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Editorial

As will be evident, with this issue we have a change of publisher, the Journal 
now being published for ICL by Oxford University Press.

I can say without hesitation that we have been very happy with our previous 
publishers Peter Peregrinus Limited, and I personally have found it a 
pleasure to work with a series of their editors -  David Mackin, Pauline 
Maliphant and most recently John Cooper -  and their supporting staffs. 
However, we felt that after seven years we should make a change and we now 
welcome our new association with OUP, with whom I look forward to 
equally pleasurable collaboration.

In a previous editorial note I said that the Editorial Board was planning to 
compile more issues concentrating on single themes or topics. The two last 
issues, for May and November 1985, were both single-theme issues, dealing 
exclusively, although from many different points of view, with two ICL 
products, the Series 39 Level 30 mainframe computer and the Content 
Addressable File Store (CAFS) respectively. Both these proved very popular. 
The present issue covers a range of subjects, but five of the papers deal with 
different topics in the broad field of software techniques and technologies. 
The two by Duce & Fielding and Henderson & Minkowitz are concerned 
with the use of formal, meaning essentially mathematical, methods for 
specifying and designing software systems; those by Lowden & de Roek and 
West with the use of natural language in extracting information from a 
database; and by Kitchenham et al. with one of the techniques used to detect 
errors at as early as possible a stage in the development of a large software 
system.

There is a very active interest in computer history now; Campbell-Kelly’s 
paper is the first of a series in which he will survey the history of research and 
development in the companies that formed the predecessors of ICL. Dr. 
Campbell-Kelly has been given access to ICL’s archives and is planning a 
book on the history of the company.
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ICL company research and 
development 

Part 1 1904-1959

M. C am pbell-K elly
Department of Computer Science, University of Warwick

Abstract

The ICL company of today has its origins in the punched-card machine 
industry which began early in this century and matured between the two 
world wars; it was not until well into the 1960s that punched-card 
accounting machines fully gave way to computers. The paper traces the 
origins and growth of R & D activity for punched-card machines and 
early computers, from the turn of the century up to the late 1950s.

1 Introduction

In July 1984 the author entered into an agreement with ICL to write a 
company history. ICL has roots which go back many years to the punched- 
card machines from which present-day commercial computers are descended. 
There has in fact never been a satisfactory history written of the punched- 
card machine industry, perhaps for the good reason that it was of little 
economic importance. For example, IBM, outstandingly the most successful 
punched-card machine company, was only one-thirtieth of its present size (in 
terms of employees) in the late 1930s; it was successful and profitable, but not 
of global significance. However, to understand the structure of the present- 
day computer industry (and to some extent its products) it is necessary to 
understand the development of the punched-card machine industry. The first 
phase of the company history project is thus to trace the development of the 
two British punched-card machine manufacturers -  The British Tabulating 
Machine Co. Ltd. (BTM) and Powers-Samas Accounting Machines Ltd. -  
from the inception of BTM in 1904 up to the merger of the two companies in 
1959 to form International Computers & Tabulators Ltd. (ICT).

The period 1904—1959 saw R & D transformed from what in the early 1900s 
had been an activity consuming negligible resources to an activity that was a 
full divisional entity in its own right in a company 17 000 employees strong by 
1959. The purpose of this paper is to survey this R & D activity, to discuss the 
historical sources on which it is based, and to set it in its industrial and 
economic context.
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The punched-card machine industry had its origins in the machines invented 
by Herman Hollerith (1860-1929) to process the 1890 census of the USA. 
Hollerith’s equipment included a simple card punch and the ‘census machine’ 
-  a combined tabulating machine and sorting box (Fig. 1). Although the 
technology was unsophisticated by later standards, Hollerith’s early ma­
chines were very effective: some 700 punching machines and 100 census 
machines were employed by the Bureau of the Census, an impressively large 
data-processing operation even by today’s standards.

In 1896 Hollerith incorporated the Tabulating Machine Company (TMC) in 
New York for the commercial exploitation of his machines. During the early 
1900s he designed an improved range of machines which were soon taken up 
by railroad concerns, insurance companies, and manufacturers1. By about 
1907 the machines comprised a key punch (of a basic design still occasionally 
seen in use), a tabulator and a card sorter. The key piece of machinery was the 
tabulator, which accumulated values from a pack of cards, the results being 
transcribed by hand from the counters (Fig. 2). Hollerith was an outstanding 
inventor-entrepreneur, but it it is only quite recently that his role in the 
business machine industry has been fully appreciated and a major biography 
appeared2.

2 Foundations of the British punched-card machine industry (1904-1919)

Fig. 1 Census machine, c. 1890
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Fig. 2 Hollerith electrical tabulating machine, c. 1905

In 1904 a British company The Tabulator Ltd.’ was formed to exploit the 
Hollerith inventions in Britain. The formation of this company, some 3000 
miles from the source of the invention in the USA, affords an interesting case 
study in what we would now call ‘technology transfer’. At the legal and 
licensing level the transfer was effected by Robert P. Porter, a British-born 
citizen of the USA. Porter had been director of the census at the time of the 
1890 census, and had been instrumental in bringing about the use of the 
Hollerith machines by the Bureau. In 1902 he had become editor of the 
engineering supplement of the London Times, and prior to his arrival in 
England he had contracted with Hollerith for the British rights to his 
inventions. Porter became a founding director of The Tabulator Ltd. and 
assigned his rights to the Hollerith patents to the company. The new 
company was largely guided by Ralegh B. Phillpotts, at that time company 
secretary of British Westinghouse. At the technical level, the knowhow of the 
punched card machines was brought to England by C.A. Everard Greene, the 
first general manager of the British company, who spent some 18 months 
during 1902-1904 learning to use and maintain the Hollerith machines, and 
to assemble them from parts.

In 1907 the company was reformed and incorporated as The British 
Tabulating Machine Co. Ltd. (BTM) with a greatly increased authorised 
share capital of £50 000, needed to finance the leasing of the machines. One of 
the first acts of the company was to seal an agreement with the American 
company in 1908 to exclusively manufacture and sell the machines in Great 
Britain and the Empire (excluding Canada). Phillpotts (later Sir Ralegh
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Phillpotts) was chairman and sometime managing director of BTM from its 
inception in 1907 until his retirement in his late seventies in 1950. BTM grew 
at a rather gentle rate from 5 employees in 1907 to 45 employees at the 
outbreak of World War I in 1914. We have a surprisingly clear picture of 
these early years, for although very little in the way of ephemeral documen­
tation has survived we do have the statutory annual reports of the company 
and the minutes of board meetings. In those days, when the company made in 
the region of 10-20 new installations a year, each new customer was cause for 
some celebration and was duly recorded in the minute book. Another 
valuable source is a set of reminiscences written by C.A. Everard Greene in 
19593 long after his retirement as general manager, which vividly evoked his 
early years; until ICL opened up its archives for the present company history 
project, this was the principal documentary source for early company history. 
Another fascinating source is a delightfully frank bundle of correspondence 
between Hollerith and the British company written during the early years of 
the company.

In the USA relations between the Tabulating Machine Company and the 
Bureau of the Census became strained after the 1900 census, as a result of 
which in 1907 the Bureau engaged an inventor, James Powers, to design a 
new range of punched-card machines which enabled it to become indepen­
dent of the Hollerith company for the 1910 census4,5. In 1911 Powers 
incorporated a company, Powers Accounting Machines, in New York to 
develop a range of punched-card machines for commerce which were 
marketed from about 1914. The Powers machines, although functionally 
similar to Hollerith’s, operated on entirely mechanical principles and used a 
mechanical pin-sensing method that, unlike the Hollerith electrical sensing, 
was unaffected by the presence of metal impurities in the cards. The Powers 
printing tabulator (Fig. 3) was a marked improvement on the Hollerith 
model; by eliminating the manual transcription results it was much more 
suitable for accounting work.
Powers was an inventor-entrepreneur much in the mould of Hollerith, but he 
remains an enigmatic figure of whom we know very little. A Russian migrant 
to the USA, the extant biographical data on him amounts to little more than 
two typed pages6. After the formation of the Powers company the history of 
the punched-card machine industry was dominated by an intense rivalry 
between the Powers and Hollerith lines.

In 1915 an American-owned subsidiary of the Powers company was formed, 
The Accounting and Tabulating Corporation of Great Britain Ltd. -  often 
known as the ‘Acc & Tab’. The largest of the British company’s early users 
was the Prudential Assurance Co. No doubt for the twin motives of ensuring 
independence from an American supplier and also as a profitable and 
imaginative investment, the Prudential acquired the company in 1919, with 
rights to manufacture and sell the Powers machines in Great Britain and 
certain other territories. The commercial rivalry between the Hollerith and 
Powers machines was thus continued in Britain, and in other countries in 
which the two companies operated.
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Fig. 3 Powers printing tabulator, c. 1914

3 The heyday of the punched-card machine industry (1920-1939)

The period between the two world wars was the heyday of the punched-card 
machine industry: it was a period in which the technology matured and its
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products became part of the fabric of the commercial world. The 1920s saw 
both British companies continue the gentle growth of their early years, barely 
checked by difficult economic conditions. The more buoyant trading con­
ditions of the 1930s, combined with a growing acceptance of office mechanis­
ation, saw dramatic growth in both companies. Table 1 gives some indication 
of the growth of BTM between the wars by charting the growth of capital 
employed. (This data is taken from the statutory annual reports; equally good 
measures would be the number of employees or factory output, but complete 
records do not appear to have survived.)

As the companies expanded in size, so they became more hierarchical and 
structured. In the earliest days any employee, from the general manager 
down, would have been capable not only of the assembly and maintenance of 
machines but also of technical development work and the analysis of 
customer requirements. But by the 1920s both companies had fragmented 
into sales and production divisions with supporting accounting and secre­
tarial functions.

Table 1 BTM capital employed

Year Capital

1910 £12000
1915 £25000
1920 £70000
1925 £123000
1930 £159000
1935 £302000
1940 £681000

Up to the 1920s both British punched-card machine companies had been in 
essence marketing and maintenance operations for machines of largely 
American manufacture. For both companies the transition to British manu­
facture, and eventually British design, was a gradual one. In the case of BTM 
the direct importation of complete machines had already given way to the 
assembly of machines from American parts, with some local content, before 
the outbreak of World War I. The depression years of the 1920s, however, 
saw the emergence of a vocal ‘Buy British’ movement that expedited BTM’s 
move towards increased local manufacture: a new factory was opened in 
Letch worth in 1921 which expanded severalfold in the next few years. The 
company still continued to import American machines for which the volume 
of demand could not justify tooling-up for local manufacture.

The Acc & Tab made the transition from importing to manufacturing 
machines a good deal more quickly than did BTM. This was no doubt forced 
upon it to some degree by the American parent’s rather indifferent record of 
product innovation and quality of manufacture. In 1919 the company opened 
a factory in Aurelia Road, Croydon, and rapidly moved towards wholly 
British designed and manufactured machines*. In the USA the parent
“There is a remarkable silent film of the factory made in 1926 which has been restored by the 
National Film Archive in recent years.
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company was under threat of liquidation in 1923 and this no doubt 
encouraged further expansion and independence.

It is a tribute to the vigour of the British Powers company that it was able, in 
the absence of a strong American parent, to hold its own against BTM; the 
two companies remained of comparative size and profitability through to the 
1950s. In the USA the picture was very different. In 1914 Thomas J. Watson 
became president of TMC and under his energetic leadership it soon eclipsed 
the Powers organisation both in terms of product innovation and in sales7. In 
1924 the company’s growing confidence and success in foreign markets was 
reflected by a change of name to International Business Machines; at the 
same time the fortunes of the Powers company were at a very low ebb indeed. 
In 1927 the foundering Powers company was acquired in the merger which 
resulted in the formation of the Remington-Rand company. As a result of the 
merger the company’s products and profitability were revived; but although a 
serious competitor for IBM, it was never to achieve the success of its rivalt-

4 Technical development 1920-1939

When Watson assumed control of TMC in 1914, one of his first priorities was 
to develop a printing tabulator to compete with the much superior machine 
offered by the Powers company. To this end he established a development 
laboratory at Endicott, New York, whose staff was eventually to include such 
outstanding inventors as J.W. Bryce, F.M. Carroll and C.D. Lake. The IBM 
research department, and those developed by the British companies later, 
were of a pattern that had ceased to exist by the 1950s when research and 
development had become completely professionalised. The staff of these early 
research departments -  inventors rather than scientists -  were typically men 
of little formal education who had risen through the ranks. They included 
people of outstanding talent whose contribution even now is little appre­
ciated: J.W. Bryce, for example, who was one of IBM’s most prolific inventors, 
died in 1949 with scores of patents to his name9.

The printing tabulator (designed by Clair Lake) duly emerged from Watson’s 
research department, and IBM company lore has it that when the machine 
was demonstrated to the 1919 sales conference the salesmen stood on their 
chairs and cheered10. The new tabulator was marketed in the USA from 
1921, but it was not until 1924 that IBM supplied machines for the British 
market.

R & D activity did not become formally established in the British companies 
until the early 1920s, although there was some ad hoc development and 
patent activity prior to this time. A notable example within BTM occurred in 
connection with the tabulators modified for the 1911 British census, of which

fReliable data is hard to come by, but a contemporary report8 suggests that at that time IBM 
had five installations in the field for every one of Remington-Rand’s.
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a detailed account appeared in the journal The Engineer11J.

Probably the most significant invention in the development of punched-card 
machinery, and unquestionably the most important British contribution, was 
made by an Acc & Tab engineer Charles C. Foster: the alphabetical printing 
unit12,13. Prior to the introduction of alphabetical machines, tabulators had 
only been able to print figures; now it became possible to print names and 
addresses, product descriptions and so on, completely transforming the range 
of possibilities for punched-card accounting. Although the original patent 
was applied for in 1916 (British patent 108942) development was hindered by 
World War I and a prototype tabulator was not publicly demonstrated until 
1921. In a dramatic and rare reversal of the flow of technology transfer, the 
American Powers company eagerly exploited the Foster patent in the United 
States. Foster became one of the best known figures in the British Powers 
company, and at the time of his retirement in 1955 his contributions received 
official recognition by the award of an MBE.

In 1922 BTM formally established its ‘Experimental Department’ at 
Letchworth under Charles Campbell, one of the company’s first and most 
able technical employees. Machine development was only one aspect of the 
work of the department; it was also responsible for commissioning non­
standard tabulators and making preproduction prototypes, as well as 
training maintenance staff. A similar pattern developed in the British Powers 
company, where the first head of the engineering department was Arthur 
Thomas, another powerful figure in British punched-card machine 
development.

We actually know very little at a detailed level about punched-card machine 
development during the 1920s for either company, because very few records 
have survived; nor do there appear to be any surviving people then at a senior 
level to ask. Moving to the 1930s the picture becomes just a little clearer, at 
least for the Powers company for which there exists a single volume of 
surviving documentation covering the years 1930-1933 of the ‘Development 
Committee’. This committee was instigated ifl 1930 to meet approximately 
monthly to co-ordinate technical development from the viewpoints of both 
the production and selling organisations. Between the years 1930 and 1944 
the Development Committee met 161 times: the minutes and supporting 
documents for meetings 1-39 and 113-161 are all that survive, giving a 
tantalisingly incomplete picture of development. This, however, is a mine of 
information compared with the negligible documentation that has survived 
on BTM development activity.

Nonetheless, the broad sweep of technical development is immediately 
apparent from the succession of products marketed by the Hollerith and 
Powers companies in America, in Britain and elsewhere. The picture is one of
JSir Gerald Chadwyck-Healey, who was a director of BTM, was also chairman of The Engineer. 
The journal carried several articles on Hollerith machines over the years, but never one on 
Powers machines!
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intense rivalry between the companies, in which each company tried 
alternately to better the products of its competitor. A well known example 
was the introduction in America in 1928 of the 80-column punched card with 
slotted holes in place of the standard 45-column card with round holes then 
offered by both companies. The greater capacity of the new card was a 
challenge that had to be swiftly met by Remington-Rand, which offered a 90- 
column card shortly after. The British companies adopted the new size cards 
within a year or two of their appearance on the American market.

One of the notable British achievements during this period was the small card 
introduced in 1932 by Powers-Samas§. The new size card (4§ x 2 in instead of 
the 7f x 3¾ in of the full-sized card) enabled a range of low-cost machines to 
be put on the market for small and medium-sized businesses, which could not 
have justified the large machines. These machines soon became a mainstay of 
the company and sold in their hundreds. BTM quickly countered with their 
own ‘Junior’ range of machines, but they were not a great success. Another 
important British first was the ‘rolling total’ mechanism developed under
H.H. (‘Doc’) Keen, one of BTM’s outstanding technical people. The rolling 
total feature enabled values to be ‘rolled’ from one counter to another, 
considerably enhancing the arithmetical capabilities of the machine. The 
alphabetical rolling total tabulator launched in 1936 (Fig. 4) was a high point 
in prewar British punched-card machine design, and functionally superior to 
the contemporary IBM machine.

Over the years a host of improvements were made to the machines. These 
improvements included major advances such as rolling totals, the ‘automatic 
total attachment’ and the ‘long feed mechanism’, as well as a host of minor 
improvements to counter, printing, and card sensing and transport mechan­
isms. Although improvements were heavily patented, such was the compe­
tition that each manufacturer had perforce to implement each functional 
improvement on its own machines; great skill was expended in avoiding 
patent infringement, or at least achieving a gentlemanly agreement. The 
accumulative effect of these improvements followed much the same pattern as 
in any mature technology (such as the motor car for example): while the 
machines of the late 1930s bore a strong outward resemblance to the 
machines of the early 1920s, beneath the covers every functional subassembly 
had undergone successive cycles of optimisation and refinement. In addition 
to these internal improvements new ancillary machines such as the multiply­
ing punch, the interpreter and the collator were introduced.

4 War and postwar (1940-1959)

At the time of the outbreak of World War II the two British punched-card 
machine manufacturers were among the largest and best equipped precision 
engineering concerns in the country. It was therefore inevitable that both

§In 1929 the selling company of the British Powers organisation became known as Powers- 
Samas. The name Samas derived from the French selling organisation.
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BTM and Powers-Samas would be heavily involved in armaments produc­
tion. In both companies a high proportion of productive capacity was used in 
the manufacture of aeroplane and gun parts, bomb sights and fuses, and fire 
control apparatus. Demand for all forms of office machines ‘rose by leaps and 
bounds as administrative work and the collection of statistics expanded in the 
Services, in industry and in Government departments’14. Punched-card 
machine production thus continued alongside armament manufacture, distri­
bution being supervised by the Board of Trade Directorate of Office 
Machinery.

Fig. 4 BTM alphabetical rolling total tabulator, c. 1936

The technical staff of both companies were involved in military development 
work. In view of the current interest in the cryptographic operation at 
Bletchley Park, perhaps the most spectacular wartime R & D activity was 
BTM’s involvement in what was known as ‘Project Cantab’. This project was 
concerned with the construction of electromechanical code-breaking ma­
chines (‘bombes’) to decrypt the ‘Enigma’ traffic produced by the German 
cipher machines15. It is said that it was for this work that Ralegh Phillpotts 
received his knighthood in 1946, and for which H.H. Keen, F.V. Freeborn and 
C.G. Holland-Martin received OBEs (Phillpotts, incidentally, was not
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unaware of the irony that he received a higher honour than those who did the 
technical work!)*.

Powers-Samas also made a major contribution to wartime research, devoting 
many of its resources to the Vickers Mark XIV Computor [sic] for bomb­
aiming:

‘The success of the Mark XIV Instrument, in the development of which 
we were able to assist the Air Ministry, led to an extremely urgent 
demand for a number of pre-production models. Some 40 computers 
were produced in the Research Department together with several special 
machines for use in the production of special components’. (Minutes of 
Development Committee Meeting 143, 8th July 1943.)

Soon after the war, Powers-Samas was acquired by Vickers as a wholly 
owned subsidiary. Because of war-related research, basic R & D on punched- 
card machinery was drastically cut back during the war years. For example, 
in the Powers company the years 1940-1944 saw only nine new machine 
types produced and five minor improvements, compared with 29 new 
machines and 19 improvements in the previous five-year period 1935-193616. 
Although on the cessation of hostilities both companies revived their R & D 
activities, they also found themselves in a seller’s market of pent-up demand 
that partly masked the need for product innovation.

It was not perhaps until 1947 or 1948 that a real sense of urgency for R & D 
began to manifest itself. At about this time the R & D activity of both 
companies was put under additional strain by the termination of their 
licensing agreements with their American parents. In retrospect these were to 
be more crucial events than either company could have realised at the time 
because R & D costs were about to escalate out of all proportion to prewar 
experience.

In the case of Powers-Samas, its reciprocal licensing agreement with 
Remington-Rand expired in May 1950 and the American company declined 
to renew it. The British company had of course not made a proportionate 
contribution to punched-card machine development for several years due to 
other war-time priorities, and Remington-Rand took the somewhat oppor­
tunistic decision to sever its relationship with the war-weakened British 
company with the aim of competing in the British territories in which the 
latter had so long had exclusive rights.

BTM terminated its agreement with IBM by mutual consent in 1949. In fact 
the licensing arrangement with IBM had been an obligation of the most 
onerous kind to BTM throughout its existence. The agreement was that 
BTM paid IBM 25% after tax of its net revenues in exchange for the use of 
IBM patents: the outcome was that IBM actually made more profit from
*At the time of writing, the author had traced some of the people involved in this work, now 
mostly in their seventies. A detailed account will appear in another place.
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BTM than did its shareholders. Furthermore, IBM’s insistence that BTM 
lease rather than sell machines had hindered company growth due to lack of 
capital to finance the leasing. BTM was of course only too well aware that by 
severing its relations with IBM it would not only looe access to future 
developments, but it would also be exposed to IBM competition in Britain 
and the Commonwealth. However the company view was that:

The financial benefits immediately accruing to the Company in the new 
circumstances will be devoted to strengthening the business in every 
direction necessary to meet competition. The Management ... will 
welcome this opportunity of proving that British effort and British skill 
can be matched successfully against any competitor in our business, 
whether national or international’17.

The first R & D priority of both companies was to develop their standard 
punched-card machines (which were essentially unchanged from those sold in 
the late 1930s) to meet the competition that would be unleashed upon them 
once their American parents had built selling organisations in British 
territories. The awesome size of this R & D challenge was brought home 
when IBM announced in quick succession during 1948 and 1949 a daunting 
series of new products: the model 407 accounting machine, the 603 electronic 
multiplier and the 604 calculating punch. In every case these machines 
completely outclassed the offerings of the British companies. Remington- 
Rand were likewise offering electronic punched-card machines, which prob­
ably seemed more of a threat at the time than the fact that in 1949 it had 
acquired the Eckert-Mauchly Computer Corporation (UNIVAC), one of the 
brightest new computer development companies in the USA.

It was against this background that Powers-Samas more than doubled its 
1949 R & D expenditure of £50000 to a projected £139000 for 1950; this 
represented a rise from about 2% to 5% of its revenue. By good fortune we 
have a remarkably clear picture of postwar research management in Powers- 
Samas by virtue of the large volume of documentation that has survived: 
there is an almost complete set of agenda, minutes and supporting papers of 
the various research committees for the period 1945-1959. The bulk of 
Powers-Samas development activity continued to be on traditional punched- 
card machines, to meet the pressing need for modern competitive machines -  
particularly an updated tabulator. In 1950 the company also established an 
independent computer laboratory at the Crayford plant of Vickers, with the 
somewhat conservative aim of introducing electronics ‘as and when appro­
priate’ into its punched-card machines.

This rather cautious approach to introducing electronic products was a cause 
for some concern outside the company. The National Research & Develop­
ment Corporation (NRDC) took the initiative of establishing an Advisory 
Panel on Electronic Computers which held a single meeting on the 14th 
December 1949. The meeting was attended by both British punched-card 
machine manufacturers and by the majority of British electronics 
manufacturers:

ICL Technical Journal May 1986 13



The outcome of the Advisory Panel meeting was that both the 
electronics manufacturers and the punched card machine manufacturers 
respectively represented that they were individually in positions to tackle 
the problems of an electronic computer development project as well as, 
for example, the International Business Machines Corporation in the 
United States. It was pointed out to the punched card machine 
manufacturers that, in the opinion of the Corporation, they had 
inadequate electronic staff and resources. It was apparent also that the 
manufacturers were not willing that the Corporation should take the 
initiative in launching a development project but agreed that the 
Corporation could usefully coordinate activities’18.

In fact this concern at the lack of electronics capability of the punched-card 
machine manufacturers underestimated their resourcefulness. Within 
Powers-Samas, for example, major research projects were soon to include an 
electronic multiplying punch, a new super-tabulator and an electronic 
computer. Work began on the electronic multiplying punch (EMP) in 1950 
and with a decisiveness that must have surprised outsiders a product, which 
sold in hundreds, was on the market by 1953. The new tabulator -  marketed 
as the Samastronic in spite of its being entirely electromechanical -  was an 
ambitious development based around a 300 lines per minute printer of novel 
design. Unfortunately the development was beset by many problems; 
machines were delivered many months late and were unreliable in service!. 
The programme-controlled computer (PCC) fared only somewhat better 
than the Samastronic, but it used the latter’s printing mechanism and had its 
own problems of reliability. The Samastronic and the PCC both afford 
particularly clear examples of a technology in transition. The Samastronic 
(Fig. 5), whose functional specification was essentially that of a mid-1940s 
tabulator, was an example of a technology extrapolated beyond its practical 
limit. On the other hand, the PCC straddled the gulf between a calculating 
punch and a true stored-program computer. At the time of the merger with 
BTM in 1959 a fullscale computer PLUTO was under development in 
collaboration with Ferranti.

The present knowledge of the postwar R & D activity in BTM is somewhat 
limited as very little documentation appears to have survived. Fortunately, 
however, the majority of participants are still with us (and many are still with 
ICL) so that it will be possible to draw on ‘oral history’. Like Powers-Samas, 
BTM at first saw electronics mainly in terms of enhancing its punched-card 
machines, and few resources were diverted to electronic computers as such, 
the major R & D resources going into such developments such as the 900 
series tabulators. However, once the company seriously took to computer

fin  1959, when BTM and Powers-Samas merged to form ICT, the Samastronic proved to be a 
serious financial and marketing embarrassment that haunted the new company during its early 
years. A senior technical manager within ICL comments ‘the Samastronic failed through straight 
bad mechanical engineering, a supreme irony for such an experienced organisation ... The 
Samastronic story is central to the history of punched card R & D in the UK. The real facts have 
never been published’.
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Fig. 5 Powers-Samas Samastronic tabulator, c. 1956

development it did so more decisively than did Powers-Samas, and there were 
three fullscale computer developments during the 1950s. A notable feature of 
all these developments is the willingness that the company showed in 
importing knowhow from outside at an early date.

In 1950 BTM appointed J.R. Womersley, then Superintendant of the 
National Physical Laboratory Mathematics Division, to head computer 
development. An experimental computer known as the HEC (for Hollerith 
Electronic Computer) based on a design by A.D. Booth of Birkbeck College 
was completed at Letchworth in 1950. From this development a production 
version the HEC 2M (also known as the model 1200) was sold from 1955. 
This machine was a scientific computer and only a few were sold, but from it 
derived the HEC 4, Britain’s first and most successful first-generation 
commercial computer. This machine sold in two versions (the 1201 and the 
1202), and well over 100 were made.

The second major computer development in BTM occurred in collaboration 
with GEC, with which it formed a jointly owned subsidiary company 
Computer Developments Ltd. in 1956. The pooling of BTM’s data- 
processing resources and GEC’s electronics skills led to the development of a 
small second-generation transistorised computer, the ‘P3\ The P3 was rather 
slow in development and did not reach product status until 1960, as the 
model 1301. A third, and little known, development occurred in collabor­
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ation with the Laboratory For Electronics Inc. of Boston for the joint 
development of a new commercial computer, the APOLLO, and a large 
capacity drumstore; neither of these projects developed into BTM products. 
At the time of the merger in 1959 another major in-house development, the 
‘balanced data-processing computer’ was under way and provisionally 
designated the model 1400: but the machine was based on valve technology 
and had to be abandoned.

In January 1959, after many months of negotiation and preparations for 
integration, BTM and Powers-Samas formally merged to become Inter­
national Computers & Tabulators Ltd. At the time of the merger neither 
company was marketing a second-generation commercial computer, a most 
notable deficiency in the face of the very successful IBM 1401 to be launched 
later in the year. The company began to market its small second-generation 
1301 computer in 1960 and from 1963 the much larger 1500 computer was 
made under licence from RCA. It was not until the launch of the third- 
generation 1900 series, however, that ICT had a machine that was something 
like the equal of its American competitors. The 1900 series had an unprec­
edentedly large development budget, partly government financed, and 
opened a new chapter in company R & D. A future paper will describe in 
detail R & D activity on computer developments from 1960 to the late 1970s.
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Innovation in computational architecture
and design

M.D. Godfrey
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Abstract

This paper presents some of the motivation for innovation in computa­
tional architecture and design, and discusses several architectural 
and design ideas in the framework of this motivation. It is argued that 
VLSI technology and application architectures are key motivating 
factors.

Because of its unusual properties with respect to VLSI and application 
efficiency in certain areas, the ICL Distributed Array Processor is 
discussed in detail.

1.0 Introduction

The purpose of this note is to discuss some of the motivation for innovation 
in computational architecture, and, in this context, to review a number of 
computational architectures and describe an active memory architecture 
which is the basis of the ICL Distributed Array Processor (DAP)* products. 
Any discussion of new computational architecture must take account of the 
pervasive impact of VLSI systems technology. It will be argued that a key 
attribute of VLSI as an implementation medium is its mutability. Using 
VLSI it is natural to implement directly the computation of specific 
problems. This fact will induce a fundamental change in the structure of the 
information industry. While many new computational architectures do not 
fit well with this VLSI systems driven view of the future, the DAP structure, 
viewed as an active memory technology, may prove to be effective for the 
composition of important classes of application systems.

At present, there is a very high level of activity directed toward ‘new’ 
architecture definition. Much of this work has a negative motivation in the 
sense that it is based on the observation that since it has become increasingly 
hard to make ‘conventional’ architecture machines operate faster, one should 
build a ‘non-conventionaP (or non von Neumann) machine. This negative 
motivation has been pretty unhealthy, but it is good to keep it in mind as it

♦DAP is a trademark of ICL
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helps to explain much current work which otherwise would not have an 
obvious motivation. In my view, good architecture must make the best use of 
available technology in an essentially market-driven framework, i.e. form 
follows function. This was obviously true of the approach taken by von 
Neumann in defining the present ‘conventional’ architecture. And, it may 
help to explain why this architecture continues to be the dominant computa­
tional structure in use today.

Architecture can be thought of at various levels. It has been usual to 
distinguish between system, hardware, and software architectures. By impli­
cation, this note argues that the most useful context for architectural 
thinking is application architecture. Demand for higher efficiency will con­
tinue to decrease the prominence of conventional software. When full use is 
made of the technology of VLSI systems, the dominant mode of architecture 
and design expression will be integrated systems which efficiently compute 
results for a given application. In order to achieve this integration it will be 
necessary to define the basic structure of software in a manner that is 
consistent with the computational behavior of digital logic. These premises 
are not elaborated further in this note, but they are used to draw conclusions 
concerning the likely usefulness of the architectures that are discussed.

A related subject which is also not explicitly discussed below is that of safety. 
Current computational systems are unsafe in the specific sense that they 
often fail when used in a manner that the customer was led to believe was 
reasonable. The impending demand for demonstrably safe application 
systems is one of the key longterm directional forces in computation. The 
facts that conventional software is not based on a physically realizable 
computational model, and that it is not subject to reasonable test will both 
work against its continued use. Safe computational systems will be built 
based on a model of the behaviour of digital logic such that the domain of 
proper use and the expected behavior within that domain can be specified 
and demonstrated in a convincing manner. While in some cases a convincing 
demonstration can be by example use in ‘typical’ situations, in other cases it 
will be necessary to assure proper behavior without the time and cost 
associated with extensive practical trials. It is the later cases that demand a 
wholly new formulation. For a precise statement of the limits of present 
software technology see [7].

2.0 Architecture and computational work

2.1 The current architectural scene

A few key factors should dominate architectural thinking:

1 The time it takes to communicate information along an electrical 
conductor imposes a strict limit on the speed of individual computa­
tional elements [4, Chapter 9],

2 The advent of VLSI technology has fundamentally changed the
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technology constraints. VLSI permits the composition of highly com­
plex two dimensional structures in a uniform physical medium. The 
current state of VLSI fabrication technology permits about 1/2 million 
transistors on a single chip. Projections indicate that densities of 20 
million transistors are theoretically feasible, keeping the size of the chip 
constant. This means that a very high level of architectural definition 
must take place in the context of the base material from which the 
system will be constructed. The two dimensional nature and electrical 
power considerations lead to the observation that VLSI is a highly 
concurrent medium, i.e. it is likely to be more efficient if many of the 
individual elements on a chip are doing something at the same time. 
Communications is a dominant cost. Communication costs increase by 
a large increment when it is necessary to go off-chip. Thus, efficiency is 
improved if the number and length of communication paths is 
minimized, and the bulk of communications is localized within any 
chip.

3 Historical evidence indicates that the total demand for processing 
power is essentially unbounded. Thus, an increase in perceived compu­
tational performance, at a given price, will result in a very large 
increase in demand. This effect really does appear to have no fixed 
limit. Within this demand behavior there is a key discontinuity which is 
referred to as the interaction barrier. A qualitative change takes place 
when a, computational task can be performed in a time that is within a 
human attention span.

4 Digital logic must be designed and implemented to operate correctly. 
There is no tradeoff between speed and correctness or safety. The 
tradeoff is between speed and efficiency of computational work. 
Higher performance, for a given technology, requires more energy 
and more space. The understanding of the locus of efficient points in 
the space-time-energy domain is an unsolved problem of fundamental 
importance.

2.2 Computational work and performance measures

It is common practice to describe the performance of a computational system 
in terms of the rate at which instructions, or particular classes of instructions 
(operations) are carried out. This is the basis of the MIPS (Million 
Instructions Per Second) and MFLOPS (Million FLoating-point Operations 
Per Second) measurement units. The basic element of computational work is 
the determined rearrangement of data. Thus, the appropriate measure of 
performance should be a measure of the rate at which a determined 
rearrangement can be carried out. Such a measure must evaluate the rate at 
which the required rearrangement can be decided and the rate at which the 
data items can be transformed into the required arrangement. In many 
computations the decision time and complexity dominate the data arrange­
ment time. An extreme case of this kind is sorting. If the required record 
order was known at the start of a sort, the resulting sort time would be quite 
short. These observations suggest that the MFLOPS measure may be
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misleading as it tends to neglect the decision work that is required in all 
useful computations.

The remainder of this note is in three main Sections. First, we will discuss 
some of the main development efforts which are known to be underway. 
Then, we will review the active memory architecture as embodied in the DAP 
and indicate its context for comparison. For the present purposes the key 
feature of the DAP structure is that it is a component technology which may 
be composed into specific systems and which thus may be effective in a VLSI 
systems design framework. Finally, we will briefly discuss the expected future 
direction of VLSI-based architecture and design.

3.0 Alternative architectures

Not only has there been considerable recent discussion about new architec­
tures, but there has been increasing discussion about the terminology and 
taxonomy of these architectures. All this is still pretty confused. I will try to 
keep things simple, and avoid as much of the confusion as possible. 
Approximately, the architectures will be described in order of increasing 
specialization, but this is only very rough as the notion of specialization is 
itself not simple.

A standard taxonomy uses the following notation:

SISD- Single Instruction, Single Data stream: a single conventional 
(von Neumann) processor,

SIM D- Single Instruction, Multiple Data: a set of processing elements 
each of which operates on its own data, but such that a single 
stream of instructions is broadcast to all processors,

M IM D- Multiple Instruction, Multiple Data: typically, a collection of 
conventional processors with some means of communication 
and some supervisory control.

The remaining possibility in this taxonomy, MISD, has not been much 
explored even though, with current technology, it has much to commend it.

In addition, the ‘granularity’ of the active elements in the system is often used 
for classification. A system based on simple processors which operate on 
small data fields is termed ‘fine-grained’, while a system of larger processors, 
such as 32 bit microprocessors, is termed ‘coarse-grained’. This classification 
can tend to conceal other key. distinctions, most prominently the nature and 
efficiency of communications between the active elements, and thus it may 
not improve useful understanding.

3.1 Multiprocessors (MIMD)

Multiprocessors, with the number of processors limited to about six, have 
been a part of mainframe computing for about 20 years. The idea has been
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rediscovered many times, most recently by designers of microprocessor- 
based systems. A pure ‘tightly-coupled’ multiprocessor is composed of 
several processors all of which address the same memory. Each processor 
runs its own independent instruction stream. A basic hardware interlock 
(semaphore) is required to control interaction and communication between 
the processors. Various software schemes have been developed to manage 
these systems. The most effective schemes treat the processors as a virtual 
resource so that the programmer can imagine that he has as many processors 
as he needs, while the system software schedules the real processors to satisfy 
the user-created tasks in some ‘fair’ manner. In many systems the software 
places restrictions on user access to the processors, either real or virtual. 
However, there is a fundamental hardware restriction which is imposed by 
the need to have a path from each processor to all of the memory. The 
bandwidth of the processor-memory connection is a limitation in all 
instruction processor designs, and the need to connect several processors just 
makes this worse. If a separate path is provided for each processor, the cost 
of the memory interface increases very rapidly with the number of processors. 
If a common bus scheme is used, the contention on the bus tends to cause 
frequent processor delays. The current folklore is that the maximum realistic 
number of processors is around six to eight. Thus, in the best case, this 
arrangement can improve total throughput of a system by around a factor of 
six. To the programmer, the system looks either exactly like a conventional 
system (the system software only uses the multiple processors to run multiple 
‘job-streams’) or, in the most general software implementations, it looks like 
a large number of available virtual processors. However, in either case, total 
throughput is limited by the maximum realizable number of real processors.

Examples of such systems are the Sperry 1100 Series, Burroughs machines, 
Hewlett-Packard 9000, IBM 370 and 3000 Series, and ICL 2900, and various 
recent mini’s and specialized systems.

This architecture is likely to continue to be used, particularly in dedicated 
systems which require high performance and high availability since the 
multiple and, in some cases, exchangeable processors can make the system 
more responsive, and more resilient to some kinds of failures.

3.2 The multiflow machine

One of the very few system or problem driven architectures is the ‘multiflow’ 
design which was developed at Yale University [5] and subsequently at 
Multiflow Inc., formed by the Yale developers. Their design is an integrated 
software-hardware design which attempts to determine the actual parallel­
ism in an application (expressed without explicit regard for parallelism) and 
then to assign processors and memory access paths to the parallel flow paths. 
This is done by analysis of the program and sample input data. This use of 
data is the key distinctive feature of this system. The hardware is similar to 
conventional multiprocessor organization, as described above, except that 
the processor-memory interface is carefully designed so that the software can
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organize the parallel computation in a manner that minimizes memory 
contention.

This could result in a significant improvement over conventional multi­
processor techniques, but is unlikely to produce more than a factor of ten. To 
the user, this looks just like a conventional sequential system. If a sequential 
language is used for programming this system then the potential benefit of 
compact representation is lost in exchange for not having to recode existing 
programs.

3.3 Arrays of processors (MIMD)

This is the area that is getting lots of publicity and lots of DOD and NSF 
money. Projects at Columbia (non-von), Caltech (Cosmic Cube), and NYU 
are examples of this structure. The Caltech project has been taken up by 
Intel, and others such as NCUBE Inc.

The common thread in many of these designs is to arrange, in a more or less 
regular structure, a large set of conventional microprocessors each with its 
own memory. Thus, this design solves the problem of common-memory 
systems by having each processor have its own memory. However, this 
structure suffers from the problem of communication between the processors 
which is made more severe since they cannot communicate through shared 
memory. Since the communication scheme has to be determined once and for 
all when the machine is designed, it cannot be optimized for widely differing 
application requirements. The current unsolved problem in this structure is 
how to transform current problems, or create new problems, which match 
the connection and communication structure of the designed machine.

It is usual to talk about at least 64 processors, and some projects are 
planning for several thousand. Generally the number of processors is tied to 
the funding requirements of the project, rather than to any deduction from 
application requirements. The current choice of processor is variously Intel 
286, Motorola 68020, INMOS transputer, etc.

There are several projects which use this general structure, but which attempt 
to organize the processing elements and their interconnections in order to 
provide faster operation of some forms of functional or logic programming, 
typically in the form of LISP or PROLOG. ICOT is building such a system 
and the Alvey Flagship project plans a similar effort: in this major project, 
the largest under the Alvey Directorate, ICL is leading a consortium in which 
the other partners are Plessey, Imperial College (London) and Manchester 
University. Thinking Machines Inc., spun off from MIT, seems to be furthest 
along on a VLSI implementation. Their machine, called the Connection 
Machine [6], is also distinctive, when compared to the class of systems 
mentioned so far, in that the processing elements are relatively simple single­
bit processors. In this respect the machine can be described as ‘DAP-like’, but 
this analogy is not very close. In particular, the machine has an elaborate and
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programmable processor-to-processor communication scheme, but no direct 
means of non-local communication.

3.4 Vector processors

These designs differ from any of the previously described systems in that they 
introduce a new basic processing structure. The fundamental precept of these 
designs is to extend the power of the processor instruction set to operate on 
vectors as well as scalars. Thus, if an instruction requests an operation on a 
vector of length, say, 64 and the operation is carried out in parallel with 
respect to the elements of the vector, then 64 times as much work was done 
by that instruction. This is an example of a general argument that says: if 
there is a limit to the speed at which instructions can be processed then it 
may be better to make each instruction do more work. Seymour Cray 
thought of this approach, and the CDC and Cray Research machines which 
he designed are the best embodiments of the idea. Experience with three 
generations of these machines, particularly at the US National Research 
Labs (Livermore, Los Alamos), has led to the conclusion that it is quite hard 
work to arrange a given problem to match the vector structure of the 
machine. The best result is something like a factor of ten improvement over 
conventional techniques. These machines are inherently quite complex and 
therefore expensive, and performance suffers with attempts to reduce the 
cost.

Considerable effort has been put into compilers, particularly Fortran, which 
can automatically ‘vectorize’ a program which was written for a conventional 
machine. This work has not been very successful because the actual 
dimensionality of a problem is usually not indicated in the program. The 
dimensionality is only established when the program executes and reads in 
some data. This fact was understood by the Multiflow people.

The current design direction in this area is to try to combine vector 
processing and multiprocessor systems, since the limits of the vector 
extension have substantially been reached. This is leading to extremely 
complex systems.

3.5 Reduced instruction set designs (RISC)

These designs are motivated by the opposite view from that held by the 
vector processor folks. Namely, it is argued that a processor can execute very 
simple instructions sufficiently quickly so that the fact that each instruction 
does less work is more than offset by the high instruction processing rate. A 
‘pure’ RISC machine executes each of its instructions in the same time, and 
without any hardware interlocks which would ensure that the results of the 
operation of an instruction have reached their destination before the results 
are used in the next instruction. This adds greatly to the simplicity of the 
control logic in the instruction execution cycle. However, it places the burden 
of ensuring timing correctness on the software. Generally, the RISC designers
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have concentrated on reducing the number and complexity of the instruc­
tions and, therefore, reducing the number of different data types on which the 
instructions operate. However, they have left the ‘size’ of the data items alone. 
Thus, RISC machines operate on typically 32 bit integers and, sometimes, 32 
and 64 bit floating point numbers. Thus, they are much like conventional 
machines except that the actual machine instructions are reduced in number 
and complexity. By contrast, the DAP approach is to drastically reduce the 
allowed complexity of the data at the individual processor level, but to 
provide for direct operation on complex structures through the large number 
of processors. The instructions which operate the DAP PE’s are, in current 
designs, very much simpler than in RISC designs.

In addition, but in no necessary way connected with the reduced instruction 
set, RISC machines have been defined to have large sets of registers which are 
accessed by a structured address mechanism. This construct is used to reduce 
the relative frequency of memory references, thus permitting fast instruction 
execution with less performance restriction due to the time required for 
access to data in the main memory.

One can argue that RISC and vector processors are in pretty direct conflict: 
one says smaller instructions are better while the other says bigger instruc­
tions are better. It would be nice if we had some theory which could shed 
light on this conflict. We do not. The empirical evidence tends to indicate 
that they both have it wrong: i.e. the ‘biggness’ of the instructions probably 
does not matter much.

The main research on RISC architecture was done originally at IBM 
Yorktown Heights, Berkeley, and Stanford. Both IBM and Hewlett-Packard 
have recently announced RISC-based products.

A basic premise of the RISC approach, as is true of the vector approach, is 
that the software, or something, can resolve the fact that the users’ problems 
do not match well with the architecture of the machine. In the RISC case the 
language compilers and operating software must translate user constructs 
into a very large volume of very simple instructions. In some situations, such 
as error management, this may become rather painful.

3.6 Processor arrays (SIMD)

The DAP is often referred to as a SIMD machine, but this is another 
point at which the taxonomy of new architectures can become confusing 
and confused. The DAP is a single instruction, multiple data machine in 
the sense that a single instruction stream is broadcast to all the processors 
each of which then operates on its own data. However, the data object in 
a DAP is very different from the data object in most other SIMD, or 
other, machines. (This suggests that the xlyD classification, by putting the 
instruction character first has got the priority wrong: the data are what 
really matter.)
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Several SIMD machines which operate on conventional data fields, such as 
32 bit integer and 32 or 64 bit floating point, have been built. However, the 
current view in the ‘big-machine’ world is that MIMD should be better: e.g. 
Cray X-MP, HEP.

3.7 Dataflow machines

For many years thought has been given to the idea that computation should 
be driven by the data, not the instructions. One version of this thinking gave 
rise, in the late 1970’s, to ‘Dataflow Machines’, particularly at Manchester 
University and MIT. The basic construct of Dataflow Machines is a system 
for managing ‘instructions’ which are composed of data items and the 
operation which is to be performed on the data items. Data items enter the 
system and when all the required items are available for a given instruction, 
the instruction is sent to the operation unit which performs the intended 
operation and produces the data result. This result may then complete some 
other instruction which was waiting in a queue. This instruction is then 
processed. It has been argued that this arrangement of data-driven schedul­
ing can improve the parallelism of a computation since many instructions 
may be in progress at any time, and the work gets done as soon as the data 
become available. However, the selection of instructions for processing must 
be done serially and thus parallelism is not obviously improved over 
conventional designs. In addition, new language techniques are required to 
create programs for such machines.

It can be argued that the basic idea underlying dataflow machines is sound 
but that the recent research attempted to apply it at much too low a level.

4.0 The active memory architecture

The active memory structure of the Distributed Array Processor (DAP [2, 
Chapter 12]), first developed by ICL, will be described in a more complete 
way because it may be viewed as forming a basis for a distinctive capability 
which has not been developed in other systems. The DAP structure by its 
nature leads to the formulation of problems in terms of the required 
rearrangement of the data. Thus, its efficiency tends to be dependent on the 
spacial distribution of data-dependent elementary decisions. (A formal 
notation for efficient organization of the dynamics of data arrangement is 
presented in [1].)

Broadly, the DAP is an active memory mechanism such that an array of 
processing elements control the manipulation of data in the memory 
structure. The array of processing elements, each of which addresses a local 
memory, are operated by a single instruction stream and communicate with 
their nearest neighbours, in some topology.

Progressively more narrow definitions also include the restriction that the 
processors have some particular amount of local storage, that the processor
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width is one bit, and that particular structures are provided for data 
movement through the local store structure. For applications that require 
communication beyond local neighbours, it may be essential to have row and 
column data paths which allow the movement of a bit from any position to 
any other position in a (short) time which is independent of the distance 
moved.

While the above definitions are useful for some purposes, an external 
definition is more appropriate for understanding some applications and 
market opportunities. A useful external definition is: A DAP is a subsystem 
which is directly effective for execution of DAP-Fortran, or of a sub-set of the 
Fortran 8X array extensions. The term ‘directly effective’ is intended to mean 
that there is a close match between the language construct and the 
corresponding architectural feature, and that the resulting speed of operation 
is relatively high. The relevant Fortran extensions permit logical and 
arithmetic operations on arrays of objects. The DAP performs operations in 
parallel on individual fields defined over the array of objects.

4.1 Performance

So far no mention has been made of absolute performance. This is 
appropriate as it is assumed that a contemporary DAP will be constructed 
from contemporary technology. Therefore, the important question is what is 
DAP relatively good at? The definitions above are meant to make it clear 
that a DAP is relatively good at computations which involve a relatively high 
density of operations, including selection and conditional operations, on 
replicated structures and which require parallel rearrangements of data 
structures. The replication may be in terms of the dimensions of arrays, 
record structures, tables, or other patterns. For example, routing algorithms 
in 2 dimensions satisfy this requirement very nicely.

4.2 Cost

Cost is an important consideration in the definition of a DAP because if a 
DAP is defined as being relatively good at some computation, this must be 
taken to mean that it is relatively more cost-efficient. DAP costs are 
differentially affected by VLSI technology. The basic DAP structure scales 
exactly with the circuit density. This simple correspondence between DAP 
structure and VLSI structure is a useful feature which must be taken into 
account when projecting possible future cost-effective DAP structures. The 
main discontinuity occurs at the point where a useful integrated memory and 
processor array can be produced. Roughly, the technology to produce 1 
megabit RAMs will permit such an integrated implementation.

To indicate present cost characteristics, 2 micron CMOS (2 layer metal) can 
support, approximately, an 8 x 8 DAP processor array. The chip fabrication 
cost is of the order of $10. Thus, a 16 chip set to provide a 32 x 32 array 
would imply a chip cost of $160. This structure would require external
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memory to compose a subsystem. Using emerging VLSI technology it will be 
possible to construct memory and processors on a single chip, thus improv­
ing performance and reducing the cost to approximately the cost of the 
memory.

4.3 Array size

It is reasonable at some levels to define a DAP without reference to the 
dimensions of the processor array. However, if one asks how well a DAP can 
solve a problem the array size becomes a prominent factor. For practical 
purposes it must appear to the user that the array has dimensions within the 
range of about 16 to 128. (Or, in other words, the array contains from 256 to 
16384 processors.) With present techniques the user must arrange his data 
structures to match the DAP array dimensions. Most realized implementa­
tions of DAPs have used a square array structure. Whether the array is 
square is not very significant, and should not be a part of any definition. 
However, square arrays are obviously simpler to program and will likely 
continue to be the standard form. It is more significant that the dimensions 
should be a power of two. Many of the established techniques rely on 
composition based on this fact.

4.4 Processor width

The processor width is a key element of DAP structure. It can be argued that 
the (single bit) width of the processor should be a defining feature of a DAP. 
It is probably somewhat more realistic to state that a DAP must be capable 
of efficient operation in a mode that makes it appear to the user as if the 
processors were single bit wide. With present techniques this implies that the 
processor width must be quite narrow. A wider processor width might make 
an array system, such as the Caltech (Intel) Cosmic Cube, but it would 
definitely not be a DAP.

4.5 Local memory size

The size of the local memories, within limits, does not affect the definition of 
a DAP. However, the availability of substantial memory, so that the system 
can properly be viewed as a three dimensional memory with a plane of 
processors on one face, is an essential feature. The memory must be large 
enough to contain a substantial part of the information required for a given 
computation. The amount of memory associated with each processing 
element has an important effect on both performance and detailed program­
ming. Typically, each processor may have 16 k bits of local memory, but 
greater memory size, as usual, permits efficient solution of larger or more 
complex problems. Particularly in VLSI technology, there is a direct tradeoff 
between array size and local memory size on a chip. How to best make this 
tradeoff is not well-understood.
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4.6 I/O and memory-mapped interfaces

The interface of the array structure with the outside world is an important 
(for some applications, the most important) design feature. Increasingly, it 
will likely be necessary to construct interfaces to match specific application 
bandwidth and data ordering requirements. However, choices in this area do 
not substantially affect the DAPness of the array structure.

4.7 Language interface

For many purposes a useful definition of a DAP is in terms of the high-level 
language interface which it may support in an efficient manner. An essential 
characteristic of a high-level language for operation on a DAP is that it 
should raise the level of abstraction from individual data items to complete 
data structures. A consequence of this is that the parallelism inherent in the 
data is no longer obscured by code which refers to individual data items. This 
both permits expression of an algorithm in a more concise and natural form 
and causes the high-level language statements to correspond more closely to 
the operation of the DAP hardware.

Such a language interface may, of course, encompass a wider range of 
architectures than a specific DAP design. A language definition suitable for 
DAP should encompass other SIMD designs and also SISD systems.

5.0 VLSI-based architecture and design

VLSI is developing into a highly mutable design medium. This will diminish 
the need for general-purpose systems. Instead, it will become common 
practice to create the application implementation directly in VLSI. (For 
examples of this approach see [3] Part 2.) One way of viewing this change is 
that it raises system architecture to a set of logical constructs which guide the 
implementation of application designs. Much work remains to be done 
before a good working set of abstract architectural principles are available. 
In addition, standardized practices and interface definitions are required at 
both abstract and practical implementation levels in order that efficient 
composition can be realized in this form. However, the economic benefits of 
this mode of working will tend to ensure that the enabling concepts, 
standards, and supporting infrastructure will emerge relatively quickly.

5.1 Application-Specific Processors

VLSI technology has already caused an increased interest in application 
specific processing elements. This trend is likely to continue as the costs of 
design and reproduction of VLSI subsystems continue to fall relative to the 
cost of other system components. The most obvious examples of such 
processing elements are the geometry engines in the Silicon Graphics 
workstations, and the various dedicated interface controller chips for 
Ethernet, SCSI, etc.
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Designs have also been produced for such things as a routing chip. This 
suggests that some such special architectures may be close to the DAP. The 
designs that are close to the DAP share a fundamental DAP characteristic: 
the optimal arrangement of data in memory is key to efficient processing.

5.2 Application Specific Subsystems

It is easy, in principle, to generalize the notion of application specific 
processors to application specific subsystems, such as signal processing, 
vision, or robotic subsystems. Again, VLSI continues to make such special­
ization increasingly attractive. The performance benefits of dedicated logic 
increase with the level at which the dedicated function is defined. With 
present VLSI technology it is possible to build chip sets which, for example, 
solve systems of non-linear difference equations at a rate about ten times the 
rate possible by means of programming a machine such as a Cray [3, 
Chapter 13]. The efficiency gain comes, in large part, from the fact that the 
specialization permits many decisions to be incorporated into the design. 
Specifically, none of the costs associated with the interpretation of a sequence 
of instructions exist at all. An additional benefit of such subsystems is that 
they require no software.

The skills that are required to design and implement such a dedicated 
solution to a real application problem are not now widespread, and 
supporting tools and techniques are underdeveloped. However, this general 
approach will dominate efficient computation in the long run.

6.0 Conclusion

In the long-run the efficiency of direct implementation of specific computa­
tions in silicon will dominate other techniques. However, before this level of 
efficiency can be achieved in a routine manner a number of research 
problems must be solved and substantial new infrastructure must be 
established. In addition to the need for improvement in VLSI design 
methods, a new level of understanding and definition of software will be 
required.
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Abstract

The aim of this paper is to give an overview of the work carried out by 
Essex University, under ICL grant UEI, on the design and development 
of a formal query language to natural language interpreter to aid 
query verification in a relational database environment. The REMIT 
system -  Relational Model Interpreter and Translator -  has been 
developed to work in conjunction with the ICL natural language 
enquiry interface, NEL, developed as a research project to translate 
English query expressions into the formal query language Query- 
master.

1 Introduction

Of the many problems facing the casual user of a database enquiry system 
probably the most difficult is gaining a competent understanding of the 
associated query language. Given that he manages to construct a well- 
formed query expression, there is no guarantee that it exactly reflects the 
original question. In a study of Query by Example (Thomas and Gould, 
1975), it was found that 27% of the queries analysed were syntactically 
correct but gave the wrong answer.

Natural language processing is seen by some as the most promising solution 
to these difficulties. N.L. Interfaces, however, can create problems of their 
own. They cannot counter the users’ often inflated ideas about what is a 
reasonable question to ask. Furthermore, natural languages are typically 
ambiguous and, although transparent to the querent, can be opaque to the 
machine. The interpretation placed on these queries, by the system, may 
therefore itself be ambiguous or otherwise misleading.

One approach to improving this situation is to offer the user a paraphrase of 
what the system has taken his question to mean. He can then verify whether 
the interpretation of his question corresponds to what he intended or, in the 
case of ambiguous input, select the alternative that does.

The remainder of this paper describes such a paraphraser designed at the 
University of Essex and implemented in Prolog. The system generates
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English paraphrases for questions interpreted by the database query system 
NEL, (West, 1985) a research project at ICL, formerly known as QPROC 
(Wallace and West, 1983). NEL so far comprises a NL front end which maps 
natural language text onto expressions in the formal query language 
Querymaster (ICL, 1983, 1985), which are then used to retrieve data, for 
example from the database SCOPE (Ref. 13).

The paraphraser has also been designed to deliver paraphrases for queries 
directly formulated in Querymaster. As a consequence, unlike most NL 
feedback systems, it can also help users who do not have access to NL input 
facilities but must use a formal language. Furthermore, because the para­
phraser assumes an extended relational calculus as an underlying representa­
tion, it can with little extra effort be modified to work from most query 
languages currently available.

2 Design approach

A paraphraser can be seen as a mechanism that provides a mapping between 
an underlying formal representation and a natural language text. Consider­
ing our task of providing a casual database enquirer with a useful paraphrase 
of his question, the representation selected must reflect the understanding the 
system has of the users’ original input. This understanding must then be 
translated into clear, unambiguous and grammatical textual output.

2.1 Selection of the underlying representation

Paraphrasers can be classified into two groups, according to the nature of the 
underlying representations they assume. One type is designed specifically to 
operate alongside a NL front end (McKeown, 1979). The user introduces his 
question in NL, which is then parsed into a structure making linguistic facts 
explicit about the input. This linguistically motivated representation then 
serves as a basis for the paraphrase. The mapping between the formal 
representation and text established by paraphrasers of this kind can be said 
to be ‘close’ since most of the linguistic information the synthesiser may need 
is readily available.

On the other hand, not all questions a user may formulate, in natural 
language can be evaluated against a database. It is important, therefore, that 
the NL query is mapped into a formalism reflecting the limitations of the 
Database Management System before it is paraphrased, otherwise the result 
may be a paraphrase of a question the system cannot ultimately handle. Also 
paraphrasers working from linguistically motivated representations cannot 
work independently from a parser that will build the necessary structure. 
They do not help the user who has no access to a NL front end and attempts 
the use of a formal query language.

Another class of paraphraser works from representations which capture exactly 
that information which can be evaluated against a database, usually a parse tree
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of a formal query. If used with an NL front end they can report only on 
relevant ambiguities in the input text so far as they correspond to alternative 
formal queries. However, since these representations are linguistically under- 
specified, the mapping between them and NL text is ‘distant’ and more 
difficult to establish. The linguistic facts which characterise the resulting 
paraphrase must be decided upon without reference to any information 
which a linguistically motivated parse of an equivalent question might 
provide. Although this approach is more constrained than its alternative it 
does ensure that the paraphraser can be used both with, and independently 
of, any NL front end available and, as such, is the one adopted for this 
project.

2.2 Portability

The preceding discussion would appear to suggest Querymaster as the 
obvious candidate for the underlying representation. The choice of Query- 
master expressions as the input for the paraphraser would, however, restrict 
the paraphraser’s portability to those Database Management Systems 
capable of supporting that query language.

In order to retain all the advantages of a paraphraser working from 
representations which capture exactly the information present in a formal 
query language expression and, at the same time, to increase its portabil­
ity, the mapping process between formal query language expressions and 
NL text has been split into two stages using an intermediary formalism. 
The choice of that formalism has been guided by two considerations. 
Firstly, it must be capable of expressing exactly the information that can 
be captured by any Querymaster expression. Secondly, it must be possible 
to identify an exact mapping from any query language into an expression 
of that formalism.

These two requirements are satisfied by the use of an applied relational 
calculus as an intermediary representation. Codd’s relational calculus is well 
defined and relationally complete (Codd, 1971, 1972). When extended by a 
range of library functions (Date, 1977), it has at least the retrieval power of 
most query languages currently available. Furthermore, it can be shown 
(Ullman, 1980) that an exact mapping exists between an expression in a 
relationally complete language and an expression in the relational calculus 
(and vice versa), provided that it defines a derivable relation.

Part of the project, therefore, concerned the development and implementa­
tion (in Prolog) of a transducer which maps Querymaster statements into the 
relational calculus (Shephard, 1985). Its function is independent of the main 
body of the paraphraser and further reference to the latter will assume that it 
operates directly from the relational calculus.

This modular concept means that the process of adapting the paraphraser to 
work from other relational query languages is relatively straightforward.
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2.3 Grammaticality

It is clearly important that the text produced by the paraphraser is well- 
formed with respect to the grammar rules of the human language used to 
describe the query (in this case English). In general, grammaticality is best 
ensured by making reference to a linguistic theoretical framework within 
which such rules can be formulated. Since many such frameworks exist some 
guidelines for the choice were drawn up. First of all, the framework should be 
implementable. This means that it should be formally specified to a level 
where an equivalent program can be written. Secondly, the syntax of the RC 
bears no resemblance to the syntax of English. The mapping between RC 
formulae and English texts can thus be called ‘distant’ and as far as possible 
left to the linguistic part of the implementation. This means that that theory 
which allows for the syntactically least specified underlying framework will 
be preferred.

For these reasons the choice made was Lexical Functional Grammar 
(Kaplan & Bresnan, 1983). It is a generative linguistic theory allowing for 
the specification of grammar rules for English. LFG has the advantage of 
being highly implementable -  in fact it was designed from a computa­
tional linguistic point of view. It defines a mapping between sentences of 
English and their underlying, syntactically poorly specified, predicate/ 
argument structures. It has an additional advantage in that mapping is 
stratified, using several intermediary representations, each offering an 
indication of which linguistic information needs to be specified at a given 
stage in the process.

2.4 Non-ambiguity

Whereas grammaticality can be guaranteed by reference to a grammar, non­
ambiguity cannot. The problem arises from the fact that all human languages 
are ambiguous. Grammars account for ambiguity but do not seek to avoid it. 
In short, if a paraphrase is characterised only as a grammatical text, of some 
human language, then it follows that it is potentially ambiguous.

Ambiguity is a phenomenon that is difficult to control. No measure for a 
degree of ambiguity exists. One may attempt to parse the output text and 
thus try to gain some such measure, but many different sorts of ambiguity 
occur and it is not clear whether any grammar can account for all of them. 
Lexical ambiguity in particular is problematic and, in the extreme case, 
words may mean a variety of different things to different users. This is often 
dependent upon the user’s background, and totally beyond the control of any 
grammar formalism. The solution adopted by REMIT was to concentrate on 
ambiguities which MUST be avoided in the paraphrases at all cost in order 
to preserve meaning.

Since the aim of a paraphrase is to query verification, the ambiguities which 
must be avoided are those significant with respect to query evaluation. These
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mainly relate to the scope of logical connectives and quantifiers occurring in 
an expression of the unambiguous, formal query language. Consider, for 
example, the following sequence of logical conjunctions and disjunctions:

a a  (b a  (c v  (d a  e )))

‘a and b and c or d and e’ is not an adequate rendering of the above 
bracketed expression since all indication of scope is lost. We found that the 
written form of a human language, stripped of expressive devices such as 
intonation and stress patterns, is extremely ill-suited to express scope 
relationships of this type. If attempts are made to describe the scope 
information by means of punctuation and special words (e.g. either, both, all 
three of the following, ...) then the resulting linear text becomes illegible and 
unhelpful as a paraphrase. REMIT solved this problem by abandoning the 
idea of a paraphrase as a linear text and by adopting the view that scope is 
best represented hierarchically. The paraphraser retains some degree of 
bracketing in the output text which is then used to display the result on the 
screen using indentation as a means of conveying scope. The formal sequence 
above would therefore, for REMIT, result in a paraphrase of the following 
format:

a
and b
and either c

or d and e

2.5 Readability

The requirement that ‘readable’ paraphrases must be delivered has in part 
been catered for by the solution adopted to avoid ambiguity. A side effect of 
structuring the output text has been that it becomes indeed more readable 
and thus more friendly as vital scoping information is passed on visually to 
the user.

However, there is more to ‘readability’ than producing a grammatical text 
and displaying it in a particular format. The text must also be coherent, not 
just syntactically, but conceptually. What we mean by this is explained in 
more detail in the next section.

3 A model for the SCOPE database

Paraphrasing expressions in a query language comes down to selecting and 
organising the appropriate lexical material for describing, in a human 
language, what that query stands for in terms of the information that must be 
retrieved. Query languages and the RC are formal languages, i.e. their 
semantics with respect to retrieval is defined unambiguously on the basis of 
their syntax. As a consequence, the syntactic structure of a formal expression
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can be viewed as a shorthand for what it ‘means’ and can be used in order to 
guide the paraphrasing process.

Nevertheless, paraphrasing expressions of these formal languages can be 
problematic. Their syntax bears no resemblance to the syntax of a human 
language and a paraphraser must thus establish more than a simple syntactic 
transduction. Also, these formal expressions are poor in conceptual informa­
tion about the domain or field a particular database covers. Although one 
can produce literal paraphrases relying solely on the information present in a 
formal query, the result will be a stunted incoherent rephrasing of the formal 
expression. In general, human language text is rich in conceptual informa­
tion. If a paraphraser is to deliver texts that are acceptable and helpful to 
naive users then it must be able to incorporate conceptual information in its 
output.

This conceptual information cannot be collected from the database itself. 
Databases are implementations of formal objects that allow for storing and 
manipulating large bodies of knowledge. Although the administrative organ­
isation of a relational database will often, to a large extent, be compatible 
with the conceptual structure of the field it covers, this is largely due to the 
‘common sense’ of database engineers and such an organisational correspon­
dence cannot always be guaranteed.

In addition formal query languages are totally devoid of any such conceptual 
information. Consider, for instance, the following RC formula:

{(CUSTOMER.ADDRESS, WAREHOUSE.CODE):True}

as might be expressed over the example SCOPE database, reproduced in 
Fig. 1 from (ICL, 1983). This is a perfectly well-formed RC expression. It has 
an equivalent in all relational query languages and the result will be the 
Cartesian product of all customer addresses with all warehouse codes. 
Although this is certainly a legal query, it is hard to see what it might ‘mean’ 
in conceptual terms and why anybody might want to formulate it. Para­
phrasing queries of this kind is extremely difficult, even for people, short of 
saying ‘Give me the Cartesian product of all values for...’

Still, most questions which users care to ask do make sense and usually carry 
conceptual content. They centre around a focal point or FOCUS which is not 
explicitly marked as such in the original formal expression, but which can be 
derived from it given conceptual information about the field the database 
covers.

This conceptual information will be contained within a MODEL of the 
database in question. Such a model must be constructed for any database 
with which the paraphrase will operate, and provides the linguistic/concep- 
tual information which is necessary for the delivery of coherent and elegant 
paraphrases.
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Query View Chart for SCOPE Database

Fig. 1

3.1 Information for focus selection

For a query to be conceptually coherent means that all relations involved in 
that query must be linked. At a database level, these links can be pointers, or 
value based relationships. In this sense, a conceptually coherent query relates 
to a consistent subset of the database. To give an example for the SCOPE 
database: a query involving the relations ORDERLINE and CUSTOMER 
is conceptually coherent only in the case where it also refers to the relation 
ORDER, otherwise it is impossible to establish a link between ORDER­
LINE and CUSTOMER. Intuitively this can be seen as a way of defining a 
notion of ‘paraphrasable query’ over a particular database. Note, however, 
that this situation is not a consequence of what the formal language will 
allow, since there are well-formed formal expressions which are not concep­
tually coherent in the sense described above.

A second intuition, based on the first one, dictates that, if a paraphrase query 
is expressed over a consistent subset of database relations linked by 
relationships, then the paraphraser can rely on this ‘network’ to guide the
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building of a coherent conceptual structure underlying the output text. This 
raises a question about selecting a starting point for the paraphraser within 
that ‘network’. That starting point is the FOCUS of the query.

These intuitions can be rephrased as three assumptions:

1 Every query has a focus.
2 A focus is a relation in the current database.
3 Every relation other than the focus, involved in a particular query, 

must be linked directly or indirectly to that focus. This means that 
there is a path from the focus to every other relation mentioned in the 
query and such that none of the links (database relationships) making 
up that path refers to a relation which is not specified explicitly in the 
query.

The third assumption leads us to formulate a paraphrasing strategy which 
starts building a description of the derived relation by paraphrasing the 
focus. Subsequently, it paraphrases all paths from that focus stepping 
through each of the links that makes up such a path. The lexical material 
used for the description of each step is given by the model which associates, 
with each database relationship, an English predicate.

For example, the database relationship between ORDER and CUSTOMER 
can be associated with the English predicate ‘to place’ in the following way:

ORDER ----------------------------------------- j--------------------------- >- CUSTOMER

[to place; [arg 1, CUSTOMER]

[arg 2, ORDER ] ].

where the specification of the arguments indicates that the customers place 
the orders.

A problem arises, however, at this point regarding directionality. Database 
relationships do not carry directionality and can be traversed in two 
directions. Given that a query is expressed over a part of the database that 
can be seen as a network of relations and relationships, then if the 
paraphraser traverses that network, circularity can occur. One must there­
fore impose a direction on the paths linking all relations, involved in the 
query, to the focus. This effectively changes the network into a tree whose 
root node is the focus relation. The direction in which a particular link in the 
tree will be traversed will then entail a different paraphrase -  in some cases 
simply by passivising an associated English predicate (e.g. customers place 
orders, oraors are placed by customers) or alternatively because each 
direction of the link is associated with a different predicate by the model.
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The process for selecting a focus, therefore, can be stated as follows: If a query 
involves only one relation, then that relation is the focus. If it involves more 
than one relation, then the focus is that relation which forms the root node of 
a tree whose other nodes are exactly those remaining relations involved in 
that query.

Two practical points must be made here. The model adopted by this system 
stands in an elementary form. Only one flow of directionality has been 
imposed, with two exceptions, as illustrated below.

|--------- Order-------Customer

------Orderline-------

Product Warehouse

--------Stock----------

As a consequence, a query involving only order and customer will always 
have the order relation as focus. Furthermore, we predict that if two way 
directionality is imposed on the database relationships then, in order to 
avoid circularity, the two flows of direction must be kept separate.

3.2 Information for describing other database objects

In addition to allowing for the selection of an appropriate focus and for the 
description of directed database relationships, the model also provides for 
the description of other database objects. Both relations and attributes are 
associated with alternative descriptions (usually English nouns or complex 
nouns). The paraphraser will pick one of the alternatives thus specified 
depending on what focus has been selected for the query that is being 
paraphrased. For instance, the attribute CUSTOMER.CUST-NAME will be 
described as ‘name’ in a situation where the current focus is ‘customer’ and as 
‘customer name’ when another focus has been picked. Similarly ‘ <  ’ will be 
translated differently depending on the attribute to which it is being applied, 
for example ‘cheaper than’ when applied to price, ‘smaller than’ when applied 
to numbers -  and so on.

The conceptual type of the attributes is derived from the NEL ‘End User 
View’ model.

4 Paraphraser overview

Given an RC expression, the paraphraser will perform its task in four steps. 
First of all, the RC expression will be parsed into a structure which makes the 
syntactic build-up of the formula explicit. After completion of a basic parse,
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the resulting structure is converted into a list and some of its componenets 
are flattened out and simplified so that they can be handled more easily by 
the rest of the program. This is implemented as a Prolog DCG on the Essex 
Dec-10 using a context free grammar to specify the calculus syntax and 
applying its rules top-down depth first.

Secondly, the focus of the input query is determined on the basis of the 
relations, to which it refers, according to the stages described in the previous 
section. The model for the database plays, as expected, an important role in 
this part of the process.

In a third step, each part of the RC expression is paraphrased relative to the 
focus discovered previously. This part of the paraphraser, to be described in 
more detail in the next section, produces a conceptual/linguistic predicate 
argument structure which underlies the final paraphrasing text. During the 
fourth step the predicate/argument structure is assembled into an English 
text which retains some degree of explicit structure used to determine the 
format of what will appear on the screen. This small degree of structuring 
allows for the output to reflect the scope of logical operators. The original 
aim was to develop this component as a full LFG generator. However, 
although the predicate/argument structure which is input to this module of 
the system is compatible with LFG (as extended by Halvorsen), it was felt 
that the work should, in the short term, concentrate on the third stage 
described above, since completion of the latter was judged more critical for 
the success of the project as a whole. For these reasons only a basic linguistic 
component has been implemented which concentrates largely on agreement 
and word order. However, the lack of a fully implemented theoretically 
sound linguistic component, seems not to have impaired the quality of the 
paraphrases delivered. This suggests to us that, for synthesising human 
language text from formal languages, the implementation of a sophisticated 
syntactic component is subsidiary to the development of a mechanism that 
settles the conceptual structure underlying the final text.

5 Paraphraser strategy

The main body of the paraphraser utilises three categories of information in 
order to guide its actions. First of all, it analyses the syntactic structure of the 
incoming formal expression. Secondly, information is provided regarding the 
focus relation of that expression. Thirdly, both the previous items of 
information are used to specify the tree of database relationships and 
relations defined by the query.

The syntax of the relational calculus is used to determine the overall format 
of the paraphrasing text. A number of options are open to the user, e.g. user 
defined functions, ordering requirements on the retrieved information, etc. 
These options can be determined on the basis of the structure of the query. 
They are paraphrased as separate sentences which either precede or follow 
the text describing the main body of the formal query. A well-formed query
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must have a left hand side, specifying the information to be retrieved, and a 
right hand side constraining that information. For instance, in

{ ( Cu s to m er . C us t - n am e)  : (  ( C u s t o m e r . C u s t - a d d r e s s  = 'L o n d o n ' )  ) }

the left hand side specifies that customer names must be retrieved. The right 
hand side restricts that retrieval to the names of those customers who live in 
London.

This basic syntactic structure is reflected in the format of a standard 
paraphrase which is the following:

FOR < DERIVED RELATION > < ACTION VERB > < TARGET 
LIST>

< DERIVED RELATION > is the paraphrase of the right hand side of the 
input query, and < TARGET LIST> of the left hand side. <  ACTION 
VERB > is some English predicate selected on the basis of what items are 
contained in the left hand side (e.g. ‘show’ for attributes, ‘calculate’ for 
functions, etc.).

The focus of the query settles the starting point for the description of
< DERIVED RELATION > . It also plays an important part in the selection 
of lexical material for describing database objects.

The tree of database relationships and relations which the model has 
assigned to the query is used, together with the syntactic structure of the 
query’s right hand side, in structuring the description of <  DERIVED 
RELATION > .

Overall, the paraphraser distinguishes between different kinds of compari­
sons that can occur on the right hand side of the formal expression. These 
include:

-  ORDINARY comparisons, comparing the value of a database attribute 
with a constant.

-  LINKING comparisons, comparing by means of * =  ’ key attributes of 
relations between which a relationship exists in the database. These 
correspond to ‘links’ along paths in the conceptual tree as defined by the 
model.

-  COMPLEX comparisons involving attributes of different relations with­
out being linking comparisons.

-  DISCONTINUOUS comparisons which are groups of comparisons 
bundled together under a different logical operator from that of the 
previous level.
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The paraphraser starts by describing the focus of the query. This involves not 
only a paraphrase of the focus relation itself, but also of ordinary compari­
sons involving an attribute of that relation. In the next step, all linking 
comparisons between the focus and other relations one step along the paths 
in the conceptual tree are paraphrased. When one such link is described, the 
relation newly linked to the old focus is propagated as a subsidiary focus. 
This new focus is described in turn, including links to other relations further 
along the path, which will in time also become subsidiary foci. When all the 
links along a path have been described, the old focus is (recursively) restored. 
All partial paraphrases are linked together by means of the appropriate 
logical operators. Paraphrasing is thus done recursively, relative to the 
syntactic structure of formal expression components, the focus of the query 
and the conceptual tree delivered by the model.

For the top level focus, all four types of comparisons are described in turn. 
However, for subsidiary foci, complex comparisons are omitted. They 
typically involve two relations and it is difficult to decide at which stage they 
should be paraphrased. All complex comparisons are therefore paraphrased 
relative to the overall, top level focus.

The elements of the left hand side are described by retrieving from the model 
the appropriate lexical material with which they are associated relative to the 
overall focus of the query. The descriptions of similar objects are conjoined 
and grouped with an appropriate verb. Such verb phrases, if applicable, can 
also be conjoined.

6 An example

To illustrate the operation of REMIT we give a comprehensive query 
example, defined on the SCOPE database, showing each stage of the 
transduction and paraphrasing process. This is one of many such examples 
compiled jointly by ICL and Essex to test the different features of the 
software.

Querymaster:

List stock.stock-whse,bin-id,stock-value is qty-on-hand* unit-price 
sorted by ascending warehousemen where warehousemen >  ‘London’ 
and re-order-qty <  100 and product-stock and product-in-wh starting 
stock

Relational calculus:

{stock-value(stock.qty-on-hand,product.unit-price)
: =  (‘stock.quantity-on-hand* product, unit-price’)
w(stock.stock-whse,stock.bin-id,stock-value(stock.qty-on-hand,
product.unit-price)):
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(( wh warehouse)(((wh.locn>‘London’)(stock.reorder-qty<100)) 
((stock.whse = wh.codeXstock.product-id =  product.product-id)))) 

up(wh.locn)}

Computed focus:

= Product (Note that Product is not referred to in the Target List) 

Paraphrase:

For products
which are physically stocked 

and whose re-order-qty is less than 100 
and which are stored in warehouses 

whose location is alphabetically listed after ‘London’
(1) show

(a) the warehouse codes
(b) the bin numbers

and

(2) calculate and display stock-value

where stock-value is defined as (qty-on-hand* unit-price).

Sequence the result by ascending warehouse location.

7 Conclusion

This paper has described a prototype paraphraser developed as an ICL 
project at the University of Essex and fully implemented in Prolog on a 
DEC 10. The paraphrasing process has been split into two steps using an 
extension of the relational calculus as an intermediary representation; this is 
in order to enhance the portability of the paraphraser over relationally 
complete query languages. The system has been successfully tested for a wide 
range of sample queries and results have both justified the extensive efforts 
spent in defining a suitable model and also underlined the importance of 
selecting an appropriate focus to guide the paraphrasing process. Further­
more it has been shown that the provision of a sophisticated NL grammar 
formalism is subsidiary to the development of a mechanism for defining the 
underlying, coherent and unambiguous conceptual structure of the output 
paraphrase. Overall the system has demonstrated that it is feasible to deliver 
paraphrases of formal query language expressions which are helpful to the 
user in verifying his natural language intention.
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Natural language database enquiry

V. West
ICL Applied Systems, 33 Kings Road, Reading, Berkshire

Abstract

This paper describes the results of a research project to produce a 
natural enquiry language system (NEL) by adding a PROLOG front- 
end to Querymaster, the standard ICL program for querying informa­
tion stored in a database. The system architecture and the role of the 
‘knowledge engineer’ in preparing the database are discussed. A 
sample session is included, user experience is reviewed and some 
possible extensions are discussed.

1 Introduction

An earlier paper1 in this journal described QPROC -  an interactive natural 
language enquiry system providing access to a relational database. The main 
aim of that paper was to demonstrate the practical use of the PROLOG 
implementation language2 on an application of some complexity. A major 
limitation of QPROC was that the database itself had to be implemented in 
PROLOG, and so only small ‘toy’ applications could be implemented. A 
system capable of accessing ‘real’ databases would be of much greater 
interest.

The standard ICL program for querying information stored in a database is 
Querymaster3. This provides access to various types of database including 
IDMS or COBOL files, and CAFS (Content Addressable File Store) high­
speed facilities can be used. The user expresses his questions in an easy to use 
computer language.

This paper describes the results of a research project to produce a natural 
enquiry language system (NEL) by adding a PROLOG front-end to 
Querymaster, running under VME on the ICL 2900. ICL-PROLOG4 was 
used and NEL was able to profit from the QPROC experience.

The paper covers:

-  the system architecture (section 2)
-  the role of the ‘knowledge engineer’ who prepares a database for natural 

language enquiry, and the NEL data model (section 3)
-  a commentary (section 4) on the sample NEL session in Appendix B. This
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uses an IDMS database SCOPE (Stock, Customer, Order and Product 
Enquiries) which represents an ordering system for a stationery business. 
This database and its associated natural language vocabulary is de­
scribed in more detail in Appendix A, and is used to provide examples 
throughout this paper.

-  the result of practical experience with NEL (section 6)
-  some possible extensions (section 7).

Another paper5 in the same issue of this journal describes related work at the
University of Essex supported by an ICL University Research Council
(URC) grant. That work is concerned with the generation of natural
language paraphrases of formal database queries.

2 Architecture

Fig. 1 illustrates the run-time architecture.
USER

Natural
L a n g u a g e  S  ' V  A n sw ers
Dialogue. ✓  x

Fig. 1

The NEL front-end receives natural language questions from the user. Using 
the Full Vocabulary and End-User View for the subject prepared by the 
‘knowledge engineer’ it attempts to understand the question and generate an 
equivalent Querymaster (LIST) command. Some questions such as ‘help’ it 
answers without recourse to Querymaster. The Full Vocabulary contains all 
the words and phrases for the subject and the End-User View defines the 
subject using the NEL Data Model. Both are described in section 3, which 
explains the role of the knowledge engineer.

LIST commands are passed across to Querymaster which accesses the 
database and returns answers directly to the user. Querymaster uses the 
‘Query View’ which provides a description of the database.

The front-end consists of eleven components, 7 ‘natural language indepen­
dent’ and 4 ‘natural language dependent’ ones. The former will be the same
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for different languages, whereas the latter will have different versions for 
different languages. The separation into components aims to maximise the 
independent ones (from now on the paper relates to English only).

The components are (natural language dependent ones being distinguished 
by an asterisk):

SESSION CONTROL

QUERY CONTROL

SCANNER*

RESPONDER* 
PARSER CONTROL

WORD PATTERNS* 

PARSER*

META-QUERY 
HANDLER 
DATABASE QUERY 
HANDLER 
CONVERTER

BACK-END

-  contains the entry point to NEL and is responsible 
for the session dialogue with the user and for calling 
the BACK-END component to start and end Query- 
master sessions. The ‘sessions’ may potentially be 
with different databases but NEL does not support a 
change of database.
-  controls the processing of all the user’s queries in a 
session.
- i s  responsible for all input. It splits natural lan­
guage questions info words.
- i s  used for outputting all messages to the user.
-  looks up the meaning of the words in a question 
using the WORD PATTERNS component and the 
Full Vocabulary. It calls the PARSER component 
to interpret the question and classify it as a database 
query or a ‘meta query’ (about the description of the 
data rather than the data itself).
-recognises word endings (including plurals) and 
patterns (numbers, dates, times and money).
-  attempts to interpret the question into a formal 
representation of its meaning. This representation 
called ‘descriptions and qualifiers’ is a develop­
ment of that used in QPROC1,6 and will not be 
described further in the present paper. The Parser 
is implemented in PROLOG grammar rule nota­
tion2 and provides a wide coverage of English 
grammar. Noun phrases are parsed ‘breadth-first’: 
all alternative interpretations are found, not just 
the first, so that next time the Parser needs to find 
a noun phrase starting at the same point in the 
question, it need not parse it again.
-  is responsible for answering meta-queries, though 
currently the only meta-query supported is ‘help’.
-  is responsible for answering database queries.

-converts the ‘descriptions and qualifiers’ for a 
database query into a Querymaster LIST com­
mand.
-handles the interface with Querymaster. Query- 
master is implemented mainly in Pascal.
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For any database to be accessed using NEL, a ‘knowledge engineer’ must 
carry out some preparatory work; it is essential that this knowledge engineer 
understands the structure and content of the database, and the related 
natural language vocabulary used by its intended users.

3 The role of the knowledge engineer

APPLICATION
VERB

I
NATURAL
RULE

t
DOMAIN

I
VALUE

Fig. 2

The knowledge engineer prepares the End-User View which defines the 
subject (database) using the NEL Data Model, and the Full Vocabulary 
which contains all the words and phrases for the subject. The process will 
typically be an iterative one in response to user requests for changes 
including additional vocabulary.

3.1 The End-User View

Fig. 2 illustrates the object-types of the NEL Data Model and the relation­
ships between them (the ‘crow’s foot’ sign A indicates a ‘many’ relationship). 
It is based on the Entity-Attribute-Relationship model with the following 
additional object-types:

Attribute Collection 
Application Verb 
Natural Rule
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An attribute collection consists of two or more attributes from the same entity 
in the order in which they appear together in natural language phrases. For 
example, the attribute collection ‘address’ in SCOPE consists of the customer 
attributes address-1, address-2, county and postcode.

An application verb defines the use of the verb in natural language questions. 
For example:

a customer places an order for a product

The definition includes a ‘case’ list and a reference to a natural rule.

Each entry in the case list describes a case and its corresponding entity or 
attribute. The case list for ‘place’ is:

subject : entity customer 
first object : entity order 
for-object entity product

(for verbs with more than one object like ‘give’ a second object can be 
defined, and various prepositional objects are provided). This description 
assumes the verb is in the active mood. NEL automatically performs any 
permutation required when the verb is used in the passive.

A natural rule has several uses. For an application verb it can provide the 
associated Querymaster access path. For ‘place’ this is defined by the 
relationships:

orders and order-lines and product-order

In addition to these new object-types, additional information is required for
others:

For database, a natural language explanation of the database for use in ‘help’ 
messages. Such explanations could usefully be added to other object-types.

For entity and attribute collection, a category (see below).

For attribute, a response-default indicator which determines which attri­
butes are to be included in the answers when the question does not 
specifically identify them. For example the response-defaults for ‘cus­
tomer’ are the number and name. Result attributes to be calculated may 
also be defined by the knowledge engineer. So for example ‘unused credit’ 
is defined as:

(customer) credit-limit — balance
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For domain, a category which matches various common natural language 
words and phrases. The categories are:

person — matching ‘who’ etc.
thing — ‘what’, ‘which’
organisation = person or thing
count — (none)
measure - ‘ho w — ’
money — ‘how much’
location — ‘where’
timepoint — ‘when’
reason -  ‘why’
method -  ‘how’

For categories ‘measure’ and ‘money’, units may be provided: for money the 
unit is ‘pounds’.

Categories may also be provided for entities and attribute collections.

Values may be provided for character type domains. Some or all of the 
possible values may be given, and may then be used as words in natural 
language questions.

3.2 The Full Vocabulary

Fig. 3 illustrates the generation of the Full Vocabulary. The knowledge 
engineer uses a program called Vocabulary Builder which requires:

the End-User View for the subject (see above) 
the Application Vocabulary for the subject 
the Basic Vocabulary (the same for every subject)
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The Basic Vocabulary is included with NEL and defines all the subject 
independent words. It contains approximately 130 common words, phrases 
and abbreviations including for example:

a
and
bigger than 
do
equal to OR eq OR =
for
get
is
our
someone
who

The Full Vocabulary will contain the following words from the End-User 
View:

nouns-database, entities, attribute collections, attributes, units and values 
verbs- application verbs

For nouns NEL recognises plurals formed in the standard way using -s -es or 
-ies; for a compound noun such as ‘unit price’ the plural would be recognised 
as ‘unit prices’. For verbs it recognises the standard endings -s -es -ies -ing -ed 
-ied -en, allowing for doubling of final consonants.

The Application Vocabulary is where the knowledge engineer provides 
additional synonyms/abbreviations or irregular inflexions. For nouns he 
may define irregular plural forms and for verbs irregular tenses. For example 
‘client’ is a synonym of ‘customer’, ‘units of issue’ is the plural of ‘unit of issue’ 
and ‘held’ is the past of ‘hold’.

4 Commentary on a sample session

This commentary relates to the sample session in Appendix B. The questions 
there have been numbered for reference in this commentary (for technical 
reasons the numbers start at 6)

(6-9) After the sign-on sequence, NEL outputs the explanation of the 
subject and the entities it covers.

(10) The response ‘OK’ shows that NEL has understood the question. 
The generated Querymaster command is also displayed (this is 
optional). Notice that only the customer numbers and names are 
output as they are the response-default attributes. Here and later 
the output has been abbreviated (indicated by ...) for brevity.

(11) ‘address’ is an attribute collection. The output is in ‘labelled’ format 
rather than ‘tabular’ as it would be too wide for the latter.
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(12) ‘unused credit’ is a result attribute.
(13—14) ‘Berks’ was provided as a ‘county’ value, but ‘Devon’ was not; so 

‘Devon’ must appear in quotes in the exact case in which it appears 
in the database and be qualified by ‘county’.

(15-16) ‘credit limit’ and ‘balance’ are included in the answers because they 
occur in comparisons (see section 5).

(18) Note the irregular past tense ‘held’.
(20) A better answer would be simply ‘NO’ (see section 5).
(23) ‘December figures’ is an attribute collection. ‘LMBC’ is a synonym 

for a customer name value.
(24) NEL ignores words it does not understand.
(25) NEL cannot understand this -  products do not have addresses -  so 

it outputs an error message instead of ‘OK’.
(26) NEL can understand the question and so responds ‘OK’ but 

cannot answer it as Querymaster will not accept such questions.
(27) The ‘help’ output is similar to the sign-on output (see above), 

‘recall’ can also be used to display the previous question for 
possible editing and resubmission.

5 Practical experience

Users have reacted very favourably. It gives them a lot of freedom in 
expressing questions. Natural language is more familiar than a computer 
language, and to the surprise of many users has proved to be more con­
cise -  typically natural language questions are half the length of Querymaster 
ones.

The extra facilities deriving from the extended data model described in 
section 3 were well received, especially attribute collections, response- 
defaults, result attributes, verbs and synonyms. These allow the user to 
express his question concisely and to control the answers he receives. Many 
of these extensions could also be profitably included in formal query 
languages.

The heuristics needed to decide what should be included in a question are not 
easy to construct. We all know people who provide too little or too much in 
answer to questions. NEL currently includes in its answers:

-  anything specifically requested by ‘list’ (or a synonym):
List the customers
Customer names (here ‘list’ is understood)

-  anything distinguished by a questioning word like ‘who’ or ‘which’:
Which warehouses hold ash trays?

-  any compared attribute:
... credit limits over £50

-  any attribute for which alternative values are given:
... Berks and Hants customers (county is output)
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If none of these apply the first entity encountered is output:

Are there any Essex customers?

Also, unless specific attributes are mentioned, entity output is restricted to 
the response-default attributes.

As noted in section 2, answers are returned directly to the user by 
Querymaster. On the whole this works well, as can be seen from Appendix B. 
However headings are not always necessary, and some questions such as:

Are ash trays 83p?

could be better answered by a simple ‘yes/no’, and others like:

Do any products have a price over £1? 

by a ‘yes/no’ plus, for yes, a set of answers.

The limitation of users to a small Basic Vocabulary did not cause any 
difficulties, but the ease with which new synonyms could be added was very 
significant as a wider vocabulary made the system appear much better to 
users.

The coverage of English grammar is wide, as can be seen from Appendix B, 
but it is not exhaustive, and this creates a difficulty. When NEL does not 
understand a question the user may well type in a more complicated one to 
‘clarify’ his intention and this also is not understood. One way around this 
difficulty would be for the user documentation to describe the grammar 
supported, but this is inappropriate as such a description would be complex 
and against the spirit of a natural language interface. A possible solution is to 
list those constructions the system does not accept which the user might try 
e.g. ‘conjoined’ verbs as in:

Which warehouse holds a calculator and supplied a rack?

6 Possible extensions

Currently ambiguous questions are not detected as such -  the first interpreta­
tion found is the one taken. They should be referred back to the user for 
clarification. This requires that the different meanings can be presented for 
him to choose which he meant. Even where there is no ambiguity it is useful 
for the user to be able to check whether his question has been interpreted in 
the way he intended. Currently the only ‘meaning’ which can be presented to 
the user is the generated Querymaster command, but a natural language 
paraphrase is much to be preferred5.
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No use is made of context to support “conversation”: questions are treated 
separately. The most important contextual features are the use of pronouns 
as in:

Who are our Berks customers?
What are their credit limits?

and ellipsis:

Who placed orders on 7.4.80?
9.4.80?

Further meta-question facilities would be useful. These might include ques­
tions about:

-  the attributes for an entity
-  the values for an attribute
-  the verbs for an entity
-  the words in the vocabulary

Meta-questions can be recognised in various ways. Compare:

What is a product?
Tell me the products

The former could be interpreted as a meta-question, a request for general 
information about products, and the latter as a data question, one for specific 
information about particular products. However the simplest solution is to 
use a keyword such as ‘help’ to distinguish meta-questions.

Instead of ignoring unrecognised words, the user could be asked to correct 
them. Spelling correction is a further refinement. Users would also like to be 
able to extend the vocabulary by statements like:

line means product

This raises issues about the permanence and scope of the extension (is it 
available at later sessions, and to other users?)

Some Querymaster features are not available through natural language, 
though there is an escape facility allowing direct input of any Querymaster 
command. These include functions like ‘maximum’, ordering of answers and 
explicit arithmetic, all of which could be added to natural language, e.g.:

What is the highest product price?
Show the customers in alphabetical order 
List price/unit of issue
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7 Conclusion

The ideas first developed in QPROC1 which provided natural language 
enquiry capabilities on ‘toy’ databases, have been successfully extended in 
NEL which provides enquiries on real databases. NEL offers a very 
acceptable natural language interface to its users.
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Appendix A -  The SCOPE database

SCOPE represents an ordering system for a stationery business and covers:

products sold by the company 
customers
orders placed by customers 
orderlines which make up orders 
warehouses used by the company 
stocks held at warehouses

The SCOPE vocabulary in addition to the basic vocabulary (OR indicates 
synonyms) is:

Entities:

product OR item
order-line OR order line OR orderline 
order
customer OR client
warehouse
stock
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Attributes for each entity (* response default, fresult attribute) 

Product

*product-id OR code 
*product-desc OR description 
-  specified descriptions: ash tray

blotter
calculator
pencil sharpener OR sharpener 
printout filing rack OR rack 
staple extractor

unit-price OR unit price OR cost OR price (in pounds) 
unit-of-issue OR unit of issue

Order-line

*ol-product-id OR code
*quantity
fvalue (in pounds)

Order

*order-no OR number 
’"order-date OR date

¥

Customer

*cust-no OR number 
*cust-name OR name
-  specified names: Green Vegetable Associates 

Long Mile Bus Company 
Virtual Machines Limited

ORGVA 
OR LMBC 
OR VML

address-1
address-2 OR town 
county
-  specified counties: Berks OR Berkshire

Essex
Hamps OR Hants OR Hampshire 
Herts OR Hertfordshire 
Lancs OR Lancashire 
Leics OR Leicestershire 
Notts OR Nottinghamshire

>address

postcode
credit-limit OR credit limit OR credit ceiling (in pounds)
balance (in pounds)
status
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-  specified statuses: open, closed 
year-id-1 
month-id-1 
purchases-1 
payments-1 oct-figures OR October figures (in pounds)

sep-figures OR September figures (in pounds)

year-id-12 
month-id-12 
purchases-12 
payments-12 
text-length 
notes
credit-rating OR credit rating 
funused-credit OR unused credit (in pounds)

Warehouse

♦code
-  specified codes: BRA01 OR Bracknell 

USA26 OR USA 
IRQ01 OR Iraq 

♦locn OR address OR location

Stock

♦stock-product-id OR code 
♦stock-whse
-  specified warehouse codes: see above 
♦bin-id OR bin

qty-on-hand OR quantity on hand 1 
re-order-level OR re-order level OR reorder level

re-order-details
,  OR re-order details

OR
reorder details

buffer-stk-level OR buffer stock level J  
re-order-qty OR re-order quantity OR reorder
quantity
fstock-value OR value (in pounds)

Verbs

an order contains a product 
a warehouse holds stock 
a warehouse holds a product 
a customer orders a product 
a customer places an order for a product 
a warehouse supplies a product 
an orderline is worth a sum of money

The relationships, which are not part of the vocabulary are:
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relationship
PRODUCT-ORDER
PRODUCT-STOCK
ORDER-LINES
ORDERS
PRODUCT-IN-WH
SUPPLY-FROM

PRODUCT
PRODUCT
ORDER

owner member
ORDER-LINE
STOCK
ORDER-LINE

CUSTOMER
WAREHOUSE
WAREHOUSE

ORDER
STOCK
ORDER-LINE)

Appendix B

GOOD AFTERNOON.
IT IS 14: 3: 18 ON 6. 1. 86.

THIS IS THE NATURAL ENQUIRY LANGUAGE SYSTEM VERSION 20.30/SCOPE2.1. 
(C) COPYRIGHT ICL 1985.

WHICH SUBJECT WOULD YOU LIKE TO ASK QUESTIONS ABOUT?
PLEASE ENTER THE SUBJECT NAME OR bye'.
0006 scope2

PLEASE ENTER A NAME FOR THIS SESSION.
0007 vw

PLEASE ENTER YOUR USER NAME.
0008 rayjones

PLEASE ENTER THE PASSWORD.
(IF THERE IS NO PASSWORD ENTER none .)
0009 sec re t

PLEASE WAIT A MOMENT.

SCOPE2 STANDS FOR STOCK, CUSTOMER, ORDER AND PRODUCT ENQUIRIES.
SCOPE2 COVERS:

PRODUCTS
ORDER-LINES
ORDERS
CUSTOMERS
WAREHOUSES
STOCKS

YOU MAY NOW ASK QUESTIONS ABOUT SCOPE2. 
WHEN YOU HAVE FINISHED ENTER 'end '.
0010 Who a re  the  custom ers?
OK.
LIST CUSTOMER.CUST-NO.CUST-NAME

PLEASE WAIT A MOMENT.
CUSTOMER

CUST-NO CUST-NAME

02109 SPRING SURPRISE CHOCOLATES
02813 NON STICK TYRE COMPANY
04377 LONG EARED FROG COMPANY

PLEASE ENTER YOUR NEXT QUESTION.
0011 List the  custom er nam es and ad d resses.
OK.
LIST CUSTOMER.CUST-NAME,CUSTOMER.ADDRESS-1,ADDRESS-2,COUNTY,POSTCODE
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CUSTOMER
CUST-NAME: SPRING SURPRISE CHOCOLATES 
ADDRESS-1: 1 FLAXMAN ROAD 
ADDRESS-2: BASSETLAW

COUNTY: NOTTS POSTCODE: N45 91A

PLEASE ENTER YOUR NEXT QUESTION.
0012 What a re  the custom er nam es and their unused credits?
OK.
LIST CUSTOMER.CUST-NAME,UNUSED-CREDIT IS CUSTOMER.CREDIT-LIMIT -  BALANCE

CUST-NAME UNUSED-CREDIT

SPRING SURPRISE CHOCALATES 100.00
NON STICK TYRE COMPANY 78.50
LONG EARED FROG COMPANY 100.00

PLEASE ENTER YOUR NEXT QUESTION.
0013 The Berks custom ers.
OK.
LIST CUSTOMER.CUST-NO,CUST-NAME WHERE CUSTOMER.COUNTY =  BERKS'

CUSTOMER
CUST-NO CUST-NAME

02802 55TH FLOOR HOUSING CO LTD.
02865 OXTON WATER SUPPLY ASSOC.
04692 STAPLES COMPLAINT LTD.
10525 EVEREST EXPLORERS UNLIMITED
99999 NATIONAL DRINKERS (BERKS)

PLEASE ENTER YOUR NEXT QUESTION.
0014 Tell me the custom ers for the  county of 'DEVON'.
OK.
LIST CUSTOMER.CUST-NO,CUST-NAME WHERE CUSTOMER.COUNTY =  DEVON'

CUSTOMER
CUST-NO CUST-NAME

07521 GRADWELL SHOE CORPORATION

PLEASE ENTER YOUR NEXT QUESTION.
0015 Which custom ers have credit limits over £50 and under £150?
OK.

LIST CUSTOMER.CREDIT-LIMIT,CUSTOMER.CUST-NO,CUST-NAME WHERE CUSTOMER.CREDIT- 
LIMIT >  50 AND CUSTOMER.CREDIT-LIMIT <  150

CUSTOMER
CREDIT-LIMIT CUST-NO CUST-NAME

100.00 02109 SPRING SURPRISE CHOCOLATES
100.00 02613 NON STICK TYRE COMPANY
100.00 04377 LONG EARED FROG COMPANY

PLEASE ENTER YOUR NEXT QUESTION.
0016 Which custom ers have ba lances over their credit limits?
OK.

LIST CUSTOMER.BALANCE,CUSTOMER.CUST.NO,CUST-NAME WHERE CUSTOMER.BALANCE >  
CUSTOMER.CREDIT-LIMIT
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CUSTOMER CUST-NO CUST-NAME 
BALANCE

1035.10 07143
149.60 03873
244.40 06513
151.90 05763

ZERO-C SCREEN CLEANERS 
BLUE & GREY BOXES CORPORATION 
INDEXED SEQUENTIAL STOCKS LTD 
SAFE STRING MANUFACTURERS

PLEASE ENTER YOUR NEXT QUESTION.
0017 Who placed w hat o rders  on 07.04.80?
OK.

LIST ORDER,CUSTOMER.CUST-NO,CUST-NAME WHERE ORDER.ORDER-DATE -  07.04.80 AND 
(ORDERS AND ORDER-LINES AND PRODUCT-ORDER)

ORDER-NO ORDER-DATE CUST-NO CUST-NAME

D 000102 07.04.80 01857 WINE GROWERS GROUP INCORP.
D 000109 07.04.80 03180 LINE PAPER PRODUCTS AND CO.
D 000108 07.04.80 03117 FOREIGN EXCHANGE COMPANY LTD

PLEASE ENTER YOUR NEXT QUESTION.
0018 W here a re  a sh  trays held?
OK.

LIST WAREHOUSE WHERE (PRODUCT-IN-WH AND PRODUCT-STOCK) AND PRODUCT.PRODUCT-DES-
C =  'ASH TRAY’

WAREHOUSE 
CODE LOCN

IRQ01 PO BOX 640 BAGHDAD IRAQ 
USA26 CLAIRE RD E BRUNSWICK NJ USA 
BRA01 LOVELACE RD BRACKNELL BERKS

PLEASE ENTER YOUR NEXT QUESTION.
0019 What o rders  w ere  placed for blotters?
OK.

LIST ORDER WHERE PRODUCT.PRODUCT-DESC =  BLOTTER' AND (ORDERS AND ORDER-LINES AND 
PRODUCT-ORDER)

ORDER
ORDER-NO ORDER-DATE

A 000007 01.04.80
A 000010 01.04.80
A 000030 01.04.80

PLEASE ENTER YOUR NEXT QUESTION.
0020 Do ash  trays have a  price over £1?
OK.

LIST PRODUCT.UNIT-PRICE WHERE PRODUCT.UNIT-PRICE >  1 AND PRODUCT.PRODUCT- 
DESC =  ‘ASH TRAY'

PRODUCT
UNIT-PRICE

THERE ARE NONE.
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PLEASE ENTER YOUR NEXT QUESTION.
0021 What price a re  blotters?
OK.

LIST PRODUCT.UNIT-PRICE WHERE PRODUCT.PRODUCT-DESC =  ‘BLOTTER’

PRODUCT
UNIT-PRICE

9.03

PLEASE ENTER YOUR NEXT QUESTION.
0022 Are there  any Essex custom ers?
OK.

LIST CUSTOMER.CUST-NO.CUST-NAME WHERE CUSTOMER.COUNTY =  ESSEX' 

CUSTOMER
CUST-NO CUST-NAME

04944 THE POTTER FOSTER-HOMES
03243 LONG MILE BUS COMPANY
02424 CASH MART DISCOUNTS LTD
04881 ZIPPETY DOODAH LTD.
03306 THREE MILE ISLAND SHELTER CORP
03180 LINE PAPER PRODUCTS AND CO.
04818 SOUTHGATE SECURITIES CO LTD

PLEASE ENTER YOUR NEXT QUESTION.
0023 Decem ber figures for LMBC.
OK.

LIST CUSTOMER.PURCHASES-3.PAYMENTS-3 WHERE CUSTOMER.CUST-NAME =  LONG MILE BUS 
COMPANY'

CUSTOMER
PURCHASES-3 PAYMENTS-3

14.60 14.60

PLEASE ENTER YOUR NEXT QUESTION.
0024 Good Berks custom ers.
I DO NOT UNDERSTAND "Good” .
I SHALL TRY TO UNDERSTAND YOUR QUESTION WITHOUT IT.
OK.

LIST CUSTOMER.CUST-NO,CUST-NAME WHERE CUSTOMER.COUNTY =  'BERKS' 

CUSTOMER
CUST-NO CUST-NAME * I

02802 5STH FLOOR HOUSING CO LTD.
02865 OXTON WATER SUPPLY ASSOC.
04692 STAPLES COMPLAINT LTD.
10525 EVEREST EXPLORERS UNLIMITED
99999 NATIONAL DRINKERS (BERKS)

PLEASE ENTER YOUR NEXT QUESTION.
0025 Product add resses.
I CANNOT UNDERSTAND WHAT ' Product ad d re sse s"  REFERS TO.

PLEASE ENTER YOUR NEXT QUESTION.
0026 List 20 custom ers.
OK.
I CANNOT ANSWER QUESTIONS WHICH USE COUNTS IN THIS WAY.
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PLEASE ENTER YOUR NEXT QUESTION.
0027 Help!
OK.
THE CURRENT SUBJECT IS SCOPE2.
SCOPE2 STANDS FOR STOCK, CUSTOMER, ORDER AND PRODUCT ENQUIRIES. 
SCOPE2 COVERS:

PRODUCTS
ORDER-LINES
ORDERS
CUSTOMERS
WAREHOUSES
STOCKS

YOU MAY ASK QUESTIONS ABOUT SCOPE2.
IF YOU HAVE FINISHED ENTER ‘end ’.

PLEASE ENTER YOUR NEXT QUESTION.
0028 end.
OK.

WHICH SUBJECT WOULD YOU LIKE TO ASK QUESTIONS ABOUT NOW?
PLEASE ENTER THE SUBJECT NAME OR 'bye'.
0029 bye

GOODBYE.
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University of Stirling 
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Abstract

The me too method addresses two concerns in the process of software 
design. The first is effective communication of a design specification 
amongst members of a design team. The second is early feedback on 
the correctness and adequacy of a design. The first concern is 
achieved by using mathematics as a means of precisely stating design 
decisions as they are made. The second is accomplished by trans­
forming the specification into an executable design prototype to be 
tested.

Testing a prototype uncovers design errors and misconceptions. The 
faults are explicitly recorded in the formal specification and so can be 
readily attended to. The me too method encourages a team to revise 
the specification and to subject the new design to further inspection by 
execution. The method is therefore an iterative one. The emphasis on 
iteration enables exploration of alternative design decisions and early 
detection of design faults.

This paper describes the me too method and illustrates its use in the 
design of a simple prototype of a system for handling production rules.

1 Introduction

This paper addresses itself to the problem of software design. All too often 
when we design software we proceed to implementation stages before the 
design itself is complete. The reasons for this are simple. To design the 
software completely implies that we have a precise and undeniable statement 
of what that software is to do. Such a statement would allow an outsider to 
ask us a question of the form ‘what will happen if, using your software, I were 
to ...’ and would enable us to give an accurate response. In conventional 
software design we are not usually in this happy position, for until we have 
an implementation of our proposed software, we have probably not com­
pletely decided what it will do in all circumstances. We have no method of 
making a precise statement of those design decisions we do make, short of 
completing the implementation itself.
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Here we propose that one realistic remedy to this problem is to make use of 
mathematics as a language for software design. We use mathematics as a 
programming language. Hence we design by completing a description of the 
software in a mathematical language. We ensure that this language is 
executable by machine. But we pay little attention to the performance or 
user-interface of this implementation, the objective being to achieve early in 
the design process and at very low cost, a precise description of the design 
which can be used to answer the questions of the outsider.

We concern ourselves particularly with the problems that arise when 
software is to be designed by a team. The team must reach decisions, and 
agree on them before moving on to implementation. Mathematics is a 
language which the design team can use for communication amongst 
themselves. They can use this language to make precise statements of 
proposals which can then be argued about. They can investigate alternatives 
with each design choice being carefully and precisely noted and considered. 
The necessary mathematics required to achieve this purpose is very elemen­
tary and can be learned in a few days. We give an example of its use in this 
paper.

Our starting point is functional programming. Programs written in a purely 
functional style are considered comparatively easy to understand. This is 
because functional programs obey the universal laws of mathematics.

Many of the principal components of a software system can be described 
using functional programs. In fact, many components can be described using 
mathematical functions. For example, a program component which is to 
define the displayed value of an updated screen for a given screen and a given 
input might be defined by a function f(screen, input) which determines every 
field to appear on the updated screen solely from the original value of the 
screen and from the value of the given input.

The virtue in describing expected computational behaviour using mathemat­
ical functions has two facets. Firstly, mathematical descriptions combine 
precision with understandability in an economical way. Secondly, we can 
execute the functions and hence validate that they adhere to our informal 
expectations. It is of course possible to use mathematics to give partial 
descriptions or to give complete but indirect and hence unexecutable 
descriptions. For some problems that may be all we can do. But if we can 
give complete constructive and hence executable descriptions we can make 
certain and rapid progress in the process of software design. So much so, that 
we believe the quality of the software and the cost of its production will both 
be markedly improved.

Of course software design is only part of the software lifecycle. It is preceded 
by requirements specification about which we have little to say. It is followed 
by implementation, which if done using traditional imperative languages 
such as Pascal and C, will benefit enormously from the support of traditional
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software engineering tools and their integrated future developments, the 
IPSEs. The techniques which we propose here complement these other 
phases in that they show how a formal mathematical specification of the 
software components to be implemented can be achieved and how design 
alternatives can be investigated. They also show how certainty in the 
progress of the design can be achieved by members of a design team by 
executing their constructive mathematical description as a prototype imple­
mentation.

The method we shall describe, which is based on functional programming 
and borrows a great deal from VDM, has been given a name. We call it me 
too. Not for any better reason than it needed a name. We shall use this same 
label for both the method and the mathematical notation which is part of it.

In normal usage it is clear when one is talking about the method and when 
one is talking about the mathematics.

We ought not to give the impression that me too is as elaborate as VDM1-3. 
It is not. There may be many things which VDM can succinctly describe 
which me too cannot. Learning me too however is probably much easier and 
will serve as a gentle introduction to VDM for those who wish to take formal 
methods that far.

Finally, before we introduce the method and the mathematics let us explain that 
this paper only sets out to give an example and leaves much for the interested 
reader to discover. We use a particular brand of mathematics, where another 
brand might serve equally well. We use a particular style of prototyping where 
another might fit better with a different kind of application. We do not wish to 
purvey these particular products so much as a feeling that the use of formal 
methods in the design process and some mechanical support for their valid 
application can greatly aid the software engineer in what remains one of his 
greatest unsupported activities, that of software design.

2 The method

The me too method is a three step method. The steps are illustrated in 
Figure 1.

The first two steps, the Model and the Specify steps, concentrate on how to 
communicate the details of a design among the members of a design team. 
The third step, the Prototype step, serves to validate those details. These 
three steps constitute one cycle of the design process. This cycle is repeated, 
as the diagram indicates, in order to correct design faults or explore 
alternative design decisions.

The technique used by me too to specify a design is similar to that used by 
VDM. As in VDM, data objects are modelled on familiar mathematical 
structures, and operations on the objects are formally specified by the natural
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mathematical operations allowed on those structures. The me too method 
separates the usual process of formal specification into two steps, the Model 
step and the Specify step, which are now described.

The first step of the design process, the Model step, is conducted in an 
informal way by determining the objects (or data structures) involved and the 
operations upon those abstract objects which are appropriate for the 
software being designed. Concrete representations are not considered at this 
point so that the nature of a design is not influenced by concern over 
‘implementation’ details. This first step of the method simply compiles a list 
of these objects and operations. For each operation we decide those objects 
upon which it acts and the object it returns. Of course, an informal 
description is given to each object and each operation.

The list of objects and operations and their descriptions form an abstract 
model of the design. This model provides a team with a framework in which 
the members can discuss a design, consider alternative design decisions and 
generally come to an initial informal agreement about the design. Much of 
the creative activity of the design process is involved in this step. The explicit 
attention to enumeration of operations is, we have discovered, an efficient 
and effective way of capturing those creative design decisions.

At the end of the Model step the design team have reached an informal 
agreement about the software they have designed. Each object and each 
operation has been agreed. But, experience shows that this agreement is far from 
precise. In a traditional design process it may be the highest level of agreement 
that the design team can reach. However, subsequent experience will undoubt­
edly demonstrate to them that their design was, in places, flawed.

So, in the Model step a design team propose decisions in an informal way. In 
the Specify step the members must commit themselves to making these 
decisions explicit by giving formal meanings to the objects and operations of 
their design. Before defining the operations, formal representations are given 
to each object of the model. The objects are represented using the following 
mathematical structures: sets, relations, finite functions (maps) and se­
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quences. The operations are defined using the natural mathematical opera­
tions for the structures on which they act. In me too, all operations are 
defined explicitly, unlike in VDM where some definitions may be implicit. 
See Reference [4] for a comparison of me too and VDM.

The definitions given to the objects and operations in the Specify step 
transform the informal framework of the model into a rigorous design. The 
decisions that were loosely formulated in the Model step are precisely 
expressed in the formal specification. Therefore, at this stage in the process 
there is a somewhat more complete and common understanding between the 
members of the team about the details of the design. Typically, in arriving at 
agreement about the formal specification of objects and operations, the 
design team will uncover and correct some of the residual design flaws.

The mathematics used in the Specify step aids in the communication of 
design decisions. It should also assure the correctness of a design. However, 
although a mathematical specification gives a clear description of a decision, 
it is still possible that the formal meaning is not the intended meaning. A 
means for testing a team’s understanding of a design is provided in the third 
step of the method, the Prototype step.

The third step calls for a design to be prototyped according to the formal 
specification, and for the prototype to be executed in order to validate the 
design. The operations in a me too specification are defined explicitly as 
constructive functions. The specification is made executable by transcribing 
the mathematical notation into a functional programming language.

In the Specify step, the design team comes to an understanding as to how the 
system under design behaves. The Prototype step tests this understanding. 
The specification is executed and its behaviour is observed. It is found that 
this step not only discloses misconceptions about design decisions (errors of 
commission) but also reveals where decisions have been ignored (errors of 
omission). It is a major contribution of this design method that these failings 
are discovered early so that the design team has the opportunity to revise the 
design.

On completion of the third step, the team proceeds to correct errors and fill 
in holes in the design by repeating the three steps of the method. If the 
prototype reveals missing operations, the abstract model is extended. If it 
uncovers errors in existing operations, their formal definitions are amended. 
The design cycle is repeated in this way until a satisfactory prototype is 
obtained.

The method encourages a team to build a design incrementally in short 
cycles so that early feedback, is gained after each decision is made. During 
any cycle previous decisions may be disregarded to allow investigation of 
alternative ones. The method is intended to encourage iterations during a 
design. An example of the use of the method to explore different decisions for
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the design of a simple system for manipulating production rules is given later. 
First, there is an introduction to the mathematics that the method employs.

3 A little set theory

Of course we can not hope to introduce all of the mathematics which might 
be required to describe real software in a paper as brief as this one. Jones’ 
book3 is relied upon for that purpose and you may find it useful to refer to 
Chapters 7, 8 and 12 which explain some of the mathematics which is not 
covered in this paper. Jones’ paper1 is an alternative source, but is not a 
tutorial.

In fact we borrow our set notation from Turner5,6. He introduced set 
notation into a functional language. We expect our sets to behave like the 
sets of mathematical set theory and have the usual operations of set theory 
(union, intersection etc) available to us. We will often use a set to denote a 
data object. For example the set which denotes the binary relation describing 
those things which certain people possess is written explicitly as

possesses =  {(FRED, BICYCLE), (TOM, PEN), (TOM, ROSE),
(BILL, BICYCLE)}

This is a set of pairs. It has four members, each of which is a pair. We use it to 
denote the data base which records the fact that FRED and BILL possess 
BICYCLES while TOM possesses a PEN and a ROSE.

Since possesses is a set we can apply various operations into it. So

possesses u  {(DICK, STICK)}

is the set which records five possessions, now including DICK’s possession of 
a STICK. And

possesses — {(TOM, PEN)}

records only three possessions, which are

{(FRED, BICYCLE), (TOM, ROSE), (BILL, BICYCLE)}

Well, this is all very familiar set notation. Suppose we want to determine all 
things which TOM possesses. We write

{t|(p, t) *- possesses; p = TOM}

which is read as ‘the set of all t, such that (p, t) is drawn from [is a member of] 
the set possesses and p is equal to TOM.’

This is in fact the set {PEN, ROSE}. Similarly,
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{t|p«-{TOM, BILL}; (p', t) <-possesses; p = p'}

denotes the set of all things owned by either TOM or BILL according to the 
relation possesses. This is the set {PEN, ROSE, BICYCLE}.

Alternatively, we could have written this as

{t|(p', t) <- possesses; p' =  TOM or p' = BILL}

We can use sets of this sort to describe the data objects which our software is 
to manipulate, in a sufficiently rigorous way that the meaning of the 
operations which we define can be made clear and precise. For example if S is 
a set of pairs we might define an operation

project-right (S, a) =  {y|(x, y)<- S; x =  a}

which determines for each pair (x, y) in S those pairs for which x = a and 
collects together the second members of each pair.

Hence, project-right (possesses, TOM) = {PEN, ROSE} which is the set of all 
things that TOM possesses according to the database denoted by the set 
possesses.

The operation project-right has two arguments. The first is a set of pairs, the 
second is an atom. The result of this operation is a set of atoms. So we can 
describe its ‘functionality’ by the statement

project-right: set(Pair) x Atom -*• set(Atom)

This is a mathematical equivalent of a procedure heading. It states that 
project-right has two arguments and a single result and denotes the types of 
each of the arguments and of the result.

We shall need various extensions of the basic ideas we have introduced in 
this section, in order to adequately describe the software which we propose 
to design as our example, and we shall introduce those extensions as we go 
along. There is however, one mathematical object that is used a lot in the 
paper and therefore we shall introduce that here.

The mathematical object that denotes a mapping from objects of one type to 
another is called a finite function. (VDM calls it a map).

A finite function is the same type as a set of pairs with one distinction. That 
is, each pair in a finite function has a unique first element.

So, the set

ismarriedto =  {(BILL, MARY), (MARY, BILL), (TOM, SUSAN), 
(SUSAN, TOM)}
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is a finite function, but

possesses =  {(FRED, BICYCLE), (TOM, PEN), (TOM, ROSE),
(BILL, BICYCLE)}

is not. The unrepeated first elements form a set called the domain of the finite 
function. To obtain the domain of a finite function we use the operation dom. 
Thus,

dom(ismarriedto) =  {BILL, MARY, TOM, SUSAN}

To emphasise that a particular set of pairs is a finite function we write an 
arrow between the members of each pair instead of a comma and omit the 
parenthesis. Thus, we would write

ismarriedto =  {BILL -  MARY, MARY -  BILL, TOM -  SUSAN, 
SUSAN -* TOM}

This is purely a syntactic device to assist readability of descriptions which use 
finite functions. A finite function is still a set of pairs and as such can be 
subjected to all the operations allowed on such sets.

Two other constructs on finite functions are used in this paper. The first is 
finite function override, which is denoted by the symbol ©. It operates on 
two finite functions and produces a third. It is like set union, except that pairs 
of the second finite function replace those pairs in the first finite function that 
have the same domain elements. So, for example,

ismarriedto ® {BILL -► JILL, JILL ->■ BILL, MARY -► FRED,
FRED-»MARY}

=  {BILL-► JILL, MARY -*■ FRED, TO M -► SUSAN,
S U S A N T O M , JILL-> BILL, FRED-> MARY}

The other construct is finite function indexing. Because each domain element 
of a finite function is mapped to a unique value, we can index it using any 
element in the domain to obtain the element to which it is mapped.

Thus, to discover who BILL is married to we use the following indexing 
notation

ismarriedto[BILL]

to get the answer MARY. Notice that this is the familiar notation that is used 
for arrays in conventional programming languages.

Finally, we can construct finite functions in the following way. Suppose we 
want to associate each person in the ismarriedto finite function with the
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things possessed by his or her spouse, according to the possesses relation. We
write this association as follows:

{p -> project-right(possesses, ismarriedto[p])| 
p <- dom(ismarriedto)}

This then constructs the set

{MARY-*• {BICYCLE}, SUSAN -*■ {PEN, ROSE}, TOM -+ { },
BILL -*■ { }}

None of the uses of the mathematics in this paper is more difficult than that 
we have already introduced and we hope that the example will be sufficiently 
interesting that the meaning of the operations will serve to reinforce your 
understanding of the mathematics.

Bearing in mind our earlier comments about the use of mathematics as a 
language of communication among the members of a design team, what we 
hope you will observe in the remaining sections of this paper is the extent to 
which an elaborate design can be adequately and precisely stated using the 
mathematical language which we shall introduce.

4 The example

As an illustration of the method we will design a simple system for 
manipulating production rules similar to that described by Winston7. An 
example of a user of such a system is a manager of a firm. The manager 
knows of tasks to be performed to which employees of the firm may be 
allocated. The manager also knows of courses that instruct on skills that 
employees may lack. The manager provides the system with facts about the 
requirements of each task, the skills and availability of each employee, and 
the dates of courses. The manager may capture the way in which he 
manipulates such information in rules of the form shown in Figure 2.

Fig. 2 An example of production rules

Rule 1 If a task requires a skill and an employee has the skill, then the employee 
may perform that task.

Rule 2 If an employee may perform a certain task and the employee is available on 
a certain day, then the employee may be allocated to the task and the task 
may be performed on that day.

Rule 3 If an employee desires a skill and a course instructs on that skill, then the 
employee may be interested in the course.

Rule 4 If an employee is interested in a course, and the course is taught on a 
certain day and the employee is available on that day, then the employee 
may attend the course on that day.
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Each rule has two parts, which we call the ‘ifs’ part and the ‘thens’ part. For 
example, rule 2 has the ‘ifs’ part

‘an employee may perform a certain task and the employee is available 
on a certain day’

and a ‘thens’ part

‘the employee may be allocated to the task and the task may be 
performed on that day’

The production rule system will operate upon a set of given facts and, 
whenever the facts in the ‘ifs’ part of a rule match the given facts it will 
augment those facts with those obtained from the corresponding ‘thens’ part 
of the same rule.

For known facts and rules, we require a system which deduces for the 
manager when and to whom a task may be allocated, and when an employee 
may attend a course.

Rules of the kind listed in Figure 2 are known in the field of Artificial Intelligence 
as production rules. Systems that operate on such rules and known facts to 
deduce other facts are termed production rule systems. The remaining sections 
of this paper apply the me too method of Software Design to produce a first 
prototype of a production rule system capable of applying rules such as those 
shown in Figure 2. The design process is described as two major iterations, in the 
first we only allow constant facts to appear in rules. In the second we elaborate 
this initial design to include the use of variables in the rules.

5 The first design

5.1 The model-step

The first step of the method is to build an abstract model of the system being 
designed. This requires us to conduct a preliminary analysis of a production 
rule system. We borrow the basic characteristics of a production rule system 
from Winston7, and from the requirements of the planning application.

Thus we conclude that a production rule system consists of three parts:

(i) a collection of facts,
(ii) a collection of rules,

(iii) a control strategy which operates on the facts and rules.

A particular control strategy will be designed in this paper. It is one that 
deduces all possible facts from given facts and rules by attempting to match 
the rules against the facts and repeatedly applying those rules that match 
successfully. This control strategy is called ‘forward-chaining’7.
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The abstract model will reflect each of the three main parts. Consider the first 
part; the facts.

A model is built for the facts by determining appropriate objects and operations. 
Two objects are immediately apparent, a collection of facts which Winston 
called a factbase, and a fact itself. A production rule system must be provided 
with a factbase therefore operations are needed to set one up. These objects and 
operations are given in Figure 3. There are two different kinds of object, a Fact 
and a Factbase. There are two operations. addfact(fb, f) will add Fact f to 
Factbase fb. The operation emptyfb() creates an initially empty Factbase.

A statement, or signature, is given to denote the type of each operation. In 
the case of the first operation, the signature states that addfact acts upon 
objects of type Factbase and Fact and produces an object of type Factbase. 
The types following the colon and separated by crosses in a signature 
represent the arguments of an operation, and the type following the arrow 
represents its result. The second operation takes no arguments, and therefore 
no types are stated between the colon and arrow in its signature. A 
description is given with each object and operation to complete this first 
model for the facts.

Fig. 3 A model for Facts 

Objects
Factbase -  a collection of facts 
Fact -  a fact

Operations
addfact: Factbase x Fact -> Factbase 
addfact(fb.f) adds a fact f to a collection of facts fb.
emptyfb: ->Factbase
emptyfb() creates an empty collection of facts.

At this point in a design, a design team has some informal understanding of 
how the operations of the system should behave. The team perhaps simulates 
the operations by invoking them manually. In the case of this design, the 
team may consider the following sequence of applications on the operations:

fb = addfact(emptyfb(), fl)
fb' =  addfact(fb, £2)

and hence demonstrate their intention that fb contains the fact fl and fb' 
contains both facts fl and 12. (Notice, it is not known at this stage exactly 
how the collection appears, because concrete representations have not yet 
been assigned to objects). The team must define precisely how they mean 
these operations to behave in the Specify step. In a practical design situation, 
the team may feel that there is already enough of a model to proceed through 
the design cycle and produce the specification and execute it in order to
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examine the intended behaviour. However, here the model will be extended 
to cover the remaining two parts that characterise a production rule system.

The next concept to model is the collection of rules which Winston called a 
rulebase.-A rule needs to be labelled with a name, so that a matched rule may 
be uniquely determined during the matching stage of the control strategy. 
Therefore, another object is needed to represent a rule name. The system 
must be provided with the rules, therefore operations are required for 
establishing a collection of rules. Since a rule name uniquely determines a 
rule, the decision is made and expressed in the model regarding the addition 
of a rule to a collection whose name has already been assigned to a rule in 
that collection. These concepts are described in the model shown in Figure 4.

Fig. 4 A model for rules

Operations
addrule: Rulebase x Rulename x Rule -»Rulebase
addrule(rb.rn.r) adds a rule r with name rn to a  collection rb. If a rule already exists in 

rb under the name rn, then r replaces that rule.
emptyrb: ->Rulebase
emptyrb() creates an empty collection of rules, 
mkrule: set(Fact) x set(Fact) -»Rule
mkrule(ifs, thens) creates a rule from a set of facts representing the 'ifs1 part and a 

set of facts representing the ‘thens’ part.
ifs: Rule-*set(Fact)
ifs(r) gives the set of facts in the 'ifs’ part of the rule r. 
thens: Rule->set(Fact)
thens(r) gives the set of facts in the ‘thens' part of the rule r.

There are three new object types. The operations emptyrb() and addrule(rb, 
rn, r) are not unlike the operations upon facts. The model also includes 
operations for constructing and dismantling a rule. The rules for the 
planning application given in the previous section are characterised as 
having an ‘ifs’ part which consists of a set of facts which are matched against 
the factbase, and a ‘thens’ part which consists of a set of facts that are 
deduced when the rule is successfully matched. Operations for creating a rule 
and selecting the ‘ifs’ and ‘thens’ part of a rule are listed respectively.

The final part of the model concerns the control strategy of a production rule 
system. The strategy for this design contains the following steps. 1 2

1 Each rule in the rulebase is matched against facts in the factbase.
2 The name of each rule whose ‘ifs’ part successfully match facts in the 

factbase is noted. If there are no such matches then we are finished.
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3 For each rule which does match, the facts from the ‘thens’ of that rule 
are collected. This new collection of facts is added to the factbase. If all 
the facts are already there, then we are finished, otherwise we continue 
from step 1.

The strategy is reflected in the model shown in Figure 5. It is believed that 
matchapply will apply applyrules to the results of matchrules, which itself 
performs an application of matchlife. Figure 6 is a diagram of the intended 
strategy.

Fig. 5 A model for the control strategy

matchrules: Factbase x Rulebase-»set(Rulename)
matchrules(fb.rb) returns the set of names belonging to those rules in the collection 

of rules rb that match facts in the collection fb.
matchifs: Factbase x set(Fact)-* Boolean
matchifs(fb.fs) tests whether the facts in fs match facts in the collection fb.
applyrules: Rulebase x set(Rulename)-»set(Fact)
applyrules(rb.rns) returns all facts in the ‘thens’ part of each rule in the collection rb 

corresponding to a name in the set rns.
matchapply: Factbase x Rulebase -»Factbase
matchapply(fb,rb) returns the factbase which results from repeatedly applying the 

rules in rb to the facts in fb until no further facts can be deduced.

3.2 The specify-step

In building the model, the design team has implicitly decided on aspects of 
the system’s behaviour. However, the team will not yet have conveyed in any 
of the statements made about the system that it has a total understanding of

Fig. 6 The control strategy
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all of these aspects. It is probably the case that the purported understanding 
varies amongst different members of the team. The team improves its 
position by using the specification language of me too to argue about the 
details and to come to a complete and common understanding of the design.

Formal meanings are now given to the objects and operations of the abstract 
model. Consider the model of the facts. The objects, Fact and Factbase, need 
to be represented by mathematical objects. A fact of the planning system 
might be the following expression:

task requires skill

An expression can be viewed as a collection of words, or atoms, where the 
words appear in the collection in a fixed order. The mathematical object that 
is used to represent an ordered collection of items is a sequence. Another 
characteristic of a sequence that distinguishes it from a set is that it is allowed 
to have repeated elements. Thus, it seems appropriate that the object Fact is 
chosen to be represented as a sequence of atoms. The fact given above 
appears, then, in its concrete representation as

<task, requires, skill)

The production rule system described in the model operates on an unstruc­
tured collection of facts, where facts are not repeated, so a set is used to 
represent the object Factbase.

The operations on facts can now be defined. The operation addfact takes as 
arguments a collection of facts fb and a fact f and returns a collection 
containing f. As fb is a set, the operation simply involves set union. The 
operation emptyfb has no arguments and returns an empty collection of 
facts. The empty object whose type is a set is the empty set. These decisions 
are encapsulated in the specification concerning the facts shown in Figure 7. 
Notice that the notations set(Fact) and seq(Atom) are used in the definitions 
of Factbase and Fact. In general, set(Tl) denotes a set of objects of type T1 
and seq(T2) denotes a sequence of objects of type T2, where T1 and T2 can be 
any type structured to any level of complexity. In this example, we have in 
fact an object type that is a set of sequences of atoms.

Fig. 7 A specification for facts

Representations

Factbase =  set(Fact)
Fact =  seq(Atom)

Definitions

addfact: Factbase x Fact -*■ Factbase 
addfact(fb.f) =  fbu {f}
emptyfb: ->Factbase 
emptyfbQ =  empty
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There is nothing particularly complicated about the mathematics used in this 
description. We use empty to denote the empty set. The expression fbu{f} 
denotes the set obtained by adding f to the set fb.'

Next is the specification of the rules. This is shown in Figure 8. A rulebase 
associates a rule name with a unique rule. The mathematical object that 
represents a mapping from an object of type T1 to an object of type T2 is a 
finite function. We write its type formally as ff(Tl, T2). Thus, the representa­
tion for the object rulebase is given as

ff(Rulename, Rule)

Continuing now with the specification of the rules, the next definition to provide 
is the one for adding a rule to a rulebase. Addrule adds a rule r with name m  to a 
rulebase rb. Thus addrule adds to rb the finite function that maps m  to r. Since 
the decision was made to replace any existing rule with the name m in rb with 
the new rule r, the finite function override construct is used.

The next operation is emptyrb which creates an empty object of type 
Rulebase. Thus, this operation creates an empty finite function, which is just 
the empty set.

Now to the representation of a rule. As characterised before, a rule has an ‘ifs’ 
part followed by a ‘thens’ part. The object Rule is therefore a pair.

Fig. 8 A specification for rules

Representations

Rulebase = ff(Rulename, Rule)
Rule = tup(set(Fact), set(Fact))
Rulename = Atom

Definitions

addrule: Rulebase x Rulename x Rule-> Rulebase 
addrule(rb,rn,r) =  rb© {rn ->r}
emptyrb: -»Rulebase 
emptyrb() = empty

mkrule: set(Fact) x set(Fact) -> Rule 
mkrule(ifs, thens) = (ifs,thens)
ifs: Rule->set(Fact) 
ifs(r) =  first(r)
thens: Rule->set(Fact) 
thens(r) = second(r)

The mathematical object that denotes an ordered collection of items which 
has a fixed size is called a tuple. In general, we write

tup(Tl, T2,., Tn)
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to denote a tuple of size n, where the first item is of type T1 and whose second 
is of type T2, and so on, where T l, T 2 ,..., Tn may be distinct types. Tuples 
are provided with selector operations. For example, first and second are 
operations that, when applied to a tuple, return its first and second elements 
respectively.

The operation mkrule is defined, then, to be the pair whose first element is 
the set of facts representing its ‘ifs’ part and whose second is the set of facts 
representing its ‘thens’ part. The operations ifs and thens just apply the 
selector operations first and second.

The final section of the specification defines the control strategy. The strategy 
is described by four operations. These are shown in Figure 9.

Fig. 9 A specification for a  control strategy

matchrules: Factbase x Rulebase->set(Rulename) 
matchrules(fb,rb) =  {rn|(rn, r)<-rb; matchifs(fb,ifs(r))}
matchifs: Factbase x set(Fact)-► Boolean 
matchifs(fb.fs) =  fs£fb
applyrules: Rulebase x set(Rulename) -► set(Fact) 
applyrules(rb.rns) =  union {thens(rb[rn])|rn«- ms}
matchapply: Factbase x Rulebase-»Factbase 
matchapply(fb.rb) =

let rns = matchrules(fb.rb) 
if rns = empty then fb 
else let fs = applyrules(rb.rns) 

if fs — fb = empty then fb else matchapply(fbufs.rb)

The Boolean valued operation matchifs(fb^s) determines whether the fact fs, 
contained in the ‘ifs’ part of the rule, is true with respect to (i.e. may be 
matched successfully to) the current factbase fb. We decide that it does so if 
every fact in fs is also in fb, that is, if fs is a subset of fb. With this decision we 
can construct the set of rulenames of rules in the rulebase rb whose ‘ifs’ match 
the factbase fb. This is exactly the set

{rn | (rn,r) <- rb; matchifs(fb,ifs(r))}

Hence we have the definition of matchrules(fb,rb).

To apply these matched rules to the current factbase we first calculate all the 
new facts which will be generated by the ‘thens’ parts of matched rules.

The set

{thens(rb[m])|m<- ms}

is almost what we want. Each rulename m  in the set of rulenames ms is used 
to extract the rule rb[m ] from the rulebase rb. The set of facts which make
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up its ‘then’ part is constructed. By this means we construct a set of sets of 
facts and must use union, the distributed union operator, to combine these 
into a single set of rules. This operator behaves as follows:

If Al, A 2,..., Ak are sets, then
union {Al, A 2,..., Ak} =  Al u  A 2u ... u  Ak.

Finally, we come to the control algorithm itself which is specified in 
matchapply(fb,rb). Here we have been explicit about the decisions on 
termination. If an attempt to match the rules in rb against the factbase fb 
results in an empty set of successfully matched rulenames then matchap- 
ply(fb,rb) returns the fb and is finished. Similarly if the set fs =  apply 
thens(rb,rns) is such that no new facts have been constructed, which will be 
seen if the difference of fs and fb is empty, we return fb and are finished. 
However, when fs does contain new facts we proceed to construct matchap- 
ply(fbufs, rb) which will continue to apply the rules in rb to a new factbase 
fbufs.

The specification is a complete record of the team’s understanding of the 
behaviour of the system. It can be used to dispel any confusion amongst 
members of the team about any aspect of the system.

3.3 The prototype-step

Although a formal specification is a valuable record of a design, it is not 
always a manifestation of a correct or complete design. A team’s belief of the 
expected behaviour of a system may not be the one that is actually recorded 
in the specification, so it is important that in the final step of the method the 
team has the opportunity to verify its belief and examine whether the 
decisions it intended are in fact the best decisions.

The specification of the production rule system given above can now be 
exercised. The operations on facts and rules can be tested. A suitable test 
might take the following basic rules and facts:

rb =  {rulel ->({(task, requires, skill),
(employee, has, skill)},

{(employee, may, perform, task)}), 
rule2->({(employee, may, perform, task),

(employee, available, on, day)},
{(employee, may, be, allocated, to, task),
(task, may, be, performed, on, day)}), 

rule3->({(employee, desires, skill)
(course, instructs, on, skill)},

{(employee, may, be, interested, in, course)}), 
rule4->({ (employee, may, be, interested, in, course),

(course, taught, on, day),
(employee, available, on, day)},

{(employee, may, attend, course, on, day)})}
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fb =  {<task, requires, skill),
(course, instructs, on, skill),
<course, taught, on, day),
<employee, available, on, day)}

The following tests may be made to verify the understanding of the control of 
the system.

Define fb' and fb" as follows.

fb' =  addfact(fb,<employee, has, skill)) 
fb" =  matchapply(fb',rb)

The result for fb" should be

fb" =  {<task, requires, skill),
(course, instructs, on, skill),
<course, taught, on, day),
(employee, available, on, day),
(employee, has, skill),
(employee, may, perform, task),
(employee, may, be, allocated, to, task),
(task, may, be, performed, on, day)}.

Now define fb' and fb" to be

fb' =  addfact(fb,(employee, desires, skill)) 
fb" =  matchapply(fb",rb)

Then fb" should be the following collection:

fb" =  {(task, requires, skill),
(course, instructs, on, skill),
(course, taught, on, day),
(employee, available, on, day),
(employee, desires, skill),
(employee, may, be, interested, in, course),
(employee, may, attend, course, on, day)}

In fact the prototype we have constructed from the given specification does 
verify the intent recorded in the specification. It does, however, throw up 
some controversies about how the system might better behave. For instance, 
perhaps the system should return only those facts that it deduces. Perhaps it 
should record the names of the rules that are applied along with the facts that 
are deduced. These aspects are not explored here. What we shall do is to 
extend our design to allow rules to contain variables which can match any 
atoms appearing in a fact.
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6 T he se c o n d  d e sig n

The second design is a revised version of the first. The major revision is to 
allow an expression in the ‘ifs’ part of a rule to match more than one 
expression in the factbase. This is facilitated by introducing variables into the 
system. For example, if task and skill are variables then the following 
expression

task requires skill

will match any of the following expressions:

Wallbuilding requires Bricklaying 
Decoration requires Painting 
Groupleading requires Management

An expression containing variables will be referred to as a pattern.

In presenting the second design we illustrate how, by the iterative nature of 
the method, we incrementally modify the model and the specifications given 
in the first design. We engage repeatedly in the process of revising the model, 
then revising the specification. At each stage, if it were appropriate we could 
check the validity of our design decisions by exercising the constructive 
functions which form their specifications. We omit the details of such testing 
until the entire second design is complete.

6.1 A model and a specification for variables

Two new objects representing a variable and a pattern are added to the 
abstract model for the production rule system. The variables in patterns will 
need to be distinguished in some way. A variable can be represented as a pair 
whose first item is the atom var and whose second is an atom denoting its 
name. A pattern is then a sequence of either atoms or pairs of this kind.

The additions to the previous specification are shown in Figure 10.

Here, another object called Value has been introduced, really only to make 
the specification easier to write. A Value is of type Atom or Variable. Two 
operations have been defined. The first determines whether an object of type 
Value is also of type Variable. The second operates on an object that denotes 
a variable and returns an atom that represents the name of that variable.

6.2 A model and a specification for pattern matching

Some other concepts need to be addressed. The first is pattern matching. The 
expression given previously is now represented as the Pattern

<(var, task), requires, (var, skill))
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Variable = tup({var},Atom)
Pattern = seq(Value)
Value = Atom u  Variable
isvar: Value -*■ Boolean
isvar(v) =  not isatom(v) and length(v) = 2 and first(v) = var
name: Variable-*Atom 
name(v) = second(v)

Fig. 10 Variables and Patterns

To match this expression against the fact 

<Wallbuilding, requires, Bricklaying)

means associating task to Wallbuilding and skill to Bricklaying. Another 
object is needed to represent a list that associates variable names to the 
atoms they match. This object is called an Association, often known as an 
association list. An operation can now be introduced which attempts to 
match a Pattern against a Fact. If it is successful it will return an object of 
type Association. This operation will have the following signature

match: Pattern x Fact-* Association

The operation match will not always succeed. We need to be able to 
distinguish those cases when match will succeed from those when it will not. 
For this purpose we introduce an operation

matches: Pattern x Fact -► Boolean

If matches(p, f) is true then match(p, f) will produce a valid Association. 
Otherwise match(p, f) is not defined.

Some new decisions are now made about the structure of a rule. The first is 
that the patterns in the ‘ifs’ part will be ordered. The second is that the ‘thens’ 
part will be also allowed to contain patterns. Thus rulel in the planning 
example will now have the following representation.

(«(var, task), requires, (var, skill)),
<(var, employee), has, (var, skill))),

{<(var, employee), may, perform, (var, task))})

These decisions are accompanied with the one that states that once a 
variable’s name is associated with an atom, that atom will replace all further 
occurrences of it. Thus each time a variable is matched to an atom, any 
variable to the right of it sharing its name will be matched to the same atom. 
So in the above example if the first pattern matches the fact

<Wallbuilding, requires, Bricklaying),
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then the second pattern will be replaced by the pattern 

<(var, employee), has, Bricklaying).

If this pattern now matches the fact 

(Reginald, has, Bricklaying)

then the pattern in the ‘thens’ part will be replaced by the pattern

(Reginald, may, perform, Wallbuilding).

These decisions suggest some revisions to the model. The operation mkrule 
now operates on a sequence of patterns, representing its ‘ifs’ part, and a set of 
patterns, representing its ‘thens’ part. The operations ifs and thens also need 
the relevant changes, so that the model now has the amended information 
shown in Figure 11.

Fig. 11 Revised model lor rules 

Fact = Pattern
Rule = tup(seq(Pattern), set(Pattern))
mkrule: seq(Pattern) x set(Pattern)-»Rule 
ifs: Rule-*seq(Pattern) 
thens: Rule-*set(Pattern)

The other revision is an extension to the model. An operation is included that 
instantiates variables in a pattern with atoms they have previously matched. 
For example this operation will instantiate the pattern

((var, employee), has, (var, skill))

with the list that associates skill with Bricklaying, and yield the pattern 

((var, employee), has, Bricklaying)

The operation is called subst (for substitute) and has the following signature

subst: Pattern x Association -*• Pattern

Notice that sometimes subst returns an expression with variables, whilst on 
occasion application of it returns one without variables. A restriction will be 
put on this design, that the use of subst on a pattern in the ‘thens’ part of the 
rule will always return a variable-free expression, in other words a fact. So we 
will not add Facts with variables to the factbase.

Now let us turn to the specification of pattern matching. This is shown 
completely in Figure 12. Here we have recorded our decision that an 
Association is a finite function mapping the Atom representing the name of a
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Association = ft (Atom, Atom)
subst: Pattern x Association -► Pattern 
subst(p, a) = <>/isvar(v) and name(v)edom(a) 

then a[name(v)] else v|v<-p>
match: Pattern x Fact-> Association
match (p, f) =  {name(p[i])-»f[i]|i<-dom(p); isvar(p[i])}
matches: Pattern x Fact -» Boolean 
matches(p, f) = 

len(p) = len(f) and 
and/{isvar(p[i]) and

andl{t[\\ = f [ j] | j «- dom(p);
isvar(p[j]) and p[i] = p[j]} 

or not isvar(p[i]) and p[i] = f[i] | i«- dom(p)}

Fig. 12 Pattern matching

variable to the Atom representing its value. The meaning of subst(p, a) is then 
clearly expressed as the construction of a Pattern (a sequence) congruent to 
the sequence p but with those variables whose value is defined by a replaced 
by the corresponding value. The definition of match(p, f) takes advantage of 
the fact that a sequence is also a finite function whose domain is a set of
integers {1...... len(p)}. Note that match(p, f) is only defined when the fact f
does match the pattern p, in which case the Association is constructed which 
maps each variable appearing in p to the corresponding value appearing in f.

All of the hard work has been left to the Boolean valued operation 
matches(p, f). In this we use a peculiar device which we write and/{...} where 
the set is a set of Boolean values. This expression is true only when all of the 
elements in the set is true. In mathematical logic such an expression might 
more conventionally be written using a universal quantifier. The body of 
matches(p, f) can be read as follows.

(i) p and f are of the same length 
and

(ii) For every element p[i] of the pattern p
either (a) p[i] is a variable and for every other occurrence p[j] of 

the same variable the same value is matched in the fact f
(f [i] =  f □])

or (b) p[i] is not a variable in which case it is identical to f[i].

Now this may not be the simplest form of expression for these three 
operations. It was not the first form we wrote down, nor the first form which 
we took to prototype. On reconsidering our first specification, which we 
thought unnecessarily complex, we discovered the specification written in 
Figure 12. We were convinced that it correctly conveyed our meaning, and so 
it proved on testing in prototype. There was a minor slip, one of the and/{...} 
operators was omitted, but this omission was easily detected and rectified. 
The specification had served its main purpose of being a precise vehicle of
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communication between us as designers -  we used it to argue about our 
intuitions, to efficiently offer alternatives to each other and eventually to 
document our decisions to those of you who will seek its exact meaning. No 
doubt we will eventually discover a simpler expression of this meaning. 
No doubt we will discover residual design flaws or nuances which we had not 
considered. If so, and particularly if these discoveries involve a third party, then 
again the specification will have served its main purpose -  to communicate.

6.3 A model and a specification for the control strategy

First, the model-step. The operations for the control strategy need to be 
revised. Recall the operations for matching rules, matchrules and matchifs. 
The operation matchifs took a factbase and a set of facts, representing the ‘ifs’ 
part of a rule, and returned a boolean stating whether or not the facts in the 
set successfully matched facts in the factbase. The operation now takes a 
factbase and a sequence of patterns as arguments and returns, not a boolean, 
but a set of association lists for the variables it has matched. It returns a set 
because the sequence of patterns can match the factbase in more than one 
way. Take, for example, rule3 shown in Figure 13 (the Planning Example), 
which has the following sequence of patterns in its ‘ifs’ part.

Fig. 13 The Planning Example

rulel ->«<(var, task), requires, (var, skill)),
<(var, employee), has, (var, skill))),

«(var, employee), may, perform, (var, task))}) 
rule2->(<<(var, employee), may, perform, (var, task)),

<(var, employee), available, on, (var, day))),
{<(var, employee), may, be, allocated, to, (var, task))
<(var, task), may, be, performed, on, (var, day))}), 

rule3-»(«(var, employee), desires, (var, skill)),
<(var, course), instructs, on, (var, skill))),

{<(var, employee), may, be, interested, in, (var, course))}) 
rule4->(<<(var, employee), may, be, interested, in, (var, course)), 

<(var, course), taught, on, (var, day)),
<(var, employee), available, on, (var, day))),

«(var, employee), may, attend, (var, course), on, (var, day))})

<<(var, employee), desires, (var, skill)),
((var, course), instructs, on, (var, skill)))

The sequence can match the following facts from the factbase shown in 
Figure 14.

< Pamela, desires, Carpentry)
(Reginald, desires, Typing)
(Barbara, desires, Therapy)
(Woodwork, instructs, on, Carpentry)
(Secretarial, instructs, on, Typing)
(Psychology, instructs, on, Therapy)
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to produce the following set of association lists:

{{employee -* Reginald, skill -+ Typing, course -* Secretarial}
{employee -+ Pamela, skill-►Carpentry, course -► Woodwork} 
{employee-+Barbara, skill -► Therapy, course -»Psychology}}

The operation matchrules previously took a factbase and a rulebase as 
arguments and returned a set of names belonging to rules that are success­
fully matched. It still takes those arguments, but now it returns with each rule 
name the set of association lists resulting from the match. In other words, it 
returns a mapping from rule names to the sets of association lists the 
corresponding rule generates.

Thus, the new signatures for the two operations are as follows:

matchrules: Factbase x Rulebase -► ff(Rulename, set(Association)) 
matchifs: Factbase x set(Pattem) -► set(Association)

Fig. 14 A sample factbase

«Barbara, has, Management), 
{Reginald, has, Carpentry),
{Reginald, has, Bricklaying), 
{Reginald, has, Painting),
{Pamela, has, Typing),
{Pamela, has, Dictation),
{Pamela, has, Wordprocessing), 
{Woodwork, instructs, on, Carpentry), 
{Woodwork, taught, on, Thursday), 
{Secretarial, instructs, on, Typing), 
{Secretarial, instructs, on, Dictation), 
{Secretarial, taught, on, Monday), 
{Secretarial, taught, on, Wednesday), 
{Psychology, instructs, on, Therapy), 
{Psychology, taught, on, Tuesday), 
{Pamela, desires, Carpentry), 
{Reginald, desires, Typing),
{Barbara, desires, Therapy),
{Clerical, requires, Typing),
{Clerical, requires, Dictation), 
{Decoration, requires, Painting), 
{Barbara, available, on, Monday), 
{Barbara, available, on, Tuesday), 
{Barbara, available, on, Wednesday), 
{Barbara, available, on, Thursday), 
{Barbara, available, on, Friday), 
{Pamela, available, on, Wednesday), 
{Pamela, available, on, Thursday), 
{Pamela, available, on, Friday), 
{Reginald, available, on, Monday), 
{Reginald, available, on, Wednesday), 
{Reginald, available, on, Friday)}
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Now that matchrules returns something different, the operation for applying 
rules must be altered. Instead of applyrules taking a set of rulenames as an 
argument, it now takes a finite function from rule names to sets of association 
lists. This implies that it must do something with the association lists. For 
each rule, it must instantiate the ‘thens’ part with each association list 
generated.

This will be achieved by defining another operation called applythens, which 
applyrules will use, which takes as arguments a set of patterns and an 
association list, and will use the association list to instantiate all the patterns 
in the set. Because the decision was made that all patterns in the ‘thens’ part 
of a rule will be fully instantiated, this operation will return a set of facts. 
Then the operation, applyrules, that calls it will also return a set of facts, 
which it did previously. The two signatures for these operations are:

applyrules: Rulebase x ff(Rulename, set(Association)) -» set(Fact) 
applythens: set(Pattern) x Association -» set(Fact)

The operation that performs the overall control retains the same signature. 
Recall that it had the following signature:

matchapply: Factbase x Rulebase -*■ Factbase

Now to the Specify step, again. The first operation to define is matchrules. It 
takes each rulename-rule pair (rn, r) from the rulebase rb and calls matchifs 
on the factbase fb, and the ‘ifs’ part of r. It is interested in successful matches 
only. It knows that a match is successful if matchifs returns a non-empty set 
of association lists. Thus, for each rule r where matchifs(fb, ifs(r)) is a non­
empty set, matchrules maps its name to that set. Its definition, then, is as 
follows:

{rn -► matchifs(fb, ifs(r))|(rn, r) <- rb;
matchifs(fb, ifs(r)) #  empty}

The next definition is that of matchifs. This is now more complicated. 
Matchifs matches every pattern in the sequence in turn. For each pattern, it 
must take into account previous associations between variables and atoms 
that have been generated whilst matching earlier patterns. For example, with 
the sequence of patterns in the ‘ifs’ part of rule3, when matching the second 
pattern matchifs must take into account the associations

{employee -*■ Reginald, skill -*• Typing}
{employee -* Pamela, skill -»Carpentry}
{employee -*• Barbara, skill -► Therapy}

that were generated whilst matching the first pattern. Consider, in detail, 
what matchifs will do when applied to this particular example:
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When matchifs matches the first pattern 

<(var, employee), desires, (var, skill))

it has no previous association lists to worry about. It must use the operations 
matches and match to match the pattern against facts in the factbase. But 
matches and match only match a pattern against one fact. Thus, another 
operation is needed.

This new operation is called matchpattem. It has the following signature and 
definition.

matchpattem: Factbase x Pattern -+ set(Association) 
matchpattern(fb, p) =  {match(p, f)|f<-fb;

matches(p, f)}

It takes a factbase fb and a pattern p, and attempts to match p to every fact f 
in fb using the operation match. When matches(p, f) is true then the 
Association computed by match(p, f) is collected. It therefore returns the set 
of association lists that represent the successful matches of p to facts in fb.

Consider now how matchifs must process the ‘ifs’ part of rule3. It applies 
matchpattern to the first pattern to produce the set

{{employee -*• Reginald, skill -»Typing},
{employee -+ Pamela, skill -*■ Carpentry),
{employee -+ Barbara, skill -+ Therapy}}

Call this set Al.

It next turns to the second pattern

<(var, course), instructs, on, (var, skill))

Now it must take into account the set Al. It must apply subst to the pattern 
with every association list in Al to produce a new pattern.

For example, if the association list

{employee-+ Reginald, skill-*Typing}

is taken, the pattern becomes

<(var, course), instructs, on, Typing))

This pattern is now matched against fb using matchpattem to produce the 
following set of association lists:
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{{course -+ Secretarial}}

In general of course this set of Associations will have more than one element. 
Each Association in this set will be added to the Association which 
instantiated the pattern. This process will be repeated for each of the 
Associations in A1 to produce the set A2. When the ‘ifs’ part of rule contains
n patterns pi...... pn we will push a set of Associations through these patterns.
Each set of Associations Ak is used to instantiate pattern p(k + 1) which is 
matched against the factbase and eventually produces the (possibly empty) 
set of Associations A(k + 1). We can express this relationship by defining a 
function

cascade: Factbase x Pattern x set(Association) ->set(Association) 

so that

A(k +  1) = cascade(fb, p(k +  1), Ak)

The definition of cascade is straight-forward:

cascade(fb, p, A) = {a© a'|a<-A ; a' <- matchpattern(fb, subst(p, a))}

Matchifs uses cascade on each of the patterns in the sequence it is matching. 
For the particular example it is being applied to, it performs the following 
steps.

It defines the set A1 to be

A1 =cascade(fb, <(var, employee), desires, (var, course)), {empty}) 

to get

A1 = {{employee -+ Reginald, skill->Typing}
{employee -+ Pamela, skill -+ Carpentry},
{employee -+ Barbara, skill -+ Therapy}}

It then defines A2 to be

A2 = cascade(fb, <(var, course), is, taught, on, (var, day)), Al) 

to get

A2 = {{employee -»Reginald, skill-+Typing, course -+ Secretarial} 
{employee -»Pamela, skill -+ Carpentry, course -> Woodwork} 
{employee -+ Barbara, skill -+ Therapy, course -+ Psychology}

In general we compute
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AO =  {empty}
A1 = cascade(fb, pi, AO)

An = cascade(fb, pn, A(n -1 ))

When we have a series of this form where, for some function f: X x Y -»Y and 
some sequence =  < x l,..., xn) and wish to compute yn defined by

yl =  f(xl, yO)

yn =  f(xn, y(n -  1))

we write

yn =  reduce(yO, A(x,y).f(x,y), < x l,..., xn».

Thus, using this notation, matchifs applied to a factbase fb and a sequence of 
patterns pq has the following definition:

matchifs(fb, pq) =  reduce){empty}, A(p,A).cascade(fb, p, A), pq)

That completes the specification for matching rules. Notice two new 
operations, cascade and matchpattem had to be introduced in order to 
specify matchifs.

Now the specification for applying rules is given. The two operations to 
specify are applyrules and applythens. Applyrules has the following defini­
tion:

Fig. 15 The revised control strategy 

matchrules: Factbase x Rulebase->ff(Rulename, Association)
matchrules(fb, rb) = {rn matchifs(fb, ifs(r))|(rn, r)«- rb; matchifs(fb, ifs(r)) ^  empty)}
matchifs: Factbase x seq(Pattern)-*set(Assoclation) 
matchifsffb, pq) = reduce){empty}, A(p,A).cascade(fb, p, A), pq)
cascade: Factbase x Pattern x set(Association)->set(Association) 
cascade(fb, p, A) = {a®a'|a<-A; a '«- matchpattern(fb, subst(p, a))}
matchpattern: Factbase x Pattern -* set(Association) 
matchpattern(fb, p) = {match(p, f) |f«—fb; matches(p, f)}
applyrules: Rulebase x ff(Rulename, set(Association)) -* set(Fact) 
applyrules(rb, rns) = union {applythens(thens(rb[rn]), a) | rn <- dom(rns): a «- rns[rn]}
applythens: set(Pattern) x Association-»set(Fact) 
applythens(ps, a) = {subst(p, a) | p <- ps}
matchapply: Factbase x Rulebase-*Factbase 
matchapply(fb, rb) =

{let rns = matchrules(fb, rb) 
if rns = empty then fb 
else let fs = applyrules(rb, rns)

if fs -  fb = empty then fb else matchapply(fbufs, rb)} _________
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applyrules(rb, ms) s
union{applythens(thens(rb[m]), a)|rn«-dom(rns); a<-rns[rn]}

It takes a rulebase rb and a finite function ms which matches rulenames to 
sets of association lists. It takes a rulebase rb and every rulename m

Fig. 16 Results tram the Prototype

{<Barbara, has, Management),
{Reginald, has. Carpentry),
<Reginald, has, Bricklaying),
{Reginald, has, Painting),
{Pamela, has. Typing),
{Pamela, has, Dictation),
{Pamela, has, Wordprocessing),
{Woodwork, instructs, on. Carpentry),
{Woodwork, taught, on, Thursday),
{Secretarial, instructs, on, Typing),
{Secretarial, instructs, on, Dictation),
{Secretarial, taught, on, Monday),
{Secretarial, taught, on, Wednesday),
{Psychology, instructs, on. Therapy),
{Psychology, taught, on, Tuesday),
{Pamela, desires, Carpentry),
{Reginald, desires. Typing),
{Barbara, desires, Therapy),
{Clerical, requires, Typing),
{Clerical, requires. Dictation),
{Decoration, requires. Painting),
{Barbara, available, on, Monday),
{Barbara, available, on, Tuesday),
{Barbara, available, on. Wednesday),
{Barbara, available, on, Thursday),
{Barbara, available, on, Friday),
{Pamela, available, on, Wednesday),
{Pamela, available, on, Thursday),
{Pamela, available, on, Friday),
{Reginald, available, on, Monday),
{Reginald, available, on, Wednesday),
{Reginald, available, on, Friday),
{Pamela, may, perform, Clerical),
{Reginald, may, perform, Decoration),
{Pamela, may, be, allocated, to, Clerical),
{Clerical, may, be, performed, on, Wednesday), 
{Clerical, may, be, performed, on, Thursday), 
{Clerical, may, be, performed, on, Friday), 
{Reginald, may, be, allocated, to, Decoration), 
{Decoration, may, be, performed, on, Monday), 
{Decoration, may, be, performed, on, Wednesday), 
{Decoration, may, be, performed, on, Friday), 
{Pamela, may, be interested, in, Woodwork), 
{Reginald, may, be, interested, in, Secretarial), 
{Barbara, may, be, interested, in, Psychology), 
{Pamela, may, attend, Woodwork, on, Thursday), 
{Reginald, may, attend, Secretarial, on, Monday), 
{Reginald, may, attend, Secretarial, on Wednesday), 
{Barbara, may, attend, Psychology, on, Tuesday)}
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contained in ms, that is every name in the domain of ms, and each 
association list a to which m  maps in ms and applies applythens to the 
‘thens’ part of the rule associated with m  in rb.

Applythens, remember, returns a single sets of facts. Thus applyrules is 
collecting a set of set of facts. But applyrules must also return just a single set 
of facts. Thus it must apply the distributed union operator to the set of sets.

Finally, applythens has the following definition

applythens(ps, a) =  {subst(p, a)|p<-ps}

It takes a set of patterns ps and applies the operation subst to each pattern in 
ps. The entire design is collected together in Figure IS.

The overall control operation matchapply is the same as in the first design. 
For completeness, it is given with the complete specification of the revised 
control strategy.

6.4 The prototype-step

We now turn the specification into a prototype and exercise it. We might set 
up the rulebase and factbase given in Figures 13 and 14. We then define

fb' =  matchapply(fb, rb)

We would expect to find that fb' is the set contained in Figure 16. Of course 
other extensive tests should be performed and were performed by us. The 
production system did behave in the way in which we intended, but when we 
played with it we became aware of some more sophisticated facilities which it 
lacked and to which we then went on to address ourselves. Neither space nor 
your patience will allow us to describe those later developments here.

5 Conclusions

We have introduced a method of software design which yields a formal 
mathematical description of the design and a demonstration of the validity of 
that specification in the form of an executable prototype. We have tried to 
convey our belief that this approach to software design can produce the 
executable prototype very rapidly. The prototype is not intended to be the 
implementation: that must be produced by more conventional means, at 
which time attention will be paid to economical use of machine resources. 
Eventually the advent of more powerful computers and more sophisticated 
methods of implementation for functional languages may change this 
situation. Nevertheless, considered as a part of the traditional software 
development process, the rapid production of a validated, formal specifica­
tion of the design, can, we believe, contribute significantly to improvements 
in software quality and to the cost of software production. Firstly the method
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concentrates on the iterative nature of design and on the need for communi­
cation of design decisions among the members of a design team. The Model- 
step encourages the team to investigate alternative designs and gives them a 
vocabulary (the names of the objects and the operations) to facilitate their 
early informal design discussions. The agreements which the team reaches at 
this stage are informal, being captured in English descriptions of the 
components of the model.

The Specify-step forces the team to make precise statements of the meaning 
of every object and every operation in the model. Typically at this stage the 
team discovers inadequacies in the design, which at the Model-step had not 
appeared. For example they discover that some cases had not been con­
sidered and some design decisions not made. They also discover that the 
understanding of each team member differs in places from the understanding 
of the others. The apparent agreement reached at the Model-step is improved 
now by the precise statement of the new agreement, reached once these 
discrepancies of understanding are resolved.

The design could of course be considered complete at this stage. All of the 
creative work is done. Experience shows us however that the kinds of 
mistakes which one traditionally makes in programming are also made in 
specification. So at the Prototype-step we turn our specification into an 
executable prototype of the software and carry out a traditional testing 
process. This invariably uncovers errors of omission and errors of commis­
sion in the specification. It forces us to an even higher level of precision and 
agreement. It also encourages us to consider alternatives, for often we 
discover that the design we have made makes certain requirements awkward 
or difficult to achieve and testing the prototype suggests improvements to the 
design over and above those suggested in the earlier stages of the method.

So iteration takes place at all stages of the design. Whether we can afford to 
carry out many repeated redesigns is very dependent upon the cost of 
applying the method. It is our belief that the effort involved in producing a 
formal specification and a prototype to validate it is modest in the context of 
the entire cost of production of a real software product. If indeed this is the 
case and if the early availability of a clear, precise formal description of the 
design reduces the traditionally high cost of late discovery of design errors in 
the software, there is some basis for our belief that a method such as that 
described here can contribute significantly to the production of low-cost, 
high-quality software. However, this is not yet the result of experimental 
evidence. The project in which we are now engaged, supported by ICL and 
by the SERC through the Alvey directorate, is attempting to industrialise this 
method, which of course involves both its application and its development.

The mathematics we have used is borrowed largely from VDM. We have 
chosen a subset of that notation which is executable as a functional program. 
We conjecture that it is powerful enough to describe any software architec­
ture with some succinctness. We could have chosen OBJ which has a similar
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executable subset8 or the specification language Z which is the first one we 
studied9. Our choice was largely governed by the availability of Jones’s 
book3 at the time we began this work.

The development described here in fact went on to other more elaborate 
designs of production rule systems. We are currently engaged in an attempt 
to combine the more elaborate of these designs with a design of a Frames 
database, partly as an exploration of potential applications for those pieces 
of software, but mainly as an experiment in building from reusable software 
components.

Our purpose here has been to encourage you to consider using our method 
in your own software design tasks and to consider the serious use of 
mathematics -as a language for capturing designs and as a language for 
communication with your co-designers. The paper was not intended as a 
tutorial. You will need to explore further the ideas introduced here and the 
best way to do that is to try to apply them yourself. You will then find that 
the additional material available in the references is able to answer the 
questions that arise and that you will be able to adapt the method to your 
own kind of problem and begin to develop it.
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Formal specification —  a simple 
example

D.A. D uce and E.V.C. Fielding
Rutherford Appleton Laboratory, Didcot, Oxfordshire

Abstract

The Graphical Kernel System (GKS) is now an ISO International 
Standard for computer graphics programming. GKS is currently de­
scribed in an informal way; this paper presents some early results from a 
project which is looking at the applicability of formal techniques to the 
problem of specifying GKS. A specification of a simplified model of GKS 
is progressively constructed using a subset of the Vienna Development 
Method (VDM) of formal specification. This illustrates how rich specific­
ations can be obtained from simpler ones. GKS concepts and VDM 
notation are described as the development proceeds.

1 Introduction

1.1 Background

Standards for computer graphics programming have lagged far behind 
standards for programming languages. De facto standards existed in program­
ming languages from the very early days, e.g. Fortran and Algol 60, and 
international standards soon followed1. However, in the graphics area a 
different pattern has emerged despite the fact that the origins of computer 
graphics can be traced back almost to the birth of digital computers. This was 
because it was not until the advent of storage tube technology in the late 
1960s that hardware costs reduced to a level at which graphics systems were 
widely affordable. In recent years the cost of raster graphics displays has 
decreased dramatically and this, coupled with the emergence of high- 
performance single user workstations, such as the ICL PERQ, is causing a 
further revolution in the role of graphics and graphical interfaces in system 
design.

A major problem facing system designers is how to write applications 
programs which are portable across a range of graphics devices without 
requiring major rewriting. This is one of the principal concerns that has 
motivated activities to develop standards for computer graphics.

The history of graphics standardisation has been recorded elsewhere2.
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GKS3 is an important landmark in the development of computer graphics, 
because it is the first system to be produced as an international standard. The 
signs are that it will be an important software standard for the future; many 
computer manufacturers, graphics equipment manufacturers and software 
houses are offering GKS implementations or GKS-based products. ICL offer 
a GKS implementation on the PERQ, which was developed in collaboration 
with Rutherford Appleton Laboratory.

1.2 GKS

GKS is a two-dimensional graphics system which aims to provide an 
interface between application programs and a wide variety of graphics 
devices. It is defined independently of programming languages, although 
standard bindings to programming languages (e.g. Fortran and Pascal) are 
being developed. GKS caters for both graphical output and graphical input. 
A full description of GKS is contained in Reference 2.

The document describing GKS is some 245 pages long. Despite strenuous 
efforts by the ISO working group and the editors of the document it is 
inevitable in a document of this size that there will be ambiguities and 
omissions; places where a knowledge of the review process is necessary to fully 
understand what is required of an implementation. The issue of validation of 
GKS implementations is a crucial area, presently being addressed. *

The need for rigorous specification of software products is gradually being 
recognised in the software industry and it is our belief that the most rigorous 
specifications possible should be given for standards, if the word ‘standard’ is 
to have any meaning.

Previous articles in this journal have looked at the application of formal 
techniques to the specification of protocols4 and databases5. Graphics is an 
area to which formal techniques have not as yet been widely applied. It is our 
belief that there is an urgent need for work in this area, to discover ways of 
presenting complex standards in a clear, readable and unambiguous form.

The work described in this paper has arisen during the early stages of a 
research project being carried out by the authors at the Rutherford Appleton 
Laboratory to explore the application of formal specification techniques to 
GKS. The project is funded by the Alvey Directorate as part of its Software 
Engineering Programme and ICL West Gorton act as the project’s Alvey 
Uncle.

The project is proceeding by looking at the application of formal techniques 
to small parts of GKS. The parts are being chosen on the basis of our 
understanding of GKS that they will be key components in any complete 
specification. The approach is thus to establish the viability of particular 
techniques and styles of using them on small systems before embarking on a 
more complete specification.
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The small system described here has been described from a different 
viewpoint6, where the emphasis was on how one might reason about the 
behaviour of a system from its specification. This paper concentrates on 
illustrating how rich specifications may be obtained from simpler ones, by 
using this example to take the reader step by step through its construction. 
Each step introduces and captures a small number of GKS concepts and 
these concepts are explained informally as the development proceeds.

The specification technique used in this paper is based on the Vienna 
Development Method (VDM)7. Only a limited subset of VDM and a 
simplified notation have been used.

2 Formal specification technique

The purpose of a specification is to state what a system is to do, not how it is 
to do it. It does this by describing the internal state of the system in an 
implementation-independent way by the use of abstract data types. An 
abstract data type is characterised only by the operations allowed over it and 
is representation-independent.

The specification technique used in this paper, VDM, is an example of the 
constructive or model-based approach, which models abstract data types in 
terms of mathematically tractable entities such as basic types (integers, reals 
etc.) and tuples, sets, lists and mappings.

The VDM specifications given in this paper consist of:

-  a model of the state
-  operations over the abstract data type comprising the state, which 

characterise it

The state definition describes the structure of the class of objects representing 
the state in terms of basic and constructed types. The operations are defined 
implicitly by predicates, which allows relations and thus nondeterminacy to 
be specified. However the operations given in this paper do not require this 
generality, and in fact reduce to functions. Operation definitions given here 
then have the general type:

State x Inputs -* State

and are described by two predicates: a precondition and a postcondition. The 
former is a predicate over State and Inputs and defines the conditions under 
which the operation produces a valid result. The latter is a predicate over 
State (the initial state), Inputs and State (the final state), which defines the 
effect of the operation.
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3.1 Basic GKS concepts

GKS provides a functional interface between an application program and a 
configuration of graphical input and output devices at a level of abstraction 
that hides the peculiarities of device hardware. It achieves device inde­
pendence by means of the concepts of abstract input, abstract output and 
abstract workstations. The concept of abstract input will not be discussed, 
but the specification attempts to capture the other two concepts.

First, what is meant by abstract output? In GKS, pictures are constructed 
from a number of basic building blocks, called output primitives, which are 
abstractions of the basic actions that a graphical output device can perform 
(e.g. drawing a line). There are six output primitives in GKS: polyline, 
polymarker, text, fill area, cell array and generalised drawing primitive 
(GDP); each of which has associated with it a set of parameters, which define 
a particular instance of the primitive. This paper considers the polyline 
primitive, which draws a connected sequence of line segments and has the co­
ordinates of its vertices as parameters.

3 The first specification

The concept of an abstract workstation in GKS is an abstraction from 
physical device hardware and maps physical output primitives to abstract 
output primitives and physical input primitives to abstract input primitives. 
It represents zero or one display surfaces and zero or more input devices as a 
configuration of abstract devices. An application program may direct output 
to more than one workstation simultaneously; however, the specification will 
aim to model only a system with a single workstation.

The application program specifies co-ordinate data in the parameters of an 
output primitive in world co-ordinates (WC), a Cartesian co-ordinate system. 
World co-ordinates are then transformed to a uniform co-ordinate system for 
all workstations, called normalised device co-ordinates (NDC) by a window to 
viewport mapping termed a normalisation transformation. A second window 
to viewport mapping, called the workstation transformation, accomplishes the 
transformation to the device co-ordinates (DC) of the display surface.

To simplify the specification, WC co-ordinate space will be ignored and it will 
be assumed that polyline co-ordinate data are supplied in NDC co-ordinates. 
It is also assumed that the single workstation transformation is fixed.

This description of GKS has extracted the basic concepts of a complex 
system. These can now be described formally to form a framework on which 
to build three more specifications which successively capture more of the 
concepts and complexity of the real system. The next section gives the formal 
specification of a system embodying the basic concepts.
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The state and operations of a formal specification of the simplified GKS 
system described above must capture the concepts of NDC space, a 
workstation and the GKS polyline function.

These concepts are captured in the GKS state by having one component 
which models the NDC picture and a second component which models the 
concept of a workstation. In this simplified system, a workstation can be 
represented simply by a model of the DC picture that is displayed on the 
display surface. The polyline function is captured by an operation, 
add_ polyline, defined over the state which gives the relationship between these 
two pictures and shows how they are constructed.

This leads to the following definition for the state of the system.

The state

3.2 The basic specification

GKS = NDC_Picture x DCpicture

NDCJicture =  list of Component 
Component = NDC Jolyline

NDC Jolyline = NDC Jo in ts  
ND CJoints = list of NDC J o in t  
NDC J o in t  =  R x R

DCJicture =  list of DCJolyline

DCJolyline = DC J o in ts  
DC J o in ts  = list of DC J o in t  
D C Joint =  R x R

States of the system are described by objects of type GKS, which is defined to 
be an ordered pair with first component of type NDCJicture and second 
component of type DCJicture.

The NDCJicture is modelled as a list of objects of type Component, which, in 
this case, is simply of type N DC Jolyline: a list of real co-ordinate pairs (the 
co-ordinates of its vertices). As the development proceeds, the need for the 
introduction of the type Component here will become apparent.

The DC picture that is displayed on the workstation is modelled similarly to 
the NDC picture, as a list of DC polylines. At the DC level, a polyline is also 
described as a list of real co-ordinate pairs. The type DCJolyline captures 
the essential features of a polyline displayed on a workstation.

The use of the data type list rather than set in the definitions of both the NDC
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and DC pictures allows the order in which primitives are created to be 
retained for use in their display. The GKS document does not actually 
prescribe an order of display of primitives, but most implementations do 
preserve order of creation in order of display.

The definition of the add_polyline operation to model the creation and 
display of polyline output primitives is now given.

The operation

let mk_gks(ndcp, dcp) =  gks in

add^polyline: GKS x NDC_Points -*■ GKS 
add_polyline(gks, pts, gks') = 
post ndcp' =  mkjidc_polyline{pts) : ndcp a  

dcp' =  mk_dc_polyline(t(pts)) :: dcp

t: NDCJPoints -* DC J o in ts

The let clause proceeding the operation definition holds over all subsequent 
operation definitions and serves to name the initial state and its components. 
The names of the final state and its components which result from the 
operation are obtained by decorating the names in this let clause with a prime 
('). A second let clause which does exactly this has been omitted for simplicity. 
The convention followed is that type names have capitalised initial letters and 
the names of instances are the lower case equivalents of their types.

The first line of the operation definition is its signature, which defines types of 
the arguments and the result of the operation. The second line simply names 
the objects of the types given in the signature. Thus gks, the initial state, is of 
type GKS, the argument pts is of type N DC J o in ts  (a list of NDC co-ordinate 
pairs), and the result of the operation, gks', the final state, is also of type GKS.

The precondition has been omitted as it is simply true, i.e. all values of inputs 
and initial state will produce a valid result. The postcondition describes the 
effect of the operation. It states that as a polyline is created, an object of type 
NDCJolyline is formed (by mk_ndc_polyline{pts)) and is added to the list, 
ndcp, representing the NDC picture by the cons (*::’) operator. A corre­
sponding polyline is displayed in DC space by transforming the list of NDC 
co-ordinates to a list of DC co-ordinates by means of the function t and then 
forming an object of type DCJolyline, which is added similarly to the DC 
picture. The details of the function t are not of interest here, and fco a 
definition of t is not given.

That concludes the first specification.
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4.1 GKS segment storage

The next concept to be introduced is one which allows an application some 
means of structuring a picture. The kind of structuring often required is the 
ability to define a graphical object, for example, a tree by a sequence of 
polyline primitives, and the ability to reuse this definition. GKS allows 
output primitives to be grouped together into units termed segments which 
are stored, conceptually at the NDC level, and which may be manipulated in 
certain ways as a single entity. Segments may not be nested.

So pictures are now constructed from both segments and primitives outside 
segments. The specification will concern itself with capturing this picture 
structure and the creation and storage of segments, but not with any further 
segment manipulations.

This enhanced system is now specified.

4.2 The specification with segments

The concepts that now need to be modelled in the state are: the picture at 
NDC level, the segment store and the picture at DC level. The polyline 
function is captured as before by an add^polyline operation and a new 
operation, add_segment, is required to capture the GKS functions concerned 
with collecting primitives into segments.

The add_segment operation may be considered to be an abstraction of the 
following sequence of GKS functions:

CREATE SEGMENT^ • •)
POLYLINE(- • •)

POLYLINE(- • •)

CLOSE SEGMENT
The new state and operation definitions are now given.
The state

GKS = NDC_Picture x DC_Picture x Segment_Store

NDC_Picture =  list of Component 
Component = N DC _Polyline] Segment

Segment = list of NDC_Polyline

Segment_Store = list of Segment

DC_Picture =  list of DC_Polyline

4 The second specification
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The state GKS has now become a triple with the addition of a third 
component to model the segment store.

The NDC picture is still modelled as a list of Component but now a 
Component may be either of type NDC polyline, as before, or of type Segment 
(T denotes alternation). This allows pictures in NDC space to be constructed 
from both primitives outside segments and segments.

Segments are modelled, as might be expected, by lists of primitives and 
segment store is modelled as a list of segments.

The definitions of the types comprising NDC_Polyline and DCJPolyline have 
not changed from the previous specification and so have not been repeated. 
Notice that although the definition of the NDC picture has changed, that of 
the DC picture has not. Segment storage is only operative in the NDC 
picture; the picture displayed on the workstation has, conceptually, no 
segment structure.

The definitions of the operations over this new state require a new let clause 
which also names the additional component of the state which models the 
segment store. Apart from the fact that it operates over the new state, the 
definition of the add_polyline operation remains unchanged and so has not 
been repeated here. So, only the definition of the new operation add_segment 
needs to be given. The function t also remains as it was before.

The operations

let mk_gks(ndcp, dcp, ss) =  gks in

add_segment: GKS x Segment -*• GKS 
add_segment(gks, s, gks') = 
post ndcp’ = s : ; ndcp a  

ss' = s :: ss a  
dcp' =  to_dc(s) || dcp

to_dc\ Segment -*■ DC_Picture 
to_dc(s) = if s =  < > then <  >

else let mkjndc_polyline(pts) =  hd s in
mk_dc_polyline(t(pts)) :: to_dc{tl s)

The function to_dc generates the DC picture corresponding to the segment 
given as argument. It constructs a list of DC polylines by traversing the list of 
NDC polylines comprising the segment and generating the corresponding 
DC polylines by transforming the co-ordinates to DC co-ordinates.

ICL Technical Journal May 1986 103



The postcondition of add_segment states that the segment s is simply added to 
the lists representing the NDC picture and the segment store. A flattening 
and loss of the segment structure occurs in adding the DC equivalent of the 
segment to the DC picture as the list of DC polylines resulting from the 
application of the tojlc  function is appended by the operator ‘||’ to the 
previously displayed picture.

That concludes the second specification.

5 The third specification

5.1 Appearance of primitives

So far, nothing has been said about the appearance (line style, colour etc.) of 
primitives displayed on workstations.

In GKS the appearance of a primitive displayed on a workstation is 
determined by its parameters and additional data termed aspects. The aspects 
of a polyline are: linetype, which in GKS may be solid, broken, dashed-dotted 
or implementation-dependent; linewidth scale factor, which is applied to the 
nominal linewidth provided by the workstation to give a value which is then 
mapped to the nearest available linewidth; and polyline colour index.

In the following specifications, linewidth scale factor will be simplified to be 
just linewidth and it will be assumed that the workstation supports any 
linetype or linewidth values requested as the GKS mechanism for mapping 
requested values onto available values will not be specified. Only the two 
aspects of linetype and linewidth will be looked at, and colour will not be 
considered.

There are two basic schemes in GKS for specifying aspects, termed individual 
specification and bundled specification. In this paper only bundled specific­
ation is considered. Individual specification and the relation between bundled 
and individual specification is addressed in Reference 8.

In the bundled mode of specifying polyline aspects, the values of all the 
aspects are determined by a single attribute, called the polyline index. A 
polyline index defines a position in a table, the polyline bundle table, each 
entry in which is termed a bundle and specifies the values for each of the 
aspects. The bundle corresponding to a particular polyline index is termed 
the representation of the index. There is an operation which sets the value of 
polyline index modally, as well as an operation to set the representation of a 
bundle index.

When a polyline is created, the current value of the polyline index is bound to 
the primitive and cannot subsequently be changed. Bundles are bound to 
primitives when they are displayed. In GKS each workstation has its own 
polyline bundle table, which allows the application to control the appearance
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of polylines created with the same polyline index independently on each 
workstation on which they are displayed, using the capabilities of the 
workstation.

5.2 The specification including appearance

The models of the NDC picture, DC picture and segment store are 
unchanged except for the descriptions of polylines in NDC and DC space. 
The GKS state is extended by an additional component to model the polyline 
bundle table. The concept of a workstation in this system is now being 
represented by two state components: the DC picture and the polyline bundle 
table.

The operations over this state are again add_polyline and add_segment, and 
there is also a new operation, set_polyline_representation, which associates a 
bundle representation with a polyline index in the polyline bundle table.

Both the add_polyline and add_segment operations are abstractions of an 
amalgamation of GKS functions. In GKS, polyline index is set modally, but 
in the specification given here the appropriate polyline indices are provided 
as arguments to the add_polyline and add_segment operations (in the latter 
case bound to the polylines in the list of NDC polylines given as argument). 
Thus add_polyline is equivalent to the sequence of GKS functions:

SET POLYLINE INDEX(- • •) 
POLYLINE^ • •)

and add_segment is equivalent to the sequence of GKS functions:

CREATE SEGMENTS )
SET POLYLINE INDEX( )
POLYLINE(- )

SET POLYLINE INDEX( • )
POLYLINE^ • •)

CLOSE SEGMENT

The new definitions of the state and the operations are given below.

The state GKS is now a tuple consisting of four components. The structure of 
the NDC and DC pictures and of the segment store is unchanged. However, 
the definition of NDC_Polyline has been enhanced by the addition of 
Polylinejndex, which will be bound to the polyline at the time of its creation. 
DC JPolyline has been enhanced by the addition of Bundle, which captures the 
concept of a bundle being bound to the primitive at display time.
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The data type used to model the polyline bundle table is a mapping from a 
polyline index to a bundle (a linetype, linewidth pair). A mapping is a finite 
function in which the pairing of domain and range elements is constructed 
explicitly.

The state

GKS = NDC_Picture x DC_Picture x Segment_Store
x Polyline_Bundle_Table

NDC_Picture = list of Component 
Component =  NDC_Polyline | Segment 
Segment = list of NDClPolyline

NDC_Polyline =  NDC_Points x Polylinejndex 
PolylineJndex = N 
Segmentjitore = list of Segment

DC_Picture = list of DC_Polyline 
DC_Polyline = DC_Points x Bundle

Bundle = Linetype x Linewidth 
Linetype = N 
Linewidth = R

Polyline_Bundle_Table =  map Polylinejndex to Bundle

The definitions of the operations are given below.

The precondition of add_polyline demands that a representation has been 
defined for the polyline index supplied as an argument. In the add^olyline 
operation, an NDC polyline is now formed from the NDC co-ordinate list 
and polyline index supplied as arguments; thus the polyline index is bound to 
the polyline at the time of its creation. The corresponding DC polyline is 
formed from the transformed NDC co-ordinates and the bundle obtained by 
applying the polyline bundle table mapping to the polyline index (denoted by 
pbt(pi)). This achieves the effect of binding the bundle to the polyline at the 
time of its display.

The add_segment operation has been extended by the addition of a precon­
dition stating that all the polyline indices in the segment supplied as an 
argument must be defined. The function tojlc  again traverses a segment, 
generating the corresponding list of DC polylines by not only transforming 
the co-ordinates of the vertices, but also by binding in the representation of 
each polyline index obtained from the polyline bundle table.

The set_polyline_representation operation describes the addition to the 
polyline bundle table of the new representation specified for the polyline
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The operations

let mk_gks(ndcp, dcp, ss, pbt) =  gks in

add_polyline: GKS x NDC^Points x Polylinejndex -+ GKS 
add_polyline(gks, pts, pi, gks') =  
pre pi e dom pbt
post ndcp' =  mk_ndc_polyline(pts, pi) :: ndcp a  

dcp' = mkJLc_polyline(t(pts), pbt(pi)) :: dcp

t: NDCJPoints -+ DC_Points

add_segment: GKS x Segment -+ GKS 
add_segment(gks, s, gks') =
pre V pi s.t. mk_jidc_polyline{pts, pi) e elems s . p ie  dom pbt 
post ndcp' =  s :: ndcp a  

ss' = s :: ss a  

dcp' =  to_dc(s, pbt) || dcp

tojlc: Segment x Polyline_Bundle_Table -+ DC_Picture 
to_dc(s, pbt) = if s = < > then < >

else let mkjidc__polyline(pts, pi) =  hd s in
mk_dc_polyline(t(pts), pbt(pi)) :: to_dc(t\ s, pbt)

set_polyline_representation: GKS x Polylinejndex x Linetype 
x Linewidth-*GKS

set_polylinejepresentation(gks, pi, It, Iw, gks') = 
post pbf =  pbt + [pi -+ mk_bundle(lt, iw)]

index. The operator ‘ + ’ adds polylinejndex -+ mkjjundle{linetype, line- 
width) to the mapping, overriding any previous value associated with 
polylinejndex.

That concludes the third specification.

6 The fourth specification

6.1 Dynamic behaviour of aspects

It has been noted above that once a polyline index value has been bound to a 
primitive, the value bound cannot be changed. In the previous specification it 
was seen that the representation of a polyline index (i.e. the bundle associated 
with the index in the polyline bundle table) can be changed. From the post­
condition of set_polyline_representation given in Section 5.2, it is seen that this 
operation leaves both the DC and NDC pictures unchanged. In other words,
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changing a representation of a polyline index does not affect the appearance 
of primitives already created with that index.

GKS does allow changing a representation to have a retrospective effect. If a 
representation of a polyline index is changed, the appearance of polylines 
already created with that polyline index may also be changed to the new 
representation. GKS admits that some workstations may be able to perform 
such changes dynamically (for example changing a colour table) while others 
may need to redraw the picture to effect the changes as in the case of a pen 
plotter. GKS allows the application to control when such redrawing 
(regeneration) takes place. As the only stored representation of the picture in 
GKS is that stored in the segment store, such regeneration is performed using 
the contents of the segment store.

For each picture change that can potentially require a regeneration, each 
workstation has a flag to indicate whether the change may be performed 
immediately (IMM) or requires a regeneration (IRG). When a regeneration is 
required, another flag -  implicit regeneration mode -  is consulted. This flag 
can be set by the application and has two possible values:

ALLOWED -  regeneration will be performed immediately

SUPPRESSED -  regenerations will be postponed until one of the 
functions REDRAW ALL SEGMENTS ON 
WORKSTATION, UPDATE WORKSTATION 
or CLOSE WORKSTATION is invoked.

The system described below is rather more rigidly defined than GKS 
prescribes, in that here a regeneration is performed in all circumstances where 
the GKS document does not state anything stronger than that it is allowed.

6.2 The full specification

The state is once again extended, this time by the addition of two flags to 
control the effects of polyline bundle representation changes, and when any 
regeneration occurs. The workstation concept is now being captured by four 
components of the state representing: the DC picture, the polyline bundle 
table, the bundle modification flag and the implicit regeneration mode.

One new operation, redraw_all_segments is defined to represent all the GKS 
functions which update the picture displayed on the workstation. The 
definitions of add_polyline and add_segment remain unchanged, but that of 
set^>olyline_representation must now capture the effects of changing a 
polyline bundle representation on polylines already displayed on the 
workstation.
The complete state and operation definitions are given below.
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The state

GKS = NDC_Picture x DCJicture  x SegmentJStore 
x PolylineJundleTable
x BundleJAodificationJlag x Implicit Regeneration

NDC_Picture = list of Component 
Component = N  DCJolyline \ Segment 
Segment =  list of NDCJolyline

NDC_Polyline = NDC_Points x Polylinejndex 
ND CJoints =  list of NDC J o in t  
NDC J o in t  =  R x R

Polyline_Index = N

Segment_Store =  list of Segment

DC Jic ture  =  list of DCJolyline
DCJolyline =  DC J o in ts  x Bundle x Polylinejndex

DC Jo in ts  = list of DC J o in t  
DC J o in t  =  R x R

Bundle =  Linetype x Linewidth 
Linetype = N 
Linewidth = R

PolylineJundle_Table = map Polylinejndex to Bundle

Bundle ̂ Modification J  lag =  {IRG, I MM} 
Implicitjegeneration = {ALLOWED, SUPPRESSED}

The only changes to the previous state are the addition of the two flags: 
bundle modification flag and implicit regeneration mode. The definition of 
DC Jolyline  has also been extended to include the polyline index for reasons 
that will become clear in the next section.

The function regenerate traverses the list representing the segment store, 
using the function to_dc to generate from the NDC polylines in each segment 
the corresponding DC polylines, with both polyline indices and bundles 
bound. The function recreate describes the effect of an immediate change to a 
DC picture by effectively rebinding the bundles to the DC polylines in the DC 
picture. It uses the polyline index value now contained in each DC polyline to 
look up the new bundle representation in the polyline bundle table mapping. 
This is done without reference to the segment store.
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The operations

let mk_gks(ndcp, dcp, ss, pbt, bmf, ir) = gks in

add_polyline: GKS x NDC_Points x Polyline_Jndex —> GKS 
add^polyline(gks, pts, pi, gks') = 
pre pi 6 dom pbt
post ndcp' = mkjidc_polyline(pts, pi) :: ndcp a  

dcp' =  mk_dc_polyline(t(pts), pbt{pi), p i):: dcp

t: ND CJoints -+ DC Jo in ts

add_segment: GKS x Segment -* GKS 
add_segment(gks, s, gks') =
pre V pi s.t. mk_ndc_polyline(pts, pi) e elems s . p ie  dom pbt 
post ndcp' = s :: ndcp a  ss' = s :: ss a  dcp' = to_dc{s, pbt) || dcp

to_dc: Segment x Polyline_Bundle_Table -* DC_Picture 
to_dc(s, pbt) =  if s = <  > then <  >

else let mkjndc_polyline(pts, pi) = hd s in
mk__dc_polyline(t(pts), pbt(pi), p i):: to_dc{tl s, pbt)

redraw_all_segments: GKS -+ GKS 
redraw_all_segments(gks, gks') = 
post dcp' = regenerate(ss, pbt)

regenerate: Segment_Store x Polyline_Bundle_Table -* DC_Picture 
regenerate(ss, pbt) = if ss =  < > then < >

else to_dc(hd ss, pbt) || regenerate^ ss, pbt)

set_polylinerepresentation: GKS x Polyline_Jndex
x Linetype x Linewidth -* GKS 

set_polyline_representation(gks, pi, It, Iw, gks') = 
post pbt' = pbt + [pi -» mk_bundle{lt, iw)] a  

(bmf = IM M  => dcp' = recreate{dcp, pbt')) a  

(bmf = IRG a  ir = ALLOWED => dcp' = regenerated, pbt')) a  

(bmf = IRG a  ir =  SUPPRESSED => dcp' = dcp)

recreate: DC_Picture x Polyline_Bundle_Table -* DC_Picture 
recreate(dcp, pbt) = if dcp = < > then < >

else let mk_jlc_polyline(dpts, b, pi) = hd dcp in 
mk_Jc_polyline(dpts, pbt(pi), pi)
; : recreate(tl dcp, pbt)
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6.3 The effect of a regeneration

As a simple illustration of the ability of formal specification to explain the 
consequences of design decisions, consider the following.

If an implicit regeneration is performed, the postcondition of 
set_polyline_representation says that:

dc^picture' =  regenerate(segment_store, polyline_bundle_table')

From the postconditions of add_polyline and add_segment it is seen that only 
add_segment stores primitives in segment store. Thus the effect of a regener­
ation is to remove all primitives outside segments from the picture displayed 
on the workstation in the process of applying the new polyline bundle table to 
change the representations of displayed polylines. This is indeed what 
happens in GKS.

7 Conclusions

This paper has shown how the specification of a complex system can be built 
up in stages and how the resulting specification can be used to deduce 
behavioural properties from the system. This latter point is further developed 
in References 6 and 8.
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Abstract

The paper reports the effect of using inspections during the early 
phases of software production on two developments which were part 
of the ICL VME operating system. The results indicated that detailed 
design inspections improved the quality of code, both by removing 
design errors and by the fact that errors introduced subsequent to 
design were found at earlier stages in the software testing phase.

Design inspections involved only a small proportion of the total 
development effort (6-9%) but accounted for a substantial proportion 
(40-50%) of all the recorded errors. The cost of finding errors in terms 
of man-hours was also small (1-2 to 1-6) compared to an observed cost 
of 8-47 man-hours per error for errors found by code execution in one 
of the developments.

1 Introduction

Since 1981, the production of ICL’s VME Operating System has been 
instrumented by a semi-automated data collection and analysis scheme1. 
One of the aims of this scheme was to develop the means to evaluate the 
effectiveness of VME production methods. A previous paper2 has described 
how the initial analyses indicated that VME error screening methods were 
allowing a relatively high proportion of design errors compared with code 
errors to reach our in-house services and our customers. In addition results 
indicated a relationship between the type of error found and the method of 
error screening used, with some evidence that non-execution techniques were 
important for screening design errors. The conclusion of that work was that 
Inspection methods3, which are non-execution methods and apply equally to
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the design and coding phases of software production, would potentially 
address the problems identified.

The advantage of the data collection and analysis scheme is that it may be 
used to evaluate the effect of change as well as indicate potential problems. 
This implies that the introduction of Inspections into VME production 
methods can and should be evaluated. This paper, therefore, reports the 
effect of using Inspection methods, by examining two VME developments on 
which the techniques were used.

2 Inspections

Although it was intended to use the method of Formal Inspection developed 
by Michael Fagan of IBM3, there were a number of difficulties due to a lack 
of proper training in the technique and a number of compromises were made.

The original idea behind Inspections was that of applying process manage­
ment techniques to software development. Fagan pointed out that successful 
management requires planning, measurement and control, and that software 
management would be improved by incorporating these elements into a 
defined development process comprising a series of operations with associ­
ated exit criteria. Inspections, themselves, were intended to allow the 
completeness and correctness of the software product to be assessed during 
the early stages of development, and thus to form part of a process of 
determining whether exit criteria have been achieved.

The Inspection process involves a group of people checking some product 
documents (e.g. design documents, code listings, test plans, etc.) at specific 
points in the development process in order to find any errors efficiently and 
economically.

Fagan recommends an inspection team take on the following roles:

Moderator

Designer

Coder/implementor

Tester

who manages the inspection process. He or she is 
responsible for scheduling the inspection meeting, 
circulating inspection material, chairing the inspec­
tion meeting, reporting inspection results and follow­
ing up any identified rework. A moderator must be a 
competent software engineer but need not be a techni­
cal expert on the software being inspected, 
the person responsible for producing the design of the 
software.
the person responsible for translating the design into 
code.
the person responsible for writing and/or executing 
test cases or otherwise testing the product of the 
designer and coder.
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If the coder is also the designer and tester, he or she should act as the 
designer and other implementors should be asked to act as coder and tester.

The processes involved in Inspections are:

-  Overview (for design inspections, not code inspections)
-  Preparation
-  Inspection
-  Rework
-  Follow-up.

Each of these processes will now be described in more detail.

Overview

The overall area being addressed by the software and the specific area 
currently due for Inspection are described by the designer. Design documen­
tation should be circulated to participants after the overview.

Preparation

Each person should study the inspection material on their own in order to 
understand its logic and intent. Fagan recommends that inspection teams 
should study the ranked distribution of error types found by recent 
inspections, and checklists of error detection guidelines.

Inspection

A ‘reader’ is chosen by the moderator to describe how the next phase of 
development will progress given the current phase. Thus, at a design 
inspection, the coder will describe how the design will be implemented, and 
will paraphrase the design, covering each piece of logic and each branch at 
least once.

The objective of the Inspection is to find errors not to provide solutions. 
Once an error is recognised it is noted by the moderator, its type is classified 
and its severity identified. Within one day of the inspection, the moderator 
should produce a written report of the inspection and its findings.

Rework

All errors or problems noted in the inspection report need to be resolved by 
the designer or coder/implementor.

Follow-up

It is the responsibility of the moderator to ensure all errors and problems are 
resolved and to schedule re-inspections if necessary.
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There were three main differences in the VME study compared with Fagan’s 
procedures:

(i) the number of people present at each Inspection varied: for high level 
design inspections (i.e. inspections of the overall subsystem design 
and interface modules), more people attended than the recom­
mended number; for detailed design inspections (i.e. inspections of 
the internal design of a module) fewer people attended than recom­
mended; and code inspections were often a dry checking exercise (i.e. 
code-reading exercise) performed by an individual other than the 
coder,

(ii) the moderator and other participants were people involved in the 
development itself,

(iii) there were no suitable checklists available.

The procedures that were adopted were:

(i) for all design inspections a moderator was present to control the 
inspection and record all the identified problems,

(ii) the inspections were directed to identifying problems not solving 
them,

(iii) the inspections were kept to approximately two hours elapsed per 
session,

(iv) each problem was assigned to an actionee to solve and the modera­
tor was responsible for ensuring that a solution was found,

(v) inspection reports were normally kept and copies sent to project 
managers,

(vi) errors were classified for later analysis.

3 Development 1

3.1 Background

This development was concerned with a new tape management facility. It 
was a moderately complex development. The staff involved consisted of a 
team leader/designer who was very experienced in tape management prob­
lems and a number of other implementors and testers who were not 
experienced in such problems although they were all experienced in VME 
development.

3.2 The design inspection process

The development was subject to one high level design inspection which found 
30 problems. The 73 constituent programs making up the development were 
identified and some of those programs were then given detailed design 
inspections.
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The programs not given detailed design inspections were those that the team 
leader believed were particularly simple or well understood. There were 30 
such programs.

The remaining 43 programs were all given detailed design inspections. 
This took a total of 9 sessions and found 213 problems. The time 
attributed to inspection sessions was 95 hours. Allowing two hours 
preparation time for every hour spent in inspections would increase the 
time to 285 hours which means that each error took an estimated 117 
man hours to identify or the error screening rate was 085 errors per hour. 
In addition since the total time devoted to the development was 4830 
hours, the proportion of the total development effort devoted to inspec­
tions was only 6%.

3.3 Evaluation of the Inspection process

The fact that this development was split into two groups of programs, one 
group given detailed design inspections and one group not given detailed 
design inspections allows the effect of the inspections to be gauged by 
looking at the subsequent error history of the two groups. Table 1 shows this 
in terms of a breakdown of the error rate at various stages of the 
development process.

It is clear from Table 1 that the team leaders’ assessment of the programs not 
given detailed design inspections was correct. The lower overall error rate 
indicates that they were indeed simpler. However, it is interesting to note that 
although the programs given detailed design inspections did have a larger 
proportion of subsequent errors, the errors were found earlier in the

Table 1 The error rates for development 1 subsequent to the design phase

Programs given 
detailed design 
inspections

Programs not 
given detailed 
design inspection

Number of programs 43 30
Size of programs 8653 4681
(lines of code)

Subsequent error 
rate per 100 lines: 
Due to dry checking 0-99 0-53
Due to code execution 0-80 0-68
testing
Due to use on in-house 0-20 0-28
services
Found by customers 0-01 004

Overall 200 1-54
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subsequent software development cycle. Thus, by the time the software had 
been in the field 9 months, the programs given detailed design inspection 
revealed 1 error in 8653 lines of code compared with the programs not given 
detailed design inspections which revealed 2 errors in 4681 lines. The 
difference in the subsequent distribution of errors is statistically significant 
(p < 0 05) using a chi-squared test.

4 Development 2

4.1 Background

This development was to provide an automatic filestore management system 
for backups and archiving. This was a complex development. The staff 
involved were all experienced in VME design and implementation but had 
limited experience in the problem area.

4.2 The design inspection process

In order to complete the high level design inspection of this development, 15 
inspection sessions were required which found 197 errors. Not all detailed 
design inspection sessions were properly recorded but for those for which 
records remained, 21 sessions found 307 errors.

The total time attributed to these inspection sessions was 265 man hours. 
Allowing 2 hours preparation time for every hour spent in inspections would 
increase the time to 795 man hours. This would imply that each error took 
1-58 man hours to find, or the error screening rate was 0-633 errors per hour.

Detailed design inspection records were not available for 31% of the 
subsequent code. On a pro-rata basis this implies that an additional 117 man 
hours were spent on such inspections. The total time devoted to this 
development was 10164 man hours which implies that design inspections 
(detailed and high level) accounted for approximately 9% of the development 
time.

4.3 Evaluation of the inspection process

Since this development did not have any internal comparisons, the only 
method of evaluating the effect of the inspections is to compare the 
development with overall trends.

In terms of overall productivity the development involved the production of 
39 000 lines of code at an overall rate of 144 lines per man week in an elapsed 
time of 24-5 months. Compared with the Rome Air Development Centre 
statistics for US developments quoted by Putnam9, the productivity 
achieved for this development was 30% better than average although the 
time scale was slightly longer than average.
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Table 2 Distribution of post-design errors

Type of error % Errors found in 
development 2 
subsequent to 
design

% Errors found in 
all VME 
developments 
between Jan 1983 
and June 1983

Dry checking and/or 57-5 37-6
code inspection
Dry execution testing 38-4 51-2
Use on in-house services 4-1 11-2

In terms of subsequent error occurrence, the development can be compared 
with the overall average for VME developments during a comparable time 
period as shown in Table 2. This indicates that the post-design errors are 
being found earlier in the subsequent development cycle compared with 
VME overall. This confirms the trend observed for development 1.

Table 3 shows the type of error found after design. The difference between the 
percentages of errors classified as ‘other’ is probably due to the fact that these 
include source clearance errors and ripple errors which are more likely to 
occur in old code (as much of VME is) than in newly developed code and 
development 2 involved the development of an entirely new subsystem. The 
differences of particular interest are the decrease in design errors and the 
increase in interface errors compared with overall VME trends. The decrease 
in design errors is hopefully attributable to the design inspections. However, 
the increase in interface errors needs further explanation and will be 
discussed later.

The relationship between program size and number of post-design errors is 
shown in Fig. 1. This shows a fairly linear relationship which accounts for a 
statistically significant (p <  0 001) 54% of the variation. The existence of a 
linear-type relationship has been observed for VME developments pre­
viously3 and indicates that the design inspection process does not radically 
change the nature of post-design implementation. The existence of the 
relationship allows programs with particularly high or particularly low error 
rates to be identified. Using an ad hoc procedure the diagram shown in Fig. 2 
was used to separate the programs into 3 groups. The group of programs

Table 3 Type of post-design errors

Type of error % Errors found in 
development 2

% Errors found in 
all VME 
development

Software interface 5-8 21
Design error 81 13-3
Code error 810 70-3
Other 51 14-2
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Size of program (lines of code)
Fig. 1 Scatter diagram of the number of errors against program size for development 2

Fig. 2 Classification of programs based on the relationships between program size and 
number of errors for development 2
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below the thick semi-diagonal lines was that which had a high error rate. 
This division identifies a group of 20 high error rate programs which 
accounted for 9-6% of the code and 26% of the post-design errors, and a 
group of 212 low error rate programs which accounted for 18-4% of the code 
and only 4% of the post-design errors.

The programs which revealed a high error rate were primarily those that 
interface with another VME subsystem developed by another production 
team which played an essential support role for development 2. These 
programs were responsible for the large number of interface problems noted 
earlier. The reason why these problems were not revealed during the design 
process is probably due to the fact that no representative from the support 
subsystem attended the inspections. This emphasises the need for all affected 
areas to be represented in inspections and indicates why for high level 
inspections the experience within VME has been for more people than 
needed in Fagan’s recommended number.

Finally, the cost effectiveness of inspections may be considered by comparing 
the cost of finding an error during the design inspections (1*58 man hours) 
with the cost of funding an error during execution testing and in-house use. 
Test and support effort amounted to 2854-6 man hours and execution testing 
and in-house use revealed a total of 337 errors. Thus the cost of finding errors 
later in the development cycle is approximately 8-47 man hours which is 
more than 5 times more costly.

5 Comparison with other results

Fagan6 has stated that within IBM, Inspections find 80% of errors that are 
observed prior to system release. For VME the results are a bit more difficult 
to gauge because the VME code inspections were much more like dry 
checking than inspections. However, considering all non-execution tech­
niques together (design inspections plus code inspection and dry checking), 
these accounted for 73% and 75% of the recorded errors of development 1 
and development 2 respectively while the design inspections alone accounted 
for 50% and 41% respectively of the recorded errors of each development.

The rates of the high level and detailed design inspections are shown in 
Table 4. These are much faster than the rates recommended by Fagan6 which 
are 300 and 135 lines per elapsed hour for what Fagan calls a design 
‘overview’ and design inspection.

Table 4 Rate of design inspections in equivalent lines of code per elapsed hour

High level design Detailed design

Development 1 520 480
Development 2 650 640
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Thus, although the rate of the design Inspections was too fast by IBM 
standards, if the results of dry checking and code inspections are included, 
the error screening rate of non-execution methods is close to IBM standards 
(i.e. code execution techniques which logically reveal code errors efficiently).

6 Discussion

The results described in this paper both support the contention that 
Inspections are an efficient and inexpensive method of error screening, and 
confirm the diagnosis presented in a previous paper2 of some of the problems 
associated with VME code production and how they might be solved.

The effect of the design inspections seems to be not only to find design errors 
but also to allow subsequent errors to be found earlier in the development 
process. If the process of system production is considered in the manner 
suggested by Small and Faulkner7, as a process of design decomposition 
followed by system integration, then errors are introduced into each level in 
the system decomposition process and unless the errors are removed at each 
stage they propagate throught the subsequent levels. In these terms, the 
results of Inspections could be explained as a process of error screening 
relevant to the particular stage of system decomposition which prevents the 
propagation of errors to lower stages in the decomposition process. This 
ensures that the errors introduced subsequently are those which may be 
found efficiently by subsequent screening techniques (i.e. code execution 
techniques which logically reveal code errors efficiently).

A complementary model of software errors8 considers the type of errors 
found during each stage of system integration and suggests that the type of 
error found is related to an equivalent stage of decomposition phase. So that 
code errors are found during unit testing, detailed design errors are found 
during subsystem testing, high level design errors are found during system 
testing, and requirements errors are found after release to customers. Boehm9 
reports TRW findings which suggest that it costs between 20 and 50 times 
more to deal with errors in a released product compared with errors during 
the requirements and high level design phases of development. Thus, 
Inspections should provide means of screening the most expensive errors. 
Obviously it is impossible to assess objectively at which stage an error would 
have been found subsequently (unless it is left in and tracked) but the 
subjective feeling of those involved with Inspections was that they were 
finding errors which would otherwise have reached customers. This has 
encouraged the introduction of Inspections even earlier in the software 
development process (i.e. requirements definition).
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Abstract

Digital facsimile is an increasingly important component in office 
automation. Techniques for the compression of bi-level scanned 
image data are vital to the efficient storage, retrieval and transmis­
sion of office documents. Part I of this paper reviews recent devel­
opments and evaluates various existing techniques. The review is by 
no means exhaustive, but covers what the authors consider to be 
significant developments in the efficient compression of black and 
white images for an office automation environment. In Part II, a 
scheme for the compression of typewritten and printed documents 
is described. It incorporates a new pattern-matching algorithm 
which can handle a variety of styles and sizes of text more efficiently 
than existing methods.

PART I -  EXISTING COMPRESSION TECHNIQUES 

1 Introduction

Digital facsimile is an increasingly important aspect of office automation. 
Equipment is widely available which can scan and digitize a black and white 
document at a resolution of 200 dots per inch (7.7 dots per mm.). At this 
resolution, an A4-size document generates about 0.5 Mbytes of image data. 
Compression is therefore of great importance for the efficient storage, 
retrieval and transmission of office documents.

There are three stages in the digitization of a document. First, a scanner 
samples the intensity of the document at regularly spaced picture elements 
(pels). Next, the intensity is quantised to two levels (black and white), thereby 
reducing the image to a binary matrix where 1 =  black and 0 = white. 
Finally, this data may be compressed by eliminating redundant information 
in the image. This paper is concerned with techniques for the third stage, 
image data compression.
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2 Exact codes and standards

Most of the compression schemes reported before 1980 share two properties. 
They are ‘exact’ codes, in the sense that the original image data can be 
reconstructed exactly from the compressed code. They also exploit only local 
redundancy, with the advantage that very little of the image data (typically 
one or two scan lines) are used at any one time in the generation of the code, 
and hence the memory requirement is low in both the encoding and decoding 
equipment. Examples of such schemes are run-length coding1, block coding2, 
line-difference coding3 and predictive coding4.

By 1978, the proliferation of such schemes was such that the CCITT study 
group XIV was set up to achieve compatibility between group 3 facsimile 
apparatus. In 1980, the group recommended a one-dimensional run-length 
code, known as Modified Huffman code (MHC), and a two-dimensional line- 
difference code known as the Modified READ Code (MRC), which forms an 
optional extension to MHC5. Other exact codes, based on two-dimensional 
predictive coding, achieve slightly higher compression than MRC6,7, but the 
latter algorithm is preferred because of its relative simplicity.

Since the recommended codes are intended for transmission over noise- 
prone public switched telephone networks, they include redundant bits 
which limit the extent of image corruption in the event of a transmission 
error. In a later study the CCITT proposed a two-dimensional code for 
noise-free environments (MRC-II), which is equivalent to MRC but 
without the redundant bits for error protection8. The three CCITT- 
recommended codes (MHC, MRC and MRC-II) can compress a typical 
A4 business letter, sampled at 200 pels per inch, by factors of 14, 20 and 
28 respectively5,8.

3 Preprocessing

Many existing schemes improve on the compression of exact codes by 
introducing a preprocessing step, in which some non-essential information 
in the image is irreversibly removed. The main purpose of preprocessing is 
to increase the local redundancy in the image data, without seriously 
distorting the reconstructed image, enabling an exact code to perform 
more efficiently.

3.1 Sm oothing

One type of preprocessing involves removing isolated black pels and 
smoothing the edges of black objects. This can often actually improve the 
visual quality of the image, by eliminating spurious effects due to noise 
introduced during digitization.

Smoothing is normally achieved by a set of two-dimensional templates 
(masks) of a given size, to which the digitized image is forced to conform.
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Each mask is laid over the original image data (source) in every possible 
position, and the value of the key element (normally the central element of 
the mask) is changed in the image whenever a one-to-one match exists 
between the rest of the mask and the source. Masks of various sizes are used 
in reported preprocessing algorithms, typically 3 x 29, 3 x 310 and 4 x 411. A 
typical set of 3 x 3 smoothing masks is shown in Fig. 1, and their effect on a 
sample of image data is shown in Fig. 2.

The improvement in compression as a result of noise removal or smoothing 
depends very much on the information content and noise content of the 
image. Improvements between 15% and 50% in compression have been 
reported as a result of applying preprocessing masks prior to two-dimen­
sional exact coding9,12.

(a) Masks in which the central pel is changed to white.
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Fig. 1 Masks used for Majority Logic Smoothing10
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Fig. 2 Effect on smoothing of samples of typewritten and handwritten documents: (a) 
Original image, (b) Smoothed image.
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3.2 Thinning

A number of existing compression methods1314 code only the centre lines, or 
skeletons, of black objects, achieving compression 50—90% higher than 
MRC. The image can no longer be reconstructed exactly, but a close 
approximation is obtainable when the black lines in the original image are of 
roughly uniform thickness. Many handwritten and hand-sketched images 
and some technical drawings have this property.

Of the many thinning algorithms reported in the literature, a typical 
approach used in the context of compression is that described by Judd13. 
Edge pels of black objects are removed by the iterative application of a set of 
3 x 3  masks, subject to certain constraints. The algorithm consists of four 
subcycles, which remove separately the left, right, top and bottom edges of 
black objects. The masks used in the left-edge subcycle are shown in Fig. 3. If 
a 3 x 3 neighbourhood matches the edge-detection mask, the central black 
pel is changed to white, provided that the neighbourhood does not also 
match any of the three constraining masks. The masks used in the other three 
subcycles are rotations of the masks in Fig. 3 through multiples of 90 degrees. 
The constraining masks are included to preserve connectivity in black 
objects and to prevent the erosion of line-ends.

X X X
o 1 1
X X X

E dge-  
D e te c t  i on 
M a s k

1 o X
o 1 1
X X X
N.

X X X
o 1 1
1 o X

o o o
o 1 1
o o o

-------------v ----------
Const raining 
Masks

0 = white 1 = black x = don’t care

o 1 o
o 1 X
o 1 o

y

(central pel is changed to white, masks for other edges are rotations of these 
through multiples of 90 degrees)

Fig. 3 Thinning masks used by Judd13, left hand edges only

Unlike smoothing, the effect of thinning is to introduce some distortion in the 
image. This is usually compensated by a post-processing step at the decoder, 
which restores the thickness of objects in the reconstructed image close to 
that of the original. In Judd’s scheme13, for example, black objects are 
arbitrarily thickened by one pel on the left and top edges. The effects of 
Judd’s thinning and thickening algorithms on a sample of image data are 
shown in Fig. 4.

4 Shape coding methods

All the methods described so far have used only local redundancy in 
achieving compression. Another class of methods (‘shape’ coding) exploits a 
higher level of redundancy by describing the shapes of objects and lines in an
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Fig. 4 Effect of thinning on samples of typewritten and handwritten documents: (a) original 
image, (b) thinned image, (c) thinned image after thickening

image. Such methods are more costly in terms of computation and memory, 
since they operate on the whole image, or at least a significant part of it, at a 
time. However, shape coding can achieve high compression for certain types 
of image, such as handwriting and technical drawings.

4.1 Chain coding

Some coding schemes employ a chain-coding of the edges or centre lines of 
black objects. Essentially, chain-coding is an efficient way of representing a 
sequence of adjacent points, in which the position of a point is expressed as a 
direction relative to the previous point. In an image digitized over a 
rectangular grid, there are only eight possible directions between adjacent 
points. Hence three bits per point are required for all but the first point in 
any chain. A variation of this is differential chain-coding, in which a point 
position is expressed as a change of direction (‘turn’) relative to the preceding 
two points. Since the ‘straight-ahead’ turn (no change of direction) has a 
considerably higher probability than other turns, a variable-length coding of 
the turns can achieve greater compression than straight-forward chain­
coding.

Differential chain-coding has been applied to the contours (edges) in a black- 
and-white image15. By reconstructing the contours and filling the spaces 
between them, the original digitized image can be exactly reproduced from 
the contour code. However, this method achieves, on average, slightly lower 
compression than other exact algorithms such as predictive coding16.
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Judd’s scheme13 applies chain-coding to the centre-lines of black objects, 
which are obtained by thinning. This approach achieves compression 
typically 50% higher than any exact coding method. However, entropy 
measurements suggests that a 2-D predictive code applied to the thinned 
image (in place of chain coding) would generate even higher compression17. 
Furthermore, the approach is only suitable for images where the black lines 
are of approximately uniform thickness.

4.2 Vector/arc approximation

Lines in an image can often be approximated by a sequence of straight lines 
and circular arcs. This approach is established for preprocessing in syntactic 
optical character recognition, and for automatic input to CAD systems. It 
also has potential value in the compression of an image which can be well 
approximated by vectors and arcs of sufficient length.

One such scheme is described by Pavlidis18. The image is first thinned, and 
lines in each thinned object are tracked and fitted by straight-line segments 
and circular arcs. Short segments which are unconnected at one end are 
assumed to be either noise or serifs in characters, and are eliminated. The 
remaining segments are then encoded as vectors and arcs, which generate 
fewer bits than exact coding.

The effect of this vector/arc approximation is seen in Fig. 5. There is some 
visible distortion in the drawing, but the characters are still readable. The 
technique is clearly unsuited to lines of non-uniform thickness and solid

Fig. 5 Effect of thinning and vector/arc approximation on a sample of an engineering 
drawing. Reproduced from Pavlidis1’
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black areas. No direct comparison has been made between the compression 
of this and exact-coding methods.
A vector coding which preserves line-width is described by Ramachandran20. 
It has a low memory requirement but still presents the image in a form 
suitable for analysis and editing. Compression reported for a circuit diagram 
is lower than exact coding of the same image reported elsewhere6, but there is 
still scope for optimization of the vector code20.

5 Pattern-matching methods

It has been known for some time that for documents which are predomi­
nately machine-generated text (typed or printed), much greater compression 
is achievable by exploiting the redundancy due to the repetition of symbol 
patterns21. Pattern-matching methods for bilevel image data compression 
fall into two categories:

5.1 Character recognition

A very efficient approach to text image compression uses optical character 
recognition (OCR). Each character extracted from the document is compared 
with a pre-programmed library of standard character descriptions, using 
statistical or structural OCR techniques22. If a match is found, the character 
is represented in the code by its ASCII code (or equivalent). A small amount 
of additional code is required to convey details of the word, line and 
paragraph spacing in the document, but the compression factor is extremely 
high-typically six times that of MRC-II, and greater than 100 for most 
typewritten business documents. Furthermore, the code is in a form which 
lends itself to further text processing if required.

Unfortunately, reported implementations of such schemes23-24 are re­
stricted to a small set of styles and sizes of printed text, or require training 
specifically to each set of character patterns they are able to handle. They 
also need to be specifically tailored to any mathematical symbols or foreign 
alphabets. Existing character-recognition schemes are not therefore well 
suited to general purpose facsimile coding, where there may be no control 
over character fonts in the input documents.

5.2 Symbol pattern-matching

A more general-purpose approach is symbol pattern-matching21, where 
compression is achieved by encoding only the first occurrence of each distinct 
symbol pattern in the image. The encoder maintains a copy of the image and 
a library of symbol patterns in its memory. Initially this library is empty. 
Each symbol encountered in the image data is extracted and deleted from the 
memorized image. The symbol pattern is compared with those in the library 
by template matching, i.e. superimposing two symbols and thresholding the 
error pattern generated where the patterns differ. If no match is found, the 
current symbol is added to the symbol library.
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For each symbol extracted, its location in the image and its identification are 
encoded. The identification of a symbol is either its position in the symbol 
library or an indication that it is to be added to the library. For each new 
library symbol, a full description must also be encoded, consisting of the size 
and exact pattern of the symbol. The decoder maintains an adaptive symbol 
library identical to that constructed by the encoder.

Since the library of symbol descriptions is constructed from the source 
document itself, symbol pattern-matching is theoretically capable of hand­
ling any size or font of character and many different alphabets. A number of 
practical implementations of this idea have been reported23,25,26, and the 
compression factors obtained are two to three times greater than that given 
by MRC coding. However, the efficiency of such schemes has been found to 
be considerably less when the text is small or the digitization noise is high31. 
An improvement in this area is presented in the latter half of this paper.

6 Hybrid coding schem es

The shape-coding and pattern-matching methods described above can 
achieve much greater compression than the more established exact coding 
algorithms. However, none of these methods is suitable for all types of 
document images. For an arbitrary document, the best compression can only 
be obtained by a hybrid scheme which adaptively selects the most suitable of 
a variety of coding methods.

It can also be beneficial to combine two or more methods in the coding of a 
single document. A business letter, for example, contains not only typewritten 
text, for which pattern-matching is ideally suited, but also a company logo and a 
signature, both of which are better suited to exact coding or shape coding 
methods. Documents may also contain areas of halftone (grey-scale simulated 
by black dots), for which specialised coding methods are available27. Ideally, an 
adaptive hybrid scheme should be capable of applying a separate appropriate 
coding method to each class of imagery in the document.

This is partly achieved by the CSM scheme23, which combines exact coding and 
symbol pattern-matching within the same document. Symbols are defined to be 
connected black objects entirely contained within a fixed-sized moveable 
window. Any such objects are removed from the image and coded by pattern- 
matching. The remainder of the image is termed the ‘residue’ and is encoded 
exactly, using the MRC algorithm. A variation on this approach incorporates in 
addition character recognition24. Symbols are compared first with a prepro­
grammed library of standard character fonts. Recognised characters are ASCII 
coded, while unrecognised characters and the residue are handled as in the CSM 
scheme. This approach works reasonably well for documents which are 
predominantly machine-generated text, but can be inefficient for other images, 
since the symbol-extraction algorithm is applied, often needlessly, over the 
entire image. It also performs poorly over areas of halftone and other forms of 
shading, where the symbol pattern library can rapidly fill up with many 
‘symbols’ which are in fact random patterns of lines or connected dots.

130 ICL Technical Journal May 1986



These problems can be overcome by scanning the data prior to processing, 
measuring basic properties which classify the image into text, graphics, half­
tone, etc., and performing a field segmention of the image into regions of 
different classes if necessary. Techniques for segmenting a document into text 
and graphics have been developed for document reading and analysis 
systems28,29. A fusing process locates contiguous blocks in the image, which 
are either lines of text or regions of graphics. The classification of each block 
is determined from its shape and basic run-length statistics.

A method for identifying regions of halftone has been implemented in an 
experimental facsimile workstation which combines two different exact 
coding algorithms30. The classification is determined, in a prescanning of the 
document, by evaluation of joint value and slope distributions of 4-bit 
quantized samples. There is still a need for a scheme which recognises 
halftone directly from binarized image data.

7 Discussion

As hardware costs have decreased, compression techniques of increasing 
complexity have become technically feasible. Sophisticated algorithms have 
been described with the potential for compression several times that 
achievable by established techniques. However, their practical implementa­
tion is not so well documented.

To bring this order of compression into the automatic office, it is necessary to 
generalise the new techniques to handle arbitrary input documents. This 
involves further development of the vector and arc approximation approach. 
Symbol pattern-matching must be extended to handle a wider variety of text 
sizes. Comprehensive and reliable segmentation algorithms are also required 
for the realisation of fully adaptive hydrid systems.

PART II -  NEW PATTERN-MATCHING ALGORITHM FOR TEXT 
IMAGE COMPRESSION

1 Introduction

Since the majority of office documents are in printed form, symbol pattern- 
matching is an important technique in the automation of the office. The code 
generated includes an exact representation of each library symbol pattern, 
and compression is highly dependent on the final size of the library. Ideally, 
the library should contain exactly one pattern for each distinct symbol in the 
document. In practice, the library is usually much larger, containing many 
superfluous entries due to incorrect isolation and inefficient matching.

A good matching algorithm is therefore crucial not only to the accuracy but 
also to the compression efficiency of a symbol pattern-matching scheme. The 
matching criterion must be tight enough to prevent mismatches, while able 
to recognise matches between identical symbols distorted by digitization
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noise. In a general purpose text image coding system, the algorithm should 
perform well over a wide range of styles and sizes of text.

In the following, existing matching algorithms are described and their 
suitability for general-purpose text image compression is investigated. A new 
algorithm is formulated which exhibits an improved overall performance.

2 Existing matching algorithms

The matching algorithms in various reported schemes23,25,26 make use of the 
Weighted Exclusive-Or (WXOr) error map of the two compared patterns. 
The WXOr map is obtained from the unweighted error (XOr) map by 
replacing each error with the error count in the surrounding 3 x 3  neigh­
bourhood. In this way, greater weight is given to clustered errors which occur 
with distinct symbol patterns (Fig. 6a) than to sparse errors which can occur 
along the common boundary of similar symbol patterns (Fig. 6b).

In the Pattern Matching and Substitution (PMS) scheme25, a matching 
decision is determined from the WXOr map using only local criteria. A 
match is rejected if either (1) any error pel has a weight of 5 or more, or (2) 
any error pel has both (i) two neighbouring error pels which are not adjacent 
(to each other) and (ii) a 3 x 3 neighbourhood in which all 9 pels are the same 
colour in one of the two symbol patterns. Rule 1 rejects most distinct 
patterns, but rule 2 is included for pairs of distinct symbols whose difference 
is manifested only in narrow^ strokes or gaps.

The Combined Symbol Matching (CSM) scheme23 determines a match by 
comparing the sum of the weighted errors (the WXOr count) against a sliding 
scale of threshold values related to symbol size. The scale of threshold values 
is not quoted, but is said to be a non-linear function of the symbol’s black pel 
count, obtained from an empirically determined look-up table. Another 
scheme26 quotes threshold values for the CSM algorithm applied to text 
images sampled at half the vertical resolution (100 pels per inch). These 
values are not appropriate to images sampled at full resolution.

The threshold function must therefore be determined experimentally. This 
can be achieved by plotting the WXOr count against the joint black pel 
count, for pairs of similar and distinct symbol patterns in a training sample. 
The optimum threshold scale is an increasing function which eliminates 
matching errors (i.e. distinct symbol pairs resulting in a WXOr count within 
the threshold) and minimizes rejections (i.e. similar symbol pairs resulting in 
a WXOf count outside the threshold) in the training sample.

Both the PMS and CSM algorithms perform satisfactorily for samples of 10- 
pitch typewritten text. Other sizes and styles of text lead to problems, such as 
the example illustrated in Fig. 7. The PMS algorithm rejects a match between 
the pair of ‘n’s, but declares one between the ‘a’ and ‘s’. The CSM algorithm 
with a threshold low enough to reject the ‘a’ and ‘s’ would also reject the two 
‘n’s, whose WXOr count is higher.
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The poor performance of the existing algorithms in this example is partly due 
to the thinness of the characters. Both symbol patterns in Fig. 7b have 
vertical strokes just one pel in thickness, but the separation of the vertical 
strokes differs by one pel. It is not possible to superimpose these two patterns 
such that both vertical strokes coincide. The shift of one vertical stroke 
between the two patterns results in a vertical band two pels thick in the error 
map. This concentration of error pels results in artificially high weighted 
errors, causing both the PMS and CSM algorithms to fail in this instance.

Another problem with the CSM algorithm is illustrated in Fig. 8. The error 
count for the two ‘m’s is higher than that for the bolder ‘a’ and ‘s’, even 
though the latter pair have a higher black-pel count. Thus an increasing 
threshold function which distinguishes the ‘a’ from the ‘s’ would reject a 
match between the two ‘m’s. This arises because thicker characters inevitably 
have high black pel counts, but do not necessarily result in higher WXOr 
counts.

3 Proposed matching algorithm

The proposed algorithm31,32, which is intended to overcome the disadvan­
tages of the existing algorithms mentioned above, is similar to the CSM 
algorithm, but with two major modifications.

Firstly, the weighted errors are evaluated in a different way, which reduces 
the problem encountered with thin characters. The two symbol patterns are 
superimposed, and elements which differ are indicated in an error map. Each 
error element is then tagged in one of two ways, according to which of the 
two symbol patterns has a black pel in the corresponding position. Examples 
of these error maps are given in Fig. 9, where *+’ denotes pels which are 
black in the first symbol but not the second, and ‘—’ denotes error pels which 
are black in the second symbol but not the first.

In a computer, this tagged error map is more conveniently represented as 
two primary matrices: E l, in which ‘l ’s represent ‘+ ’ errors, and E2, in which 
‘l ’s represent ‘—’ errors. If the two symbol patterns are held in binary 
matrices SI and S2, having identical dimensions, then El and E2 can be 
obtained using bitwise logical operations, from

El =  SI & S2 
E2 = S1 & S2

Hence the tagged error map defined in this way is called an And-Not map.

The weighted And-Not (WAN) map is then obtained as follows. Each ‘—’ 
error is given a weight equal to the number of ‘—’ errors in a 3 x 3 
neighbourhood centred on the element in question. Similarly, each ‘ +  ’ error 
is weighted according to the number of neighbouring ‘+ ’ errors. Elements 
not tagged in the And-Not map are given zero weight. The WAN errors are
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Fig. 9 Error maps used in the WAN algorithm: (a) distinct symbol pair, (b) similar symbol pair



then summed over the whole map, resulting in the WAN count. As in the 
CSM algorithm, the matching decision is then made by comparing the 
weighted error count against an empirically determined sliding scale of 
threshold values.

The essential effect of this modification is that, in the WAN map, two 
neighbouring error elements only increase each other’s weights if both are 
due to black pels in the same symbol pattern. Consequently, for a cluster of 
errors which arises spuriously, perhaps due to a small shift in a thin stroke as 
in Figs. 7b and 9b, the weighted errors are often halved. On the other hand, 
in distinct symbol patterns where the errors in a cluster tend to be due to 
black pels in the same symbol (e.g. Figs. 7a and 9a), the WAN count is not 
significantly lower than the WXOr count. The WAN count is clearly a more 
consistent measurement of mismatch in these examples.

The second modification tackles the problem associated with thicker charac­
ters. In the CSM algorithm, the threshold scale is an increasing function of 
the symbol’s black pel count. Because thicker characters have high black pel 
counts in proportion to their size, a threshold scale which correctly rejects a 
match between thick characters such as in Fig. 8a often results in the 
rejection of a pair of similar symbols with a lower black pel count, such as in 
Fig. 8b.

In the modified algorithm, the threshold scale is a function of an estimate of 
the symbol perimeter length, rather than of the black pel count. The 
reasoning behind this is that when two similar symbol patterns are superim­
posed, the matching errors are randomly distributed along the inner and 
outer perimeters of the symbols. It therefore follows that a threshold scale 
which is an increasing function of the perimeter length will recognise a 
greater proportion of similar symbol pairs.

Although the direct measurement of a symbol’s perimeter length from its 
binary pattern is computationally intractable, a simple estimate is obtain­
able from four easily measurable parameters of the symbol pattern. These 
are the overall width and height of the symbol pattern, and the numbers 
of internal white runs (i.e. bounded at both ends by black pels) in (a) a 
horizontal scan, and (b) a vertical scan, of the symbol pattern. Fig. 10 
shows that twice the sum of these four parameters is equal to the number 
of exposed faces of black edge pels, which is a good approximation of the 
perimeter length.

For the symbol pairs in Figs. 8a and 8b the estimated perimeter lengths 
obtained by this method are 186 and 260 respectively, i.e. higher for the 
similar symbols than for the distinct symbols. Thus a threshold scale, which 
is an increasing function of the symbol perimeter estimate, can be chosen so 
that the WAN algorithm gives correct matching decisions for both symbol 
pairs in this example.
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Fig. 10 Evaluation of symbol perimeter estimate

Symbol perimeter estimate
= number of exposed sides of black edge pels 
= 2 x width + 2 x height 

+ 2 x number of horizontal internal white runs 
+ 2 x number of vertical internal white runs 

= 2x 1 5  + 2 x 1 5  + 2 x 5  + 2x21 
=  112

4 Simulation

To test and evaluate the modified algorithm, a symbol matching scheme is 
simulated in Pascal on an ICL Perq 1 computer running under POS. The 
various activities in the simulation are flowcharted in Fig. 11 and are 
described in detail below. The simulation follows the CSM scheme23 in all 
but two stages of the process. One exception is the crucial matching stage, 
where the PMS algorithm25 and the proposed WAN algorithm are imple­
mented as optional alternatives to CSM. The other exception is the symbol 
coding stage, where the codes used by Johnsen et al25 have proved more 
efficient.

(a) Symbol extraction

For the purposes of extraction from the image, a symbol is defined to be any 
connected black object which can be entirely contained within a square 
window whose sides measure 32 pels (or about 4 mm). Each symbol is 
isolated by boundary-following and copied to another part of memory. The 
symbol is then deleted from the memorized image by performing a logical 
Exclusive-OR with the copy of the symbol. The copy is then passed to the 
screening and matching processes.

(b) Candidate screening

In order to minimize the number of applications of the time-consuming 
matching process, a number of basic features of the current symbol are
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BEGIN

END

Fig. 11 Flowchart for the simulated symbol pattern-matching and coding scheme

measured and compared with those of the library symbols. Only library 
symbols whose features are sufficiently close to those of the current symbol 
are selected for matching. These are then sorted so that the symbols most 
likely to result in a successful match are processed first.

The features used for screening are, conveniently, the same four parameters 
used to estimate the symbol perimeter length as described above. Two
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symbols are considered likely candidates for matching if their widths and 
heights differ by no more than 2 pels, and their numbers of internal white 
runs in either direction differ by no more than 5.

(c) Symbol matching

Those library symbols which pass the screening process are matched against the 
candidate symbol by the following procedure: first the two patterns are 
registered against one another so that the distance betweeh the corresponding 
block edges does not exceed 1 pel. There may be as few as one or as many as nine 
ways of doing this, depending on how similar are the block dimensions of the 
two symbols. The most central registration of the two patterns is taken first.

For each registration, the selected algorithm (PMS, CSM or WAN) is 
applied to determine whether the two patterns match. If a match is found and 
there are other registrations of the patterns still to be tried, the unweighted 
error count is noted for the matching position. The full matching algorithm 
will not be applied again to that pair of symbols unless a lower unweighted 
error count is found. If no match is identified, the algorithm is repeated for all 
possible registrations of the two symbols.

(d) Library maintenance

When no matching symbol is identified, the current symbol is added to the 
library. The library contains the full bit-map representation of each symbol 
pattern, up to a maximum of 192 K bits, together with a table giving the bit 
address of each pattern, its screening features, and the number of times it has 
been used, up to a maximum of 512 symbols. If either of these limits is 
reached, one or more of the least used library symbols is deleted to make 
room for each new symbol.

(e) Symbol coding

Variable length codewords are used to define the starting position and 
library identification of each symbol, with special codes for ‘new symbol’, 
‘same symbol’, and ‘no more symbols (on current scan line)’. The patterns of 
new library symbols are encoded by a variation of the MRC algorithm.

(f) Residue coding

The residual image, from which all symbols have been deleted, is encoded 
using the MRC-II algorithm8.

5 Results

5.1 Training

In order to establish a threshold function which could be globally applied to 
a wide range of sizes and styles of text, both the CSM and WAN algorithms
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were trained on a special set of input data. The training set consists of 
samples of six different character sets, with symbol widths between 1 and 
4 mm, and in several different fonts.

Fig. 12 Threshold function plots obtained from training sample, for: (a) the CSM algorithm, 
(b) the WAN algorithm
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Using the screening algorithm described above, pairs of symbol patterns 
were selected from the training set, and the minimum WXOr and WAN 
counts for each pair were calculated. The combined black-pel and symbol- 
perimeter counts for each pair were also obtained. A threshold function for 
the CSM algorithm was obtained from a plot of the WXOr count against the 
combined black-pel count (Fig. 12a). A threshold function for the WAN 
algorithm was obtained from a plot of the WAN count against the combined 
symbol perimeter estimate (Fig. 12b). In both cases the threshold function 
was the highest curve which could be drawn below all of the distinct symbol 
pair counts.

Figs 12a and 12b clearly show that the WAN threshold cuts off fewer of the 
similar symbol pairs than the CSM threshold. The overall rejection rates for 
the training sample (i.e. the proportions of similar symbol pairs not 
recognised by each matching algorithm) are 36% for CSM and 24% for 
WAN.

5.2 Compression

To evaluate the performance of the new algorithm, the simulation was 
applied to two A4-size documents shown in Fig. 13. The DRAFT document 
consists of typical typewritten symbols averaging 2 mm in width, together 
with some graphics. The SUBSID document consists of ‘san serif text, in 
three different sizes and also of varying boldness. Coding of these documents 
was simulated, using first the MRC-II exact coding algorithm, and then by 
symbol matching, using in turn the PMS, CSM and WAN algorithms.

Table 1 Compression results

Document Matching
algorithm

Symbols in 
library

Compression
factor

Matching
errors

DRAFT MRC-II _ 18.7 -
typewritten
1161 symbols PMS 101 55.7 0
some graphics

CSM 202 43.5 0

WAN 124 54.4 0

SUBSID MRC-II _ 13.0 0
san serif
various text 

sizes
PMS 199 45.1 16

(0.51%)

2865 symbols CSM 351 36.4 2
(0.07%)

WAN 270 41.3 1
(0.03%)
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SwHrSSSA 
mto#s,aaBsi,un> 
Muilu«e 
••H IMS#

9MW|.niH
sw»eeCe».w»«#a 
mnnv) *******



The results of this are summarised in Table 1. The highest compression is 
generated by the PMS algorithm, but this causes an unacceptable number of 
matching errors in the SUBSID document. The CSM algorithm, using the 
globally trained threshold function, results in a much lower error rate, but at 
the cost of a large increase in library size and hence a considerable reduction 
in compression. Only the proposed WAN algorithm succeeds in almost 
eliminating matching errors without seriously reducing the compression in 
either example. In both examples, compression roughly three times that of 
MRC-II is achieved using the new algorithm.

6 Discussion

Although further testing is needed to prove the effectiveness of the new 
algorithm, the preliminary results indicate a clear improvement over existing 
matching algorithms applied to the compression of arbitrary printed docu­
ments. The extremely low error rates observed would be acceptable in many 
applications. If greater accuracy were required, the error rate could be 
reduced further by training the algorithm on a larger sample.
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Message structure as a determinant of 
message processing system structure

D.J. Ackerm an
STC Network Systems Division, Kidsgrove, Staffordshire

Abstract

The paper is concerned with nested, or layered, multiplexing systems of 
the kind represented by layers 1-4 of the ISO Reference Model for Open 
Systems Interconnection. It shows that for these systems a direct 
relationship exists between the structure of a system and that of the 
messages requiring to be operated on by the system. It is shown that this 
relationship holds not only for the system as a whole but also for the 
individual layers and sub-layers of a system considered in relation to the 
structure of the layer and sub-layer protocol information fields that go to 
make up the messages.

It also shows that the generally accepted notion that structure is an 
expensive luxury is valid only because the importance of the relationship 
between system structure and message structure is not generally 
recognised. Given that these structures are defined to be mutually 
supporting, then the system attributes that come with structure can be 
had with a cost bonus.

1 Introduction

Previous articles1,2 have appeared in this journal dealing with the ICL 
Information Processing Architecture, IPA, and its relationship to the ISO 
reference model for Open Systems Interconnection (OSI)3. This article is 
concerned with layers 1-4 of the OSI model, the functions of which 
collectively go to make up the IPA Telecommunications Function. More 
specifically, it is concerned with the layering principle as it relates to these 
layers and the effects on real implementations of its adoption as a modelling 
principle.

The ISO reference model standard gives the following assurances with respect 
to the relationship of the model to real-world systems:

-  its scope covers only the externally visible behaviour of open systems;
-  this behaviour is determined by the layer protocols to which an open 

system is required to conform;
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-  it is concerned to define the internal structure of an entirely abstract open 
system;

-  the model is implementation independent in that it does not constrain the 
internal structure of a real open system.

However, in spite of these assurances, it is quite clearly the case that only 
pathologically deformed Open Systems will fail to reflect, in a real sense, the 
structure of the model. Only by reflecting its structure can the layer entities of 
a real open system hope to exhibit the property of layer-independence 
fundamental to the model. It is also clear that, no matter how a conforming 
real open system may be implemented, the messages requiring to be 
generated and processed by the system will have structures that reflect that of 
the model, not that of the system if different from the model. It may therefore 
be taken that underlying the assurances given by the ISO standard is the 
basic assumption that no necessary relationship exists between the internal 
structure'of a real open system and the structure of the information the 
system is called upon to process.

This paper challenges the validity of this assumption. It takes the example of 
a simple nested, or multilayered, multiplexing system implementing an 
extended form of Balanced High-Level Data Link Control (HDLC) pro­
cedures4 at all layers. It explores in increasing levels of detail the relationships 
between the structure of the system and the structure of the messages 
operated on by the system and considers the effects on implementation of 
imposing message structures that do not reflect a hypothesised system 
structure. It is shown that implementation structure and message structure 
must be seen as two faces of the same coin; that if they are not so seen, then, in 
practice, the second will impress itself on the first.

At the final level of detail the idealised HDLC message header structures 
(formats) needed to support an idealised HDLC protocol machine structure 
are identified. These are compared with the formats that were chosen in 
practice for ISO standardisation. It is again shown how the machine structure 
implicit in the standardised formats imposes itself on the structure of an 
implementation; this precluding all possibility of realising in practice an 
ideally structured and least-cost implementation.

It is believed that the conclusions of the paper as they arise out of a case study 
of HDLC procedures are equally applicable to most other OSI Layer 1-4 
protocols that have been, or are in the course of being, developed.

2 Multiplexing System

Fig. 1 illustrates the system to be considered.

In this illustration P, Q, R, etc. represent physically separate multiplex- 
ing/demultiplexing elements. Each element at one end of the system has its 
complementary peer element at the other. All peer elements commu­
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nicate with one another using extended and idealised Balanced Mode HDLC 
procedures. The protocol extension is that needed to facilitate multiplexing of 
higher layer links through the use of the address (A) field of the standard 
HDLC Frame Format5.

loyer 2 ---------------------- ►
layer 3 ------------------------

Fig. 1 The example multiplexing system

This system will now be considered, first at the level of structural detail 
illustrated in Fig. 1, and then at progressive levels of magnification of the 
structure of the individual multiplexing/demultiplexing elements.

3 Stage 1: the unmagnifled system

Systems of the type of Fig. 1 can be constructed without difficulty to exhibit 
the properties of layer and lateral independence. These properties are defined 
for the purposes of this paper as follows:

-  layer independence: the property enabling peer entities at any layer to be 
designed without knowledge of the details of the protocols used to effect 
communication between peer entities at higher and lower layers.

This is the fundamental property ascribed to the layers of the ISO 
reference model.

-  lateral independence: the property enabling pairs of corresponding peer 
entities at any one layer to be designed without knowledge of the details of 
the protocols used to effect communication between other pairs of 
corresponding peer entities at the same layer.

This property is not dealt with in any great degree of detail by the 
reference model but is one of equal significance.

When the system of Fig. 1 is constructed to exhibit both properties, the 
structure of the messages transmitted between ends of the system, as they
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might be monitored on the communications media, will be as illustrated in 
Fig. 2.

This is the message structure as it will naturally, and necessarily, be generated 
by one end for processing at the other. It has the property of exactly reflecting 
the structures, taken as a whole, of the sending and receiving ends of the 
multiplexing system.

A, :C,

media message

layer 1 user  data

A j t C j  / A  3 : C3

■»--layer (n-1) user d a ta --* "  

An :Cn I user data

Fig. 2 Media message format corresponding to Fig. 1 system
Key: AX:C„ = address and control fields of the HDLC frame format operated at layer x

n = a variable dependent on the level of entry of user data into the system

Suppose now that the following variant on the message structure were to be 
imposed a priori as a system design constraint:

Ai/A2/A3/ . . . I K -  C J C J C J  . . .  /Cn/data

On the face of it this might be seen as something of a rationalisation of the 
Fig. 2 format and as such a highly desirable constraint to impose. If imposed, 
then it could be handled in either of the following ways:

1 by introducing message format (syntax) transformation functions at the 
two ends of the line as the lowest level functional element in the structure; or

2 by embodying a knowledge of the message format in all layers.

The consequences of 1 are:

-  a necessary increase in message processing cost in proportion to the 
complexity of the transformation function; the transformation given 
above as an example being a relatively trivial one compared with those 
actually encountered in practice;

-  a necessary loss of the attributes of layer and lateral independence.

The loss in the second case follows from the fact that a knowledge of both the 
structure of the system and that of the message must be designed into the 
transformation function. No element in the structure can be modified without 
reference to this function. It becomes the key element binding the structure. 
All other elements become subservient to it. It becomes: the seat of systems 
intelligence; the fount of all knowledge; the governing element of the structure 
without which no other element can function.
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The consequences of 2 are even more undesirable. Because systems intelli­
gence is distributed it becomes, in each of its parts, unchangeable without 
reference to the sum of its parts. The resulting structure becomes no more 
modular, in the sense that entities can be modified without impact on other 
entities, than a monolith. The system becomes structured only in the sense 
that it is made up of bits and pieces. Fig. 1, intended as a representation of both 
the physical and functional structures of the system, becomes truly represen­
tative only of the first. It misleadingly represents the second, the most 
important elements of which are those exercising systems intelligence and 
management responsibility; the complexity of the second being magnified by 
the fact of distribution of the first.

It is reasonable to conclude that a failure to realise the attributes of layer and 
lateral independence will, in practice, tend to magnify rather than reduce 
costs. Further, that, at the level of magnification being considered, the 
achievement of these attributes is dependent on the degree to which real 
system structure is reflected in the message structures requiring to be 
operated on by the system.

4 Stage 2: internal structure of a single layer

The internal structure of a single multiplexing layer of the multiplexing 
system being considered may be designed to conform to one or other of the 
following structures;

a

Fig. 3 Alternative sublayer structures: (a) individual link control; (b) common link control

Key: MUX= multiplexing entity operating on an A (address) component of the line
message

LCE = link control entity operating on the related C (control) component of the line 
message
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Now, if sublayer independence is to be achieved, then the order of the related 
A and C components of the message of Fig. 2 should be determined by the 
choice made between these structures. For individual link control the order 
will be

A : C/data

For common link control it will be 

C : A/data

Consider the individual link control case. If a pathological implementation 
transposing the sublayers is attempted at one end, then a necessary feature of 
the implementation will be the introduction of fan-in/fan-out mechanisms, 
Y and X, above and below the link control sublayer as illustrated in Fig. 4.

Fig. 4 System structure resulting from pathological implementation

Quite clearly, the mechanisms X and Y are wholly concerned with operating 
on the A field of the format. The sublayers, therefore, must of necessity lose 
their independence.

Furthermore, the following equalities must be seen within the pathological 
implementation:

function X = function MUX = complement of function Y

Given these equalities, then it may be further seen that function MUX and 
function Y, in effect, cancel one another, leaving only function X as the 
function visible to the nonpathological remote end MUX peer entity.

The general conclusion may be drawn that, at the level of detail being
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considered, the protocol machine structure required to process the message 
header information relating to a layer is implicit in the structure of the header 
information. This implied structure will impose itself on the machine 
structure in some form or another no matter what attempts may be made to 
escape from it. Further, given that header structure transformation functions 
are introduced to reconcile different machine and header structures, then the 
same cost and other penalties will be incurred for the layer as were incurred at 
stage 1 for the system as a whole.

5 Stage 3: internal structure of a link control entity

Considering now a link control sublayer entity of either Fig. 3a or 3b. This 
may either be designed as a pair of laterally independent simplex links

UDF UDF

UDF
C/ R/UDF

C/R/UDF
Pend 0 end

Fig. 5 (a) Independent simplex structure; (0) duplex structure

Key; Soc = source control entity 
Sic = sink control entity 
E = frame encoding entity
D = frame decoding entity
MUX = multiplexing entity

DMX = demultiplexing entity 
UDF = user data field 
C = command field 
R = response field 
X, Y = address field values

configured back-to-back, each link being responsible for controlling the flow 
of user data in one direction only, or it may be designed as an integrated full 
duplex link. Figs. 5a and 5b illustrate the differences between these link 
control sublayer structures.

ICL Technical Journal May 1986 1S3



The essential distinction between these structures rests in the manner in 
which information is exchanged between corresponding source control (SoC) 
and remote sink control (SiC) entities so as to effect their operation in 
concert. In the independent simplex case the dialogue is effected using 
independently coded frames that contain information relating to the oper­
ation of a single SoC/SiC pair. This arrangement imposes the requirement for 
multiplexing/demultiplexing entities to enable sharing of the common 
medium between the SoC/SiC pairs. For the duplex case composite frames 
are used containing information relating to the operation of both SoC/SiC 
pairs, a technique sometimes referred to as response embedding or piggy­
backing. This arrangement imposes the requirement for shared frame encod- 
ing/decoding functions.

The following table summarises the sets of frame formats needed to support 
the different link structures, one set for the independent simplex case and two 
equivalent sets for the duplex case, both of which are consistent with the 
duplex structure.

The essential point to note is that each of the format sets in Table 1 is self- 
consistent and complete. Each by itself is sufficient to support any end-to-end 
dialogue that may be defined to achieve the concerted operation of a 
source/sink entity pair. The attributes of self-consistency and completeness 
are fundamental. Before dealing with them some observations should be 
made concerning the attributes, from an implementation point of view, of the 
different link structures.

Table 1 Frame formats

System Function Format

Independent send command with data P -* Q X/C/UDF
simplex send command with data Q -» P Y/C/UDF

send response P -► Q Y/R
send response Q -» P X/R

Duplex send command with data C/R0/UDF} {1,/C/UDF
send response C0/R} or {Ia/R
send command and response with data C/R/UDF} {I3/C/R/UDF

Key: C = command field of format 
R = response field of format
X, Y = values encoded in the address field of format to differentiate the two streams 
R0 = value encoded in the response field to indicate the absence of a response 
C0 = value encoded in the command field to indicate the absence of a command 
I, = format identifier code equivalent to R0 indicating the presence of a command 

only
12 = format identifier code equivalent to C0 indicating the presence of a response only
13 = format identifier code indicating the presence of a command and a response

5.1 Independent sim plex structure

For this structure the MUX, DMX, SoC and SiC functions may all be 
implemented as independent functions in exactly the same way as combin­
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ations of these functions can be implemented independently within the wider 
structures considered at earlier stages.

5.2 Duplex structure

For this structure an encoding entity must have access to the internal states of 
its related local SoC and SiC entities for the purpose of generating composite 
formats. Equally a decoding entity must be associated with a scheduling 
mechanism of some kind of schedule the activities of its associated local SoC 
and SiC entities in the event of a composite frame being received.

It would appear, therefore, that in spite of the complete logical separation 
made between command and response fields and the independence given to 
the encoding of these fields within the idealised formats identified in Table 1, 
the duplex system nevertheless implies a higher degree of interdependence at 
the implementation level of the functional entities comprising a link protocol 
machine than that obtaining for the independent simplex case.

It may also be seen that the apparent simplicity of the duplex structure 
relative to that of the simplex is a deception. The encoding/decoding entities 
of the duplex structure take on exactly the characteristics ascribed to the 
message transformation functions considered at stage 1. They become key 
elements binding the structure.

The general conclusion is that if link control information relating to laterally 
independent entities is combined in a common format so too will these 
entities be likely to be integrated within a monolithic implementation.

6 Defects of standardised HDLC formats

We now return to the attributes of self consistency and completeness of the 
sets of formats given in Table 1. If an address and control field encoding 
regime is adopted that is not complete, then its missing elements must be 
made good in some way. This can be done either by adopting the equivalent 
element from some other regime or by defining additional end-to-end 
dialogue and procedural rules. Either way unnecessary complexity is neces­
sarily generated. If foreign elements are used, then the protocol machine 
structure will be distorted by becoming a hybrid of the structures supported 
by its native and foreign elements. If additional procedural rules are defined, 
then the structure is again distorted by the inclusion in it of the functional 
entities needed to implement the rules.

This is precisely what may be seen to have happened in the development of 
Balanced Mode HLDC procedures. The control field structure of the HDLC 
format is basically that required to support the duplex link structure of Fig. 
5b in that it makes provision for logically separate command and response 
subfield coding. However, the control field includes a single-bit subfield that 
is sometimes required to be seen as a part of the command subfield and
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sometimes as a part of the response subfield. This bit is the Poll/Final bit 
having the meaning Poll in a command and Final in a response. A duplex link 
structure demands the definition of two bits in the control field to permit Poll 
and Final bits to be transmitted simultaneously in a composite command/ 
response frame. Because no such facility is provided, some other means had 
to be devised to achieve the effect of two bits.

The means chosen was to use address field values, as for the independent 
simplex structure, to differentiate commands and responses and thus qualify 
the meaning of the single bit. The inevitable consequence was conversion of 
the formats into a set naturally supporting a highly redundant dual duplex 
protocol machine structure. This led in turn to the need to define un­
necessarily complicated procedural rules to make some kind of sense of the 
redundancy, thereby compounding the original error and ensuring that 
nothing other than a monolithic protocol machine structure would suffice to 
meet the requirements of the procedures.

The error also had the effect of defeating the aims of duplex encoding of the 
control field in that for some link control functions reversion to simplex 
coding has to be resorted to.

7 Implementation experience

The problem for the designer of an HDLC protocol machine is that of 
deciding how best to achieve some of the modularity and relative simplicity of 
the independent simplex structure of Fig. 5a while at the same time achieving 
conformance to HDLC standards.

This was achieved in ICL by specifying a two-sublayer implementation 
structure. The upper sublayer was defined as incorporating all but the 
MUX/DMX elements of the Fig. 5a independent simplex structure, the lower 
sublayer being made up of functional elements performing the combined 
functions of the MUX/DMX elements of the Fig. 5a structure and the 
composite frame encoding/decoding elements of the Fig. 5b duplex structure.

Idealised and much simplified procedures were defined for the upper 
sublayer. Lower sublayer format and protocol conversion procedures were 
then defined to support the upper sublayer procedures. These also turned out 
to be surprisingly simple.

This specification technique, while significantly aiding in the design of a 
conforming HDLC protocol machine, did not, of course, yield a truly 
modular structure exhibiting the properties of lateral and layer independence 
for all the reasons previously given.

Theoretical work of a similar kind to that given in this paper has also been 
exploited in ICL implementations of CCITT rec. X.256.
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8 Conclusion

The foregoing has attempted to show that the structure and properties of a 
system are very dependent on the structure (syntax) of the information 
required to be generated and processed by the system, and not so dependent 
on the meaning (semantics) of the information, as might intuitively be 
thought to be of more significance.

It has been shown that system structure and message structure must be seen 
as two faces of the same coin; that if they are not so regarded, then, in the final 
analysis, message structure will impress itself on system structure with 
consequent magnification of system cost and loss of layer and lateral 
independence.

Ideally, the message header structures required to support a layer protocol 
should not be defined until a definition has been given of the structure of the 
protocol machine envisaged as being needed to implement the protocol. They 
should then be defined in strict conformity with the intended protocol 
machine structure.

It is believed that adoption of this methodology in the development of OSI 
layer 1-4 protocols generally would significantly assist in reducing to a 
minimum the volume of English prose needed in the first instance to define 
the protocols and, through such reduction, subsequently assist in their formal 
description7.
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Correspondence

A suggested extension of ICL DAP 
parallelism

This note suggests a way in which use could be made of dual-port RAM 
to extend the parallelism of the ICL DAP, making It possible to pipeline its 
already parallel operations.

From R.M.R. Page, School of Information Sciences, Portsmouth Polytechnic: 
Array processors are normally considered to belong to one of two types: 
multi-processor or pipeline/vector array processors.

The advent of true dual port RAM, i.e. RAM that can be accessed 
simultaneously by two processors, makes the extension of the ICL DAP to a 
multi-processor pipeline array system more attractive.

The proposed system is indicated in Fig. 1. Each horizontal plane of the 
three-dimensional array comprises a DAP as currently implemented, except 
that dual port RAM is used so that the PEs (processor elements) from the 
(i +  l)th plane can receive as input the output from the ith plane above. The 
spare port on the final plane would be used for output. Thus when the array is 
fully primed, each plane is simultaneously processing one stage of the 
pipeline.

The number of planes or stages required would depend on the function being 
performed, and on the amount of work performed by one stage. To this extent, 
the amount of hardware expansion would be flexible. One stage could 
execute a number of machine instructions, thereby keeping the hardware 
expansion to a minimum. Alternatively a stage might carry out an operation 
on one-bit operands, working at the primitive control level. This would 
provide an extremely fast throughput. The whole array would be synch­
ronised to the slowest stage, and input/output would probably be the 
deciding factor. If pipelined matrix operations were envisaged, then spec­
ialised I/O hardware would be required to achieve maximum performance.

Eric Baddiley, ICL PERQ Business Centre, Kidsgrove, Staffordshire. 
My comments on the proposal by R. M. R. Page to make a pipelined DAP. 
What is actually proposed are multiple DAPs, since each PE plane in the 
diagram requires its own MCU, code store etc. This would obviously be a 
BIG machine.
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Since for any given level of chip integration a dual port RAM will be smaller 
in bit capacity due to the extra logic required (4 K bits x 1 dual port 
vs. 16 K  bits x 4 fast static RAMs, a factor of 16 smaller) then the 
number of RAM chips required in a machine for a given total capacity will be 
that much larger. Two port RAMs are also physically bigger since two sets of 
addresses and control lines are required per chip. The cost of these special 
RAM chips also tends to be at a premium compared with the industry 
standard, multiple-sourced devices.
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It is suggested that the array be expandable to suit the problem to be solved. 
This would require 2048 connections just for the data bits alone, that is 1024 
connections to the array above and below this one. This is hardly practical 
and exaggerates the well known problem with the DAP architecture -  lots of 
connections to memory (it is also its strength).

Even if the array is not expandable the number of interconnections is vast. 
Unless the whole array is built on one board (this is very unlikely) then the 
number of interconnections would be unrealistic. The densest connectors I 
know of provide 48 connections per inch, and ignoring power and ground the 
data pins alone would require over 50 inches of solid connector length. The 
problem is twice that of expanding the memory of the current DAPs.

Some solutions to this may be to only make a 16 x 16 DAP pipelined and 
have connections inside the PCBs and mate the boards sideways (Fig. 2).

Since the only path from any store chip to the next is through a PE array it 
seems likely that the PEs will spend time doing nothing more than moving 
data, although this will depend upon the algorithms in use.

W iV rV ? boards
connections

Fig. 2 Sideways connection

Fig. 3 Architecture using reconfigurable arrays
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The suggestion is that the DAP be physically configured for the particular 
application; this detracts from the generality of the DAP. In particular, if an 
application did not require a pipeline architecture but instead a single PE 
array and a large contiguous address space this design would be useless since 
there is no direct access from one PE array to all the RAM in the machine. An 
alternative view to this would be to consider the array as reconfigurable so 
that a 4 level pipeline could be reconfigured to make the DAP PE array four 
times the size. The problems of multiplexing the edge connections seems 
to require a lot of hardware and interconnections (Fig. 3).

If a dedicated pipeline DAP architecture IS required then a few alternatives 
come to mind.

Since data only flows one way through the pipline there is no need for dual 
port RAMs; conventional RAMs can be used with an efficient implement­
ation as shown in Fig. 4.

input

buffer a | | buffer b

| memory — , , *—  PE array |

buffer c buffer d

| memory |— ■— | PE array |

| buffer e | buffer f |

output

| buffer e I | buffer f]

output

Fig. 4 Use of buffers with conventional RAMs

Buffers a, c and e are written to and b, d and f are read from. On the pipeline 
beat these are swapped over implementing a double buffer system. By using 
buffer memories with separate input and output pins no extra hardware is 
required, simply gating the output enables and write enables. Each PE array 
requires mass working store since the buffers only contain the data being 
processed. Although this appears to take more store chips, because 4 bit wide 
chips can be used, less chips are required, they are also much more dense 
and are standard, cheaper parts.
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Another method would be to use video RAM chips with built in shift 
registers (Fig. 5). The data could be shifted from one set of PEs memory 
into the next while the arrays were processing the other buffer. Again a 
double buffered system but with both buffers in the one chip. Because the shift 
registers are big (>256 bits) a memory cycle is stolen by the shift registers 
infrequently leaving most of the time for the PEs. This seems to be better than 
the first method except that all video S/R (shift register) RAMs I know of are 
slow dynamics.

Fig. 5 Use of video RAM chips with built-in shift registers

S/R plane S/R plane S/R plane S/R plane

Fig. 6 Pipelining the existing DAPs

Another alternative is to pipeline the existing DAPs using the S/R plane to 
shift the data while the PEs process the other buffer (Fig. 6). This will only be 
efficient if the shifting of the buffers is complete before processing the other 
buffer is complete. The S/R can shift at an average of 100 nS per 32 bit word 
or 3-2 uS per DAP plane. This requires an average of 21 DAP cycles per 
plane of data before the PEs will be held up waiting for the S/R plane 
transfers to finish.
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system structure
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