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Expert system  in heavy industry 
an application of ICLX in a 

British S teel Corporation works

Bruce Hakami
ICL System Strategy Centre, Stevenage, Herts

John Newborn
British Steel Corporation, Scunthorpe, South Humberside

Abstract

The paper deals with a collaborative undertaking between ICL and the 
British Steel Corporation, the practical application of the expert system 
concept to the operation of a steel rolling milL It is in two parts. The first, 
by Bruce Hakami (ICL) outlines the ICLX expert system ‘package’, using 
the rolling-mill application to illustrate the interaction of the user with the 
system. The second, by John Newborn (BSC) gives the arguments that led 
to the adoption of the expert system approach as an aid to the diagnosis of 
faults, and summarises the experience gained.

Part I The ICLX system 

1 Introduction

ICLX is a system whose behaviour is governed by the information it holds on a 
particular subject. The information is initially obtained from human experts and 
therefore ICLX is referred to as an expert system. The information is obtained and 
held as a collection of facts and their relationships and is referred to as knowledge. 
The purpose of the knowledge is to help users solve problems in the particular 
subject area by a process known as problem solving. The knowledge is obtained 
from one or more experts by a process known as knowledge refining, so called 
because the system influences the expert to  improve the knowledge. Both problem 
solving and knowledge refining processes are interactive, allowing the user to 
observe directly the consequence of his actions.

ICLX began as an experimental project to determine the necessary features of an 
expert system usable by people who are not necessarily familiar with programming 
or computers. Our initial ideas were influenced by ICL’s own experience in diag­
nostic aids for computers, CRIB1 and by major expert systems such as MYCIN2 
and PROSPECTOR*; but we wanted to ensure a practical foundation for the 
project and so we chose the problem of fault diagnosis in a steel rolling mill as a 
test bed for the development and evaluation of our ideas.
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The next Section describes how the knowledge is formulated. The main features of 
problem solving and knowledge refining processes are described in the two follow­
ing Sections and Section 5 relates some of the problems we encountered in our work.

2 Knowledge structure

The behaviour of the system is governed by the knowledge it holds. The main 
components of the knowledge are described below.

2.1 Tests

When a system is undergoing a diagnostic investigation, its current operating state is 
assessed on the basis of observations. All allowable observations are defined by the 
expert and are known as tests. A test is a description of the state of the system 
with a multiple choice part, e.g.:

TEST 36:

the state of scanner LED when the FAST/SLOW scanner switch is put to SLOW

1 flashing
2 permanently on
3 : permanently off

DETAIL:

1. select slow scan address test (TS13 down)
2. rotate SELECT ADDRESS switch and observe LED1

The expert assigns an identifier to each test which will be used to refer to the test. 
In the example above the number 36 is the identifier. Sometimes it is useful to 
incorporate further notes of explanation or cautions to be taken. Such notes are 
stored optionally as detail and displayed only if the user chooses to do so.

2.2 Faults

Observations are normally expected to lead to one or more conclusions. The con­
clusions are known as faults. The expert defines all the faults that the system is 
expected to recognise. Each fault is defined as a statement with an identifier, e.g.

FAULT 4:

reference amplifier module faulty resulting in incorrect speed of the main 
drive.

where the number 4 is the identifier.

2.3 Rules

Each rule specifies the conclusion to be drawn from a number of concurrent 
observations. The following is an example:
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RULE ramf

IF the speed log printout indicates incorrect speed for the main drive
AND the main drive display does not indicate overspeeding 
AND increase in mill load with its consequent reduction of speed does not 

cause a cobble

AND .....................................................................................................................

AND .....................................................................................................................

THEN CONCLUDE

reference amplifier module faulty resulting in incorrect speed of main 
drive.

Each rule is given an identifier (the letters ramf in the example).

2.4 Test costs and fau lt frequencies

These are numeric values that may be specified by the expert* and are both factors 
considered by the system when it chooses a test to be performed. The cost of a test 
is a measure of the difficulty to perform that test.

The system computes the effectiveness of a test and weighs it against its cost and on 
the basis of this combined measure chooses a test to suggest.

Frequency is a measure of the likelihood that a fault is present and is used by the 
system to compute the effectiveness of various tests.

3 The problem solving process

This is the process that makes the stored knowledge available to the user, in a help­
ful way, to solve particular problems, e.g. to determine the fault in a diagnostic 
situation. The main characteristics of the process are described below with samples 
of dialogue for illustration, where the parts typed by the user are underlined:

3.1

The system is about to function passively, receiving whatever information the user 
wishes to supply, e.g.:

?:TEST 4

speed indicator on the main drive:

1 normal
2 overspeed
3 underspeed
4 RESET
5 DELAY
6 DETAIL ?: 1
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In this example the user wishes to state the ‘speed indicator of the main drive is in 
the normal state’. After typing ‘TEST 4’ the multiple choice question is displayed 
and the first choice is taken by the user.

3.2

The system is able to function actively, suggesting to the user the most suitable test 
to be performed, taking into account all that is known at the time about the 
particular problem situation, e.g.:

?:BEST 
test 36:

the state of scanner LED when the FAST/SLOW scanner switch is put to
SLOW

1 flashing
2 permanently on
3 permanently off
4 RESET
5 DELAY
6 DETAIL 7:2

In the above example the user has invoked ‘BEST’ and the system has suggested 
‘TEST 36’. The effect is exactly the same as if the user himself invoked the test. 
The user in this example has responded with the second choice from the menu.

3.3

The user has the option not to perform the test suggested by the system. In the 
previous example the user could have responded with the fifth choice, i.e. ‘DELAY’. 
The effect of that would have been for the system to continue as far as possible 
without asking this question again and the investigation might have reached a 
successful conclusion without this test.

3.4

The system is able to summarise the information gained in a particular investigation 
and the conclusions reached. For example the following dialogue lists all answered 
tests:

?:TESTS ANSWERED

the following tests have been answered: 
4, 36

It is possible to find out what reply has been recorded for a given test by invoking 
the test command in the usual way:

?:TEST 36

the state of scanner LED when the FAST/SLOW scanner switch is put to 
SLOW
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1 flashing
2 permanently on
3 permanently off
4 RESET
5 DELAY
6 DETAIL : permanently on 7:

The last line of the example indicates the recorded reply of ‘permanently on’.

It is also possible to display the tests which have been ‘DELAYED’, faults which are 
‘DELETED’, i.e. rejected by reason of information recorded and faults which are 
possibly present by invoking:

TESTS DELAYED’, ‘FAULTS DELETED’ or ‘FAULTS POSSIBLE’ 

respectively.

The user is able to determine whether a particular fault is rejected and why, or if 
that fault is a possibility what further evidence is needed to confirm it.

7: FAULT 7

digital mill cubicle card 4214 faulty.

The following further evidence is required to show that this fault is present: 

test 1:2 test 82:2 test 83:1 test 99:2

7:FAULT 21

slow scanner card failure.

This fault is rejected by the following evidence:

test 36:2

3.5

The user is able to change or delete any information already recorded. The system 
will modify its conclusion accordingly. In the following example the user changes 
the response for ‘TEST 4’ from ‘normal’ to ‘overspeed’.

?:TEST 4

speed indicator on the main drive:

1 normal
2 overspeed
3 underspeed
4 : RESET
5 : DELAY
6 DETAIL :normal 7:2
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The response could have been cleared to starting condition by choosing the 
‘RESET’ option on the menu.

3.6

The dialogue with the system is very simple and free from statements of probability. 
The conclusions drawn by the system are equally clear. The following examples 
illustrate the types of conclusions drawn by the system:

I know of no faults to match the pattern of symptoms recorded. It may be that 
this fault situation is one that I don't know of or that some symptoms are 
recorded incorrectly.___________________

I know of only one fault that matches the recorded pattern of symptoms. It is: 

FAULT 4:
reference amplifier module faulty resulting in incorrect speed of the main 
drive.

Any further tests that I suggest are necessary to confirm this fault.

I know of only one fault that matches the recorded pattern of symptoms. It is: 

FAULT 4:
reference amplifier module fault resulting in incorrect speed of the main 
drive.

I suggest, however, that you invoke BEST to confirm that this is indeed the fault.

3.7

All investigations are recorded. This enables a partially completed investigation to 
be restarted and continued at a later date. The investigation record is also used by 
the expert to monitor the effectiveness and correctness of the system.

3.8

The user may record comments relating to the investigation. The comment facility 
is used for communicating to the expert.

3.9

The reasoning used by the system is very simple. The system tries to prove the 
presence of every fault. Any fault whose presence cannot be proved is rejected. 
Finally, only the faults that are proved are listed.

3.10

Almost all the dialogue is user definable.
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4 The knowledge refining process

This is the process that enables the expert to construct and improve the stored 
knowledge. The dialogue for communicating with this process is, in most cases, 
similar to the problem-solving dialogue and will therefore not be discussed. The 
main features are described below:

4.1

The knowledge consists of a collection of facts defined by the expert. The expert 
does not have to devise procedures or flowcharts.

4.2

The expert can present and test the facts in small increments.

4.3

The expert is assisted to observe the consequence of any modification to the 
knowledge. This is done, partly, by making available to the expert all the problem 
solving facilities.

4.4

Some of the facts compiled by the expert may be superfluous. The refining process 
exposes these as much as possible.

4.5

The compiled knowledge may be insufficient for complete resolution of problems. 
This situation is always exposed.

4.6

The system prevents the expert from compiling conflicting facts.

5 The problems encountered

To design an expert system, as indeed any system, involves a number of conflicting 
requirements. One requirement is that the system should be powerful and flexible, 
applicable to a wide range of problems. This can be achieved if a high-level abstract 
knowledge formulation scheme is adopted. The disadvantage of that is that it 
requires the expert to be considerably skilled at creative thinking and the system 
interface becomes more like a programming language, barring users who are not 
programmers. We decided to avoid this problem by adopting a more concrete 
scheme of knowledge formulation which is more directly suited to diagnostics.

Another, more specific, problem is the critical importance of the exact form of
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words and sentences used by the system. Often a system message, designed to be 
helpful and clear can be misleading, or worse, offensive. To illustrate this point 
consider the following specific case, which is related to the command TEST and the 
message output by the system if the command is entered without the necessary 
parameter. It was thought that the user who did not know or remember the specifi­
cation of the TEST command would invoke HELP TEST which would display the 
following information:

"TEST" is a command that must be followed by one of the following parameters:

[test identity] : To obtain the description of the test and the recorded 
outcome if any.

[answered] : To obtain a list of all TESTS for which an outcome is recorded.

Therefore any user who entered TEST without a parameter was likely to have done 
so inadvertently and the system could help by indicating that the word TEST was 
indeed expected and spelt correctly, but that something further was missing. We 
therefore designed the system to output the message:

TEST what?!

In the event some users found this offensive and replaced it by a more polite message. 

Please enter test number after TEST

which in fact misleads the user to think that 'test number’ is the only permissible 
parameter.

6 Conclusions

Our experience of ICLX highlighted a number of significant differences between 
expert systems and traditional computing. Expert systems are intended to be used 
by a very wide spectrum of people to solve a great variety of problems in very 
different environments. Given these variations it seems inappropriate to attempt to 
design a ‘general purpose’ expert system, even though the basic techniques them­
selves may be generally applicable. Therefore, when designing a system the 
following points should be borne in mind:

-  the type of people to use the system i.e. scientists/technical/management etc.
-  the type of reasoning needed for the problem, i.e. precise or approximate, 

forward or backward or both
-  the quantity and depth of knowledge required
-  the required response time and other performance-related factors
-  the environmental conditions, i.e. dirty, noisy and hostile or clean, quiet and 

relaxed.
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These factors represent challenging technical and man-machine problems that have 
to be solved if we are to employ and exploit expert systems.
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Part II A case study in British Steel

1 Introduction

This collaborative exercise between BSC and ICL on the application of a knowledge- 
based system was initiated early in 1981, with the primary objective of demon­
strating that fault data relating to a particular plant could be processed into a 
practical fault-finding strategy for that plant. BSC as operators of large-scale process 
plant have a continuing commitment to the development of fault-finding aids which 
will minimise plant down time when faults occur. In the 1970s great emphasis was 
placed on the functional design of equipment and on the presentation of docu­
mentation in a functional form. Although this approach resulted in significant 
improvements in the maintainability of equipment with regard to logical grouping 
and monitoring facilities, the resulting documentation was cumbersome and in­
capable of dealing with complex interactive control systems. It was in this area of 
plant engineering fault diagnosis that the ‘expert system’ was to be applied. As with 
many new concepts, a widely accepted definition is yet to emerge, but for a BSC 
application the following will suffice:

‘An expert system is a computer-based method of making available, via a man- 
machine dialogue, skilled diagnostic knowledge relating to a particular plant, to 
less experienced staff,’

It was agreed to implement a trial on a chosen plant, with the following objectives:

(i) to establish an expert system for the Scunthorpe rod mill and establish its 
feasibility as an engineering tool

(ii) to maximise on ICL’s previous developments in the form of ‘RAFFLES’ 
and ‘CRIB’, which were essentially a historical retrieval approach

(iii) to assess the future use of expert systems in BSC and to produce some 
general rules and guidelines on the application of such systems. 2

2 Background: the Scunthorpe rod mill

To give an understanding of the extent of the fault diagnosis problem it is necessary
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to give a brief introduction to the production process and the type of equipment 
which is encountered in the mill.

The installation and commissioning of the Scunthorpe rod mill was completed in 
1976. It is a four-strand mill and has a production capacity of 600000 tonnes per 
year. The feedstock is 20 m long, 115 mm2 billets, and rods are produced in the 
range of 5-5 to 13 mm diameter. The finishing speed of the rod is 60 m/s, and when 
installed the mill was among the fastest in the world.

The rolling stands are driven by 25 main drive motors ranging from 300 kW to 
2500 kW, with high-speed closed-loop speed-regulator control; a digital set up and 
sequence-control system gives fine resolution coupled with accurate repeatability of 
the speed setting. The digital equipment also controls the eight shears and associated 
pinch rolls, horizontal loopers and water cooling, and provides cobble detection"1. 
The pulpit* controls are accordingly complex.

The mill is equipped with five computers in a hierarchical arrangement providing 
production co-ordination, furnace control, mill-speed set-up scheduling and an 
alarms monitoring facility. With the very high speed of operation even at the 
intermediate stage the rod is travelling at speeds of up to 8 m/s and a single failure 
in the control equipment is likely to result in a mill cobble. If this occurs in the 
roughing mill or intermediate areas it is likely to affect the operation of adjacent 
strands. Cobbles are dangerous and expensive: a four-strand cobble can take up to
2 h to clear and during that time fault location is very limited, as the equipment 
must be isolated to allow removal of the cobble. The control systems are all highly 
interactive to maintain correct inter-strand speed ratios.

The alarms computer system is designed to provide a quick means of identifying 
faults as they occur on the mill. A total of 1500 alarm contacts are scanned at 1 s 
intervals and groups o f alarms, where finer discrimination is required between first 
and subsequent faults, are dealt with by interrupts which give group scanning within 
6 ms. It was in the alarms facility that we made our first attempts at a knowledge- 
based system way back in 1976. An engineers’ message facility was provided 
whereby a message was given, suggesting the likely fault when particular alarms or 
combinations of alarms occurred. These messages were added to as experience was 
built up and on a historical basis a ‘top ten’ approach was taken: that is, a number 
of possible faults were identified, listed in rank order. In addition to the above, the 
mill-speed computer provides also a cobble log whereby all strand speeds, currents 
and control settings are logged at 0-1 s intervals for the 5 s preceding a cobble. The 
mill is thus very well covered with alarm and monitoring facilities; but a high level 
of expertise and familiarity is needed to make the correct deductions from the 
information provided.

3 Hie evaluation programme

There were several reasons why the rod mill was chosen for the trial:
* A ‘cobble’ describes the result of a sudden stoppage of some part of the machinery, when 

the material still in process is thrown into loops and tangles -  cobbled up, in fact. The 
‘pulpits’ are the control stations from which the operators look down on the process lines.
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(i) This plant contains complex equipment which presents fault location 
problems.

(ii) It was decided to concentrate on those faults which would be likely to 
result in cobbles, as this would provide a clear cost/benefit assessment.

(iii) Considerable amounts of information relating to faults are available for use 
in answering questions.

(iv) An expert was available, with intimate knowledge of the faults which have 
arisen since the mill was commissioned.

The start of the exercise was to collect actual fault data in the detail required, in 
the form of a fault/symptom matrix. This was a slow and painstaking task, and 
after several months the database was still hardly adequate. The decision was then 
taken to expand the database to accommodate faults which had not yet occurred, 
but which might.

The second stage was to develop and prove the knowledge-refining program. With 
the expanded database of about 40 faults the program, after the expected de­
bugging, succeeded in producing a decision tree that was logical but in some way 
impractical.

The third stage involved collecting data and experience from the ‘expert diagnosti­
cian’, as opposed to taking simply the plain facts recorded in the fault/symptom 
matrix. This was a joint exercise between ICL and BSC, but was heavily dependent 
on BSC’s expertise and experience with the plant. New fault criteria were 
conceived, involving ‘testing penalties’ and ‘frequencies of fault occurrence’. It 
might seem that an obvious approach would be to carry out the simpler tests which 
eliminate the majority of faults before tackling a more difficult test which may be 
time-consuming and require special test equipment, but this is not always the case.

The new database, derived from a fault matrix of 61 faults and 98 symptoms or 
tests, was available early in 1982.

At this stage it was agreed that the knowledge refining had reached a stage whereby 
it could be implemented in a user or advice-generator form on the rod mill. The 
program had been written in 1900 CORAL to match the development facility then 
available to the ICL engineers. The advice-generator facility had obviously to be 
captive to the confines of a particular plant, and from the point of view of plant 
geography it required several intelligent outstations. The equipment was required 
to be suitable for pulpit, motor room and substation environments. It was proposed 
by ICL that the advice generator should be written in Pascal for an ICL Personal 
Computer, equipped with Winchester-disc drive to provide a floppy-disc link 
between the two systems. The system was also to have three VDUs and keyboards. 
This system was installed on the rod mill in August 1982 and quickly grew into one 
containing 73 faults and 113 tests.

4 Some features of the system

The terminal is located alongside the mill’s digital equipment and is the one
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normally used by the technician when fault finding. The ‘expert system’ is not, in 
itself, a solution to the problem of fault finding, and full reliance on traditional 
tools and measuring instruments continues -  oscilloscopes, UV recorders, AVOs 
and Microsecoms are used, in addition to the test and monitoring facilities in the 
equipment.

The program allows users to interact with the knowledge base in a natural manner, 
the dialogue between the system and the user allowing a flexibility of use similar to 
that offered by a human expert during a consultation. This is illustrated by the 
examples given in Part I of this paper. The system allows a course of reasoning, 
dependent on the user’s replies to previous questions; and therefore only questions 
which relate to the problem under discussion are asked.

The user can input information into the system by describing symptoms before 
asking for the best action to take, or can simply seek advice from the system. The 
former leads to a solution in a shorter time but requires more knowledge from the 
user.

Commands The system uses the minimum number of commands, in the interests 
of simplicity of operation.

A menu is displayed at the start of a fault investigation. The HELP command 
provides comprehensive messages for the new user who requires details of the 
commands available to him.

The BEST command provides the question which will eliminate the maximum 
number of possible faults; a menu of possible answers to this question is displayed, 
requiring a numerical input as answer. Where more detailed instructions are re­
quired to answer this (or any) question asked by the system the user selects the 
part of the menu called DETAIL.

Other features Frequently during a fault investigation it is impossible or un­
desirable for the diagnostician to answer a question at that particular stage. Instead 
he can delay answering, and this allows the system to calculate the best question to 
ask next. He can also list details of the faults that are possible and can request the 
status of the evidence collected so far. In practice, some investigations cannot be 
concluded until some later date — for example, when there is an intermittent fault 
— so the system allows the user to reconnect later to continue an investigation.

All investigations can be logged into the system memory for post mortem analysis 
by the experts who are responsible for the management of the system. In addition, 
users can input comments to give a feedback or to provide information on problems 
encountered or on faults that the system does not currently include. Additional 
detail can be requested, and a valuable aid is the ability to define test procedures 
and test points, avoiding extracting key information from extensive documentation.

A display of the number of faults still not eliminated can be requested. This gives a 
positive indication of how well the investigation is proceeding. Additional tests can 
be requested to verify the diagnosis.
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5 Experience with the system

The system has now been in use at the rod mill for approximately 12 months; it is 
now established and is considered a worthwhile engineering tool. It is considered 
cost effective: with strand downtime costing £9 per minute and cobbles costing 
approximately £1000 a time this can be easily demonstrated.

A frequent occurrence before the installation of the system was that the fault that 
caused a cobble could not be located and the technicians would advise ‘try another 
billet’ — which could be a very expensive way of proving that a fault still existed.

The exercise with ICL has been mutually beneficial and we at BSC certainly feel we 
have played a part in the development of ICLX. From our experience we can make 
the following general observations:

(i) When configuring an expert system database it is not sufficient to know 
how a plant works: the thought process must be, how does a plant fail?

(ii) It is vital to avoid ambiguity: questions must be carefully phrased to 
ensure that the desired response is achieved.

(iii) The tests must begin at the lowest level of skill likely to use the system: 
often the expert makes subconscious assumptions regarding the ‘obvious’ 
which are not so obvious to others.

(iv) It is necessary for the users to relate the system to the accepted expert for 
them to have confidence in the system.

(v) Once the system is off the ground it can be incremently developed on the 
basis of feedback, at a fast rate; it then becomes even more acceptable to 
the users because they recognise their own contributions.

(vi) The logical approach to fault diagnosis can highlight deficiencies in the 
monitoring and alarms facilities: it has been found necessary to install 
additional hard-wired features to aid fault-finding.

(vii) The system can be very powerful as an aid in training; it has been used 
extensively in this way at Scunthorpe.

6 Future possibilities

We are currently considering the possibility of using an ICL PERQ computer to 
enable the knowledge refining for other systems to be carried out at Scunthorpe.

The rod mill is a modern compact arrangement, in contrast to many other areas of 
potential use of the expert system approach; consequently we feel that the advice- 
generator facility should be developed with the idea of a hand-held terminal in 
mind, to give the user the mobility necessary for operating on distributed plants.

In parallel with the exercise reported here BSC have developed their own expert 
system which is basically a simple virtual tree approach; this can be applied to less 
complex problems. However, we are convinced that the ICLX approach is what is 
needed for fault diagnosis in areas of complex interactive control, and it is in such 
areas that that expertise is most scarce.
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Dragon: the  development of an 
expert sizing system

M.J.R. Keen
Knowledge Engineering Group, Mainframe Systems Development Division, Bracknell, Berks.

Abstract

Considerable interest is now being shown in the development of knowledge- 
based systems -  so called ‘expert systems’ -  for use in a wide variety of 
different situations. Being dissatisfied with the capabilities of computer 
performance modelling and prediction (‘sizing’) systems that have been 
produced using conventional techniques, the author embarked on a project 
to build a pilot sizing system (called ‘Dragon’) using the rule-based 
approach of expert systems. This paper explains the background to this 
work and describes the tools and techniques that have been used. Details 
are given of the state of development of the Dragon system some eight 
months after serious work began. The paper is illustrated with examples 
taken from the Dragon knowledge base and with a typical consultation 
with the system.

1 Sizing in a computer sales environment

Like all computer manufacturers, ICL is in business to sell computer hardware and 
software. A key part of this selling process is the ‘sizing’ of the customer’s require­
ments: agreeing with the customer his perception of his future needs, and matching 
this with sufficient computer resources. This involves:

(a) establishing the nature of the customer’s future needs
(b) estimating the computer resource requirements for each part of this future 

need
(c) Combining these estimates to produce total/peak resource demands
(d) Choosing a suitable computer configuration, based on:

— providing sufficient processing power
— maximum practical device utilisations
— the avoidance of system bottlenecks
— storage and memory requirements
— contingencies, etc.

(e) Ensuring response time targets/turnaround deadlines are met.

Frequently, several iterations are required, to balance cost, functionality and 
performance, before a satisfactory result is achieved.

Over the years, ICL has accumulated a great deal of experience at sizing up 
customers’ workload requirements — particularly in the mainframe area. However,
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the real expertise is held by just a few individuals and, as always, there are too few 
experts to meet the demand. This expertise covers four main aspects of the sizing 
process:-

(i) textbook knowledge of the theory and techniques of performance model­
ling and prediction — e.g. queuing theory

(ii) an understanding of the functionality and characteristics of the computer 
products — both hardware and software — that are likely to be proposed

(iii) heuristic knowledge about likely system bottlenecks, and areas of perfor­
mance interaction

(iv) knowing what information is required to describe any particular type of 
workload and how to fill in the inevitable gaps in the information that is 
available.

It is in the fourth of these areas that much of the real expertise of sizing lies in that:

-  Customers often find it difficult to describe their future needs in detail
-  this description is frequently ‘patchy’, with some aspects of the workload being 

described precisely while other, equally important, parts of the workload are 
virtually undefined

-  sales timescales often preclude detailed workload analysis and sizing.

Further practical difficulties arise from the great many numbers that need to be 
manipulated during the course of a sizing -  particularly where workload resource 
requirements have to be evaluated in detail. This produces both straightforward 
arithmetic errors and, more seriously as they are more difficult to trap, errors 
owing to omissions from the calculations.

As in any other area where expertise is in limited supply, short cuts have to be 
taken -  increasing the risk to both ICL and its customers. Quite obviously, what is 
required is a computer system that can both automate the numeric side of the sizing 
process and take on the role of the sizing expert — for all straightforward sizing 
situations. This would then free experts to concentrate on the really complex and 
novel problems, developing the knowledge for an even more expert system in the 
future.

Such a system would start by establishing the customer’s future workload by asking 
a series of questions, adapting the questioning to the type of workload and the level 
of information available. Like the human expert, the system would need to change 
its line of questioning if one course was found to be unproductive. Where the user is 
uncertain of the answer to a question, the system would need to be able to give 
advice and make helpful suggestions based on what is already known — again like 
the human expert. The system would need to insist on certain minimum levels of 
information being provided and should then fill in the gaps where the user has been 
unable to answer less significant questions by taking knowledgeable defaults. Once 
the customer’s workload has been defined, its computer resource requirements 
would be ‘costed’ and this mapped onto a suitable hardware configuration. This 
would be modelled to ensure performance constraints — such as response time
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targets -  will be met. The system would need to produce a summary report for in­
clusion in sales proposals.

Such a system, as described above, would need to be highly flexible with a well 
engineered user interface that enabled it to be responsive to different levels of user 
skills. The ability of the system to explain its advice and lines of questioning would 
be crucial to its acceptance by those who have to use its advice as the basis for 
significant commercial decisions.

2 Conventional performance modelling

The type of system just described goes far beyond the scope of conventional 
performance-modelling systems. Most of the development work on such systems 
has been directed towards the later stages of the sizing process — the analysis of 
bottlenecks and queues -  and these can only be used once the resource require­
ments of the workload have been defined. There are good reasons why this has been 
the case:

(i) The analysis of queuing situations can largely be carried out independently 
of any particular computer architecture -  hardware or software.
Although such models may have to be ‘adjusted’ to reflect the details of 
particular manufacturers’ designs, they are widely applicable. Thus a 
queuing model of a moving-head disc system can be applied to a whole 
family of such devices, simply inputting the relevant hardware speeds as 
required.

(ii) The production of a system to perform resource costing requires both 
extensive knowledge of the architecture of the particular software being 
modelled and full details of path lengths, store use, etc. This is not 
normally available outside the organisation producing the software.

(iii) The use of conventional third generation programming languages (Fortran, 
Basic, COBOL, Pascal, etc.) requires considerable design effort to create 
the data structures to hold the knowledge base in an easily maintained 
form, and to manage the user dialogues. Failure to do this, for instance by 
embedding product knowledge within program code, produces a system 
that is both difficult and expensive to maintain.

Thus, while one can generalise and say that there is a substantial body of experience 
in modelling computer dynamics — analysing the queues and bottlenecks — such 
techniques are of little use in predicting future needs unless one can assemble all the 
necessary resource demands. Such information must be complete, correct, sensible 
etc., if the results of the queuing analysis are to have any value. Moreover, the 
analysis tools themselves generally require human experts to use them.

So, the building of a sizing system as described earlier would break much new 
ground and might well demand the use of ‘novel’ techniques. A possibility was the 
use of the expert system rule-based approach.
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3 Knowledge-based systems

More popularly referred to as ‘expert systems’, knowledge-based systems embody 
organised knowledge about particular areas of human expertise which enable them 
to perform as skillful and cost-effective consultants. Having been developed out of 
research into artificial intelligence, such systems are an attempt to emulate the 
workings of a human expert. Some notable examples of practical expert systems 
that have been developed during the past few years are:-

MYCIN which is concerned with the diagnosis and treatment of bacterial
infections

PROSPECTOR which evaluates geological survey data for potential mineral 
deposits

DENDRAL which analyses mass spectrometry data.

The distinguishing feature of any true expert system is the separation of the know­
ledge side of the system from the mechanisms that make use of the knowledge. 
These two parts of an expert system are referred to as:

— the knowledge base, and
— the inference engine.

The power of any expert system is in its knowledge base. It is produced by express­
ing the human expert’s knowledge as a set of ‘rules’. This is done using a declarative 
programming style in which rules take the form:

IF ‘condition’ THEN deduce ‘result’.

The complete set of expert’s rules are processed to form the data structures that 
make up the knowledge base. Quite obviously a knowledge base is particular to a 
single area of knowledge (or domain) and for each new domain a new knowledge 
base has to be developed.

The inference engine provides the deductive mechanisms that make use of the 
information stored in the knowledge base. It also provides the user interface, 
including pseudonatural language processing for a smooth human interface and an 
ability to explain its own ‘thinking’ by displaying appropriate text stored within 
the knowledge base -  for instance, to explain why a particular question is being 
asked. In theory, at least, the inference engine could be used for many different 
expert systems.

To build an expert system, one must make the choice between using a specialised 
programming language such as LISP or PROLOG, or basing the system on a package 
or expert system ‘shell’. Of the languages, LISP is long established and much 
favoured in the USA where most expert systems have been developed using the 
language. PROLOG, on the other hand, is a much more recent development with a 
growing following around Europe (and in Japan). [At this point it should be noted 
that an expert system can be produced using conventional programming languages, 
though this would involve much more coding.] An expert system ‘shell’ is a
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package for building and running expert systems and, as such, contains the software 
both for processing the rules to form the knowledge base and for the inference 
engine itself. Two shells which are currently available are:

EMYCIN from the USA and written in LISP, and
SAGE produced in the UK and written in Pascal.

Using a ‘shell’, one can generally expect to make rapid progress, though the design 
of the shell system may constrain the type of expert system that it can be used to 
build. Use of a language offers the promise of greater flexibility — at the cost of 
more programming effort.

Wishing to make rapid progress, it was first decided to investigate the use of an 
expert system shell for building the sizing system. As LISP was not available on 
2900, EMYCIN was largely ruled out, so SAGE was considered in detail.

4 SAGE

SAGE is a package for developing and running consultative expert systems. It was 
developed by SPL at Abingdon (near Oxford) and was first released in the middle 
of 1982. It is running both on ICL’s 2900 series mainframes and ICL PERQ. 
The SAGE package is in two parts:

(i) The SAGE ‘compiler’ which produces the knowledge base from the expert 
rules written in the SAGE programming language.

(ii) The SAGE ‘executive’ or inference engine.

The very high-level SAGE programming language which is used to encode the 
expert’s knowledge is more like a stylised form of English than a conventional 
programming language. This allows rules to be written using the terminology of the 
expert while questions can be phrased in language that the end user will understand. 
The SAGE language is declarative (in that statements can be expressed in any order) 
rather than procedural and is based on the use of a small number of keywords. This 
permits stylistic flexibility on the part of the rule writer.

The main statement types used in a SAGE program are

ACTIONS

ASSERTIONS

OBJECTS

RULEs

QUESTIONS

which control the consultation and govern the behaviour 
and overall course of action of the consultation 
entities with associated probability ; they can also be used 
as simple YES/NO switches
entities with associated numeric values, bounded by defined
ranges and with inbuilt default clauses
which enable the value of an ASSERTION or OBJECT to
be established in a particular situation
which ask the user to input the value of an ASSERTION or
OBJECT.
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Text can be associated with all elements of the knowledge base, providing both 
questioning in end users’ terms and the ability of the SAGE system to explain its 
deductive reasoning. Where the SAGE language is inappropriate — for instance for 
algorithmic procedures such as certain queuing theory calculations — these can be 
written in an appropriate language (e.g. Pascal) and integrated into the SAGE 
system.

The SAGE executive provides the user interface to the expert system. It manages 
the consultation on a goal directed basis and provides a range of command and 
diagnostic facilities, including:

HELP
TRACE to display the logical inference process of the expert system,

and
LOG to produce a hard copy of the consultation.

Part completed consultations can be SAVEd for subsequent RESTORing for 
iteration purposes.

During the course of a consultation, the end user may ask for:

— a question to be explained
— the reason why a question has been asked
— details of the current state of the consultation

using the information and text contained in the Knowledge Base.

Experience has shown that, despite the advanced thinking that is built into the 
SAGE package, it is easy to use by nonprogrammers. Moreover, the end product — 
the expert system — will be robust and can easily be made highly usable.

5 Dragon

In the late summer of 1982, consideration was being given to finding a solution to 
the problem described earlier -  producing a sizing system for use by ICL sales staff. 
This coincided with the wish to find suitable domains of expertise to evaluate the 
newly announced SAGE package. Such domains would have to be able to justify 
in their own right the development of expert systems.

It was decided to combine those two activities and in October 1982 work started 
on an evaluation prototype -  subsequently named Dragon. To provide a fairly 
complete picture of the problems to be handled in an expert sizing system, it was 
decided that Dragon would need to take a vertical slice through all the main steps in 
the sizing process, while at the same time restricting the range of products to be 
covered, to speed development.

Coding of the rules began in November, based on an existing set of detailed sizing 
knowledge, and before the middle of December the first part of the knowledge base 
was up, running and usable. This enabled the resource requirement of a TPMS/IDMS
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system to be calculated -  database size, processor and I/O costs per message, and 
main store quotas (TPMS is the VME 2900 TP monitor and IDMS is the CODASYL 
database management system.)

By the end of March 1983 a fairly complete version of Dragon was running and 
demonstrable. This performed the following functions:

— detailed evaluation of the resource requirements of a TPMS/IDMS system
— gross evaluation of MAC (multi-access) and batch resource requirements
— combining TP, MAC and batch workloads
— selection of a suitable 2900 series configuration to run the combined workloads
— calculation of response times (using a priority network queuing model written 

in Pascal)
— report production.

The network queuing model is of the class of such models often associated with the 
name of Dr. J. Buzen in the US and developed independently by ICL in the UK. 
Although it would be inappropriate to describe the model in detail in this paper, it 
is worth noting that the model takes advantage of the fact that the VME operating 
system assigns the same priorities to both the processor and peripheral systems, and 
that this effectively operates on a pre-emptive basis. Thus throughput of high- 
priority work is unaffected by work at lower priority. This enables the throughput 
of high-priority work (e.g. TP) to be calculated by itself and then lower-priority 
throughput to be calculated by subtracting TP throughput from that of the 
combined workload as a whole. The model calculates the service rate of the central 
system at varying levels of concurrency, with transaction queue lengths being used 
to calculate mean response times. 95th percentile response times, which depend 
on the higher variants of the service time distribution, are calculated by appropriate 
approximation of the central system characteristics.

Since March, the Dragon system has undergone extensive testing and refinement, 
particularly with a view to adding to the responsiveness of the system. The system 
now uses some 600 SAGE rules (or rule equivalents) and has taken between 16 and 
20 man weeks of effort to produce so far — excluding the writing of the network 
queuing model -  this short time being a direct result of the extensive human sizing 
knowledge base already existing inside ICL.

Where a coherent knowledge base does not already exist, a very great deal of effort 
can be involved in the knowledge elicitation process required to gather together the 
rules for an expert system. This is likely to be greater than the actual time spent 
coding up the rules. Even where a human knowledge base exists, the operation of 
encoding this knowledge into expert system rules is likely to uncover omissions and 
inconsistencies in the knowledge base. Certainly this occurred during the building 
of the Dragon system.

Validation of Dragon has been carried out at two levels:

(i) The performance information contained in the SAGE rules has been vali-
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dated by extensive comparison of ‘hand’ calculations against measure­
ments.

(ii) The Dragon logic has been compared with validated hand sizings, princi­
pally using the SAGE TRACE facility.

In the second of these, and the only specific to the development of SAGE-based 
expert systems, very few errors have been encountered in encoding the rules and 
these have rapidly been revealed using the TRACE facility.

A short annotated extract from the log of a typical Dragon consultation is given 
in Appendix 1. This shows precisely what is displayed on the screen and illustrates 
both the general style of the conversation between the user and the system, and 
the range of commands and responses. The form of the SAGE rules used in Dragon 
is illustrated by the extract given in Appendix 2; this is from the part that calcu­
lated the size of the database.

Dragon can be accommodated on an ICL PERQ; the example from which the 
Appendices are taken was run on a 2900 system under VME, which was support­
ing about 80 interactive users.

6 Conclusions

At the start of the work described in this paper, it was not certain whether it was 
possible/practical to build the type of all-embracing sizing system required by ICL 
sales staff. As a result of the development of Dragon, we now know that not only 
is such a system possible, but also that the use of expert system techniques enables 
a totally practical, robust, usable system to be created. Such a system can reflect 
many of the attributes of the human expert:

— a flexible approach to questioning
— the ability to explain questions
— the offering of alternatives
— the filling in of gaps in the client’s information by making knowledgeable 

assumptions, etc.

For the beginner to knowledge engineering, the use o f the SAGE package enables 
knowledge to be encoded rapidly without die need to worry about data structures, 
user interfaces, etc. The very high level declarative language used to specify know­
ledge to SAGE enables rapid development with few coding errors. SAGE’s ready 
acceptance by nonprogrammers (such as the author) makes it possible for the 
expert system to be created directly by the person with the knowledge rather than 
working through an intermediary.
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The following are extracts from a consultation in which the system is used to 
specify the resources needed to handle a stated workload. The computer messages 
are given first, followed by the user’s response.

Appendix 1 Typical consultation

Type BEGIN to begin

Please type a command : BEGIN

This is the fifth version of the ICL sizing model.

Profiles of three workload types -  TP, MAC, batch -  can be 
entered into the model, which will evaluate and report on 
the resource cost of running each one.

The three sets of resource costs are then brought together and 
various sizing techniques are used to select a configuration 
suitable for running the combined workload, with interactive 
response times being calculated. A final summary is produced.

* * Are you familiar with the use of this model?
(You may answer yes or no) : N (= NO)

The model has been designed so that if the answer to a 
detailed question is unknown you do not need to guess but 
may simply respond "U" to indicate that the answer is 
unknown. The model will then attempt to obtain the 
information it requires by asking other questions, or by 
taking default values.

However, a limited number of questions must be answered 
if the evaluation is to proceed; such questions are clearly 
identified and you will not be allowed to proceed 
without giving a definite answer.

Should you need further guidance in order to answer a 
question, or WANT TO KNOW THE DEFAULT ACTION 
ON A QUESTION, this can be obtained by replying "?"

* * The model can carry out sizings at various levels of detail.
For this sizing, which of the following do you want the 
model to carry out?

1 a simple sizing
2 a detailed sizing
3 an expert sizing
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Make a choice : 1

* * Do you wish the model to evaluate a TP/IDMS workload?
(You may answer yes or no) : Y

* First consider the size of the database.

What is the total number of records (in thousands) to  be 
stored in the database?

(range is 0 -+100000) : 202

What is the average amount of data held in each individual 
database record, in bytes?

(Range 0-+1000) : 35

What is the number of different types of record to  be held 
in the database?

(Range is 1 -* 1000) : 8

What is the number of different types of sets to  be held in 
the database?

(Range is 1-+1000) : 8

The resilience and security of the TP system can be improved 
by "duplexing" the online database.

Do you require all or part of your database to be duplexed? 
(You may answer yes or no) : ?

Duplexing involves maintaining two up-to-date copies of 
the database online. If during normal operation there is a 
failure that makes one copy unavailable, the system is able 
to continue using the single remaining copy without 
interrupting the service. However, this does require extra 
online disc storage to hold two copies and extra database 
writes to keep both copies up-to-date.

The default is not to use the duplex facility.
Please reply : N

* » # « # # * * «

With a packing density of 0.70, the total disc storage 
requirement for the IDMS database is 18.71 Mb. The 
recommended database page size is 2332.00 bytes.

(other options 
simply take the 
model into more 
detail)

(= YES)

(default taken)

(first result -  
size of database)
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[The question-and-answer session continues, dealing with OCP, I/O, mainstore and 
disc store requirements and throughput. The last is as follows.]

* Now consider the throughput required.

What is the peak message rate to be supported by the TP/IDMS 
system, in messages per second?

(Range 0-M 00) : 10

What is the maximum number of terminals to be connected 
to the system at any one time?

(Range 1-> 2000) : 600

Do you specifically want a dual OCP system to be proposed?
(You may answer yes or no) : N

* * * * * * * * *

The specified work load will require a total OCP capacity of 
0.71 MIPS. Thus it will require a 2988 OCP based 
configuration. For this workload the chosen OCP system 
will deliver a total of 1.56 MIPS, giving an OCP utilisation 
of 45.46%

[Extracts from the summary produced by the system are:] 

1 WORKLOAD

The specified workload consists of:-

TP/IDMS
A TP/IDMS workload with the following 

peak message rate 
max. number of active terminals 
number of message types 
av. number of transaction phases 
Percentage of update messages 
average message profiler- 

input message length 
output message length 
number of input format effectors 
number of output format effectors 
message analyser path 
application path 
number of DML calls 
number of physical DB accesses

profile:-
: 10.00 per sec 
: 600.00 
: 13.00 
: 1.45 
: 30.00%

39.00 chs.
293.00 chs. 
3.90 
29.30
1050.00 pli 
379.47 pli 
7.80
4.16
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2 CONFIGURATION

To run the combined workload within the given constraints — 
i.e. a maximum OCP utilisation of 70.00% — requires the 
following configuration:-

2988 OCP system 
3.34 Mb. main store
1.00 string(s) of discs with:-

3.00 EDS 80 drives
7.00 FDS 160 drives

With the above configuration, the average mainframe response time will be: 
for TP 0.52 seconds.

Appendix 2 Some of the rules used by the system

The following short extract shows the style of the rules built into the system; it is taken 
from the part that calculates the size and main features of the database. The conventions 
are as follows:

1 SAGE keywords are in capitals
2 SAGE entities AREA, ACTION, OBJECT, RULE, QUESTION, ASSERTION are all 

followed by the name of the entity. This name identifies the entity to the model
3 Text strings are in quotes

AREA idms_db_main:
"Calculates size of IDMS database"

ACTION consider_db_size:
"Consider the total database size"
CONSIDER idms_db_size

OBJECT idms_db_size:
"the total database storage requirements in Mb' 
(0,500000)

(the area of the model 
concerned with 
calculating DB size)

(sets the goal of this 
area as entity 

idms_db_size) 
(descriptive text) 
(valid range)

RULE db_size_calc_l:
"This calculates the size of the database" (alternative rules:
idms_db_size IS (total_nbr_db_pages * db_page_size 1 -  used when no. 
*(1 + percent_db_duplex/100))/1000000 of pages, and record
PROVIDED nbr_db records ̂  0 AND length, are given or

av_record_data_length #  0 can be found;
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RULE db_size_calc_2:
"This calculates the size of the database" 
idms_size_database IS gross_data_vol *
(1 + percent_db_duplex/100)/db_packing_density 
PROVIDED nbr_db_records = 0 OR

2 — when only gross 
vol. is known 
"nbr_db_records = 0", 
etc. is catch-all clause

av_rec_data_length = 0

OBJECT total_nbr_db_pages: (next level entity, required by
"the total number of pages held in the IDMS database" Rule 1 to calculate db size) 
(2, 250 000000)

RULE calc_tot_db_pages
"This calculates the total number of database pages" 
total_nbr_db_pages IS nbr_space_man_pages + nbr_data_pages

OBJECT nbr_$pace_man_pages
"the number of database pages required for space management"
(1,250 000)

RULE calc_space_man_pages:
"This calculates the number of space management pages requires" 
nbr_space_man_pages IS
round ((2 * nbr_data_pages /  (db_page_size-40)) + 0.5)

OBJECT nbr_data_pages
"the total number of data pages in the database"
(1,250 000 000)

RULE calc_nbr_data_pages
"This calculates the number of data pages required" 
nbr_data_pages IS
round (( nbr_db_records * 1000 * av_db_record_length

/ (db_packing_density * (db_page_size -  40 ))) + 0.5)

These are followed by rules for setting the packing density, which give this as 0.60,0.65 
or 0.70 according as the average record length is greater than 800 characters, between 600 
and 800 or less than 600, respectively; and then by rules that use the page size already 
calculated to give the optimum page size for MDSS discs. And so on.
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The logic language PROLOG M 
in database  technology and 
intelligent know ledge-based 

system s
E. Babb

ICL Systems Strategy Centre, Stevenage, Hertfordshire

Abstract

The paper is concerned with the problem of accessing and updating a large 
shared body of data stored in a computer, in a way that will avoid the 
pitfalls to which many existing systems are liable: that is, of allowing 
insertion of data that can never be retrieved, deletions that cause previously 
inserted data to become unavailable, and insertion and deletion rules that 
contradict each other. The system proposed uses the implication network 
datamodel and is described here in terms of a logic language developed by 
the author for the purpose, PROLOG-M, meaning ‘PROLOG plus model’. 
As well as forming a single unified system for controlling access to the 
stored data and maintaining its selfconsistency, the system also provides 
a compact version of standard logic, called model variable logic, which is 
described. Examples of the use of the model are given, including a ‘real- 
life’ system running on an ICL content addressable file store (CAFS) 
installation.

1 Introduction: The implication network model

The most widely accepted practice in modelling data is to describe the real world to 
which the data applies by a collection of relationships between variables. The 
variables can be, for example pressure and time in the case of a physical system or 
part-number and supplier-name in the case of a commercial system. Tests are some­
times included for checking the validity of data, but a weakness of many systems is 
that there is nothing to prevent any of the relationships being deleted inadvertently, 
and hence large chunks of the model lost, unless some specific test has been included 
to guard against this.

During the 1970s the author was involved in the design of the ICL content address­
able file store, CAFS. One of the principal ideas in the CAFS database query 
language FIDL1,2 was the implication network datamodel. This prescribed exactly 
how the data was viewed, in the sense that it reflected the way it was connected in 
the real world, and was also able to check the consistency of insertions and deletions; 
when a proposed update would lead to an inconsistency the user was required to 
either remove his updating information or to change the structure of his model.
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The model has been developed beyond the form used in FIDL. A main purpose is 
to allow a large number of computer users to access a shared body of data in safety. 
Because of the model, the system behaves like a human in that each proposed 
alteration is checked against all previous entries; thus for a system concerned with 
engineering parts and their suppliers we can imagine the following dialogue with 
the computer:

(user)

(computer)

1 suppliers of particular parts can only exist, if parts and suppliers 
already exist separately.
OK

2 GKN is a supplier 
OK

3 supplier GKN supplies a MOTOR
sorry, contradicts statement 1, there is no separate part called 
MOTOR

4 MOTOR is a part 
OK

5 supplier GKN supplies a MOTOR 
OK

6 remove supplier GKN
sorry, contradicts statement 1 or 5

In practice these statements would be written in the formal logic language 
PROLOG-M, but this example gives an impression of what would be possible if a 
computerised natural language translator was used.

An important feature of PROLOG-M is the facility called model variable logic. 
Model variable logic is a generalisation of the current CAFS query language FIDL. 
In this language no explicit reference to relation names is required and so to obtain 
the suppliers of parts weighing more than 2 kg, the user can type:

?supplier: part-weight>2.00

The user need only have a general understanding of the meaning behind the special 
model variables ‘supplier’ and ‘part-weight’ for him to pose this query. This short­
hand in FIDL and in PROLOG-M has been made possible because they both use the 
implication network model. PROLOG-M extends the shorthand in FIDL to allow 
queries with quantifiers ‘all’ and ‘some’ to be compactly expressed. For example, 
the part numbers which have not been used on any order can be found using the 
query:

?part-number : not some order-number

Paraphrased into English this becomes ‘list the part-numbers not used on some (or 
any) order-number’.

PROLOG-M also extends the implication network model. In addition to the purely 
physical predicates (relations) allowed in FIDL, predicates can also be defined in 
terms of general rules.
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The implication network model (Section 2) provides the model builder with a 
single unified method of restricting access to the model and of maintaining its 
internal consistency. The present paper describes it in terms of the logic language 
PROLOG-M, a development of PROLOG meaning ‘PROLOG plus model*. The 
explanation is given mainly in terms of a model of a part supplier and orderer 
system for which a sample dialogue is provided (Section 3). Models are also illus­
trated by applications to modelling family relationships and a library system 
(Section 4). Finally, the valuable concept of model variable logic (Section 5) is 
defined and explained.

1.1 Glossary o f  logic programming

1.1.1 PROLOG-M. This is an enhanced totally logical form of standard 
PROLOG3,4 implemented using a technique called the finite computation principle5. 
Finite computation principle is a transformation technique that takes a potentially 
infinite program specified in logic, and transforms it into an executable program. 
PROLOG-M currently uses a LISP-like notation for predicates. However, the more 
familiar conventional mathematical notation is used in this paper.

1.1.2 Variables and constants. Variables are written in lower case and constants 
in upper case.

1.1.3 Free variables. Such a variable currently has no special value attached to it.

1.1.4 Bound variables. Such a variable contains a definite value which can be 
printed out. A variable can be bound to integers, lists, sets, relations, and even 
function or predicate definitions.

1.1.5 Predicates. These express relations among variables and have the form 
p(xl, x 2 , . . .  xn) where p is a predicate name and x l ,  x2 . . .  are variables. In a 
logic language we define the meaning of a predicate by means o f assertions: (p«- 
means ‘p defined as true’)

(user) ?owns(JOHN, 2, BICYCLE, 80)«-
(computer) OK

?o wns(JOHN,3 .BOAT,1000)«- 
OK

which defines JOHN as the owner of two bicycles each worth £80 and three boats 
each worth £1000. This predicate can then be questioned:

(user) ?owns(JOHN,qty .item,value)
(computer) qty = 2, item = BICYCLE, value = 80

qty = 3, item = BOAT, value = 1000

Notice that unlike a normal function or procedure, such a call causes any variables 
that are ‘free’ to print out all the values that the earlier assertions have defined.
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1.1.6 System predicates. These are predicates that have been built into the 
machine. For example the predicate ‘plus (x, y, z)’ would normally correspond to 
the equation x = y + z in mathematics. Such a predicate can be used just like the 
‘owns’ predicate above as the following examples show:

(user) ?plus(x,3,4)
(computer) x = 7

?plus(7,3,w) 
w = 4

?plus(x,y,ll)
sorry, infinite or uncomputable

Notice how even arithmetic predicates are reversible. This is very useful in data- 
models because it allows us to include arithmetic processes as if they were stored 
relations. Notice also that if insufficient information is provided the system is able 
to let the user know; PROLOG-M does not attempt infinite computations. Generally, 
in this paper built-in predicates are referenced using conventional mathematical 
notation.

1.1.7  Definition o f  new predicates. Logic languages allow new predicates to be 
defined in terms of existing predicates. For example: (a*-b below means a is defined 
as b)

(user) ?o wner-total(o wner,item ,tot)«-
owner(owner,item,qty,value)&tot=qty*value

gives a new predicate where the total value ‘to t’ of all the items is given by multi­
plying the number of items ‘qty’ by the value of an individual item. Thus when this 
predicate is queried we obtain:

(user) ?owner-total(owner,item,tot)
owner = JOHN, item = BICYCLE, tot = 160 
owner = JOHN, item = BOAT tot = 3000

However, just to emphasise reversibility the following query can also be asked:

(user) ?owner-total(owner,item,3000)
owner = JOHN, item = BOAT

with the third argument position bound to 3000.

1.1.8 Deletion. Definitions are deleted by typing an identical statement to the 
original assertion, but preceeded by a ‘not’. For example:

(user) ?not owns (JOHN,2,BICYCLE,80)+-
(computer) OK

will remove the earlier entry from the predicate ‘owns’.
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1.1.9 Logical implies. This uses the symbol ‘=>\ If p(x)=*q(x) then this means 
that if p(x) is true then q(x) must be true. However, if for example q(x) is true it 
does not mean that p(x) is true. If we regard p and q as sets then the set q must 
contain the set p.

1.1.10 Formulas. Formulas in this paper are restricted to conjunctions of 
predicates. This implies no loss of generality as the predicates themselves can be 
defined in terms of disjunctions.

1.1.11 Universal and existential quantifiers. These are meta predicates that 
test if an expression is true for all or some value(s) of a variable(s), respectively.

1.1.12 Implication network. The implication network p-*-q is defined in Section 
2 as having the dual meaning:

(a) p=*q
(b) representing the two formulas p & q, q.

In general q can itself be a network in which case it represents further logical implies 
and formulas.

2 The implication network model

The implication network provides the model builder with a single unified method 
of specifying constraints on changes and access to the model so that the consistency 
of the model is always maintained.

PROLOG currently contains no concept of a model and so all operations are 
unconstrained (see the sample dialogue in the glossary explaining predicate). The 
purpose of including the implication network model in PROLOG is to provide the 
same kind of constraints and compact language facility that ICL is now building 
into some of its CAFS database products. The insertion or deletion of data (and 
rules) can now be prevented, if they prove to be inconsistent with the model.

The implication network described in the following provides a constraint on 
inserts and deletions to the model. This is done by the machine calling an update 
predicate which by using the network determines if the new model state is still 
consistent with the network. The compact model variable logic is provided by a 
master predicate which again uses the network to give the relationship between 
any combination of model variables.

2.1 Constructing an implication network

2.1.1 Stage 1 -  identifying constraints. The model builder first identifies the 
elementary predicates. When an argument position in two different predicates refers 
to the same class of object then the same variable name must be used. For example 
he might identify three predicates in a part supplier system:
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ps(part supplier)
p(part,partweight)
s(supplier,suppliercity)

He then observes that the existence of some entities implies the existence of other 
entities in the system. In terms of the model this means that data in one predicate 
logically implies that certain data must exist in other predicates. For example, he 
might decide that the existence of a supplier of a part logically implies that 
suppliers and parts must also exist separately:

ps(part .supplier) => p(part,partweight) & 
ps(part,supplier) =*> s(supplier, suppliercity)

The user can assert:

(user) ?ps(NUT,GKN) <-

but he will only get the response OK if the data NUT exists in p and GKN exists in 
s. It also follows that an attempt to remove NUT from p using:

will be unsuccessful unless NUT,GKN is missing from ps.

2.1.2 Stage 2 -  identifying the connection between entities. The model builder 
also wishes to be able to retrieve information from all the predicates just as if he 
were observing reality. For example, he observes that three formulas are sufficient:

ps(p art .supplier) & p(part,partweight) & s(supplier,suppliercity)
p(part,partweight)
s(supplier, suppliercity)

The first formula simply joins all predicates together on the assumption that they 
are all connected by being part of the same model. The other two formulas are 
necessary because the ‘logical implies’ constraint above allows a part pi to exist in 
p even though pi does not exist in ps. No separate formula is needed to represent 
the ps predicate because this can only contain parts and suppliers that exist. Notice 
that the formula p&s is not included, because such a join has no physical meaning.

2.1.3 Stage 3 -  drawing the implication network. It is possible to write the 
‘logical implies’ identified in Stage 1 in the form of a network rather than the two 
expressions used earlier:

The three formulas identified in Stage 2 appear from this network by constructing 
each formula from the conjunction of each predicate with all predicates that this

(user) ?not p(NUT,77) <-

ps(part .supplier)
p(part,partweight) 

s(supplier, suppliercity)
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predicate logically implies. Such an interpretation seems to serve well as it specifi­
cally excludes unnatural connections such as p&s while unifying the idea of 
constraint and connection.

When the network has this dual interpretation, the arrow *-*■’ represents both logical 
implies *=>’ and a set of formulas connecting the predicates together. Thus the 
implication network o f the part supplier system is:

The systems analyst/scientist when using this network model must always visualise 
both these formal interpretations when constructing a model.

2.2 Using the implication network

The network is stored in a computer as a predicate called ‘network’. Thus the net­
work above would be input to the computer using the two assertions:

?network(ps(part,supplier), p(part,partweight)) +■
?network(ps(part, supplier), s(supplier,suppliercity)) +-

Every update automatically invokes the logical implies’ interpretation of this 
network using the update predicate defined below. However, every query auto­
matically invokes the ‘formula’ interpretation of this network using the master 
predicate below.

2.2.1 Update predicate. The update predicate checks that all the logical implica­
tions between the predicates in the network are true after any alteration to the 
predicates composing the model. Thus in terms of the part supplier example, we 
replace every -+ by => and check the resulting formula:

for all part, supplier, partweight, suppliercity

is true for all states of the model variables.

2.2.2 Master predicate. The master predicate m (xlpc2,. . . )  uses the model 
variables x l ,x 2 ,. . .  and selects the formulas in the model which include all these 
varables. Surplus variables are ignored after these formulas are interpreted and the 
data from all the formulas united into a single set. For example, if we ask the model 
how the variable’s partweight and suppliercity are related the system will use the 
formula ps&p&s. However, if the user asks for a list of suppliers and their cities the 
system uses formulas ps&p&s and s, although in this case because ps&p&s**s the 
larger formula is redundant and only s is used.

p(part,partweight)
y

s(supplier, suppliercity)

ps(part .supplier)
p(part, partweight) 

s(supplier,suppliercity)
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2.3 Formal definition o f  the model

A formal definition of the implication network model is given in the Appendix.

3 Dialogue with a simplified part-supplier-orderer system

This session illustrates setting up a part-supplier-orderer model, changing the data 
and rules in the model and querying the model. The orders model contains two 
predicates ps and pso with typical data as shown below. The first predicate ps gives 
the unit price of a part from a particular supplier. The second predicate pso gives 
the quantity of parts that an orderer wants from a supplier.

Each query or assertion is preceded by a question mark generated by the machine. 
The output messages below are the absolute minimum; a commercial version of 
PROLOG-M would explain itself if asked.

ps (part, supplier,price)
NUT GKN 2
BOLT GKN 3
WASHER GKN 1
BOLT LUCAS 1000

pso(part, supplier,orderer, qty)
NUT GKN JIM 200
BOLT LUCAS HENRY 2

3.1 Creating the model

An extra model variable ‘cost’ is required which gives the total cost of each order 
by multiplying the unit price by the quantity. This is represented by a predicate 
ord by typing the definition:

(user) ?ord(part,supplier,orderer,qty .price,cost) ■*-
pso(part,supplier,orderer,qty)sp & cost = qty * price

(computer) OK

In addition, the user does not want orders placed unless there is a price quoted in 
the part-supplier catalogue ps. Thus he wants this new ord predicate to imply the 
ps predicate. The implication network is therefore:

ord(part, supplier, orderer, qty .price, cost) ->ps(part, supplier, price)

To create the data above we assert that ord implies ps using the system predicate 
called network:

(user) ?network(ord(part,supplier,orderer,qty .price,cost),
ps(part,supplier,price)

(computer) OK
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3.2 Insertion o f  data

The predicates pso and ps are now updated using a series of PROLOG-M assertions:

?ps(BOLT,LUCAS,1000) +- 
OK

After this and every change to a predicate the update predicate is called to check 
that ord still implies ps. In this case, the update predicate is still true after this 
assertion, and so a further assertion is made:

?pso(BOLT,LUCAS,HENRY,2) +- 
OK

The pair BOLT LUCAS is present in the implied predicate ps and so this insert is 
allowed. The user now types:

?pso(NUT,GKN,JIM,200) +-
INFINITE OR UNCOMPUTABLE TASK

The pair NUT,GKN does not exist in the implied predicate ps and so the insert is 
flagged uncomputable awaiting a suitable update to the predicate ps. Pairs of 
inserts can be made:

?pso(NUT,GKN,JIM,200) «- & ps(NUT,GKN,2) +- 
OK

The pso update is attempted first. However, this is delayed because of the absence 
of NUT.GKN in ps. The insert ps is therefore attempted followed now by a success­
ful insertion to pso.

The dialogue above continues until all the tabulated data above has been inserted 
into the predicates composing the model.

3.3 Deletion o f  data

To illustrate deletion here is a short session to remove some data:

?not ps(NUT,GKN,2) +-
INFINITE OR UNCOMPUTABLE TASK

Breaks logical implication ord to ps and is therefore uncomputable. To delete this 
item we must first remove ‘NUT,GKN,JIM,200’ from pso by adding this in the 
above command:

?not pso(NUT,GKN,JIM,200) +- & not ps(NUT,GKN,2) +- 
OK

This is just two assertions written on one line. The allows the machine to choose
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the execution order so that the overall deletion is successful.

3.4 Querying the model

In this session the data is assumed to be as in the box above. To list parts using 
formula ps the user types:

(user) ?m(part)
(computer) part=NUT 

part=BOLT 
part=W ASHER

This uses formula ps to retrieve this information. To list the suppliers of washers 
the system again uses formula ps:

?m(part,supplier) & part=WASHER 
supplier=GKN part= WASHER

To list the parts, except BOLT the user types:

?m(part) & not part=BOLT 
part=NUT 
part=W ASHER

To list part, supplier pairs even when the query involves other variables a ‘colon’ 
is used. To obtain the suppliers of parts with a cost equal to 400 the user types:

?part,supplier: m(part,supplier,price) & cost=400 
part=NUT supplier=GKN

However, because the ‘cost’ predicate is reversible we can also obtain the cost of 
all orders for part NUT and supplier GKN:

?cost:m(part, supplier, price) & part=NUT & supplier=GKN 
cost = 400

To obtain the parts which have been ordered from some or any person, the user 
types:

?m(part) & some orderer(m(part,orderer)) 
part=NUT 
part=BOLT

To obtain the parts which have not been ordered from some person, the user types:

?m(part) & not some orderer(m(part,orderer)) 
part=W ASHER
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To list parts and suppliers:

?m(p art,supplier) 
part=NUT supplier=GKN
part=BOLT supplier=GKN
part=WASHER supplier=GKN 
part=BOLT supplier=LUCAS

From this listing it can be seen that the supplier of all parts is GKN. To list this 
using the computer the user types:

?m(supplier) & all part (m(part)^m(part,supplier)) 
supplier=GKN

The suppliers of not all parts:

?m(supplier) & not all part (m(part)=>m(part,supplier)) 
supplier=LUCAS

The other parts made by the supplier of NUTs: (the ‘_x ’ allows two model variables, 
ranging over the set of parts, to exist at once)

?part:m(part_x,supplier) & part_x=NUT &
m(part,supplier) & not part=part_x part=BOLT 

part=W ASHER

4 Examples of networks

The networks that follow should really only contain predicates but sometimes the 
definitions of predicates are included instead, in which case they are in italics.

4.1 Family network

The following model could be used by a local authority, government or educa­
tional authority to model the members of a family. The model variables are male, 
female, father, mother and child. A practical model would be much larger and 
would include many additional facts such as name of doctor, age, record of illnesses, 
qualifications etc.

We would store facts as quite neutral assertions such as:

?pmale(JOHN-SMITH) <-

However, by including constraint rules we can reduce the chance of errors. Thus 
using the model below, the statement:

?pfemale(JOHN-SMITH) <-
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will be flagged as uncomputable because we have included a rule that males and 
females cannot have the same name. This is not to say we could not include 
additional predicates to represent people whose names are ambiguous, such as 
Leslie.

1
pmale (male) -*• not pfemale (male)

2
pfemale (female) -*■ not pmale (female)

4

parent (father, mother, child)

-*■ pfather (father) -► pmale (father)

3 5
■ -> pmother (mother) -* pfemale (mother)

-*• pmale (child) or pfemale (child)

where the numbered rules mean:

1 A male is not a female. We cannot include a name into the pmale predicate 
if that name already exists in the pfemale predicate.

2 A female is not a male.
3 A father and mother are only parents of a child, if there exist a father and 

mother and their child is male or female.
4 A father is male.
5 A mother is female.

4.2 Library network 

A town library contains the following rules.

1 A borrower is someone who is a client of the library and who has fewer than 
six books on loan.

2 A client of the library is someone who is older than 5 years, lives in Stevenage 
and is a ratepayer.

1
pborrower (client,book,borrowdate) -*■ pclient (client,age,town) & test

using pborrower that books per 
borrower less than six

2
pclient (clientage.town) -*■ age>5 & town=STEVENAGE &

ratepayer (client, town)
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The main purpose of this model is to check updates to the model. Thus each time 
a book is borrowed we assert:

?pborrow(JACK-SMITH,PRIDE-AND-PREJUDICE,50CT1983>-

Two checks are then made by the model. First that JACK-SMITH is a client of the 
library using pclient. Secondly, that JACK-SMITH has borrowed fewer than six 
books. In this system the user must remove the original assertion when a book is 
returned.

In addition to this crucial update role, the model can also be used to answer some 
quite useful questions such as ‘what books have seven year olds borrowed’:

?m(book,age) & age=7.

4.3 An actual orders model

The following orders model has run on the ICL CAFS and consists of six basic 
predicates. Each predicate describes some semi-independent aspect of an order. 
Thus the supplier predicate s describes supplier together with a large number of 
descriptive argument places such as location, name etc.

s(supplier-number,. . . .  ), 
p(part-number,. . .  ), 
ps(part-number,supplier-number,. . .  ), 
o(order-number,supplier-number,. . . ) ,  
po(part-number,order-number,. . . ) ,  
pod(part-number,order-number,delivery date ,. . . )

dates when parts in an order will be delivered

available suppliers 
available parts
catalogue of parts and supplier 
complete order to a supplier 
entry in order for a part

These were combined into the following network model:

r  P

-*■ p s -

pod -> po -

^  o
s

However, this is only part of the network. In fact, each predicate has a primary key 
which uniquely identifies each entry in the predicate. For example, the primary key 
of the ps predicate is the ‘part-number, supplier-number’ pair, which can be 
checked by a predicate key (ps). Thus to represent this there is an additional link in 
the network:

ps(part-number,supplier-number,. . .  )->key (ps)
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Even larger networks result from including job-number in the model so that the 
originator of an order is also included. Some of these predicates can contain 10 to 
20 arguments. To answer a query by actually writing this out would be impracti- 
cally complicated -  hence, the need for the master predicate.

5 Model variable logic

One of the big advantages of the implication network model is that model variables 
can even allow logic queries to be posed with no mention of the master predicate. 
The resulting logic language, although completely formal, has a compactness 
comparable with English and introduces the notion of ‘typing’ into logic. Although 
the translation is carried out by the machine, it is nevertheless important that the 
rule be simple enough for the machine translation to be easily explainable.

5.1 Conjunction rule

Consider the query ‘suppliers of NUTs ordered by JIM’:

?supplier:part=NUT & orderer=JIM

The machine accumulates all the variables mentioned before the colon and in the 
conjunction. It then includes a master predicate with all these variables as its 
argument:

?supplier:m(supplier,part,orderer) & part=NUT & orderer=JIM.

This set of accumulated variables is called the context. A colon such as the one 
above creates a new local context starting with just the variables before the colon.

5.2 Disjunction rule

The suppliers of the part NUT or to the orderer JIM is written as:

?supplier:part=NUT or orderer=JIM

Such a query is actually implemented as two separate processes:

?supplier: part=NUT 
?supplier: orderer=JIM

but with their outputs being combined. Thus using our conjunction rule we obtain:

?supplier:m(supplier,part) & part=NUT 
?supplier:m(supplier,orderer) & orderer=JIM

which translates back to the single query:
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?supplier:m(supplier,part)& part=NUT or
m(supplier,orderer)&orderer=JIM

This shows that the context for each component of a disjunction is dealt with 
separately.

5.3 Some quantifiers

Queries involving quantifiers are particularly complicated in standard predicate 
calculus. One big benefit of model variables is in simplifying queries involving the 
quantifiers. The parts with no orderers can be obtained using the query:

?part: not some orderer

Explicitly, this means: consider each part in the set of parts m(part) and retrieve a 
part if no relationship m(part,orderer) can be found. Thus we would expect this to 
translate to:

?part:m(part) & not some orderer( m(part,orderer) )

In detail, the original query is first transformed to normal logic notation:

?part: not some orderer(true)

The only free variable in this expression is ‘part’ and so we add m(part) using our 
conjunction rule:

?part:m(part) & not some orderer(true)

However, quantifiers create local variables and therefore local contexts. Thus the 
context where true has been written is part and orderer and so ‘true’ is replaced by 
m(part,orderer) to give:

?part:m(part) & not some orderer( m(part,orderer) )

The answer to this query is WASHER using the data provided in Section 3.

5.4 Universal quantifiers

The suppliers of all the parts, in the catalogue of parts except NUT, can be 
obtained using:

?supplier : all part: part O N U T

The colon after a quantified variable is a way of restricting the set of parts con­
sidered by a quantifier, in this case excluding NUT.

Translation of this occurs as follows. The only free variable in the whole expression
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is ‘supplier’ and so from the conjunction rule the above translates to:

?supplier: m(supplier) & all part:part <>NUT(true)

As mentioned earlier, the colon resets the context and so ‘part:part <  >NUT’ 
translates to ‘part:m(part)&part O N U T ’ using the conjunction rule. However, the 
context where ‘true’ has been written is ‘supplier’ and the locally created ‘part’ so 
that “true” is replaced by m(supplier,part) to give the explicit query:

?supplier : m(supplier) &
all part:m(part)&part <  >NUT(m(supplier,part))

5.5 Dialogue with model variable logic

The earlier session using explicit reference to the master predicate is repeated here 
using model variable logic:

?part:
?supplier,part:part=W ASHER 
?part:not part=BOLT 
?part,supplier : price <20 
?p art: some orderer 
?p art: not some orderer 
?part,supplier:
?supplier: all part 
?supplier: not all part

lis t the other parts supplied by the supplier of a different part _ x  equal to NUT:

?part: some supplier(part_x=NUT & not part=part_x)

In each case the query is greatly simplified and a large amount of unnecessary detail 
removed.

6 Discussion

This paper has suggested the incorporation of the implication network model into a 
logic language. The combination of the two ideas is the model building language 
PROLOG-M.

A restricted form of the implication network model is already used with some 
success by certain customers of the ICL content addressable file store (CAFS).1,2,6 
In current database systems, the model has helped users to avoid inserting invalid 
data and removing data on which other data depends. It has also made it possible 
for many queries which, in the past, could only be posed by skilled programmers to 
be posed by users directly.

An orders model,2 using an implication network, has been efficiently implemented
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using CAFS. The model contained 15 to 20 predicates with 60 Mbytes of physical 
data in the form o f relations. The nonphysical predicates were restricted to certain 
built-in operations such as the checking of primary keys. However, instead of 
checking the consistency of the whole model each time a change is made, only the 
areas of the model actually affected are checked for consistency.

Logic may not be considered efficient enough for the construction of all algorithms. 
The model variable logic might be the final point where a language meets the user. 
Underneath is the model and the predicates used in the model. However, under­
neath this is the existing library for performing specific computational tasks.

Most of the examples in this paper have been in the database and intelligent know­
ledge base area. However, PROLOG-M can be used to model scientific systems. In 
this case the model relates variables such as time, distance, voltage, flux, atomic- 
weight, etc.

Here is a simple database example which compares model variable logic with 
standard logic. We want the supplier who supplies all the parts in the part catalogue. 
In standard logic this must be written:

s : S(s,-,-,-)&all p (P(p,-,-,- >=>SP(s,p,- ))

Using tuple variables7 this would be written as:

S.s : all P some SP (SP.s=S.s & SP.p=P.p)

Using model variables: 

s : allp

Apart from the brevity of model variable logic, it also paraphrases easily into 
English — in this case “supplier of all parts” .

7 Conclusion

This paper has suggested that a unified mathematical model should be included as 
an integral part of a logic language. The benefits o f this approach are the compact 
model variable logic and an improved consistency in data or rules in the model.
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Appendix

Formal definition o f  the implication network model

The model can be defined formally in predicate calculus as a predicate called model 
which relates a set of model variables.

Formal definition of the model

(1) model (w l,w l,. . .  ) +-u & m (w l,w 2,. . .  )

If the update predicate is true then use the master predicate to
generate instances of w l,w2,w2,. . .

(2) m(wl ,w 2,. . . ) « -  formula(h) &
(wl ,w 2,. . .  ) is a subset of (zl ,z2 ,. . .  )& 

interpret h

Consider each formula h. (*formula (h) defined below)
If the variables (w l,w 2,. . .  ) are a subset of the 
variables (z l,z2 ,. . . )  used in formula h then interpret 
formula h and thereby bind the variables in (w l,w 2,. . . )

(3) u +- for all model variables, for all f( . .  ),g( . . .  )
f(xl,x2, . . . ) - >  g(yl,y2, . ..)= >  

f(x l,x 2 ,. . .  >>g(yl,y2,. . .  )

Check that every link (f -»• g) obeys the logical implication 
f=>g for all model variables

* The formulas are obtained from the network f  -+ g by creating one 
formula per node; nodes can be empty. Thus at node x we create a 
formula which is the conjunction of the predicate at x with all the 
predicates directly or indirectly pointed to by x.
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Using the formal model

These formal definitions are explained using a part-supplier model:

fl (part .supplier)
-*■ f2(part)

^  f3(supplier)

Master predicate

The master predicate, rule 2, is used to obtain the instances of supplier:

(user) ?m(supplier)

Using the definition of the master predicate above we first generate all the formulas 
in the model in turn:

(m/c) ?formula(h)
h=fl(part,supplier)&f2(supplier) therefore zl=part, z2=supplier 
h=f2(part) therefore zl=part
h=f3(supplier) therefore zl=supplier

The model variable xl=supplier is a subset of zl=part, z2=supplier and so the 
instances of h=fl (part,supplier)&f2(supplier) can be generated:

(m/c) ?h
supplier = GKN
supplier = LUCAS

The variable xl=supplier is also a subset of zl=supplier and so the instances of 
h=f3(supplier) can also be generated:

(m/c) ?h
supplier = GKN
supplier = LUCAS 
supplier = GEC

Update predicate

Updates are checked against the update predicate given in rule 3 above: In English 
this line checks that every arrow:

f “*g

obeys the logical implication f=*g for all model variables. In this example there are 
two links obtained using the query:
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(m/c) ?network(f,g)
f=(f 1, part ,supplier)g=(f2, part) 
f=(fl,part ,supplier)g=(f2,supplier)

Thus there are two tests to check that f\=>f2 and fl=>f3 for all instances of supplier 
and part:

(m/c) ?for all (part.supplier) ( f 1 (part,supplier) => f2(part) &
f 1 (part,supplier) => f3(supplier) )
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QPROC: a  natural language 
d a tabase  enquiry system  
implemented in PROLOG

M.G. Wallace and V. West
ICL Application Systems Division, Bracknell, Berkshire

Abstract

QPROC is an interactive natural language enquiry system providing access 
to a relational database. Both the system and its database are implemented 
in the PROLOG language. The paper aims to demonstrate the power and 
practicality of PROLOG for this type of application. After an introduction 
to QPROCs facilities and its architecture, the main body of the paper is 
concerned with the most interesting aspects of the implementation. These 
include the representation of natural language grammar and the generation 
of formal database queries.

1 Introduction

In 1979 ICL, the BBC and the Science & Engineering Research Council set up a 
bursary at the University of Southampton to investigate the use of natural language 
for database enquiries. The work was undertaken by one of us (MGW)1 and a pilot 
implementation (QPROC) was completed.

QPROC is an interactive natural language enquiry system providing access to a 
relational database. Both the system and its database are implemented in the 
PROLOG language. This paper does not call for any great familiarity with PROLOG, 
but the reader may find it helpful to consult the glossary of terms given by Babb2 
in his paper in the same issue of this journal; a fuller treatment is given in the book 
by Clocksin and Mellish.3 PROLOG provides two features which make it particularly 
suitable for parsing natural language: sophisticated pattern matching and automatic 
backtracking. It has therefore often been chosen for natural language applica- 
tions.4,5,6

The main aim of this paper is to demonstrate the power and practicality of 
PROLOG for this type of application. After an introduction to QPROCs facilities 
(Section 2) and its architecture (Section 3), the main body of the paper is concerned 
with the most interesting aspects of the implementation (Section 4). The original 
version of QPROC ran under UNIX7 on the Southampton PDP 11/34 and was 
converted to run under VME on the ICL 2900 using the PROLOG system developed 
at the University of York.® Some remarks on the portability of PROLOG are given 
in Section 5.
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2 Facilities

The following session on an election database illustrates some of the QPROC 
facilities. Each of the user’s queries or commands is followed by the system’s 
response. A query must end with a question mark, full stop or exclamation mark. 
The queries have been numbered for reference in the notes that follow. The election 
database records (fictitious) details of candidates, constituencies and elections.

How old is Mrs Smith? (1)
37

List the Tory candidates. (2)
2 were found:

Smith Disraeli

Which seats are Smith and Bolton the members for? (3)
Smith: Worthing
Bolton: Southampton

Who stood at Worthing for the Labour party in 1974? (4)
Jones

Smith won what, when, where? (5)
elect 1
electl: 1974
1974 and electl: Worthing

Where were the elections in 1974 and 1975? (6)
electl: Worthing 
elect2: Newham

Name a seat whose member is a Liberal. (7)
Southampton

Who stood in an election at Southampton? (8)
3 were found:

Freeston Robson Bolton

Who stood in the election at Southampton? (9)
The computer cannot understand what 
“the election at Southampton” refers to.

Who is a professor around here? (10)
?????? ????

Bolton

Bye (11)
Goodbye

394 ICL TECHNICAL JOURNAL NOVEMBER 1983



Notes

(4) The prepositional phrase ‘at Worthing’ qualifies the verb ‘stood’.

(6) The prepositional phrase ‘in 1974 and 1975’ qualifies the noun ‘elec­
tions’.

(7) Relative clauses may be freely used.

(8 ,9 ) As there was more than one election at Southampton, the singular 
definite noun phrase ‘the election at Southampton’ causes an error 
message. This condition is known as presupposition failure.

(10) Unrecognised words are ignored, the offending word(s) being indicated 
by question marks.

3 Architecture

Fig. 1 illustrates the run-time architecture, which consists of application-independent 
and application-dependent components. The application-independent components 
are the initialiser, controller, parser, lexical analyser and formal query language 
interpreter.

The INITIALISER  consults the other PROLOG files and enters the CONTROLLER 
which accepts the next natural language query from the user and passes it to the 
PARSER for grammatical analysis. The parser is generated by a PROLOG program 
from the natural language grammar rules (see Section 4.1). To dissect the query 
into its individual words the parser uses the LEXICAL ANALYSER. The result of 
parsing is a formal database query which the controller passes to the FORMAL 
QUERY LANGUAGE INTERPRETER. The query is expressed in a language 
known as ‘DESCRIPTIONS AND QUALIFIERS’ (see Section 4.3.1). The parser 
may also generate formal (sub) queries, primarily to  find the references of definite 
noun phrases like ‘the election at Southampton’.

The application-dependent components are the live dictionary, data dictionary, 
data values and data. The live dictionary contains entries for all the natural language 
words relevant to the application (its generation is described later in this Section). 
The data dictionary provides a definition for the application relational database, in 
terms of its relations, attributes and domains. The data values give the values which 
may exist for each domain, which may be more extensive than those currently in 
the data. The data provides the database contents.

Fig. 2 illustrates the generation of the application live dictionary. This involves two 
further application-independent components, the core dictionary and the 
dictionary generator, and one further application-dependent component, the 
application dictionary. The core dictionary contains entries for the natural language 
words common to all applications (the current English version contains words like 
‘a’, ‘and’, ‘is’, ‘list’, ‘which’ and ‘who’). The application dictionary contains entries 
for the natural language words specific to an application but not included in the
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key:

program file of complex PROLOG rules

( data file of PROLOG facts and simple rules

Fig. 1 Run-time architecture

data dictionary or data values (e.g. synonyms like ‘Tory’ for ‘Conservative’ and 
‘seat’ for ‘constituency’).

4 Implementation

The aspects of the implementation discussed here are:

— the representation of natural language grammar
— the natural language dictionaries
— the generation of formal database queries
— an additional component, the convertor: its place in the architecture is de­

scribed below.
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4.1 The representation o f  natural language grammar

4.1.1 The grammar compiler. Fig. 3 illustrates the generation of the parser. The 
grammar compiler generates it from the grammar rules. All the components involved 
are application independent.

The grammar rules are expressed in a short-hand form of PROLOG which is more 
readable and concise than the full form (for a detailed discussion see Clocksin and 
Mellish).3 Some PROLOG implementations support grammar rule notation, but 
QPROC contains its own, more general, grammar compiler to generate the full form. 
Extra features in the grammar compiler include:

— left recursion is permitted in rules
— the start and end points of the current phrase are available for error reporting: 

see for example Section 2, query 9
— the ability to look ahead at subsequent words in the sentence.

4.1.2 Semantics. Because QPROC is only attempting to recognise the restricted 
semantics of queries that can be put to a relational database, the analysis of the 
sentence is more limited than would be necessary for general linguistic purposes.

A sentence has a verb and a number of verb modifiers. The verb modifiers are noun 
phrases or adverbial phrases that modify the verb. In the sentence:

Smith contested an election at Worthing
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the verb is ‘contested’, and the verb modifiers are ‘Smith’, ‘an election’ and ‘at 
Worthing’. The verb modifiers can be distinguished by their grammar. If one 
appears before the verb it is the subject. After the verb it is an object.

QPROC’s dictionary associates with each verb a database relation and with each 
proper noun a data value. Thus we can illustrate a simple example of mapping a 
natural language query onto a database:

sentence: Bolton contested which election?
grammar: subject verb object
meanings: ‘Bolton’ contest X (variable)

database: contest person election
‘Smith’ ‘elect 1’
‘Bolton’ ‘elect 1’

PROLOG grammar rule notation this analysis can be expressed as:

sentence (Meaning) -*■ subj(Value),
verb (Relation, Attributes), 
objects (list),

{Match ([Value I L ist], Attributes, Args), 
Meaning = . .  [Relation I Args]}

Fig. 3 Generation of the parser
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This grammar states that a ‘sentence’ comprises:

‘subj’ and ‘verb’ and ‘objects’

Each of these must also have a grammatical definition. The goals in curly brackets 
are ordinary PROLOG goals, which derive the meaning.

For the query ‘Bolton contested which election?’, the ‘meaning’ would be the 
PROLOG structure:

‘contest ( ‘Bolton’, X)’

and when this is executed against the database it yields the answer X = ‘electl’.

4.1.3 Using database domains. In the query:

Who contested an election in 1974 in Newham?

the two verb modifiers ‘in 1974’ and ‘in Newham’ are grammatically indistinguish­
able. Their order of occurrence within the sentence might equally well be reversed 
so even this cannot be used to make the distinction between them. However, verb 
modifiers can be distinguished not only grammatically, but also semantically. When 
a verb modifier is interpreted onto the database it is associated with a database 
domain. In the election database, ‘Newham’ is mapped to the data value ‘Newham’ 
which belongs to the domain of ‘constituencies’. ‘1974’ is a ‘date’. Thus the 
example sentence is mapped onto the database as follows:

sentence: Who contested an election in 1974 in Newham?
grammar: Subject verb object in-object in-object
meanings: person:X contest election:Y date: 1974 constituency:Newham

(the name before a colon is a domain name, which is usually the same as the attri­
bute name)

database: contest person election date constituency
‘Smith’ ‘elect 1’ 1974 ‘Newham’
‘Jones’ ‘electl’ 1974 ‘Newham’

4.1.4 The noun phrase. The simplest noun phrase is a name, ‘Bolton’. QPROC 
deals with compound noun phrases, as well, which may include:

a determiner *the’, ‘a’
a number ‘10’
adjectives ‘southern’, ‘50 year old’
classifiers and headnouns ‘Newham election’
postmodifiers ‘The vote for Smith'
relative clauses "The seat where Bolton was the M F
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The components of a noun phrase are to some extent reflected in the syntax of 
descriptions and qualifiers, given in Table 1, Section 4.3.1.

Adjectives, classifiers, postmodifiers and relative clauses are only meaningful if they 
can be linked with the headnoun of the noun phrase. To forge this link QPROC 
uses the data dictionary. Thus if the database has a relation ‘candidate’ with 
attributes ‘vote’ and ‘person’ then ‘the vote for Smith’ means ‘the value of the 
“vote” attribute in the candidate relation, where the “person” attribute is 
“Smith” ’.

To illustrate the preceding discussion we now give one of the PROLOG clauses for 
‘nounphrase’ which actually occurs in QPROC; the lines have been numbered for 
reference in the notes that follow:

nounphrase (Dom: Desc, Num & Case) -> (1)
nounphrase (Dom: Descl, _  & Case), (2)
(explicit (findrefs (Dom: Descl, Desc, F, L), F, L); (3)
nounmod (Dom: Desc 1, Desc, Num)) (4)

Notes

(1) ‘nounphrase’ returns a description (‘Desc’), with an associated database 
domain (‘Dom’). For grammatical purposes it also returns a number 
(‘Num’) and case (‘Case’) (see also Section 4.2 ‘inflection’).

(2) The clause is left recursive, its first goal being a call to ‘nounphrase’ itself.

(3) ‘findrefs’ checks if the nounphrase is definite (e.g. 'the candidates at 
Newham’), and if so finds all the references in the database.

‘explicit’ makes available the start and end points (‘F’ and ‘L’) of the 
nounphrase in the sentence which contains it. If ‘findrefs’ fails, it notes an 
error (see Section 2, query 9).

(4) If ‘findrefs’ fails, the goal ‘nounmod’ is called to look for postmodifiers.

4.2 The natural language dictionaries

The core, application and live dictionaries have already been introduced in Section 
3. The form of dictionary entry used is described below (the live dictionary is 
slightly different).

Each dictionary entry is a PROLOG fact for the predicate ‘die’ and has four 
elements:

part of speech 
word 
inflection 
meaning
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An example is

die (relative pronoun, “who” . 
QPROC supports the following:

, _  , person: _  )

Part o f  speech. Example(s)
sentence (example) bye
verb be, list, win
noun seat
noun phrase M rs.. .
adjective old
value (names a data value) tory
relative pronoun who
interrogative pronoun who
determiner the
interrogative determiner how many, which
preposition for
particle not
conjunctive and, or

Pronouns, adverbs and interjections are not yet provided.

Word. This may be a single word, e.g. ‘who’, or may have a continuation, e.g.
‘ “how” ___ “many” ’, ‘ “what” ____ die (verb, _  , _ , be)’. The last expects any
verb with meaning ‘be’ after the word ‘what’.

Inflection. Only irregular inflections are held in the dictionary as regular ones are 
deduced by the lexical analyser. Many words have no inflection, indicated by

For verbs, the possible inflections are:
present, infinitive, perfect, past participle (‘-e n ’) 

so there are entries like:
die (verb, “did” , perfect, die (“do”) )

For nouns, the possible inflections are 
number & case

where number is singular or plural or both and case is nominative or accusative or 
both, or genitive. An example is

die (relpron, “whom” , _  & accusative, person _  )

Meaning. Several types of meaning are illustrated in the above example: 
function word, recognised by the parser, e.g. ‘be’ 
synonym, e.g. ldic(“do”)’ 
variable over a specified domain, e.g. person: _ )

4.3 The generation o f  formal database queries

4.3.1 Descriptions and qualifiers. The formal query language used, called 
‘DESCRIPTIONS AND QUALIFIERS’, is recursively defined in terms of descrip­

ICL TECHNICAL JOURNAL NOVEMBER 1983 401



tions which refer to sets of data items and qualifiers which assert how the items are 
related. This structure is close to the structure of natural language, as descriptions 
interpret nounphrases and qualifiers interpret clauses. It is intended to be 
independent of the particular natural language.

Once the query has been interpreted by the formal query language interpreter, not 
only will the meanings be available but also the references in the database of each 
nounphrase. This potentially helps with the interpretation of succeeding queries 
which operate within the context of preceding ones or refer back to them, but 
QPROC does not yet take advantage of this. It also helps with the diagnosis and 
reporting of presupposition failure (see Section 2 query 9).

The syntax of DESCRIPTIONS AND QUALIFIERS is shown in Table 1. A query 
is expressed as a PROLOG structure, using the functors ‘desc’ and ‘qual’, certain 
operators ( t ,  &, or, not, is, =) and some atoms (‘true’, ‘false’, ‘any’ etc.). The 
RELATIONS and ATTRIBUTES are those of the application database. VARIABLE 
stands for a PROLOG variable and LITERAL for a PROLOG atom or integer.

Table 1 The Syntax of DESCRIPTIONS AND QUALIFIERS

Notation
Terminals appear in lower case, nonterminals in upper case.

Alternatives are separated by a vertical bar.

. . .  indicates optional repetition.

Query
QUERY -* RULE

Qualifiers
QUALIFIER
RULE

ARGUMENTS
VALUE

qual (VARIABLE, RULE) 
true [false I
RELATION f  [ARGUMENTS] I
not RULE I
RULE & RULE I
RULE or RULE I
DESCRIPTION is QUALIFIER
ATTRIBUTE = VALUE {.ATTRIBUTE = VALUE}.. .
VARIABLE | LITERAL

Descriptions
DESCRIPTION -► LITERAL I

desc (DETERMINER, INTEGER, QUALIFIER) I 
DESCRIPTION & DESCRIPTION! 
DESCRIPTION or DESCRIPTION 

DETERMINER -► anylthe Iwhatlnolall

4.3.2 Two natural language queries and their interpretations. The interpretation 
of a sentence or clause is a formal QUALIFIER. A simple sentence comprises a verb 
and a number of verb modifiers. The verb is interpreted as a formal relation, and 
the verb modifiers supply attribute values for that relation. The sentence
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Every Tory candidate contested an election 

has the interpretation

<Desc 1> is qual (V1, <Desc 2 >  is qual (V2, contest! [person = V I, election = V2])) 

where <Desc 1> and <Desc 2 >  are defined below.

The relation ‘contest’ interprets the verb “to contest’, and the verb modifiers, ‘Every 
Tory candidate’ and ‘an election’ supply values for the two attributes ‘person’ and 
‘election’.

‘<Desc 1>’ is the formal DESCRIPTION which interprets the nounphrase ‘Every 
Tory candidate’. As this is a definite nounphrase, the parser finds all its references 
and returns the formal DESCRIPTION (<Desc 1>): ‘Smith’ & ‘Disraeli’.

‘<Desc 2 > ’ is the following DESCRIPTION: 

desc (any, 1, qual (V, true))

This is a vacuous DESCRIPTION which matches any value. The constraint that it 
must be an election is imposed through the variable ‘V2’, which can only match 
values in the ‘election’ attribute of the relation ‘contest’. The whole formula is 
satisfied if for each value ‘Smith’ and ‘Disraeli’ there is a tuple in the relation 
contest with that value for the ‘person’ attribute. There is no constraint on the 
‘election’ attribute as any value will do.

A similar sentence is:

‘One election was contested by every Tory candidate’ 

which is interpreted as: 

desc (any, 1, qual (V, true)) is qual (V2,

‘Smith’ & Disraeli’ is qual (V I, contest t  [person = V I, election = V2]) )

The descriptions are just as before but their order within the formal query is 
reversed. This formal QUALIFIER is only satisfied if there is some election, ‘E’, 
such that each of ‘Smith’ and ‘Disraeli’ occur as the ‘person’ attribute of some tuple 
in the ‘contest’ relation whose ‘election’ attribute is ‘E \

4.3.3 Generating formal subqueries during parsing. PROLOG’S pattern-matching 
capabilities enable formal subqueries to be generated during the parsing process. 
This is best illustrated by another example from QPROC (the lines have been 
numbered for reference in the notes that follow):
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(1) sentence (Desc is qual (V, Qual), Mods) -»•
(2) qnph (Dom: Desc, Num & accusative),
(3) sentence (Qual, [modf (acc,Dom:V) I Mods]).

This is one of the grammar rules for sentences. It deals with queries like:

‘Which seat did Bolton win?’

(1) ‘sentence’ has two arguments. The first argument, ‘Desc is qual (V, Qual)’ is the 
formal QUALIFIER returned if the clause succeeds. ‘Desc’ is the formal 
DESCRIPTION returned from (2), and ‘Qual’ is the formal QUALIFIER 
returned from (3).

The second argument, ‘Mods’, holds a list of sentence premodifiers, e.g. ‘In 
1974 at Worthing who stood for the liberals?’

(2) ‘qnph’ is a grammar predicate which recognises question elements, such as 
‘Which seat’. The arguments are the same as for the ‘nounphrase’ (see Section
4.1.4 above). Notice that the ‘case’, which is generally returned as a result 
from ‘qnph’, is an input value, ‘accusative’, in this call. This reflects 
PROLOG’S facility to use arguments indiscriminately for input or output.

(3) ‘Sentence’ is called recursively. The list of premodifiers now includes a new 
element, modf (acc, Dom:V) on the front of the list. This will be used to fill 
in the object of the verb ‘win’ in dealing with the remainder of the sentence 
‘ . . .  did Bolton win?’.
The final interpretation of the sentence is:

desc (what, 1, qual (W, true)) is qual (V, ‘Bolton’ is qual (X, wint [person = X, 
constituency = V ]))

4.4 The convertor

To interface QPROC to an independent database management system (DBMS), 
formal queries must be expressed in the form required by the DBMS and passed 
to it rather than to the formal query language interpreter. QPROC contains a 
convertor which converts the ‘DESCRIPTIONS AND QUALIFIERS’ formal query 
into the form required by the ICL Personal Data System (PDS)9 :

list ATTRIBUTES where RULE

where ATTRIBUTES names which attributes of which relations are required and 
RULE defines which tuples of the relations are to be selected.

A simple example of conversion is the query from Section 4.3.3 above:

Which seat did Bolton win?
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The formal interpretation is:

desc (what, 1, qual (W, true) is qual (V,
‘Bolton’ is qual (X,
win t  [person=X, constituency = V ])).

This is converted to the PDS list command:

list win. constituency where win. person = “Bolton” .

PROLOG’S pattern-matching capabilities make it a particularly appropriate language 
for implementing such convertors.

5 PROLOG portability

The main changes needed to bridge QPROC from UNIX PROLOG to York 
PROLOG were:

(a) Explicit uses of ASCII character codes were replaced by their EBCDIC 
equivalents. It is unfortunate that PROLOG implementations still require 
character codes rather than characters in some constructs (e.g. as arguments 
of the ‘put’ predicate)

(b) The notation A.B for the list with head A and tail B had to be replaced by 
[A | B ]. There is no international standard for the language yet, so such 
differences between implementations can be expected.

(c) Owing to limits in UNIX PROLOG, QPROC was too large to  run as a single 
process under UNIX and was split into three processes communicating via 
UNIX pipes. Under VME on ICL 2900, QPROC runs as a single process. 
Different PROLOG implementations can be expected to vary considerably 
in their limits.

6 Conclusion

The main aim of this paper has been to demonstrate the practical use of PROLOG 
on an application of some complexity. The current version of QPROC offers the 
casual user a subset of English covering a wide variety of the queries relevant to a 
database. The power of the PROLOG language is indicated by the compactness of 
the implementation. The total size of all the application-independent components 
is only 2500 lines, with the election database components accounting for another 
400. Our experience indicates that the use of PROLOG can reduce complex tasks 
like natural language understanding to more mangeable proportions.

References

1 WALLACE, M.G.: ‘QPROC: a natural language inquiry system*, Pb.D. Thesis, University 
of Southampton, 1983.

2 BABB, E.: "The logic language PROLOG-M in database technology and intelligent 
knowledge-based systems’, ICL Tech. /., 3, (4), 373-392.

ICL TECHNICAL JOURNAL NOVEMBER 1983 405



3 CLOCKSIN, W.F., and MELLISH, C.S.: Programming in Prolog, Springer-Verlag, 1981.
4 DAHL, V.: ‘Un Systtme Deduct if d’Interrogation de Banques de Donnees en Espagnol’, 

Ph.D. Thesis, University of Marseilles, 1977.
5 PASERO, R.: ‘A dialogue in natural language’ Proceedings of the First International 

Logic Programming Conference, University of Marseilles, 1982.
6 WARREN, D.H.D. and PEREIRA, F.C.N.: ‘An efficient easily adaptable system for 

interpreting natural language queries’, Research Paper 155, Department of Artifical 
Intelligence, University of Edinburgh, 1982.

7 CLOCKSIN, W.F. and MELLISH, C.S.: ‘The Unix Prolog system’, Software Report 5, 
Department of Artificial Intelligence, University of Edinburgh, 1979.

8 SPIVEY, J.M.: ‘The University of York portable prolog system: user’s guide’, University 
of York, 1982.

9 International Computers Limited: The personal data system (PDS70)’. Restricted Publi­
cation 2230, ICL House, Putney, London, 1982.

406 ICL TECHNICAL JOURNAL NOVEMBER 1983



Modelling softw are support

P. Mellor
ICL Customer Service & Quality Division, Stevenage, Hertfordshire

Abstract

The papet describes a mathematical model for use in forecasting the cost 
of providing support for software products, which takes into account (i) 
software reliability (ii) support techniques (iii) commercial policy and (iv) 
engineers’ time consumed in responding to incidents. The representation of 
reliability is based on the work of Dr. B. Iittlewood of City University, in 
which failure is treated as being due to a number of independent Poisson 
sources having different rates. Three different support techniques are 
modelled: fix-on-fail, systems maintenance file release and use of known 
error log (the terms are explained in the paper). The effects of commercial 
policies such as the application of a warranty period can be studied, and 
customer queries are included as well as product failures.

A first version of the model has been programmed in Pascal for the ICL 
Personal Computer, and samples of output are used to illustrate points in 
its operation and application. Work is continuing on improvements and 
refinements to the model, using information gathered by the ICL software- 
support organisations. An accurate simulation of actual product failure 
data is presented.

1 Software failure and repair, and the need for modelling

1.1 The peculiar nature o f  software failure

Why does software fail, and how can we measure its reliability? The same questions 
can be asked about hardware and reasonable answers can be given, but for software 
the situation is far more complicated and far less well understood; there is not even 
general agreement on how to define software reliability, even though achieving high 
reliability is one of the major challenges facing the computer industry. Defining 
failure is equally problematical. One definition of failure in a product is ‘deviation 
from specification’, but the specification of a piece of software as complex as an 
operating system will almost certainly be incomplete and contain ambiguities, to 
the extent that such a simple definition will be inapplicable. Alternatively the 
product may be within the formal specification but may fail in the sense of not 
fulfilling in some way what the customer regards as his reasonable expectations; or 
there may be an obvious deviation from the specification, but this has so trivial an 
effect on the customer’s work that it is not worth while to go to the trouble of a 
query.

Software does not fail as a consequence of age or wear. It fails because a human 
mistake was made in the design, or in the writing of the code (which can be regarded
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simply as a more detailed stage of the design process). The result of the mistake is 
what is usually called a bug in the product. This is not necessarily a localised error 
in the code; it may result, for example, from conflicting interpretations of an inter­
face specification being made by separate writers of different modules of code, or 
from an error made by the writer of the user manual which misleads the customer. 
Then, since all software faults are essentially design faults and are either present in 
the product or not, can they be said to be in any sense random? The treatment of 
software faults that will be described in this paper is based on assumptions of 
randomness, which can arise in either of these ways:

— A bug will only generate a failure in response to a certain subset of all possible 
inputs to the system. Encountering an input from this ‘bad’ subset is a random 
event. The subset which causes failure is different for each bug, and the fre­
quency of failure caused by a given bug depends on the size of its bad subset.

— The total number of bugs and their individual frequencies are not known, and 
therefore we can treat them as random variables: this is the Bayesian approach. 
We have certain expectations of what the frequencies of bugs in a new product 
will be before making any observations of failures, which we express by assign­
ing a probability to a bug having a frequency in a given range (the prior 
probability distribution). The observation increases our knowledge and changes 
our expectation, so that we can then assign different probabilities to the fre­
quencies (the posterior distribution): this is so even if the bugs are removed as 
they are found.2

An important point, made most clearly by Campbell and Ott13, is that a record of 
product failure distribution in time contains information even about events which 
have not happened, provided that they have been exposed to the ‘risk’ of happening 
during the relevant period. Realising this, we can use our observations to deduce a 
frequency distribution for the faults that are left in a product as well as those that 
have already caused a failure.

Admitting that different bugs may result in different frequencies of failure has 
the important implication that software with many infrequent bugs may be more 
reliable than software with a few frequent bugs. The important thing to determine 
is not ‘the number of bugs in a program’ but ‘how sure are we that this program 
will perform satisfactorily for a given period of time?’

Mostly, software faults are removable; and software differs from hardware in that 
repair permanently changes the reliability of the product. Repair of hardware 
essentially replaces a failed component, which has ceased to perform to specifica­
tion, by one that performs correctly; but the new component has the same reliability 
as the one it replaces and will itself eventually fail. Hence the reliability of the 
product is unchanged by repair. By contrast, a software product (with a static 
specification) becomes more and more reliable as faults are removed, and once right 
will perform correctly for ever. Further, while a hardware repair corrects only the 
single example of the product on which it is carried out, a software repair can be 
very easily applied to every example of the product in the field. A countereffect 
is that a software repair can itself introduce other faults, so that the reliability of
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the product can be reduced as a consequence of the repair. This applies equally to 
any change made to the product, such as the addition of new code to provide 
enhancements; and since almost every software product does require enhancements 
from time to time, this implies that repair must be properly managed so as to 
ensure that on average reliability improves. Table 1 summarises the main differences 
between software and hardware from the points of view of reliability and repair. 
A final comment here, however, is that the ‘hardening of software and softening of 
hardware’ is tending to blur these distinctions; design faults in complex hardware 
bear a strong resemblance to software faults, and faults in ‘firmware’ or software 
distributed on ROM are in many respects like those of hardware.

1.2 The need for, and value of, a model

The users of most products expect the supplier to offer a service of support which 
will at least keep the product in good working order and repair failures quickly and 
effectively. To plan a strategy for such a service for a new product the supplier 
must know the likely demand for the service and the effect o f technological and

Table 1 Differences between hardware and software from the support point o f view

Hardware Software

Specification simple, complete extremely complex, almost 
certainly incomplete

Design perfect. Design faults removed 
prior to production

imperfect. All faults are 
design faults

Manufacture imperfect. Substandard 
components removed by 
‘bum-in’

perfect. New faults not intro­
duced during copying and 
distribution

Effect of structure 
on reliability

well-defined, beneficial poorly understood. 
‘Integration faults’ frequent

Quality measures MTBF well defined and 
completely describes failure 
characteristics

MTBF may not exist in some 
circumstances
Reliability = Pr { system will 
fail before a given tim e} and 
failure rate should be used

Cost of failure predictable, containable unpredictable, may be 
catastrophic

Serviceability MTTR can be ascertained for 
each component.

each fault different. 
Some not repairable

Cost of repair predictable from cost of 
spare and MTTR

depends on diagnosis and fix 
time. Widely variable

Reliability after 
repair

as before failure permanently altered. 
Probably better, possibly 
worse!

Effectiveness of repair around 100% can be as low as 50%
Repair requires: movement of personnel and 

materials
movement of information

Cost of product update 
throughout field

prohibitive relatively small
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commercial decisions on the cost of providing it.

This is essentially a question of forecasting the costs of future operations on the 
basis of whatever relevant information is available, and what is needed if this 
forecasting is to be a rational process is a theoretical model -  a mathematical 
model, in effect — that simulates the behaviour of the complete system formed by 
the product in the field combined with the supporting service. When such a model 
has been developed and its validity established by checking it against historical data, 
it can be used not only for forecasting but also for what is usually called sensitivity 
analysis: this means observing how the output — usually a predicted cost — varies 
as input parameters to the model are varied, and showing how the cost would be 
affected by changes that might be made in the real world in which the product is 
being used. The paper describes a model developed for this purpose in the ICL 
Customer Service & Quality Division.

1.3 Relevant published work

Because of the recent interest in ultra reliable systems in which software plays a 
crucial role, and of the inherent difficulty of defining, measuring and predicting 
software reliability, the literature on the subject has grown enormously over the 
past few years. Many of the published papers propose mathematical models of 
software failure and fault removal and the researcher is in danger of getting lost in 
this thicket; fortunately guidance is available in a group of excellent survey papers 
by Dale and Harris.4, s,< The earliest of these models is that o f Jelinsky and 
Moranda,9 published in 1972, the basic assumptions of which have persisted to a 
surprising extent: as Littlewood1,3 has pointed out, most of the later models are 
essentially variations on this with corrections and refinements added. One particu­
larly questionable assumption made by Jelinsky and Moranda is that all bugs in a 
product contribute equally to the failure rate, littlewood abandons this assumption 
in his proposed models and uses Bayesian techniques to represent the different 
effects of different, individual bugs; his work on stochastic reliability growth2 is the 
basis of the failure-rate part of the ICL model.

All these published models deal with the debugging of a single program in a stable 
environment; they are concerned solely with the effects on reliability and not at all 
with the cost aspects of the repair process. To be useful to a vendor of computer 
systems a model must take into account the following:

— ‘customer effects’: change in the apparent failure rate due to a change in usage 
of the product; variations in customers’ skill in fault recognition and avoidance; 
reluctance to report failures, so as to save time; making general queries 
unrelated to failure

— presence in the field of many copies of each product, and variation of this 
population with time

— effect of delays in fault diagnosis or repair
— differing cost to the customer of different failures, i.e. variation of the 

severity of the effect
— differing cost to the vendor of different failures, i.e. variation in the resources 

consumed in diagnosis and repair.
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Most published models, including the present one, treat the software product as a 
‘black box’ and aim to predict its future reliability from past observations. In de­
signing the present model it was felt that it would not be profitable to try to relate 
the detailed structure of the product to the bug content; the work of 
Kitchenham7, for example, has shown that the use of complexity metrics may give 
no better prediction of bug content of the various modules of a big software 
product than does a simple count of the number of instructions in each module.

1.4 Background to the ICL model: functioning o f  the software support service

The terminology in use is defined in this Section. The usage of the terms ‘fault’ and 
‘failure’ is consistent with that of Anderson and Lee.8

Any software product may contain bugs, which can lead to failure in use, and 
features which can lead the customer to make direct queries to the support service. 
These are referred to together as event sources; the issue of software to  the field 
distributes the full set of sources with each copy of the product. Each copy is 
called an instance of a source, and an event generated by any instance is called a 
manifestation of that source. A manifestation can be either a product failure (PF) 
or a query related to something other than a failure, termed a nonfailure query 
(NFQ). A source can be turned o f f  by being dealt with by one of the mechanisms 
described below; until turned off it is active.

Each source has its own intrinsic failure rate, but the failure rate observed in the 
field will vary from one customer to another, depending on the type and intensity 
of his use of the product. This effect of usage is represented by a stress factor which 
is combined with the intrinsic rate to give a local failure rate for each individual 
instance. The use of stress factors is explained later in the paper; it is usual10,11’13 to 
classify installations into three stress levels.

The essential function of the support service is the resolution of events generated in 
the field. The ICL support organisations record information relating to faults and 
their repair in the maintenance database (MDB). An important part of this is the 
known error log (KEL), which contains symptoms by which the manifestations of 
known faults may be recognised.

Software repairs or patches are held in another part of the MDB and cross-referenced 
from the KEL.

The service is organised hierarchically, and for the purposes of the model three 
levels are assumed. The initial contact with the customer is a query to the first 
level; this can be due to a product failure or can be a nonfailure query, in either 
case the event may not pass beyond the query stage — which may still entail con­
siderable work within the support organisation -  or may lead to a bug report being 
raised. This will be passed to the higher levels and will be closed by being put into 
one of a number of closure categories. Four categories are used in the model, al­
though in practice a much finer division is used. The four are as follows:

— New product error (NPE). A new fault is found in the software or in the docu-
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mentation, and can be corrected. This improves things for all customers for 
that product.

— Usability. Includes user error, operator error, request for explanation. Solves 
the one customer’s problem.

— Known error (KE). The recurrence of a fault previously entered in the known 
error log (KEL).

— Unresolved. Relates to a situation in which there is insufficient evidence for 
any decision to be made, or that the query is withdrawn later. Queries in this 
category may have taken a considerable resource from both customer and 
vendor, but there is no apparent value to either.

In the handling of these, the first (NPE) would be expected to consume most time, 
the third (KE) the least, and the others to be more variable.

The event source will be dealt with by one or other of several support mechanisms. 
The model takes into account the three following:

-  Fix-on-fail (EOF). The single instance of a source which has manifested itself is 
turned off by software repair. The response to a nonfailure query should have 
the same effect, since the customer can be expected not to repeat the same 
query.

-  Known error log (KEL). Once a new product error or usability problem has 
been disposed of and a fix, if applicable, is available it is entered on the known 
error log. Subsequent manifestations of other instances of the same source will 
then be closed as ‘known error’.

-  Systems maintenance file (SMF). This is also known as bug clearance release. It 
consists of the issue to the whole field of software repairs for all known 
product faults, or of a version of the software with all these faults source- 
cleared, which is identical from the point of view of the model. This turns off 
all instances of known products faults, but does not affect the nonfailure query 
sources.

2 The ICL model

2.1 Objectives

The aim is to provide a means of calculating, at each moment in the period simu­
lated, the expected rate of generation of support events by all the systems in the 
field, corrected for turnoff by one or other of the support mechanisms or by 
expiry of a warranty. The events are then classified as known/new errors and 
product failure/nonfailure query events, allocated to closure classes and their costs 
assigned; accumulated costs are calculated, and classified in various ways. Success­
fully resolved events have a feedback effect on the field via the fix-on-fail, known 
error log and systems maintenance file mechanisms. An estimate of the expected 
reliability of each system can be calculated.

2.2 Basic assumptions

The theoretical basis on which the model rests is the assumption that each instance 
of an active fault or nonfailure query is an independent Poisson source with its
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individual rate. It follows from this that the flow of events from the whole 
field is a nonstationary Poisson process whose instantaneous rate is the sum of the 
rates of all those instances that are active at that moment; this rate varies with time 
because the number o f active instances varies. If the rate at time t  is f ( t ) then the 
accumulated number of events up to that time has a Poisson distribution with mean 
F(t), where

Appendix 1 gives a derivation of the nonstationary Poisson distribution from 
assumptions which are in fact less restrictive than those made here.

From this we can calculate the expected accumulation of events and the probability 
of the number accumulated in any period lying within any given bounds. It can be 
helpful to use the fact that a Poisson distribution with a large mean F  approximates 
to a normal distribution with mean and variance both equal to F.

In simplified cases, such as a constant population, we can derive explicit formulae 
for the accumulation of events; but in the general case this is not possible and a 
computer program which treats the period under study as made up of a number of 
time dices has to be used.

2.3 Time and population

The period being studied is divided into intervals, typically of length 1 year; time- 
dependent quantities are specified by their values at interval boundaries and it is 
assumed that linear interpolation suffices to give intermediate values.

Each interval is divided into a number of time slices, short compared with the 
interval length and typically of the order of a few days; variables are treated as if 
they changed stepwise at the start of each slice.

Let Mj = initial population of systems in the field; i.e. the number present just 
prior to the start of the first interval

Mi = population at the start of interval i; the first interval is i = 0, so M0 = Mj
Df = number of systems delivered during interval i
Pj = probability that a system is still in the field j  intervals after delivery

Let L  be the length of the interval, h that of the slice and 7/ (= iL) the start time of 
interval i. Then the assumption of linear interpolation within an interval gives the 
population M(t) at a time t in the interval i as

o

Then M j= M jP j+  ^  D / fy -  i (1)

M(t) = M{ + (Mi+1 -  Mt)(t -  TOIL where Tt < t <  Ti+1 (2)
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We need to divide the population into stress levels and commercial categories, and 
the proportions in each will generally vary with time. A warranty may apply in 
some commercial categories, and a system whose warranty has expired will take no 
part in support operations. Other systems are called active. Let

Mg{t) = total number of systems in stress level g at time t
Mcg(t) = number of active systems in stress level g at time t
Ps{k,t) = probability that a system present at time t will still be present and

Also let Y(t) be the total accumulated operational time for the population up to 
time t: this is the total running time for all systems, weighted for stress and corrected 
for warranty. The weighting for stress level g  is represented by a stress factor/^; if 
the accumulated time for stress g  is Yg{t), then

The stress factor f g must take into account the ratio of running to elapsed time as 
well as the effects of customer usage; it must be made clear whether estimated 
failure rates refer to elapsed time or to running time and the stress factor used 
consistently. Time can be measured in any units — hours, days or years — so long, 
of course, as the same units are used throughout.

The field population is assumed to be given prior to the simulation, and is not 
changed by events occurring during the run. There is no representation of, for 
example, increased sales due to improved product reliability.

Fig. 1 gives an example of a population graph.

In this example, population is initially zero. The number of systems delivered in 
each of the six successive years is 100, 200, 250, 200, 100 and 50, respectively. The 
standard withdrawal rate is used, i.e. normal with mean 5 years. Percentage of 
systems left in each year after delivery is 99, 95, 87, 63, 37, 13, 5, 1 and 0, 
respectively. Note that population peaks and then declines as deliveries tail off.

2.4 Event generation and effect o f  support feedback

2.4.1 Probability o f  event manifestation: The standard notation Pr {statement} is 
used to denote the probability that the statement in the brackets is true, and 
Pr \a\b) the probability of a, given that b is true.

If events are generated by a Poisson source with rate r, then
{rtf1

Pr \n  events are generated in period of length t \ = -----  exp ( - rt)

active at time t+k

(3)

so

Pr {no events generated} = exp (- rt)
Pr { at least 1 event generated} = 1 -  exp(-rr)
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We group the sources into classes according to intrinsic rates, and say that all 
sources in class a have the same intrinsic rate ra ; then an instance of a class a source 
on a system in stress level g  will have a local rate raf g and

Pr {no event from this source in slice of length h } = exp(-raf gh) (4)

Fig. 1 System population and accumulated operational time

Consider now the manifestation of a source with rate ra on m y  system in the field 
up to time t. The total accumulated exposure time is Y(t), and so

Pr {no manifestation of source in class a on any system by time t }
“ exp [-r, 7(f)] (5)

To be turned off by fix-on-fail, an instance of a source must manifest itself. Eqn. 4 
therefore gives the probability that any instance of a class a source on a stress level 
g  system will not be fixed as a result of manifesting itself in a given time slice. 
Eqn. 5 applies to all instances of a class a source and gives the probability that the 
source:
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-  is not on the known error log at time t, or
— if r is the time of the last systems maintenance file release, has not been turned 

off by that SMF.

2.4.2 Effect o f  imperfect fix  and delay: There will be a delay between the 
manifestation of a source instance and its fix-on-fail, entry on the known error log 
or inclusion in the systems maintenance file. The model in its present form treats 
the average delay as constant, k , so that t must be replaced by t~k in eqn. 5 above 
and Y(t) taken as zero for t< k . In fix-on-fail delay means that the fix is applied 
[k/h] slices further on, where as usual [x] means the integral part of x. Fix-on- 
fail simulation is generally complicated and is treated separately below.

The case of the imperfect fix is handled by introducing the parameter

Pf = Pr {any source instance is successfully fixed after manifestation}

Taking /y  as constant is equivalent to assuming:

(i) all fix attempts have the same probability of success
(ii) this probability is not affected by manifestations of other instances of the 

same source
(iii) only working fixes are included on the systems maintenance file 

and to ignoring the facts that:

(i) later attempts to fix an instance will be more likely to succeed than the 
earlier ones

(ii) use of the known error log will spread this effect over all instances of the 
same source

(iii) once a good fix is on the known error log subsequent manifestations are 
fixed with certainty

(iv) bad fixes can get on to the systems maintenance file
(v) a bad fix may not merely fail to clear the original bug but may also intro­

duce a new source.

It is part of the quality control function to ensure that we are able to ignore (iv) 
and (v). A support world in which these were major factors would be chaotic.

Accepting these limitations we proceed as follows (with a slight change of notation 
for the sake of simplicity).

If p  is the probability that a fix is good (so that q = \~p  is the probability that it is 
bad) then for a source of rate r and exposure time y

Pr {source is not fixed}

= Pr { source is not manifest}
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+  1 Pr { source manifest n times and is fixed badly every time}
«=1

00 (rvT
= exp(-/y) + X -----—  exp(-0 ’V

n!
n=l

= exp(- ry) exp (ryq) = exp(- ryp)

Eqn. 4 now becomes (substituting raf g for r, h for y , P f for p in the above):

Pr {class a source on stress £  system generates no fix in any slice h >
= exp(- ra f g P fh )  (6)

If Tv is the time of the vth systems maintenance file release, then eqn. 5 becomes 
(substituting ra for r, Y(Tv- k ) for y, P f for p):

Pr {class a fault still active after vth SMF} = exp[- ra PfY(Tv- k )] (7)

For nonfailure query sources this probability is 1 always.

The symptoms which will assist the recognition of future manifestations of a 
source can be on the known error log before a good fix is available, and so we 
ignore Pf when calculating the probability that a source is known. We still assume 
that there is a delay before the KEL entry is made, however, so that:

Pr {class a source is not on KEL at time t } = exp[-rfl Y(t-k)} (8)

If a source is not on the known error log it cannot have been dealt with either by 
fix-on-fail or by system maintenance file release. Eqn. 8 therefore gives the 
expected proportion of all class a sources which are still active and unknown.

2.4.3 Representation o f  differing source frequencies: We have already made the 
rather crude assumption that event sources can be grouped into classes, with all 
sources in one class having the same intrinsic rate. Given this, any chosen fre­
quency distribution of source rates can be simulated by assigning different propor­
tions of sources to the different classes and any overall failure rate by choosing the 
appropriate total number of sources. The rates in each class having been chosen, the 
number of sources in each class is called the quality profile of the product. Products 
with different profiles behave very differently, even though they may appear to 
have the same failure rate when issued.

Fig. 2 gives a theoretical example; it shows the rates of support events generated by 
the whole population in the field of two products with different quality profiles, 
on the assumption that:

-  the system population is that of Fig. 1
— each product runs on every system in the field

ICL TECHNICAL JOURNAL NOVEMBER 1963 417



Table 2 Rates and product profiles

Class 1 2 3 4 5
Rate (events/day) 2 x 10‘3 6-3 x 10-4 2 x 10"4 6-3 x 10_S 2 x 10_s
Product 1 (sources) 0 0 140 240 420
Product 2 (sources) 14 24 42 100 206

Class 6 , 7 8 9 10
Rate (events/day) 6-3 x 10~® 2 x 10~* 6-3 x 10~7 2 x 10"7 6-3 x 10‘8
Product 1 (sources) 1000 2060 3560 5760 6840
Product 2 (sources) 356 576 684 0 0

— a systems maintenance file is issued for each product around the end of the 
second year

— only product faults are considered, and possible nonfailure queries ignored.

Ten classes of event source are defined, with the rate decreasing by a constant factor
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of V 10 from each class to the next; the rates and the product profiles are in 
Table 2.

The example has been constructed so that Product 1 has 10 times the number of 
faults as Product 2, but these have Only 1/10 the frequency; so the initial failure 
rates are identical. Since the numbers of copies of the two products are always the 
same, the differences in the numbers of support events shown in Fig. 2 can arise 
only from the differences between the two profiles. The following points shown by 
Fig. 2 are worth noting.

— The initial rate is zero, since the initial population is zero, and increases rapidly 
as the population grows.

— Early rates from the two products are almost identical. The fewer, more fre­
quent, sources in Product 2 are cleared more rapidly by fix-on-fail and its rate 
declines a little more rapidly, relative to population, than Product 1.

— Overall effect of fix-on-fail is slight; when it is the sole mechanism in operation 
the rate follows changes in population almost exactly.

— The effect of systems maintenance file release is dramatic, and much greater 
for Product 2 than for Product 1. Bearing in mind that the effect of SMF is to 
remove from the whole population all known faults at the time of issue, this 
shows that far more are known for Product 2 than for 1.

The graphs have been smoothed slightly from the original printer output; there 
would be some more smoothing in a real-life case because the SMF release is not 
applied to all systems simultaneously.

Fig. 3 shows the accumulating life-cycle cost of supporting each product, on the 
assumptions that a known fault costs 0-2 engineer days per event and a new fault 
10. The significant points to note here are:

— since proportionately more of the events from Product 2 are closed as ‘known 
error’, and these cost much less than ‘new error’, the difference in cost is even 
greater than the difference in event rate. The two products have the same 
initial failure rate but after 6 years Product 1 has cost more than four times as 
much to support as Product 2.

— since SMF release affects known sources, it has less effect on the cost rate than 
it has on the event rate. There is in fact a kink in the graph at 2 years, but this 
is barely discernible.

Figs. 4, 5, 6 illustrate the effects of differing quality profiles in a different way. 
These are based on the assumptions that the field population is constant at 100 
systems and that the only support mechanism in force is fix-on-fail. The graphs 
show total product failures, those closed as ‘known error’ and those closed as ‘new 
error’. Six source classes are assumed, with rates and profiles as in Table 3.

Significant points here are:

— total event rate decreases by half during the six years with Profile 1, decreases 
slightly with Profile 2 and stays virtually constant with Profile 3
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tim e,years

Fig. 3 Accumulating life-cycle cost of support: total and for each software product

— with Profile 1 new faults decrease to 10% of the total in 1 year, whereas with 
Profile 2 they are still more than 20% of total, and with Profile 3 more than 
50%, after 6 years.

This example was constructed artificially for purposes of illustration. The follow­
ing paragraph is intended to give some idea of what quality profile to expect in 
real life and to introduce the concept of a continuous distribution of probability 
of source frequency.

2.4.4 Exponential frequency distribution: Consider the application of eqn. 7 to 
the period of testing the product before it is released to the field. This is equivalent 
to a systems maintenance file release at t = 0 but with T(0) = H, where H  is the total 
exposure of the product during the testing period. The equation shows that all but 
the very infrequent faults will be removed with virtual certainty before the release. 
This conclusion is supported by such observations as have been made, which suggest 
that frequencies of individual sources in the field are in fact very low, and that high 
failure rates are caused by there being very many, very infrequent sources. (A bug
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Table 3 Rates o f  source classes and profiles

Class 1 2 3 4 5 6
Rate (events/day) 6 x 10-4 6 x 10-s 6 x 10-6 6 x 10-7 6x10"* 6 x 10-9
Profile 1 (Fig. 4) 100 400 1600 4000 0 0
Profile 2 (Fig. 5) 0 1000 4000 16000 40000 0
Profile 3 (Fig. 6) 0 0 10000 40000 160000 400000

Fig. 4 Known, new and total event rates. Quality profile 1

with a frequency of 1 event in 10* years has been reported on a widely used 
operating system which had clocked up that order of operational time.)

To quantify this qualitative judgement, consider a continuous distribution of failure 
rate. Writing as usual Pr { x /y  } for the probability of x, given y ,  and pdf for 
probability density function, let p0(r) be the prior pdf for r at t = 0 and pw(r) 
the posterior pdf at t  = H. Then for a single source at t  = H, ignoring delays and 
other effects,
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P//( /)  = pdf (rate of source = r | source not manifest during period H) 

Pr { source not manifest during H  I rate = r } Po(r)

J Pr {source not manifest during H  | rate =r) Po(r) dr

by Bayes Theorem
OO

= exp(-Hr) p 0(r) I I exp(-Hr) p 0(r) dr
n *
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If we now assume Po(r) = 1 (an improper uniform distribution) it follows that 
(r) = H  exp (-Hr), an exponential distribution with expectation 1 jH. This is 

intuitively appealing since we should expect a fault with a rate less than 1/H to 
show up less than once during the exposure period H, and one with rate greater 
than 1/H to show up at least once.

I am indebted to Dr. B. Littlewood for this proof, which corrects and generalises an 
earlier attempt to justify exponential distribution of frequencies.

littlewood criticises the assumption of the improper prior distribution, and also 
points out that the exponential is a special case of the gamma distribution considered 
in his 1981 paper2. Gamma distributions form a two-parameter family, each being 
defined by a ‘shape’ parameter and a ‘scale’ parameter, the latter defining the mean 
of the distribution. The exponential distribution is a gamma distribution with the 
shape parameter 1. A more rigorous treatment would be to assume a gamma distri­
bution and use observed failure rates to estimate the parameters; the resulting
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distribution could then be used to predict future reliability. It is likely that different 
distributions would be needed for product failures and nonfailure queries, 
respectively.

To investigate the behaviour of a certain type of ‘uniform’ distribution of fault 
frequency, a run of the model was done with 1000 faults in each of 10 classes. The 
rates were in the ratio V 10 between adjacent classes. The number of sources still 
active in each class after a 10-year mn on one system is given in Table 4.

Table 4 Remaining sources in each class after 10 years running time

Class 1 2 3 , 4 . 5 .
Rate 3 x 10~2 9487 x 1(T3 3 x 10-3 9487 x KT* 3 x KT4
Sources 0 0 0-02 31 334

Class 6 c 7 8 ^ 9 . 10
Rate 9487 x 10-5 3 x 10"5 9487 x 10-6 3 x 10"* 9487 x 10~7
Sources 707 896 965 989 996

2.4.5 Simulating fix-on-fail: Since this applies to individual source instances 
spread over a changing population its simulation is complex. First, the number of 
fixes generated in any slice is calculated for each instance of a class a source on a 
stress level g system; this is then added to the fixes to be applied [k/h] slices later, 
carrying forward the fixes from the previous slice and allowing for withdrawals 
from the field and expiries of warranties.

Further manifestations of the same instance in later slices, but before the ‘target’ 
slice for application of the fix, must not generate fixes. Finally, if Tm is the time of 
the with systems maintenance file release all fixes generated prior to Tm - k  are 
deducted from the accumulating total; and the number of active instances at any 
time is obtained by subtracting the number of fixes from the number of instances, 
treating instances from each class at each stress level separately.

Let Aag(t) and Fâ (t)  be the number of active instances remaining, and the number 
of fixes to be applied, respectively, for class a sources on level g systems at time t

Tm = time of most recent (with) systems maintenance file release, or zero if 
none has been made

Pa(t) = Pr {class a source still active after last SMF}

= 1 if there has been no SMF release, or if the source class consists of 
nonfailure query sources (see eqn. 7)

t - k
then Fag(t) = £  Aag(z) Ps(z, t) [ 1 -  exp (- ra fg Pf  h)} (9)

z=Tm~k
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where the summation is slice-by-slice 

and Aag(t) = Mcg(t) Pa{t) -  Fag{t) (10)

2.4.6 Expected rates and accumulation o f  support events: If R (t)  and E(t) are the 
expectations of the total event rate from the field and the total accumulation, 
respectively, then

* ( 0 = X  T  na ra fg Aag(t) 
a g

E(t) = f  R(u)du = ^  R(z)h (approximately) 
o J z=0

( U )

(12)

where na is the number of class a sources in the product, and, as before, the 
summation is slice-by-slice.

The expectation of the rate of generation of new errors is R ^ if)  where, from eqn. 8,

r n (0  = 2  fg Mcg(t) Z  nara exP \~ra y (f_*)] (!3)
g a

and the expectation of the rate for known errors Rg(t) is

Rfc(0 = R {t) “ R]v(t) (14)

2.5 Calculation o f  costs

The present version of the model treats the calculation of costs very crudely: a 
constant average cost in engineer days per event is assumed, with different values 
for each of four event types, the split being product failure and nonfailure queries, 
and known/new sources within each. Different probabilities of closure in each of 
the four main categories described in Section 1.4 (these probabilities depending on 
event type) and the treatment of the resulting costs must await a later version of 
the model.

A further refinement which should be included is that the calculation must take 
into account the probability of not recognising a known fault from the entry in the 
known error log. That this is significant is shown by the large number of reports 
closed eventually as ‘known error’ at the top level of the support hierarchy. With 
perfect recognition we should expect all known faults to be closed at the lowest 
level, or even not to appear at all since in practice the customer has access to the 
known error log and could be expected to recognise these himself; there would then 
be no cost to the support organisation other than that of providing the log.
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An alternative approach would be to treat cost as a random variable with a given 
distribution, and log-normal has been suggested as a starting hypothesis. This leads 
to studies of the sums of random numbers of random variables; the mean and 
variance of the distribution of total cost resulting from this approach can be found 
without too much difficulty.

2.6 Input to the model

The maintenance database is the main source of product reliability data, together 
with the monthly returns from the field collected by the product service evaluation 
organisation. In particular, failure during validation of a product is recorded in the 
database. By matching bug reports to entries in the known error log it is possible 
to estimate the frequency of manifestation of each known fault, correcting for 
suppression of some known errors before they reach the database as mentioned in 
Section 2.5. Proportions of fault reports closed in various categories and at various 
support levels can be estimated from statistics provided by the software support 
centres.

Information on costs is more of a problem, telephone queries in particular being 
notoriously difficult to cost. The best sources are the audits carried out by the first 
and second lines of support.

3 Comments and conclusions

3.1 Failure rate and frequency distribution o f  sources

The same instantaneous failure rate could result from any number of different fre­
quency distributions over an appropriate number of sources. The behaviour of the 
product when exposed in the field and subject to the improving effect of support 
mechanisms will, however, be completely different for each distribution. This is 
illustrated by Figs. 2-6.

Basically, the presence of many infrequent sources results in slow growth in re­
liability, whereas a few frequent sources lead to rapid growth. What is observed in 
practice is closer to the former than the latter.

3.2 Implications for software-reliability measurement

When software is being validated, targets for reliability have to be set in order to 
ensure that a specified support cost is not exceeded after the product has been 
released to the field. It is obviously insufficient to specify either a simple failure 
rate or MTBF (mean time between failures), or a maximum bug content -  even if 
this latter could be estimated during validation. In fact, software reliability can be 
fully specified only by using some conceptual model of the process of generation 
of events; the model must take into account the distribution of source frequencies 
and targets must be specified in terms of the model.

As an example of how this might work in practice, consider the special case of the
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exponential distribution of frequencies discussed in Section 2.4.3. The mean was 
found there to be 1///, where / / i s  a measure of the total exposure of the product so 
far. This will not generally be known when the product arrives in validation because 
up to that time it will have lived in a fairly uncontrolled environment. However, the 
total exposure V  during validation can be measured and the problem is to use this 
and other measurements to estimate H  and the total number of faults or bugs in 
the product N. On the exponential assumption, future behaviour can then be 
predicted.

We assume that faults are removed as they are found during the validation. R 2 and 
R 2, the failure rates at the start and end, respectively, of the validation process, 
must be measured.

One possible way to estimate these is to use a graphical technique described by 
Campbell and O tt13, and adapted by Dale and Harris4. The accumulated number of 
faults found is plotted against time and what is called the least convex majorant 
is drawn: this is the ‘smallest’ smooth convex curve lying above all the points. The 
slope of the tangent at any point is an estimate of the instantaneous failure rate at 
the corresponding time.

Given V ,R t and R 2 the calculation of H andN is as follows.

The expected rate at the start is R  , = N/H. (15)

The expected number of faults found during validation 

= N  Pr {fault manifests itself during period V (

= NV/(H+ V)

The expected number of faults remaining after validation is therefore 

N -  NVftH  + V) = NHI(H + V)

Since the total exposure time is now H  + V  the expected rate of each bug left is 
1 /(//+  F), and so the total rate after validation is

= N  pdf(r) Pr {fault manifests during V \ rate = r } dr
o

= JV H  exp(- Hr) [ 1 -  exp (- Vr)\ dr
o

R 2 =NH/(H+ v y (16)
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Substituting H  = N /R i from eqn. 15 we obtain the equation for N: *

(/?! -  -  2Ri R 2 N -  R i 2R i  ^ = 0

from which, taking the positive root

N=  KR, [R2 ) \KRi ~ *2)

and hence H from eqn. 15.

This derivation is based on the assumption of the exponential distribution; for a 
more general gamma distribution there would be a shape parameter also to be 
estimated.

Use of a model in this way makes it possible to define reliability targets in meaning­
ful terms. In this example the validation could continue until the expected number 
of faults remaining was such as to guarantee that support costs would stay within 
prescribed limits. Without a model, development and validation teams have no way 
of relating their efforts to product quality and support cost.

3.3 Effectiveness o f  support mechanisms

It is evident that the two mechanisms that rely on input from the whole field, 
systems maintenance file and known error log, are vastly more effective than fix-on- 
fail, which affects only individual sites. In fact, SMF release is so effective that if 
well timed it should be possible by this mechanism to reduce the flow of fault 
reports concerning any widely-dispersed stable product virtually to zero, given a 
well managed support effort. Unfortunately, it is a fact that complex software 
products such as operating systems must evolve to remain useful, and it is the 
necessary continual updating that defeats the improvement process.

Fig. 7 illustrates the effect of product reissue. It shows graphs of event rate for two 
products, in this case with identical profiles. Both are subject to SMF releases after 
2 years and 4 years, but only Product 2 is reissued. The assumption is that reissue 
introduces a certain percentage of new code (in this case 20) with the same quality 
profile as the original, into the field.

The two big drops in event rate are due to SMF release. The fairly large increase is 
due to reissue.

The quality profile for both products is given in Table 5. Note that this is similar 
to the profile obtained by running the model for a time on an initially ‘uniform’ 
distribution over similar classes.

The population is the same for Figs. 1 and 2, but the lower profile means that the

* The convexity of the curve fitted to the observations guarantees that /?, >Z?a. If a convex 
curve could not be fitted, the failure rate would not be decreasing during the validation and 
the process would be meaningless.
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Table 5 Quality profile for products in Fig. 7

Class 1 2 3 ^ 4
Rate 3 x 10 '3 9-487 x 10"* 3x10"* 9-487 x 10"s
Sources 1 3 33 70

Class 5 6 ^ 7 , 8
Rate 3 x 10_s 9-487 x 10"6 3x10"* 9-487 x 10~7
Sources 90 96 99 100

Fig. 7 Event rates: total and for each product. Both products have SMF at years 2 and 4. 
Only one has 20% reissue at year 3

highest rate attained before the first SMF is less than half that in Fig. 2.

An important consequence of the effectiveness of the SMF mechanism is that the 
event rate will be relatively very high in the early part of the life of any product.
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This will cause problems in providing support resources, for example, diagnosticians, 
and the consequential queueing effects will become important in these early stages. 
Nonfailure queries, on the other hand, are dealt with only by fix-on-fail types of 
mechanism, so a steady workload, more or less proportional to the population in 
the field, must be expected.

The issue of SMF releases and the maintenance of the known error log are important 
overheads on the support operation and must be included in the life-cycle costs of 
the products.

3.4 Some shortcomings o f  the present model

1 The basic hypothesis that software failure can be described by a discrete set of 
independent, removable Poisson sources is assumed almost universally in soft­
ware reliability modelling. It should not be forgotten that this is only a hypo­
thesis, to be modified in the light of experience. It is common experience, for 
example, among software writers and supporters that faults are sometimes not 
independent.

2 The treatment of sources as belonging to discrete categories is at best a poor 
approximation to the use of a realistic frequency distribution.

3 Stress factor is a blunderbuss weapon for attacking the problem of customer 
effects. The effects are not usually uniform over all sources, the difference being 
particularly marked between validation and user environments.* Stress is diffi­
cult to measure using historical data and even more difficult to predict. 
Littlewood suggests the use of ‘explanatory variables’ instead.

4 Effects of queues are omitted, and it is inaccurate to treat the delay in applying 
a fix as constant.

5 Introduction of new faults into the product by bad fixes is not modelled.
6 Two different uses of the known error log are not properly distinguished. These 

are
-  to recognise a fault even before a fix is available
-  to recognise a fault and extract the relevant fix from the database.

7 It does not take into account the structure of a complex piece of software.

4 Possible developments of the model

The following suggested developments would redress some of the shortcomings 
listed.

1 Treat the source frequencies as having a continuous distribution. This will 
simplify the model (as well as making it more realistic).

2 Treat similarly the delay in applying a fix. The probability that a source is fixed 
within a given time is then the sum of two random variables, ‘time to manifesta­
tion’ and ‘time to fix’; its distribution is the convolution of the distributions of 
these.

3 Treat the distribution of costs by the method mentioned in Section 2.5, the
* This is expressed in ‘Sparrow’s Law’: the fault that is so unlikely that it is not expected to 

manifest itself in the whole life cycle of the product always appears twice on the first day of 
issue.
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‘sum of a random number of random variables’.
4 The model deals with the effect of the support mechanisms on the flow of 

events. It should deal also with the reverse effect, which can manifest itself as 
queues forming in the support organisation and causing increased delays in 
applying fixes. This is not amenable to classical queuing theory which provides 
a manageable analytic solution only for the steady state of a system, because 
here there is no steady state. The time-slice approach should allow an adequate 
simulation, given an input defining the available support resources.

5 Represent priority. At present the ICL organisation assigns priorities in five 
categories reflecting the cost of the failure to the customer. This will complicate 
the queuing effect referred to in (4) above and will require the distribution of 
the cost of failure to be modelled.
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Appendix 1

Nonstationary Poisson process

Consider an accumulating discrete process, such as the number of bug reports 
received during the life-cycle of a product subject to ‘random’ failures.

Assume:

1 Events are independent

2 The average rate at which events occur varies with time, but over any suffici­
ently short interval St the probability of an event occurring is fS t  w here /is  in 
general a function of t.

It follows from the assumption of independence that the probability of more than 
one event occurring in 51 is of order (/51)2, and that therefore the probability that 
no event occurs in 61 is l - /6 f ,  to order fS t

Let Pn = Pn(t) = Pr {n events have occurred up to time t }

Then Pn(t + St) = Pr {n events have occurred up to time t + St }
+ Pr {n events up to t, 0 events between t, t + S t }
+ Pr {n - 1 events up to t, 1 event between t, t  + S t )
+ Pr {n - 2 events up to t, 2 events between t, t  + S t } 

etc.

= Pn(t) (1 -  fS t)  + fPn_ i (r) St + terms of order (St)2 
i.e. Pn(t + 6 0  -  fP n(i) = fPn_ 1(t)St

Dividing by Sr and letting 5 1 tend to 0 gives the differential equation

i t P n * fPn = fP n - ,  (A l)

If the counting of the events starts at t = 0, the initial conditions are /  o(0) = 1, 
/>„(0) = 0 for all n >  0.

The equation for *o(0  is

P0(t +St) = Pr { 0 events up to t, 0 events between t, t + 6 r}

= JW ) ( l -  /6 0  leading to
p Q' + fP 0 -  0 (writing Pf for dP/dt), with P0 (0) = 1 (A2)
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the solution of which is

t

Po(t) exp[-F(r)] where f(u)du (A3)

With this definition of F(t) the general equation, eqn. A1, can be written

C'„ = / ¾ . ,  Where Qn -  eFPn 
Since Qo(0) = Po(0) = 1 and Qn(0) = P„(0) = 0 for n > 0  

<2o(0 = eF(t> P0(t) = 1

and for all n >  1,

t t

2 „ (0  = f  K u)Q n_ l (u) du = f  Qn^ l («) dF{u) 
o J o '

Hence
t

<2,(0= / dF = F(t)

(2, ( 0 = (  FdF = F*/2
O''

t
Q3( t ) = [  F*dF = F«/31 

<r

and in general Qn(0  = Fnjn\ (A6)

giving the general solution for Pn

P„(t) = -T  T O 1 " exp [~F(t)] (AT)
n\

Putting f  = constant, k  say, gives F(t) = k t and the ordinary stationary Poisson 
distribution ( k t f  exp (-k t)/n l, for which the mean and variance are both kt. 
In the general form (eqn. A7), F(t) replaces kt, which is the result quoted in 
Section 2.2.

(A4)

(A5)
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Appendix 2

Comparison o f  output from the event generation part o f  the model with actual 
product data

Objectives

(i) To see if the model is capable of simulating observed product behaviour (in 
this case the manifestation of new faults).

(ii) To see if the model will predict later product behaviour taking as input only 
data from an early period.

Method

A particular version of a suitable product was selected. All entries in the known 
error log relating to it were extracted and the dates of entry recorded. Entries were 
divided into product faults and nonfailure query sources. To see if the simulation 
would work for a subset of the total sources, a separate record was kept of those 
product faults in a particular identifiable subset. Since the accumulated running 
time for the product at each date in the chosen period was known, it was then 
possible to plot graphs of the accumulated number of faults found against total 
running time for the product. The method of Section 3.2 could then be applied to 
estimate the total number of sources, and the expected frequency of an individual 
source, assuming an exponential distribution of frequencies. Note that although 
Section 3.2 describes the debugging of a single copy of the product, the method 
applies equally to the multicopy case provided total running time is used and only 
the first occurrence of each fault is recorded.

Having so obtained the parameters defining the exponential distribution, it was 
necessary to define source classes to represent the situation. The procedure was 
as follows:

Probability function for the distribution is Pr { rate of source < r  } = 1 -  exp (- Hr)

where H, the inverse of the mean, has been estimated from the graph.

The probability distribution for source frequencies was divided into ten equal seg­
ments, i.e. the probability of the frequency being in any segment is 0-1, by defining 
boundary frequencies

1 10
—  log --------- , where z = 1,2........9
H  10 - i

It can be shown that the mean of any segment (a, b) of an exponential distribution 
is

a exp (-Ha) -  b exp ( - Hb) 

exp {-Ha) -  exp ( -Hb)
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Fig. 9 Simulation of accumulation of known faults: nonfailure queries

and from this was found the mean of each of the ten equal segments. The resulting 
values were taken as the rates of ten source classes each containing l/10th of the 
total sources.

Using this quality profile and a constant population of one system the model was 
run for a suitable time period (1000 days). The accumulated number of new 
failures generated by the simulation was then plotted against time to the same scale
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Fig. 10 Simulation of accumulation of known faults: subset faults

Fig. 11 Simulation of accumulation of known faults: total product faults

as the original graph of actual data, and simulation and actual experience were 
compared.

The above procedure was followed for each of the three categories of fault, 
estimating the quality profile from the slope of the graph as close to the start and 
end of the data as possible. Finally, a run was done for the total product faults, 
taking the second rate from the slope of the graph at 80 days, to test the predictive 
ability of the model.
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Fig. 12 Projects of accumulated known faults from first 80 days data “  total product faults

Table 6 Results of estimating quality profiles

Nonfailure query 
sources

Subset
faults

Total product faults Total product faults 
(based on first 80 
days only)

Stait (running days) 4 8 8 8
End (running days) 910 940 940 80
Operational time, V 906 932 932 72
Start rate, R1 
(events per day)

0-33 0-26 1-92 1-92

End rate, R2 
(events per day)

0-03 032 •23 1-46

Sources at start 
(estimated)

140 131 947 938

Sources at end 
(estimated)

44 46 327 817

Sources found 
(estimated)

96 85 620 121

Sources found 
(actual)

100 58 478 140

H 419-0 503-7 493-3 488-4
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Table 7 Source classes and rates used to simulate estimated profiles (all rates x 1000)

Source class: 1 2 3 4 5 6 7 8 9 10

Nonfailure query 7-88 
(14 sources per class)

4-57 3-32 2-51 1-91 1-43 1-03 0-688 0-389 0-124

Subset faults: 6-56 
(13-1 sources per class)

3-80 2-77 2-09 1-59 1-19 0-86 0-57 0-32 0-10

Total faults: 6-69 
(94-7 sources per class)

3-88 2-82 2-14 1-62 1-21 0-88 0-58 0-33 0-10

Total faults: 6-76 
(based on first 80 days) 
(93-8 sources per class)

3-92 2-85 216 1-64 1-23 0-88 0-59 0-33 0-11

Results

Fig. 8 shows the graphs of the actual accumulated faults. The cutoff line at day 940 
is due to lack of subsequent running time information. The dotted line above each 
graph is the ‘least concave majorant’, whose slope gives the instantaneous failure 
rate at any time.

The event rates measured from the graphs and the calculated numbers of faults are 
shown in Table 6. The difference between the estimated numbers of sources at the 
start and end of the period considered agrees fairly well in all cases with the actual 
number of faults observed.

Table 7 shows the calculated quality profiles input to the simulation, and Figs. 9-12 
show the simulated and actual graphs superimposed for each of the four exercises.

Conclusion

Agreement is very close between simulated and actual graphs for nonfailure queries 
and total product faults (Figs. 9 and 11) and not quite so good for the subset of 
product faults (Fig. 10). What is particularly striking is that the quality profile based 
on the first 80 days of data alone is almost identical to that derived from the whole 
940 days, and the ‘projected’ graph of Fig. 12 is indistinguishable from the ‘simu­
lated’ graph of Fig. 11.

This indicates that the model is capable of predicting the generation of support 
events from software products with reasonable accuracy, and that the assumption 
of an exponential distribution of source frequencies is adequate for the simulation, 
at least to a first approximation and for the product considered.
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