-NAP™

Domain specific

Fig. 7 Kinds of architectures

ICL Technical Journal November 1887 643

The benefit of a generic architecture is that it brings the domain specific
architectures closer together by providing a common shared framework and
common foundation of basic building blocks.

It is important not to confuse an architecture with a system. A system is a
single solution to a single problem. An architecture is an orderly package of
solutions to a range of problems. It is naive to imagine that a single system
could meet all application requirements. Indeed, this has already been given
as an argument in favour of heterogeneity in distributed systems. It is,
however, plausible to consider a generic architecture spanning many fields of
application provided there is some criterion for deciding what is a generic
function.

5 Transparency

The key to understanding generic functions for distributed processing is the
concept of distribution transparency.

A system is described as having distribution transparency if it conceals the
consequences of distribution from applications and users — that is to say, the
users perceive the system to be a single whole rather than merely a collection
of independent resources.

The sources of generic functions associated with distribution transparency
are best illustrated by examples.

Suppose a hospital wishes to provide hospital staff (doctors, nurses, adminis-
trators, technicians etc.) with online access to hospital and patient records. A
distributed solution to this information processing problem is illustrated in
Fig. 8. Every user has been given access to a personal computer and because
of distribution transparency the users are given the impression that there is a
single “logical” database common to all the machines, even though in
actuality the data is spread out over all the local discs.

 BOMOBOBORG
PR R %5

Fig. 8 Distributed processing

644 ICL Technical Journal November 1987

The first form of distribution transparency evident in this diagram is access
transparency: the users see a single logical database; there is no distinction
between local and remote data, aithough access may be restricted by access
controls in support of some suitable security policy.

L P AY =

A B D E F
Fig. 9 Access transparency

The next transparency is that of location — the users do not have to know
which parts of the database are stored on which machines. Instead, they
identify data by logical or functional names and it is left to the system to
translate these names to actual database record addresses.

= L -

7O FTO [0 L
¥ £ % % %

*Mr Smith”

Fig. 10 Location transparency

Since there are potentially many users of the database active at once, the
logical database manager must coordinate the parallel activity among the
users and ensure that a consistent database image is presented at all times.

In a distributed system there is an opportunity to keep redundant copies of
the material in the database and to provide surplus processing resources.
This replication may be active in the sense that all the replicates are
operating simultaneously to provide increased availability, or voting for

ICL Technical Journal November 1987 645

16 Lo o O Lo
¥ ¥ % % %

Fig. 11 Concurrency transparency

increased confidence in the results. Alternatively the replication may be
passive in the sense that only one replicate is in service and the others are in

“standby mode”.

6 o de de o
¥ ¥ ¥ % X

Fig. 12 Replication transparency

This concept leads naturally into failure transparency. One of the applica-
tions of replication is to provide continuous service, or to enable recovery

and switchover to an alternate.

9% [0 e ke Ho

¥ F % % 7

Fig. 13 Failure transparency

646 ICL Technical Journal November 1987

Related to replication transparency is migration transparency in which it is
possible to relocate parts of the database to adapt to changing circumstances,
or to move a service dynamically from one machine to another.

» P ‘~.
>

- N
. .

T T Blo T ¢
¥ £ % % %

Fig. 14 Migration transparency

By combining these various sorts of transparency it is possible to achieve a
significant degree of performance transparency — that is to say, a distributed
system that appears to be as powerful to the user as if he had a dedicated
machine working just for him. For example, the parts of the logical database
most heavily accessed by a user can be kept on his local disc to optimize
access time and response by exploiting migration transparency. Consistency
processing can often be a background asynchronous task if appropriate
algorithms are chosen. ‘

. .

.
.
.

-
.
.

Je [Jo BJo We o
T 2 % ¥ 3

Fig. 15 Performance transparency

Finally, weli-designed distributed systems have scaling transparency, that is
to say the system can be expanded or contracted arbitrarily without change
to its structures and algorithms.

From an analysis of distribution transparency it is possible to draw up the
following list of generic functions for distributed systems:

access transparency
- communications and security mechanisms

ICL Technical Journal November 1987 647

-n

G

e
X

o0
;

X X

>0

G

H ‘O J
Fig. 16 Scaling transparency
location transparency
— naming, addressing and routing
concurrency transparency
— synchronization and event ordering mechanisms
replication transparency
— active and passive replication mechanisms
failure transparency
— fault management and recovery mechanisms

migration transparency
— configuration and dynamic configuration mechanisms

Performance and scaling transparencies do not lead to distribution mechan-
isms per se, but rather towards strategies for global system optimization.

In different fields of application, different combinations and degrees of
distribution transparency will be appropriate and at different levels of
abstraction, leading to different combinations of mechanisms or basic
building blocks.

Thus the job of a distributed processing architecture such as ANSA is to
provide a model and framework for using these building blocks (i.e.
transparency mechanisms) at all levels of abstraction.

6 The ANSA culture

The illustration in Fig. 17 shows how the ANSA project is approaching
design of the architecture.

648 ICL Technical Journal November 1987

Architectural Human Centred Distribution Research
Concepts Design Concepts Concepts & Technology

VYVovevv
< ANSA Project
v ¥ ¥

Standards Architecture System Bulldmg
Contributions Blocks
LY
1SO SC21 Experimentai
Open Distributed Prototypes
Processing

Fig. 17 The ANSA culture

The outputs of the ANSA project are the architecture itself in the form of a
published document — the ANSA Reference Manual — contributions to the
standards process and also experimental prototypes of the mechanisms or
building blocks necessary to support the implementation of practical distrib-
uted systems.

The standards target for ANSA is the “Open Distributed Processing” New
Work Item established by ISOXTC97 SC21 WGI. This has scope and
direction similar to ANSA and is the logical progression within open systems
standardization from open systems interconnection (OSI).

The initial target for the experimental prototypes is C and Unix since this is
an important and widely available environment, enabling the sharing of
experience and transfer of technology between the ANSA project and the
sponsoring companies.

The inputs to the ANSA project — perhaps best styled as “the ANSA culture”
— include the architectural and distribution concepts explained in earlier
sections.

A further important thread to ANSA is human centred design. All systems
exist to support a human enterprise and to satisfy human concerns. By
understanding the needs of enterprises and the concerns of people who use

ICL Technical Journal November 1987 649

distributed systems it is possible to understand that many of the variations
between otherwise similar mechanisms exist because of different perceptions
of the human concerns involved. It is therefore important that ANSA should
include these factors in its framework to help the designer select the
appropriate mechanism to meet a particular requirement.

An architecture is crucially dependent upon assumptions about technology
and its development. The technological assumptions adopted by ANSA are
those in Brenner’s paper “Open Distributed Processing” pp 613-637.
Included among these assumptions is the observation that recent research
work in the field of distributed operating systems and communications places
many significant and useful results in the hands of the system designer.

7 The ANSA Reference Manual

The ANSA Reference Manual is organized as a seven part document as
follows:

Part I: Overview

Part II: Technical background
a summary of the concepts that underpin the design of ANSA;
essentially a greatly expanded version of this paper

Part III: Concepts and definitions
a complete set of concepts and definitions for distributed system
terms; almost an encyclopacdia of distributed processing

Part 1V: Models and framework
a formal definition of the models and framework used in ANSA

Part V: System building blocks — description
descriptions and implementation guides to the ANSA distributed
system building blocks

Part VI: System building blocks — specifications
detailed formal specifications of the system building blocks described
in Part V

Part VII: Examples
illustrated examples of systems building using ANSA, based upon the
building blocks of Parts V and VI and the experimental prototypes
constructed during the course of the project.

8 Project profile

The ANSA Project is an Alvey project supported by British Telecom, Digital
Equipment Corporation, GEC, Hewlett-Packard, Information Technology
plc, Plessey, Racal and STC/ICL.

The project team consists of approximately fifteen staff (some consultants,
some seconded, others directly hired) working at a single project office in
Cambridge, England. This central structure is quite unique among Alvey and

650 ICL Technical Journal November 1987

ESPRIT projects and has worked very well for the development of ANSA
and the establishment of cohesion among the project team.

The project is funded at approximately £1 million per year through to mid
1989.

The approximate project timescales are shown in Table 1.

Table 1 Timescales

Date Timescale

June ’87 Manual Part 1 to 4 to be written

December 87 Manual reviewed and accepted by collaborators

March 88 Prototype test bench environment available

December 88 ANSA in active use by collaborators

March ’89 Major prototype demonstrations working on the test bench
June "89 Manual Part 1 to 5 complete

June 89 ISO ODP Reference Model to first DP

June 91 ISO ODP Reference Model Standard

9 Further information

Further details about ANSA, including copies of the ANSA Reference
Manual which explains the technical content of ANSA in depth, are freely
available from the Project Director, Bill Talbot, or the Chief Architect,
Andrew Herbert, at the ANSA Project office in Cambridge (tel: 0223 323010).

ICL Technical Journal November 1987 651

Community management for the ICL
networked product line

Alan R. Fuller
ICL., Marketing and Technical Strategy, Bracknell, Berkshire, England

Abstract

ICL’s Networked Product Line (NPL) is the product realisation of ICL's
Information Processing Architecture. NPL Community Management
addresses the management of a set of networked products together
with the underlying network components, the networked services and
their access. This paper outlines the scope of Community Manage-
ment and describes the way in which the Management of a total
Community of networked end systems may be realised.

1 Introduction
1.1 Context

The transfer of all types of information, speech, still- and moving-pictures, as
well as simple text can be accomplished over short and over very long
distances. The technology to accomplish all of these types of transfer is
available at some cost.

For some types of information transfer (for example, speech, and data in the
form of text), not only is the technology available and well understood but
the cost of providing it has permitted the widespread introduction of facilities
based on this technology. Telephone networks and telex networks are
undeniably successful.

In contrast, the use of data transfer techniques in the direct support of, for
example, distributed office functions is much less widespread. The implemen-
tation of a number of distributed office systems (which cater for the
information transfer needs in a modest way) has shown that they too are
undeniably successful. Nevertheless, one of the most important factors
contributing to limit the success of both worldwide telephone networks and
small distributed office systems is the problems of management.

In each of the above examples, the management problems are not always the
same — in the case of large networks, a number of the management problems
arise from the sheer size of the network. Simply keeping track of the

652 ICL Technical Journal November 1987

maintenance state of the many thousands of network components is a major
management problem. In the case of smaller networks of nodes which form,
for example, the elements of a distributed office, maintaining the complex
information structures in a consistent state is again a major management
problem.

The major challenge of NPL Community Management is to help solve the
management problems arising from size and complexity.

1.2 Scope

Size and complexity are only two dimensions of management problems.
Three further dimensions of interest are skill level, the networked elements
subject to the management discipline, and the life cycle of networks and
distributed systems.

If one looks at the components of distributed systems, four categories are
readily identified as shown below:

Subnetwork Components

End systems connected via subnetworks

— Applications running on and systems providing services to end users
— End users.

Further, the management tasks are often carried out by different people
because different skills are necessary to accomplish the tasks.

A second major challenge for NPL Community Management is to provide
facilities to support people with appropriate skills in the task of managing all
four categories of managed components.

Each of the areas is discussed in further detail.

Networks have traditionally been considered as composed primarily of those
elements involved in the transmission and switching of streams of informa-
tion, Typical examples include point-to-point circuits, packet switching
nodes, wide band transmission facilities, circuit switches, modems and
multiplexing plant.

In a number of instances a valid view of the network can be obtained by
aggregating the view seen from end systems attached to the network, as in the
case of end systems interconnected by a local area network.

The familiar ‘boundary’ problems associated with end system-to-subnetwork
connection have led to the inclusion of end systems themselves in the
problem space to be managed. This initially implied just the communications
elements of end systems such as couplers, line drivers and associated software
and firmware. Increasingly, all components of the end system are being

ICL Technical Journal November 1987 653

considered, for example, closely associated with communications subsystem
is buffering for messages being transmitted and the buffering is one aspect of
the storage on an end system. If information transfer fails or is degraded as a
result of problems with such storage, this too needs to be managed. In much
the same way, if information is transferred from a file on a magnetic disc on
one end system through a network to a peer system and the ‘effective’ transfer
is limited by contention for disc channel capacity with other processes, this
too needs to be within the scope of management.

The applications running on end systems attached to subnetworks have
tended to be a ‘province unto their own’. This is understandable since most
applications are run on a single end system with networked access via
terminals. Distributed applications (of which the most important examples
are probably management applications!) have a number of characteristics
that are such that the applications themselves too have to be within the scope
of management.

A familiar distributed application is electronic mail.

Electronic mail involves the distribution of information to named individuals
at specified addresses. The information used to achieve the distribution (even
when the underlying subnetwork is static) is subject to change. People
change locations, new recipients are added to the information network and
correspondents leave the network. Further, new facilities may be added to
the applications such that only compatible versions in different end systems
are able to provide these new facilities. Such characteristics as these mean
that not only the distributed applications but their associated datastores
need to be managed for the distributed application to be effective.

Finally, the services (and component applications) within distributed systems
are provided for the benefit of the end users accessing them. Unfettered access
by users to distributed systems is clearly undesirable on a number of grounds:
privacy of confidential information, the cost constraints are two important
examples. Consequently, the mechanisms whereby users access systems need
to be policed, which is equivalent to management of the end users.

All four categories of components of networked systems which constitute a
‘Community’ have to be managed for total systems management. NPL
Community Management is appropriate to all four categories.

The scope of management is equally wide as far as the life cycle of systems is
concerned.

The list below gives the typical stages through which either total networks or
elements of networks pass during their overall life cycle.

Planning
Definition

654 ICL Technical Journal November 1987

Generation

Distribution

Installation

Monitoring

Operational Control

Fault Resolution and Diagnosis
Evaluation/Enhancement Planning.

To ensure that an adequate service is provided, networked systems should be
planned well from the earliest possible stage. This includes a number of
modelling activities so as to ensure correct functionality at each node in the
network. Correct interworking capability, correct logical addressing, capacity
in terms of storage on the end systems, connectivity, multiplexing capability
(where appropriate), bandwidth between subnetwork nodes and appropriate
traffic capacity at switching nodes all have to be taken into account.

Once the overall network has been planned, the detailed definition in terms of
product-specific components has to be achieved and from the detailed
definition the precise details of the networked systems is generated. This
includes selection of options which, although necessary, do not materially
affect the overall system. It also includes specification of some options which
realise the principles embodied in the modeiling phase.

Next, the parametric information has to be transferred to the location where
it is to be used — a process of distribution. The final act prior to use of the
information in a live system is a process of incorporation into the running
system — a process of installation.

The phases in the life cycle so far can be collectively termed administrative
processes; the subsequent stages are conveniently termed operational pro-
cesses — the main difference between the two sets of processes being the level
or degree of unplanned activity involved. Almost by definition, administra-
tion is the execution of planned processes whereas operational processes are
required to respond to the un-planned event. In the scope of operational
processes are monitoring processes which ensure the correct functioning of
the total set of network components. In the case of unforeseen events, the
operational control processes are invoked to effect, for example, bypass
mechanisms or standby facilities. Once such unplanned events have been
signalled, fault diagnosis and resolution facilitiecs may be employed to
determine the cause of any malfunction and bring into operation any
remedial action.

As part of the monitoring activity both long term trends in the form of
statistics and isolated incidents in the form of network alerts can be
important.

The operational aspects relating to satisfactory resolution of a problem span
the whole spectrum of managed components. For example, standby facilities

ICL Technical Journa! November 1987 655

may be invoked, routing tables may be changed, network tasks may be
deleted or re-created, the availability of a service may be suspended or
resumed and the permissions for a user to access a service may be suspended
or re-instated.

The same basic facilities used to plan and define the networked system are
employed in the enhancement planning phase of networked systems to cater
for growth (or decline in usage) of systems.

All functions in the life cycle of distributed networked systems have to be
catered for in order to manage systems in an effective manner.

In terms of people involved in each of the stages of the life cycle, a variety of
skills is required. In the early planning stages, imagination tempered with
what can be achieved in practical situations is required. In the definition and
generation stages, a more detailed product knowledge and methodical
(almost mechanical) approach is demanded. In operational management
assertiveness coupled with an ability to think laterally is essential to problem
resolution,

In each of these areas, the skills necessary are not only different but they are
in short supply. NPL Community Management concentrates on assisting the
skilled tasks making skilled people more effective rather than de-skilling the
tasks — in any case, the techniques involved in making skiiled personnel more
effective are a necessary precursor to de-skilling the tasks themselves.

2 Principles
2.1 Mechanisms and building blocks

From an analysis of the tasks involved in supporting the total life cycle of
distributed networked systems two points are evident:

— a number of tasks require the transfer of information.
— a number of tasks require a means by which pieces of information in
different components of the total system are kept consistent.

The two major divisions are inter-related. Further detailed analysis of the
needs for information transfer indicate three broad categories namely:

(a) bulk data transfer of files of information

(b) a message passing system to signal, for example, some malfunction or to
signal correct functioning of some system — “1 am working correctly”.

(c) a means by which system components may be operated from a remote
point.

The tasks which require consistent information are best thought of in terms
of conventional database technology:

656 ICL Technical Journal November 1987

(d) the early stages in the life cycle of networked systems require some
means by which the network definition can be held.

(e) the operational stages require a central point for information relating to
network problems.

Each of these five basic enabling mechanisms is able to support a far more
diverse set of network management applications.

(a) Bulk data transfer encompasses the processes involved in transferring
files of accounting information, files of statistics for fault trend analysis,
files of configuration data and so on.

(b) The messaging system permits the malfunctioning not only of a
network level component to be signalled, for example of a modem or a
multiplexor, but also that of a total end system or a communications
coupler. It also enables the criticality of buffering in an end system to
be brought to someone’s attention. It enables end system-related
problems to be recognised — for example, file store is becoming full.
Further, application-detected problems are within its scope and
last, but not least, attempted security violations may be raised as an
alert.

(¢) In much the same way the remote operation of distributed components
has a wide range of applicability. Access via a network to networked
components enables faults to be diagnosed, possibly by running diag-
nostic tests including boundary tests. Once the cause of a problem has
been determined, the corrective action may be taken remote from the
point where the problem occurred.

(d) The sets of managed components (subnetwork, end system, application,
end users) work together in a well defined logical manner — users access
services and applications, the applications reside on end systems, the
applications interwork with each other (which means that end systems
intercommunicate) and they are inter-connected by a variety of sub-
network components. Both the logical and physical relationships be-
tween all the managed components are required to be consistent.

(e) Once the distributed system is operational and events (not necessarily
malfunctions) occur it is highly desirable to have a single point where
information is held to assist in the initial stages of problem resolution.

For each of these five basic mechanisms, NPL Community Management has
defined a general solution.

2.2 Bulk data transfer

Although the transfer of bulk data is well understood, using for example ISO
FTAM as the transfer mechanism, further attributes of the management
process are important. For example the fact that a bulk data transfer was
successful (or not) is an important management aspect. Further, it is
frequently the case that a group of file transfers (and the status of the set) is
more important than any one transfer. Typically, the availability of several

ICL Technical Journal November 1987 657

files of accounting information is necessary before a process which relies on
the complete data set can be run.

NPL Community Management provides such a managed bulk data transfer
facility; it is termed Community File Transfer.

2.3 Messaging systems

The wide scope of events which may be signalled by a messaging system has
already been described. Not only is it necessary to signal problems — the
negative side of an event — but it is sometimes necessary to signal the absence
of problems — a watchdog capability — such that as the number of operational
problems diminishes the correct working state of a system may be positively
determined.

NPL Community Management provides such a messaging facility; it is
termed Community Alert Management.

2.4 Remote operation

The provision of remote operation is probably the simplest of facilities. The
complexity arises from the diversity of systems for which remote operation is
applicable, together with the diversity of end system support tools available.

NPL Community Management provides a remote operation facility; it is
termed Remote System Support.

2.5 Consistency of network related data

Although the need for consistency of network related data has already been
covered, there are many complex attributes. The consistency needs to cover
the logical network components (which services interwork with each other)
as well as the physical components (which sub-network elements inter-
connect which end systems). The realisation of the physical components in
terms of hardware, and the logical components in terms of software is an
issue of consistency of network-related data. At any instant the total
logical/physical/hardware/software description of a distributed system can
be held in a database. It is changes to this definition that need to be managed.
For example, the network definition yesterday which is different from that
today, which is different again from the planned definition tomorrow is an
issue which has to be managed.

NPL Community Management provides a database to maintain these many
facets of network definition in a consistent manner; it is termed Network
Definition Database.

658 ICL Technical Journal November 1987

2.6 Single point of contact

It is commonplace that a problem received by one user is frequently
encountered soon afterwards by another. Many problems have just a single
cause. Many problems are not problems in that a fault condition persists —
users may simply misunderstand information they are given; the inability to
follow the instructions is a problem in their eyes. Research has shown that as
much as 80% of seemingly network-related problems can be resolved
through use of a single point of contact. The single point of contact may be
accessed by telephone or via the network and the simple point of contact is
ideally supported in its function by a database used to store the problem
reports as they arise. A wide variety of reports may be generated from an
analysis of the database relating to who is responsible for resolving a
problem, detailed description of the problem, and when, how and by whom a
problem has been resolved.

NPL Community Management provides a database to support a single
point contact; it is termed the User Help Desk.

2.7 Integration of different management disciplines

Historically, different management disciplines have been developed for
specific technologies. Typical diverse examples are the management disci-
plines involved in voice networks and, in contrast, the disciplines involved in
managing the software comprising distributed applications. From the de-
scription of the basic enabling mechanisms it can readily be seen that they are
applicable to a wide range of management disciplines.

As will be seen later, this is only one of several features of NPL Community
Management which brings a unifying influence to the diverse management
disciplines.

3 Architectural framework

The generic solutions to some basic management problems described in the
previous sections can each be used in isolation. For the maximum benefit to
be obtained, a number of the mechanisms may be used in combination within
the architectural framework within which the mechanisms were conceived.

From previous discussion, the scope of the managed components includes
the network, end systems, applications and users — the set of managed
components being termed a ‘Community’.

The architectural framework is based on the premise that management is a
hierarchic discipline. The hierarchy may be ‘flat” — a one-to-many relation-
ship; or it may be ‘tree-structured’ with several branches to the managed
‘leaves’. The leaves of the tree are termed Community Management Subsidi-
aries (CMS) and the entity which exercises control over these subsidiaries is

ICL Technical Journal November 1987 659

termed the Community Management Administration Centre (CMAC). This

is shown schematically below:

CECRONOINN >
@) @) (o

The hierarchy of a single Administration Centre with several Subsidiaries is a
‘flat’ realisation of the hierarchy and is called a management ‘domain’; a
series of Administration Centres in a hierarchy can be logically extended to
any appropriate depth. In this case, the intermediate Administration Centre
is a sub-CMAC and it contains elements of both CMAC and CMS
functionality but co-located.

The Community Management Presentation Centre (CMPC) is where the
management information is presented and this is logically separated from the
Administration Centre where the management decisions are taken.

The former (termed the Community Management Presentation Centre) will
be co-located with the CMAC in a number of instances.

The lines between CMAC, CMS and CMPC indicate logical network links.
This implies that management information transfers pass over the sub-
network connecting the networked elements. This is frequently the case, but
a number of system functions can still be adequately managed even when the
distributed system elements are not networked on a permanent basis.

The managed components in many instances are the hardware and software
components of end systems and subnetwork components. In these instances
they are equivalent to Subsidiaries.

The facilities provided by NPL Community Management map onto the
architecture in the following way:

Community File Transfer — the transfers occur between the Administration

660 ICL. Technical Journal November 1987

Centre and the Subsidiary and they are managed by the Administration
Centre.

Community Alert Management — the messages are passed between Adminis-
tration Centre and the Subsidiaries and the major management decisions are
made at the Administration Centre.

Remote System Support — Subsidiaries are managed from the Administration
Centre.

The Network Definition Database and the User Help Desk are located on the
Administration Centre.

From the architectural approach, a number of points are worthy of note.

The architecture shows an Administration Centre as logically responsible for
a number of subsidiaries. It is convenient to partition management functions
in this manner, for example to provide one Administration Centre for
Directory Management, one for Database Management, one for Modem
Management and so on. However, the architecture permits these to be not
only separate logical relationships but also separate physical Administration
Centres. This facilitates a distributed approach to management in harmony
with the perceived need to enable users of management facilities to partition
management as they desire.

One of the driving forces in this task of partitioning is the desire to permit
skilled staff (who are in short supply) to be located where they can most
effectively accomplish their management tasks. Should a more centralised
approach be desired, the logical management domains may be co-located at
a singie Administration Centre.

4 Towards open management

One of the real driving forces behind Open Systems Interconnection
standards is the need for information transfer between different vendors
equipment. Multivendor interconnection is a goal of OSI; multivendor
management is a goal of NPL Community Management. For this reason the
information transfer mechanisms within Community Management have
been firmly based on open multivendor transfer mechanisms. Where fully
ratified standards are not available, practical intercepts of these standards
have been adopted. ICL is committed to migrate to appropriate standards
when they are available.

4.1 For the Managed Bulk Data Transfer

The current file transfer mechanism is the Network Independent File
Transfer protocol (NIFTP). The international file transfer protocol (ISO

ICL Technical Journal November 1987 661

FTAM) is now well understood and this is the target protocol for Commu-
nity File Transfer.

4.2 For the Community Management Alerting protocol

No international standard currently exists, although the OSI Management
protocol is similar to the Alerting protocol, OSI Management (as currently
specified) has a narrower scope in terms of the managed objects over which it
exercises control. The same underlying protocol elements are appropriate to
both OSI Management and Community Management Alerting Protocol. As
the OSI Management protocol reaches maturity, it is expected that there will
be significant commonality with the Alerting protocol and the Remote
System Support described below. Community Alert Management will em-
ploy the OSI Management protocol in appropriate circumstances.

4.3 The Remote System Support facility

This currently employs the NPL/IPA facility Remote Session Access. The
Remote System Support Function may be achieved by several open mechan-
isms. Firstly, via the virtual terminal protocol and secondly via the standar-
dised ‘command/response’ elements of the OSI management protocols. Both
mechanisms will be employed when the standards are mature.

The consequence of basing NPL Community Management on open transfer
mechanisms are clear - NPL Community Management is one step closer to
open management.

5 The relationship to management standards initiatives

There are a number of significant management standards initiatives which
either have had an impact on, or which are closely related to, NPL
Community Management. They include:

IEEE 802.1 Layer management
MAP/TOP Management

ISO OSI Management

ANSA Management

Distributed Systems Management.

DB W

In very general terms, management interactions in many instances can be
modelled in terms of an application layer protocol which is used to
manipulate managed objects in subnetwork elements and end systems.

The IEEE Project 802 defined a protocol for managing objects representing
entities associated with the protocols which form one realisation of the lower
two layers of the ISO reference model with specific reference to local area
networks. NPL Community Management collects information about some

662 ICL Technical Journal November 1987

of the managed objects defined by IEEE for products in which IEEE
protocols are employed.

As part of the evolutionary process to OSI management standards, the
General Motors MAP specification, initially at version 2.1, employed the
protocol developed by IEEE and extended the scope of the managed objects
to cover protocols realising all the layers of the 7 layer OSI protocol stack. At
version 3.0, the specification has evolved to intercept the emerging OSI
Management protocol (although the latter is still incomplete in some ways)
and a wide range of managed objects has been defined.

Much of the detailed definitions of managed objects within NPL Community
Management is aligned with the specification of managed objects defined by
General Motors in the MAP specification.

OS] Management has an elegant structure for its protocol (which shows
some similarities to the IEEE protocol) and it is structured into a number of
component parts. These support different functional areas of management
including accounting management, configuration management, fault man-
agement, performance management and security management. A further
component supports features common to all functional areas of manage-
ment.

In each of the three areas above (IEEE, MAP/TOP, OSI), the model
employed is similar to the architectural model employed for NPL Commu-
nity Management although the scope of the managed components over
which management control may be exercised is somewhat larger for NPL
Community Management.

In architectural terms, NPL Community Management aligns very closely
with the management architecture developed for ANSA — the Advanced
Network Systems Architecture for future networking developed under the
auspices of the UK Alvey Directorate. This is an advanced research project
funded by the UK Government. However, the ANSA project has to date not
defined the protocols employed to achieve the management functions.

In the UK, an ad hoc group has been working on a model for Distributed
Systems Management (DSM). The scope of this work and NPL Community
Management is well aligned.

6 Conclusions

NPL Community Management addresses today the need to manage distri-

buted multivendor systems. An open approach and a strategy of intercepting
standards has been adopted.

An intercept approach inevitably involves an element of risk. It also involves
contributing to the rapid progress towards international standards by

ICL Technical Journal November 1987 663

making substantial contributions to the standardisation bodies. ICL staff
actively contribute to the work in the European Computer Manufacturers’
Association (EMCA) and the British Standards Institution (the UK national
member of ISO) and through these to ISO itself.

7 Acknowledgements

Some parts of this paper will be recognised by a number of colleagues. Many
people from several Divisions in ICL have contributed to this paper — many
of them without knowing it! Without a team effort that this paper represents,
the paper would not have been possible.

References

1 IEEE Project 802. Local Area Network Standard. 802.1 Part B, Systems Management
(Draft M, January 1987).

2 Manufacturing Automation Protocol. Version 3.0 Implementation Release. Chapter 11.

3 ISO/TC97/SC 21/WG 4 N. Recommendations of the Third SC 21/WG 4 Meeting, Tokyo,

June 1987.

The ANSA project; Andrew Herbert, This issue of this journal.

A report on Distributed Systems Management, April 1987, M. Sloman (editor), Depart-

ment of Computing, Imperial College, 180 Queensgate, London SW7 2BZ.

[V N

664 ICL Technical Journal November 1987

The X/OPEN Group and the Common
Applications Environment

C.B. Taylor
ICL X/OPEN Technical Manager, Office Systems, Bracknell

Abstract

The X/OPEN({tm) Group formed in 1984 is a unique grouping of major
Computer System Manufacturers that is dedicated to the development
of “Open Systems” through the creation of a Common Applications
Environment (CAE) which is available on machines from all member
companies. The foundations of the Common Applications Environ-
ment are interfaces from the UNIX(tm) System V Operating System and
the C language, but this is being greatly extended to cover all the
facilities necessary to provide a comprehensive environment for the
support of commercial portable applications. The CAE interface
definitions and portability guidelines are published in “The X/OPEN
Portability Guide".

At the time of writing the X/OPEN Group has grown to include eleven
major companies: AT&T, Bull, DEC, Ericsson, HP, ICL, Nixdorf, Olivetti,
Philips, Siemens and Unisys.

1 Introduction

The formation of the X/OPEN Group was a direct result of two major
changes in the Information Technology industry in the early 1980s, a
growing user resistance to the long term lock-in effects of proprietary
operating systems, and the emergence of the “Department” as a large scale
user of computer systems.

1.1 Proprietary Operating Systems

Traditionally a computer system has been controlled by a proprietary
operating system developed by the manufacture of the hardware. This has
unfortunate effects for the purchaser:

(a) The investment made in applications, programmer training and
operating procedures tends to cause a lock-in to a particular manu-
facturer. Changing supplier requires a substantial re-investment in
time and money, and systems from different suppliers cannot easily be
mixed.

ICL Technical Journal November 1987 665

(b) Because of the relatively small population of machines with a specific
proprietary operating system, there is little incentive for the software
industry to develop applications, and hence the application software
tends to be limited to that developed by the manufacturer, or tailor
made (and financed by) the user.

This means that most computer manufacturers find themselves caught in the
trap of insufficient generally available applications to extend the base of
installed systems, and too small a base to tempt the independent software
industry to develop applications for it.

1.2 The Departmental Computer

The availability of 8-bit microprocessors in the late 70s gave rise to the
Personal Computer explosion. These systems were not only cheap to
produce, but also cheap to develop, and many start up companies were
created. To reduce development costs these companies tended to use
generally available operating systems such as CP/M and MSDOS, which,
combined with the few standard microprocessors, meant that there were
large populations of compatible systems. This in turn attracted a large
number of software writers to develop general applications which further
increased the market for personal computers, and a virtuous circle was
created. As these systems relied on binary compatibility for application
portability, there was later a tendency to standardise on the Intel micropro-
cessors and MSDOS (and derivatives), largely influenced by IBM adopting
these components.

This Personal Computer explosion highlighted two things:

e The computing power that could be brought to the desktop at low cost
by use of microprocessors.

o The virtuous circle created by Industry Standards when the volume/cost
equations are favourable.

The emergence of 16 bit, and more importantly 32 bit, microprocessors of
ever increasing power meant that a similar scenario could be applicable to
Departmental computing. It was now possible to service the computing
needs of a Department at low, and therefore acceptable, cost. Market
research firms predicted rapid growth in this area, and this “middle ground”,
which lacked a dominant operating system regime, was identified as a major
area of opportunity by virtually every computer manufacturer in the world.

The situation was however more complex than it was for Personal Compu-
ters. The requirements of a Department are for sharing of information
between users, concurrent access to the information and the ability to carry
out multiple tasks simultaneously from the same workstation. The systems
must also be flexible and expandable over a wide range, as Departments vary
significantly in size. A simple control program, like MSDOS, was therefore

666 ICL Technical Journal November 1987

not satisfactory; a full multi-user, multi-tasking operating system was
required; and the wide scope meant that standardisation on a single
microprocessor at the binary level was not possible.

The result was that the leading contender, adopted by most manufacturers,
was the UNIX operating system (and its derivatives). It had been designed to
be multi-user, multi-tasking and flexible, and had been written in the C
language to be easily portable to many different hardware architectures.

2 The birth of X/OPEN

A problem with UNIX was that, although it largely fitted the requirement, it
had not been rigidly controlled with regard to standard interfaces. Initially
even releases from AT&T had not guaranteed upwards compatibility
(although by UNIX System V this was committed), and there were several
quite different flavours from other sources, notably Berkeley University and
Microsoft (XENIX(tm)).

During the first half of 1984, ICL approached the other major European
computer manufacturers with the view to ensuring not only that there would
be a single standard at the UNIX level, but also that a complete Common
Applications Environment should be defined covering the basic operating
system, data management, integration of applications, data communications,
distributed systems, high level languages, “internationalisation” and all the
many other aspects involved in providing a comprehensive interface for
portable applications, This effort was to be seen as a complementary plank in
the “Open Systems” movement to ISO Open Systems Interconnect (OSI).

Initial discussions were difficult, as amongst the companies all three major
flavours — UNIX System V, Xenix and Berkeley — were strongly entrenched,
but by mid year sufficient interest had been generated for Bull, ICL and
Siemens to start detailed studies. They were joined shortly afterwards by
Olivetti and Nixdorf, and the group, known by the codename BISON, was
formerly constituted and in full operation by the autumn. This codename
lasted until Philips and Ericsson joined, by which time the name X/OPEN
had been adopted and registered.

3 Achievement and growth

The first phase of work, covering the basic “system calls and libraries”, the C
language, an ISAM file access definition, COBOL, FORTRAN and source
code transfer, was completed by May 1985, a remarkably short space of time.
It was published in the form of “The X/OPEN Portability Guide” in August,
the period between May and August being devoted to turning the bald
technical specifications into a polished quality publication.

The results of the second phase, covering “Commands and Utilities”, the
terminal interface, internationalisation, SQL and PASCAL, were published,

ICL Technical Journal November 1987 667

along with enhancements to the earlier material, as Issue 2 of the Portability
Guide in January 1987.

Over this period there was a major influx of US companies (Digital, Unisys,
Hewlett-Packard and AT&T), which was a measure of the early success,
added great strength to the Group, and widened its scope outside Europe.

4 The common applications environment

X/OPEN is not a standards creation body; it is concerned with standards
selection, refinement and adoption. It is similar in nature to the SPAG
(Europe) and COS (USA) activities for OS], in that it is putting together a
tightly defined set of standard interfaces that will be present on all member
systems (and wider). The Group is a pragmatic organisation. The members
are not interested in the definition of esoteric standards which bear no
resemblance to available products. The philosophy is to define portability
standards that can be achieved in practice within a short time.

The general policy is to adopt International Standards, and refine their
usage, and to adopt de facto standards where an International one does not
(yet) exist. Only in areas where there is not even a de facto standard does it do
creative work, and even then the general policy is to work with other
standards activities (eg /usr/group). In all areas, though, the intention is to
have a strong influence on the evolution of the standards.

The overall aim is to put in place a complete environment, “The Common
Applications Environment” (CAE), that will exist on systems from all
X/OPEN members such that applications can be written to run with-
out change on all the machines. In addition, by placing these definitions in
the public domain, it is expected that many other systems will also adopt
the interfaces and take advantage of applications conforming to the
standards.

5 The X/OPEN Portability Guide — Issue 1

The first steps taken were tentative but were important because they
demonstrated clearly that the Group was achieving its aims and because they
established a way of working which allowed difficult issues to be resolved by
consensus rather than by majority voting.

By mid 1985, the Group had agreed common positions in a number of areas
and these were recorded in the first Issue of The X/OPEN Portability Guide:
a massive document comprising over 600 pages and setting new standards
for the quality of UNIX documentation.

The individual parts are briefly described in the following sections:

668 ICL Technical Journal November 1987

5.1 The X/OPEN System V Specification

The most important decision taken during the first year was to agree on a
standard “dialect” of the operating system to be supported on X/OPEN
systems. Gaining consensus to base the definitions on (a sub-set of) the
UNIX System V interfaces was a major step forward, and one that was taken
well before publication of the AT&T System V Interface Definition. It is very
important here to note that all the X/OPEN CAE definitions are about
interfaces, and not about the underlying product. For example the Group has
never jointly agreed to adopt the AT&T UNIX System V product, but
merely some of its interfaces.

The first task undertaken by the Group was the definition of System V system
calls and library routine calls. (For readers not familiar with the UNIX
Operating System, these comprise a comprehensive set of operating system
services invoked directly from within programs written in the C language.)
When this work was nearing completion, AT&T published the first issue of the
System V Interface Definition (SVID). The Group immediately recognised the
danger of splitting the market if the two definitions were not converged, but
also found themselves unable to adopt the SVID as published in its entirety. As
a compromise, X/OPEN adopted the majority of the SVID definitions, but
annotated where necessary to provide a definition to which all members feit
able to commit, The differences were in fact small and largely in the
presentation. All technical differences were explicitly referred to on the
appropriate page of the Portability Guide. A small number of UNIX System V
calls, that had not been included in the SVID, were also adopted by X/OPEN,
some of which have been added in later editions of the SVID.

5.2 The C Language

Most of the existing UNIX applications and virtually all of the systems
software are written in the C language. The American National Standards C
Language Committee (X3J11) is working towards an accepted definition for
the language. This is still in draft form and evolving. However, the version of
the C language defined in the AT&T UNIX System V Programming Guide is
commonly supported by a wide range of C compilers and was adopted as the
basis of the X/OPEN definition.

As it is possible, in fact quite easy, to write non portable code in C, the
Portability Guide includes advice on how to ensure that applications are
portable. Also included are guidelines regarding pitfalls that could be
encountered when the definition moves to that of ANSI X3J11, once it is
ratified and conforming compilers are freely available.

5.3 FORTRAN
The X/OPEN definition of Fortran is simply the ANS FORTRAN-77

standard with no extensions, which is supported by the majority of current
FORTRAN compilers.

ICL Technical Journal November 1987 669

54 COBOL

The work of defining portable COBOL was a little more difficult. The widely
accepted standard at the time of publication was the American National
Standard X3.23-1974 (COBOL 1974). Although widely supported it was
becoming out of date in a number of ways:

e It includes features (such as SORT) which are now regarded as supplied
by free standing routines or operating system facilities.

o It does not include facilities for the support of the online user (interactive
input/output at a terminal).

The view of X/OPEN was that any COBOL portability definition which
excluded screen handling was totally lacking in credibility. All current
compilers do in fact support interactive input/output, most of them via
extensions to the ACCEPT and DISPLAY statements. Unfortunately, not
all of these extensions are compatible, and it was necessary to choose one for
the X/OPEN definition. The one adopted was a de-facto standard, the form
of ACCEPT and DISPLAY supported by the MicroFocus LEVEL II
COBOL(tm) compiler.

It is important to recognise the difference between the adoption of (a subset
of) the interface represented by a particular product and the product itself.
There are now a number of different compilers which also support the
X/OPEN definition of ACCEPT and DISPLAY. These are equally accept-
able as components to support the Common Applications Environment.
Conversely, the MicroFocus product included other extensions beyond the
ANSI standard, which were not adopted as part of the X/OPEN definition.

5.5 Data Management

Data management is a key component of commercial applications and hence
also of the Common Applications Environment. In the longer term, it was
recognised as being necessary to support full database management inter-
faces, but at the time that Issue ! of the Portability Guide was published,
there was a state of anarchy among the database management systems with
no common interfaces between them.

5.5.1 Indexed Sequential Access Method (ISAM) As an important first
step, the Group adopted a set of portable interfaces for record access to
Indexed Sequential Files (ISAM).

The C-ISAM(tm) product from Relational Database Systems Inc. (now
Informix Corporation) was a clear market leader. In the absence of any
international standard, a subset of the interfaces of the C-ISAM product
were adopted as the basis of the X/OPEN ISAM definition.

A number of C-ISAM interfaces were excluded because they related too

670 ICL Technical Journal November 1987

specifically to that product, and/or were not necessary as part of the
standard.

5.6 File Transfer

A major irritant to application software developers was found to be the
difficulty of transferring files, specifically text files containing source pro-
grams, between different machines. X/OPEN therefore defined standard
media formats which would be supported where possible. It was not possible
to give absolute commitments in this area because of differences at the
hardware level and also in the nature of systems.

Many systems support a 5.25 inch floppy disc drive, but the number of
sectors per track varies from 8 to 10; the most common version is generally
compatible at the hardware level with the IBM PC-AT, and has 9 sectors per
track. For machines with a suitable floppy disc drive, X/OPEN defined a
common 80 track format (conforming to ECMA-78) to assist in the moving
of source code.

Many systems support a 9 track half inch magnetic tape deck. For machines
with a suitable tape deck, X/OPEN defined a common 1600 bpi Phase
Encoded format (with optional identification label.)

Many machines also support quarter inch cassette (or cartridge) tapes. These
popular low-cost devices are supplied by a number of manufacturers but the
recording format differs from one manufacturer to the next. Hence there was,
and still is, no possibility of an X/OPEN definition for such devices.

6 A period of consolidation

The next stage was a period of consolidation during which five principal
activities took place:

e Initiation of marketing activities to encourage Independent Software
Vendors, Government procurement agencies and large users to adopt
the X/OPEN Common Applications Environment.

o The growth of the Group to ten members, and the inclusion of major
United States based companies.

e Extension of the Common Applications Environment into additional
important areas, roughly doubling its scope.

o The development of a verification suite that would verify conformance to
the published CAE.

e Working towards the delivery of compliant member systems.

The UNIFORUM conference and exhibition in Anaheim in February 1986
was very important for X/OPEN and clearly showed that the Group had
become a major force in the UNIX world. X/OPEN did not have a stand at
the exhibition, nor were any papers presented at the conference. However, a

ICL Technical Journal November 1987 671

large number of other speakers made reference to the Group identifying it as
having a significant influence. Also Issue 2 of the AT&T System V Interface
Definition was launched at the show, and it was clear that the X/OPEN
Portability Guide had influenced the revision of the previous Issue.

It was at UNIFORUM that X/OPEN was able to announce the extension of
the group to the USA, with DEC becoming the first non European member.
DEC was rapidly followed by the Sperry Corporation (soon to become
Unisys following the merger with Burroughs) and Hewlett-Packard.

On the technical front, an update to Issue 1 of the Portability Guide was
published in the summer of 1986, and a second complete edition of the
Portability Guide was published in January 1987.

The exact way in which the verification suite will be used has not been finally
resolved at the time of preparing this paper. In the short term, its use will
certainly remain under the control of the X/OPEN members; there are no
immediate plans to issue the verification suite as a product.

7 The X/OPEN Portability Guide — Issue 2

Issue 2 of the X/OPEN Portability Guide was launched at the Uniforum
show in Washington in January 1987. This edition, presented in five volumes,
included a revised reprint of all the material included in Issue 1, and therefore
replaced rather than complemented it.

A number of lessons had been learned from Issue 1. The form of presenta-
tion retained the same high quality paper and two-colour printing, but
the binding was changed to a form which allowed the material to lie flat. The
division into separate smaller volumes made it more manageable for the
users, and easier to update and extend.

In comparison with Issue 1, the price has been increased only slightly,
although the Portability Guide itself contains more than three times as much
material. This is to ensure the widest possible distribution.

7.1 The X/OPEN System V Specification

In Issue 2, the X/OPEN System V Specification is extended beyond the
definition of “system calls and libraries” into a number of additional areas,
the most important being “commands and utilities”, and “internationalisa-
tion”.

7.1.1 System Calls and Libraries The definition of system calls and
libraries included in the first edition of the Portability Guide was reissued
substantially unchanged. There were some minor changes to correct errors
reported and to reflect the evolution of the IEEE “POSIX” standard, but the
level of change was not significant.

672 ICL Technical Journal November 1987

7.1.2 Commands and Utilities “Commands and utilities” differ from the
“system calls and libraries” in the way in which they are invoked. They are
primarily designed to be invoked via a command interpreter.

While the definitions of the system calls and library calls are reasonably
stable, the same cannot be said of commands and utilities. The current UNIX
commands have been developed in an ad hoc manner over a long period with
no consideration of producing an Industry Standard. As a result, the current
command definitions are inadequate in a number of ways:

e The commands themselves are often over-complex with a large number
of interrelated options, many of which are hardly, if ever, used.

e The definitions are in many cases not rigorous, and are neither an
accurate definition of the behaviour of the command nor a suitable basis
for verification that the command operates correctly.

e Much of the behaviour is machine dependent and inhibits portability.

In the short term, the X/OPEN Group have prepared a definition of
commands based on existing documentation, but, recognising the shortcom-
ings, have liberally annotated the definitions with warnings where behaviour
cannot be guaranteed across all systems. While the eventual aim must be to
“rebuild the road”, an exercise to place warning signs in front of the holes is a
necessary and valuable short term expedient.

In the future, X/OPEN will take an active part in the precise definition of a
set of standard commands, particularly those which may be invoked directly
by (portable) applications.

7.1.3 Inter-Process Communication In Issue 1 of the Portability Guide,
System V routines relating to shared memory and inter-process communica-
tion were excluded. The Group believed, and continues to believe, that more
generalised procedures are necessary in this area. However, there are classes
of applications (such as data management) where there is a need for such
facilities now. In recognition of this need, Issue 2 of the Portability Guide
incorporated the System V inter-process communication interfaces, but
included caveats to the effect that some of the facilities are system specific and
their presence cannot always be guaranteed across all X/OPEN systems.

7.1.4 Terminal Interfaces Although the Group continues to search for
common high level user interface capabilities, many applications are cur-
rently being built using a library of routines (known as the “curses” library)
that is being assembled, to achieve a degree of independence from the actual
terminal type in use. X/OPEN has defined a set of curses routines which will
be supported across all systems, and has given advice regarding the problems
that can be encountered when using such facilities with synchronous (block-
mode) terminals, or asynchronous terminals connected via networks.

ICL Technical Journal November 1987 673

7.2 Internationalisation

From the beginning, the X/OPEN Group recognised the importance of
facilities to allow the user of the system to operate in his own native
language. This implies a number of major requirements:

e The ability to input and output messages in the appropriate language.

e The ability to process the character set in use correctly according to the
language and country involved (character type testing such as “is it a
number”, or “is it alphanumeric”, conversions between upper and lower
case, collating sequences, etc.).

e The ability to support the user’s cultural conventicns (date format,
currency symbols, etc.).

e The ability to mix languages, so for example a French secretary using a
machine in Italy can write a letter to a German company.

X/OPEN has defined a set of application interfaces for international
operation. They were derived from the interfaces of the Native Language
Support system developed by the Hewlett-Packard Company of Palo Alto,
California. They have been further enhanced by X/OPEN and have been
modified to be compatible with the Internationalisation proposals of the
Draft Proposed American National Standard for the C Programming
Language.

The initial system is defined to operate with 8-bit coded character sets, but
the definitions are believed to be upwards compatible to 16-bit code sets
later. Different codesets can be used to cover the many different geographical
groupings. All codesets must have 7 bit ASCII in the LHS (top bit of
character 0), but this is consistent with the rules for most internationally
defined codesets.

7.3 Programming Languages

The C language, COBOL and FORTRAN definitions were included in Issue
2 of the Portability Guide with very little change from the previous issue.
PASCAL was introduced for the first time.

The C language definition was changed in a small number of areas to reflect
the evolution of the draft ANSI X3J11 standard.

The presentation of the COBOL definition in Issue 1 proved to be over-
complex. The actual definition published in Issue 2 was substantially the
same as that in Issue 1, but the presentation of the material was simplified
considerably. Advantage was taken to eliminate some obsolete constructs
{defined so in the new 1985 COBOL standard) from the X/OPEN definition.
Advice relating to the use of COBOL in a UNIX environment was
introduced.

674 ICL Technical Journal November 1987

The X/OPEN Group has adopted the ISO standard for PASCAL without
any extensions.

7.4 Data Management

Data management was significantly enhanced by the inclusion of an
embedded SQL definition for access to relational databases.

The ISAM definition was unchanged in Issue 2, with the minor exception
that some routines which were defined as optional in Issue 1, pending a
thorough examination, have now been adopted as mandatory components.

7.4.1 Relational Database Language (SQL) The availability of high
quality relational database management systems with good performance,
and the fact that the relational model is inherently simple and easy to
understand, are such that they are now the preferred form of database
system.,

Initially, the available relational products incorporated proprietary applica-
tion interfaces. However, a standard was developed by the American
National Standard Institute, Relational Database Language (SQL) Commit-
tee (X3H2), and the rate of conformance towards this standard has been
dramatic. This can be attributed to its adoption as a procurement standard
by the US government and other influential bodies.

Immediately following the publication of the first Issue of the Portability
Guide, the X/OPEN Group carried out a survey of the available principal
relational databases, and it was clear that the emerging SQL standard would
be a suitable basis for a portable definition.

The group carefully tabulated the capabilities of the market-leading products
against the ANSI standard as it moved towards adoption, and, over a period
of six months, addressed the many places where one or more product
deviated from it. At a number of stages, the conclusions of the working group
and the proposed definition were reviewed with the principal suppliers of the
systems, and the final output was the X/OPEN definition for embedded
SQL.

It would have been ideal had the group been able to adopt the ANSI
standard (X3.135-186) in its entirety, but as all the major product suppliers
do not fully conform, this was not considered practical. It was also believed
that the standard would change in some of these areas. Furthermore it was
considered desirable to include certain extensions to reflect common usage.

The ANSI standard allows two levels of compliance. The X/OPEN definition
is based on level 1. To achieve level 1, some functions have to be present, but
the actual method of implementation is not defined. The X/OPEN definition
has included a common method of implementation.

ICL Technical Journal November 1987 675

In areas where existing popular products do not comply with the ANSI
definition the X/OPEN definition includes warnings to application devel-
opers indicating facilities which are not universally supported in a consistent
manner.

The full relationship to the ANSI standard is given in an appendix to the
X/OPEN definition.

8 1987 and beyond
The immediate future for the X/OPEN Group looks extremely healthy.

The growing importance of X/OPEN was underlined at Uniforum 1987 in
Washington where AT&T’s membership of the Group was announced and
people were besieging the X/OPEN stand for details of the Group and how
to join.

In February 1987, X/OPEN was able to demonstrate the practical applica-
tion of the X/OPEN philosophy at the headquarters of the European
Commission in Luxembourg. A single application, complying to the X/OPEN
Portability Guidelines, was successfully ported to machines from all of the
member companies in a high-profile demonstration to press and major users
from across Europe.

The Group now has a membership of eleven, with other companies eager to
join. The policy of the Group is that membership is open. However, the
actual expansion of the Group will be controlled to avoid any impact on
effectiveness from an uncontrolled membership explosion. The other factor
which could restrict the size of the Group is the “membership fee”. The
Group has an ambitious technical programme for the years ahead and this
needs to be funded from members’ contributions. To ensure that this does
not prevent the Group gaining valuable input from smaller companies, it is
intended that a series of liaison groups will be established.

At the time of writing, it is not possible to forecast when the third edition of
the Portability Guide will be published or what it will contain. However it is
possible to give some general statements of the direction that the work is
taking.

8.1 IEEE POSIX

The 1IEEE has a committee, known as P1003, working on a standard for a
“Portable Operating System for Computer Environments” which defines a
set of interfaces that are largely based on those of the UNIX operating
system. The shortform name for this standard is “POSIX(tm)”. A document
covering the System calls and Libraries aspects was published widely as a
“trial use” standard in April, 1986, and there have been several working
drafts since then.

676 ICL Technical Journal November 1987

POSIX was developed from the earlier work carried out by the /usr/group
technical committee in the USA, which was also a major input to the AT&T
System V Interface Definition, and to the development of the X/OPEN
definition. The intention is that POSIX will be used as the basis of an ISO
standard.

In January 1987, along with a large number of companies and other
organisations, X/OPEN expressed its support for the “POSIX” activity, and
declared its intent to converge with “POSIX” as and when it achieves “full-
use” status. X/OPEN, as an institutional member of the IEEE, is playing an
important role in moving POSIX towards final acceptance.

As stated earlier in this paper, the current definition of “commands and
utilities” is not adequate. Rather than work independently, the Group
intends to co-operate with the IEEE P1003.2 sub-committee to produce an
agreed standard for “The Shell as a Programming Language”. This co-
operation will include major technical input and the allocation of skilled
resources to work with IEEE.

8.2 Networking

The provision of appropriate networking interfaces is seen as a high priority
by the Group. However, working in this area, X/OPEN found itself trying to
run faster than the International Standards bodies, which in this case is not

desirable.

1987 is likely to see the publication of an X/OPEN definition for an
application interface to the ISO/OSI level 4 transport service.

Other work in the networking area is proceeding, but to give details at this
stage would be premature. Areas being investigated include:

e Application to application interfaces (OSI level 7, peer to peer).
e Application interfaces to X.400 mail.
8.3 Feasibility Studies

X/OPEN is currently examining the requirements for standardisation in a
number of areas. These include:

e User Interface (in particular graphics windowing systems).
o Transaction Processing.
e Security.

It is likely that working papers (“White Papers™) will be issued for comment
relating to a number of these areas during 1987.

ICL Technical Journal November 1987 677

9 Conclusion

-The X/OPEN Common Applications Environment is rapidly becoming a
reality with major importance for users and application developers.

Users can buy departmental systems with confidence. The manufacturer no
longer has control over the user’s future. At any time a change can be made
to another supplier, or systems from different suppliers can be mixed, without
penalty because there are now at least 11 major suppliers of X/OPEN
compliant systems.

Users can safely invest in the development of applications in the knowledge
that the investment is protected. A serviceable application will not have to be
reimplemented just to change to a larger or more up-to-date machine, and
there will be a wide portfolio of application products available from the
independent software vendors.

Independent Software Vendors can see X/OPEN systems as a very signifi-
cant coherent market, rather than as a series of small incoherent proprietary
market fragments. This will make it much easier to recognise a sound
business case for the development of applications.

Many of the definitions included in the X/OPEN Portability Guide are also
supported by products on other operating regimes. Currently, the language
and data management definitions are widely supported. The availability of
applications using these interfaces in UNIX environments will indirectly
benefit users of other regimes because of the reduced cost of porting. The
UNIX Common Applications Environment will become a standard porting
base from which ports to other environments will become more widespread.

The X/OPEN networking facilities supporting ISO/OSI protocols will
ensure that X/OPEN UNIX based systems can communicate not only
between themselves, but also with other machines both large and small. Thus
a whole range of departmental applications which are able to complement
mainframe systems will become available.

The X/OPEN Portability Guide, Issue 2 is available as a five volume set
ISBN: 0-444-70179-6, from booksellers or directly from the publisher:

Elsevier Science Publishers, Book Order Department,
PO Box 211, 1000AE Amsterdam, The Netherlands.

Acknowledgement

Mike Lambert, the X/OPEN Chief Technical Officer, and I are founder
members of X/OPEN, and have been joint editors of the Portability Guide.
We have both written several papers describing the aims, objectives and
achievements of the Group and have freely interchanged material. This

678 ICL Technical Journal November 1987

current paper is no exception and I am indebted to Mike for much of the
wording.

Trademarks
UNIX is a registered trademark of AT&T in the USA and other countries.
X/OPEN is a licensed trademark of the X/OPEN Group members.

POSIX is a trademark of The Institute of Electrical and Electronic Engineers
Inc.

XENIX and MSDOS are trademarks of the Microsoft Corporation.

CP/M is a trademark of Digital Research Inc.

ICL Technical Journal November 1987 679

Security in distributed information
systems: needs, problems and solutions

C.W. Blatchford
Manager, ICL Secure Network Systems, Bracknell, Berkshire

Abstract

The paper discusses the risks to which information held in computer
systems, especially in distributed systems, is vulnerable and indicates
the means that are being developed by national and international
official bodies and by the IT industry to ensure that the desired integrity
and confidentiality of this information are preserved.

1 The problem

The criminal may be considered as the individual most responsive to the
changes taking place in any society. Protect society with guns, then the
criminal will attack with guns. Store valuable assets in ‘robust’ safes then the
criminal will use dynamite. Control society through information held in
computers and telecommunications systems, then the criminal will turn to
information technology itself through which to perpetrate the crime.

Ignorance of such advanced technology has been considered an effective
barrier against the malefactor. This is no longer true. The emphasis on the
harmonisation and standardisation of computing procedures; the large
number of young trained personnel; but above all the ubiquitous, user
friendly workstation with its access to many services around the world could
pose significant threats to society.

Comprehensive research being undertaken by key computer users and
vendors alike has revealed some disquieting facts that constitute threats to
Computer Systems.! In summary

(i) Some 30%, or more, of computer users, in one large UK sample, had
experienced some form of computer crime.

(i) Over 75% of crimes are perpetrated by ‘authorised insiders’, where
control systems of user identification and authentication apparently
have not been compromised.

(iif) Crimes are increasingly in the form of malicious damage to the
information, there being no obvious financial benefit to the perpetrator.

680 ICL Technical Journal November 1987

This makes detection of the crime easy but apprehending the criminal
very difficuit.

(iv) Crimes are increasing in technical content, making resolution (and even
quick detection) less achievable without the involvement of high cost,
scarce, information consultancy resources, and/or fundamental system
changes.

The information technology industry has worked closely with the other
interested commercial sectors (Accounting firms, etc.) to establish stringent
administrative procedures surrounding the information asset. Such pro-
cedures, even where comprehensive, require effective implementation, careful
monitoring and regular updating. This requires consistently applied human
resource, but here is a paradox: crimes are committed by ‘authorised insiders’
who can be the same people as are being asked to police the systems. What
can be done?

The Information Technology industry is exploring facilities that will allow
the consistent operational enforcement of the detailed security policies
through the basic systems’ hardware/software components. The computer
vendors are increasingly turning for technical guidance to the Defence
authorities, where such problems have been recognised and tackled in a
rigorous fashion.

These Information Security or ‘Infosec programmes’ can give direction on
how to create technical solutions to combat the computer crime in the
commercial world. The creation of ‘Commercial Security Cells’ in both UK
and USA, organisationally aligned with the defence community, is helping to
focus the problem and recommend guidelines and even acceptable solutions
to the market place.

2 Definition

The theory of computer security is imprecise, relying on a common
understanding of the problems of computer crime. The balance between
information systems functionality, assurance and underlying mechanisms
needs to be better understood. Some broad classifications, however, are
possible.®

Security concerns may be analysed into:

(a) Privacy — ensuring the confidentiality of information (and associated
processes). Information has not been read and understood by the
unauthorised.

(b) Integrity — ensuring that information and processes have not been
exposed to alteration or destruction, whether accidental or by intent.
This may range from ‘simple’ malicious damage through to complex
information manipulation to effect a financial or asset fraud.

(¢) Denial or deterioration of service — using associated information

ICL Technical Journal November 1987 681

processing resources so that the legitimate user may not have access to,
or use of, a desired, pre-agreed level of a specific service.

The IT vendor requires the generic categorisation of computer crime so as to
achieve focused hardware/software solutions, supported as necessary by
user-driven administrative controls.

It is difficult to categorise computer crimes precisely. Specific recorded
incidents are a mixture of intellectual creativity coupled with one or more of
the following ‘security’ exposures.?:’

(a)

(b)

(©)

(d)

(¢)

(f)

(g

(h

(1)
)
(k)

(m)

682

Data diddling — changing information, the input/output procedures
being driven through the work station: creating the false transaction, a
dummy file, etc.

Salami techniques — the thefts of small amounts of similar assets without
apparently impacting the whole — the unauthorised collection of small
amounts of data, the rounding to the nearest penny.

Trojan horse — unauthorised, covert placement of computing code that
can manipulate information or processes. These may either support, or
be supported by, (d) or (e).

Logic bombs - unauthorised computing to be executed periodically,
based on some threshold level (date, value), that will cause some system
malfunction.

Trap doors — ‘holes’ in existing application or operating systems,
utilities, etc. that allow additional authorised code to be eased in later
but which by their nature will simplify unauthorised, logical access into
the computer system.

Superzapping — unauthorised use of computer programs that will by-
pass controls to modify or disclose any of the contents of the system.
Asynchronous attacks — interrupting or changing the sequence in which
transactions are processed so as to create unacceptable conditions. This
may be in a single computer or, more likely, in a distributed network
environment.

Scavenging — searching for a ‘debris’ left over from previous processes —
from the waste bin to the residue of earlier application programs in the
computer.

Data leakage — the physical or electronic removal of data or copies of
data or processes from the electronic service.

Piggybacking - replacing an authorised use or service, etc. with an
unauthorised one in an unterminated operation.

Masquerading (impersonation) — by humans, computer services, hard-
ware devices (computer, telecoms, etc.), assuming the identity of another
(usually authorised) subject.

Wiretapping — electronic tapping of data within a single physical
location or via a gateway (public or private networks).

Electronic eavesdropping (originally a subset of Scavenging) — unau-
thorised picking up the radio emissions from an electronic device and
reconstituting the signal to obtain information.

ICL Technical Journal November 1987

(n) Simulation and modelling (a pseudo-crime) — the parallel interpretation
of restricted data or processes in an unauthorised manner (the *home
mini-computer’ with company data).

This list is not exhaustive — it could become longer, depending on the
ingenuity of the criminal mind: thus the use of Artificial Intelligence or
Knowledge Engineering techniques may result in many more, novel, criminal
opportunities.

Any comprehensive taxonomy of the types, structure and impact of com-
puter crime is classified by the relevant national authorities. Non-Govern-
ment data available to the commercial sector is limited. Analysis of threats
against architectural/technical solutions is underway.

3 User-corporate security policy

Security to protect against computer crime must be considered integral to an
overall corporate administrative programme. Such a programme should
have three major concerns:

- the Information policy (what information is required, how is it stored, for
how long, how is it labelled, who owns it, how is it processed, etc.

— the Security policy (who/what can access what, when or how, in the
context of both information and processes).

— the Electronic Resource policy (what objects are distributed, where to
effect the processing).

An understanding of the importance of the information asset as the lifeblood
of any organisation, of its relationship to corporate resources and the
vulnerability of computer in an increasingly competitive business world is
essential before the corporate security programme can be defined. A
hierarchy of security statements is necessary including

(a) Policy - does the user wish to protect the assets, and from whom?

(b) Standards — to what extent is the user willing to protect and at what
cost?

(c) Procedures — can the solution be administered by humans and sup-
ported by technology to an agreed level of functionality and assurance?

A corporate security policy may take a number of forms — but as a minimum
it should address:

(a) Integrity/confidentiality of information

(b) Integrity/confidentiality of services/control functions provided by the
system (both human and machine)

(c) Independent guarantees of operations/transactions (usually in real time)

(d) Authentication of users (not just end ‘human’ users)

(e) Access Authorisation Control, to services, functions, information

ICL Technical Journal November 1987 683

(f) Audit/Monitoring of services, functions, information.

The policy must be supported by Corporate Management and not left to
lower management to define. The policy, if rigorously implemented, may
have a profound impact on the human, as well as electronic systems,
relationships and organisation.

One survey into Corporate security policies in 1985 showed that fewer than
half of organisations in the UK had such statements and in no more than
12% had Corporate Management given a positive lead in operational
enforcement. Recent, well publicised crimes (especially by authorised people
inside the Financial sector) will have more clearly focused management
attention.

4 Security solutions

Past computer security solutions have depended upon robust administrative
processes with ad hoc implementation of selected computer technology
(information encryption, etc). More sustainable solutions will require a
consistent understanding of computer security principles embracing all
aspects of physical, administrative, and logical access control and of data
storage and structure.

The proliferation of information systems down to the local user or worksta-
tion level has reduced the opportunities for stringent administrative and
physical control. Greater reliance must therefore be placed on the logical
access control systems (and supporting encryption processes), the security
rules definition and the machine-based enforcement.

A ‘shorthand’ checklist has been prepared to facilitate validation of suitable
security procedures. It is based on the language of the 3‘A’s and 5S’s.

4.1 Logical access control

The 3A’s — Authentication, Authorisation and Audit (Accountability) — The
logical access controls over the information system.

4.1.1 Authentication: Establishes the validity of a claimed identity.? It is
the procedure by which the system user or service identifies and validates
the corresponding party in any two-way communication. It is primarily
used for agreeing the human user but increasingly is necessary to check the
service or computer in the communication process. Crimes have been
committed by the correct end user being duped into interacting with a ‘false
service’ on the computer and giving out information which could be
collected, subsequently, by the criminal to perpetrate a fraud (‘scavenging
for authorised passwords’).

Human authentication mechanisms have fallen into two prime catagories.

684 ICL Technical Journal November 1987

(a) Authenticating against ‘What you have got”: the credential - signature,
token, knowledge (e.g. secret password), etc.

(b) Authenticating against ‘What you are™ physiological properties —
fingerprints, retina scan, voice, etc.

The human signature is the familiar mode of authentication. There are major
legal and commercial processes built around its use. The wide use of IT may
undermine its value because it can be reproduced automatically. It may be
considered to fall into both categories within computer authentication systems.
It is a credential that can be learned, but masquerading is very difficult in the
dynamic action of signing, even for the most experienced forger.

The advent of voice pattern analysis and keystroke dynamics opens up other
control opportunities. Both have the characteristics of continuous, covert
verification during an entire workstation session rather than verification at a
single instance. This is significant progress in achieving authentication that
protects against ‘piggybacking’ in addition to human masquerading.

Research into the area of keyboard dynamics has established that we each
have a unique mode of operating a workstation. An initial profile, compiled
from some 100 typed words, is stored in the computer for future operational
comparison. It is of significant interest in financial and electronic office
systems (Electronic Mail) where users are primarily a stable population of
company staff.

The communicating of the resulting confidence in the identity of the human
user to ensure accountability for actions is a major system problem requiring a
consistently applied set of control procedures. Authentication between com-
municating services or computers is based on token exchange, usually in an
encrypted form. The international standards and protocols for this process are
currently being developed between vendors as part of the Open System
Interworking and Secure Network Architecture activities. The OSI Associa-
tion Control Service Elements standard recognises a graded authentication
from weak to strong depending upon the application of encryption technique.

4.1.2 Authorisation: Access to data, processes and resources may or may
not be authorised; the statement of what constitutes ‘authorisation’ is the
cornerstone of the Information System Security Policy.*® Access to an object
potentially implies access to the information that it contains.

Access is a general word for the variety of types of interaction between a
subject (an active entity in the form of a person, process or device) and an
object (a passive entity — files, services, devices, etc.) that cause information
flow or to aiter the system state; and these can be as complex in a computer
system as they are in any human administrative world.

A comprehensive authorisation model may be considered fundamental and
integral to the architectural framework of any large information system,

ICL Technical Journal November 1987 685

whether in one computer or distributed around a complex network.®
Historically, user authorisation structures have been vendor-dependent,
usually built around the features of specific operating systems and associated
computer utilities. This can restrict the view of the control processes to many
disparate ‘DOMAINS’. Large users, as they merge applications to create
large distributed information systems, will gradually move to a homogene-
ous understanding of the Authorisation process. This single, open, but secure
‘DOMAIN’ will be driven by a ‘Universal Authorisation Model’.

Authorisation rules are made in the context of systems-perceived character-
istics possessed by the entities involved, of the state of the processing
environment at the time, and of the type of operational access to data and
processes that is requested. The characteristics of the entities are represented
by the following classification of electronic data:

(a) Authorisation attributes associated with the subject (privilege attributes).
The subject’s na