
iCL
TGCHniCfll
JOURnfiL

Volume 5 Issue 1 May 1986

Published by
INTERNATIONAL COMPUTERS LIMITED

at
OXFORD UNIVERSITY PRESS

id
TGCHniCflljouRnm

The ICL Technical Journal is published twice a year by
International Computers Limited at Oxford University
Press.

Editor
J. Howlett
ICL House, Putney, London SW15 1SW, UK

Editorial Board

J. Howlett (Editor)
H.M. Cropper (F International)
D.W. Davies
G.E. Felton
M.D. Godfrey
F.F. Land
(London School of Economics &
Political Science)

R.V. Latin
(Standard Telephones Laboratories)
K.H. Macdonald
M.R. Miller
(British Telecom Research
Laboratories)
J.M. Pinkerton
E.C.P. Portman

All correspondence and papers to be considered for publication should be
addressed to the Editor.

The views expressed in the papers are those of the authors and do not
necessarily represent ICL policy.

1986 subscription rates: annual subscription £16 UK, £19 rest of world, Us
$40 N. America; single issues £10 UK, £11 rest of world, US $25 N. America.
Orders with remittances should be sent to the Journals Subscriptions
Department, Oxford University Press, Walton Street, Oxford 0X2 6DP,
UK.

This publication is copyright under the Berne Convention and the Interna­
tional Copyright Convention. All rights reserved. Apart from any copying
under the UK Copyright Act 1956, part 1, section 7, whereby a single copy of
an article may be supplied, under certain conditions, for the purposes of
research or private study, by a library of a class prescribed by the UK Board
of Trade Regulations (Statutory Instruments 1957, No. 868), no part of this
publication may be reproduced, stored in a retrieval system or transmitted in
any form or by any means without the prior permission of the copyright
owners. Permission is, however, not required to copy abstracts of papers or
articles on condition that a full reference to the source is shown. Multiple
copying of the contents of the publication without permission is always
illegal.
©1986 International Computers Limited

Printed by H Charlesworth & Co Ltd, Huddersfield ISSN 0142-1557

ICL
TGCHnCflL
JOURnflL

Contents
Volume 5 Issue 1

Editorial 1

ICL Company research and development, 1904-1959
M. Campbell-Kelly 2

Innovation in computational architecture and design
M.D. Godfrey 18

REMIT: a natural language paraphraser for relational query
expressions
B.G.T. Lowden and A.N. de Roeck 32

Natural language database enquiry
V. West 46

The me too method of software design
P. Henderson and C. Minkowitz 64

Formal specification - a simple example
D.A. Duce and E.V.C. Fielding 96

The effects of inspections on software quality and productivity
B.A. Kitchenham, A.P. Kitchenham and J.P. Fellows 112

Recent developments in image data compression for digital facsimile
M .J.J. Holt and C. Xydeas 123

Message structure as a determinant of message processing system
structure
D.J. Ackerman 147

Suggested extension of ICL DAP parallelism
R.M.R. Page and E. Baddiley 158

Notes on the authors 163

ICL Technical Journal May 1986

Editorial

As will be evident, with this issue we have a change of publisher, the Journal
now being published for ICL by Oxford University Press.

I can say without hesitation that we have been very happy with our previous
publishers Peter Peregrinus Limited, and I personally have found it a
pleasure to work with a series of their editors - David Mackin, Pauline
Maliphant and most recently John Cooper - and their supporting staffs.
However, we felt that after seven years we should make a change and we now
welcome our new association with OUP, with whom I look forward to
equally pleasurable collaboration.

In a previous editorial note I said that the Editorial Board was planning to
compile more issues concentrating on single themes or topics. The two last
issues, for May and November 1985, were both single-theme issues, dealing
exclusively, although from many different points of view, with two ICL
products, the Series 39 Level 30 mainframe computer and the Content
Addressable File Store (CAFS) respectively. Both these proved very popular.
The present issue covers a range of subjects, but five of the papers deal with
different topics in the broad field of software techniques and technologies.
The two by Duce & Fielding and Henderson & Minkowitz are concerned
with the use of formal, meaning essentially mathematical, methods for
specifying and designing software systems; those by Lowden & de Roek and
West with the use of natural language in extracting information from a
database; and by Kitchenham et al. with one of the techniques used to detect
errors at as early as possible a stage in the development of a large software
system.

There is a very active interest in computer history now; Campbell-Kelly’s
paper is the first of a series in which he will survey the history of research and
development in the companies that formed the predecessors of ICL. Dr.
Campbell-Kelly has been given access to ICL’s archives and is planning a
book on the history of the company.

ICL Technical Journal May 1986 1

ICL company research and
development

Part 1 1904-1959

M. C am pbell-K elly
Department of Computer Science, University of Warwick

Abstract

The ICL company of today has its origins in the punched-card machine
industry which began early in this century and matured between the two
world wars; it was not until well into the 1960s that punched-card
accounting machines fully gave way to computers. The paper traces the
origins and growth of R & D activity for punched-card machines and
early computers, from the turn of the century up to the late 1950s.

1 Introduction

In July 1984 the author entered into an agreement with ICL to write a
company history. ICL has roots which go back many years to the punched-
card machines from which present-day commercial computers are descended.
There has in fact never been a satisfactory history written of the punched-
card machine industry, perhaps for the good reason that it was of little
economic importance. For example, IBM, outstandingly the most successful
punched-card machine company, was only one-thirtieth of its present size (in
terms of employees) in the late 1930s; it was successful and profitable, but not
of global significance. However, to understand the structure of the present-
day computer industry (and to some extent its products) it is necessary to
understand the development of the punched-card machine industry. The first
phase of the company history project is thus to trace the development of the
two British punched-card machine manufacturers - The British Tabulating
Machine Co. Ltd. (BTM) and Powers-Samas Accounting Machines Ltd. -
from the inception of BTM in 1904 up to the merger of the two companies in
1959 to form International Computers & Tabulators Ltd. (ICT).

The period 1904—1959 saw R & D transformed from what in the early 1900s
had been an activity consuming negligible resources to an activity that was a
full divisional entity in its own right in a company 17 000 employees strong by
1959. The purpose of this paper is to survey this R & D activity, to discuss the
historical sources on which it is based, and to set it in its industrial and
economic context.

2 ICL Technical Journal May 1986

The punched-card machine industry had its origins in the machines invented
by Herman Hollerith (1860-1929) to process the 1890 census of the USA.
Hollerith’s equipment included a simple card punch and the ‘census machine’
- a combined tabulating machine and sorting box (Fig. 1). Although the
technology was unsophisticated by later standards, Hollerith’s early ma­
chines were very effective: some 700 punching machines and 100 census
machines were employed by the Bureau of the Census, an impressively large
data-processing operation even by today’s standards.

In 1896 Hollerith incorporated the Tabulating Machine Company (TMC) in
New York for the commercial exploitation of his machines. During the early
1900s he designed an improved range of machines which were soon taken up
by railroad concerns, insurance companies, and manufacturers1. By about
1907 the machines comprised a key punch (of a basic design still occasionally
seen in use), a tabulator and a card sorter. The key piece of machinery was the
tabulator, which accumulated values from a pack of cards, the results being
transcribed by hand from the counters (Fig. 2). Hollerith was an outstanding
inventor-entrepreneur, but it it is only quite recently that his role in the
business machine industry has been fully appreciated and a major biography
appeared2.

2 Foundations of the British punched-card machine industry (1904-1919)

Fig. 1 Census machine, c. 1890

ICL Technical Journal May 1986 3

Fig. 2 Hollerith electrical tabulating machine, c. 1905

In 1904 a British company The Tabulator Ltd.’ was formed to exploit the
Hollerith inventions in Britain. The formation of this company, some 3000
miles from the source of the invention in the USA, affords an interesting case
study in what we would now call ‘technology transfer’. At the legal and
licensing level the transfer was effected by Robert P. Porter, a British-born
citizen of the USA. Porter had been director of the census at the time of the
1890 census, and had been instrumental in bringing about the use of the
Hollerith machines by the Bureau. In 1902 he had become editor of the
engineering supplement of the London Times, and prior to his arrival in
England he had contracted with Hollerith for the British rights to his
inventions. Porter became a founding director of The Tabulator Ltd. and
assigned his rights to the Hollerith patents to the company. The new
company was largely guided by Ralegh B. Phillpotts, at that time company
secretary of British Westinghouse. At the technical level, the knowhow of the
punched card machines was brought to England by C.A. Everard Greene, the
first general manager of the British company, who spent some 18 months
during 1902-1904 learning to use and maintain the Hollerith machines, and
to assemble them from parts.

In 1907 the company was reformed and incorporated as The British
Tabulating Machine Co. Ltd. (BTM) with a greatly increased authorised
share capital of £50 000, needed to finance the leasing of the machines. One of
the first acts of the company was to seal an agreement with the American
company in 1908 to exclusively manufacture and sell the machines in Great
Britain and the Empire (excluding Canada). Phillpotts (later Sir Ralegh

4 ICL Technical Journal May 1986

Phillpotts) was chairman and sometime managing director of BTM from its
inception in 1907 until his retirement in his late seventies in 1950. BTM grew
at a rather gentle rate from 5 employees in 1907 to 45 employees at the
outbreak of World War I in 1914. We have a surprisingly clear picture of
these early years, for although very little in the way of ephemeral documen­
tation has survived we do have the statutory annual reports of the company
and the minutes of board meetings. In those days, when the company made in
the region of 10-20 new installations a year, each new customer was cause for
some celebration and was duly recorded in the minute book. Another
valuable source is a set of reminiscences written by C.A. Everard Greene in
19593 long after his retirement as general manager, which vividly evoked his
early years; until ICL opened up its archives for the present company history
project, this was the principal documentary source for early company history.
Another fascinating source is a delightfully frank bundle of correspondence
between Hollerith and the British company written during the early years of
the company.

In the USA relations between the Tabulating Machine Company and the
Bureau of the Census became strained after the 1900 census, as a result of
which in 1907 the Bureau engaged an inventor, James Powers, to design a
new range of punched-card machines which enabled it to become indepen­
dent of the Hollerith company for the 1910 census4,5. In 1911 Powers
incorporated a company, Powers Accounting Machines, in New York to
develop a range of punched-card machines for commerce which were
marketed from about 1914. The Powers machines, although functionally
similar to Hollerith’s, operated on entirely mechanical principles and used a
mechanical pin-sensing method that, unlike the Hollerith electrical sensing,
was unaffected by the presence of metal impurities in the cards. The Powers
printing tabulator (Fig. 3) was a marked improvement on the Hollerith
model; by eliminating the manual transcription results it was much more
suitable for accounting work.
Powers was an inventor-entrepreneur much in the mould of Hollerith, but he
remains an enigmatic figure of whom we know very little. A Russian migrant
to the USA, the extant biographical data on him amounts to little more than
two typed pages6. After the formation of the Powers company the history of
the punched-card machine industry was dominated by an intense rivalry
between the Powers and Hollerith lines.

In 1915 an American-owned subsidiary of the Powers company was formed,
The Accounting and Tabulating Corporation of Great Britain Ltd. - often
known as the ‘Acc & Tab’. The largest of the British company’s early users
was the Prudential Assurance Co. No doubt for the twin motives of ensuring
independence from an American supplier and also as a profitable and
imaginative investment, the Prudential acquired the company in 1919, with
rights to manufacture and sell the Powers machines in Great Britain and
certain other territories. The commercial rivalry between the Hollerith and
Powers machines was thus continued in Britain, and in other countries in
which the two companies operated.

ICL Technical Journal May 1986 5

Fig. 3 Powers printing tabulator, c. 1914

3 The heyday of the punched-card machine industry (1920-1939)

The period between the two world wars was the heyday of the punched-card
machine industry: it was a period in which the technology matured and its

6 ICL Technical Journal May 1986

products became part of the fabric of the commercial world. The 1920s saw
both British companies continue the gentle growth of their early years, barely
checked by difficult economic conditions. The more buoyant trading con­
ditions of the 1930s, combined with a growing acceptance of office mechanis­
ation, saw dramatic growth in both companies. Table 1 gives some indication
of the growth of BTM between the wars by charting the growth of capital
employed. (This data is taken from the statutory annual reports; equally good
measures would be the number of employees or factory output, but complete
records do not appear to have survived.)

As the companies expanded in size, so they became more hierarchical and
structured. In the earliest days any employee, from the general manager
down, would have been capable not only of the assembly and maintenance of
machines but also of technical development work and the analysis of
customer requirements. But by the 1920s both companies had fragmented
into sales and production divisions with supporting accounting and secre­
tarial functions.

Table 1 BTM capital employed

Year Capital

1910 £12000
1915 £25000
1920 £70000
1925 £123000
1930 £159000
1935 £302000
1940 £681000

Up to the 1920s both British punched-card machine companies had been in
essence marketing and maintenance operations for machines of largely
American manufacture. For both companies the transition to British manu­
facture, and eventually British design, was a gradual one. In the case of BTM
the direct importation of complete machines had already given way to the
assembly of machines from American parts, with some local content, before
the outbreak of World War I. The depression years of the 1920s, however,
saw the emergence of a vocal ‘Buy British’ movement that expedited BTM’s
move towards increased local manufacture: a new factory was opened in
Letch worth in 1921 which expanded severalfold in the next few years. The
company still continued to import American machines for which the volume
of demand could not justify tooling-up for local manufacture.

The Acc & Tab made the transition from importing to manufacturing
machines a good deal more quickly than did BTM. This was no doubt forced
upon it to some degree by the American parent’s rather indifferent record of
product innovation and quality of manufacture. In 1919 the company opened
a factory in Aurelia Road, Croydon, and rapidly moved towards wholly
British designed and manufactured machines*. In the USA the parent
“There is a remarkable silent film of the factory made in 1926 which has been restored by the
National Film Archive in recent years.

ICL Technical Journal May 1906 7

company was under threat of liquidation in 1923 and this no doubt
encouraged further expansion and independence.

It is a tribute to the vigour of the British Powers company that it was able, in
the absence of a strong American parent, to hold its own against BTM; the
two companies remained of comparative size and profitability through to the
1950s. In the USA the picture was very different. In 1914 Thomas J. Watson
became president of TMC and under his energetic leadership it soon eclipsed
the Powers organisation both in terms of product innovation and in sales7. In
1924 the company’s growing confidence and success in foreign markets was
reflected by a change of name to International Business Machines; at the
same time the fortunes of the Powers company were at a very low ebb indeed.
In 1927 the foundering Powers company was acquired in the merger which
resulted in the formation of the Remington-Rand company. As a result of the
merger the company’s products and profitability were revived; but although a
serious competitor for IBM, it was never to achieve the success of its rivalt-

4 Technical development 1920-1939

When Watson assumed control of TMC in 1914, one of his first priorities was
to develop a printing tabulator to compete with the much superior machine
offered by the Powers company. To this end he established a development
laboratory at Endicott, New York, whose staff was eventually to include such
outstanding inventors as J.W. Bryce, F.M. Carroll and C.D. Lake. The IBM
research department, and those developed by the British companies later,
were of a pattern that had ceased to exist by the 1950s when research and
development had become completely professionalised. The staff of these early
research departments - inventors rather than scientists - were typically men
of little formal education who had risen through the ranks. They included
people of outstanding talent whose contribution even now is little appre­
ciated: J.W. Bryce, for example, who was one of IBM’s most prolific inventors,
died in 1949 with scores of patents to his name9.

The printing tabulator (designed by Clair Lake) duly emerged from Watson’s
research department, and IBM company lore has it that when the machine
was demonstrated to the 1919 sales conference the salesmen stood on their
chairs and cheered10. The new tabulator was marketed in the USA from
1921, but it was not until 1924 that IBM supplied machines for the British
market.

R & D activity did not become formally established in the British companies
until the early 1920s, although there was some ad hoc development and
patent activity prior to this time. A notable example within BTM occurred in
connection with the tabulators modified for the 1911 British census, of which

fReliable data is hard to come by, but a contemporary report8 suggests that at that time IBM
had five installations in the field for every one of Remington-Rand’s.

8 ICL Technical Journal May 1986

a detailed account appeared in the journal The Engineer11J.

Probably the most significant invention in the development of punched-card
machinery, and unquestionably the most important British contribution, was
made by an Acc & Tab engineer Charles C. Foster: the alphabetical printing
unit12,13. Prior to the introduction of alphabetical machines, tabulators had
only been able to print figures; now it became possible to print names and
addresses, product descriptions and so on, completely transforming the range
of possibilities for punched-card accounting. Although the original patent
was applied for in 1916 (British patent 108942) development was hindered by
World War I and a prototype tabulator was not publicly demonstrated until
1921. In a dramatic and rare reversal of the flow of technology transfer, the
American Powers company eagerly exploited the Foster patent in the United
States. Foster became one of the best known figures in the British Powers
company, and at the time of his retirement in 1955 his contributions received
official recognition by the award of an MBE.

In 1922 BTM formally established its ‘Experimental Department’ at
Letchworth under Charles Campbell, one of the company’s first and most
able technical employees. Machine development was only one aspect of the
work of the department; it was also responsible for commissioning non­
standard tabulators and making preproduction prototypes, as well as
training maintenance staff. A similar pattern developed in the British Powers
company, where the first head of the engineering department was Arthur
Thomas, another powerful figure in British punched-card machine
development.

We actually know very little at a detailed level about punched-card machine
development during the 1920s for either company, because very few records
have survived; nor do there appear to be any surviving people then at a senior
level to ask. Moving to the 1930s the picture becomes just a little clearer, at
least for the Powers company for which there exists a single volume of
surviving documentation covering the years 1930-1933 of the ‘Development
Committee’. This committee was instigated ifl 1930 to meet approximately
monthly to co-ordinate technical development from the viewpoints of both
the production and selling organisations. Between the years 1930 and 1944
the Development Committee met 161 times: the minutes and supporting
documents for meetings 1-39 and 113-161 are all that survive, giving a
tantalisingly incomplete picture of development. This, however, is a mine of
information compared with the negligible documentation that has survived
on BTM development activity.

Nonetheless, the broad sweep of technical development is immediately
apparent from the succession of products marketed by the Hollerith and
Powers companies in America, in Britain and elsewhere. The picture is one of
JSir Gerald Chadwyck-Healey, who was a director of BTM, was also chairman of The Engineer.
The journal carried several articles on Hollerith machines over the years, but never one on
Powers machines!

ICL Technical Journal May 1986 9

intense rivalry between the companies, in which each company tried
alternately to better the products of its competitor. A well known example
was the introduction in America in 1928 of the 80-column punched card with
slotted holes in place of the standard 45-column card with round holes then
offered by both companies. The greater capacity of the new card was a
challenge that had to be swiftly met by Remington-Rand, which offered a 90-
column card shortly after. The British companies adopted the new size cards
within a year or two of their appearance on the American market.

One of the notable British achievements during this period was the small card
introduced in 1932 by Powers-Samas§. The new size card (4§ x 2 in instead of
the 7f x 3¾ in of the full-sized card) enabled a range of low-cost machines to
be put on the market for small and medium-sized businesses, which could not
have justified the large machines. These machines soon became a mainstay of
the company and sold in their hundreds. BTM quickly countered with their
own ‘Junior’ range of machines, but they were not a great success. Another
important British first was the ‘rolling total’ mechanism developed under
H.H. (‘Doc’) Keen, one of BTM’s outstanding technical people. The rolling
total feature enabled values to be ‘rolled’ from one counter to another,
considerably enhancing the arithmetical capabilities of the machine. The
alphabetical rolling total tabulator launched in 1936 (Fig. 4) was a high point
in prewar British punched-card machine design, and functionally superior to
the contemporary IBM machine.

Over the years a host of improvements were made to the machines. These
improvements included major advances such as rolling totals, the ‘automatic
total attachment’ and the ‘long feed mechanism’, as well as a host of minor
improvements to counter, printing, and card sensing and transport mechan­
isms. Although improvements were heavily patented, such was the compe­
tition that each manufacturer had perforce to implement each functional
improvement on its own machines; great skill was expended in avoiding
patent infringement, or at least achieving a gentlemanly agreement. The
accumulative effect of these improvements followed much the same pattern as
in any mature technology (such as the motor car for example): while the
machines of the late 1930s bore a strong outward resemblance to the
machines of the early 1920s, beneath the covers every functional subassembly
had undergone successive cycles of optimisation and refinement. In addition
to these internal improvements new ancillary machines such as the multiply­
ing punch, the interpreter and the collator were introduced.

4 War and postwar (1940-1959)

At the time of the outbreak of World War II the two British punched-card
machine manufacturers were among the largest and best equipped precision
engineering concerns in the country. It was therefore inevitable that both

§In 1929 the selling company of the British Powers organisation became known as Powers-
Samas. The name Samas derived from the French selling organisation.

10 ICL Technical Journal May 1986

BTM and Powers-Samas would be heavily involved in armaments produc­
tion. In both companies a high proportion of productive capacity was used in
the manufacture of aeroplane and gun parts, bomb sights and fuses, and fire
control apparatus. Demand for all forms of office machines ‘rose by leaps and
bounds as administrative work and the collection of statistics expanded in the
Services, in industry and in Government departments’14. Punched-card
machine production thus continued alongside armament manufacture, distri­
bution being supervised by the Board of Trade Directorate of Office
Machinery.

Fig. 4 BTM alphabetical rolling total tabulator, c. 1936

The technical staff of both companies were involved in military development
work. In view of the current interest in the cryptographic operation at
Bletchley Park, perhaps the most spectacular wartime R & D activity was
BTM’s involvement in what was known as ‘Project Cantab’. This project was
concerned with the construction of electromechanical code-breaking ma­
chines (‘bombes’) to decrypt the ‘Enigma’ traffic produced by the German
cipher machines15. It is said that it was for this work that Ralegh Phillpotts
received his knighthood in 1946, and for which H.H. Keen, F.V. Freeborn and
C.G. Holland-Martin received OBEs (Phillpotts, incidentally, was not

ICL Technical Journal May 1986 11

unaware of the irony that he received a higher honour than those who did the
technical work!)*.

Powers-Samas also made a major contribution to wartime research, devoting
many of its resources to the Vickers Mark XIV Computor [sic] for bomb­
aiming:

‘The success of the Mark XIV Instrument, in the development of which
we were able to assist the Air Ministry, led to an extremely urgent
demand for a number of pre-production models. Some 40 computers
were produced in the Research Department together with several special
machines for use in the production of special components’. (Minutes of
Development Committee Meeting 143, 8th July 1943.)

Soon after the war, Powers-Samas was acquired by Vickers as a wholly
owned subsidiary. Because of war-related research, basic R & D on punched-
card machinery was drastically cut back during the war years. For example,
in the Powers company the years 1940-1944 saw only nine new machine
types produced and five minor improvements, compared with 29 new
machines and 19 improvements in the previous five-year period 1935-193616.
Although on the cessation of hostilities both companies revived their R & D
activities, they also found themselves in a seller’s market of pent-up demand
that partly masked the need for product innovation.

It was not perhaps until 1947 or 1948 that a real sense of urgency for R & D
began to manifest itself. At about this time the R & D activity of both
companies was put under additional strain by the termination of their
licensing agreements with their American parents. In retrospect these were to
be more crucial events than either company could have realised at the time
because R & D costs were about to escalate out of all proportion to prewar
experience.

In the case of Powers-Samas, its reciprocal licensing agreement with
Remington-Rand expired in May 1950 and the American company declined
to renew it. The British company had of course not made a proportionate
contribution to punched-card machine development for several years due to
other war-time priorities, and Remington-Rand took the somewhat oppor­
tunistic decision to sever its relationship with the war-weakened British
company with the aim of competing in the British territories in which the
latter had so long had exclusive rights.

BTM terminated its agreement with IBM by mutual consent in 1949. In fact
the licensing arrangement with IBM had been an obligation of the most
onerous kind to BTM throughout its existence. The agreement was that
BTM paid IBM 25% after tax of its net revenues in exchange for the use of
IBM patents: the outcome was that IBM actually made more profit from
*At the time of writing, the author had traced some of the people involved in this work, now
mostly in their seventies. A detailed account will appear in another place.

12 ICL Technical Journal May 1986

BTM than did its shareholders. Furthermore, IBM’s insistence that BTM
lease rather than sell machines had hindered company growth due to lack of
capital to finance the leasing. BTM was of course only too well aware that by
severing its relations with IBM it would not only looe access to future
developments, but it would also be exposed to IBM competition in Britain
and the Commonwealth. However the company view was that:

The financial benefits immediately accruing to the Company in the new
circumstances will be devoted to strengthening the business in every
direction necessary to meet competition. The Management ... will
welcome this opportunity of proving that British effort and British skill
can be matched successfully against any competitor in our business,
whether national or international’17.

The first R & D priority of both companies was to develop their standard
punched-card machines (which were essentially unchanged from those sold in
the late 1930s) to meet the competition that would be unleashed upon them
once their American parents had built selling organisations in British
territories. The awesome size of this R & D challenge was brought home
when IBM announced in quick succession during 1948 and 1949 a daunting
series of new products: the model 407 accounting machine, the 603 electronic
multiplier and the 604 calculating punch. In every case these machines
completely outclassed the offerings of the British companies. Remington-
Rand were likewise offering electronic punched-card machines, which prob­
ably seemed more of a threat at the time than the fact that in 1949 it had
acquired the Eckert-Mauchly Computer Corporation (UNIVAC), one of the
brightest new computer development companies in the USA.

It was against this background that Powers-Samas more than doubled its
1949 R & D expenditure of £50000 to a projected £139000 for 1950; this
represented a rise from about 2% to 5% of its revenue. By good fortune we
have a remarkably clear picture of postwar research management in Powers-
Samas by virtue of the large volume of documentation that has survived:
there is an almost complete set of agenda, minutes and supporting papers of
the various research committees for the period 1945-1959. The bulk of
Powers-Samas development activity continued to be on traditional punched-
card machines, to meet the pressing need for modern competitive machines -
particularly an updated tabulator. In 1950 the company also established an
independent computer laboratory at the Crayford plant of Vickers, with the
somewhat conservative aim of introducing electronics ‘as and when appro­
priate’ into its punched-card machines.

This rather cautious approach to introducing electronic products was a cause
for some concern outside the company. The National Research & Develop­
ment Corporation (NRDC) took the initiative of establishing an Advisory
Panel on Electronic Computers which held a single meeting on the 14th
December 1949. The meeting was attended by both British punched-card
machine manufacturers and by the majority of British electronics
manufacturers:

ICL Technical Journal May 1986 13

The outcome of the Advisory Panel meeting was that both the
electronics manufacturers and the punched card machine manufacturers
respectively represented that they were individually in positions to tackle
the problems of an electronic computer development project as well as,
for example, the International Business Machines Corporation in the
United States. It was pointed out to the punched card machine
manufacturers that, in the opinion of the Corporation, they had
inadequate electronic staff and resources. It was apparent also that the
manufacturers were not willing that the Corporation should take the
initiative in launching a development project but agreed that the
Corporation could usefully coordinate activities’18.

In fact this concern at the lack of electronics capability of the punched-card
machine manufacturers underestimated their resourcefulness. Within
Powers-Samas, for example, major research projects were soon to include an
electronic multiplying punch, a new super-tabulator and an electronic
computer. Work began on the electronic multiplying punch (EMP) in 1950
and with a decisiveness that must have surprised outsiders a product, which
sold in hundreds, was on the market by 1953. The new tabulator - marketed
as the Samastronic in spite of its being entirely electromechanical - was an
ambitious development based around a 300 lines per minute printer of novel
design. Unfortunately the development was beset by many problems;
machines were delivered many months late and were unreliable in service!.
The programme-controlled computer (PCC) fared only somewhat better
than the Samastronic, but it used the latter’s printing mechanism and had its
own problems of reliability. The Samastronic and the PCC both afford
particularly clear examples of a technology in transition. The Samastronic
(Fig. 5), whose functional specification was essentially that of a mid-1940s
tabulator, was an example of a technology extrapolated beyond its practical
limit. On the other hand, the PCC straddled the gulf between a calculating
punch and a true stored-program computer. At the time of the merger with
BTM in 1959 a fullscale computer PLUTO was under development in
collaboration with Ferranti.

The present knowledge of the postwar R & D activity in BTM is somewhat
limited as very little documentation appears to have survived. Fortunately,
however, the majority of participants are still with us (and many are still with
ICL) so that it will be possible to draw on ‘oral history’. Like Powers-Samas,
BTM at first saw electronics mainly in terms of enhancing its punched-card
machines, and few resources were diverted to electronic computers as such,
the major R & D resources going into such developments such as the 900
series tabulators. However, once the company seriously took to computer

fin 1959, when BTM and Powers-Samas merged to form ICT, the Samastronic proved to be a
serious financial and marketing embarrassment that haunted the new company during its early
years. A senior technical manager within ICL comments ‘the Samastronic failed through straight
bad mechanical engineering, a supreme irony for such an experienced organisation ... The
Samastronic story is central to the history of punched card R & D in the UK. The real facts have
never been published’.

14 ICL Technical Journal May 1986

Fig. 5 Powers-Samas Samastronic tabulator, c. 1956

development it did so more decisively than did Powers-Samas, and there were
three fullscale computer developments during the 1950s. A notable feature of
all these developments is the willingness that the company showed in
importing knowhow from outside at an early date.

In 1950 BTM appointed J.R. Womersley, then Superintendant of the
National Physical Laboratory Mathematics Division, to head computer
development. An experimental computer known as the HEC (for Hollerith
Electronic Computer) based on a design by A.D. Booth of Birkbeck College
was completed at Letchworth in 1950. From this development a production
version the HEC 2M (also known as the model 1200) was sold from 1955.
This machine was a scientific computer and only a few were sold, but from it
derived the HEC 4, Britain’s first and most successful first-generation
commercial computer. This machine sold in two versions (the 1201 and the
1202), and well over 100 were made.

The second major computer development in BTM occurred in collaboration
with GEC, with which it formed a jointly owned subsidiary company
Computer Developments Ltd. in 1956. The pooling of BTM’s data-
processing resources and GEC’s electronics skills led to the development of a
small second-generation transistorised computer, the ‘P3\ The P3 was rather
slow in development and did not reach product status until 1960, as the
model 1301. A third, and little known, development occurred in collabor­

ICL Technical Journal May 1986 15

ation with the Laboratory For Electronics Inc. of Boston for the joint
development of a new commercial computer, the APOLLO, and a large
capacity drumstore; neither of these projects developed into BTM products.
At the time of the merger in 1959 another major in-house development, the
‘balanced data-processing computer’ was under way and provisionally
designated the model 1400: but the machine was based on valve technology
and had to be abandoned.

In January 1959, after many months of negotiation and preparations for
integration, BTM and Powers-Samas formally merged to become Inter­
national Computers & Tabulators Ltd. At the time of the merger neither
company was marketing a second-generation commercial computer, a most
notable deficiency in the face of the very successful IBM 1401 to be launched
later in the year. The company began to market its small second-generation
1301 computer in 1960 and from 1963 the much larger 1500 computer was
made under licence from RCA. It was not until the launch of the third-
generation 1900 series, however, that ICT had a machine that was something
like the equal of its American competitors. The 1900 series had an unprec­
edentedly large development budget, partly government financed, and
opened a new chapter in company R & D. A future paper will describe in
detail R & D activity on computer developments from 1960 to the late 1970s.

References

The bibliography for the ICL company history, when it is complete, will contain several hundred
items. The references below are intended to be representative of the primary and secondary
sources, printed and ‘near-print’, on which the history will be based. The minute books of the
companies from which ICL is descended are held in the ICL Secretariat Archives in Bridge
House, Putney, where a large volume of legal and committee documentation is also located;
these sources, though used, have not been cited in the text. Full runs of the company magazines
Tabacus. The Tabulator, Powers-Samas Magazine, Powers-Samas Gazette and IC T House
Magazine are held by the ICL Historical Collection in Stevenage. The Stevenage archive also
holds several thousand brochures and technical manuals. 1 11

1 KOON, S.G.: ‘Hollerith tabulating machinery in the business office’, Machinery, 1913, 20,
25-26.

2 AUSTRIAN, G.: ‘Herman Hollerith: forgotten giant of information processing’, Columbia
University Press, New York, 1982.

3 EVERARD GREENE, C.A.: ‘The Beginnings'. BTM, London, 1959.
4 TRUESDELL, L.E.: ‘The development of punched card tabulation in the Bureau of the

Census 1890-1940’, GPO, Washington DC, 1965.
5 CONNOLLY, J.: ‘History of computing in Europe’, IBM World Trade Corp., 1967, 117.
6 DAVIS, M.D.: ‘James Powers’, National Personnel Records Center, Missouri, 11 August

1969.
7 BELDEN, T.G. and BELDEN, M.R.: ‘The lengthening shadow: the life of Thomas J.

Watson’, Little, Brown & Co., Boston, 1962.
8 BROUGHAM, L.E.: 'Report on visit to USA October 1929’.
9 IBM: ‘The light he leaves behind’ [Obituary of J.W. Bryce], Think, April 1949, 5-6, 30-31.

10 EAMES, C. and EAMES, R.: ‘A computer perspective’, Harvard University Press,
Cambridge, Massachusetts, 1973.

11 Anon.: ‘The Tabulator’, The Engineer, 17 March 1911. 279-280.
12 Anon.: ‘The first alphabetical printing unit’, Powers-Samas Gazette, March/April 1956, 8-9.
13 ENGLISH, F.G.S.: ‘The measure of progress’, Powers-Samas Gazette, November 1957, 2-5.

16 ICL Technical Journal May 1986

14 HARGREAVES, E.L. and GOWING, M.M.: ‘History c f the second world war: civil industry
and trade', HMSO and Longmans Green, London, 1952.

15 HODGES, A.: ‘Alan Hiring: the enigma’, Burnett Books, London, 1983.
16 THOMAS, A. T. (An anonymous untitled undated typescript, probably written by Arthur

Thomas in 1952 at about the time of his retirement, describing machine developments
1921-1952; an appendix gives a chronological record of developments.)

17 BTM ‘Statement by the Board of Directors’, Tabacus, October 1949, 2.
18 NRDC,: ‘National research and development corporation: computer project’, NRDC

Paper 132, February 1957.

17

Innovation in computational architecture
and design

M.D. Godfrey
ICL Head of Research, Bracknell, Berks.

Abstract

This paper presents some of the motivation for innovation in computa­
tional architecture and design, and discusses several architectural
and design ideas in the framework of this motivation. It is argued that
VLSI technology and application architectures are key motivating
factors.

Because of its unusual properties with respect to VLSI and application
efficiency in certain areas, the ICL Distributed Array Processor is
discussed in detail.

1.0 Introduction

The purpose of this note is to discuss some of the motivation for innovation
in computational architecture, and, in this context, to review a number of
computational architectures and describe an active memory architecture
which is the basis of the ICL Distributed Array Processor (DAP)* products.
Any discussion of new computational architecture must take account of the
pervasive impact of VLSI systems technology. It will be argued that a key
attribute of VLSI as an implementation medium is its mutability. Using
VLSI it is natural to implement directly the computation of specific
problems. This fact will induce a fundamental change in the structure of the
information industry. While many new computational architectures do not
fit well with this VLSI systems driven view of the future, the DAP structure,
viewed as an active memory technology, may prove to be effective for the
composition of important classes of application systems.

At present, there is a very high level of activity directed toward ‘new’
architecture definition. Much of this work has a negative motivation in the
sense that it is based on the observation that since it has become increasingly
hard to make ‘conventional’ architecture machines operate faster, one should
build a ‘non-conventionaP (or non von Neumann) machine. This negative
motivation has been pretty unhealthy, but it is good to keep it in mind as it

♦DAP is a trademark of ICL

18 ICL Technical Journal May 1986

helps to explain much current work which otherwise would not have an
obvious motivation. In my view, good architecture must make the best use of
available technology in an essentially market-driven framework, i.e. form
follows function. This was obviously true of the approach taken by von
Neumann in defining the present ‘conventional’ architecture. And, it may
help to explain why this architecture continues to be the dominant computa­
tional structure in use today.

Architecture can be thought of at various levels. It has been usual to
distinguish between system, hardware, and software architectures. By impli­
cation, this note argues that the most useful context for architectural
thinking is application architecture. Demand for higher efficiency will con­
tinue to decrease the prominence of conventional software. When full use is
made of the technology of VLSI systems, the dominant mode of architecture
and design expression will be integrated systems which efficiently compute
results for a given application. In order to achieve this integration it will be
necessary to define the basic structure of software in a manner that is
consistent with the computational behavior of digital logic. These premises
are not elaborated further in this note, but they are used to draw conclusions
concerning the likely usefulness of the architectures that are discussed.

A related subject which is also not explicitly discussed below is that of safety.
Current computational systems are unsafe in the specific sense that they
often fail when used in a manner that the customer was led to believe was
reasonable. The impending demand for demonstrably safe application
systems is one of the key longterm directional forces in computation. The
facts that conventional software is not based on a physically realizable
computational model, and that it is not subject to reasonable test will both
work against its continued use. Safe computational systems will be built
based on a model of the behaviour of digital logic such that the domain of
proper use and the expected behavior within that domain can be specified
and demonstrated in a convincing manner. While in some cases a convincing
demonstration can be by example use in ‘typical’ situations, in other cases it
will be necessary to assure proper behavior without the time and cost
associated with extensive practical trials. It is the later cases that demand a
wholly new formulation. For a precise statement of the limits of present
software technology see [7].

2.0 Architecture and computational work

2.1 The current architectural scene

A few key factors should dominate architectural thinking:

1 The time it takes to communicate information along an electrical
conductor imposes a strict limit on the speed of individual computa­
tional elements [4, Chapter 9],

2 The advent of VLSI technology has fundamentally changed the

ICL Technical Journal May 1986 19

technology constraints. VLSI permits the composition of highly com­
plex two dimensional structures in a uniform physical medium. The
current state of VLSI fabrication technology permits about 1/2 million
transistors on a single chip. Projections indicate that densities of 20
million transistors are theoretically feasible, keeping the size of the chip
constant. This means that a very high level of architectural definition
must take place in the context of the base material from which the
system will be constructed. The two dimensional nature and electrical
power considerations lead to the observation that VLSI is a highly
concurrent medium, i.e. it is likely to be more efficient if many of the
individual elements on a chip are doing something at the same time.
Communications is a dominant cost. Communication costs increase by
a large increment when it is necessary to go off-chip. Thus, efficiency is
improved if the number and length of communication paths is
minimized, and the bulk of communications is localized within any
chip.

3 Historical evidence indicates that the total demand for processing
power is essentially unbounded. Thus, an increase in perceived compu­
tational performance, at a given price, will result in a very large
increase in demand. This effect really does appear to have no fixed
limit. Within this demand behavior there is a key discontinuity which is
referred to as the interaction barrier. A qualitative change takes place
when a, computational task can be performed in a time that is within a
human attention span.

4 Digital logic must be designed and implemented to operate correctly.
There is no tradeoff between speed and correctness or safety. The
tradeoff is between speed and efficiency of computational work.
Higher performance, for a given technology, requires more energy
and more space. The understanding of the locus of efficient points in
the space-time-energy domain is an unsolved problem of fundamental
importance.

2.2 Computational work and performance measures

It is common practice to describe the performance of a computational system
in terms of the rate at which instructions, or particular classes of instructions
(operations) are carried out. This is the basis of the MIPS (Million
Instructions Per Second) and MFLOPS (Million FLoating-point Operations
Per Second) measurement units. The basic element of computational work is
the determined rearrangement of data. Thus, the appropriate measure of
performance should be a measure of the rate at which a determined
rearrangement can be carried out. Such a measure must evaluate the rate at
which the required rearrangement can be decided and the rate at which the
data items can be transformed into the required arrangement. In many
computations the decision time and complexity dominate the data arrange­
ment time. An extreme case of this kind is sorting. If the required record
order was known at the start of a sort, the resulting sort time would be quite
short. These observations suggest that the MFLOPS measure may be

20 ICL Technical Journal May 1906

misleading as it tends to neglect the decision work that is required in all
useful computations.

The remainder of this note is in three main Sections. First, we will discuss
some of the main development efforts which are known to be underway.
Then, we will review the active memory architecture as embodied in the DAP
and indicate its context for comparison. For the present purposes the key
feature of the DAP structure is that it is a component technology which may
be composed into specific systems and which thus may be effective in a VLSI
systems design framework. Finally, we will briefly discuss the expected future
direction of VLSI-based architecture and design.

3.0 Alternative architectures

Not only has there been considerable recent discussion about new architec­
tures, but there has been increasing discussion about the terminology and
taxonomy of these architectures. All this is still pretty confused. I will try to
keep things simple, and avoid as much of the confusion as possible.
Approximately, the architectures will be described in order of increasing
specialization, but this is only very rough as the notion of specialization is
itself not simple.

A standard taxonomy uses the following notation:

SISD- Single Instruction, Single Data stream: a single conventional
(von Neumann) processor,

SIM D- Single Instruction, Multiple Data: a set of processing elements
each of which operates on its own data, but such that a single
stream of instructions is broadcast to all processors,

M IM D- Multiple Instruction, Multiple Data: typically, a collection of
conventional processors with some means of communication
and some supervisory control.

The remaining possibility in this taxonomy, MISD, has not been much
explored even though, with current technology, it has much to commend it.

In addition, the ‘granularity’ of the active elements in the system is often used
for classification. A system based on simple processors which operate on
small data fields is termed ‘fine-grained’, while a system of larger processors,
such as 32 bit microprocessors, is termed ‘coarse-grained’. This classification
can tend to conceal other key. distinctions, most prominently the nature and
efficiency of communications between the active elements, and thus it may
not improve useful understanding.

3.1 Multiprocessors (MIMD)

Multiprocessors, with the number of processors limited to about six, have
been a part of mainframe computing for about 20 years. The idea has been

ICL Technical Journal May 1966 21

rediscovered many times, most recently by designers of microprocessor-
based systems. A pure ‘tightly-coupled’ multiprocessor is composed of
several processors all of which address the same memory. Each processor
runs its own independent instruction stream. A basic hardware interlock
(semaphore) is required to control interaction and communication between
the processors. Various software schemes have been developed to manage
these systems. The most effective schemes treat the processors as a virtual
resource so that the programmer can imagine that he has as many processors
as he needs, while the system software schedules the real processors to satisfy
the user-created tasks in some ‘fair’ manner. In many systems the software
places restrictions on user access to the processors, either real or virtual.
However, there is a fundamental hardware restriction which is imposed by
the need to have a path from each processor to all of the memory. The
bandwidth of the processor-memory connection is a limitation in all
instruction processor designs, and the need to connect several processors just
makes this worse. If a separate path is provided for each processor, the cost
of the memory interface increases very rapidly with the number of processors.
If a common bus scheme is used, the contention on the bus tends to cause
frequent processor delays. The current folklore is that the maximum realistic
number of processors is around six to eight. Thus, in the best case, this
arrangement can improve total throughput of a system by around a factor of
six. To the programmer, the system looks either exactly like a conventional
system (the system software only uses the multiple processors to run multiple
‘job-streams’) or, in the most general software implementations, it looks like
a large number of available virtual processors. However, in either case, total
throughput is limited by the maximum realizable number of real processors.

Examples of such systems are the Sperry 1100 Series, Burroughs machines,
Hewlett-Packard 9000, IBM 370 and 3000 Series, and ICL 2900, and various
recent mini’s and specialized systems.

This architecture is likely to continue to be used, particularly in dedicated
systems which require high performance and high availability since the
multiple and, in some cases, exchangeable processors can make the system
more responsive, and more resilient to some kinds of failures.

3.2 The multiflow machine

One of the very few system or problem driven architectures is the ‘multiflow’
design which was developed at Yale University [5] and subsequently at
Multiflow Inc., formed by the Yale developers. Their design is an integrated
software-hardware design which attempts to determine the actual parallel­
ism in an application (expressed without explicit regard for parallelism) and
then to assign processors and memory access paths to the parallel flow paths.
This is done by analysis of the program and sample input data. This use of
data is the key distinctive feature of this system. The hardware is similar to
conventional multiprocessor organization, as described above, except that
the processor-memory interface is carefully designed so that the software can

22 ICL Technical Journal May 1986

organize the parallel computation in a manner that minimizes memory
contention.

This could result in a significant improvement over conventional multi­
processor techniques, but is unlikely to produce more than a factor of ten. To
the user, this looks just like a conventional sequential system. If a sequential
language is used for programming this system then the potential benefit of
compact representation is lost in exchange for not having to recode existing
programs.

3.3 Arrays of processors (MIMD)

This is the area that is getting lots of publicity and lots of DOD and NSF
money. Projects at Columbia (non-von), Caltech (Cosmic Cube), and NYU
are examples of this structure. The Caltech project has been taken up by
Intel, and others such as NCUBE Inc.

The common thread in many of these designs is to arrange, in a more or less
regular structure, a large set of conventional microprocessors each with its
own memory. Thus, this design solves the problem of common-memory
systems by having each processor have its own memory. However, this
structure suffers from the problem of communication between the processors
which is made more severe since they cannot communicate through shared
memory. Since the communication scheme has to be determined once and for
all when the machine is designed, it cannot be optimized for widely differing
application requirements. The current unsolved problem in this structure is
how to transform current problems, or create new problems, which match
the connection and communication structure of the designed machine.

It is usual to talk about at least 64 processors, and some projects are
planning for several thousand. Generally the number of processors is tied to
the funding requirements of the project, rather than to any deduction from
application requirements. The current choice of processor is variously Intel
286, Motorola 68020, INMOS transputer, etc.

There are several projects which use this general structure, but which attempt
to organize the processing elements and their interconnections in order to
provide faster operation of some forms of functional or logic programming,
typically in the form of LISP or PROLOG. ICOT is building such a system
and the Alvey Flagship project plans a similar effort: in this major project,
the largest under the Alvey Directorate, ICL is leading a consortium in which
the other partners are Plessey, Imperial College (London) and Manchester
University. Thinking Machines Inc., spun off from MIT, seems to be furthest
along on a VLSI implementation. Their machine, called the Connection
Machine [6], is also distinctive, when compared to the class of systems
mentioned so far, in that the processing elements are relatively simple single­
bit processors. In this respect the machine can be described as ‘DAP-like’, but
this analogy is not very close. In particular, the machine has an elaborate and

ICL Technical Journal May 1986 23

programmable processor-to-processor communication scheme, but no direct
means of non-local communication.

3.4 Vector processors

These designs differ from any of the previously described systems in that they
introduce a new basic processing structure. The fundamental precept of these
designs is to extend the power of the processor instruction set to operate on
vectors as well as scalars. Thus, if an instruction requests an operation on a
vector of length, say, 64 and the operation is carried out in parallel with
respect to the elements of the vector, then 64 times as much work was done
by that instruction. This is an example of a general argument that says: if
there is a limit to the speed at which instructions can be processed then it
may be better to make each instruction do more work. Seymour Cray
thought of this approach, and the CDC and Cray Research machines which
he designed are the best embodiments of the idea. Experience with three
generations of these machines, particularly at the US National Research
Labs (Livermore, Los Alamos), has led to the conclusion that it is quite hard
work to arrange a given problem to match the vector structure of the
machine. The best result is something like a factor of ten improvement over
conventional techniques. These machines are inherently quite complex and
therefore expensive, and performance suffers with attempts to reduce the
cost.

Considerable effort has been put into compilers, particularly Fortran, which
can automatically ‘vectorize’ a program which was written for a conventional
machine. This work has not been very successful because the actual
dimensionality of a problem is usually not indicated in the program. The
dimensionality is only established when the program executes and reads in
some data. This fact was understood by the Multiflow people.

The current design direction in this area is to try to combine vector
processing and multiprocessor systems, since the limits of the vector
extension have substantially been reached. This is leading to extremely
complex systems.

3.5 Reduced instruction set designs (RISC)

These designs are motivated by the opposite view from that held by the
vector processor folks. Namely, it is argued that a processor can execute very
simple instructions sufficiently quickly so that the fact that each instruction
does less work is more than offset by the high instruction processing rate. A
‘pure’ RISC machine executes each of its instructions in the same time, and
without any hardware interlocks which would ensure that the results of the
operation of an instruction have reached their destination before the results
are used in the next instruction. This adds greatly to the simplicity of the
control logic in the instruction execution cycle. However, it places the burden
of ensuring timing correctness on the software. Generally, the RISC designers

24 ICL Technical Journal May 1986

have concentrated on reducing the number and complexity of the instruc­
tions and, therefore, reducing the number of different data types on which the
instructions operate. However, they have left the ‘size’ of the data items alone.
Thus, RISC machines operate on typically 32 bit integers and, sometimes, 32
and 64 bit floating point numbers. Thus, they are much like conventional
machines except that the actual machine instructions are reduced in number
and complexity. By contrast, the DAP approach is to drastically reduce the
allowed complexity of the data at the individual processor level, but to
provide for direct operation on complex structures through the large number
of processors. The instructions which operate the DAP PE’s are, in current
designs, very much simpler than in RISC designs.

In addition, but in no necessary way connected with the reduced instruction
set, RISC machines have been defined to have large sets of registers which are
accessed by a structured address mechanism. This construct is used to reduce
the relative frequency of memory references, thus permitting fast instruction
execution with less performance restriction due to the time required for
access to data in the main memory.

One can argue that RISC and vector processors are in pretty direct conflict:
one says smaller instructions are better while the other says bigger instruc­
tions are better. It would be nice if we had some theory which could shed
light on this conflict. We do not. The empirical evidence tends to indicate
that they both have it wrong: i.e. the ‘biggness’ of the instructions probably
does not matter much.

The main research on RISC architecture was done originally at IBM
Yorktown Heights, Berkeley, and Stanford. Both IBM and Hewlett-Packard
have recently announced RISC-based products.

A basic premise of the RISC approach, as is true of the vector approach, is
that the software, or something, can resolve the fact that the users’ problems
do not match well with the architecture of the machine. In the RISC case the
language compilers and operating software must translate user constructs
into a very large volume of very simple instructions. In some situations, such
as error management, this may become rather painful.

3.6 Processor arrays (SIMD)

The DAP is often referred to as a SIMD machine, but this is another
point at which the taxonomy of new architectures can become confusing
and confused. The DAP is a single instruction, multiple data machine in
the sense that a single instruction stream is broadcast to all the processors
each of which then operates on its own data. However, the data object in
a DAP is very different from the data object in most other SIMD, or
other, machines. (This suggests that the xlyD classification, by putting the
instruction character first has got the priority wrong: the data are what
really matter.)

ICL Technical Journal May 1986 25

Several SIMD machines which operate on conventional data fields, such as
32 bit integer and 32 or 64 bit floating point, have been built. However, the
current view in the ‘big-machine’ world is that MIMD should be better: e.g.
Cray X-MP, HEP.

3.7 Dataflow machines

For many years thought has been given to the idea that computation should
be driven by the data, not the instructions. One version of this thinking gave
rise, in the late 1970’s, to ‘Dataflow Machines’, particularly at Manchester
University and MIT. The basic construct of Dataflow Machines is a system
for managing ‘instructions’ which are composed of data items and the
operation which is to be performed on the data items. Data items enter the
system and when all the required items are available for a given instruction,
the instruction is sent to the operation unit which performs the intended
operation and produces the data result. This result may then complete some
other instruction which was waiting in a queue. This instruction is then
processed. It has been argued that this arrangement of data-driven schedul­
ing can improve the parallelism of a computation since many instructions
may be in progress at any time, and the work gets done as soon as the data
become available. However, the selection of instructions for processing must
be done serially and thus parallelism is not obviously improved over
conventional designs. In addition, new language techniques are required to
create programs for such machines.

It can be argued that the basic idea underlying dataflow machines is sound
but that the recent research attempted to apply it at much too low a level.

4.0 The active memory architecture

The active memory structure of the Distributed Array Processor (DAP [2,
Chapter 12]), first developed by ICL, will be described in a more complete
way because it may be viewed as forming a basis for a distinctive capability
which has not been developed in other systems. The DAP structure by its
nature leads to the formulation of problems in terms of the required
rearrangement of the data. Thus, its efficiency tends to be dependent on the
spacial distribution of data-dependent elementary decisions. (A formal
notation for efficient organization of the dynamics of data arrangement is
presented in [1].)

Broadly, the DAP is an active memory mechanism such that an array of
processing elements control the manipulation of data in the memory
structure. The array of processing elements, each of which addresses a local
memory, are operated by a single instruction stream and communicate with
their nearest neighbours, in some topology.

Progressively more narrow definitions also include the restriction that the
processors have some particular amount of local storage, that the processor

26 ICL Technical Journal May 1986

width is one bit, and that particular structures are provided for data
movement through the local store structure. For applications that require
communication beyond local neighbours, it may be essential to have row and
column data paths which allow the movement of a bit from any position to
any other position in a (short) time which is independent of the distance
moved.

While the above definitions are useful for some purposes, an external
definition is more appropriate for understanding some applications and
market opportunities. A useful external definition is: A DAP is a subsystem
which is directly effective for execution of DAP-Fortran, or of a sub-set of the
Fortran 8X array extensions. The term ‘directly effective’ is intended to mean
that there is a close match between the language construct and the
corresponding architectural feature, and that the resulting speed of operation
is relatively high. The relevant Fortran extensions permit logical and
arithmetic operations on arrays of objects. The DAP performs operations in
parallel on individual fields defined over the array of objects.

4.1 Performance

So far no mention has been made of absolute performance. This is
appropriate as it is assumed that a contemporary DAP will be constructed
from contemporary technology. Therefore, the important question is what is
DAP relatively good at? The definitions above are meant to make it clear
that a DAP is relatively good at computations which involve a relatively high
density of operations, including selection and conditional operations, on
replicated structures and which require parallel rearrangements of data
structures. The replication may be in terms of the dimensions of arrays,
record structures, tables, or other patterns. For example, routing algorithms
in 2 dimensions satisfy this requirement very nicely.

4.2 Cost

Cost is an important consideration in the definition of a DAP because if a
DAP is defined as being relatively good at some computation, this must be
taken to mean that it is relatively more cost-efficient. DAP costs are
differentially affected by VLSI technology. The basic DAP structure scales
exactly with the circuit density. This simple correspondence between DAP
structure and VLSI structure is a useful feature which must be taken into
account when projecting possible future cost-effective DAP structures. The
main discontinuity occurs at the point where a useful integrated memory and
processor array can be produced. Roughly, the technology to produce 1
megabit RAMs will permit such an integrated implementation.

To indicate present cost characteristics, 2 micron CMOS (2 layer metal) can
support, approximately, an 8 x 8 DAP processor array. The chip fabrication
cost is of the order of $10. Thus, a 16 chip set to provide a 32 x 32 array
would imply a chip cost of $160. This structure would require external

ICL Technical Journal May 1986 27

memory to compose a subsystem. Using emerging VLSI technology it will be
possible to construct memory and processors on a single chip, thus improv­
ing performance and reducing the cost to approximately the cost of the
memory.

4.3 Array size

It is reasonable at some levels to define a DAP without reference to the
dimensions of the processor array. However, if one asks how well a DAP can
solve a problem the array size becomes a prominent factor. For practical
purposes it must appear to the user that the array has dimensions within the
range of about 16 to 128. (Or, in other words, the array contains from 256 to
16384 processors.) With present techniques the user must arrange his data
structures to match the DAP array dimensions. Most realized implementa­
tions of DAPs have used a square array structure. Whether the array is
square is not very significant, and should not be a part of any definition.
However, square arrays are obviously simpler to program and will likely
continue to be the standard form. It is more significant that the dimensions
should be a power of two. Many of the established techniques rely on
composition based on this fact.

4.4 Processor width

The processor width is a key element of DAP structure. It can be argued that
the (single bit) width of the processor should be a defining feature of a DAP.
It is probably somewhat more realistic to state that a DAP must be capable
of efficient operation in a mode that makes it appear to the user as if the
processors were single bit wide. With present techniques this implies that the
processor width must be quite narrow. A wider processor width might make
an array system, such as the Caltech (Intel) Cosmic Cube, but it would
definitely not be a DAP.

4.5 Local memory size

The size of the local memories, within limits, does not affect the definition of
a DAP. However, the availability of substantial memory, so that the system
can properly be viewed as a three dimensional memory with a plane of
processors on one face, is an essential feature. The memory must be large
enough to contain a substantial part of the information required for a given
computation. The amount of memory associated with each processing
element has an important effect on both performance and detailed program­
ming. Typically, each processor may have 16 k bits of local memory, but
greater memory size, as usual, permits efficient solution of larger or more
complex problems. Particularly in VLSI technology, there is a direct tradeoff
between array size and local memory size on a chip. How to best make this
tradeoff is not well-understood.

28 ICL Technical Journal May 1986

4.6 I/O and memory-mapped interfaces

The interface of the array structure with the outside world is an important
(for some applications, the most important) design feature. Increasingly, it
will likely be necessary to construct interfaces to match specific application
bandwidth and data ordering requirements. However, choices in this area do
not substantially affect the DAPness of the array structure.

4.7 Language interface

For many purposes a useful definition of a DAP is in terms of the high-level
language interface which it may support in an efficient manner. An essential
characteristic of a high-level language for operation on a DAP is that it
should raise the level of abstraction from individual data items to complete
data structures. A consequence of this is that the parallelism inherent in the
data is no longer obscured by code which refers to individual data items. This
both permits expression of an algorithm in a more concise and natural form
and causes the high-level language statements to correspond more closely to
the operation of the DAP hardware.

Such a language interface may, of course, encompass a wider range of
architectures than a specific DAP design. A language definition suitable for
DAP should encompass other SIMD designs and also SISD systems.

5.0 VLSI-based architecture and design

VLSI is developing into a highly mutable design medium. This will diminish
the need for general-purpose systems. Instead, it will become common
practice to create the application implementation directly in VLSI. (For
examples of this approach see [3] Part 2.) One way of viewing this change is
that it raises system architecture to a set of logical constructs which guide the
implementation of application designs. Much work remains to be done
before a good working set of abstract architectural principles are available.
In addition, standardized practices and interface definitions are required at
both abstract and practical implementation levels in order that efficient
composition can be realized in this form. However, the economic benefits of
this mode of working will tend to ensure that the enabling concepts,
standards, and supporting infrastructure will emerge relatively quickly.

5.1 Application-Specific Processors

VLSI technology has already caused an increased interest in application
specific processing elements. This trend is likely to continue as the costs of
design and reproduction of VLSI subsystems continue to fall relative to the
cost of other system components. The most obvious examples of such
processing elements are the geometry engines in the Silicon Graphics
workstations, and the various dedicated interface controller chips for
Ethernet, SCSI, etc.

KX Technical Journal May 1986 29

Designs have also been produced for such things as a routing chip. This
suggests that some such special architectures may be close to the DAP. The
designs that are close to the DAP share a fundamental DAP characteristic:
the optimal arrangement of data in memory is key to efficient processing.

5.2 Application Specific Subsystems

It is easy, in principle, to generalize the notion of application specific
processors to application specific subsystems, such as signal processing,
vision, or robotic subsystems. Again, VLSI continues to make such special­
ization increasingly attractive. The performance benefits of dedicated logic
increase with the level at which the dedicated function is defined. With
present VLSI technology it is possible to build chip sets which, for example,
solve systems of non-linear difference equations at a rate about ten times the
rate possible by means of programming a machine such as a Cray [3,
Chapter 13]. The efficiency gain comes, in large part, from the fact that the
specialization permits many decisions to be incorporated into the design.
Specifically, none of the costs associated with the interpretation of a sequence
of instructions exist at all. An additional benefit of such subsystems is that
they require no software.

The skills that are required to design and implement such a dedicated
solution to a real application problem are not now widespread, and
supporting tools and techniques are underdeveloped. However, this general
approach will dominate efficient computation in the long run.

6.0 Conclusion

In the long-run the efficiency of direct implementation of specific computa­
tions in silicon will dominate other techniques. However, before this level of
efficiency can be achieved in a routine manner a number of research
problems must be solved and substantial new infrastructure must be
established. In addition to the need for improvement in VLSI design
methods, a new level of understanding and definition of software will be
required.

7.0 Acknowledgments

Several people have made very helpful comments on previous drafts of this
paper. Steve McQueen, Peter Flanders, and David Hunt made particularly
detailed and useful comments. As always, remaining faults rest with me.

8.0 References

1 FLANDERS, P.M., ‘A Unified Approach to a Class of Data Movements on an Array
Processor’, IEEE Tr. on Comp. Vol. C-31, no. 9, Sept 1982.

2 ILIFFE, J.K., Advanced Computer Design, Prentice-Hall, 1982.
3 DENYER, P. and RENSHAW, D., VLSI Signal Processing: A Bit-Serial Approach, Addison-

Wesley, 1985.
4 MEAD, C. and CONWAY, L., An Introduction to VLSI Systems, Addison-Wesley, 1980.

30 ICL Technical Journal May 1986

5 RUTTENBERG, J.C. and FISHER, J.A., ‘Lifting the Restriction of Aggregate Data Motion
in Parallel Processing’, IEEE International Workshop on Computer System Organization,
New Orleans, LA, USA, 29-31 March 1983 (NY, USA, IEEE 1983) pp 211-215.

6 HILLIS, W.D., The Connection Machine, MIT Press, 1985.
7 PARNAS, D.L., ‘Software Aspects of Strategic Defense Systems’, American Scientist, vol. 73,

No. 5, pp. 432-440,1985, and reprinted in CACM, Vol. 28, No. 12, pp. 1326-1335, Dec. 1985.

ICL Technical Journal May 1986 31

REMIT: A natural language paraphraser
for relational query expressions

B.G.T. Lowden and A.N. De Roeck
Department of Computer Science, University of Essex, England

Abstract

The aim of this paper is to give an overview of the work carried out by
Essex University, under ICL grant UEI, on the design and development
of a formal query language to natural language interpreter to aid
query verification in a relational database environment. The REMIT
system - Relational Model Interpreter and Translator - has been
developed to work in conjunction with the ICL natural language
enquiry interface, NEL, developed as a research project to translate
English query expressions into the formal query language Query-
master.

1 Introduction

Of the many problems facing the casual user of a database enquiry system
probably the most difficult is gaining a competent understanding of the
associated query language. Given that he manages to construct a well-
formed query expression, there is no guarantee that it exactly reflects the
original question. In a study of Query by Example (Thomas and Gould,
1975), it was found that 27% of the queries analysed were syntactically
correct but gave the wrong answer.

Natural language processing is seen by some as the most promising solution
to these difficulties. N.L. Interfaces, however, can create problems of their
own. They cannot counter the users’ often inflated ideas about what is a
reasonable question to ask. Furthermore, natural languages are typically
ambiguous and, although transparent to the querent, can be opaque to the
machine. The interpretation placed on these queries, by the system, may
therefore itself be ambiguous or otherwise misleading.

One approach to improving this situation is to offer the user a paraphrase of
what the system has taken his question to mean. He can then verify whether
the interpretation of his question corresponds to what he intended or, in the
case of ambiguous input, select the alternative that does.

The remainder of this paper describes such a paraphraser designed at the
University of Essex and implemented in Prolog. The system generates

32 ICL Technical Journal May 1986

English paraphrases for questions interpreted by the database query system
NEL, (West, 1985) a research project at ICL, formerly known as QPROC
(Wallace and West, 1983). NEL so far comprises a NL front end which maps
natural language text onto expressions in the formal query language
Querymaster (ICL, 1983, 1985), which are then used to retrieve data, for
example from the database SCOPE (Ref. 13).

The paraphraser has also been designed to deliver paraphrases for queries
directly formulated in Querymaster. As a consequence, unlike most NL
feedback systems, it can also help users who do not have access to NL input
facilities but must use a formal language. Furthermore, because the para­
phraser assumes an extended relational calculus as an underlying representa­
tion, it can with little extra effort be modified to work from most query
languages currently available.

2 Design approach

A paraphraser can be seen as a mechanism that provides a mapping between
an underlying formal representation and a natural language text. Consider­
ing our task of providing a casual database enquirer with a useful paraphrase
of his question, the representation selected must reflect the understanding the
system has of the users’ original input. This understanding must then be
translated into clear, unambiguous and grammatical textual output.

2.1 Selection of the underlying representation

Paraphrasers can be classified into two groups, according to the nature of the
underlying representations they assume. One type is designed specifically to
operate alongside a NL front end (McKeown, 1979). The user introduces his
question in NL, which is then parsed into a structure making linguistic facts
explicit about the input. This linguistically motivated representation then
serves as a basis for the paraphrase. The mapping between the formal
representation and text established by paraphrasers of this kind can be said
to be ‘close’ since most of the linguistic information the synthesiser may need
is readily available.

On the other hand, not all questions a user may formulate, in natural
language can be evaluated against a database. It is important, therefore, that
the NL query is mapped into a formalism reflecting the limitations of the
Database Management System before it is paraphrased, otherwise the result
may be a paraphrase of a question the system cannot ultimately handle. Also
paraphrasers working from linguistically motivated representations cannot
work independently from a parser that will build the necessary structure.
They do not help the user who has no access to a NL front end and attempts
the use of a formal query language.

Another class of paraphraser works from representations which capture exactly
that information which can be evaluated against a database, usually a parse tree

ICL Technical Journal May 1986 33

of a formal query. If used with an NL front end they can report only on
relevant ambiguities in the input text so far as they correspond to alternative
formal queries. However, since these representations are linguistically under-
specified, the mapping between them and NL text is ‘distant’ and more
difficult to establish. The linguistic facts which characterise the resulting
paraphrase must be decided upon without reference to any information
which a linguistically motivated parse of an equivalent question might
provide. Although this approach is more constrained than its alternative it
does ensure that the paraphraser can be used both with, and independently
of, any NL front end available and, as such, is the one adopted for this
project.

2.2 Portability

The preceding discussion would appear to suggest Querymaster as the
obvious candidate for the underlying representation. The choice of Query-
master expressions as the input for the paraphraser would, however, restrict
the paraphraser’s portability to those Database Management Systems
capable of supporting that query language.

In order to retain all the advantages of a paraphraser working from
representations which capture exactly the information present in a formal
query language expression and, at the same time, to increase its portabil­
ity, the mapping process between formal query language expressions and
NL text has been split into two stages using an intermediary formalism.
The choice of that formalism has been guided by two considerations.
Firstly, it must be capable of expressing exactly the information that can
be captured by any Querymaster expression. Secondly, it must be possible
to identify an exact mapping from any query language into an expression
of that formalism.

These two requirements are satisfied by the use of an applied relational
calculus as an intermediary representation. Codd’s relational calculus is well
defined and relationally complete (Codd, 1971, 1972). When extended by a
range of library functions (Date, 1977), it has at least the retrieval power of
most query languages currently available. Furthermore, it can be shown
(Ullman, 1980) that an exact mapping exists between an expression in a
relationally complete language and an expression in the relational calculus
(and vice versa), provided that it defines a derivable relation.

Part of the project, therefore, concerned the development and implementa­
tion (in Prolog) of a transducer which maps Querymaster statements into the
relational calculus (Shephard, 1985). Its function is independent of the main
body of the paraphraser and further reference to the latter will assume that it
operates directly from the relational calculus.

This modular concept means that the process of adapting the paraphraser to
work from other relational query languages is relatively straightforward.

34 ICL Technical Journal May 1986

2.3 Grammaticality

It is clearly important that the text produced by the paraphraser is well-
formed with respect to the grammar rules of the human language used to
describe the query (in this case English). In general, grammaticality is best
ensured by making reference to a linguistic theoretical framework within
which such rules can be formulated. Since many such frameworks exist some
guidelines for the choice were drawn up. First of all, the framework should be
implementable. This means that it should be formally specified to a level
where an equivalent program can be written. Secondly, the syntax of the RC
bears no resemblance to the syntax of English. The mapping between RC
formulae and English texts can thus be called ‘distant’ and as far as possible
left to the linguistic part of the implementation. This means that that theory
which allows for the syntactically least specified underlying framework will
be preferred.

For these reasons the choice made was Lexical Functional Grammar
(Kaplan & Bresnan, 1983). It is a generative linguistic theory allowing for
the specification of grammar rules for English. LFG has the advantage of
being highly implementable - in fact it was designed from a computa­
tional linguistic point of view. It defines a mapping between sentences of
English and their underlying, syntactically poorly specified, predicate/
argument structures. It has an additional advantage in that mapping is
stratified, using several intermediary representations, each offering an
indication of which linguistic information needs to be specified at a given
stage in the process.

2.4 Non-ambiguity

Whereas grammaticality can be guaranteed by reference to a grammar, non­
ambiguity cannot. The problem arises from the fact that all human languages
are ambiguous. Grammars account for ambiguity but do not seek to avoid it.
In short, if a paraphrase is characterised only as a grammatical text, of some
human language, then it follows that it is potentially ambiguous.

Ambiguity is a phenomenon that is difficult to control. No measure for a
degree of ambiguity exists. One may attempt to parse the output text and
thus try to gain some such measure, but many different sorts of ambiguity
occur and it is not clear whether any grammar can account for all of them.
Lexical ambiguity in particular is problematic and, in the extreme case,
words may mean a variety of different things to different users. This is often
dependent upon the user’s background, and totally beyond the control of any
grammar formalism. The solution adopted by REMIT was to concentrate on
ambiguities which MUST be avoided in the paraphrases at all cost in order
to preserve meaning.

Since the aim of a paraphrase is to query verification, the ambiguities which
must be avoided are those significant with respect to query evaluation. These

ICL Technical Journal May 1986 35

mainly relate to the scope of logical connectives and quantifiers occurring in
an expression of the unambiguous, formal query language. Consider, for
example, the following sequence of logical conjunctions and disjunctions:

a a (b a (c v (d a e)))

‘a and b and c or d and e’ is not an adequate rendering of the above
bracketed expression since all indication of scope is lost. We found that the
written form of a human language, stripped of expressive devices such as
intonation and stress patterns, is extremely ill-suited to express scope
relationships of this type. If attempts are made to describe the scope
information by means of punctuation and special words (e.g. either, both, all
three of the following, ...) then the resulting linear text becomes illegible and
unhelpful as a paraphrase. REMIT solved this problem by abandoning the
idea of a paraphrase as a linear text and by adopting the view that scope is
best represented hierarchically. The paraphraser retains some degree of
bracketing in the output text which is then used to display the result on the
screen using indentation as a means of conveying scope. The formal sequence
above would therefore, for REMIT, result in a paraphrase of the following
format:

a
and b
and either c

or d and e

2.5 Readability

The requirement that ‘readable’ paraphrases must be delivered has in part
been catered for by the solution adopted to avoid ambiguity. A side effect of
structuring the output text has been that it becomes indeed more readable
and thus more friendly as vital scoping information is passed on visually to
the user.

However, there is more to ‘readability’ than producing a grammatical text
and displaying it in a particular format. The text must also be coherent, not
just syntactically, but conceptually. What we mean by this is explained in
more detail in the next section.

3 A model for the SCOPE database

Paraphrasing expressions in a query language comes down to selecting and
organising the appropriate lexical material for describing, in a human
language, what that query stands for in terms of the information that must be
retrieved. Query languages and the RC are formal languages, i.e. their
semantics with respect to retrieval is defined unambiguously on the basis of
their syntax. As a consequence, the syntactic structure of a formal expression

36 ICL Technical Journal May 1986

can be viewed as a shorthand for what it ‘means’ and can be used in order to
guide the paraphrasing process.

Nevertheless, paraphrasing expressions of these formal languages can be
problematic. Their syntax bears no resemblance to the syntax of a human
language and a paraphraser must thus establish more than a simple syntactic
transduction. Also, these formal expressions are poor in conceptual informa­
tion about the domain or field a particular database covers. Although one
can produce literal paraphrases relying solely on the information present in a
formal query, the result will be a stunted incoherent rephrasing of the formal
expression. In general, human language text is rich in conceptual informa­
tion. If a paraphraser is to deliver texts that are acceptable and helpful to
naive users then it must be able to incorporate conceptual information in its
output.

This conceptual information cannot be collected from the database itself.
Databases are implementations of formal objects that allow for storing and
manipulating large bodies of knowledge. Although the administrative organ­
isation of a relational database will often, to a large extent, be compatible
with the conceptual structure of the field it covers, this is largely due to the
‘common sense’ of database engineers and such an organisational correspon­
dence cannot always be guaranteed.

In addition formal query languages are totally devoid of any such conceptual
information. Consider, for instance, the following RC formula:

{(CUSTOMER.ADDRESS, WAREHOUSE.CODE):True}

as might be expressed over the example SCOPE database, reproduced in
Fig. 1 from (ICL, 1983). This is a perfectly well-formed RC expression. It has
an equivalent in all relational query languages and the result will be the
Cartesian product of all customer addresses with all warehouse codes.
Although this is certainly a legal query, it is hard to see what it might ‘mean’
in conceptual terms and why anybody might want to formulate it. Para­
phrasing queries of this kind is extremely difficult, even for people, short of
saying ‘Give me the Cartesian product of all values for...’

Still, most questions which users care to ask do make sense and usually carry
conceptual content. They centre around a focal point or FOCUS which is not
explicitly marked as such in the original formal expression, but which can be
derived from it given conceptual information about the field the database
covers.

This conceptual information will be contained within a MODEL of the
database in question. Such a model must be constructed for any database
with which the paraphrase will operate, and provides the linguistic/concep-
tual information which is necessary for the delivery of coherent and elegant
paraphrases.

ICL Technical Journal May 1986 37

Query View Chart for SCOPE Database

Fig. 1

3.1 Information for focus selection

For a query to be conceptually coherent means that all relations involved in
that query must be linked. At a database level, these links can be pointers, or
value based relationships. In this sense, a conceptually coherent query relates
to a consistent subset of the database. To give an example for the SCOPE
database: a query involving the relations ORDERLINE and CUSTOMER
is conceptually coherent only in the case where it also refers to the relation
ORDER, otherwise it is impossible to establish a link between ORDER­
LINE and CUSTOMER. Intuitively this can be seen as a way of defining a
notion of ‘paraphrasable query’ over a particular database. Note, however,
that this situation is not a consequence of what the formal language will
allow, since there are well-formed formal expressions which are not concep­
tually coherent in the sense described above.

A second intuition, based on the first one, dictates that, if a paraphrase query
is expressed over a consistent subset of database relations linked by
relationships, then the paraphraser can rely on this ‘network’ to guide the

38 ICL Technical Journal May 1986

building of a coherent conceptual structure underlying the output text. This
raises a question about selecting a starting point for the paraphraser within
that ‘network’. That starting point is the FOCUS of the query.

These intuitions can be rephrased as three assumptions:

1 Every query has a focus.
2 A focus is a relation in the current database.
3 Every relation other than the focus, involved in a particular query,

must be linked directly or indirectly to that focus. This means that
there is a path from the focus to every other relation mentioned in the
query and such that none of the links (database relationships) making
up that path refers to a relation which is not specified explicitly in the
query.

The third assumption leads us to formulate a paraphrasing strategy which
starts building a description of the derived relation by paraphrasing the
focus. Subsequently, it paraphrases all paths from that focus stepping
through each of the links that makes up such a path. The lexical material
used for the description of each step is given by the model which associates,
with each database relationship, an English predicate.

For example, the database relationship between ORDER and CUSTOMER
can be associated with the English predicate ‘to place’ in the following way:

ORDER --- j--------------------------- >- CUSTOMER

[to place; [arg 1, CUSTOMER]

[arg 2, ORDER]].

where the specification of the arguments indicates that the customers place
the orders.

A problem arises, however, at this point regarding directionality. Database
relationships do not carry directionality and can be traversed in two
directions. Given that a query is expressed over a part of the database that
can be seen as a network of relations and relationships, then if the
paraphraser traverses that network, circularity can occur. One must there­
fore impose a direction on the paths linking all relations, involved in the
query, to the focus. This effectively changes the network into a tree whose
root node is the focus relation. The direction in which a particular link in the
tree will be traversed will then entail a different paraphrase - in some cases
simply by passivising an associated English predicate (e.g. customers place
orders, oraors are placed by customers) or alternatively because each
direction of the link is associated with a different predicate by the model.

ICL Technical Journal May 1986

The process for selecting a focus, therefore, can be stated as follows: If a query
involves only one relation, then that relation is the focus. If it involves more
than one relation, then the focus is that relation which forms the root node of
a tree whose other nodes are exactly those remaining relations involved in
that query.

Two practical points must be made here. The model adopted by this system
stands in an elementary form. Only one flow of directionality has been
imposed, with two exceptions, as illustrated below.

|--------- Order-------Customer

------Orderline-------

Product Warehouse

--------Stock----------

As a consequence, a query involving only order and customer will always
have the order relation as focus. Furthermore, we predict that if two way
directionality is imposed on the database relationships then, in order to
avoid circularity, the two flows of direction must be kept separate.

3.2 Information for describing other database objects

In addition to allowing for the selection of an appropriate focus and for the
description of directed database relationships, the model also provides for
the description of other database objects. Both relations and attributes are
associated with alternative descriptions (usually English nouns or complex
nouns). The paraphraser will pick one of the alternatives thus specified
depending on what focus has been selected for the query that is being
paraphrased. For instance, the attribute CUSTOMER.CUST-NAME will be
described as ‘name’ in a situation where the current focus is ‘customer’ and as
‘customer name’ when another focus has been picked. Similarly ‘ < ’ will be
translated differently depending on the attribute to which it is being applied,
for example ‘cheaper than’ when applied to price, ‘smaller than’ when applied
to numbers - and so on.

The conceptual type of the attributes is derived from the NEL ‘End User
View’ model.

4 Paraphraser overview

Given an RC expression, the paraphraser will perform its task in four steps.
First of all, the RC expression will be parsed into a structure which makes the
syntactic build-up of the formula explicit. After completion of a basic parse,

40 ICL Technical Journal May 1986

the resulting structure is converted into a list and some of its componenets
are flattened out and simplified so that they can be handled more easily by
the rest of the program. This is implemented as a Prolog DCG on the Essex
Dec-10 using a context free grammar to specify the calculus syntax and
applying its rules top-down depth first.

Secondly, the focus of the input query is determined on the basis of the
relations, to which it refers, according to the stages described in the previous
section. The model for the database plays, as expected, an important role in
this part of the process.

In a third step, each part of the RC expression is paraphrased relative to the
focus discovered previously. This part of the paraphraser, to be described in
more detail in the next section, produces a conceptual/linguistic predicate
argument structure which underlies the final paraphrasing text. During the
fourth step the predicate/argument structure is assembled into an English
text which retains some degree of explicit structure used to determine the
format of what will appear on the screen. This small degree of structuring
allows for the output to reflect the scope of logical operators. The original
aim was to develop this component as a full LFG generator. However,
although the predicate/argument structure which is input to this module of
the system is compatible with LFG (as extended by Halvorsen), it was felt
that the work should, in the short term, concentrate on the third stage
described above, since completion of the latter was judged more critical for
the success of the project as a whole. For these reasons only a basic linguistic
component has been implemented which concentrates largely on agreement
and word order. However, the lack of a fully implemented theoretically
sound linguistic component, seems not to have impaired the quality of the
paraphrases delivered. This suggests to us that, for synthesising human
language text from formal languages, the implementation of a sophisticated
syntactic component is subsidiary to the development of a mechanism that
settles the conceptual structure underlying the final text.

5 Paraphraser strategy

The main body of the paraphraser utilises three categories of information in
order to guide its actions. First of all, it analyses the syntactic structure of the
incoming formal expression. Secondly, information is provided regarding the
focus relation of that expression. Thirdly, both the previous items of
information are used to specify the tree of database relationships and
relations defined by the query.

The syntax of the relational calculus is used to determine the overall format
of the paraphrasing text. A number of options are open to the user, e.g. user
defined functions, ordering requirements on the retrieved information, etc.
These options can be determined on the basis of the structure of the query.
They are paraphrased as separate sentences which either precede or follow
the text describing the main body of the formal query. A well-formed query

ICL Technical Journal May 1986 41

must have a left hand side, specifying the information to be retrieved, and a
right hand side constraining that information. For instance, in

{ (Cu s to m er . C us t - n am e) : ((C u s t o m e r . C u s t - a d d r e s s = 'L o n d o n ')) }

the left hand side specifies that customer names must be retrieved. The right
hand side restricts that retrieval to the names of those customers who live in
London.

This basic syntactic structure is reflected in the format of a standard
paraphrase which is the following:

FOR < DERIVED RELATION > < ACTION VERB > < TARGET
LIST>

< DERIVED RELATION > is the paraphrase of the right hand side of the
input query, and < TARGET LIST> of the left hand side. < ACTION
VERB > is some English predicate selected on the basis of what items are
contained in the left hand side (e.g. ‘show’ for attributes, ‘calculate’ for
functions, etc.).

The focus of the query settles the starting point for the description of
< DERIVED RELATION > . It also plays an important part in the selection
of lexical material for describing database objects.

The tree of database relationships and relations which the model has
assigned to the query is used, together with the syntactic structure of the
query’s right hand side, in structuring the description of < DERIVED
RELATION > .

Overall, the paraphraser distinguishes between different kinds of compari­
sons that can occur on the right hand side of the formal expression. These
include:

- ORDINARY comparisons, comparing the value of a database attribute
with a constant.

- LINKING comparisons, comparing by means of * = ’ key attributes of
relations between which a relationship exists in the database. These
correspond to ‘links’ along paths in the conceptual tree as defined by the
model.

- COMPLEX comparisons involving attributes of different relations with­
out being linking comparisons.

- DISCONTINUOUS comparisons which are groups of comparisons
bundled together under a different logical operator from that of the
previous level.

42 ICL Technical Journal May 1986

LHS RHS

The paraphraser starts by describing the focus of the query. This involves not
only a paraphrase of the focus relation itself, but also of ordinary compari­
sons involving an attribute of that relation. In the next step, all linking
comparisons between the focus and other relations one step along the paths
in the conceptual tree are paraphrased. When one such link is described, the
relation newly linked to the old focus is propagated as a subsidiary focus.
This new focus is described in turn, including links to other relations further
along the path, which will in time also become subsidiary foci. When all the
links along a path have been described, the old focus is (recursively) restored.
All partial paraphrases are linked together by means of the appropriate
logical operators. Paraphrasing is thus done recursively, relative to the
syntactic structure of formal expression components, the focus of the query
and the conceptual tree delivered by the model.

For the top level focus, all four types of comparisons are described in turn.
However, for subsidiary foci, complex comparisons are omitted. They
typically involve two relations and it is difficult to decide at which stage they
should be paraphrased. All complex comparisons are therefore paraphrased
relative to the overall, top level focus.

The elements of the left hand side are described by retrieving from the model
the appropriate lexical material with which they are associated relative to the
overall focus of the query. The descriptions of similar objects are conjoined
and grouped with an appropriate verb. Such verb phrases, if applicable, can
also be conjoined.

6 An example

To illustrate the operation of REMIT we give a comprehensive query
example, defined on the SCOPE database, showing each stage of the
transduction and paraphrasing process. This is one of many such examples
compiled jointly by ICL and Essex to test the different features of the
software.

Querymaster:

List stock.stock-whse,bin-id,stock-value is qty-on-hand* unit-price
sorted by ascending warehousemen where warehousemen > ‘London’
and re-order-qty < 100 and product-stock and product-in-wh starting
stock

Relational calculus:

{stock-value(stock.qty-on-hand,product.unit-price)
: = (‘stock.quantity-on-hand* product, unit-price’)
w(stock.stock-whse,stock.bin-id,stock-value(stock.qty-on-hand,
product.unit-price)):

ICL Technical Journal May 1986 43

((wh warehouse)(((wh.locn>‘London’)(stock.reorder-qty<100))
((stock.whse = wh.codeXstock.product-id = product.product-id))))

up(wh.locn)}

Computed focus:

= Product (Note that Product is not referred to in the Target List)

Paraphrase:

For products
which are physically stocked

and whose re-order-qty is less than 100
and which are stored in warehouses

whose location is alphabetically listed after ‘London’
(1) show

(a) the warehouse codes
(b) the bin numbers

and

(2) calculate and display stock-value

where stock-value is defined as (qty-on-hand* unit-price).

Sequence the result by ascending warehouse location.

7 Conclusion

This paper has described a prototype paraphraser developed as an ICL
project at the University of Essex and fully implemented in Prolog on a
DEC 10. The paraphrasing process has been split into two steps using an
extension of the relational calculus as an intermediary representation; this is
in order to enhance the portability of the paraphraser over relationally
complete query languages. The system has been successfully tested for a wide
range of sample queries and results have both justified the extensive efforts
spent in defining a suitable model and also underlined the importance of
selecting an appropriate focus to guide the paraphrasing process. Further­
more it has been shown that the provision of a sophisticated NL grammar
formalism is subsidiary to the development of a mechanism for defining the
underlying, coherent and unambiguous conceptual structure of the output
paraphrase. Overall the system has demonstrated that it is feasible to deliver
paraphrases of formal query language expressions which are helpful to the
user in verifying his natural language intention.

Acknowledgment

The authors are indebted to V. West of International Computers Limited for
many helpful discussions on this work. Funding for this research has been
provided by International Computers Limited.

ICL Technical Journal May 1986

References

1 CODD, E.F.: A Database Sublanguage founded on the Relational Calculus Proceedings of
the ACM SIGFIDET Workshop on Data Description, Access and Control, 1971.

2 CODD, E.F.: Relational Completeness of Database Sublanguages in Database Systems.
Courant Computer Science Series, Vol. 6, Prentice Hall, Englewood Cliffs, 1972.

3 DATE, CJ.: An Introduction to Database Systems, Addison-Wesley, 1977.
4 HALVORSEN, P.K.: Semantics for Lexical Functional Grammar in Linguistic Inquiry,

Vol. 14, No. 4, pp. 567-615, 1983.
5 International Computers Ltd., Using Querymaster (200 level), Publication R00260/00,

1983.
6 International Computers Ltd., Using Querymaster (QM.250) Publication R00433/01,1985.
7 KAPLAN, R. and BRESNAN, J.: Lexical Functional Grammar. A Formal System for

Grammatical Representation in J. Bresnan (Ed.), The Mental Representation of Gramma­
tical Relations, MIT Press, Cambridge (Mass.), 1982.

8 McKEOWN, K.: Paraphrasing using given and new Information in a Question Answering
System in Proceedings of the 17th ACL, La Jolla, 1979.

9 SHEPHARD, I.: Implementation of a Transduction Algorithm to Convert Querymaster
Language Statements into Relational Calculus, M.Sc. Dissertation, University of Essex,
1985.

10 THOMAS, J.C. and GOULD, J.D.: A Psychological Study of Query by Example,
Proceedings NCC 44, 1975.

11 ULLMAN, J.D.: Principles of Database Systems, Computer Science Press, 1980.
12 WALLACE, M. and WEST, V.: QPROC: A Natural Language Database Enquiry System

Implemented in PROLOG, ICL Technical Journal, November 1983.
13 WEST, V.: Natural language database enquiry. ICL Technical Journal, May 1986.

ICL Technical Journal May 1986 45

Natural language database enquiry

V. West
ICL Applied Systems, 33 Kings Road, Reading, Berkshire

Abstract

This paper describes the results of a research project to produce a
natural enquiry language system (NEL) by adding a PROLOG front-
end to Querymaster, the standard ICL program for querying informa­
tion stored in a database. The system architecture and the role of the
‘knowledge engineer’ in preparing the database are discussed. A
sample session is included, user experience is reviewed and some
possible extensions are discussed.

1 Introduction

An earlier paper1 in this journal described QPROC - an interactive natural
language enquiry system providing access to a relational database. The main
aim of that paper was to demonstrate the practical use of the PROLOG
implementation language2 on an application of some complexity. A major
limitation of QPROC was that the database itself had to be implemented in
PROLOG, and so only small ‘toy’ applications could be implemented. A
system capable of accessing ‘real’ databases would be of much greater
interest.

The standard ICL program for querying information stored in a database is
Querymaster3. This provides access to various types of database including
IDMS or COBOL files, and CAFS (Content Addressable File Store) high­
speed facilities can be used. The user expresses his questions in an easy to use
computer language.

This paper describes the results of a research project to produce a natural
enquiry language system (NEL) by adding a PROLOG front-end to
Querymaster, running under VME on the ICL 2900. ICL-PROLOG4 was
used and NEL was able to profit from the QPROC experience.

The paper covers:

- the system architecture (section 2)
- the role of the ‘knowledge engineer’ who prepares a database for natural

language enquiry, and the NEL data model (section 3)
- a commentary (section 4) on the sample NEL session in Appendix B. This

46 ICL Technical Journal May 1986

uses an IDMS database SCOPE (Stock, Customer, Order and Product
Enquiries) which represents an ordering system for a stationery business.
This database and its associated natural language vocabulary is de­
scribed in more detail in Appendix A, and is used to provide examples
throughout this paper.

- the result of practical experience with NEL (section 6)
- some possible extensions (section 7).

Another paper5 in the same issue of this journal describes related work at the
University of Essex supported by an ICL University Research Council
(URC) grant. That work is concerned with the generation of natural
language paraphrases of formal database queries.

2 Architecture

Fig. 1 illustrates the run-time architecture.
USER

Natural
L a n g u a g e S ' V A n sw ers
Dialogue. ✓ x

Fig. 1

The NEL front-end receives natural language questions from the user. Using
the Full Vocabulary and End-User View for the subject prepared by the
‘knowledge engineer’ it attempts to understand the question and generate an
equivalent Querymaster (LIST) command. Some questions such as ‘help’ it
answers without recourse to Querymaster. The Full Vocabulary contains all
the words and phrases for the subject and the End-User View defines the
subject using the NEL Data Model. Both are described in section 3, which
explains the role of the knowledge engineer.

LIST commands are passed across to Querymaster which accesses the
database and returns answers directly to the user. Querymaster uses the
‘Query View’ which provides a description of the database.

The front-end consists of eleven components, 7 ‘natural language indepen­
dent’ and 4 ‘natural language dependent’ ones. The former will be the same

ICL Technical Journal May 1986 47

for different languages, whereas the latter will have different versions for
different languages. The separation into components aims to maximise the
independent ones (from now on the paper relates to English only).

The components are (natural language dependent ones being distinguished
by an asterisk):

SESSION CONTROL

QUERY CONTROL

SCANNER*

RESPONDER*
PARSER CONTROL

WORD PATTERNS*

PARSER*

META-QUERY
HANDLER
DATABASE QUERY
HANDLER
CONVERTER

BACK-END

- contains the entry point to NEL and is responsible
for the session dialogue with the user and for calling
the BACK-END component to start and end Query-
master sessions. The ‘sessions’ may potentially be
with different databases but NEL does not support a
change of database.
- controls the processing of all the user’s queries in a
session.
- i s responsible for all input. It splits natural lan­
guage questions info words.
- i s used for outputting all messages to the user.
- looks up the meaning of the words in a question
using the WORD PATTERNS component and the
Full Vocabulary. It calls the PARSER component
to interpret the question and classify it as a database
query or a ‘meta query’ (about the description of the
data rather than the data itself).
-recognises word endings (including plurals) and
patterns (numbers, dates, times and money).
- attempts to interpret the question into a formal
representation of its meaning. This representation
called ‘descriptions and qualifiers’ is a develop­
ment of that used in QPROC1,6 and will not be
described further in the present paper. The Parser
is implemented in PROLOG grammar rule nota­
tion2 and provides a wide coverage of English
grammar. Noun phrases are parsed ‘breadth-first’:
all alternative interpretations are found, not just
the first, so that next time the Parser needs to find
a noun phrase starting at the same point in the
question, it need not parse it again.
- is responsible for answering meta-queries, though
currently the only meta-query supported is ‘help’.
- is responsible for answering database queries.

-converts the ‘descriptions and qualifiers’ for a
database query into a Querymaster LIST com­
mand.
-handles the interface with Querymaster. Query-
master is implemented mainly in Pascal.

48 ICL Technical Journal May 1986

For any database to be accessed using NEL, a ‘knowledge engineer’ must
carry out some preparatory work; it is essential that this knowledge engineer
understands the structure and content of the database, and the related
natural language vocabulary used by its intended users.

3 The role of the knowledge engineer

APPLICATION
VERB

I
NATURAL
RULE

t
DOMAIN

I
VALUE

Fig. 2

The knowledge engineer prepares the End-User View which defines the
subject (database) using the NEL Data Model, and the Full Vocabulary
which contains all the words and phrases for the subject. The process will
typically be an iterative one in response to user requests for changes
including additional vocabulary.

3.1 The End-User View

Fig. 2 illustrates the object-types of the NEL Data Model and the relation­
ships between them (the ‘crow’s foot’ sign A indicates a ‘many’ relationship).
It is based on the Entity-Attribute-Relationship model with the following
additional object-types:

Attribute Collection
Application Verb
Natural Rule

ICL Technical Journal May 1986 49

An attribute collection consists of two or more attributes from the same entity
in the order in which they appear together in natural language phrases. For
example, the attribute collection ‘address’ in SCOPE consists of the customer
attributes address-1, address-2, county and postcode.

An application verb defines the use of the verb in natural language questions.
For example:

a customer places an order for a product

The definition includes a ‘case’ list and a reference to a natural rule.

Each entry in the case list describes a case and its corresponding entity or
attribute. The case list for ‘place’ is:

subject : entity customer
first object : entity order
for-object entity product

(for verbs with more than one object like ‘give’ a second object can be
defined, and various prepositional objects are provided). This description
assumes the verb is in the active mood. NEL automatically performs any
permutation required when the verb is used in the passive.

A natural rule has several uses. For an application verb it can provide the
associated Querymaster access path. For ‘place’ this is defined by the
relationships:

orders and order-lines and product-order

In addition to these new object-types, additional information is required for
others:

For database, a natural language explanation of the database for use in ‘help’
messages. Such explanations could usefully be added to other object-types.

For entity and attribute collection, a category (see below).

For attribute, a response-default indicator which determines which attri­
butes are to be included in the answers when the question does not
specifically identify them. For example the response-defaults for ‘cus­
tomer’ are the number and name. Result attributes to be calculated may
also be defined by the knowledge engineer. So for example ‘unused credit’
is defined as:

(customer) credit-limit — balance

50 ICL Technical Journal May 1986

For domain, a category which matches various common natural language
words and phrases. The categories are:

person — matching ‘who’ etc.
thing — ‘what’, ‘which’
organisation = person or thing
count — (none)
measure - ‘ho w — ’
money — ‘how much’
location — ‘where’
timepoint — ‘when’
reason - ‘why’
method - ‘how’

For categories ‘measure’ and ‘money’, units may be provided: for money the
unit is ‘pounds’.

Categories may also be provided for entities and attribute collections.

Values may be provided for character type domains. Some or all of the
possible values may be given, and may then be used as words in natural
language questions.

3.2 The Full Vocabulary

Fig. 3 illustrates the generation of the Full Vocabulary. The knowledge
engineer uses a program called Vocabulary Builder which requires:

the End-User View for the subject (see above)
the Application Vocabulary for the subject
the Basic Vocabulary (the same for every subject)

ICL Technical Journal May 1986 51

The Basic Vocabulary is included with NEL and defines all the subject
independent words. It contains approximately 130 common words, phrases
and abbreviations including for example:

a
and
bigger than
do
equal to OR eq OR =
for
get
is
our
someone
who

The Full Vocabulary will contain the following words from the End-User
View:

nouns-database, entities, attribute collections, attributes, units and values
verbs- application verbs

For nouns NEL recognises plurals formed in the standard way using -s -es or
-ies; for a compound noun such as ‘unit price’ the plural would be recognised
as ‘unit prices’. For verbs it recognises the standard endings -s -es -ies -ing -ed
-ied -en, allowing for doubling of final consonants.

The Application Vocabulary is where the knowledge engineer provides
additional synonyms/abbreviations or irregular inflexions. For nouns he
may define irregular plural forms and for verbs irregular tenses. For example
‘client’ is a synonym of ‘customer’, ‘units of issue’ is the plural of ‘unit of issue’
and ‘held’ is the past of ‘hold’.

4 Commentary on a sample session

This commentary relates to the sample session in Appendix B. The questions
there have been numbered for reference in this commentary (for technical
reasons the numbers start at 6)

(6-9) After the sign-on sequence, NEL outputs the explanation of the
subject and the entities it covers.

(10) The response ‘OK’ shows that NEL has understood the question.
The generated Querymaster command is also displayed (this is
optional). Notice that only the customer numbers and names are
output as they are the response-default attributes. Here and later
the output has been abbreviated (indicated by ...) for brevity.

(11) ‘address’ is an attribute collection. The output is in ‘labelled’ format
rather than ‘tabular’ as it would be too wide for the latter.

52 ICL Technical Journal May 1986

(12) ‘unused credit’ is a result attribute.
(13—14) ‘Berks’ was provided as a ‘county’ value, but ‘Devon’ was not; so

‘Devon’ must appear in quotes in the exact case in which it appears
in the database and be qualified by ‘county’.

(15-16) ‘credit limit’ and ‘balance’ are included in the answers because they
occur in comparisons (see section 5).

(18) Note the irregular past tense ‘held’.
(20) A better answer would be simply ‘NO’ (see section 5).
(23) ‘December figures’ is an attribute collection. ‘LMBC’ is a synonym

for a customer name value.
(24) NEL ignores words it does not understand.
(25) NEL cannot understand this - products do not have addresses - so

it outputs an error message instead of ‘OK’.
(26) NEL can understand the question and so responds ‘OK’ but

cannot answer it as Querymaster will not accept such questions.
(27) The ‘help’ output is similar to the sign-on output (see above),

‘recall’ can also be used to display the previous question for
possible editing and resubmission.

5 Practical experience

Users have reacted very favourably. It gives them a lot of freedom in
expressing questions. Natural language is more familiar than a computer
language, and to the surprise of many users has proved to be more con­
cise - typically natural language questions are half the length of Querymaster
ones.

The extra facilities deriving from the extended data model described in
section 3 were well received, especially attribute collections, response-
defaults, result attributes, verbs and synonyms. These allow the user to
express his question concisely and to control the answers he receives. Many
of these extensions could also be profitably included in formal query
languages.

The heuristics needed to decide what should be included in a question are not
easy to construct. We all know people who provide too little or too much in
answer to questions. NEL currently includes in its answers:

- anything specifically requested by ‘list’ (or a synonym):
List the customers
Customer names (here ‘list’ is understood)

- anything distinguished by a questioning word like ‘who’ or ‘which’:
Which warehouses hold ash trays?

- any compared attribute:
... credit limits over £50

- any attribute for which alternative values are given:
... Berks and Hants customers (county is output)

ICL Technical Journal May 1986 53

If none of these apply the first entity encountered is output:

Are there any Essex customers?

Also, unless specific attributes are mentioned, entity output is restricted to
the response-default attributes.

As noted in section 2, answers are returned directly to the user by
Querymaster. On the whole this works well, as can be seen from Appendix B.
However headings are not always necessary, and some questions such as:

Are ash trays 83p?

could be better answered by a simple ‘yes/no’, and others like:

Do any products have a price over £1?

by a ‘yes/no’ plus, for yes, a set of answers.

The limitation of users to a small Basic Vocabulary did not cause any
difficulties, but the ease with which new synonyms could be added was very
significant as a wider vocabulary made the system appear much better to
users.

The coverage of English grammar is wide, as can be seen from Appendix B,
but it is not exhaustive, and this creates a difficulty. When NEL does not
understand a question the user may well type in a more complicated one to
‘clarify’ his intention and this also is not understood. One way around this
difficulty would be for the user documentation to describe the grammar
supported, but this is inappropriate as such a description would be complex
and against the spirit of a natural language interface. A possible solution is to
list those constructions the system does not accept which the user might try
e.g. ‘conjoined’ verbs as in:

Which warehouse holds a calculator and supplied a rack?

6 Possible extensions

Currently ambiguous questions are not detected as such - the first interpreta­
tion found is the one taken. They should be referred back to the user for
clarification. This requires that the different meanings can be presented for
him to choose which he meant. Even where there is no ambiguity it is useful
for the user to be able to check whether his question has been interpreted in
the way he intended. Currently the only ‘meaning’ which can be presented to
the user is the generated Querymaster command, but a natural language
paraphrase is much to be preferred5.

54 ICL Technical Journal May 1986

No use is made of context to support “conversation”: questions are treated
separately. The most important contextual features are the use of pronouns
as in:

Who are our Berks customers?
What are their credit limits?

and ellipsis:

Who placed orders on 7.4.80?
9.4.80?

Further meta-question facilities would be useful. These might include ques­
tions about:

- the attributes for an entity
- the values for an attribute
- the verbs for an entity
- the words in the vocabulary

Meta-questions can be recognised in various ways. Compare:

What is a product?
Tell me the products

The former could be interpreted as a meta-question, a request for general
information about products, and the latter as a data question, one for specific
information about particular products. However the simplest solution is to
use a keyword such as ‘help’ to distinguish meta-questions.

Instead of ignoring unrecognised words, the user could be asked to correct
them. Spelling correction is a further refinement. Users would also like to be
able to extend the vocabulary by statements like:

line means product

This raises issues about the permanence and scope of the extension (is it
available at later sessions, and to other users?)

Some Querymaster features are not available through natural language,
though there is an escape facility allowing direct input of any Querymaster
command. These include functions like ‘maximum’, ordering of answers and
explicit arithmetic, all of which could be added to natural language, e.g.:

What is the highest product price?
Show the customers in alphabetical order
List price/unit of issue

ICL Technical Journal May 1986 55

7 Conclusion

The ideas first developed in QPROC1 which provided natural language
enquiry capabilities on ‘toy’ databases, have been successfully extended in
NEL which provides enquiries on real databases. NEL offers a very
acceptable natural language interface to its users.

Acknowledgements

Among those who have contributed to the NEL project, I would particularly
like to thank Mark Wallace (now at the European Computer-Industry
Research Centre, Munich) who provided much of the design and implemen­
tation; and Philip Pearson who also assisted in the implementation.

References

1 WALLACE, M.G. and WEST, V.: ‘QPROC: a natural language database enquiry system
implemented in PROLOG’, ICL Tech. J„ 3, (4), 393^106.

2 CLOCKSIN, W.F. and MELLISH, C.S.: ‘Programming in PROLOG’, 2nd edition,
Springer-Verlag, 1984.

3 International Computers Limited: ‘Using Querymaster (QM.250)’, Technical Publication
R00433/01, ICL House, Putney, London 1985.

4 International Computers Limited: ‘ICL PROLOG User Guide’, Technical Publication
R30036/01, ICL House, Putney, London 1985.

5 (Reference to University of Essex paper in same issue of ICL Technical Journal).
6 WALLACE, M.G.: 'Communicating with Databases in Natural Language’, Ellis Horwood

Limited, 1984.

Appendix A - The SCOPE database

SCOPE represents an ordering system for a stationery business and covers:

products sold by the company
customers
orders placed by customers
orderlines which make up orders
warehouses used by the company
stocks held at warehouses

The SCOPE vocabulary in addition to the basic vocabulary (OR indicates
synonyms) is:

Entities:

product OR item
order-line OR order line OR orderline
order
customer OR client
warehouse
stock

56 ICL Technical Journal May 1986

Attributes for each entity (* response default, fresult attribute)

Product

*product-id OR code
*product-desc OR description
- specified descriptions: ash tray

blotter
calculator
pencil sharpener OR sharpener
printout filing rack OR rack
staple extractor

unit-price OR unit price OR cost OR price (in pounds)
unit-of-issue OR unit of issue

Order-line

*ol-product-id OR code
*quantity
fvalue (in pounds)

Order

*order-no OR number
’"order-date OR date

¥

Customer

*cust-no OR number
*cust-name OR name
- specified names: Green Vegetable Associates

Long Mile Bus Company
Virtual Machines Limited

ORGVA
OR LMBC
OR VML

address-1
address-2 OR town
county
- specified counties: Berks OR Berkshire

Essex
Hamps OR Hants OR Hampshire
Herts OR Hertfordshire
Lancs OR Lancashire
Leics OR Leicestershire
Notts OR Nottinghamshire

>address

postcode
credit-limit OR credit limit OR credit ceiling (in pounds)
balance (in pounds)
status

ICL Technical Journal May 1986 57

- specified statuses: open, closed
year-id-1
month-id-1
purchases-1
payments-1 oct-figures OR October figures (in pounds)

sep-figures OR September figures (in pounds)

year-id-12
month-id-12
purchases-12
payments-12
text-length
notes
credit-rating OR credit rating
funused-credit OR unused credit (in pounds)

Warehouse

♦code
- specified codes: BRA01 OR Bracknell

USA26 OR USA
IRQ01 OR Iraq

♦locn OR address OR location

Stock

♦stock-product-id OR code
♦stock-whse
- specified warehouse codes: see above
♦bin-id OR bin

qty-on-hand OR quantity on hand 1
re-order-level OR re-order level OR reorder level

re-order-details
, OR re-order details

OR
reorder details

buffer-stk-level OR buffer stock level J
re-order-qty OR re-order quantity OR reorder
quantity
fstock-value OR value (in pounds)

Verbs

an order contains a product
a warehouse holds stock
a warehouse holds a product
a customer orders a product
a customer places an order for a product
a warehouse supplies a product
an orderline is worth a sum of money

The relationships, which are not part of the vocabulary are:

58 ICL Technical Journal May 1986

relationship
PRODUCT-ORDER
PRODUCT-STOCK
ORDER-LINES
ORDERS
PRODUCT-IN-WH
SUPPLY-FROM

PRODUCT
PRODUCT
ORDER

owner member
ORDER-LINE
STOCK
ORDER-LINE

CUSTOMER
WAREHOUSE
WAREHOUSE

ORDER
STOCK
ORDER-LINE)

Appendix B

GOOD AFTERNOON.
IT IS 14: 3: 18 ON 6. 1. 86.

THIS IS THE NATURAL ENQUIRY LANGUAGE SYSTEM VERSION 20.30/SCOPE2.1.
(C) COPYRIGHT ICL 1985.

WHICH SUBJECT WOULD YOU LIKE TO ASK QUESTIONS ABOUT?
PLEASE ENTER THE SUBJECT NAME OR bye'.
0006 scope2

PLEASE ENTER A NAME FOR THIS SESSION.
0007 vw

PLEASE ENTER YOUR USER NAME.
0008 rayjones

PLEASE ENTER THE PASSWORD.
(IF THERE IS NO PASSWORD ENTER none .)
0009 sec re t

PLEASE WAIT A MOMENT.

SCOPE2 STANDS FOR STOCK, CUSTOMER, ORDER AND PRODUCT ENQUIRIES.
SCOPE2 COVERS:

PRODUCTS
ORDER-LINES
ORDERS
CUSTOMERS
WAREHOUSES
STOCKS

YOU MAY NOW ASK QUESTIONS ABOUT SCOPE2.
WHEN YOU HAVE FINISHED ENTER 'end '.
0010 Who a re the custom ers?
OK.
LIST CUSTOMER.CUST-NO.CUST-NAME

PLEASE WAIT A MOMENT.
CUSTOMER

CUST-NO CUST-NAME

02109 SPRING SURPRISE CHOCOLATES
02813 NON STICK TYRE COMPANY
04377 LONG EARED FROG COMPANY

PLEASE ENTER YOUR NEXT QUESTION.
0011 List the custom er nam es and ad d resses.
OK.
LIST CUSTOMER.CUST-NAME,CUSTOMER.ADDRESS-1,ADDRESS-2,COUNTY,POSTCODE

ICL Technical Journal May 1986 59

CUSTOMER
CUST-NAME: SPRING SURPRISE CHOCOLATES
ADDRESS-1: 1 FLAXMAN ROAD
ADDRESS-2: BASSETLAW

COUNTY: NOTTS POSTCODE: N45 91A

PLEASE ENTER YOUR NEXT QUESTION.
0012 What a re the custom er nam es and their unused credits?
OK.
LIST CUSTOMER.CUST-NAME,UNUSED-CREDIT IS CUSTOMER.CREDIT-LIMIT - BALANCE

CUST-NAME UNUSED-CREDIT

SPRING SURPRISE CHOCALATES 100.00
NON STICK TYRE COMPANY 78.50
LONG EARED FROG COMPANY 100.00

PLEASE ENTER YOUR NEXT QUESTION.
0013 The Berks custom ers.
OK.
LIST CUSTOMER.CUST-NO,CUST-NAME WHERE CUSTOMER.COUNTY = BERKS'

CUSTOMER
CUST-NO CUST-NAME

02802 55TH FLOOR HOUSING CO LTD.
02865 OXTON WATER SUPPLY ASSOC.
04692 STAPLES COMPLAINT LTD.
10525 EVEREST EXPLORERS UNLIMITED
99999 NATIONAL DRINKERS (BERKS)

PLEASE ENTER YOUR NEXT QUESTION.
0014 Tell me the custom ers for the county of 'DEVON'.
OK.
LIST CUSTOMER.CUST-NO,CUST-NAME WHERE CUSTOMER.COUNTY = DEVON'

CUSTOMER
CUST-NO CUST-NAME

07521 GRADWELL SHOE CORPORATION

PLEASE ENTER YOUR NEXT QUESTION.
0015 Which custom ers have credit limits over £50 and under £150?
OK.

LIST CUSTOMER.CREDIT-LIMIT,CUSTOMER.CUST-NO,CUST-NAME WHERE CUSTOMER.CREDIT-
LIMIT > 50 AND CUSTOMER.CREDIT-LIMIT < 150

CUSTOMER
CREDIT-LIMIT CUST-NO CUST-NAME

100.00 02109 SPRING SURPRISE CHOCOLATES
100.00 02613 NON STICK TYRE COMPANY
100.00 04377 LONG EARED FROG COMPANY

PLEASE ENTER YOUR NEXT QUESTION.
0016 Which custom ers have ba lances over their credit limits?
OK.

LIST CUSTOMER.BALANCE,CUSTOMER.CUST.NO,CUST-NAME WHERE CUSTOMER.BALANCE >
CUSTOMER.CREDIT-LIMIT

60 ICL Technical Journal May 1986

CUSTOMER CUST-NO CUST-NAME
BALANCE

1035.10 07143
149.60 03873
244.40 06513
151.90 05763

ZERO-C SCREEN CLEANERS
BLUE & GREY BOXES CORPORATION
INDEXED SEQUENTIAL STOCKS LTD
SAFE STRING MANUFACTURERS

PLEASE ENTER YOUR NEXT QUESTION.
0017 Who placed w hat o rders on 07.04.80?
OK.

LIST ORDER,CUSTOMER.CUST-NO,CUST-NAME WHERE ORDER.ORDER-DATE - 07.04.80 AND
(ORDERS AND ORDER-LINES AND PRODUCT-ORDER)

ORDER-NO ORDER-DATE CUST-NO CUST-NAME

D 000102 07.04.80 01857 WINE GROWERS GROUP INCORP.
D 000109 07.04.80 03180 LINE PAPER PRODUCTS AND CO.
D 000108 07.04.80 03117 FOREIGN EXCHANGE COMPANY LTD

PLEASE ENTER YOUR NEXT QUESTION.
0018 W here a re a sh trays held?
OK.

LIST WAREHOUSE WHERE (PRODUCT-IN-WH AND PRODUCT-STOCK) AND PRODUCT.PRODUCT-DES-
C = 'ASH TRAY’

WAREHOUSE
CODE LOCN

IRQ01 PO BOX 640 BAGHDAD IRAQ
USA26 CLAIRE RD E BRUNSWICK NJ USA
BRA01 LOVELACE RD BRACKNELL BERKS

PLEASE ENTER YOUR NEXT QUESTION.
0019 What o rders w ere placed for blotters?
OK.

LIST ORDER WHERE PRODUCT.PRODUCT-DESC = BLOTTER' AND (ORDERS AND ORDER-LINES AND
PRODUCT-ORDER)

ORDER
ORDER-NO ORDER-DATE

A 000007 01.04.80
A 000010 01.04.80
A 000030 01.04.80

PLEASE ENTER YOUR NEXT QUESTION.
0020 Do ash trays have a price over £1?
OK.

LIST PRODUCT.UNIT-PRICE WHERE PRODUCT.UNIT-PRICE > 1 AND PRODUCT.PRODUCT-
DESC = ‘ASH TRAY'

PRODUCT
UNIT-PRICE

THERE ARE NONE.

ICL Technical Journal May 1986 61

PLEASE ENTER YOUR NEXT QUESTION.
0021 What price a re blotters?
OK.

LIST PRODUCT.UNIT-PRICE WHERE PRODUCT.PRODUCT-DESC = ‘BLOTTER’

PRODUCT
UNIT-PRICE

9.03

PLEASE ENTER YOUR NEXT QUESTION.
0022 Are there any Essex custom ers?
OK.

LIST CUSTOMER.CUST-NO.CUST-NAME WHERE CUSTOMER.COUNTY = ESSEX'

CUSTOMER
CUST-NO CUST-NAME

04944 THE POTTER FOSTER-HOMES
03243 LONG MILE BUS COMPANY
02424 CASH MART DISCOUNTS LTD
04881 ZIPPETY DOODAH LTD.
03306 THREE MILE ISLAND SHELTER CORP
03180 LINE PAPER PRODUCTS AND CO.
04818 SOUTHGATE SECURITIES CO LTD

PLEASE ENTER YOUR NEXT QUESTION.
0023 Decem ber figures for LMBC.
OK.

LIST CUSTOMER.PURCHASES-3.PAYMENTS-3 WHERE CUSTOMER.CUST-NAME = LONG MILE BUS
COMPANY'

CUSTOMER
PURCHASES-3 PAYMENTS-3

14.60 14.60

PLEASE ENTER YOUR NEXT QUESTION.
0024 Good Berks custom ers.
I DO NOT UNDERSTAND "Good” .
I SHALL TRY TO UNDERSTAND YOUR QUESTION WITHOUT IT.
OK.

LIST CUSTOMER.CUST-NO,CUST-NAME WHERE CUSTOMER.COUNTY = 'BERKS'

CUSTOMER
CUST-NO CUST-NAME * I

02802 5STH FLOOR HOUSING CO LTD.
02865 OXTON WATER SUPPLY ASSOC.
04692 STAPLES COMPLAINT LTD.
10525 EVEREST EXPLORERS UNLIMITED
99999 NATIONAL DRINKERS (BERKS)

PLEASE ENTER YOUR NEXT QUESTION.
0025 Product add resses.
I CANNOT UNDERSTAND WHAT ' Product ad d re sse s" REFERS TO.

PLEASE ENTER YOUR NEXT QUESTION.
0026 List 20 custom ers.
OK.
I CANNOT ANSWER QUESTIONS WHICH USE COUNTS IN THIS WAY.

62 1CL Technical Journal May 1986

PLEASE ENTER YOUR NEXT QUESTION.
0027 Help!
OK.
THE CURRENT SUBJECT IS SCOPE2.
SCOPE2 STANDS FOR STOCK, CUSTOMER, ORDER AND PRODUCT ENQUIRIES.
SCOPE2 COVERS:

PRODUCTS
ORDER-LINES
ORDERS
CUSTOMERS
WAREHOUSES
STOCKS

YOU MAY ASK QUESTIONS ABOUT SCOPE2.
IF YOU HAVE FINISHED ENTER ‘end ’.

PLEASE ENTER YOUR NEXT QUESTION.
0028 end.
OK.

WHICH SUBJECT WOULD YOU LIKE TO ASK QUESTIONS ABOUT NOW?
PLEASE ENTER THE SUBJECT NAME OR 'bye'.
0029 bye

GOODBYE.

ICL Technical Journal May 1986 63

The me too method of software design

Peter H enderson
University of Stirling

Cydney Minkowitz
Software Engineering Technology Centre
International Computers Ltd, Kidsgrove

Abstract

The me too method addresses two concerns in the process of software
design. The first is effective communication of a design specification
amongst members of a design team. The second is early feedback on
the correctness and adequacy of a design. The first concern is
achieved by using mathematics as a means of precisely stating design
decisions as they are made. The second is accomplished by trans­
forming the specification into an executable design prototype to be
tested.

Testing a prototype uncovers design errors and misconceptions. The
faults are explicitly recorded in the formal specification and so can be
readily attended to. The me too method encourages a team to revise
the specification and to subject the new design to further inspection by
execution. The method is therefore an iterative one. The emphasis on
iteration enables exploration of alternative design decisions and early
detection of design faults.

This paper describes the me too method and illustrates its use in the
design of a simple prototype of a system for handling production rules.

1 Introduction

This paper addresses itself to the problem of software design. All too often
when we design software we proceed to implementation stages before the
design itself is complete. The reasons for this are simple. To design the
software completely implies that we have a precise and undeniable statement
of what that software is to do. Such a statement would allow an outsider to
ask us a question of the form ‘what will happen if, using your software, I were
to ...’ and would enable us to give an accurate response. In conventional
software design we are not usually in this happy position, for until we have
an implementation of our proposed software, we have probably not com­
pletely decided what it will do in all circumstances. We have no method of
making a precise statement of those design decisions we do make, short of
completing the implementation itself.

64 ICL Technical Journal May 1986

Here we propose that one realistic remedy to this problem is to make use of
mathematics as a language for software design. We use mathematics as a
programming language. Hence we design by completing a description of the
software in a mathematical language. We ensure that this language is
executable by machine. But we pay little attention to the performance or
user-interface of this implementation, the objective being to achieve early in
the design process and at very low cost, a precise description of the design
which can be used to answer the questions of the outsider.

We concern ourselves particularly with the problems that arise when
software is to be designed by a team. The team must reach decisions, and
agree on them before moving on to implementation. Mathematics is a
language which the design team can use for communication amongst
themselves. They can use this language to make precise statements of
proposals which can then be argued about. They can investigate alternatives
with each design choice being carefully and precisely noted and considered.
The necessary mathematics required to achieve this purpose is very elemen­
tary and can be learned in a few days. We give an example of its use in this
paper.

Our starting point is functional programming. Programs written in a purely
functional style are considered comparatively easy to understand. This is
because functional programs obey the universal laws of mathematics.

Many of the principal components of a software system can be described
using functional programs. In fact, many components can be described using
mathematical functions. For example, a program component which is to
define the displayed value of an updated screen for a given screen and a given
input might be defined by a function f(screen, input) which determines every
field to appear on the updated screen solely from the original value of the
screen and from the value of the given input.

The virtue in describing expected computational behaviour using mathemat­
ical functions has two facets. Firstly, mathematical descriptions combine
precision with understandability in an economical way. Secondly, we can
execute the functions and hence validate that they adhere to our informal
expectations. It is of course possible to use mathematics to give partial
descriptions or to give complete but indirect and hence unexecutable
descriptions. For some problems that may be all we can do. But if we can
give complete constructive and hence executable descriptions we can make
certain and rapid progress in the process of software design. So much so, that
we believe the quality of the software and the cost of its production will both
be markedly improved.

Of course software design is only part of the software lifecycle. It is preceded
by requirements specification about which we have little to say. It is followed
by implementation, which if done using traditional imperative languages
such as Pascal and C, will benefit enormously from the support of traditional

ICL Technical Journal May 1986 65

software engineering tools and their integrated future developments, the
IPSEs. The techniques which we propose here complement these other
phases in that they show how a formal mathematical specification of the
software components to be implemented can be achieved and how design
alternatives can be investigated. They also show how certainty in the
progress of the design can be achieved by members of a design team by
executing their constructive mathematical description as a prototype imple­
mentation.

The method we shall describe, which is based on functional programming
and borrows a great deal from VDM, has been given a name. We call it me
too. Not for any better reason than it needed a name. We shall use this same
label for both the method and the mathematical notation which is part of it.

In normal usage it is clear when one is talking about the method and when
one is talking about the mathematics.

We ought not to give the impression that me too is as elaborate as VDM1-3.
It is not. There may be many things which VDM can succinctly describe
which me too cannot. Learning me too however is probably much easier and
will serve as a gentle introduction to VDM for those who wish to take formal
methods that far.

Finally, before we introduce the method and the mathematics let us explain that
this paper only sets out to give an example and leaves much for the interested
reader to discover. We use a particular brand of mathematics, where another
brand might serve equally well. We use a particular style of prototyping where
another might fit better with a different kind of application. We do not wish to
purvey these particular products so much as a feeling that the use of formal
methods in the design process and some mechanical support for their valid
application can greatly aid the software engineer in what remains one of his
greatest unsupported activities, that of software design.

2 The method

The me too method is a three step method. The steps are illustrated in
Figure 1.

The first two steps, the Model and the Specify steps, concentrate on how to
communicate the details of a design among the members of a design team.
The third step, the Prototype step, serves to validate those details. These
three steps constitute one cycle of the design process. This cycle is repeated,
as the diagram indicates, in order to correct design faults or explore
alternative design decisions.

The technique used by me too to specify a design is similar to that used by
VDM. As in VDM, data objects are modelled on familiar mathematical
structures, and operations on the objects are formally specified by the natural

66 ICL Technical Journal May 1986

mathematical operations allowed on those structures. The me too method
separates the usual process of formal specification into two steps, the Model
step and the Specify step, which are now described.

The first step of the design process, the Model step, is conducted in an
informal way by determining the objects (or data structures) involved and the
operations upon those abstract objects which are appropriate for the
software being designed. Concrete representations are not considered at this
point so that the nature of a design is not influenced by concern over
‘implementation’ details. This first step of the method simply compiles a list
of these objects and operations. For each operation we decide those objects
upon which it acts and the object it returns. Of course, an informal
description is given to each object and each operation.

The list of objects and operations and their descriptions form an abstract
model of the design. This model provides a team with a framework in which
the members can discuss a design, consider alternative design decisions and
generally come to an initial informal agreement about the design. Much of
the creative activity of the design process is involved in this step. The explicit
attention to enumeration of operations is, we have discovered, an efficient
and effective way of capturing those creative design decisions.

At the end of the Model step the design team have reached an informal
agreement about the software they have designed. Each object and each
operation has been agreed. But, experience shows that this agreement is far from
precise. In a traditional design process it may be the highest level of agreement
that the design team can reach. However, subsequent experience will undoubt­
edly demonstrate to them that their design was, in places, flawed.

So, in the Model step a design team propose decisions in an informal way. In
the Specify step the members must commit themselves to making these
decisions explicit by giving formal meanings to the objects and operations of
their design. Before defining the operations, formal representations are given
to each object of the model. The objects are represented using the following
mathematical structures: sets, relations, finite functions (maps) and se­

ICL Technical Journal May 1986 67

quences. The operations are defined using the natural mathematical opera­
tions for the structures on which they act. In me too, all operations are
defined explicitly, unlike in VDM where some definitions may be implicit.
See Reference [4] for a comparison of me too and VDM.

The definitions given to the objects and operations in the Specify step
transform the informal framework of the model into a rigorous design. The
decisions that were loosely formulated in the Model step are precisely
expressed in the formal specification. Therefore, at this stage in the process
there is a somewhat more complete and common understanding between the
members of the team about the details of the design. Typically, in arriving at
agreement about the formal specification of objects and operations, the
design team will uncover and correct some of the residual design flaws.

The mathematics used in the Specify step aids in the communication of
design decisions. It should also assure the correctness of a design. However,
although a mathematical specification gives a clear description of a decision,
it is still possible that the formal meaning is not the intended meaning. A
means for testing a team’s understanding of a design is provided in the third
step of the method, the Prototype step.

The third step calls for a design to be prototyped according to the formal
specification, and for the prototype to be executed in order to validate the
design. The operations in a me too specification are defined explicitly as
constructive functions. The specification is made executable by transcribing
the mathematical notation into a functional programming language.

In the Specify step, the design team comes to an understanding as to how the
system under design behaves. The Prototype step tests this understanding.
The specification is executed and its behaviour is observed. It is found that
this step not only discloses misconceptions about design decisions (errors of
commission) but also reveals where decisions have been ignored (errors of
omission). It is a major contribution of this design method that these failings
are discovered early so that the design team has the opportunity to revise the
design.

On completion of the third step, the team proceeds to correct errors and fill
in holes in the design by repeating the three steps of the method. If the
prototype reveals missing operations, the abstract model is extended. If it
uncovers errors in existing operations, their formal definitions are amended.
The design cycle is repeated in this way until a satisfactory prototype is
obtained.

The method encourages a team to build a design incrementally in short
cycles so that early feedback, is gained after each decision is made. During
any cycle previous decisions may be disregarded to allow investigation of
alternative ones. The method is intended to encourage iterations during a
design. An example of the use of the method to explore different decisions for

68 ICL Technical Journal May 1986

the design of a simple system for manipulating production rules is given later.
First, there is an introduction to the mathematics that the method employs.

3 A little set theory

Of course we can not hope to introduce all of the mathematics which might
be required to describe real software in a paper as brief as this one. Jones’
book3 is relied upon for that purpose and you may find it useful to refer to
Chapters 7, 8 and 12 which explain some of the mathematics which is not
covered in this paper. Jones’ paper1 is an alternative source, but is not a
tutorial.

In fact we borrow our set notation from Turner5,6. He introduced set
notation into a functional language. We expect our sets to behave like the
sets of mathematical set theory and have the usual operations of set theory
(union, intersection etc) available to us. We will often use a set to denote a
data object. For example the set which denotes the binary relation describing
those things which certain people possess is written explicitly as

possesses = {(FRED, BICYCLE), (TOM, PEN), (TOM, ROSE),
(BILL, BICYCLE)}

This is a set of pairs. It has four members, each of which is a pair. We use it to
denote the data base which records the fact that FRED and BILL possess
BICYCLES while TOM possesses a PEN and a ROSE.

Since possesses is a set we can apply various operations into it. So

possesses u {(DICK, STICK)}

is the set which records five possessions, now including DICK’s possession of
a STICK. And

possesses — {(TOM, PEN)}

records only three possessions, which are

{(FRED, BICYCLE), (TOM, ROSE), (BILL, BICYCLE)}

Well, this is all very familiar set notation. Suppose we want to determine all
things which TOM possesses. We write

{t|(p, t) *- possesses; p = TOM}

which is read as ‘the set of all t, such that (p, t) is drawn from [is a member of]
the set possesses and p is equal to TOM.’

This is in fact the set {PEN, ROSE}. Similarly,

ICL Technical Journal May 1986 69

{t|p«-{TOM, BILL}; (p', t) <-possesses; p = p'}

denotes the set of all things owned by either TOM or BILL according to the
relation possesses. This is the set {PEN, ROSE, BICYCLE}.

Alternatively, we could have written this as

{t|(p', t) <- possesses; p' = TOM or p' = BILL}

We can use sets of this sort to describe the data objects which our software is
to manipulate, in a sufficiently rigorous way that the meaning of the
operations which we define can be made clear and precise. For example if S is
a set of pairs we might define an operation

project-right (S, a) = {y|(x, y)<- S; x = a}

which determines for each pair (x, y) in S those pairs for which x = a and
collects together the second members of each pair.

Hence, project-right (possesses, TOM) = {PEN, ROSE} which is the set of all
things that TOM possesses according to the database denoted by the set
possesses.

The operation project-right has two arguments. The first is a set of pairs, the
second is an atom. The result of this operation is a set of atoms. So we can
describe its ‘functionality’ by the statement

project-right: set(Pair) x Atom -*• set(Atom)

This is a mathematical equivalent of a procedure heading. It states that
project-right has two arguments and a single result and denotes the types of
each of the arguments and of the result.

We shall need various extensions of the basic ideas we have introduced in
this section, in order to adequately describe the software which we propose
to design as our example, and we shall introduce those extensions as we go
along. There is however, one mathematical object that is used a lot in the
paper and therefore we shall introduce that here.

The mathematical object that denotes a mapping from objects of one type to
another is called a finite function. (VDM calls it a map).

A finite function is the same type as a set of pairs with one distinction. That
is, each pair in a finite function has a unique first element.

So, the set

ismarriedto = {(BILL, MARY), (MARY, BILL), (TOM, SUSAN),
(SUSAN, TOM)}

70 ICL Technical Journal May 1986

is a finite function, but

possesses = {(FRED, BICYCLE), (TOM, PEN), (TOM, ROSE),
(BILL, BICYCLE)}

is not. The unrepeated first elements form a set called the domain of the finite
function. To obtain the domain of a finite function we use the operation dom.
Thus,

dom(ismarriedto) = {BILL, MARY, TOM, SUSAN}

To emphasise that a particular set of pairs is a finite function we write an
arrow between the members of each pair instead of a comma and omit the
parenthesis. Thus, we would write

ismarriedto = {BILL - MARY, MARY - BILL, TOM - SUSAN,
SUSAN -* TOM}

This is purely a syntactic device to assist readability of descriptions which use
finite functions. A finite function is still a set of pairs and as such can be
subjected to all the operations allowed on such sets.

Two other constructs on finite functions are used in this paper. The first is
finite function override, which is denoted by the symbol ©. It operates on
two finite functions and produces a third. It is like set union, except that pairs
of the second finite function replace those pairs in the first finite function that
have the same domain elements. So, for example,

ismarriedto ® {BILL -► JILL, JILL ->■ BILL, MARY -► FRED,
FRED-»MARY}

= {BILL-► JILL, MARY -*■ FRED, TO M -► SUSAN,
S U S A N T O M , JILL-> BILL, FRED-> MARY}

The other construct is finite function indexing. Because each domain element
of a finite function is mapped to a unique value, we can index it using any
element in the domain to obtain the element to which it is mapped.

Thus, to discover who BILL is married to we use the following indexing
notation

ismarriedto[BILL]

to get the answer MARY. Notice that this is the familiar notation that is used
for arrays in conventional programming languages.

Finally, we can construct finite functions in the following way. Suppose we
want to associate each person in the ismarriedto finite function with the

ICL Technical Journal May 1986 71

things possessed by his or her spouse, according to the possesses relation. We
write this association as follows:

{p -> project-right(possesses, ismarriedto[p])|
p <- dom(ismarriedto)}

This then constructs the set

{MARY-*• {BICYCLE}, SUSAN -*■ {PEN, ROSE}, TOM -+ { },
BILL -*■ { }}

None of the uses of the mathematics in this paper is more difficult than that
we have already introduced and we hope that the example will be sufficiently
interesting that the meaning of the operations will serve to reinforce your
understanding of the mathematics.

Bearing in mind our earlier comments about the use of mathematics as a
language of communication among the members of a design team, what we
hope you will observe in the remaining sections of this paper is the extent to
which an elaborate design can be adequately and precisely stated using the
mathematical language which we shall introduce.

4 The example

As an illustration of the method we will design a simple system for
manipulating production rules similar to that described by Winston7. An
example of a user of such a system is a manager of a firm. The manager
knows of tasks to be performed to which employees of the firm may be
allocated. The manager also knows of courses that instruct on skills that
employees may lack. The manager provides the system with facts about the
requirements of each task, the skills and availability of each employee, and
the dates of courses. The manager may capture the way in which he
manipulates such information in rules of the form shown in Figure 2.

Fig. 2 An example of production rules

Rule 1 If a task requires a skill and an employee has the skill, then the employee
may perform that task.

Rule 2 If an employee may perform a certain task and the employee is available on
a certain day, then the employee may be allocated to the task and the task
may be performed on that day.

Rule 3 If an employee desires a skill and a course instructs on that skill, then the
employee may be interested in the course.

Rule 4 If an employee is interested in a course, and the course is taught on a
certain day and the employee is available on that day, then the employee
may attend the course on that day.

72 ICL Technical Journal May 1986

Each rule has two parts, which we call the ‘ifs’ part and the ‘thens’ part. For
example, rule 2 has the ‘ifs’ part

‘an employee may perform a certain task and the employee is available
on a certain day’

and a ‘thens’ part

‘the employee may be allocated to the task and the task may be
performed on that day’

The production rule system will operate upon a set of given facts and,
whenever the facts in the ‘ifs’ part of a rule match the given facts it will
augment those facts with those obtained from the corresponding ‘thens’ part
of the same rule.

For known facts and rules, we require a system which deduces for the
manager when and to whom a task may be allocated, and when an employee
may attend a course.

Rules of the kind listed in Figure 2 are known in the field of Artificial Intelligence
as production rules. Systems that operate on such rules and known facts to
deduce other facts are termed production rule systems. The remaining sections
of this paper apply the me too method of Software Design to produce a first
prototype of a production rule system capable of applying rules such as those
shown in Figure 2. The design process is described as two major iterations, in the
first we only allow constant facts to appear in rules. In the second we elaborate
this initial design to include the use of variables in the rules.

5 The first design

5.1 The model-step

The first step of the method is to build an abstract model of the system being
designed. This requires us to conduct a preliminary analysis of a production
rule system. We borrow the basic characteristics of a production rule system
from Winston7, and from the requirements of the planning application.

Thus we conclude that a production rule system consists of three parts:

(i) a collection of facts,
(ii) a collection of rules,

(iii) a control strategy which operates on the facts and rules.

A particular control strategy will be designed in this paper. It is one that
deduces all possible facts from given facts and rules by attempting to match
the rules against the facts and repeatedly applying those rules that match
successfully. This control strategy is called ‘forward-chaining’7.

ICL Technical Journal May 1986 73

The abstract model will reflect each of the three main parts. Consider the first
part; the facts.

A model is built for the facts by determining appropriate objects and operations.
Two objects are immediately apparent, a collection of facts which Winston
called a factbase, and a fact itself. A production rule system must be provided
with a factbase therefore operations are needed to set one up. These objects and
operations are given in Figure 3. There are two different kinds of object, a Fact
and a Factbase. There are two operations. addfact(fb, f) will add Fact f to
Factbase fb. The operation emptyfb() creates an initially empty Factbase.

A statement, or signature, is given to denote the type of each operation. In
the case of the first operation, the signature states that addfact acts upon
objects of type Factbase and Fact and produces an object of type Factbase.
The types following the colon and separated by crosses in a signature
represent the arguments of an operation, and the type following the arrow
represents its result. The second operation takes no arguments, and therefore
no types are stated between the colon and arrow in its signature. A
description is given with each object and operation to complete this first
model for the facts.

Fig. 3 A model for Facts

Objects
Factbase - a collection of facts
Fact - a fact

Operations
addfact: Factbase x Fact -> Factbase
addfact(fb.f) adds a fact f to a collection of facts fb.
emptyfb: ->Factbase
emptyfb() creates an empty collection of facts.

At this point in a design, a design team has some informal understanding of
how the operations of the system should behave. The team perhaps simulates
the operations by invoking them manually. In the case of this design, the
team may consider the following sequence of applications on the operations:

fb = addfact(emptyfb(), fl)
fb' = addfact(fb, £2)

and hence demonstrate their intention that fb contains the fact fl and fb'
contains both facts fl and 12. (Notice, it is not known at this stage exactly
how the collection appears, because concrete representations have not yet
been assigned to objects). The team must define precisely how they mean
these operations to behave in the Specify step. In a practical design situation,
the team may feel that there is already enough of a model to proceed through
the design cycle and produce the specification and execute it in order to

74 1CL Technical Journal May 1986

examine the intended behaviour. However, here the model will be extended
to cover the remaining two parts that characterise a production rule system.

The next concept to model is the collection of rules which Winston called a
rulebase.-A rule needs to be labelled with a name, so that a matched rule may
be uniquely determined during the matching stage of the control strategy.
Therefore, another object is needed to represent a rule name. The system
must be provided with the rules, therefore operations are required for
establishing a collection of rules. Since a rule name uniquely determines a
rule, the decision is made and expressed in the model regarding the addition
of a rule to a collection whose name has already been assigned to a rule in
that collection. These concepts are described in the model shown in Figure 4.

Fig. 4 A model for rules

Operations
addrule: Rulebase x Rulename x Rule -»Rulebase
addrule(rb.rn.r) adds a rule r with name rn to a collection rb. If a rule already exists in

rb under the name rn, then r replaces that rule.
emptyrb: ->Rulebase
emptyrb() creates an empty collection of rules,
mkrule: set(Fact) x set(Fact) -»Rule
mkrule(ifs, thens) creates a rule from a set of facts representing the 'ifs1 part and a

set of facts representing the ‘thens’ part.
ifs: Rule-*set(Fact)
ifs(r) gives the set of facts in the 'ifs’ part of the rule r.
thens: Rule->set(Fact)
thens(r) gives the set of facts in the ‘thens' part of the rule r.

There are three new object types. The operations emptyrb() and addrule(rb,
rn, r) are not unlike the operations upon facts. The model also includes
operations for constructing and dismantling a rule. The rules for the
planning application given in the previous section are characterised as
having an ‘ifs’ part which consists of a set of facts which are matched against
the factbase, and a ‘thens’ part which consists of a set of facts that are
deduced when the rule is successfully matched. Operations for creating a rule
and selecting the ‘ifs’ and ‘thens’ part of a rule are listed respectively.

The final part of the model concerns the control strategy of a production rule
system. The strategy for this design contains the following steps. 1 2

1 Each rule in the rulebase is matched against facts in the factbase.
2 The name of each rule whose ‘ifs’ part successfully match facts in the

factbase is noted. If there are no such matches then we are finished.

ICL Technical Journal May 1986 75

Objects
Rulebase
Rule
Rulename

a collection of rules
a rule
a name of a rule

3 For each rule which does match, the facts from the ‘thens’ of that rule
are collected. This new collection of facts is added to the factbase. If all
the facts are already there, then we are finished, otherwise we continue
from step 1.

The strategy is reflected in the model shown in Figure 5. It is believed that
matchapply will apply applyrules to the results of matchrules, which itself
performs an application of matchlife. Figure 6 is a diagram of the intended
strategy.

Fig. 5 A model for the control strategy

matchrules: Factbase x Rulebase-»set(Rulename)
matchrules(fb.rb) returns the set of names belonging to those rules in the collection

of rules rb that match facts in the collection fb.
matchifs: Factbase x set(Fact)-* Boolean
matchifs(fb.fs) tests whether the facts in fs match facts in the collection fb.
applyrules: Rulebase x set(Rulename)-»set(Fact)
applyrules(rb.rns) returns all facts in the ‘thens’ part of each rule in the collection rb

corresponding to a name in the set rns.
matchapply: Factbase x Rulebase -»Factbase
matchapply(fb,rb) returns the factbase which results from repeatedly applying the

rules in rb to the facts in fb until no further facts can be deduced.

3.2 The specify-step

In building the model, the design team has implicitly decided on aspects of
the system’s behaviour. However, the team will not yet have conveyed in any
of the statements made about the system that it has a total understanding of

Fig. 6 The control strategy

76 ICL Technical Journal May 1986

all of these aspects. It is probably the case that the purported understanding
varies amongst different members of the team. The team improves its
position by using the specification language of me too to argue about the
details and to come to a complete and common understanding of the design.

Formal meanings are now given to the objects and operations of the abstract
model. Consider the model of the facts. The objects, Fact and Factbase, need
to be represented by mathematical objects. A fact of the planning system
might be the following expression:

task requires skill

An expression can be viewed as a collection of words, or atoms, where the
words appear in the collection in a fixed order. The mathematical object that
is used to represent an ordered collection of items is a sequence. Another
characteristic of a sequence that distinguishes it from a set is that it is allowed
to have repeated elements. Thus, it seems appropriate that the object Fact is
chosen to be represented as a sequence of atoms. The fact given above
appears, then, in its concrete representation as

<task, requires, skill)

The production rule system described in the model operates on an unstruc­
tured collection of facts, where facts are not repeated, so a set is used to
represent the object Factbase.

The operations on facts can now be defined. The operation addfact takes as
arguments a collection of facts fb and a fact f and returns a collection
containing f. As fb is a set, the operation simply involves set union. The
operation emptyfb has no arguments and returns an empty collection of
facts. The empty object whose type is a set is the empty set. These decisions
are encapsulated in the specification concerning the facts shown in Figure 7.
Notice that the notations set(Fact) and seq(Atom) are used in the definitions
of Factbase and Fact. In general, set(Tl) denotes a set of objects of type T1
and seq(T2) denotes a sequence of objects of type T2, where T1 and T2 can be
any type structured to any level of complexity. In this example, we have in
fact an object type that is a set of sequences of atoms.

Fig. 7 A specification for facts

Representations

Factbase = set(Fact)
Fact = seq(Atom)

Definitions

addfact: Factbase x Fact -*■ Factbase
addfact(fb.f) = fbu {f}
emptyfb: ->Factbase
emptyfbQ = empty

ICL Technical Journal May 1986 77

There is nothing particularly complicated about the mathematics used in this
description. We use empty to denote the empty set. The expression fbu{f}
denotes the set obtained by adding f to the set fb.'

Next is the specification of the rules. This is shown in Figure 8. A rulebase
associates a rule name with a unique rule. The mathematical object that
represents a mapping from an object of type T1 to an object of type T2 is a
finite function. We write its type formally as ff(Tl, T2). Thus, the representa­
tion for the object rulebase is given as

ff(Rulename, Rule)

Continuing now with the specification of the rules, the next definition to provide
is the one for adding a rule to a rulebase. Addrule adds a rule r with name m to a
rulebase rb. Thus addrule adds to rb the finite function that maps m to r. Since
the decision was made to replace any existing rule with the name m in rb with
the new rule r, the finite function override construct is used.

The next operation is emptyrb which creates an empty object of type
Rulebase. Thus, this operation creates an empty finite function, which is just
the empty set.

Now to the representation of a rule. As characterised before, a rule has an ‘ifs’
part followed by a ‘thens’ part. The object Rule is therefore a pair.

Fig. 8 A specification for rules

Representations

Rulebase = ff(Rulename, Rule)
Rule = tup(set(Fact), set(Fact))
Rulename = Atom

Definitions

addrule: Rulebase x Rulename x Rule-> Rulebase
addrule(rb,rn,r) = rb© {rn ->r}
emptyrb: -»Rulebase
emptyrb() = empty

mkrule: set(Fact) x set(Fact) -> Rule
mkrule(ifs, thens) = (ifs,thens)
ifs: Rule->set(Fact)
ifs(r) = first(r)
thens: Rule->set(Fact)
thens(r) = second(r)

The mathematical object that denotes an ordered collection of items which
has a fixed size is called a tuple. In general, we write

tup(Tl, T2,., Tn)

78 ICL Technical Journal May 1986

to denote a tuple of size n, where the first item is of type T1 and whose second
is of type T2, and so on, where T l, T 2 ,..., Tn may be distinct types. Tuples
are provided with selector operations. For example, first and second are
operations that, when applied to a tuple, return its first and second elements
respectively.

The operation mkrule is defined, then, to be the pair whose first element is
the set of facts representing its ‘ifs’ part and whose second is the set of facts
representing its ‘thens’ part. The operations ifs and thens just apply the
selector operations first and second.

The final section of the specification defines the control strategy. The strategy
is described by four operations. These are shown in Figure 9.

Fig. 9 A specification for a control strategy

matchrules: Factbase x Rulebase->set(Rulename)
matchrules(fb,rb) = {rn|(rn, r)<-rb; matchifs(fb,ifs(r))}
matchifs: Factbase x set(Fact)-► Boolean
matchifs(fb.fs) = fs£fb
applyrules: Rulebase x set(Rulename) -► set(Fact)
applyrules(rb.rns) = union {thens(rb[rn])|rn«- ms}
matchapply: Factbase x Rulebase-»Factbase
matchapply(fb.rb) =

let rns = matchrules(fb.rb)
if rns = empty then fb
else let fs = applyrules(rb.rns)

if fs — fb = empty then fb else matchapply(fbufs.rb)

The Boolean valued operation matchifs(fb^s) determines whether the fact fs,
contained in the ‘ifs’ part of the rule, is true with respect to (i.e. may be
matched successfully to) the current factbase fb. We decide that it does so if
every fact in fs is also in fb, that is, if fs is a subset of fb. With this decision we
can construct the set of rulenames of rules in the rulebase rb whose ‘ifs’ match
the factbase fb. This is exactly the set

{rn | (rn,r) <- rb; matchifs(fb,ifs(r))}

Hence we have the definition of matchrules(fb,rb).

To apply these matched rules to the current factbase we first calculate all the
new facts which will be generated by the ‘thens’ parts of matched rules.

The set

{thens(rb[m])|m<- ms}

is almost what we want. Each rulename m in the set of rulenames ms is used
to extract the rule rb[m] from the rulebase rb. The set of facts which make

ICL Technical Journal May 1989 79

up its ‘then’ part is constructed. By this means we construct a set of sets of
facts and must use union, the distributed union operator, to combine these
into a single set of rules. This operator behaves as follows:

If Al, A 2,..., Ak are sets, then
union {Al, A 2,..., Ak} = Al u A 2u ... u Ak.

Finally, we come to the control algorithm itself which is specified in
matchapply(fb,rb). Here we have been explicit about the decisions on
termination. If an attempt to match the rules in rb against the factbase fb
results in an empty set of successfully matched rulenames then matchap-
ply(fb,rb) returns the fb and is finished. Similarly if the set fs = apply
thens(rb,rns) is such that no new facts have been constructed, which will be
seen if the difference of fs and fb is empty, we return fb and are finished.
However, when fs does contain new facts we proceed to construct matchap-
ply(fbufs, rb) which will continue to apply the rules in rb to a new factbase
fbufs.

The specification is a complete record of the team’s understanding of the
behaviour of the system. It can be used to dispel any confusion amongst
members of the team about any aspect of the system.

3.3 The prototype-step

Although a formal specification is a valuable record of a design, it is not
always a manifestation of a correct or complete design. A team’s belief of the
expected behaviour of a system may not be the one that is actually recorded
in the specification, so it is important that in the final step of the method the
team has the opportunity to verify its belief and examine whether the
decisions it intended are in fact the best decisions.

The specification of the production rule system given above can now be
exercised. The operations on facts and rules can be tested. A suitable test
might take the following basic rules and facts:

rb = {rulel ->({(task, requires, skill),
(employee, has, skill)},

{(employee, may, perform, task)}),
rule2->({(employee, may, perform, task),

(employee, available, on, day)},
{(employee, may, be, allocated, to, task),
(task, may, be, performed, on, day)}),

rule3->({(employee, desires, skill)
(course, instructs, on, skill)},

{(employee, may, be, interested, in, course)}),
rule4->({ (employee, may, be, interested, in, course),

(course, taught, on, day),
(employee, available, on, day)},

{(employee, may, attend, course, on, day)})}

80 ICL Technical Journal May 1986

fb = {<task, requires, skill),
(course, instructs, on, skill),
<course, taught, on, day),
<employee, available, on, day)}

The following tests may be made to verify the understanding of the control of
the system.

Define fb' and fb" as follows.

fb' = addfact(fb,<employee, has, skill))
fb" = matchapply(fb',rb)

The result for fb" should be

fb" = {<task, requires, skill),
(course, instructs, on, skill),
<course, taught, on, day),
(employee, available, on, day),
(employee, has, skill),
(employee, may, perform, task),
(employee, may, be, allocated, to, task),
(task, may, be, performed, on, day)}.

Now define fb' and fb" to be

fb' = addfact(fb,(employee, desires, skill))
fb" = matchapply(fb",rb)

Then fb" should be the following collection:

fb" = {(task, requires, skill),
(course, instructs, on, skill),
(course, taught, on, day),
(employee, available, on, day),
(employee, desires, skill),
(employee, may, be, interested, in, course),
(employee, may, attend, course, on, day)}

In fact the prototype we have constructed from the given specification does
verify the intent recorded in the specification. It does, however, throw up
some controversies about how the system might better behave. For instance,
perhaps the system should return only those facts that it deduces. Perhaps it
should record the names of the rules that are applied along with the facts that
are deduced. These aspects are not explored here. What we shall do is to
extend our design to allow rules to contain variables which can match any
atoms appearing in a fact.

ICL Technical Journal May 1986 81

6 T he se c o n d d e sig n

The second design is a revised version of the first. The major revision is to
allow an expression in the ‘ifs’ part of a rule to match more than one
expression in the factbase. This is facilitated by introducing variables into the
system. For example, if task and skill are variables then the following
expression

task requires skill

will match any of the following expressions:

Wallbuilding requires Bricklaying
Decoration requires Painting
Groupleading requires Management

An expression containing variables will be referred to as a pattern.

In presenting the second design we illustrate how, by the iterative nature of
the method, we incrementally modify the model and the specifications given
in the first design. We engage repeatedly in the process of revising the model,
then revising the specification. At each stage, if it were appropriate we could
check the validity of our design decisions by exercising the constructive
functions which form their specifications. We omit the details of such testing
until the entire second design is complete.

6.1 A model and a specification for variables

Two new objects representing a variable and a pattern are added to the
abstract model for the production rule system. The variables in patterns will
need to be distinguished in some way. A variable can be represented as a pair
whose first item is the atom var and whose second is an atom denoting its
name. A pattern is then a sequence of either atoms or pairs of this kind.

The additions to the previous specification are shown in Figure 10.

Here, another object called Value has been introduced, really only to make
the specification easier to write. A Value is of type Atom or Variable. Two
operations have been defined. The first determines whether an object of type
Value is also of type Variable. The second operates on an object that denotes
a variable and returns an atom that represents the name of that variable.

6.2 A model and a specification for pattern matching

Some other concepts need to be addressed. The first is pattern matching. The
expression given previously is now represented as the Pattern

<(var, task), requires, (var, skill))

82 ICL Technical Journal May 1986

Variable = tup({var},Atom)
Pattern = seq(Value)
Value = Atom u Variable
isvar: Value -*■ Boolean
isvar(v) = not isatom(v) and length(v) = 2 and first(v) = var
name: Variable-*Atom
name(v) = second(v)

Fig. 10 Variables and Patterns

To match this expression against the fact

<Wallbuilding, requires, Bricklaying)

means associating task to Wallbuilding and skill to Bricklaying. Another
object is needed to represent a list that associates variable names to the
atoms they match. This object is called an Association, often known as an
association list. An operation can now be introduced which attempts to
match a Pattern against a Fact. If it is successful it will return an object of
type Association. This operation will have the following signature

match: Pattern x Fact-* Association

The operation match will not always succeed. We need to be able to
distinguish those cases when match will succeed from those when it will not.
For this purpose we introduce an operation

matches: Pattern x Fact -► Boolean

If matches(p, f) is true then match(p, f) will produce a valid Association.
Otherwise match(p, f) is not defined.

Some new decisions are now made about the structure of a rule. The first is
that the patterns in the ‘ifs’ part will be ordered. The second is that the ‘thens’
part will be also allowed to contain patterns. Thus rulel in the planning
example will now have the following representation.

(«(var, task), requires, (var, skill)),
<(var, employee), has, (var, skill))),

{<(var, employee), may, perform, (var, task))})

These decisions are accompanied with the one that states that once a
variable’s name is associated with an atom, that atom will replace all further
occurrences of it. Thus each time a variable is matched to an atom, any
variable to the right of it sharing its name will be matched to the same atom.
So in the above example if the first pattern matches the fact

<Wallbuilding, requires, Bricklaying),

ICL Technical Journal May 1986 83

then the second pattern will be replaced by the pattern

<(var, employee), has, Bricklaying).

If this pattern now matches the fact

(Reginald, has, Bricklaying)

then the pattern in the ‘thens’ part will be replaced by the pattern

(Reginald, may, perform, Wallbuilding).

These decisions suggest some revisions to the model. The operation mkrule
now operates on a sequence of patterns, representing its ‘ifs’ part, and a set of
patterns, representing its ‘thens’ part. The operations ifs and thens also need
the relevant changes, so that the model now has the amended information
shown in Figure 11.

Fig. 11 Revised model lor rules

Fact = Pattern
Rule = tup(seq(Pattern), set(Pattern))
mkrule: seq(Pattern) x set(Pattern)-»Rule
ifs: Rule-*seq(Pattern)
thens: Rule-*set(Pattern)

The other revision is an extension to the model. An operation is included that
instantiates variables in a pattern with atoms they have previously matched.
For example this operation will instantiate the pattern

((var, employee), has, (var, skill))

with the list that associates skill with Bricklaying, and yield the pattern

((var, employee), has, Bricklaying)

The operation is called subst (for substitute) and has the following signature

subst: Pattern x Association -*• Pattern

Notice that sometimes subst returns an expression with variables, whilst on
occasion application of it returns one without variables. A restriction will be
put on this design, that the use of subst on a pattern in the ‘thens’ part of the
rule will always return a variable-free expression, in other words a fact. So we
will not add Facts with variables to the factbase.

Now let us turn to the specification of pattern matching. This is shown
completely in Figure 12. Here we have recorded our decision that an
Association is a finite function mapping the Atom representing the name of a

84 ICL Technical Journal May 1986

Association = ft (Atom, Atom)
subst: Pattern x Association -► Pattern
subst(p, a) = <>/isvar(v) and name(v)edom(a)

then a[name(v)] else v|v<-p>
match: Pattern x Fact-> Association
match (p, f) = {name(p[i])-»f[i]|i<-dom(p); isvar(p[i])}
matches: Pattern x Fact -» Boolean
matches(p, f) =

len(p) = len(f) and
and/{isvar(p[i]) and

andl{t[\\ = f [j] | j «- dom(p);
isvar(p[j]) and p[i] = p[j]}

or not isvar(p[i]) and p[i] = f[i] | i«- dom(p)}

Fig. 12 Pattern matching

variable to the Atom representing its value. The meaning of subst(p, a) is then
clearly expressed as the construction of a Pattern (a sequence) congruent to
the sequence p but with those variables whose value is defined by a replaced
by the corresponding value. The definition of match(p, f) takes advantage of
the fact that a sequence is also a finite function whose domain is a set of
integers {1...... len(p)}. Note that match(p, f) is only defined when the fact f
does match the pattern p, in which case the Association is constructed which
maps each variable appearing in p to the corresponding value appearing in f.

All of the hard work has been left to the Boolean valued operation
matches(p, f). In this we use a peculiar device which we write and/{...} where
the set is a set of Boolean values. This expression is true only when all of the
elements in the set is true. In mathematical logic such an expression might
more conventionally be written using a universal quantifier. The body of
matches(p, f) can be read as follows.

(i) p and f are of the same length
and

(ii) For every element p[i] of the pattern p
either (a) p[i] is a variable and for every other occurrence p[j] of

the same variable the same value is matched in the fact f
(f [i] = f □])

or (b) p[i] is not a variable in which case it is identical to f[i].

Now this may not be the simplest form of expression for these three
operations. It was not the first form we wrote down, nor the first form which
we took to prototype. On reconsidering our first specification, which we
thought unnecessarily complex, we discovered the specification written in
Figure 12. We were convinced that it correctly conveyed our meaning, and so
it proved on testing in prototype. There was a minor slip, one of the and/{...}
operators was omitted, but this omission was easily detected and rectified.
The specification had served its main purpose of being a precise vehicle of

ICL Technical Journal May 1986 85

communication between us as designers - we used it to argue about our
intuitions, to efficiently offer alternatives to each other and eventually to
document our decisions to those of you who will seek its exact meaning. No
doubt we will eventually discover a simpler expression of this meaning.
No doubt we will discover residual design flaws or nuances which we had not
considered. If so, and particularly if these discoveries involve a third party, then
again the specification will have served its main purpose - to communicate.

6.3 A model and a specification for the control strategy

First, the model-step. The operations for the control strategy need to be
revised. Recall the operations for matching rules, matchrules and matchifs.
The operation matchifs took a factbase and a set of facts, representing the ‘ifs’
part of a rule, and returned a boolean stating whether or not the facts in the
set successfully matched facts in the factbase. The operation now takes a
factbase and a sequence of patterns as arguments and returns, not a boolean,
but a set of association lists for the variables it has matched. It returns a set
because the sequence of patterns can match the factbase in more than one
way. Take, for example, rule3 shown in Figure 13 (the Planning Example),
which has the following sequence of patterns in its ‘ifs’ part.

Fig. 13 The Planning Example

rulel ->«<(var, task), requires, (var, skill)),
<(var, employee), has, (var, skill))),

«(var, employee), may, perform, (var, task))})
rule2->(<<(var, employee), may, perform, (var, task)),

<(var, employee), available, on, (var, day))),
{<(var, employee), may, be, allocated, to, (var, task))
<(var, task), may, be, performed, on, (var, day))}),

rule3-»(«(var, employee), desires, (var, skill)),
<(var, course), instructs, on, (var, skill))),

{<(var, employee), may, be, interested, in, (var, course))})
rule4->(<<(var, employee), may, be, interested, in, (var, course)),

<(var, course), taught, on, (var, day)),
<(var, employee), available, on, (var, day))),

«(var, employee), may, attend, (var, course), on, (var, day))})

<<(var, employee), desires, (var, skill)),
((var, course), instructs, on, (var, skill)))

The sequence can match the following facts from the factbase shown in
Figure 14.

< Pamela, desires, Carpentry)
(Reginald, desires, Typing)
(Barbara, desires, Therapy)
(Woodwork, instructs, on, Carpentry)
(Secretarial, instructs, on, Typing)
(Psychology, instructs, on, Therapy)

as ICL Technical Journal May 1986

to produce the following set of association lists:

{{employee -* Reginald, skill -+ Typing, course -* Secretarial}
{employee -+ Pamela, skill-►Carpentry, course -► Woodwork}
{employee-+Barbara, skill -► Therapy, course -»Psychology}}

The operation matchrules previously took a factbase and a rulebase as
arguments and returned a set of names belonging to rules that are success­
fully matched. It still takes those arguments, but now it returns with each rule
name the set of association lists resulting from the match. In other words, it
returns a mapping from rule names to the sets of association lists the
corresponding rule generates.

Thus, the new signatures for the two operations are as follows:

matchrules: Factbase x Rulebase -► ff(Rulename, set(Association))
matchifs: Factbase x set(Pattem) -► set(Association)

Fig. 14 A sample factbase

«Barbara, has, Management),
{Reginald, has, Carpentry),
{Reginald, has, Bricklaying),
{Reginald, has, Painting),
{Pamela, has, Typing),
{Pamela, has, Dictation),
{Pamela, has, Wordprocessing),
{Woodwork, instructs, on, Carpentry),
{Woodwork, taught, on, Thursday),
{Secretarial, instructs, on, Typing),
{Secretarial, instructs, on, Dictation),
{Secretarial, taught, on, Monday),
{Secretarial, taught, on, Wednesday),
{Psychology, instructs, on, Therapy),
{Psychology, taught, on, Tuesday),
{Pamela, desires, Carpentry),
{Reginald, desires, Typing),
{Barbara, desires, Therapy),
{Clerical, requires, Typing),
{Clerical, requires, Dictation),
{Decoration, requires, Painting),
{Barbara, available, on, Monday),
{Barbara, available, on, Tuesday),
{Barbara, available, on, Wednesday),
{Barbara, available, on, Thursday),
{Barbara, available, on, Friday),
{Pamela, available, on, Wednesday),
{Pamela, available, on, Thursday),
{Pamela, available, on, Friday),
{Reginald, available, on, Monday),
{Reginald, available, on, Wednesday),
{Reginald, available, on, Friday)}

ICL Technical Journal May 1986 87

Now that matchrules returns something different, the operation for applying
rules must be altered. Instead of applyrules taking a set of rulenames as an
argument, it now takes a finite function from rule names to sets of association
lists. This implies that it must do something with the association lists. For
each rule, it must instantiate the ‘thens’ part with each association list
generated.

This will be achieved by defining another operation called applythens, which
applyrules will use, which takes as arguments a set of patterns and an
association list, and will use the association list to instantiate all the patterns
in the set. Because the decision was made that all patterns in the ‘thens’ part
of a rule will be fully instantiated, this operation will return a set of facts.
Then the operation, applyrules, that calls it will also return a set of facts,
which it did previously. The two signatures for these operations are:

applyrules: Rulebase x ff(Rulename, set(Association)) -» set(Fact)
applythens: set(Pattern) x Association -» set(Fact)

The operation that performs the overall control retains the same signature.
Recall that it had the following signature:

matchapply: Factbase x Rulebase -*■ Factbase

Now to the Specify step, again. The first operation to define is matchrules. It
takes each rulename-rule pair (rn, r) from the rulebase rb and calls matchifs
on the factbase fb, and the ‘ifs’ part of r. It is interested in successful matches
only. It knows that a match is successful if matchifs returns a non-empty set
of association lists. Thus, for each rule r where matchifs(fb, ifs(r)) is a non­
empty set, matchrules maps its name to that set. Its definition, then, is as
follows:

{rn -► matchifs(fb, ifs(r))|(rn, r) <- rb;
matchifs(fb, ifs(r)) # empty}

The next definition is that of matchifs. This is now more complicated.
Matchifs matches every pattern in the sequence in turn. For each pattern, it
must take into account previous associations between variables and atoms
that have been generated whilst matching earlier patterns. For example, with
the sequence of patterns in the ‘ifs’ part of rule3, when matching the second
pattern matchifs must take into account the associations

{employee -*■ Reginald, skill -*• Typing}
{employee -* Pamela, skill -»Carpentry}
{employee -*• Barbara, skill -► Therapy}

that were generated whilst matching the first pattern. Consider, in detail,
what matchifs will do when applied to this particular example:

88 ICL Technical Journal May 1986

When matchifs matches the first pattern

<(var, employee), desires, (var, skill))

it has no previous association lists to worry about. It must use the operations
matches and match to match the pattern against facts in the factbase. But
matches and match only match a pattern against one fact. Thus, another
operation is needed.

This new operation is called matchpattem. It has the following signature and
definition.

matchpattem: Factbase x Pattern -+ set(Association)
matchpattern(fb, p) = {match(p, f)|f<-fb;

matches(p, f)}

It takes a factbase fb and a pattern p, and attempts to match p to every fact f
in fb using the operation match. When matches(p, f) is true then the
Association computed by match(p, f) is collected. It therefore returns the set
of association lists that represent the successful matches of p to facts in fb.

Consider now how matchifs must process the ‘ifs’ part of rule3. It applies
matchpattern to the first pattern to produce the set

{{employee -*• Reginald, skill -»Typing},
{employee -+ Pamela, skill -*■ Carpentry),
{employee -+ Barbara, skill -+ Therapy}}

Call this set Al.

It next turns to the second pattern

<(var, course), instructs, on, (var, skill))

Now it must take into account the set Al. It must apply subst to the pattern
with every association list in Al to produce a new pattern.

For example, if the association list

{employee-+ Reginald, skill-*Typing}

is taken, the pattern becomes

<(var, course), instructs, on, Typing))

This pattern is now matched against fb using matchpattem to produce the
following set of association lists:

ICL Technical Journal May 1986

{{course -+ Secretarial}}

In general of course this set of Associations will have more than one element.
Each Association in this set will be added to the Association which
instantiated the pattern. This process will be repeated for each of the
Associations in A1 to produce the set A2. When the ‘ifs’ part of rule contains
n patterns pi...... pn we will push a set of Associations through these patterns.
Each set of Associations Ak is used to instantiate pattern p(k + 1) which is
matched against the factbase and eventually produces the (possibly empty)
set of Associations A(k + 1). We can express this relationship by defining a
function

cascade: Factbase x Pattern x set(Association) ->set(Association)

so that

A(k + 1) = cascade(fb, p(k + 1), Ak)

The definition of cascade is straight-forward:

cascade(fb, p, A) = {a© a'|a<-A ; a' <- matchpattern(fb, subst(p, a))}

Matchifs uses cascade on each of the patterns in the sequence it is matching.
For the particular example it is being applied to, it performs the following
steps.

It defines the set A1 to be

A1 =cascade(fb, <(var, employee), desires, (var, course)), {empty})

to get

A1 = {{employee -+ Reginald, skill->Typing}
{employee -+ Pamela, skill -+ Carpentry},
{employee -+ Barbara, skill -+ Therapy}}

It then defines A2 to be

A2 = cascade(fb, <(var, course), is, taught, on, (var, day)), Al)

to get

A2 = {{employee -»Reginald, skill-+Typing, course -+ Secretarial}
{employee -»Pamela, skill -+ Carpentry, course -> Woodwork}
{employee -+ Barbara, skill -+ Therapy, course -+ Psychology}

In general we compute

90 ICL Technical Journal May 1986

AO = {empty}
A1 = cascade(fb, pi, AO)

An = cascade(fb, pn, A(n -1))

When we have a series of this form where, for some function f: X x Y -»Y and
some sequence = < x l,..., xn) and wish to compute yn defined by

yl = f(xl, yO)

yn = f(xn, y(n - 1))

we write

yn = reduce(yO, A(x,y).f(x,y), < x l,..., xn».

Thus, using this notation, matchifs applied to a factbase fb and a sequence of
patterns pq has the following definition:

matchifs(fb, pq) = reduce){empty}, A(p,A).cascade(fb, p, A), pq)

That completes the specification for matching rules. Notice two new
operations, cascade and matchpattem had to be introduced in order to
specify matchifs.

Now the specification for applying rules is given. The two operations to
specify are applyrules and applythens. Applyrules has the following defini­
tion:

Fig. 15 The revised control strategy

matchrules: Factbase x Rulebase->ff(Rulename, Association)
matchrules(fb, rb) = {rn matchifs(fb, ifs(r))|(rn, r)«- rb; matchifs(fb, ifs(r)) ^ empty)}
matchifs: Factbase x seq(Pattern)-*set(Assoclation)
matchifsffb, pq) = reduce){empty}, A(p,A).cascade(fb, p, A), pq)
cascade: Factbase x Pattern x set(Association)->set(Association)
cascade(fb, p, A) = {a®a'|a<-A; a '«- matchpattern(fb, subst(p, a))}
matchpattern: Factbase x Pattern -* set(Association)
matchpattern(fb, p) = {match(p, f) |f«—fb; matches(p, f)}
applyrules: Rulebase x ff(Rulename, set(Association)) -* set(Fact)
applyrules(rb, rns) = union {applythens(thens(rb[rn]), a) | rn <- dom(rns): a «- rns[rn]}
applythens: set(Pattern) x Association-»set(Fact)
applythens(ps, a) = {subst(p, a) | p <- ps}
matchapply: Factbase x Rulebase-*Factbase
matchapply(fb, rb) =

{let rns = matchrules(fb, rb)
if rns = empty then fb
else let fs = applyrules(rb, rns)

if fs - fb = empty then fb else matchapply(fbufs, rb)} _________

ICL Technical Journal May 1986 91

applyrules(rb, ms) s
union{applythens(thens(rb[m]), a)|rn«-dom(rns); a<-rns[rn]}

It takes a rulebase rb and a finite function ms which matches rulenames to
sets of association lists. It takes a rulebase rb and every rulename m

Fig. 16 Results tram the Prototype

{<Barbara, has, Management),
{Reginald, has. Carpentry),
<Reginald, has, Bricklaying),
{Reginald, has, Painting),
{Pamela, has. Typing),
{Pamela, has, Dictation),
{Pamela, has, Wordprocessing),
{Woodwork, instructs, on. Carpentry),
{Woodwork, taught, on, Thursday),
{Secretarial, instructs, on, Typing),
{Secretarial, instructs, on, Dictation),
{Secretarial, taught, on, Monday),
{Secretarial, taught, on, Wednesday),
{Psychology, instructs, on. Therapy),
{Psychology, taught, on, Tuesday),
{Pamela, desires, Carpentry),
{Reginald, desires. Typing),
{Barbara, desires, Therapy),
{Clerical, requires, Typing),
{Clerical, requires. Dictation),
{Decoration, requires. Painting),
{Barbara, available, on, Monday),
{Barbara, available, on, Tuesday),
{Barbara, available, on. Wednesday),
{Barbara, available, on, Thursday),
{Barbara, available, on, Friday),
{Pamela, available, on, Wednesday),
{Pamela, available, on, Thursday),
{Pamela, available, on, Friday),
{Reginald, available, on, Monday),
{Reginald, available, on, Wednesday),
{Reginald, available, on, Friday),
{Pamela, may, perform, Clerical),
{Reginald, may, perform, Decoration),
{Pamela, may, be, allocated, to, Clerical),
{Clerical, may, be, performed, on, Wednesday),
{Clerical, may, be, performed, on, Thursday),
{Clerical, may, be, performed, on, Friday),
{Reginald, may, be, allocated, to, Decoration),
{Decoration, may, be, performed, on, Monday),
{Decoration, may, be, performed, on, Wednesday),
{Decoration, may, be, performed, on, Friday),
{Pamela, may, be interested, in, Woodwork),
{Reginald, may, be, interested, in, Secretarial),
{Barbara, may, be, interested, in, Psychology),
{Pamela, may, attend, Woodwork, on, Thursday),
{Reginald, may, attend, Secretarial, on, Monday),
{Reginald, may, attend, Secretarial, on Wednesday),
{Barbara, may, attend, Psychology, on, Tuesday)}

92 ICL Technical Journal May 1986

contained in ms, that is every name in the domain of ms, and each
association list a to which m maps in ms and applies applythens to the
‘thens’ part of the rule associated with m in rb.

Applythens, remember, returns a single sets of facts. Thus applyrules is
collecting a set of set of facts. But applyrules must also return just a single set
of facts. Thus it must apply the distributed union operator to the set of sets.

Finally, applythens has the following definition

applythens(ps, a) = {subst(p, a)|p<-ps}

It takes a set of patterns ps and applies the operation subst to each pattern in
ps. The entire design is collected together in Figure IS.

The overall control operation matchapply is the same as in the first design.
For completeness, it is given with the complete specification of the revised
control strategy.

6.4 The prototype-step

We now turn the specification into a prototype and exercise it. We might set
up the rulebase and factbase given in Figures 13 and 14. We then define

fb' = matchapply(fb, rb)

We would expect to find that fb' is the set contained in Figure 16. Of course
other extensive tests should be performed and were performed by us. The
production system did behave in the way in which we intended, but when we
played with it we became aware of some more sophisticated facilities which it
lacked and to which we then went on to address ourselves. Neither space nor
your patience will allow us to describe those later developments here.

5 Conclusions

We have introduced a method of software design which yields a formal
mathematical description of the design and a demonstration of the validity of
that specification in the form of an executable prototype. We have tried to
convey our belief that this approach to software design can produce the
executable prototype very rapidly. The prototype is not intended to be the
implementation: that must be produced by more conventional means, at
which time attention will be paid to economical use of machine resources.
Eventually the advent of more powerful computers and more sophisticated
methods of implementation for functional languages may change this
situation. Nevertheless, considered as a part of the traditional software
development process, the rapid production of a validated, formal specifica­
tion of the design, can, we believe, contribute significantly to improvements
in software quality and to the cost of software production. Firstly the method

ICL Technical Journal May 1986 93

concentrates on the iterative nature of design and on the need for communi­
cation of design decisions among the members of a design team. The Model-
step encourages the team to investigate alternative designs and gives them a
vocabulary (the names of the objects and the operations) to facilitate their
early informal design discussions. The agreements which the team reaches at
this stage are informal, being captured in English descriptions of the
components of the model.

The Specify-step forces the team to make precise statements of the meaning
of every object and every operation in the model. Typically at this stage the
team discovers inadequacies in the design, which at the Model-step had not
appeared. For example they discover that some cases had not been con­
sidered and some design decisions not made. They also discover that the
understanding of each team member differs in places from the understanding
of the others. The apparent agreement reached at the Model-step is improved
now by the precise statement of the new agreement, reached once these
discrepancies of understanding are resolved.

The design could of course be considered complete at this stage. All of the
creative work is done. Experience shows us however that the kinds of
mistakes which one traditionally makes in programming are also made in
specification. So at the Prototype-step we turn our specification into an
executable prototype of the software and carry out a traditional testing
process. This invariably uncovers errors of omission and errors of commis­
sion in the specification. It forces us to an even higher level of precision and
agreement. It also encourages us to consider alternatives, for often we
discover that the design we have made makes certain requirements awkward
or difficult to achieve and testing the prototype suggests improvements to the
design over and above those suggested in the earlier stages of the method.

So iteration takes place at all stages of the design. Whether we can afford to
carry out many repeated redesigns is very dependent upon the cost of
applying the method. It is our belief that the effort involved in producing a
formal specification and a prototype to validate it is modest in the context of
the entire cost of production of a real software product. If indeed this is the
case and if the early availability of a clear, precise formal description of the
design reduces the traditionally high cost of late discovery of design errors in
the software, there is some basis for our belief that a method such as that
described here can contribute significantly to the production of low-cost,
high-quality software. However, this is not yet the result of experimental
evidence. The project in which we are now engaged, supported by ICL and
by the SERC through the Alvey directorate, is attempting to industrialise this
method, which of course involves both its application and its development.

The mathematics we have used is borrowed largely from VDM. We have
chosen a subset of that notation which is executable as a functional program.
We conjecture that it is powerful enough to describe any software architec­
ture with some succinctness. We could have chosen OBJ which has a similar

94 ICL Technical Journal May 1986

executable subset8 or the specification language Z which is the first one we
studied9. Our choice was largely governed by the availability of Jones’s
book3 at the time we began this work.

The development described here in fact went on to other more elaborate
designs of production rule systems. We are currently engaged in an attempt
to combine the more elaborate of these designs with a design of a Frames
database, partly as an exploration of potential applications for those pieces
of software, but mainly as an experiment in building from reusable software
components.

Our purpose here has been to encourage you to consider using our method
in your own software design tasks and to consider the serious use of
mathematics -as a language for capturing designs and as a language for
communication with your co-designers. The paper was not intended as a
tutorial. You will need to explore further the ideas introduced here and the
best way to do that is to try to apply them yourself. You will then find that
the additional material available in the references is able to answer the
questions that arise and that you will be able to adapt the method to your
own kind of problem and begin to develop it.

References

1 BJORNER, D. and JONES, C.B.: ‘Formal Specification and Software Development.’
Prentice Hall International, Series in Computer Science. ISBN 0 13 329003 4,1981.

2 HENDERSON, P.: ‘me too - a language lor software specification and model building -
preliminary report’ FPN-9, Computing Science Department, University of Stirling, 1984.

3 JONES. C.B.: ‘Software Development: A rigorous Approach.’ Prentice Hall International,
Series in Computer Science. ISBN 13 331579 7,1980.

4 MINKOWITZ, C : ‘Specification to Prototype - a comparison of two formal methods of
software design’ TR.18, Computing Science Department, University of Stirling, 1985.

5 DARLINGTON, J., HENDERSON, P. and TURNER, D.A. (eds.): ‘Functional Program­
ming and its applications - An Advanced Course’, Cambridge University Press, ISBN 0 521
24503 6, 1982.

6 TURNER, D.A.: ‘Functional Programs as Executable Specifications’, in Mathematical Logic
and Programming Languages, CA.R. Hoare and J.C. Sheperdson (Eds.), 1985.

7 WINSTON, P.H. and HORN, B.K.P.: ‘LISP’ Addison-Wesley Publishing Company, ISBN
0 201 08329 9, 1981.

8 GOUGEN, J. and MESEGUER, J.: ‘Rapid Prototyping in the OBJ Executable specification
Language’ ACM Sigs of Software Engineering Notes 7(5), p. 75,1982.

9 SUFRIN, B.: Towards a formal specification of the ICL Data Dictionary’, ICL Technical
Journal, pp. 195-217, Nov. 1984.

ICL Technical Journal May 1986 95

Formal specification — a simple
example

D.A. D uce and E.V.C. Fielding
Rutherford Appleton Laboratory, Didcot, Oxfordshire

Abstract

The Graphical Kernel System (GKS) is now an ISO International
Standard for computer graphics programming. GKS is currently de­
scribed in an informal way; this paper presents some early results from a
project which is looking at the applicability of formal techniques to the
problem of specifying GKS. A specification of a simplified model of GKS
is progressively constructed using a subset of the Vienna Development
Method (VDM) of formal specification. This illustrates how rich specific­
ations can be obtained from simpler ones. GKS concepts and VDM
notation are described as the development proceeds.

1 Introduction

1.1 Background

Standards for computer graphics programming have lagged far behind
standards for programming languages. De facto standards existed in program­
ming languages from the very early days, e.g. Fortran and Algol 60, and
international standards soon followed1. However, in the graphics area a
different pattern has emerged despite the fact that the origins of computer
graphics can be traced back almost to the birth of digital computers. This was
because it was not until the advent of storage tube technology in the late
1960s that hardware costs reduced to a level at which graphics systems were
widely affordable. In recent years the cost of raster graphics displays has
decreased dramatically and this, coupled with the emergence of high-
performance single user workstations, such as the ICL PERQ, is causing a
further revolution in the role of graphics and graphical interfaces in system
design.

A major problem facing system designers is how to write applications
programs which are portable across a range of graphics devices without
requiring major rewriting. This is one of the principal concerns that has
motivated activities to develop standards for computer graphics.

The history of graphics standardisation has been recorded elsewhere2.

96 ICL Technical Journal May 1966

GKS3 is an important landmark in the development of computer graphics,
because it is the first system to be produced as an international standard. The
signs are that it will be an important software standard for the future; many
computer manufacturers, graphics equipment manufacturers and software
houses are offering GKS implementations or GKS-based products. ICL offer
a GKS implementation on the PERQ, which was developed in collaboration
with Rutherford Appleton Laboratory.

1.2 GKS

GKS is a two-dimensional graphics system which aims to provide an
interface between application programs and a wide variety of graphics
devices. It is defined independently of programming languages, although
standard bindings to programming languages (e.g. Fortran and Pascal) are
being developed. GKS caters for both graphical output and graphical input.
A full description of GKS is contained in Reference 2.

The document describing GKS is some 245 pages long. Despite strenuous
efforts by the ISO working group and the editors of the document it is
inevitable in a document of this size that there will be ambiguities and
omissions; places where a knowledge of the review process is necessary to fully
understand what is required of an implementation. The issue of validation of
GKS implementations is a crucial area, presently being addressed. *

The need for rigorous specification of software products is gradually being
recognised in the software industry and it is our belief that the most rigorous
specifications possible should be given for standards, if the word ‘standard’ is
to have any meaning.

Previous articles in this journal have looked at the application of formal
techniques to the specification of protocols4 and databases5. Graphics is an
area to which formal techniques have not as yet been widely applied. It is our
belief that there is an urgent need for work in this area, to discover ways of
presenting complex standards in a clear, readable and unambiguous form.

The work described in this paper has arisen during the early stages of a
research project being carried out by the authors at the Rutherford Appleton
Laboratory to explore the application of formal specification techniques to
GKS. The project is funded by the Alvey Directorate as part of its Software
Engineering Programme and ICL West Gorton act as the project’s Alvey
Uncle.

The project is proceeding by looking at the application of formal techniques
to small parts of GKS. The parts are being chosen on the basis of our
understanding of GKS that they will be key components in any complete
specification. The approach is thus to establish the viability of particular
techniques and styles of using them on small systems before embarking on a
more complete specification.

ICL Technical Journal May 1986 97

The small system described here has been described from a different
viewpoint6, where the emphasis was on how one might reason about the
behaviour of a system from its specification. This paper concentrates on
illustrating how rich specifications may be obtained from simpler ones, by
using this example to take the reader step by step through its construction.
Each step introduces and captures a small number of GKS concepts and
these concepts are explained informally as the development proceeds.

The specification technique used in this paper is based on the Vienna
Development Method (VDM)7. Only a limited subset of VDM and a
simplified notation have been used.

2 Formal specification technique

The purpose of a specification is to state what a system is to do, not how it is
to do it. It does this by describing the internal state of the system in an
implementation-independent way by the use of abstract data types. An
abstract data type is characterised only by the operations allowed over it and
is representation-independent.

The specification technique used in this paper, VDM, is an example of the
constructive or model-based approach, which models abstract data types in
terms of mathematically tractable entities such as basic types (integers, reals
etc.) and tuples, sets, lists and mappings.

The VDM specifications given in this paper consist of:

- a model of the state
- operations over the abstract data type comprising the state, which

characterise it

The state definition describes the structure of the class of objects representing
the state in terms of basic and constructed types. The operations are defined
implicitly by predicates, which allows relations and thus nondeterminacy to
be specified. However the operations given in this paper do not require this
generality, and in fact reduce to functions. Operation definitions given here
then have the general type:

State x Inputs -* State

and are described by two predicates: a precondition and a postcondition. The
former is a predicate over State and Inputs and defines the conditions under
which the operation produces a valid result. The latter is a predicate over
State (the initial state), Inputs and State (the final state), which defines the
effect of the operation.

98 ICL Technical Journal May 1986

3.1 Basic GKS concepts

GKS provides a functional interface between an application program and a
configuration of graphical input and output devices at a level of abstraction
that hides the peculiarities of device hardware. It achieves device inde­
pendence by means of the concepts of abstract input, abstract output and
abstract workstations. The concept of abstract input will not be discussed,
but the specification attempts to capture the other two concepts.

First, what is meant by abstract output? In GKS, pictures are constructed
from a number of basic building blocks, called output primitives, which are
abstractions of the basic actions that a graphical output device can perform
(e.g. drawing a line). There are six output primitives in GKS: polyline,
polymarker, text, fill area, cell array and generalised drawing primitive
(GDP); each of which has associated with it a set of parameters, which define
a particular instance of the primitive. This paper considers the polyline
primitive, which draws a connected sequence of line segments and has the co­
ordinates of its vertices as parameters.

3 The first specification

The concept of an abstract workstation in GKS is an abstraction from
physical device hardware and maps physical output primitives to abstract
output primitives and physical input primitives to abstract input primitives.
It represents zero or one display surfaces and zero or more input devices as a
configuration of abstract devices. An application program may direct output
to more than one workstation simultaneously; however, the specification will
aim to model only a system with a single workstation.

The application program specifies co-ordinate data in the parameters of an
output primitive in world co-ordinates (WC), a Cartesian co-ordinate system.
World co-ordinates are then transformed to a uniform co-ordinate system for
all workstations, called normalised device co-ordinates (NDC) by a window to
viewport mapping termed a normalisation transformation. A second window
to viewport mapping, called the workstation transformation, accomplishes the
transformation to the device co-ordinates (DC) of the display surface.

To simplify the specification, WC co-ordinate space will be ignored and it will
be assumed that polyline co-ordinate data are supplied in NDC co-ordinates.
It is also assumed that the single workstation transformation is fixed.

This description of GKS has extracted the basic concepts of a complex
system. These can now be described formally to form a framework on which
to build three more specifications which successively capture more of the
concepts and complexity of the real system. The next section gives the formal
specification of a system embodying the basic concepts.

ICL Technical Journal May 1986 99

The state and operations of a formal specification of the simplified GKS
system described above must capture the concepts of NDC space, a
workstation and the GKS polyline function.

These concepts are captured in the GKS state by having one component
which models the NDC picture and a second component which models the
concept of a workstation. In this simplified system, a workstation can be
represented simply by a model of the DC picture that is displayed on the
display surface. The polyline function is captured by an operation,
add_ polyline, defined over the state which gives the relationship between these
two pictures and shows how they are constructed.

This leads to the following definition for the state of the system.

The state

3.2 The basic specification

GKS = NDC_Picture x DCpicture

NDCJicture = list of Component
Component = NDC Jolyline

NDC Jolyline = NDC Jo in ts
ND CJoints = list of NDC J o in t
NDC J o in t = R x R

DCJicture = list of DCJolyline

DCJolyline = DC J o in ts
DC J o in ts = list of DC J o in t
D C Joint = R x R

States of the system are described by objects of type GKS, which is defined to
be an ordered pair with first component of type NDCJicture and second
component of type DCJicture.

The NDCJicture is modelled as a list of objects of type Component, which, in
this case, is simply of type N DC Jolyline: a list of real co-ordinate pairs (the
co-ordinates of its vertices). As the development proceeds, the need for the
introduction of the type Component here will become apparent.

The DC picture that is displayed on the workstation is modelled similarly to
the NDC picture, as a list of DC polylines. At the DC level, a polyline is also
described as a list of real co-ordinate pairs. The type DCJolyline captures
the essential features of a polyline displayed on a workstation.

The use of the data type list rather than set in the definitions of both the NDC

100 ICL Technical Journal May 1986

and DC pictures allows the order in which primitives are created to be
retained for use in their display. The GKS document does not actually
prescribe an order of display of primitives, but most implementations do
preserve order of creation in order of display.

The definition of the add_polyline operation to model the creation and
display of polyline output primitives is now given.

The operation

let mk_gks(ndcp, dcp) = gks in

add^polyline: GKS x NDC_Points -*■ GKS
add_polyline(gks, pts, gks') =
post ndcp' = mkjidc_polyline{pts) : ndcp a

dcp' = mk_dc_polyline(t(pts)) :: dcp

t: NDCJPoints -* DC J o in ts

The let clause proceeding the operation definition holds over all subsequent
operation definitions and serves to name the initial state and its components.
The names of the final state and its components which result from the
operation are obtained by decorating the names in this let clause with a prime
('). A second let clause which does exactly this has been omitted for simplicity.
The convention followed is that type names have capitalised initial letters and
the names of instances are the lower case equivalents of their types.

The first line of the operation definition is its signature, which defines types of
the arguments and the result of the operation. The second line simply names
the objects of the types given in the signature. Thus gks, the initial state, is of
type GKS, the argument pts is of type N DC J o in ts (a list of NDC co-ordinate
pairs), and the result of the operation, gks', the final state, is also of type GKS.

The precondition has been omitted as it is simply true, i.e. all values of inputs
and initial state will produce a valid result. The postcondition describes the
effect of the operation. It states that as a polyline is created, an object of type
NDCJolyline is formed (by mk_ndc_polyline{pts)) and is added to the list,
ndcp, representing the NDC picture by the cons (*::’) operator. A corre­
sponding polyline is displayed in DC space by transforming the list of NDC
co-ordinates to a list of DC co-ordinates by means of the function t and then
forming an object of type DCJolyline, which is added similarly to the DC
picture. The details of the function t are not of interest here, and fco a
definition of t is not given.

That concludes the first specification.

ICL Technical Journal May 1966 161

4.1 GKS segment storage

The next concept to be introduced is one which allows an application some
means of structuring a picture. The kind of structuring often required is the
ability to define a graphical object, for example, a tree by a sequence of
polyline primitives, and the ability to reuse this definition. GKS allows
output primitives to be grouped together into units termed segments which
are stored, conceptually at the NDC level, and which may be manipulated in
certain ways as a single entity. Segments may not be nested.

So pictures are now constructed from both segments and primitives outside
segments. The specification will concern itself with capturing this picture
structure and the creation and storage of segments, but not with any further
segment manipulations.

This enhanced system is now specified.

4.2 The specification with segments

The concepts that now need to be modelled in the state are: the picture at
NDC level, the segment store and the picture at DC level. The polyline
function is captured as before by an add^polyline operation and a new
operation, add_segment, is required to capture the GKS functions concerned
with collecting primitives into segments.

The add_segment operation may be considered to be an abstraction of the
following sequence of GKS functions:

CREATE SEGMENT^ • •)
POLYLINE(- • •)

POLYLINE(- • •)

CLOSE SEGMENT
The new state and operation definitions are now given.
The state

GKS = NDC_Picture x DC_Picture x Segment_Store

NDC_Picture = list of Component
Component = N DC _Polyline] Segment

Segment = list of NDC_Polyline

Segment_Store = list of Segment

DC_Picture = list of DC_Polyline

4 The second specification

102 •CL Technical Journal May 1966

The state GKS has now become a triple with the addition of a third
component to model the segment store.

The NDC picture is still modelled as a list of Component but now a
Component may be either of type NDC polyline, as before, or of type Segment
(T denotes alternation). This allows pictures in NDC space to be constructed
from both primitives outside segments and segments.

Segments are modelled, as might be expected, by lists of primitives and
segment store is modelled as a list of segments.

The definitions of the types comprising NDC_Polyline and DCJPolyline have
not changed from the previous specification and so have not been repeated.
Notice that although the definition of the NDC picture has changed, that of
the DC picture has not. Segment storage is only operative in the NDC
picture; the picture displayed on the workstation has, conceptually, no
segment structure.

The definitions of the operations over this new state require a new let clause
which also names the additional component of the state which models the
segment store. Apart from the fact that it operates over the new state, the
definition of the add_polyline operation remains unchanged and so has not
been repeated here. So, only the definition of the new operation add_segment
needs to be given. The function t also remains as it was before.

The operations

let mk_gks(ndcp, dcp, ss) = gks in

add_segment: GKS x Segment -*• GKS
add_segment(gks, s, gks') =
post ndcp’ = s : ; ndcp a

ss' = s :: ss a
dcp' = to_dc(s) || dcp

to_dc\ Segment -*■ DC_Picture
to_dc(s) = if s = < > then < >

else let mkjndc_polyline(pts) = hd s in
mk_dc_polyline(t(pts)) :: to_dc{tl s)

The function to_dc generates the DC picture corresponding to the segment
given as argument. It constructs a list of DC polylines by traversing the list of
NDC polylines comprising the segment and generating the corresponding
DC polylines by transforming the co-ordinates to DC co-ordinates.

ICL Technical Journal May 1986 103

The postcondition of add_segment states that the segment s is simply added to
the lists representing the NDC picture and the segment store. A flattening
and loss of the segment structure occurs in adding the DC equivalent of the
segment to the DC picture as the list of DC polylines resulting from the
application of the tojlc function is appended by the operator ‘||’ to the
previously displayed picture.

That concludes the second specification.

5 The third specification

5.1 Appearance of primitives

So far, nothing has been said about the appearance (line style, colour etc.) of
primitives displayed on workstations.

In GKS the appearance of a primitive displayed on a workstation is
determined by its parameters and additional data termed aspects. The aspects
of a polyline are: linetype, which in GKS may be solid, broken, dashed-dotted
or implementation-dependent; linewidth scale factor, which is applied to the
nominal linewidth provided by the workstation to give a value which is then
mapped to the nearest available linewidth; and polyline colour index.

In the following specifications, linewidth scale factor will be simplified to be
just linewidth and it will be assumed that the workstation supports any
linetype or linewidth values requested as the GKS mechanism for mapping
requested values onto available values will not be specified. Only the two
aspects of linetype and linewidth will be looked at, and colour will not be
considered.

There are two basic schemes in GKS for specifying aspects, termed individual
specification and bundled specification. In this paper only bundled specific­
ation is considered. Individual specification and the relation between bundled
and individual specification is addressed in Reference 8.

In the bundled mode of specifying polyline aspects, the values of all the
aspects are determined by a single attribute, called the polyline index. A
polyline index defines a position in a table, the polyline bundle table, each
entry in which is termed a bundle and specifies the values for each of the
aspects. The bundle corresponding to a particular polyline index is termed
the representation of the index. There is an operation which sets the value of
polyline index modally, as well as an operation to set the representation of a
bundle index.

When a polyline is created, the current value of the polyline index is bound to
the primitive and cannot subsequently be changed. Bundles are bound to
primitives when they are displayed. In GKS each workstation has its own
polyline bundle table, which allows the application to control the appearance

104 ICL Technical Journal May 1986

of polylines created with the same polyline index independently on each
workstation on which they are displayed, using the capabilities of the
workstation.

5.2 The specification including appearance

The models of the NDC picture, DC picture and segment store are
unchanged except for the descriptions of polylines in NDC and DC space.
The GKS state is extended by an additional component to model the polyline
bundle table. The concept of a workstation in this system is now being
represented by two state components: the DC picture and the polyline bundle
table.

The operations over this state are again add_polyline and add_segment, and
there is also a new operation, set_polyline_representation, which associates a
bundle representation with a polyline index in the polyline bundle table.

Both the add_polyline and add_segment operations are abstractions of an
amalgamation of GKS functions. In GKS, polyline index is set modally, but
in the specification given here the appropriate polyline indices are provided
as arguments to the add_polyline and add_segment operations (in the latter
case bound to the polylines in the list of NDC polylines given as argument).
Thus add_polyline is equivalent to the sequence of GKS functions:

SET POLYLINE INDEX(- • •)
POLYLINE^ • •)

and add_segment is equivalent to the sequence of GKS functions:

CREATE SEGMENTS)
SET POLYLINE INDEX()
POLYLINE(-)

SET POLYLINE INDEX(•)
POLYLINE^ • •)

CLOSE SEGMENT

The new definitions of the state and the operations are given below.

The state GKS is now a tuple consisting of four components. The structure of
the NDC and DC pictures and of the segment store is unchanged. However,
the definition of NDC_Polyline has been enhanced by the addition of
Polylinejndex, which will be bound to the polyline at the time of its creation.
DC JPolyline has been enhanced by the addition of Bundle, which captures the
concept of a bundle being bound to the primitive at display time.

ICL Technical Journal May 1986 105

The data type used to model the polyline bundle table is a mapping from a
polyline index to a bundle (a linetype, linewidth pair). A mapping is a finite
function in which the pairing of domain and range elements is constructed
explicitly.

The state

GKS = NDC_Picture x DC_Picture x Segment_Store
x Polyline_Bundle_Table

NDC_Picture = list of Component
Component = NDC_Polyline | Segment
Segment = list of NDClPolyline

NDC_Polyline = NDC_Points x Polylinejndex
PolylineJndex = N
Segmentjitore = list of Segment

DC_Picture = list of DC_Polyline
DC_Polyline = DC_Points x Bundle

Bundle = Linetype x Linewidth
Linetype = N
Linewidth = R

Polyline_Bundle_Table = map Polylinejndex to Bundle

The definitions of the operations are given below.

The precondition of add_polyline demands that a representation has been
defined for the polyline index supplied as an argument. In the add^olyline
operation, an NDC polyline is now formed from the NDC co-ordinate list
and polyline index supplied as arguments; thus the polyline index is bound to
the polyline at the time of its creation. The corresponding DC polyline is
formed from the transformed NDC co-ordinates and the bundle obtained by
applying the polyline bundle table mapping to the polyline index (denoted by
pbt(pi)). This achieves the effect of binding the bundle to the polyline at the
time of its display.

The add_segment operation has been extended by the addition of a precon­
dition stating that all the polyline indices in the segment supplied as an
argument must be defined. The function tojlc again traverses a segment,
generating the corresponding list of DC polylines by not only transforming
the co-ordinates of the vertices, but also by binding in the representation of
each polyline index obtained from the polyline bundle table.

The set_polyline_representation operation describes the addition to the
polyline bundle table of the new representation specified for the polyline

106 ICL Technical Journal May 1986

The operations

let mk_gks(ndcp, dcp, ss, pbt) = gks in

add_polyline: GKS x NDC^Points x Polylinejndex -+ GKS
add_polyline(gks, pts, pi, gks') =
pre pi e dom pbt
post ndcp' = mk_ndc_polyline(pts, pi) :: ndcp a

dcp' = mkJLc_polyline(t(pts), pbt(pi)) :: dcp

t: NDCJPoints -+ DC_Points

add_segment: GKS x Segment -+ GKS
add_segment(gks, s, gks') =
pre V pi s.t. mk_jidc_polyline{pts, pi) e elems s . p ie dom pbt
post ndcp' = s :: ndcp a

ss' = s :: ss a

dcp' = to_dc(s, pbt) || dcp

tojlc: Segment x Polyline_Bundle_Table -+ DC_Picture
to_dc(s, pbt) = if s = < > then < >

else let mkjidc__polyline(pts, pi) = hd s in
mk_dc_polyline(t(pts), pbt(pi)) :: to_dc(t\ s, pbt)

set_polyline_representation: GKS x Polylinejndex x Linetype
x Linewidth-*GKS

set_polylinejepresentation(gks, pi, It, Iw, gks') =
post pbf = pbt + [pi -+ mk_bundle(lt, iw)]

index. The operator ‘ + ’ adds polylinejndex -+ mkjjundle{linetype, line-
width) to the mapping, overriding any previous value associated with
polylinejndex.

That concludes the third specification.

6 The fourth specification

6.1 Dynamic behaviour of aspects

It has been noted above that once a polyline index value has been bound to a
primitive, the value bound cannot be changed. In the previous specification it
was seen that the representation of a polyline index (i.e. the bundle associated
with the index in the polyline bundle table) can be changed. From the post­
condition of set_polyline_representation given in Section 5.2, it is seen that this
operation leaves both the DC and NDC pictures unchanged. In other words,

ICL Technical Journal May 1986 107

changing a representation of a polyline index does not affect the appearance
of primitives already created with that index.

GKS does allow changing a representation to have a retrospective effect. If a
representation of a polyline index is changed, the appearance of polylines
already created with that polyline index may also be changed to the new
representation. GKS admits that some workstations may be able to perform
such changes dynamically (for example changing a colour table) while others
may need to redraw the picture to effect the changes as in the case of a pen
plotter. GKS allows the application to control when such redrawing
(regeneration) takes place. As the only stored representation of the picture in
GKS is that stored in the segment store, such regeneration is performed using
the contents of the segment store.

For each picture change that can potentially require a regeneration, each
workstation has a flag to indicate whether the change may be performed
immediately (IMM) or requires a regeneration (IRG). When a regeneration is
required, another flag - implicit regeneration mode - is consulted. This flag
can be set by the application and has two possible values:

ALLOWED - regeneration will be performed immediately

SUPPRESSED - regenerations will be postponed until one of the
functions REDRAW ALL SEGMENTS ON
WORKSTATION, UPDATE WORKSTATION
or CLOSE WORKSTATION is invoked.

The system described below is rather more rigidly defined than GKS
prescribes, in that here a regeneration is performed in all circumstances where
the GKS document does not state anything stronger than that it is allowed.

6.2 The full specification

The state is once again extended, this time by the addition of two flags to
control the effects of polyline bundle representation changes, and when any
regeneration occurs. The workstation concept is now being captured by four
components of the state representing: the DC picture, the polyline bundle
table, the bundle modification flag and the implicit regeneration mode.

One new operation, redraw_all_segments is defined to represent all the GKS
functions which update the picture displayed on the workstation. The
definitions of add_polyline and add_segment remain unchanged, but that of
set^>olyline_representation must now capture the effects of changing a
polyline bundle representation on polylines already displayed on the
workstation.
The complete state and operation definitions are given below.

108 (CL Technical Journal May 1986

The state

GKS = NDC_Picture x DCJicture x SegmentJStore
x PolylineJundleTable
x BundleJAodificationJlag x Implicit Regeneration

NDC_Picture = list of Component
Component = N DCJolyline \ Segment
Segment = list of NDCJolyline

NDC_Polyline = NDC_Points x Polylinejndex
ND CJoints = list of NDC J o in t
NDC J o in t = R x R

Polyline_Index = N

Segment_Store = list of Segment

DC Jic ture = list of DCJolyline
DCJolyline = DC J o in ts x Bundle x Polylinejndex

DC Jo in ts = list of DC J o in t
DC J o in t = R x R

Bundle = Linetype x Linewidth
Linetype = N
Linewidth = R

PolylineJundle_Table = map Polylinejndex to Bundle

Bundle ̂ Modification J lag = {IRG, I MM}
Implicitjegeneration = {ALLOWED, SUPPRESSED}

The only changes to the previous state are the addition of the two flags:
bundle modification flag and implicit regeneration mode. The definition of
DC Jolyline has also been extended to include the polyline index for reasons
that will become clear in the next section.

The function regenerate traverses the list representing the segment store,
using the function to_dc to generate from the NDC polylines in each segment
the corresponding DC polylines, with both polyline indices and bundles
bound. The function recreate describes the effect of an immediate change to a
DC picture by effectively rebinding the bundles to the DC polylines in the DC
picture. It uses the polyline index value now contained in each DC polyline to
look up the new bundle representation in the polyline bundle table mapping.
This is done without reference to the segment store.

ICL Technical Journal May 1986 109

The operations

let mk_gks(ndcp, dcp, ss, pbt, bmf, ir) = gks in

add_polyline: GKS x NDC_Points x Polyline_Jndex —> GKS
add^polyline(gks, pts, pi, gks') =
pre pi 6 dom pbt
post ndcp' = mkjidc_polyline(pts, pi) :: ndcp a

dcp' = mk_dc_polyline(t(pts), pbt{pi), p i):: dcp

t: ND CJoints -+ DC Jo in ts

add_segment: GKS x Segment -* GKS
add_segment(gks, s, gks') =
pre V pi s.t. mk_ndc_polyline(pts, pi) e elems s . p ie dom pbt
post ndcp' = s :: ndcp a ss' = s :: ss a dcp' = to_dc{s, pbt) || dcp

to_dc: Segment x Polyline_Bundle_Table -* DC_Picture
to_dc(s, pbt) = if s = < > then < >

else let mkjndc_polyline(pts, pi) = hd s in
mk__dc_polyline(t(pts), pbt(pi), p i):: to_dc{tl s, pbt)

redraw_all_segments: GKS -+ GKS
redraw_all_segments(gks, gks') =
post dcp' = regenerate(ss, pbt)

regenerate: Segment_Store x Polyline_Bundle_Table -* DC_Picture
regenerate(ss, pbt) = if ss = < > then < >

else to_dc(hd ss, pbt) || regenerate^ ss, pbt)

set_polylinerepresentation: GKS x Polyline_Jndex
x Linetype x Linewidth -* GKS

set_polyline_representation(gks, pi, It, Iw, gks') =
post pbt' = pbt + [pi -» mk_bundle{lt, iw)] a

(bmf = IM M => dcp' = recreate{dcp, pbt')) a

(bmf = IRG a ir = ALLOWED => dcp' = regenerated, pbt')) a

(bmf = IRG a ir = SUPPRESSED => dcp' = dcp)

recreate: DC_Picture x Polyline_Bundle_Table -* DC_Picture
recreate(dcp, pbt) = if dcp = < > then < >

else let mk_jlc_polyline(dpts, b, pi) = hd dcp in
mk_Jc_polyline(dpts, pbt(pi), pi)
; : recreate(tl dcp, pbt)

110 ICL Technical Journal May 1986

6.3 The effect of a regeneration

As a simple illustration of the ability of formal specification to explain the
consequences of design decisions, consider the following.

If an implicit regeneration is performed, the postcondition of
set_polyline_representation says that:

dc^picture' = regenerate(segment_store, polyline_bundle_table')

From the postconditions of add_polyline and add_segment it is seen that only
add_segment stores primitives in segment store. Thus the effect of a regener­
ation is to remove all primitives outside segments from the picture displayed
on the workstation in the process of applying the new polyline bundle table to
change the representations of displayed polylines. This is indeed what
happens in GKS.

7 Conclusions

This paper has shown how the specification of a complex system can be built
up in stages and how the resulting specification can be used to deduce
behavioural properties from the system. This latter point is further developed
in References 6 and 8.

References

1 HILL, I.D. and MEEK, B.L.: 'Programming language standardisation’, EUis & Horwood,
1980.

2 HOPGOOD, F.R.A., DUCE, D.A., GALLOP, J.R. and SUTCLIFFE, D.C.: 'Introduction
to the Graphical Kernel System (GKS), Academic Press, 1983.

3 ‘Information processing systems — Computer graphics — Graphical Kernel System (GKS)
functional description’, ISO 7942, ISO Central Secretariat, Geneva, 1985.

4 TURNER K.J.: Towards better specifications’, ICLTech. J., 1984, 4 (1), 33-49.
5 SUFRIN, B.: ‘Towards a formal specification of the ICL Data Dictionary’, ICL Tech. J.,

1984, 4 (2), 195-217.
6 DUCE, D.A., FIELDING, E.V.C. and MARSHALL, L.S.: ‘Formal specification and

graphics software’, RAL-84-068, Rutherford Appleton Laboratory, 1984.
7 JONES, C.B.: ‘Software development: a rigorous approach’, Prentice-Hall, Englewood Cliffs,

New Jersey, 1980.
8 DUCE D.A. and FIELDING, E.V.C.: ‘Better understanding through formal specification’,

RAL-84-128, Rutherford Appleton Laboratory, 1984.

ICL Technical Journal May 1986 111

The effects of inspections on software
quality and productivity

B.A. Kitchenham
ICL Software Engineering Technical Centre

Kidsgrove, Staffordshire
A.P. Kitchenham

ICL Mainframe Systems Division
Kidsgrove, Staffordshire

J.P. Fellows
industrial student, North Staffordshire Polytechnic

Blackheath Lane, Stafford

Abstract

The paper reports the effect of using inspections during the early
phases of software production on two developments which were part
of the ICL VME operating system. The results indicated that detailed
design inspections improved the quality of code, both by removing
design errors and by the fact that errors introduced subsequent to
design were found at earlier stages in the software testing phase.

Design inspections involved only a small proportion of the total
development effort (6-9%) but accounted for a substantial proportion
(40-50%) of all the recorded errors. The cost of finding errors in terms
of man-hours was also small (1-2 to 1-6) compared to an observed cost
of 8-47 man-hours per error for errors found by code execution in one
of the developments.

1 Introduction

Since 1981, the production of ICL’s VME Operating System has been
instrumented by a semi-automated data collection and analysis scheme1.
One of the aims of this scheme was to develop the means to evaluate the
effectiveness of VME production methods. A previous paper2 has described
how the initial analyses indicated that VME error screening methods were
allowing a relatively high proportion of design errors compared with code
errors to reach our in-house services and our customers. In addition results
indicated a relationship between the type of error found and the method of
error screening used, with some evidence that non-execution techniques were
important for screening design errors. The conclusion of that work was that
Inspection methods3, which are non-execution methods and apply equally to

112 ICL Technical Journal May 1986

the design and coding phases of software production, would potentially
address the problems identified.

The advantage of the data collection and analysis scheme is that it may be
used to evaluate the effect of change as well as indicate potential problems.
This implies that the introduction of Inspections into VME production
methods can and should be evaluated. This paper, therefore, reports the
effect of using Inspection methods, by examining two VME developments on
which the techniques were used.

2 Inspections

Although it was intended to use the method of Formal Inspection developed
by Michael Fagan of IBM3, there were a number of difficulties due to a lack
of proper training in the technique and a number of compromises were made.

The original idea behind Inspections was that of applying process manage­
ment techniques to software development. Fagan pointed out that successful
management requires planning, measurement and control, and that software
management would be improved by incorporating these elements into a
defined development process comprising a series of operations with associ­
ated exit criteria. Inspections, themselves, were intended to allow the
completeness and correctness of the software product to be assessed during
the early stages of development, and thus to form part of a process of
determining whether exit criteria have been achieved.

The Inspection process involves a group of people checking some product
documents (e.g. design documents, code listings, test plans, etc.) at specific
points in the development process in order to find any errors efficiently and
economically.

Fagan recommends an inspection team take on the following roles:

Moderator

Designer

Coder/implementor

Tester

who manages the inspection process. He or she is
responsible for scheduling the inspection meeting,
circulating inspection material, chairing the inspec­
tion meeting, reporting inspection results and follow­
ing up any identified rework. A moderator must be a
competent software engineer but need not be a techni­
cal expert on the software being inspected,
the person responsible for producing the design of the
software.
the person responsible for translating the design into
code.
the person responsible for writing and/or executing
test cases or otherwise testing the product of the
designer and coder.

ICL Technical Journal May 1986 113

If the coder is also the designer and tester, he or she should act as the
designer and other implementors should be asked to act as coder and tester.

The processes involved in Inspections are:

- Overview (for design inspections, not code inspections)
- Preparation
- Inspection
- Rework
- Follow-up.

Each of these processes will now be described in more detail.

Overview

The overall area being addressed by the software and the specific area
currently due for Inspection are described by the designer. Design documen­
tation should be circulated to participants after the overview.

Preparation

Each person should study the inspection material on their own in order to
understand its logic and intent. Fagan recommends that inspection teams
should study the ranked distribution of error types found by recent
inspections, and checklists of error detection guidelines.

Inspection

A ‘reader’ is chosen by the moderator to describe how the next phase of
development will progress given the current phase. Thus, at a design
inspection, the coder will describe how the design will be implemented, and
will paraphrase the design, covering each piece of logic and each branch at
least once.

The objective of the Inspection is to find errors not to provide solutions.
Once an error is recognised it is noted by the moderator, its type is classified
and its severity identified. Within one day of the inspection, the moderator
should produce a written report of the inspection and its findings.

Rework

All errors or problems noted in the inspection report need to be resolved by
the designer or coder/implementor.

Follow-up

It is the responsibility of the moderator to ensure all errors and problems are
resolved and to schedule re-inspections if necessary.

114 •CL Technical Journal May 1986

There were three main differences in the VME study compared with Fagan’s
procedures:

(i) the number of people present at each Inspection varied: for high level
design inspections (i.e. inspections of the overall subsystem design
and interface modules), more people attended than the recom­
mended number; for detailed design inspections (i.e. inspections of
the internal design of a module) fewer people attended than recom­
mended; and code inspections were often a dry checking exercise (i.e.
code-reading exercise) performed by an individual other than the
coder,

(ii) the moderator and other participants were people involved in the
development itself,

(iii) there were no suitable checklists available.

The procedures that were adopted were:

(i) for all design inspections a moderator was present to control the
inspection and record all the identified problems,

(ii) the inspections were directed to identifying problems not solving
them,

(iii) the inspections were kept to approximately two hours elapsed per
session,

(iv) each problem was assigned to an actionee to solve and the modera­
tor was responsible for ensuring that a solution was found,

(v) inspection reports were normally kept and copies sent to project
managers,

(vi) errors were classified for later analysis.

3 Development 1

3.1 Background

This development was concerned with a new tape management facility. It
was a moderately complex development. The staff involved consisted of a
team leader/designer who was very experienced in tape management prob­
lems and a number of other implementors and testers who were not
experienced in such problems although they were all experienced in VME
development.

3.2 The design inspection process

The development was subject to one high level design inspection which found
30 problems. The 73 constituent programs making up the development were
identified and some of those programs were then given detailed design
inspections.

ICL Technical Journal May 1986 115

The programs not given detailed design inspections were those that the team
leader believed were particularly simple or well understood. There were 30
such programs.

The remaining 43 programs were all given detailed design inspections.
This took a total of 9 sessions and found 213 problems. The time
attributed to inspection sessions was 95 hours. Allowing two hours
preparation time for every hour spent in inspections would increase the
time to 285 hours which means that each error took an estimated 117
man hours to identify or the error screening rate was 085 errors per hour.
In addition since the total time devoted to the development was 4830
hours, the proportion of the total development effort devoted to inspec­
tions was only 6%.

3.3 Evaluation of the Inspection process

The fact that this development was split into two groups of programs, one
group given detailed design inspections and one group not given detailed
design inspections allows the effect of the inspections to be gauged by
looking at the subsequent error history of the two groups. Table 1 shows this
in terms of a breakdown of the error rate at various stages of the
development process.

It is clear from Table 1 that the team leaders’ assessment of the programs not
given detailed design inspections was correct. The lower overall error rate
indicates that they were indeed simpler. However, it is interesting to note that
although the programs given detailed design inspections did have a larger
proportion of subsequent errors, the errors were found earlier in the

Table 1 The error rates for development 1 subsequent to the design phase

Programs given
detailed design
inspections

Programs not
given detailed
design inspection

Number of programs 43 30
Size of programs 8653 4681
(lines of code)

Subsequent error
rate per 100 lines:
Due to dry checking 0-99 0-53
Due to code execution 0-80 0-68
testing
Due to use on in-house 0-20 0-28
services
Found by customers 0-01 004

Overall 200 1-54

116 ICL Technical Journal May 1986

subsequent software development cycle. Thus, by the time the software had
been in the field 9 months, the programs given detailed design inspection
revealed 1 error in 8653 lines of code compared with the programs not given
detailed design inspections which revealed 2 errors in 4681 lines. The
difference in the subsequent distribution of errors is statistically significant
(p < 0 05) using a chi-squared test.

4 Development 2

4.1 Background

This development was to provide an automatic filestore management system
for backups and archiving. This was a complex development. The staff
involved were all experienced in VME design and implementation but had
limited experience in the problem area.

4.2 The design inspection process

In order to complete the high level design inspection of this development, 15
inspection sessions were required which found 197 errors. Not all detailed
design inspection sessions were properly recorded but for those for which
records remained, 21 sessions found 307 errors.

The total time attributed to these inspection sessions was 265 man hours.
Allowing 2 hours preparation time for every hour spent in inspections would
increase the time to 795 man hours. This would imply that each error took
1-58 man hours to find, or the error screening rate was 0-633 errors per hour.

Detailed design inspection records were not available for 31% of the
subsequent code. On a pro-rata basis this implies that an additional 117 man
hours were spent on such inspections. The total time devoted to this
development was 10164 man hours which implies that design inspections
(detailed and high level) accounted for approximately 9% of the development
time.

4.3 Evaluation of the inspection process

Since this development did not have any internal comparisons, the only
method of evaluating the effect of the inspections is to compare the
development with overall trends.

In terms of overall productivity the development involved the production of
39 000 lines of code at an overall rate of 144 lines per man week in an elapsed
time of 24-5 months. Compared with the Rome Air Development Centre
statistics for US developments quoted by Putnam9, the productivity
achieved for this development was 30% better than average although the
time scale was slightly longer than average.

ICL Technical Journal May 1986 117

Table 2 Distribution of post-design errors

Type of error % Errors found in
development 2
subsequent to
design

% Errors found in
all VME
developments
between Jan 1983
and June 1983

Dry checking and/or 57-5 37-6
code inspection
Dry execution testing 38-4 51-2
Use on in-house services 4-1 11-2

In terms of subsequent error occurrence, the development can be compared
with the overall average for VME developments during a comparable time
period as shown in Table 2. This indicates that the post-design errors are
being found earlier in the subsequent development cycle compared with
VME overall. This confirms the trend observed for development 1.

Table 3 shows the type of error found after design. The difference between the
percentages of errors classified as ‘other’ is probably due to the fact that these
include source clearance errors and ripple errors which are more likely to
occur in old code (as much of VME is) than in newly developed code and
development 2 involved the development of an entirely new subsystem. The
differences of particular interest are the decrease in design errors and the
increase in interface errors compared with overall VME trends. The decrease
in design errors is hopefully attributable to the design inspections. However,
the increase in interface errors needs further explanation and will be
discussed later.

The relationship between program size and number of post-design errors is
shown in Fig. 1. This shows a fairly linear relationship which accounts for a
statistically significant (p < 0 001) 54% of the variation. The existence of a
linear-type relationship has been observed for VME developments pre­
viously3 and indicates that the design inspection process does not radically
change the nature of post-design implementation. The existence of the
relationship allows programs with particularly high or particularly low error
rates to be identified. Using an ad hoc procedure the diagram shown in Fig. 2
was used to separate the programs into 3 groups. The group of programs

Table 3 Type of post-design errors

Type of error % Errors found in
development 2

% Errors found in
all VME
development

Software interface 5-8 21
Design error 81 13-3
Code error 810 70-3
Other 51 14-2

118 ICL Technical Journal May 1986

Size of program (lines of code)
Fig. 1 Scatter diagram of the number of errors against program size for development 2

Fig. 2 Classification of programs based on the relationships between program size and
number of errors for development 2

Id - Technical Journal May 1986 119

below the thick semi-diagonal lines was that which had a high error rate.
This division identifies a group of 20 high error rate programs which
accounted for 9-6% of the code and 26% of the post-design errors, and a
group of 212 low error rate programs which accounted for 18-4% of the code
and only 4% of the post-design errors.

The programs which revealed a high error rate were primarily those that
interface with another VME subsystem developed by another production
team which played an essential support role for development 2. These
programs were responsible for the large number of interface problems noted
earlier. The reason why these problems were not revealed during the design
process is probably due to the fact that no representative from the support
subsystem attended the inspections. This emphasises the need for all affected
areas to be represented in inspections and indicates why for high level
inspections the experience within VME has been for more people than
needed in Fagan’s recommended number.

Finally, the cost effectiveness of inspections may be considered by comparing
the cost of finding an error during the design inspections (1*58 man hours)
with the cost of funding an error during execution testing and in-house use.
Test and support effort amounted to 2854-6 man hours and execution testing
and in-house use revealed a total of 337 errors. Thus the cost of finding errors
later in the development cycle is approximately 8-47 man hours which is
more than 5 times more costly.

5 Comparison with other results

Fagan6 has stated that within IBM, Inspections find 80% of errors that are
observed prior to system release. For VME the results are a bit more difficult
to gauge because the VME code inspections were much more like dry
checking than inspections. However, considering all non-execution tech­
niques together (design inspections plus code inspection and dry checking),
these accounted for 73% and 75% of the recorded errors of development 1
and development 2 respectively while the design inspections alone accounted
for 50% and 41% respectively of the recorded errors of each development.

The rates of the high level and detailed design inspections are shown in
Table 4. These are much faster than the rates recommended by Fagan6 which
are 300 and 135 lines per elapsed hour for what Fagan calls a design
‘overview’ and design inspection.

Table 4 Rate of design inspections in equivalent lines of code per elapsed hour

High level design Detailed design

Development 1 520 480
Development 2 650 640

120 ICL Technical Journal May 1986

Thus, although the rate of the design Inspections was too fast by IBM
standards, if the results of dry checking and code inspections are included,
the error screening rate of non-execution methods is close to IBM standards
(i.e. code execution techniques which logically reveal code errors efficiently).

6 Discussion

The results described in this paper both support the contention that
Inspections are an efficient and inexpensive method of error screening, and
confirm the diagnosis presented in a previous paper2 of some of the problems
associated with VME code production and how they might be solved.

The effect of the design inspections seems to be not only to find design errors
but also to allow subsequent errors to be found earlier in the development
process. If the process of system production is considered in the manner
suggested by Small and Faulkner7, as a process of design decomposition
followed by system integration, then errors are introduced into each level in
the system decomposition process and unless the errors are removed at each
stage they propagate throught the subsequent levels. In these terms, the
results of Inspections could be explained as a process of error screening
relevant to the particular stage of system decomposition which prevents the
propagation of errors to lower stages in the decomposition process. This
ensures that the errors introduced subsequently are those which may be
found efficiently by subsequent screening techniques (i.e. code execution
techniques which logically reveal code errors efficiently).

A complementary model of software errors8 considers the type of errors
found during each stage of system integration and suggests that the type of
error found is related to an equivalent stage of decomposition phase. So that
code errors are found during unit testing, detailed design errors are found
during subsystem testing, high level design errors are found during system
testing, and requirements errors are found after release to customers. Boehm9
reports TRW findings which suggest that it costs between 20 and 50 times
more to deal with errors in a released product compared with errors during
the requirements and high level design phases of development. Thus,
Inspections should provide means of screening the most expensive errors.
Obviously it is impossible to assess objectively at which stage an error would
have been found subsequently (unless it is left in and tracked) but the
subjective feeling of those involved with Inspections was that they were
finding errors which would otherwise have reached customers. This has
encouraged the introduction of Inspections even earlier in the software
development process (i.e. requirements definition).

Acknowledgements

We should like to thank Mike Fagan and Tom Gilb for their encouragement
and advice on the subject of Inspections.

ICL Technical Journal May 1986 121

References

1 KITCHENHAM, B.A.: ‘Program history records - a software data collection and analysis
scheme’ ICL Tech. J. (1984).

2 KITCHENHAM, B.A.: The use of software metrics to assess software development
techniques’ Proc. FTCS - 13th Annual International Symposium on a Fault-Tolerant
Computing, Milan (1983).

3 FAGAN, M.E.: ‘Design and code inspections to reduce errors in program development’ IBM
Sys. J„ 15, 3 (1976).

4 PUTNAM, L.H.: Tutorial on Software Cost Estimating and Life-cycle Control: Getting the
Software Numbers. IEEE Computer Press, 1980.

5 KITCHENHAM, B.A.: ‘Software metrics’. Proc. Convention Informatique, Vol. A, 244-249
(1982).

6 FAGAN, M.E.: Personal communication (1983).
7 SMALL, M. and FAULKNER, T.: ‘A quality Model of System Design and Integration’

FTCS-13, Milan (1983).
8 JONES, C.B.: ‘Rigorous Design of Software’. Lecture to the North Staffs Branch of BCS,

Keele, (1981).
9 BOEHM, B.W.: Software Engineering Economics. Prentice-Hall, Inc, Englewood Cliffs, N.J.

(1981).

122 ICL Technical Journal May 1986

Recent developments in image data
compression for digital facsimile

M.J.J. Holt and C.S. Xydeas
Department of Electronic and Electrical Engineering

Loughborough University of Technology
Loughborough, Leics., England

Abstract

Digital facsimile is an increasingly important component in office
automation. Techniques for the compression of bi-level scanned
image data are vital to the efficient storage, retrieval and transmis­
sion of office documents. Part I of this paper reviews recent devel­
opments and evaluates various existing techniques. The review is by
no means exhaustive, but covers what the authors consider to be
significant developments in the efficient compression of black and
white images for an office automation environment. In Part II, a
scheme for the compression of typewritten and printed documents
is described. It incorporates a new pattern-matching algorithm
which can handle a variety of styles and sizes of text more efficiently
than existing methods.

PART I - EXISTING COMPRESSION TECHNIQUES

1 Introduction

Digital facsimile is an increasingly important aspect of office automation.
Equipment is widely available which can scan and digitize a black and white
document at a resolution of 200 dots per inch (7.7 dots per mm.). At this
resolution, an A4-size document generates about 0.5 Mbytes of image data.
Compression is therefore of great importance for the efficient storage,
retrieval and transmission of office documents.

There are three stages in the digitization of a document. First, a scanner
samples the intensity of the document at regularly spaced picture elements
(pels). Next, the intensity is quantised to two levels (black and white), thereby
reducing the image to a binary matrix where 1 = black and 0 = white.
Finally, this data may be compressed by eliminating redundant information
in the image. This paper is concerned with techniques for the third stage,
image data compression.

ICL Technical Journal May 1986 123

2 Exact codes and standards

Most of the compression schemes reported before 1980 share two properties.
They are ‘exact’ codes, in the sense that the original image data can be
reconstructed exactly from the compressed code. They also exploit only local
redundancy, with the advantage that very little of the image data (typically
one or two scan lines) are used at any one time in the generation of the code,
and hence the memory requirement is low in both the encoding and decoding
equipment. Examples of such schemes are run-length coding1, block coding2,
line-difference coding3 and predictive coding4.

By 1978, the proliferation of such schemes was such that the CCITT study
group XIV was set up to achieve compatibility between group 3 facsimile
apparatus. In 1980, the group recommended a one-dimensional run-length
code, known as Modified Huffman code (MHC), and a two-dimensional line-
difference code known as the Modified READ Code (MRC), which forms an
optional extension to MHC5. Other exact codes, based on two-dimensional
predictive coding, achieve slightly higher compression than MRC6,7, but the
latter algorithm is preferred because of its relative simplicity.

Since the recommended codes are intended for transmission over noise-
prone public switched telephone networks, they include redundant bits
which limit the extent of image corruption in the event of a transmission
error. In a later study the CCITT proposed a two-dimensional code for
noise-free environments (MRC-II), which is equivalent to MRC but
without the redundant bits for error protection8. The three CCITT-
recommended codes (MHC, MRC and MRC-II) can compress a typical
A4 business letter, sampled at 200 pels per inch, by factors of 14, 20 and
28 respectively5,8.

3 Preprocessing

Many existing schemes improve on the compression of exact codes by
introducing a preprocessing step, in which some non-essential information
in the image is irreversibly removed. The main purpose of preprocessing is
to increase the local redundancy in the image data, without seriously
distorting the reconstructed image, enabling an exact code to perform
more efficiently.

3.1 Sm oothing

One type of preprocessing involves removing isolated black pels and
smoothing the edges of black objects. This can often actually improve the
visual quality of the image, by eliminating spurious effects due to noise
introduced during digitization.

Smoothing is normally achieved by a set of two-dimensional templates
(masks) of a given size, to which the digitized image is forced to conform.

124 ICL Technical Journal May 1986

Each mask is laid over the original image data (source) in every possible
position, and the value of the key element (normally the central element of
the mask) is changed in the image whenever a one-to-one match exists
between the rest of the mask and the source. Masks of various sizes are used
in reported preprocessing algorithms, typically 3 x 29, 3 x 310 and 4 x 411. A
typical set of 3 x 3 smoothing masks is shown in Fig. 1, and their effect on a
sample of image data is shown in Fig. 2.

The improvement in compression as a result of noise removal or smoothing
depends very much on the information content and noise content of the
image. Improvements between 15% and 50% in compression have been
reported as a result of applying preprocessing masks prior to two-dimen­
sional exact coding9,12.

(a) Masks in which the central pel is changed to white.

Q O o
£ J, <?
X X X

o o o
o 1 X
o X X

HHJHv n *

a x
O i l
oB

X X o
X 1 o
o o l o

X o o
X 1 o
X o o

o o o
X 1 o
X X o

(b) Masks in which the central pel is changed to black.

X 1 1
X o 1
X 1 1

1 1 X
1 o X
1 1 X

X X X
1 o 1
1 1 1

1 1 1
1 o 1
X X X

1 1 1
o X

1 X X

1 1 1
X o 1
X X 1

1 X X
1 o X
1 1 1

X X 1
X o 1
1 1 1

0 = white 1 = black x = don’t care
Fig. 1 Masks used for Majority Logic Smoothing10

r e s o l u t i o n and
s c r e e n . Images
s y s t e m . The sa
pho to g rap h ic and
th e c a p a b i l i t i e s

r e s o l u t i o n and
s c r e e n . Images
s y s t e m . The sa
pho tog raph ic and
the c a p a b i l i t i e s

Fig. 2 Effect on smoothing of samples of typewritten and handwritten documents: (a)
Original image, (b) Smoothed image.

ICL Technical Journal May 1966 125

3.2 Thinning

A number of existing compression methods1314 code only the centre lines, or
skeletons, of black objects, achieving compression 50—90% higher than
MRC. The image can no longer be reconstructed exactly, but a close
approximation is obtainable when the black lines in the original image are of
roughly uniform thickness. Many handwritten and hand-sketched images
and some technical drawings have this property.

Of the many thinning algorithms reported in the literature, a typical
approach used in the context of compression is that described by Judd13.
Edge pels of black objects are removed by the iterative application of a set of
3 x 3 masks, subject to certain constraints. The algorithm consists of four
subcycles, which remove separately the left, right, top and bottom edges of
black objects. The masks used in the left-edge subcycle are shown in Fig. 3. If
a 3 x 3 neighbourhood matches the edge-detection mask, the central black
pel is changed to white, provided that the neighbourhood does not also
match any of the three constraining masks. The masks used in the other three
subcycles are rotations of the masks in Fig. 3 through multiples of 90 degrees.
The constraining masks are included to preserve connectivity in black
objects and to prevent the erosion of line-ends.

X X X
o 1 1
X X X

E dge-
D e te c t i on
M a s k

1 o X
o 1 1
X X X
N.

X X X
o 1 1
1 o X

o o o
o 1 1
o o o

-------------v ----------
Const raining
Masks

0 = white 1 = black x = don’t care

o 1 o
o 1 X
o 1 o

y

(central pel is changed to white, masks for other edges are rotations of these
through multiples of 90 degrees)

Fig. 3 Thinning masks used by Judd13, left hand edges only

Unlike smoothing, the effect of thinning is to introduce some distortion in the
image. This is usually compensated by a post-processing step at the decoder,
which restores the thickness of objects in the reconstructed image close to
that of the original. In Judd’s scheme13, for example, black objects are
arbitrarily thickened by one pel on the left and top edges. The effects of
Judd’s thinning and thickening algorithms on a sample of image data are
shown in Fig. 4.

4 Shape coding methods

All the methods described so far have used only local redundancy in
achieving compression. Another class of methods (‘shape’ coding) exploits a
higher level of redundancy by describing the shapes of objects and lines in an

126 ICL Technical Journal May 1986

r e s o l u t i o n and
s c r ee n . Images
s y s t e m . The sa
pho tog raph ic and
th e c a p a b i l i t i e s

r e s o l u t i o n and
sc reen , Images
sys t em. The sa
pho tograph ic and
the c a p a b i l i t i e s

, ..a

r e s o l u t i o n and
sc reen , Images
s y s te m . The sa
p h o tog raph ic and
the c a p a b i l i t i e s

Fig. 4 Effect of thinning on samples of typewritten and handwritten documents: (a) original
image, (b) thinned image, (c) thinned image after thickening

image. Such methods are more costly in terms of computation and memory,
since they operate on the whole image, or at least a significant part of it, at a
time. However, shape coding can achieve high compression for certain types
of image, such as handwriting and technical drawings.

4.1 Chain coding

Some coding schemes employ a chain-coding of the edges or centre lines of
black objects. Essentially, chain-coding is an efficient way of representing a
sequence of adjacent points, in which the position of a point is expressed as a
direction relative to the previous point. In an image digitized over a
rectangular grid, there are only eight possible directions between adjacent
points. Hence three bits per point are required for all but the first point in
any chain. A variation of this is differential chain-coding, in which a point
position is expressed as a change of direction (‘turn’) relative to the preceding
two points. Since the ‘straight-ahead’ turn (no change of direction) has a
considerably higher probability than other turns, a variable-length coding of
the turns can achieve greater compression than straight-forward chain­
coding.

Differential chain-coding has been applied to the contours (edges) in a black-
and-white image15. By reconstructing the contours and filling the spaces
between them, the original digitized image can be exactly reproduced from
the contour code. However, this method achieves, on average, slightly lower
compression than other exact algorithms such as predictive coding16.

ICL Technical Journal May 1986 127

Judd’s scheme13 applies chain-coding to the centre-lines of black objects,
which are obtained by thinning. This approach achieves compression
typically 50% higher than any exact coding method. However, entropy
measurements suggests that a 2-D predictive code applied to the thinned
image (in place of chain coding) would generate even higher compression17.
Furthermore, the approach is only suitable for images where the black lines
are of approximately uniform thickness.

4.2 Vector/arc approximation

Lines in an image can often be approximated by a sequence of straight lines
and circular arcs. This approach is established for preprocessing in syntactic
optical character recognition, and for automatic input to CAD systems. It
also has potential value in the compression of an image which can be well
approximated by vectors and arcs of sufficient length.

One such scheme is described by Pavlidis18. The image is first thinned, and
lines in each thinned object are tracked and fitted by straight-line segments
and circular arcs. Short segments which are unconnected at one end are
assumed to be either noise or serifs in characters, and are eliminated. The
remaining segments are then encoded as vectors and arcs, which generate
fewer bits than exact coding.

The effect of this vector/arc approximation is seen in Fig. 5. There is some
visible distortion in the drawing, but the characters are still readable. The
technique is clearly unsuited to lines of non-uniform thickness and solid

Fig. 5 Effect of thinning and vector/arc approximation on a sample of an engineering
drawing. Reproduced from Pavlidis1’

128 ICL Technical Journal May 1986

black areas. No direct comparison has been made between the compression
of this and exact-coding methods.
A vector coding which preserves line-width is described by Ramachandran20.
It has a low memory requirement but still presents the image in a form
suitable for analysis and editing. Compression reported for a circuit diagram
is lower than exact coding of the same image reported elsewhere6, but there is
still scope for optimization of the vector code20.

5 Pattern-matching methods

It has been known for some time that for documents which are predomi­
nately machine-generated text (typed or printed), much greater compression
is achievable by exploiting the redundancy due to the repetition of symbol
patterns21. Pattern-matching methods for bilevel image data compression
fall into two categories:

5.1 Character recognition

A very efficient approach to text image compression uses optical character
recognition (OCR). Each character extracted from the document is compared
with a pre-programmed library of standard character descriptions, using
statistical or structural OCR techniques22. If a match is found, the character
is represented in the code by its ASCII code (or equivalent). A small amount
of additional code is required to convey details of the word, line and
paragraph spacing in the document, but the compression factor is extremely
high-typically six times that of MRC-II, and greater than 100 for most
typewritten business documents. Furthermore, the code is in a form which
lends itself to further text processing if required.

Unfortunately, reported implementations of such schemes23-24 are re­
stricted to a small set of styles and sizes of printed text, or require training
specifically to each set of character patterns they are able to handle. They
also need to be specifically tailored to any mathematical symbols or foreign
alphabets. Existing character-recognition schemes are not therefore well
suited to general purpose facsimile coding, where there may be no control
over character fonts in the input documents.

5.2 Symbol pattern-matching

A more general-purpose approach is symbol pattern-matching21, where
compression is achieved by encoding only the first occurrence of each distinct
symbol pattern in the image. The encoder maintains a copy of the image and
a library of symbol patterns in its memory. Initially this library is empty.
Each symbol encountered in the image data is extracted and deleted from the
memorized image. The symbol pattern is compared with those in the library
by template matching, i.e. superimposing two symbols and thresholding the
error pattern generated where the patterns differ. If no match is found, the
current symbol is added to the symbol library.

ICL Technical Journal May 1986 129

For each symbol extracted, its location in the image and its identification are
encoded. The identification of a symbol is either its position in the symbol
library or an indication that it is to be added to the library. For each new
library symbol, a full description must also be encoded, consisting of the size
and exact pattern of the symbol. The decoder maintains an adaptive symbol
library identical to that constructed by the encoder.

Since the library of symbol descriptions is constructed from the source
document itself, symbol pattern-matching is theoretically capable of hand­
ling any size or font of character and many different alphabets. A number of
practical implementations of this idea have been reported23,25,26, and the
compression factors obtained are two to three times greater than that given
by MRC coding. However, the efficiency of such schemes has been found to
be considerably less when the text is small or the digitization noise is high31.
An improvement in this area is presented in the latter half of this paper.

6 Hybrid coding schem es

The shape-coding and pattern-matching methods described above can
achieve much greater compression than the more established exact coding
algorithms. However, none of these methods is suitable for all types of
document images. For an arbitrary document, the best compression can only
be obtained by a hybrid scheme which adaptively selects the most suitable of
a variety of coding methods.

It can also be beneficial to combine two or more methods in the coding of a
single document. A business letter, for example, contains not only typewritten
text, for which pattern-matching is ideally suited, but also a company logo and a
signature, both of which are better suited to exact coding or shape coding
methods. Documents may also contain areas of halftone (grey-scale simulated
by black dots), for which specialised coding methods are available27. Ideally, an
adaptive hybrid scheme should be capable of applying a separate appropriate
coding method to each class of imagery in the document.

This is partly achieved by the CSM scheme23, which combines exact coding and
symbol pattern-matching within the same document. Symbols are defined to be
connected black objects entirely contained within a fixed-sized moveable
window. Any such objects are removed from the image and coded by pattern-
matching. The remainder of the image is termed the ‘residue’ and is encoded
exactly, using the MRC algorithm. A variation on this approach incorporates in
addition character recognition24. Symbols are compared first with a prepro­
grammed library of standard character fonts. Recognised characters are ASCII
coded, while unrecognised characters and the residue are handled as in the CSM
scheme. This approach works reasonably well for documents which are
predominantly machine-generated text, but can be inefficient for other images,
since the symbol-extraction algorithm is applied, often needlessly, over the
entire image. It also performs poorly over areas of halftone and other forms of
shading, where the symbol pattern library can rapidly fill up with many
‘symbols’ which are in fact random patterns of lines or connected dots.

130 ICL Technical Journal May 1986

These problems can be overcome by scanning the data prior to processing,
measuring basic properties which classify the image into text, graphics, half­
tone, etc., and performing a field segmention of the image into regions of
different classes if necessary. Techniques for segmenting a document into text
and graphics have been developed for document reading and analysis
systems28,29. A fusing process locates contiguous blocks in the image, which
are either lines of text or regions of graphics. The classification of each block
is determined from its shape and basic run-length statistics.

A method for identifying regions of halftone has been implemented in an
experimental facsimile workstation which combines two different exact
coding algorithms30. The classification is determined, in a prescanning of the
document, by evaluation of joint value and slope distributions of 4-bit
quantized samples. There is still a need for a scheme which recognises
halftone directly from binarized image data.

7 Discussion

As hardware costs have decreased, compression techniques of increasing
complexity have become technically feasible. Sophisticated algorithms have
been described with the potential for compression several times that
achievable by established techniques. However, their practical implementa­
tion is not so well documented.

To bring this order of compression into the automatic office, it is necessary to
generalise the new techniques to handle arbitrary input documents. This
involves further development of the vector and arc approximation approach.
Symbol pattern-matching must be extended to handle a wider variety of text
sizes. Comprehensive and reliable segmentation algorithms are also required
for the realisation of fully adaptive hydrid systems.

PART II - NEW PATTERN-MATCHING ALGORITHM FOR TEXT
IMAGE COMPRESSION

1 Introduction

Since the majority of office documents are in printed form, symbol pattern-
matching is an important technique in the automation of the office. The code
generated includes an exact representation of each library symbol pattern,
and compression is highly dependent on the final size of the library. Ideally,
the library should contain exactly one pattern for each distinct symbol in the
document. In practice, the library is usually much larger, containing many
superfluous entries due to incorrect isolation and inefficient matching.

A good matching algorithm is therefore crucial not only to the accuracy but
also to the compression efficiency of a symbol pattern-matching scheme. The
matching criterion must be tight enough to prevent mismatches, while able
to recognise matches between identical symbols distorted by digitization

ICL Technical Journal May 1986 131

noise. In a general purpose text image coding system, the algorithm should
perform well over a wide range of styles and sizes of text.

In the following, existing matching algorithms are described and their
suitability for general-purpose text image compression is investigated. A new
algorithm is formulated which exhibits an improved overall performance.

2 Existing matching algorithms

The matching algorithms in various reported schemes23,25,26 make use of the
Weighted Exclusive-Or (WXOr) error map of the two compared patterns.
The WXOr map is obtained from the unweighted error (XOr) map by
replacing each error with the error count in the surrounding 3 x 3 neigh­
bourhood. In this way, greater weight is given to clustered errors which occur
with distinct symbol patterns (Fig. 6a) than to sparse errors which can occur
along the common boundary of similar symbol patterns (Fig. 6b).

In the Pattern Matching and Substitution (PMS) scheme25, a matching
decision is determined from the WXOr map using only local criteria. A
match is rejected if either (1) any error pel has a weight of 5 or more, or (2)
any error pel has both (i) two neighbouring error pels which are not adjacent
(to each other) and (ii) a 3 x 3 neighbourhood in which all 9 pels are the same
colour in one of the two symbol patterns. Rule 1 rejects most distinct
patterns, but rule 2 is included for pairs of distinct symbols whose difference
is manifested only in narrow^ strokes or gaps.

The Combined Symbol Matching (CSM) scheme23 determines a match by
comparing the sum of the weighted errors (the WXOr count) against a sliding
scale of threshold values related to symbol size. The scale of threshold values
is not quoted, but is said to be a non-linear function of the symbol’s black pel
count, obtained from an empirically determined look-up table. Another
scheme26 quotes threshold values for the CSM algorithm applied to text
images sampled at half the vertical resolution (100 pels per inch). These
values are not appropriate to images sampled at full resolution.

The threshold function must therefore be determined experimentally. This
can be achieved by plotting the WXOr count against the joint black pel
count, for pairs of similar and distinct symbol patterns in a training sample.
The optimum threshold scale is an increasing function which eliminates
matching errors (i.e. distinct symbol pairs resulting in a WXOr count within
the threshold) and minimizes rejections (i.e. similar symbol pairs resulting in
a WXOf count outside the threshold) in the training sample.

Both the PMS and CSM algorithms perform satisfactorily for samples of 10-
pitch typewritten text. Other sizes and styles of text lead to problems, such as
the example illustrated in Fig. 7. The PMS algorithm rejects a match between
the pair of ‘n’s, but declares one between the ‘a’ and ‘s’. The CSM algorithm
with a threshold low enough to reject the ‘a’ and ‘s’ would also reject the two
‘n’s, whose WXOr count is higher.

132 ICL Technical Journal May 1986

ICL Technical Journal M
ay 1986

<a> C u rrent
pat t e rn

C a n d id a te
pat t • n

................* * * * * *

. . . **********4*********. .

. . 4****. *4 4 *4 4 .

. 4*4*. 4 4 4 * 4 4

. 44 44 44 44
4 4 44 4 4 4 4 4*4 4 4 * 4 4 4 4
44 44 44 4 4 4 *4 * 4 4 44 44 4 4 4 4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 . . * . - * * * * * * .
4 * 4 4 ...
4 4 4 4 4 *.
. 1*4* .
. . 4*4 4 4*. 4 4 4 4 4 * 4 4
. . . * * * * * * * * * * * .
. ♦♦*****. . . .

. # #

. . . * * * * * * * * * * *

. . 4*4*4*4 4 . . * * * * * *

. 4*4 4 4*. * * *

. 4*4 4 4*. * *

. # # # ..

. . 44 44 4*4*4*4*4 * 4 4 4 4 . . .

. . . 4 4 4 *4 * 4 4 44 44 44 4 4 4 4 4*.

. . . . 4 4 44 44 4*4*4 * 4 4 4*4*4*

. 4 4 * *

. 4*4* 4 * 4 4

. 4 4 **4*. 4 4 * 4

. *****

. *********************** .

. * * . . * * * * * * * . .

U n w eigh ted
x a »-

g hit ed
XOr

**

. . * . . . ** -

* * .* * * * * *
* * *
* * * .* .* * .

*

.3 2
* * * 3 3 243.
. - *- - . 3 . . . 2 2 . - - . - 3 -
. . . . - 2 - . 2 . - - - - -
. . . * . . . 3 - - - - 3
. . * * . . . 4 6 3
**** 45 . 4 4 3 3 3 2 . - 2576
. . ** &8G. - - 5*. . . . S 7 <h. 1 . 2 2 . - - - - - -
. ** . 4 ..45 .
.* * * 2 - 665
. * * * . . . 1 . - - . . . - - 475
. . . * . 3 .. ^
. . *. . 3 5 - - 2 -
* 4 4 ..2-->

E rror co u n t ■ 60 WXo ,r»t * 232

< tn > Cur' ren t
p a t te r n

......................* * * * * *

. . . * * * * * * * * * * . .

. . * * **** .

. ** ***

. * ** *
* * * ******

* * * . . *- - **444 44 *44 44 .
* *
* ** _
. * * _ ...*
_ . * * * - ****
. . . * * * * * * * * * * * * _
. * * « « * * *

C a n d id a te
p a t te r n

.............* * * -

. . . ********** - -

. . * * * * * * * . .

. * * * * * * .

. * * _ ***
44 4*4*4*
* * * * * * * * * * * * * * *
* * * * * * * * * * * * * * *
**.
- * *
. * * * *.
. . * * * * * * * * * * * * *
. - . * * * * * * * * * . . .
...........................* * * *

U n w eigh ted
XOr

*
* . . * -

* . . *

* * * . . .

. . . * * . * * *r,

. *. . * **. * . . 44.

E r r o r co u n t — 3*.

W eighted
XOr

...................... 2 3 2 - ---------

...2 - -

. . 1 2 . - 3 -
1................................3--2
.....................................- 3 --
...........................233 . - -

. . - 2 2 . 2 2 - . . 1

. . 1..................

..................................... . 2

. 2 . . 12 2 - 2

. . 3 ..- - -

. - . 3 21 - - -

...........................2 3 3 2

W X o r cou n t » 72

Fig. 6 Error maps used in the PMS and CSM algorithms: (a) distinct symbol pair, (b) similar symbol pair

8

134
ICL Technical Journal M

ay 1986

(a) C u r r e n t
p a t t e r n

. . 4 4 4 4 4 4

. 4 4 4 4 4 4 44 4 4 . . .
4 4 4 4 - - * * 4*=#*** .
+4 4 4 . - - - - 4 4 -
4 4 4 4 - - . - - 4 4 -
4 4 4 4 4 4 4 4 4 4
. * * 4 4 4 4 4 4 4 4 4 4 . .
. . . . 44 4 4 4 4 4 4 -
44 4 4 4 4 .
4 4 4 4 4 4 .
4 4 4 4 4 4 . 4 4 4 4 4 4 4 4 .
. 4 4 4 4 4 4 4 4 4 4 4 4 . .
. . . 4 4 4 4

C a n d i d a t e
p a t t e r n

. . . 4 4 4 4

. 4 4 4 4 4 4 4 4 4 4 4 4 . _

. 44 44 44 44 44 44 4 4 .
4 4 4 4 4 4 4 4 -
4 4 4 4 .
. . . . 44 4 4 4 4 4 4 .
. 44 44 44 44 44 4 4 4 4 .
44 44 4 4 4 4 . . . 4 4 .
4 4 4 4 .
4 4 44 4 4 .
44 4 4 . . . 44 44 44 44
44 44 44 44 4 4 4 4 4 444 44
. 4 4 4 4 4 4 4 4

U n w e i g h t e d
X O v*

. . 4 4
. # . .
44 . 44 4 4
. 4 4 . .
. 4 4
44 44 4444 . 44 44 4 4 .
. 44 -
44 44 44 44 44 44 44 . .
. 4 4 - .

. - 44 - 4 4 . . . 44
4 4 - 4444
. 4 4 4 4

C o u n t = 3 1

UJ«e i g h t e d
X O r

. . 1

. 1 . .
1. 22-
. 1 . .
- 4
3442. 243.
...................... t*. .
2333364. .

- - 1- 1.--3
2......................33
. 32......................

C o u n t = a 1

C u r r e n t C a n d X d a t e U n w e 1 g K r t e cd W e i g h t e d
p a t t e r n p a i t ; -fc e r n X O r * X O r

. _ 4 4 4 4 . . . - . . . 44 44 - - -

. 4 4 4444444444 . . 44 44 44 44 44 44 44 4 4 . 4* . . - - - - 4 4 . 2 2 .

. 44 4 4 . . . 44 4444 44 4 444 . . _ _ 4 4*4 4 4*4 - - 33 . .

. 4 4 44 44 4 4 . . 444 4 4 4 - 4 4 . 3 2 .

. 4 4 44 44 4 4 . 4 4 - . - . - . . . 3
- 4 4 - . 44 4* 44 . 4* . - - 4
. 4 4 44 4 4 . . 44 4 4 - 5 5
. 4 4 44 4 4 . . 4 4 4 4 & 6
. 4 4 44 4 4 - . 4 4 4 4 6 &
. 4 4 - 44 4 4 . . 44 4 4
. 4 4 44 44 . . 4 4 4 4 & &
- 4 4 44 44 . . 44 4 4 . -

C o u n t 2 0 C o u n t 6 8
Fig. 7 Illustration of weakness of the PMS and CSM algorithms for small thin characters: (a) distinct symbol pair, (b) similar symbol pair

The poor performance of the existing algorithms in this example is partly due
to the thinness of the characters. Both symbol patterns in Fig. 7b have
vertical strokes just one pel in thickness, but the separation of the vertical
strokes differs by one pel. It is not possible to superimpose these two patterns
such that both vertical strokes coincide. The shift of one vertical stroke
between the two patterns results in a vertical band two pels thick in the error
map. This concentration of error pels results in artificially high weighted
errors, causing both the PMS and CSM algorithms to fail in this instance.

Another problem with the CSM algorithm is illustrated in Fig. 8. The error
count for the two ‘m’s is higher than that for the bolder ‘a’ and ‘s’, even
though the latter pair have a higher black-pel count. Thus an increasing
threshold function which distinguishes the ‘a’ from the ‘s’ would reject a
match between the two ‘m’s. This arises because thicker characters inevitably
have high black pel counts, but do not necessarily result in higher WXOr
counts.

3 Proposed matching algorithm

The proposed algorithm31,32, which is intended to overcome the disadvan­
tages of the existing algorithms mentioned above, is similar to the CSM
algorithm, but with two major modifications.

Firstly, the weighted errors are evaluated in a different way, which reduces
the problem encountered with thin characters. The two symbol patterns are
superimposed, and elements which differ are indicated in an error map. Each
error element is then tagged in one of two ways, according to which of the
two symbol patterns has a black pel in the corresponding position. Examples
of these error maps are given in Fig. 9, where *+’ denotes pels which are
black in the first symbol but not the second, and ‘—’ denotes error pels which
are black in the second symbol but not the first.

In a computer, this tagged error map is more conveniently represented as
two primary matrices: E l, in which ‘l ’s represent ‘+ ’ errors, and E2, in which
‘l ’s represent ‘—’ errors. If the two symbol patterns are held in binary
matrices SI and S2, having identical dimensions, then El and E2 can be
obtained using bitwise logical operations, from

El = SI & S2
E2 = S1 & S2

Hence the tagged error map defined in this way is called an And-Not map.

The weighted And-Not (WAN) map is then obtained as follows. Each ‘—’
error is given a weight equal to the number of ‘—’ errors in a 3 x 3
neighbourhood centred on the element in question. Similarly, each ‘ + ’ error
is weighted according to the number of neighbouring ‘+ ’ errors. Elements
not tagged in the And-Not map are given zero weight. The WAN errors are

ICL Technical Journal May 1988 13S

ICL Technical Journal M
ay 1986

g

> Cur* ren t
pat t e r n

Cand i d a t
pat t e rn

ig h te d
XOr

. . . ****************. . .

. . ♦****♦♦**♦♦*******♦*. .

. * * * * * . . * * * * * .
* ***♦*♦. . . 4* * * * * * .
. * * * * * * * * * * * * *
. . * * * * * * * * * * * *
* * * * * * * * * * * * * *
* * * * * * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * * * * * *
* * * * * * * * * * * * * *
* * * * * * * * * * * * * *
. . 1 ******-

. . . - . ***♦♦*.

. . . * * * * * * * * . . .

. . * * * * * * * * * * * *
* * * * * * * * * * * * * .
. * * * * * * * * * * * * *
. * * * * m . . . * * * * *
_ * * * * * * * * * * * * *
. * * * * * * * * * * * * *
* . * * * * * * * * * * * *
. . * * * * * * * * * * * *
* * * * * * * * * * * * * *
. * * * * * * * * *
. * * * * * . . . * * * * *
. * * * * * * * * * * * * *
. * * * * * * * * * * * * *
. . * * * * * * * * * * * *
. . . . * * * * * *

. 24-. . . .

. . . 1 . . 43. . .

- 2
. 3

4 3 4 3 3 3 3 4 3 . - . . 2
4 4. _ . . 3
3 . . . 1 . . . 2 2

- 1 4 . . . 1.
. . . 1 . . 24 4 3 . - - -

J o in t b la c k p e l cou n t WXOr cour-vt

<WAN cou n t

1 1 3
1 O 1 >

< b) C u rrent
pat te r n

............* * * * * . . . * * * * *

. * * * . * * * * * . . . * * * * *

. * * * * * * * * * * * * *
_ * * * * * * * * * * * * * * * * *
* * * * * * * * _ ■ *
. ***• * * *
. * *

C an d id ati
pat t e r n

- ***. . .
. ***. . .
. *♦**. . .

. **♦*. . .

.****...

. * * . . .

. . ******. . .

. . * * * . . *

. * * * * . . .

. . # #

. . *♦**. . . .

. - * *

. . * *

. . * *

. * *

. * *

. . * * .

* * . * *
* * * * *
* * * * *

* * *
. * *

. * * . *

. * *
* * .

* * * * * . . . * * * * * _ _
* * * * * _ . * * * * * * * .
* * * * * * * * * * * * * * *

. * * * * * * * *
* * * * * * * * *
. * * ** * *
. * * * ******
. ♦♦****. ******
. ******. ******
. ******. ******
. ******. ******
_ ******_ ******
. **♦**♦_ ******
. . ****. ******
. .* * * ** * * *

J o in t b1ack p e l cou n t

W eighted
X O n

......................33 3 3 3 4 3 3 . - .

. . . . 2. - - - 4 . . . 3 . . . 44.

..33. -34

...4
1.......................... 2 1. .
. . . 1 2 -

22....................
2 ..3
.. 3.
.. 3 ..
...3 ..
...1 - 3 ...
...31.
. 12
WXOr cou n t — 132

co u n t = 122)

Fig. 8 I llu s tra tio n of w e a k n e s s of th e CSM a lg o r ith m fo r s m a ll th in c h a r a c te r s : (a) d is t in c t sy m b o l p a ir , (b) s im ila r sy m b o l p a ir

Kj
W

W
W

W
W

U
W

W
U

U
U

'

ICL Technical Journal M
ay 1986

< a* > C u r r e n t
p a t t e r n

. _ 444444. . _

. *444444444. .
*444. . ********

4444. .
4444. .
**********. . .

. 444444444444.

. . . . 44******,

44. . -
44. . .
444444. ********
. * * 4 4 * 4 * 4 4 4 4 4 .
. . . # # . . .

C a n d i d a t e
p a t t e r n

. . . 4444. . . .

. *44444444444. .

. ************** .

44 44 4*«#.
4». . - . . . 44.
. . . . 4444*444.
. **************_

4*44 4*4*. _ . 44.
44. 44.
44. 4*4* .
4444- . . ********

. 4 * 4 *****. . . .

U n v M e i g h t e d
A n d N o t

W e i g h t e d
f i n d N o t

1 - 2 2 -

. A . . .
3 A A 2 . 2 4 3 .

2 3 3 2 2 4 3 . .

. . 1 . 1 . . . 3
23 3
. 3 2
C o u n t = ~7~7

C u r r e n t C a n d i d a t e U n w e i g h t e d W e i g h t e d

p a t t e r n p a t t e r n A n d N o t A n d N o t

- . . . 4444. 44*4. . .
. ************. . 4*44 44 **********. — _ — _ 2 -1 -
. 4444. . . 444444 44 44 44 . . . - 4444 — _ H-. . 31 . .
. 44. 44 4444. — — - 31 -
. 44- 44 44 44. — _ 3 ...
. 4 4 44 44 44. —. 3 ..
. 44. 44 44. . -----*- 3 2
. 44. 44 44. . ----- 3 3
. 44. 44 44. . ------H - 3 3
- 4 4 44 44. . — *4-. 3 3
. 44. 44 44. . 3 3
. 4 4 44 44. . 2 2

C o u n t — 5 0

Fig. 9 Error maps used in the WAN algorithm: (a) distinct symbol pair, (b) similar symbol pair

then summed over the whole map, resulting in the WAN count. As in the
CSM algorithm, the matching decision is then made by comparing the
weighted error count against an empirically determined sliding scale of
threshold values.

The essential effect of this modification is that, in the WAN map, two
neighbouring error elements only increase each other’s weights if both are
due to black pels in the same symbol pattern. Consequently, for a cluster of
errors which arises spuriously, perhaps due to a small shift in a thin stroke as
in Figs. 7b and 9b, the weighted errors are often halved. On the other hand,
in distinct symbol patterns where the errors in a cluster tend to be due to
black pels in the same symbol (e.g. Figs. 7a and 9a), the WAN count is not
significantly lower than the WXOr count. The WAN count is clearly a more
consistent measurement of mismatch in these examples.

The second modification tackles the problem associated with thicker charac­
ters. In the CSM algorithm, the threshold scale is an increasing function of
the symbol’s black pel count. Because thicker characters have high black pel
counts in proportion to their size, a threshold scale which correctly rejects a
match between thick characters such as in Fig. 8a often results in the
rejection of a pair of similar symbols with a lower black pel count, such as in
Fig. 8b.

In the modified algorithm, the threshold scale is a function of an estimate of
the symbol perimeter length, rather than of the black pel count. The
reasoning behind this is that when two similar symbol patterns are superim­
posed, the matching errors are randomly distributed along the inner and
outer perimeters of the symbols. It therefore follows that a threshold scale
which is an increasing function of the perimeter length will recognise a
greater proportion of similar symbol pairs.

Although the direct measurement of a symbol’s perimeter length from its
binary pattern is computationally intractable, a simple estimate is obtain­
able from four easily measurable parameters of the symbol pattern. These
are the overall width and height of the symbol pattern, and the numbers
of internal white runs (i.e. bounded at both ends by black pels) in (a) a
horizontal scan, and (b) a vertical scan, of the symbol pattern. Fig. 10
shows that twice the sum of these four parameters is equal to the number
of exposed faces of black edge pels, which is a good approximation of the
perimeter length.

For the symbol pairs in Figs. 8a and 8b the estimated perimeter lengths
obtained by this method are 186 and 260 respectively, i.e. higher for the
similar symbols than for the distinct symbols. Thus a threshold scale, which
is an increasing function of the symbol perimeter estimate, can be chosen so
that the WAN algorithm gives correct matching decisions for both symbol
pairs in this example.

138 ICL Technical Journal May 1986

Fig. 10 Evaluation of symbol perimeter estimate

Symbol perimeter estimate
= number of exposed sides of black edge pels
= 2 x width + 2 x height

+ 2 x number of horizontal internal white runs
+ 2 x number of vertical internal white runs

= 2x 1 5 + 2 x 1 5 + 2 x 5 + 2x21
= 112

4 Simulation

To test and evaluate the modified algorithm, a symbol matching scheme is
simulated in Pascal on an ICL Perq 1 computer running under POS. The
various activities in the simulation are flowcharted in Fig. 11 and are
described in detail below. The simulation follows the CSM scheme23 in all
but two stages of the process. One exception is the crucial matching stage,
where the PMS algorithm25 and the proposed WAN algorithm are imple­
mented as optional alternatives to CSM. The other exception is the symbol
coding stage, where the codes used by Johnsen et al25 have proved more
efficient.

(a) Symbol extraction

For the purposes of extraction from the image, a symbol is defined to be any
connected black object which can be entirely contained within a square
window whose sides measure 32 pels (or about 4 mm). Each symbol is
isolated by boundary-following and copied to another part of memory. The
symbol is then deleted from the memorized image by performing a logical
Exclusive-OR with the copy of the symbol. The copy is then passed to the
screening and matching processes.

(b) Candidate screening

In order to minimize the number of applications of the time-consuming
matching process, a number of basic features of the current symbol are

ICL Technical Journal May 1986 139

BEGIN

END

Fig. 11 Flowchart for the simulated symbol pattern-matching and coding scheme

measured and compared with those of the library symbols. Only library
symbols whose features are sufficiently close to those of the current symbol
are selected for matching. These are then sorted so that the symbols most
likely to result in a successful match are processed first.

The features used for screening are, conveniently, the same four parameters
used to estimate the symbol perimeter length as described above. Two

140 ICL Technical Journal May 1986

symbols are considered likely candidates for matching if their widths and
heights differ by no more than 2 pels, and their numbers of internal white
runs in either direction differ by no more than 5.

(c) Symbol matching

Those library symbols which pass the screening process are matched against the
candidate symbol by the following procedure: first the two patterns are
registered against one another so that the distance betweeh the corresponding
block edges does not exceed 1 pel. There may be as few as one or as many as nine
ways of doing this, depending on how similar are the block dimensions of the
two symbols. The most central registration of the two patterns is taken first.

For each registration, the selected algorithm (PMS, CSM or WAN) is
applied to determine whether the two patterns match. If a match is found and
there are other registrations of the patterns still to be tried, the unweighted
error count is noted for the matching position. The full matching algorithm
will not be applied again to that pair of symbols unless a lower unweighted
error count is found. If no match is identified, the algorithm is repeated for all
possible registrations of the two symbols.

(d) Library maintenance

When no matching symbol is identified, the current symbol is added to the
library. The library contains the full bit-map representation of each symbol
pattern, up to a maximum of 192 K bits, together with a table giving the bit
address of each pattern, its screening features, and the number of times it has
been used, up to a maximum of 512 symbols. If either of these limits is
reached, one or more of the least used library symbols is deleted to make
room for each new symbol.

(e) Symbol coding

Variable length codewords are used to define the starting position and
library identification of each symbol, with special codes for ‘new symbol’,
‘same symbol’, and ‘no more symbols (on current scan line)’. The patterns of
new library symbols are encoded by a variation of the MRC algorithm.

(f) Residue coding

The residual image, from which all symbols have been deleted, is encoded
using the MRC-II algorithm8.

5 Results

5.1 Training

In order to establish a threshold function which could be globally applied to
a wide range of sizes and styles of text, both the CSM and WAN algorithms

ICL Technical Journal May 1986 141

were trained on a special set of input data. The training set consists of
samples of six different character sets, with symbol widths between 1 and
4 mm, and in several different fonts.

Fig. 12 Threshold function plots obtained from training sample, for: (a) the CSM algorithm,
(b) the WAN algorithm

142 ICL Technical Journal May 1986

Using the screening algorithm described above, pairs of symbol patterns
were selected from the training set, and the minimum WXOr and WAN
counts for each pair were calculated. The combined black-pel and symbol-
perimeter counts for each pair were also obtained. A threshold function for
the CSM algorithm was obtained from a plot of the WXOr count against the
combined black-pel count (Fig. 12a). A threshold function for the WAN
algorithm was obtained from a plot of the WAN count against the combined
symbol perimeter estimate (Fig. 12b). In both cases the threshold function
was the highest curve which could be drawn below all of the distinct symbol
pair counts.

Figs 12a and 12b clearly show that the WAN threshold cuts off fewer of the
similar symbol pairs than the CSM threshold. The overall rejection rates for
the training sample (i.e. the proportions of similar symbol pairs not
recognised by each matching algorithm) are 36% for CSM and 24% for
WAN.

5.2 Compression

To evaluate the performance of the new algorithm, the simulation was
applied to two A4-size documents shown in Fig. 13. The DRAFT document
consists of typical typewritten symbols averaging 2 mm in width, together
with some graphics. The SUBSID document consists of ‘san serif text, in
three different sizes and also of varying boldness. Coding of these documents
was simulated, using first the MRC-II exact coding algorithm, and then by
symbol matching, using in turn the PMS, CSM and WAN algorithms.

Table 1 Compression results

Document Matching
algorithm

Symbols in
library

Compression
factor

Matching
errors

DRAFT MRC-II _ 18.7 -
typewritten
1161 symbols PMS 101 55.7 0
some graphics

CSM 202 43.5 0

WAN 124 54.4 0

SUBSID MRC-II _ 13.0 0
san serif
various text

sizes
PMS 199 45.1 16

(0.51%)

2865 symbols CSM 351 36.4 2
(0.07%)

WAN 270 41.3 1
(0.03%)

ICL Technical Journal May 1986 143

144
ICL Technical Journal M

ay 1966

OOCW CIT I H W t

Tha «ch««M ttC b * l (v • h w * O w d e m o n s tra tio n i y » i m w hich ox<co:> tr*t«ii u i
the first p h t c a o f t.h* M>rt p r o ^ r ^ i w c .

w e .

êcnwô -

.(n*o
\ ’

HKD • High Resolution Display

A nwaber of document aanplea previously scanned into rF.30 at ?C*vt2Cn> ppi
resolution and r<ior«0 avity on lor-i disc ora enlled op on the PERO
screen. Itwiqos c tvtiiuvvd using a iseno-driven eotnpvtsf Indexing
nystcu. The sarploa contain a mi* of typescript, print, M u d . - r l t t e r . ,
photographic and (1i».gra*snatlc material. They ora Intended to sLov both
tha capabilities and the IbrithtU-os of the damsnstrAt ion systen.

Poet image amn ije-la t ion ia wide (osslblo t*y use of 'try poverfo)
hardware essiotoj special feature* in (Wj. f. saie.pl * of hm.-.’wr i t Ing 1»
seen to be legible at PRRQ screen resolution Of O'r'J? p)>i Hull view
node).

A page of columned, small print lr Clevrly illegible »n full viav node
but using the F£K> screen as a window, panning icrovc tl.e 2Wx?30 inaga
in Min atora (full resolution e©de) renders it conveniently readable.

Video invereion is Ja»Mi$trjta.1.

The use of a spy glass In full viov mod* »«v.u» details selectively
legible.

A bilevel r Aprnncntat ion of * photographic sample 15 sIio-t. to be
adequate.

A mngnifier bar In full view iwo<ie makes of to«t «s l «•<:».< ve ly
legible.

Fig. 13 Test documents: (a) DRAFT, (b) SUBSID

Subsidiaries, related companies
and other Investments
at dOth Sept emeu* 1903

■MaeI UMeiM«r*eMrs«"W f:iri re«.M
«*el C eaeiSas l«w ua • we eA

#**«*«*«#» el O .M S w rw w *

I NnieNM<w<«u»<scKmMnMnuef*** *K(«M|IWV<MlhW. ___>T«0> twe><Cw>w nnwwwOfSK e WwpwWee w wew
Cave'sS Cr**. .mese euteur****r»|-»#« ****£•*#•
ŝ eti *• leeas e* a-,- 0 *

(flC subsidiaries

iM eeaHontt Computers Limited (C L ")
B«fe Com pute* $enfc**LimAed ($0%)
kuemstionsl Computers (Oversees) limited
Interne Mansi Compute rs |Rcmsl») U tiheo

O s a m a s sdbsM eriss
international C ompute rs (AutlraOs) Fty LsnHrd
C L Intern sto o d Computers CmbH
C l. (Belgium) 1A./N.V.
CL Compute* CSnsds LKJ.
imemsMonsI Computers linSted A/S
CL f Wend hternsttonel Computer* O f
CL (France) InlemeSonri Computers (99 9%)
mtomsttenst Computer* Harg Korg U #*ed
CL tts ia W arns llond Computers SpA
plemstionelComputers |t * i l Afros) l to te d
tCL (SMewi) L M e d
international Compuisri (M u«y*i) Sort OvJ
C L Nedsrtand B.V.
international Computers (N s# I te te n J I LeMed
intern stonel Computer* pagsris) U ntied (69%)
CL Norge A/S
C L Computedoms U n isd e
CL Singapore Private luniiad
■nvtrnstienil Computers (South Alrice) (btopr«tt>v|
Limeed (K 9 % o t Otdwtry. 100% «t Preference)
CL Ctpefte Wsmstionsi CorrpMtert S A.
C L Oats AO
C L ($wttterisnd) tnterr>uior>*i Computers AC
tnternsionsl Computers (Tsvurfc) U ntied
C L be.
C L D eutschtod tNometonei Computer* 0 # H <
international Computer* (Ziwpit) Limited
CL Zimbabwe Umrtad

Asteted companies
C«CC«ntra tweed (eOh)
S1ACK Stendsrd Compiler Xcwrpensnten O n* tl
<«•%)
wtemaionol Computers Indian M enuteckso L«Mo9 i*0\)
CL SA. (49%)
wtemsitenal Computers Cqwpmeni Fmencc
Corporation (South Africa) Limited (26-9%)

Car

N*0asn»

.W»eeî

SwHrSSSA
mto#s,aaBsi,un>
Muilu«e
••H IMS#

9MW|.niH
sw»eeCe».w»«#a
mnnv) *******

The results of this are summarised in Table 1. The highest compression is
generated by the PMS algorithm, but this causes an unacceptable number of
matching errors in the SUBSID document. The CSM algorithm, using the
globally trained threshold function, results in a much lower error rate, but at
the cost of a large increase in library size and hence a considerable reduction
in compression. Only the proposed WAN algorithm succeeds in almost
eliminating matching errors without seriously reducing the compression in
either example. In both examples, compression roughly three times that of
MRC-II is achieved using the new algorithm.

6 Discussion

Although further testing is needed to prove the effectiveness of the new
algorithm, the preliminary results indicate a clear improvement over existing
matching algorithms applied to the compression of arbitrary printed docu­
ments. The extremely low error rates observed would be acceptable in many
applications. If greater accuracy were required, the error rate could be
reduced further by training the algorithm on a larger sample.

Acknowledgement

The authors wish to thank ICL Systems Strategy Centre, Bracknell, England,
for sponsorship of the original work described in this paper.

References

1 ROTHGORDT, U.: ‘Run-length coding method for black and white facsimile with a
ternary code as intermediate step’, Electronics letters, 1975, Vol. 11, pp. 101-102.

2 DE COULON, F. and JOHNSEN, O.: ‘Adaptive block scheme for source coding of black
and white facsimile’, Electronics letters, 1976, Vol. 12, pp. 61-62.

3 JAPAN: ‘Proposal for draft recommendation of two-dimensional coding scheme’, CCITT
SG XIV Document 42, 1978.

4 MUSMANN, H.G. and PREUSS, D.: ‘Comparison of redundancy reducing codes for
facsimile transmission of documents’, IEEE Hans. Common., 1977, Vol. COM-25,
pp. 1425-1432.

5 HUNTER, R. and ROBINSON, H.: ‘International digital facsimile coding standards’, Proc.
IEEE, 1980, Vol. 68, pp. 854-867.

6 BODSON, D. and SCHAPHORST, R.: ‘Compression and error-sensitivity of two-
dimensional facsimile coding techniques’, Proc. IEEE, 1980, Vol. 68, pp. 846-853.

7 LANGDON, G.G. and RISSANEN, J.: ‘Compression of black and white images with
arithmetic coding’, IEEE Hans. Commun., 1981, Vol. COM-29, pp. 858-867.

8 BODSON, D., DEUTERMANN, A.R., URBAN, S.J. and CLARKE, C.E.: ‘Measurement
of data compression in advanced group-4 facsimile systems’, Proc. IEEE, 1985, Vol. 73,
pp. 731-739.

9 TAKAGI, M. and TSUDA, D.: ‘Bandwidth compression for facsimile using signal
modification', Electronics and Comms. in Japan, 1977. Vol. 50A, Pt. 2, pp. 9-16.

10 TING, D. and PRASADA, B.: ‘Digital preprocessing techniques for encoding of graphics’,
Proc. IEEE, 1980, Vol. 68, pp. 757-769.

11 BILLINGS, T.L.: ‘Pre-transmission enhancement of facsimile images’, IBM Tech. Disclo­
sure Bull., 1979, Vol. 21, pp. 3086-3087.

12 ISMAIL, M.G.B. and CLARKE, R.J.: ‘New pre-processing technique for digital facsimile
transmission’, Electronics letters, 1980, Vol. 16, pp. 355-356.

ICL Technical Journal May 1986 145

13 JUDD, I.D.: ‘Compression of binary images by stroke encoding’, I EE J Comput. Digital
Techniques, 1979, Vol. 2, pp. 41-48.

14 USUBUCHI, T., MIZUNO, S. and IINUMA, K.: ‘Efficient facsimile signal data reduction
by using a thinning process’, Proc. NTC, 1977, pp. 49.2.1-49.2.6.

15 MORRIN, T.H.: 'Chain-link compression of arbitrary black-white images’, Computer
Graph. Image Process., 1976, Vol. 5, pp. 172-184.

16 ARPS, R.B.: ‘Binary Image Compression’, in ‘Image Transmission Techniques’, Vol. 12
(W.K. Pratt, Ed.), Academic Press, New York, 1979, Chap. 7.

17 HOLT, M.JJ. and XYDEAS, C.S.: ‘Compression technique for handwritten and graphic
images’, in preparation.

18 PAVLIDIS, T. and CHERRY, L.L.: ‘Vector and arc encoding of graphics and text’, Proc.
IEEE VI Int. Joint Conf. Pattern Recognition, 1982, pp. 489-491.

19 PAVLIDIS, T.: ‘Curve fitting as a pattern recognition problem’, Proc. IEEE VI Int. Joint
Conf. Pattern Recognition, 1982, pp. 853-859.

20 RAMACHANDRAN, K.: ‘Coding method for vector representation of engineering draw­
ings’, Proc. IEEE, 1980, Vol. 68, pp. 813-817.

21 ASCHER, R.N. and NAGY, G.: ‘A means for achieving a high degree of compaction on
sign-digitized text’, IEEE Hans. Comput., 1974, Vol. C-23, pp. 1174-1179.

22 MANTAS, J.: ‘A survey of character recognition methodologies’, Proc. MELECON, 1985,
Vol. II, pp. 267-271.

23 PRATT, W.K., CAPITANT, P.J., CHEN, W„ HAMILTON, E.R. and WALLIS, R.H.:
‘Combined Symbol matching facsimile data compression system’, Proc. IEEE, 1980,
Vol. 68, pp. 786-796.

24 BRICKMAN, N.F. and ROSENBAUM, W.S.: ‘Word auto-correlation redundancy match
(WARM) technology’, IBM J. Res. Develop., 1982, Vol. 26, pp. 681-686.

25 JOHNSEN, O., SEGEN, J. and CASH, G.L.: ‘Coding of two-level pictures by pattern-
matching and substitution’, Bell System Tech. J., 1983, Vol. 62, pp. 2513-2547.

26 SILVER, D.M. and JOHNSON, D.A.H.: ‘Facsimile coding using symbol matching
techniques’, IEE Proc., 1984, Vol. 131-F, pp. 125-129.

27 USUBUCHI, T., OMACHI, T. and IINUMA, K.: ‘Adaptive predictive coding for
newspaper facsimile’, Proc. IEEE, 1980, Vol. 68, pp. 807-813.

28 WONG, K.Y., CASEY, R.G. and WAHL, F.M.: ‘Document analysis system’, IBM J. Res.
Develop., 1982, Vol. 26, pp. 647-656.

29 OKAMOTO, N., NAKAMURA, O. and MINAMI, T.: ‘Character segmentation for mixed­
mode communication’, Proc. IFIP 9th World Computer Congress, Elsevier, 1983, pp.
681-685.

30 POSTL, W.: ‘Halftone recognition by an experimental text and facsimile workstation’,
Proc. VI Int. Joint Conf. Pattern Recognition, 1982, pp. 489-491.

31 HOLT, M.J.J. and XYDEAS, C.S.: ‘Compression of bi-level text image data by symbol
matching’, Proc. Int. Conf. Advances in Image Processing and Pattern Recognition, Pisa,
Dec. 1985, North Holland, pending publication.

32 HOLT, M.J.J.: ‘Symbol pattern matching’, British Patent Application No. 8525509, filed
Oct. 1985.

146 ICL Technical Journal May 1986

Message structure as a determinant of
message processing system structure

D.J. Ackerm an
STC Network Systems Division, Kidsgrove, Staffordshire

Abstract

The paper is concerned with nested, or layered, multiplexing systems of
the kind represented by layers 1-4 of the ISO Reference Model for Open
Systems Interconnection. It shows that for these systems a direct
relationship exists between the structure of a system and that of the
messages requiring to be operated on by the system. It is shown that this
relationship holds not only for the system as a whole but also for the
individual layers and sub-layers of a system considered in relation to the
structure of the layer and sub-layer protocol information fields that go to
make up the messages.

It also shows that the generally accepted notion that structure is an
expensive luxury is valid only because the importance of the relationship
between system structure and message structure is not generally
recognised. Given that these structures are defined to be mutually
supporting, then the system attributes that come with structure can be
had with a cost bonus.

1 Introduction

Previous articles1,2 have appeared in this journal dealing with the ICL
Information Processing Architecture, IPA, and its relationship to the ISO
reference model for Open Systems Interconnection (OSI)3. This article is
concerned with layers 1-4 of the OSI model, the functions of which
collectively go to make up the IPA Telecommunications Function. More
specifically, it is concerned with the layering principle as it relates to these
layers and the effects on real implementations of its adoption as a modelling
principle.

The ISO reference model standard gives the following assurances with respect
to the relationship of the model to real-world systems:

- its scope covers only the externally visible behaviour of open systems;
- this behaviour is determined by the layer protocols to which an open

system is required to conform;

ICL Technical Journal May 1986 147

- it is concerned to define the internal structure of an entirely abstract open
system;

- the model is implementation independent in that it does not constrain the
internal structure of a real open system.

However, in spite of these assurances, it is quite clearly the case that only
pathologically deformed Open Systems will fail to reflect, in a real sense, the
structure of the model. Only by reflecting its structure can the layer entities of
a real open system hope to exhibit the property of layer-independence
fundamental to the model. It is also clear that, no matter how a conforming
real open system may be implemented, the messages requiring to be
generated and processed by the system will have structures that reflect that of
the model, not that of the system if different from the model. It may therefore
be taken that underlying the assurances given by the ISO standard is the
basic assumption that no necessary relationship exists between the internal
structure'of a real open system and the structure of the information the
system is called upon to process.

This paper challenges the validity of this assumption. It takes the example of
a simple nested, or multilayered, multiplexing system implementing an
extended form of Balanced High-Level Data Link Control (HDLC) pro­
cedures4 at all layers. It explores in increasing levels of detail the relationships
between the structure of the system and the structure of the messages
operated on by the system and considers the effects on implementation of
imposing message structures that do not reflect a hypothesised system
structure. It is shown that implementation structure and message structure
must be seen as two faces of the same coin; that if they are not so seen, then, in
practice, the second will impress itself on the first.

At the final level of detail the idealised HDLC message header structures
(formats) needed to support an idealised HDLC protocol machine structure
are identified. These are compared with the formats that were chosen in
practice for ISO standardisation. It is again shown how the machine structure
implicit in the standardised formats imposes itself on the structure of an
implementation; this precluding all possibility of realising in practice an
ideally structured and least-cost implementation.

It is believed that the conclusions of the paper as they arise out of a case study
of HDLC procedures are equally applicable to most other OSI Layer 1-4
protocols that have been, or are in the course of being, developed.

2 Multiplexing System

Fig. 1 illustrates the system to be considered.

In this illustration P, Q, R, etc. represent physically separate multiplex-
ing/demultiplexing elements. Each element at one end of the system has its
complementary peer element at the other. All peer elements commu­

148 ICL Technical Journal May 1986

nicate with one another using extended and idealised Balanced Mode HDLC
procedures. The protocol extension is that needed to facilitate multiplexing of
higher layer links through the use of the address (A) field of the standard
HDLC Frame Format5.

loyer 2 ---------------------- ►
layer 3 ------------------------

Fig. 1 The example multiplexing system

This system will now be considered, first at the level of structural detail
illustrated in Fig. 1, and then at progressive levels of magnification of the
structure of the individual multiplexing/demultiplexing elements.

3 Stage 1: the unmagnifled system

Systems of the type of Fig. 1 can be constructed without difficulty to exhibit
the properties of layer and lateral independence. These properties are defined
for the purposes of this paper as follows:

- layer independence: the property enabling peer entities at any layer to be
designed without knowledge of the details of the protocols used to effect
communication between peer entities at higher and lower layers.

This is the fundamental property ascribed to the layers of the ISO
reference model.

- lateral independence: the property enabling pairs of corresponding peer
entities at any one layer to be designed without knowledge of the details of
the protocols used to effect communication between other pairs of
corresponding peer entities at the same layer.

This property is not dealt with in any great degree of detail by the
reference model but is one of equal significance.

When the system of Fig. 1 is constructed to exhibit both properties, the
structure of the messages transmitted between ends of the system, as they

ICL Technical Journal May 1966 148

might be monitored on the communications media, will be as illustrated in
Fig. 2.

This is the message structure as it will naturally, and necessarily, be generated
by one end for processing at the other. It has the property of exactly reflecting
the structures, taken as a whole, of the sending and receiving ends of the
multiplexing system.

A, :C,

media message

layer 1 user data

A j t C j / A 3 : C3

■»--layer (n-1) user d a ta --* "

An :Cn I user data

Fig. 2 Media message format corresponding to Fig. 1 system
Key: AX:C„ = address and control fields of the HDLC frame format operated at layer x

n = a variable dependent on the level of entry of user data into the system

Suppose now that the following variant on the message structure were to be
imposed a priori as a system design constraint:

Ai/A2/A3/ . . . I K - C J C J C J . . . /Cn/data

On the face of it this might be seen as something of a rationalisation of the
Fig. 2 format and as such a highly desirable constraint to impose. If imposed,
then it could be handled in either of the following ways:

1 by introducing message format (syntax) transformation functions at the
two ends of the line as the lowest level functional element in the structure; or

2 by embodying a knowledge of the message format in all layers.

The consequences of 1 are:

- a necessary increase in message processing cost in proportion to the
complexity of the transformation function; the transformation given
above as an example being a relatively trivial one compared with those
actually encountered in practice;

- a necessary loss of the attributes of layer and lateral independence.

The loss in the second case follows from the fact that a knowledge of both the
structure of the system and that of the message must be designed into the
transformation function. No element in the structure can be modified without
reference to this function. It becomes the key element binding the structure.
All other elements become subservient to it. It becomes: the seat of systems
intelligence; the fount of all knowledge; the governing element of the structure
without which no other element can function.

150 ICL Technical Journal May 1986

The consequences of 2 are even more undesirable. Because systems intelli­
gence is distributed it becomes, in each of its parts, unchangeable without
reference to the sum of its parts. The resulting structure becomes no more
modular, in the sense that entities can be modified without impact on other
entities, than a monolith. The system becomes structured only in the sense
that it is made up of bits and pieces. Fig. 1, intended as a representation of both
the physical and functional structures of the system, becomes truly represen­
tative only of the first. It misleadingly represents the second, the most
important elements of which are those exercising systems intelligence and
management responsibility; the complexity of the second being magnified by
the fact of distribution of the first.

It is reasonable to conclude that a failure to realise the attributes of layer and
lateral independence will, in practice, tend to magnify rather than reduce
costs. Further, that, at the level of magnification being considered, the
achievement of these attributes is dependent on the degree to which real
system structure is reflected in the message structures requiring to be
operated on by the system.

4 Stage 2: internal structure of a single layer

The internal structure of a single multiplexing layer of the multiplexing
system being considered may be designed to conform to one or other of the
following structures;

a

Fig. 3 Alternative sublayer structures: (a) individual link control; (b) common link control

Key: MUX= multiplexing entity operating on an A (address) component of the line
message

LCE = link control entity operating on the related C (control) component of the line
message

ICL Technical Journal May 1986 151

Now, if sublayer independence is to be achieved, then the order of the related
A and C components of the message of Fig. 2 should be determined by the
choice made between these structures. For individual link control the order
will be

A : C/data

For common link control it will be

C : A/data

Consider the individual link control case. If a pathological implementation
transposing the sublayers is attempted at one end, then a necessary feature of
the implementation will be the introduction of fan-in/fan-out mechanisms,
Y and X, above and below the link control sublayer as illustrated in Fig. 4.

Fig. 4 System structure resulting from pathological implementation

Quite clearly, the mechanisms X and Y are wholly concerned with operating
on the A field of the format. The sublayers, therefore, must of necessity lose
their independence.

Furthermore, the following equalities must be seen within the pathological
implementation:

function X = function MUX = complement of function Y

Given these equalities, then it may be further seen that function MUX and
function Y, in effect, cancel one another, leaving only function X as the
function visible to the nonpathological remote end MUX peer entity.

The general conclusion may be drawn that, at the level of detail being

152 ICL Technical Journal May 1986

considered, the protocol machine structure required to process the message
header information relating to a layer is implicit in the structure of the header
information. This implied structure will impose itself on the machine
structure in some form or another no matter what attempts may be made to
escape from it. Further, given that header structure transformation functions
are introduced to reconcile different machine and header structures, then the
same cost and other penalties will be incurred for the layer as were incurred at
stage 1 for the system as a whole.

5 Stage 3: internal structure of a link control entity

Considering now a link control sublayer entity of either Fig. 3a or 3b. This
may either be designed as a pair of laterally independent simplex links

UDF UDF

UDF
C/ R/UDF

C/R/UDF
Pend 0 end

Fig. 5 (a) Independent simplex structure; (0) duplex structure

Key; Soc = source control entity
Sic = sink control entity
E = frame encoding entity
D = frame decoding entity
MUX = multiplexing entity

DMX = demultiplexing entity
UDF = user data field
C = command field
R = response field
X, Y = address field values

configured back-to-back, each link being responsible for controlling the flow
of user data in one direction only, or it may be designed as an integrated full
duplex link. Figs. 5a and 5b illustrate the differences between these link
control sublayer structures.

ICL Technical Journal May 1986 1S3

The essential distinction between these structures rests in the manner in
which information is exchanged between corresponding source control (SoC)
and remote sink control (SiC) entities so as to effect their operation in
concert. In the independent simplex case the dialogue is effected using
independently coded frames that contain information relating to the oper­
ation of a single SoC/SiC pair. This arrangement imposes the requirement for
multiplexing/demultiplexing entities to enable sharing of the common
medium between the SoC/SiC pairs. For the duplex case composite frames
are used containing information relating to the operation of both SoC/SiC
pairs, a technique sometimes referred to as response embedding or piggy­
backing. This arrangement imposes the requirement for shared frame encod-
ing/decoding functions.

The following table summarises the sets of frame formats needed to support
the different link structures, one set for the independent simplex case and two
equivalent sets for the duplex case, both of which are consistent with the
duplex structure.

The essential point to note is that each of the format sets in Table 1 is self-
consistent and complete. Each by itself is sufficient to support any end-to-end
dialogue that may be defined to achieve the concerted operation of a
source/sink entity pair. The attributes of self-consistency and completeness
are fundamental. Before dealing with them some observations should be
made concerning the attributes, from an implementation point of view, of the
different link structures.

Table 1 Frame formats

System Function Format

Independent send command with data P -* Q X/C/UDF
simplex send command with data Q -» P Y/C/UDF

send response P -► Q Y/R
send response Q -» P X/R

Duplex send command with data C/R0/UDF} {1,/C/UDF
send response C0/R} or {Ia/R
send command and response with data C/R/UDF} {I3/C/R/UDF

Key: C = command field of format
R = response field of format
X, Y = values encoded in the address field of format to differentiate the two streams
R0 = value encoded in the response field to indicate the absence of a response
C0 = value encoded in the command field to indicate the absence of a command
I, = format identifier code equivalent to R0 indicating the presence of a command

only
12 = format identifier code equivalent to C0 indicating the presence of a response only
13 = format identifier code indicating the presence of a command and a response

5.1 Independent sim plex structure

For this structure the MUX, DMX, SoC and SiC functions may all be
implemented as independent functions in exactly the same way as combin­

154 •CL Technical Journal May 1986

ations of these functions can be implemented independently within the wider
structures considered at earlier stages.

5.2 Duplex structure

For this structure an encoding entity must have access to the internal states of
its related local SoC and SiC entities for the purpose of generating composite
formats. Equally a decoding entity must be associated with a scheduling
mechanism of some kind of schedule the activities of its associated local SoC
and SiC entities in the event of a composite frame being received.

It would appear, therefore, that in spite of the complete logical separation
made between command and response fields and the independence given to
the encoding of these fields within the idealised formats identified in Table 1,
the duplex system nevertheless implies a higher degree of interdependence at
the implementation level of the functional entities comprising a link protocol
machine than that obtaining for the independent simplex case.

It may also be seen that the apparent simplicity of the duplex structure
relative to that of the simplex is a deception. The encoding/decoding entities
of the duplex structure take on exactly the characteristics ascribed to the
message transformation functions considered at stage 1. They become key
elements binding the structure.

The general conclusion is that if link control information relating to laterally
independent entities is combined in a common format so too will these
entities be likely to be integrated within a monolithic implementation.

6 Defects of standardised HDLC formats

We now return to the attributes of self consistency and completeness of the
sets of formats given in Table 1. If an address and control field encoding
regime is adopted that is not complete, then its missing elements must be
made good in some way. This can be done either by adopting the equivalent
element from some other regime or by defining additional end-to-end
dialogue and procedural rules. Either way unnecessary complexity is neces­
sarily generated. If foreign elements are used, then the protocol machine
structure will be distorted by becoming a hybrid of the structures supported
by its native and foreign elements. If additional procedural rules are defined,
then the structure is again distorted by the inclusion in it of the functional
entities needed to implement the rules.

This is precisely what may be seen to have happened in the development of
Balanced Mode HLDC procedures. The control field structure of the HDLC
format is basically that required to support the duplex link structure of Fig.
5b in that it makes provision for logically separate command and response
subfield coding. However, the control field includes a single-bit subfield that
is sometimes required to be seen as a part of the command subfield and

ICL Technical Journal May 1986 155

sometimes as a part of the response subfield. This bit is the Poll/Final bit
having the meaning Poll in a command and Final in a response. A duplex link
structure demands the definition of two bits in the control field to permit Poll
and Final bits to be transmitted simultaneously in a composite command/
response frame. Because no such facility is provided, some other means had
to be devised to achieve the effect of two bits.

The means chosen was to use address field values, as for the independent
simplex structure, to differentiate commands and responses and thus qualify
the meaning of the single bit. The inevitable consequence was conversion of
the formats into a set naturally supporting a highly redundant dual duplex
protocol machine structure. This led in turn to the need to define un­
necessarily complicated procedural rules to make some kind of sense of the
redundancy, thereby compounding the original error and ensuring that
nothing other than a monolithic protocol machine structure would suffice to
meet the requirements of the procedures.

The error also had the effect of defeating the aims of duplex encoding of the
control field in that for some link control functions reversion to simplex
coding has to be resorted to.

7 Implementation experience

The problem for the designer of an HDLC protocol machine is that of
deciding how best to achieve some of the modularity and relative simplicity of
the independent simplex structure of Fig. 5a while at the same time achieving
conformance to HDLC standards.

This was achieved in ICL by specifying a two-sublayer implementation
structure. The upper sublayer was defined as incorporating all but the
MUX/DMX elements of the Fig. 5a independent simplex structure, the lower
sublayer being made up of functional elements performing the combined
functions of the MUX/DMX elements of the Fig. 5a structure and the
composite frame encoding/decoding elements of the Fig. 5b duplex structure.

Idealised and much simplified procedures were defined for the upper
sublayer. Lower sublayer format and protocol conversion procedures were
then defined to support the upper sublayer procedures. These also turned out
to be surprisingly simple.

This specification technique, while significantly aiding in the design of a
conforming HDLC protocol machine, did not, of course, yield a truly
modular structure exhibiting the properties of lateral and layer independence
for all the reasons previously given.

Theoretical work of a similar kind to that given in this paper has also been
exploited in ICL implementations of CCITT rec. X.256.

156 ICL Technical Journal May 1986

8 Conclusion

The foregoing has attempted to show that the structure and properties of a
system are very dependent on the structure (syntax) of the information
required to be generated and processed by the system, and not so dependent
on the meaning (semantics) of the information, as might intuitively be
thought to be of more significance.

It has been shown that system structure and message structure must be seen
as two faces of the same coin; that if they are not so regarded, then, in the final
analysis, message structure will impress itself on system structure with
consequent magnification of system cost and loss of layer and lateral
independence.

Ideally, the message header structures required to support a layer protocol
should not be defined until a definition has been given of the structure of the
protocol machine envisaged as being needed to implement the protocol. They
should then be defined in strict conformity with the intended protocol
machine structure.

It is believed that adoption of this methodology in the development of OSI
layer 1-4 protocols generally would significantly assist in reducing to a
minimum the volume of English prose needed in the first instance to define
the protocols and, through such reduction, subsequently assist in their formal
description7.

Acknowledgments

Thanks are due to Dr. Ken Turner for his encouragement to write this paper
and his subsequent assistance in the editing of the text to make it readable.

References

1 BRENNER, J.B.: ‘IPA networking architecture’, ICL Tech. J„ 1983, 3 (3), 234-249.
2 TURNER, K.J.: ‘The IPA telecommunications function’, ICL Tech. J., 1983,3 (3), 265-277.
3 ISO IS 7498 Information processing systems - open systems interconnection - basic

reference model.
4 ISO IS 7809 High level data link control procedures - balanced mode.
5 ISO IS 3309 High level data link control procedures - frame format.
6 TURNER, K.J.: ‘Designing for the X.25 telecommunications standard’, ICL Tech. J„ 1981,

2 (4), 340-364.
7 TURNER, K.J.: Towards better specifications’, ICL Tech. J., 1984, 4, (1), 33-49.

ICL Technical Journal May 1986 157

Correspondence

A suggested extension of ICL DAP
parallelism

This note suggests a way in which use could be made of dual-port RAM
to extend the parallelism of the ICL DAP, making It possible to pipeline its
already parallel operations.

From R.M.R. Page, School of Information Sciences, Portsmouth Polytechnic:
Array processors are normally considered to belong to one of two types:
multi-processor or pipeline/vector array processors.

The advent of true dual port RAM, i.e. RAM that can be accessed
simultaneously by two processors, makes the extension of the ICL DAP to a
multi-processor pipeline array system more attractive.

The proposed system is indicated in Fig. 1. Each horizontal plane of the
three-dimensional array comprises a DAP as currently implemented, except
that dual port RAM is used so that the PEs (processor elements) from the
(i + l)th plane can receive as input the output from the ith plane above. The
spare port on the final plane would be used for output. Thus when the array is
fully primed, each plane is simultaneously processing one stage of the
pipeline.

The number of planes or stages required would depend on the function being
performed, and on the amount of work performed by one stage. To this extent,
the amount of hardware expansion would be flexible. One stage could
execute a number of machine instructions, thereby keeping the hardware
expansion to a minimum. Alternatively a stage might carry out an operation
on one-bit operands, working at the primitive control level. This would
provide an extremely fast throughput. The whole array would be synch­
ronised to the slowest stage, and input/output would probably be the
deciding factor. If pipelined matrix operations were envisaged, then spec­
ialised I/O hardware would be required to achieve maximum performance.

Eric Baddiley, ICL PERQ Business Centre, Kidsgrove, Staffordshire.
My comments on the proposal by R. M. R. Page to make a pipelined DAP.
What is actually proposed are multiple DAPs, since each PE plane in the
diagram requires its own MCU, code store etc. This would obviously be a
BIG machine.

158 ICL Technical Journal May 1986

Since for any given level of chip integration a dual port RAM will be smaller
in bit capacity due to the extra logic required (4 K bits x 1 dual port
vs. 16 K bits x 4 fast static RAMs, a factor of 16 smaller) then the
number of RAM chips required in a machine for a given total capacity will be
that much larger. Two port RAMs are also physically bigger since two sets of
addresses and control lines are required per chip. The cost of these special
RAM chips also tends to be at a premium compared with the industry
standard, multiple-sourced devices.

ICL Technical Journal May 1986 159

It is suggested that the array be expandable to suit the problem to be solved.
This would require 2048 connections just for the data bits alone, that is 1024
connections to the array above and below this one. This is hardly practical
and exaggerates the well known problem with the DAP architecture - lots of
connections to memory (it is also its strength).

Even if the array is not expandable the number of interconnections is vast.
Unless the whole array is built on one board (this is very unlikely) then the
number of interconnections would be unrealistic. The densest connectors I
know of provide 48 connections per inch, and ignoring power and ground the
data pins alone would require over 50 inches of solid connector length. The
problem is twice that of expanding the memory of the current DAPs.

Some solutions to this may be to only make a 16 x 16 DAP pipelined and
have connections inside the PCBs and mate the boards sideways (Fig. 2).

Since the only path from any store chip to the next is through a PE array it
seems likely that the PEs will spend time doing nothing more than moving
data, although this will depend upon the algorithms in use.

W iV rV ? boards
connections

Fig. 2 Sideways connection

Fig. 3 Architecture using reconfigurable arrays

160 ICL Technical Journal May 1906

The suggestion is that the DAP be physically configured for the particular
application; this detracts from the generality of the DAP. In particular, if an
application did not require a pipeline architecture but instead a single PE
array and a large contiguous address space this design would be useless since
there is no direct access from one PE array to all the RAM in the machine. An
alternative view to this would be to consider the array as reconfigurable so
that a 4 level pipeline could be reconfigured to make the DAP PE array four
times the size. The problems of multiplexing the edge connections seems
to require a lot of hardware and interconnections (Fig. 3).

If a dedicated pipeline DAP architecture IS required then a few alternatives
come to mind.

Since data only flows one way through the pipline there is no need for dual
port RAMs; conventional RAMs can be used with an efficient implement­
ation as shown in Fig. 4.

input

buffer a | | buffer b

| memory — , , *— PE array |

buffer c buffer d

| memory |— ■— | PE array |

| buffer e | buffer f |

output

| buffer e I | buffer f]

output

Fig. 4 Use of buffers with conventional RAMs

Buffers a, c and e are written to and b, d and f are read from. On the pipeline
beat these are swapped over implementing a double buffer system. By using
buffer memories with separate input and output pins no extra hardware is
required, simply gating the output enables and write enables. Each PE array
requires mass working store since the buffers only contain the data being
processed. Although this appears to take more store chips, because 4 bit wide
chips can be used, less chips are required, they are also much more dense
and are standard, cheaper parts.

ICL Technical Journal May 1986 161

Another method would be to use video RAM chips with built in shift
registers (Fig. 5). The data could be shifted from one set of PEs memory
into the next while the arrays were processing the other buffer. Again a
double buffered system but with both buffers in the one chip. Because the shift
registers are big (>256 bits) a memory cycle is stolen by the shift registers
infrequently leaving most of the time for the PEs. This seems to be better than
the first method except that all video S/R (shift register) RAMs I know of are
slow dynamics.

Fig. 5 Use of video RAM chips with built-in shift registers

S/R plane S/R plane S/R plane S/R plane

Fig. 6 Pipelining the existing DAPs

Another alternative is to pipeline the existing DAPs using the S/R plane to
shift the data while the PEs process the other buffer (Fig. 6). This will only be
efficient if the shifting of the buffers is complete before processing the other
buffer is complete. The S/R can shift at an average of 100 nS per 32 bit word
or 3-2 uS per DAP plane. This requires an average of 21 DAP cycles per
plane of data before the PEs will be held up waiting for the S/R plane
transfers to finish.
162 ICL Technical Journal May 1986

Notes on the authors

D.J. Ackerman Message structure as a determinant of message processing
system structure

David Ackerman joined ICL (then ICT) in 1958 after serving 14 years in the
Radio/Electrical branch of the Royal Navy. In 1966, following completion of
development work on the 1900 Series standard peripheral interface, he joined
the newly formed Data Systems branch to work on the 7000 Series
communications front-end processors for the 1900 and 2900 Series machines.
In 1970 he served as a member of the ICL team set up under contract to the
then GPO to study the requirements of a UK packet-switching network.
During this study he formulated what became known as the ‘onion ring’
method of communication systems specification and design, based on the
principle of protocol layering. He was subsequently active with others in
promoting adoption by ISO of this principle in the definition of a reference
model for Open System Interconnection. From 1978 onwards he has
remained an active contributor through BSI and ECMA to the work of ISO
in the areas of ISO Layers 1-4 architecture and standards and has been
primarily concerned with the production of standards for the ICL Network
Product Line/Information Processing Architecture, in line with those of ISO.

M. Campbell-Kelly ICL company research and development. P a r ti
1904-1959

Martin Campbell-Kelly graduated from the University of Manchester with a
B.Sc. in Computer Science in 1968 and received a Ph.D. in History of Science
in 1980. He is now deputy chairman of the Department of Computer Science
in the University of Warwick. He is presently engaged on a number of
computer history projects, including a corporate history for ICL. He is editor
of the MIT Press Reprint Series for the History of Computing and the
Collected Works of Charles Babbage, and also an editor of the Annals o f the
History of Computing.

D.A. Duce Formal specification - a simple example

Dave Duce has a Ph.D. from the University of Nottingham. He joined the
Science & Engineering Research Council’s Rutherford Appleton Laboratory
in 1974 and has been involved in computer graphics since 1975. He was
involved in the development of the Graphics Kernel System (GKS) being one

ICL Technical Journal May 1986 163

of the editors of the International Standard, and is co-author of a book on
GKS. He has worked with Elizabeth Fielding on a joint research project for
the specification of GKS since 1984.

J.P. Fellows (as B.A. Kitchenham)

John Fellows graduated from the North Staffordshire Polytechnic with an
Hons, degree in Computing Science, having spent a year at ICL Kidsgrove
working on software metrics as part of his degree course. He is now working
for AB Food where he is involved in statistical control.

E.V.C. Fielding (as Duce)

Liz Fielding has an M.Sc. in Computation from Oxford, during the course of
which she was introduced to formal specification and became interested in
this, She joined the Rutherford Appleton Laboratory in 1981 and is currently
working with David Duce on a research project for the specification of the
Graphics Kernel System, GKS.

M.D. Godfrey Innovation in Computational Architecture and Design

Michael Godfrey received a B.Sc. degree in Engineering from the California
Institute of Technology in 1959 and a Ph.D. in Mathematical Economics
from the London School of Economics and Political Science in 1962. He then
joined the faculty of Princeton University, first in Economics and later in
Economics and Statistics. During this time he was on the research staff of the
Econometric Research Program. In 1967 he became associated with Bell
Telephone Labs in Murray Hill, N.J. This association with Bell Labs and the
Corporate Planning Organization of AT&T continued until 1977. In 1969 he
joined the Statistics Section in the Mathematics Department at Imperial
College of Science and Technology. He held this position until 1977 when he
joined Sperry Computer Systems, where he was Director of Research until
1983. His current position with ICL is Head of Research.

P. Henderson The me too method of software design

Peter Henderson is Professor of Information Technology at the University of
Stirling, Scotland. Previously he has held appointments at Oxford University
and at the University of Newcastle upon Tyne in England. He is the author
of a popular textbook on functional programming.

M .J.J. Holt Recent developments in image data compression for digital
facsimile

Murray Holt obtained a B.Sc. in Mathematics at Manchester, and in 1978
was awarded a Ph.D. in Physical Chemistry for work on the numerical
analysis of chemical reaction data at Portsmouth Polytechnic. He then
worked as a programmer/analyst, specialising in statistics and graphics, for

164 ICL Technical Journal May 1986

small companies in Lancaster and Loughborough. In 1981 he joined
Loughborough University’s Engineering Maths department, researching the
application of computer graphics in the statistical analysis of industrial
processes. Dr. Holt is currently engaged on an ICL-sponsored research
fellowship in bi-level image compression, in the Department of Electronic
and Electrical Engineering at Loughborough University.

A. P. Kitchenham (as B.A. Kitchenham)

Allen Kitchenham received a first class Hons, degree in Mathematics and
Computing and later a Ph.D. in Computer Science at the University of
Leeds. Since leaving university he has worked as a designer and implementer
of ICL’s VME operating system in the area of catalogue and file manage­
ment. He is interested in techniques that assist the production of high quality
code and has been involved in pilot studies of data collection and Fagan
inspection. He has been involved also with the introduction of Inspections
into the VME production groups.

B. A. Kitchenham The effects of inspections on software quality and
productivity

Barbara Kitchenham received a B.Sc. in Mathematics and Statistics (1969),
M.Sc. in Statistics (1970) and Ph.D. (1972) at the University of Leeds, and
worked for three years as a statistician before joining ICL as a systems
programmer. After several years working on the production of the VME
operating system she moved into the area of software metrics and since 1980
has worked on the problems involved in measuring software and in
integrating measurements into the development process. She has published a
number of papers on software development, based on empirical studies of
VME production. She is now working for STL in connection with Alvey and
Esprit projects.

B.G.T. Lowden REMIT: a natural language paraphraser for relational
query expressions

Barry Lowden graduated from King’s College, London in 1964 with a first
degree in Physics. He then joined the Plessey Company where he worked in
Computing for eight years, being finally responsible for all systems develop­
ment at the Ilford site. In 1972 he studied for an M.Sc. in Computer Science
at London which he gained with distinction. Since then he has been a lecturer
in Computer Science at the University of Essex. His main research interests
lie in the areas of information retrieval, relational databases and query
languages. For the last two years he has been funded by the I.C.L. University
Research Council to carry out work on natural language front ends to
relational systems. The research team at Essex is currently developing a front
end to support queries both on and about the data held in the database.

ICL Technical Journal May 1966 165

C. Minkowitz (as Henderson)

Cydney Minkowitz has an MSc in Computation from Oxford. She joined
ICL in 1982 working on knowledge engineering in The System Strategy
Centre at Stevenage. In 1984 she transferred to the Software Engineering
Technology Centre at Kidsgrove and is currently on secondment to the
Department of Computing Science at the University of Stirling working on a
collaborative Alvey project.

A.N. de Roek (as Lowden)

Anne de Roek graduated with distinction from the University of Leuven,
Belgium, with a degree in Linguistics, English and Dutch, in 1979. After a
year with the Belgium Telephone Company, working in the field of library
automation, she was attached to ISSCO, a research institute of the Univer­
sity of Geneva, Switzerland, where she participated in the development of a
number of machine translation systems including the EEC-sponsored
EUROTRA project. In 1983 she took a M.Sc. in computer Studies at the
University of Essex. She has remained at Essex as a Senior Research Officer
and has participated so far in two ICL contracts in the area of natural
language front ends to databases.

V. West Natural language database enquiry

Vincent West graduated from Gonville and Cauis College, Cambridge, with
a B.A. in Mathematics in 1964 and joined the Central Electricity Generating
Board as a programmer. He moved to ICL in 1966 to work on Fortran
compilers, including the design of code-optimisation methods. After a variety
of software design work, including operating systems, he specialised in
databases. This has included work on the Codasyl system IDMS, relational
databases including the ICL Personal Database System and Querymaster,
and most recently natural language database interfaces.

C.S. Xydeas (as Holt)

Costas S. Xydeas received the first degree in electronic engineering from
Vranas Higher School of Electronics, Athens, Greece, in 1972 and the M.Sc.
and Ph.D. degrees in electrical engineering from Loughborough University
of Technology, Loughborough, England, in 1974 and 1978, respectively. In
1977 he joined, as a Research Fellow, the Department of Electronic and
Electrical Engineering of Loughborough University and has worked on low-
bit-rate coding of speech signals. He is at present a Senior Lecturer at
Loughborough teaching telecommunications and signal processing. He is
also directing the M.Sc. course in digital communication systems and a
research group in digital coding and processing of speech and visual signals.

166 ICL Technical Journal May 1986

