
Technical
Journal

Volume 3 Issue 4 November 1983

ICL Technical
Journal

Contents

Volume 3 Issue 4

Expert system in heavy industry: an application of ICLX in a
British Steel Corporation works 347

Bruce Hakami and John Newborn

Dragon: the development of an expert sizing system 360
M.J.R. Keen

The logic language PROLOG-M in database technology and intelligent
knowledge-based systems 373

E. Babb

QPROC: a natural language database enquiry system implemented
in PROLOG 393

M.G. Wallace and V. West

Modelling software support 407
P Mellor

Author Index 439

Subject Index 448

ICL TECHNICAL JOURNAL NOVEMBER 1983 345

ICL Technical
Journal

The ICL Technical Journal is published twice a year by Peter Peregrinus limited
on behalf of International Computers Limited

Editor
J. Howlett
ICL House, Putney, London SW15 1SW, England
Editorial Board
J. Howlett (Editor) C J . Hughes
H.M. Cropper (British Telecom Research Laboratories)
D.W. Davies K.H. Macdonald
(National Physical Laboratory) B.M. Murphy
C.H. Devonald J.M. Pinkerton
G.E. Felton E.C.P. Portman

All correspondence and papers to be considered for publication should be addressed
to the Editor

1983 subscription rates: annual subscription £13.00 UK, £15.50 ($35.00) overseas,
airmail supplement £6.00 ($13.00), single copy£7.50 ($16.00). Cheques should be
made out to ‘Peter Peregrinus Ltd.’, and sent to Peter Peregrinus Ltd., Station House,
Nightingale Road, Hitchin, Herts. SG5 ISA, England, Telephone: Hitchin 53331
(s.t.d. 0462 53331).

The views expressed in the papers are those of the authors and do not necessarily
represent ICL policy

Publisher
Peter Peregrinus Limited
PO Box 8, Southgate House, Stevenage, Herts SGI 1HQ, England

This publication is copyright under the Berne Convention and the International
Copyright Convention. All rights reserved. Apart from any copying under the UK
Copyright Act 1956, part 1, section 7, whereby a single copy of an article may be
supplied, under certain conditions, for the purposes of research or private study, by
a library of a class prescribed by the UK Board of Trade Regulations (Statutory
Instruments 1957, No. 868), no part of this publication may be reproduced, stored
in a retrieval system or transmitted in any form or by any means without the prior
permission of the copyright owners. Permission is however, not required to copy
abstracts of papers or articles on condition that a full reference to the source is
shown. Multiple copying of the contents of the publication without permission is
always illegal.
© 1983 International Computers Ltd.
Printed by A.McLay & Co. Ltd., London and Cardiff ISSN 0142—1557

346 ICL TECHNICAL JOURNAL NOVEMBER 1983

Expert system in heavy industry
an application of ICLX in a

British S teel Corporation works

Bruce Hakami
ICL System Strategy Centre, Stevenage, Herts

John Newborn
British Steel Corporation, Scunthorpe, South Humberside

Abstract

The paper deals with a collaborative undertaking between ICL and the
British Steel Corporation, the practical application of the expert system
concept to the operation of a steel rolling milL It is in two parts. The first,
by Bruce Hakami (ICL) outlines the ICLX expert system ‘package’, using
the rolling-mill application to illustrate the interaction of the user with the
system. The second, by John Newborn (BSC) gives the arguments that led
to the adoption of the expert system approach as an aid to the diagnosis of
faults, and summarises the experience gained.

Part I The ICLX system

1 Introduction

ICLX is a system whose behaviour is governed by the information it holds on a
particular subject. The information is initially obtained from human experts and
therefore ICLX is referred to as an expert system. The information is obtained and
held as a collection of facts and their relationships and is referred to as knowledge.
The purpose of the knowledge is to help users solve problems in the particular
subject area by a process known as problem solving. The knowledge is obtained
from one or more experts by a process known as knowledge refining, so called
because the system influences the expert to improve the knowledge. Both problem
solving and knowledge refining processes are interactive, allowing the user to
observe directly the consequence of his actions.

ICLX began as an experimental project to determine the necessary features of an
expert system usable by people who are not necessarily familiar with programming
or computers. Our initial ideas were influenced by ICL’s own experience in diag­
nostic aids for computers, CRIB1 and by major expert systems such as MYCIN2
and PROSPECTOR*; but we wanted to ensure a practical foundation for the
project and so we chose the problem of fault diagnosis in a steel rolling mill as a
test bed for the development and evaluation of our ideas.

ICL TECHNICAL JOURNAL NOVEMBER 1983 347

The next Section describes how the knowledge is formulated. The main features of
problem solving and knowledge refining processes are described in the two follow­
ing Sections and Section 5 relates some of the problems we encountered in our work.

2 Knowledge structure

The behaviour of the system is governed by the knowledge it holds. The main
components of the knowledge are described below.

2.1 Tests

When a system is undergoing a diagnostic investigation, its current operating state is
assessed on the basis of observations. All allowable observations are defined by the
expert and are known as tests. A test is a description of the state of the system
with a multiple choice part, e.g.:

TEST 36:

the state of scanner LED when the FAST/SLOW scanner switch is put to SLOW

1 flashing
2 permanently on
3 : permanently off

DETAIL:

1. select slow scan address test (TS13 down)
2. rotate SELECT ADDRESS switch and observe LED1

The expert assigns an identifier to each test which will be used to refer to the test.
In the example above the number 36 is the identifier. Sometimes it is useful to
incorporate further notes of explanation or cautions to be taken. Such notes are
stored optionally as detail and displayed only if the user chooses to do so.

2.2 Faults

Observations are normally expected to lead to one or more conclusions. The con­
clusions are known as faults. The expert defines all the faults that the system is
expected to recognise. Each fault is defined as a statement with an identifier, e.g.

FAULT 4:

reference amplifier module faulty resulting in incorrect speed of the main
drive.

where the number 4 is the identifier.

2.3 Rules

Each rule specifies the conclusion to be drawn from a number of concurrent
observations. The following is an example:

348 ICL TECHNICAL JOURNAL NOVEMBER 1983

RULE ramf

IF the speed log printout indicates incorrect speed for the main drive
AND the main drive display does not indicate overspeeding
AND increase in mill load with its consequent reduction of speed does not

cause a cobble

AND ...

AND ...

THEN CONCLUDE

reference amplifier module faulty resulting in incorrect speed of main
drive.

Each rule is given an identifier (the letters ramf in the example).

2.4 Test costs and fau lt frequencies

These are numeric values that may be specified by the expert* and are both factors
considered by the system when it chooses a test to be performed. The cost of a test
is a measure of the difficulty to perform that test.

The system computes the effectiveness of a test and weighs it against its cost and on
the basis of this combined measure chooses a test to suggest.

Frequency is a measure of the likelihood that a fault is present and is used by the
system to compute the effectiveness of various tests.

3 The problem solving process

This is the process that makes the stored knowledge available to the user, in a help­
ful way, to solve particular problems, e.g. to determine the fault in a diagnostic
situation. The main characteristics of the process are described below with samples
of dialogue for illustration, where the parts typed by the user are underlined:

3.1

The system is about to function passively, receiving whatever information the user
wishes to supply, e.g.:

?:TEST 4

speed indicator on the main drive:

1 normal
2 overspeed
3 underspeed
4 RESET
5 DELAY
6 DETAIL ?: 1

ICL TECHNICAL JOURNAL NOVEMBER 1983 349

In this example the user wishes to state the ‘speed indicator of the main drive is in
the normal state’. After typing ‘TEST 4’ the multiple choice question is displayed
and the first choice is taken by the user.

3.2

The system is able to function actively, suggesting to the user the most suitable test
to be performed, taking into account all that is known at the time about the
particular problem situation, e.g.:

?:BEST
test 36:

the state of scanner LED when the FAST/SLOW scanner switch is put to
SLOW

1 flashing
2 permanently on
3 permanently off
4 RESET
5 DELAY
6 DETAIL 7:2

In the above example the user has invoked ‘BEST’ and the system has suggested
‘TEST 36’. The effect is exactly the same as if the user himself invoked the test.
The user in this example has responded with the second choice from the menu.

3.3

The user has the option not to perform the test suggested by the system. In the
previous example the user could have responded with the fifth choice, i.e. ‘DELAY’.
The effect of that would have been for the system to continue as far as possible
without asking this question again and the investigation might have reached a
successful conclusion without this test.

3.4

The system is able to summarise the information gained in a particular investigation
and the conclusions reached. For example the following dialogue lists all answered
tests:

?:TESTS ANSWERED

the following tests have been answered:
4, 36

It is possible to find out what reply has been recorded for a given test by invoking
the test command in the usual way:

?:TEST 36

the state of scanner LED when the FAST/SLOW scanner switch is put to
SLOW

350 ICL TECHNICAL JOURNAL NOVEMBER 1983

1 flashing
2 permanently on
3 permanently off
4 RESET
5 DELAY
6 DETAIL : permanently on 7:

The last line of the example indicates the recorded reply of ‘permanently on’.

It is also possible to display the tests which have been ‘DELAYED’, faults which are
‘DELETED’, i.e. rejected by reason of information recorded and faults which are
possibly present by invoking:

TESTS DELAYED’, ‘FAULTS DELETED’ or ‘FAULTS POSSIBLE’

respectively.

The user is able to determine whether a particular fault is rejected and why, or if
that fault is a possibility what further evidence is needed to confirm it.

7: FAULT 7

digital mill cubicle card 4214 faulty.

The following further evidence is required to show that this fault is present:

test 1:2 test 82:2 test 83:1 test 99:2

7:FAULT 21

slow scanner card failure.

This fault is rejected by the following evidence:

test 36:2

3.5

The user is able to change or delete any information already recorded. The system
will modify its conclusion accordingly. In the following example the user changes
the response for ‘TEST 4’ from ‘normal’ to ‘overspeed’.

?:TEST 4

speed indicator on the main drive:

1 normal
2 overspeed
3 underspeed
4 : RESET
5 : DELAY
6 DETAIL :normal 7:2

ICL TECHNICAL JOURNAL NOVEMBER 1983 361

The response could have been cleared to starting condition by choosing the
‘RESET’ option on the menu.

3.6

The dialogue with the system is very simple and free from statements of probability.
The conclusions drawn by the system are equally clear. The following examples
illustrate the types of conclusions drawn by the system:

I know of no faults to match the pattern of symptoms recorded. It may be that
this fault situation is one that I don't know of or that some symptoms are
recorded incorrectly.___________________

I know of only one fault that matches the recorded pattern of symptoms. It is:

FAULT 4:
reference amplifier module faulty resulting in incorrect speed of the main
drive.

Any further tests that I suggest are necessary to confirm this fault.

I know of only one fault that matches the recorded pattern of symptoms. It is:

FAULT 4:
reference amplifier module fault resulting in incorrect speed of the main
drive.

I suggest, however, that you invoke BEST to confirm that this is indeed the fault.

3.7

All investigations are recorded. This enables a partially completed investigation to
be restarted and continued at a later date. The investigation record is also used by
the expert to monitor the effectiveness and correctness of the system.

3.8

The user may record comments relating to the investigation. The comment facility
is used for communicating to the expert.

3.9

The reasoning used by the system is very simple. The system tries to prove the
presence of every fault. Any fault whose presence cannot be proved is rejected.
Finally, only the faults that are proved are listed.

3.10

Almost all the dialogue is user definable.

362 ICL TECHNICAL JOURNAL NOVEMBER 1983

4 The knowledge refining process

This is the process that enables the expert to construct and improve the stored
knowledge. The dialogue for communicating with this process is, in most cases,
similar to the problem-solving dialogue and will therefore not be discussed. The
main features are described below:

4.1

The knowledge consists of a collection of facts defined by the expert. The expert
does not have to devise procedures or flowcharts.

4.2

The expert can present and test the facts in small increments.

4.3

The expert is assisted to observe the consequence of any modification to the
knowledge. This is done, partly, by making available to the expert all the problem
solving facilities.

4.4

Some of the facts compiled by the expert may be superfluous. The refining process
exposes these as much as possible.

4.5

The compiled knowledge may be insufficient for complete resolution of problems.
This situation is always exposed.

4.6

The system prevents the expert from compiling conflicting facts.

5 The problems encountered

To design an expert system, as indeed any system, involves a number of conflicting
requirements. One requirement is that the system should be powerful and flexible,
applicable to a wide range of problems. This can be achieved if a high-level abstract
knowledge formulation scheme is adopted. The disadvantage of that is that it
requires the expert to be considerably skilled at creative thinking and the system
interface becomes more like a programming language, barring users who are not
programmers. We decided to avoid this problem by adopting a more concrete
scheme of knowledge formulation which is more directly suited to diagnostics.

Another, more specific, problem is the critical importance of the exact form of

ICL TECHNICAL JOURNAL NOVEMBER 1983 353

words and sentences used by the system. Often a system message, designed to be
helpful and clear can be misleading, or worse, offensive. To illustrate this point
consider the following specific case, which is related to the command TEST and the
message output by the system if the command is entered without the necessary
parameter. It was thought that the user who did not know or remember the specifi­
cation of the TEST command would invoke HELP TEST which would display the
following information:

"TEST" is a command that must be followed by one of the following parameters:

[test identity] : To obtain the description of the test and the recorded
outcome if any.

[answered] : To obtain a list of all TESTS for which an outcome is recorded.

Therefore any user who entered TEST without a parameter was likely to have done
so inadvertently and the system could help by indicating that the word TEST was
indeed expected and spelt correctly, but that something further was missing. We
therefore designed the system to output the message:

TEST what?!

In the event some users found this offensive and replaced it by a more polite message.

Please enter test number after TEST

which in fact misleads the user to think that 'test number’ is the only permissible
parameter.

6 Conclusions

Our experience of ICLX highlighted a number of significant differences between
expert systems and traditional computing. Expert systems are intended to be used
by a very wide spectrum of people to solve a great variety of problems in very
different environments. Given these variations it seems inappropriate to attempt to
design a ‘general purpose’ expert system, even though the basic techniques them­
selves may be generally applicable. Therefore, when designing a system the
following points should be borne in mind:

- the type of people to use the system i.e. scientists/technical/management etc.
- the type of reasoning needed for the problem, i.e. precise or approximate,

forward or backward or both
- the quantity and depth of knowledge required
- the required response time and other performance-related factors
- the environmental conditions, i.e. dirty, noisy and hostile or clean, quiet and

relaxed.

354 ICL TECHNICAL JOURNAL NOVEMBER 1983

These factors represent challenging technical and man-machine problems that have
to be solved if we are to employ and exploit expert systems.

References

1 ADDIS, T.R.: ‘Towards an ‘expert’ diagnostic system’, ICL Tech. /., 1980,2, (1), 79-105.
2 SHORTLIFFE, E.H.: 'Computer based medical consultation: MYCIN', Elsevier Computer

Science Library.
3 DUDA, R.O. et a l : ‘Model design in the PROSPECTOR consultant system for mineral

exploration’, in Expert systems in the micro electronic age, MICHIE, D. (Ed.), Edinburgh
University Press.

Part II A case study in British Steel

1 Introduction

This collaborative exercise between BSC and ICL on the application of a knowledge-
based system was initiated early in 1981, with the primary objective of demon­
strating that fault data relating to a particular plant could be processed into a
practical fault-finding strategy for that plant. BSC as operators of large-scale process
plant have a continuing commitment to the development of fault-finding aids which
will minimise plant down time when faults occur. In the 1970s great emphasis was
placed on the functional design of equipment and on the presentation of docu­
mentation in a functional form. Although this approach resulted in significant
improvements in the maintainability of equipment with regard to logical grouping
and monitoring facilities, the resulting documentation was cumbersome and in­
capable of dealing with complex interactive control systems. It was in this area of
plant engineering fault diagnosis that the ‘expert system’ was to be applied. As with
many new concepts, a widely accepted definition is yet to emerge, but for a BSC
application the following will suffice:

‘An expert system is a computer-based method of making available, via a man-
machine dialogue, skilled diagnostic knowledge relating to a particular plant, to
less experienced staff,’

It was agreed to implement a trial on a chosen plant, with the following objectives:

(i) to establish an expert system for the Scunthorpe rod mill and establish its
feasibility as an engineering tool

(ii) to maximise on ICL’s previous developments in the form of ‘RAFFLES’
and ‘CRIB’, which were essentially a historical retrieval approach

(iii) to assess the future use of expert systems in BSC and to produce some
general rules and guidelines on the application of such systems. 2

2 Background: the Scunthorpe rod mill

To give an understanding of the extent of the fault diagnosis problem it is necessary

ICL TECHNICAL JOURNAL NOVEMBER 1983 355

to give a brief introduction to the production process and the type of equipment
which is encountered in the mill.

The installation and commissioning of the Scunthorpe rod mill was completed in
1976. It is a four-strand mill and has a production capacity of 600000 tonnes per
year. The feedstock is 20 m long, 115 mm2 billets, and rods are produced in the
range of 5-5 to 13 mm diameter. The finishing speed of the rod is 60 m/s, and when
installed the mill was among the fastest in the world.

The rolling stands are driven by 25 main drive motors ranging from 300 kW to
2500 kW, with high-speed closed-loop speed-regulator control; a digital set up and
sequence-control system gives fine resolution coupled with accurate repeatability of
the speed setting. The digital equipment also controls the eight shears and associated
pinch rolls, horizontal loopers and water cooling, and provides cobble detection"1.
The pulpit* controls are accordingly complex.

The mill is equipped with five computers in a hierarchical arrangement providing
production co-ordination, furnace control, mill-speed set-up scheduling and an
alarms monitoring facility. With the very high speed of operation even at the
intermediate stage the rod is travelling at speeds of up to 8 m/s and a single failure
in the control equipment is likely to result in a mill cobble. If this occurs in the
roughing mill or intermediate areas it is likely to affect the operation of adjacent
strands. Cobbles are dangerous and expensive: a four-strand cobble can take up to
2 h to clear and during that time fault location is very limited, as the equipment
must be isolated to allow removal of the cobble. The control systems are all highly
interactive to maintain correct inter-strand speed ratios.

The alarms computer system is designed to provide a quick means of identifying
faults as they occur on the mill. A total of 1500 alarm contacts are scanned at 1 s
intervals and groups o f alarms, where finer discrimination is required between first
and subsequent faults, are dealt with by interrupts which give group scanning within
6 ms. It was in the alarms facility that we made our first attempts at a knowledge-
based system way back in 1976. An engineers’ message facility was provided
whereby a message was given, suggesting the likely fault when particular alarms or
combinations of alarms occurred. These messages were added to as experience was
built up and on a historical basis a ‘top ten’ approach was taken: that is, a number
of possible faults were identified, listed in rank order. In addition to the above, the
mill-speed computer provides also a cobble log whereby all strand speeds, currents
and control settings are logged at 0-1 s intervals for the 5 s preceding a cobble. The
mill is thus very well covered with alarm and monitoring facilities; but a high level
of expertise and familiarity is needed to make the correct deductions from the
information provided.

3 Hie evaluation programme

There were several reasons why the rod mill was chosen for the trial:
* A ‘cobble’ describes the result of a sudden stoppage of some part of the machinery, when

the material still in process is thrown into loops and tangles - cobbled up, in fact. The
‘pulpits’ are the control stations from which the operators look down on the process lines.

356 ICL TECHNICAL JOURNAL NOVEMBER 1983

(i) This plant contains complex equipment which presents fault location
problems.

(ii) It was decided to concentrate on those faults which would be likely to
result in cobbles, as this would provide a clear cost/benefit assessment.

(iii) Considerable amounts of information relating to faults are available for use
in answering questions.

(iv) An expert was available, with intimate knowledge of the faults which have
arisen since the mill was commissioned.

The start of the exercise was to collect actual fault data in the detail required, in
the form of a fault/symptom matrix. This was a slow and painstaking task, and
after several months the database was still hardly adequate. The decision was then
taken to expand the database to accommodate faults which had not yet occurred,
but which might.

The second stage was to develop and prove the knowledge-refining program. With
the expanded database of about 40 faults the program, after the expected de­
bugging, succeeded in producing a decision tree that was logical but in some way
impractical.

The third stage involved collecting data and experience from the ‘expert diagnosti­
cian’, as opposed to taking simply the plain facts recorded in the fault/symptom
matrix. This was a joint exercise between ICL and BSC, but was heavily dependent
on BSC’s expertise and experience with the plant. New fault criteria were
conceived, involving ‘testing penalties’ and ‘frequencies of fault occurrence’. It
might seem that an obvious approach would be to carry out the simpler tests which
eliminate the majority of faults before tackling a more difficult test which may be
time-consuming and require special test equipment, but this is not always the case.

The new database, derived from a fault matrix of 61 faults and 98 symptoms or
tests, was available early in 1982.

At this stage it was agreed that the knowledge refining had reached a stage whereby
it could be implemented in a user or advice-generator form on the rod mill. The
program had been written in 1900 CORAL to match the development facility then
available to the ICL engineers. The advice-generator facility had obviously to be
captive to the confines of a particular plant, and from the point of view of plant
geography it required several intelligent outstations. The equipment was required
to be suitable for pulpit, motor room and substation environments. It was proposed
by ICL that the advice generator should be written in Pascal for an ICL Personal
Computer, equipped with Winchester-disc drive to provide a floppy-disc link
between the two systems. The system was also to have three VDUs and keyboards.
This system was installed on the rod mill in August 1982 and quickly grew into one
containing 73 faults and 113 tests.

4 Some features of the system

The terminal is located alongside the mill’s digital equipment and is the one

ICL TECHNICAL JOURNAL NOVEMBER 1983 357

normally used by the technician when fault finding. The ‘expert system’ is not, in
itself, a solution to the problem of fault finding, and full reliance on traditional
tools and measuring instruments continues - oscilloscopes, UV recorders, AVOs
and Microsecoms are used, in addition to the test and monitoring facilities in the
equipment.

The program allows users to interact with the knowledge base in a natural manner,
the dialogue between the system and the user allowing a flexibility of use similar to
that offered by a human expert during a consultation. This is illustrated by the
examples given in Part I of this paper. The system allows a course of reasoning,
dependent on the user’s replies to previous questions; and therefore only questions
which relate to the problem under discussion are asked.

The user can input information into the system by describing symptoms before
asking for the best action to take, or can simply seek advice from the system. The
former leads to a solution in a shorter time but requires more knowledge from the
user.

Commands The system uses the minimum number of commands, in the interests
of simplicity of operation.

A menu is displayed at the start of a fault investigation. The HELP command
provides comprehensive messages for the new user who requires details of the
commands available to him.

The BEST command provides the question which will eliminate the maximum
number of possible faults; a menu of possible answers to this question is displayed,
requiring a numerical input as answer. Where more detailed instructions are re­
quired to answer this (or any) question asked by the system the user selects the
part of the menu called DETAIL.

Other features Frequently during a fault investigation it is impossible or un­
desirable for the diagnostician to answer a question at that particular stage. Instead
he can delay answering, and this allows the system to calculate the best question to
ask next. He can also list details of the faults that are possible and can request the
status of the evidence collected so far. In practice, some investigations cannot be
concluded until some later date — for example, when there is an intermittent fault
— so the system allows the user to reconnect later to continue an investigation.

All investigations can be logged into the system memory for post mortem analysis
by the experts who are responsible for the management of the system. In addition,
users can input comments to give a feedback or to provide information on problems
encountered or on faults that the system does not currently include. Additional
detail can be requested, and a valuable aid is the ability to define test procedures
and test points, avoiding extracting key information from extensive documentation.

A display of the number of faults still not eliminated can be requested. This gives a
positive indication of how well the investigation is proceeding. Additional tests can
be requested to verify the diagnosis.

358 ICL TECHNICAL JOURNAL NOVEMBER 1983

5 Experience with the system

The system has now been in use at the rod mill for approximately 12 months; it is
now established and is considered a worthwhile engineering tool. It is considered
cost effective: with strand downtime costing £9 per minute and cobbles costing
approximately £1000 a time this can be easily demonstrated.

A frequent occurrence before the installation of the system was that the fault that
caused a cobble could not be located and the technicians would advise ‘try another
billet’ — which could be a very expensive way of proving that a fault still existed.

The exercise with ICL has been mutually beneficial and we at BSC certainly feel we
have played a part in the development of ICLX. From our experience we can make
the following general observations:

(i) When configuring an expert system database it is not sufficient to know
how a plant works: the thought process must be, how does a plant fail?

(ii) It is vital to avoid ambiguity: questions must be carefully phrased to
ensure that the desired response is achieved.

(iii) The tests must begin at the lowest level of skill likely to use the system:
often the expert makes subconscious assumptions regarding the ‘obvious’
which are not so obvious to others.

(iv) It is necessary for the users to relate the system to the accepted expert for
them to have confidence in the system.

(v) Once the system is off the ground it can be incremently developed on the
basis of feedback, at a fast rate; it then becomes even more acceptable to
the users because they recognise their own contributions.

(vi) The logical approach to fault diagnosis can highlight deficiencies in the
monitoring and alarms facilities: it has been found necessary to install
additional hard-wired features to aid fault-finding.

(vii) The system can be very powerful as an aid in training; it has been used
extensively in this way at Scunthorpe.

6 Future possibilities

We are currently considering the possibility of using an ICL PERQ computer to
enable the knowledge refining for other systems to be carried out at Scunthorpe.

The rod mill is a modern compact arrangement, in contrast to many other areas of
potential use of the expert system approach; consequently we feel that the advice-
generator facility should be developed with the idea of a hand-held terminal in
mind, to give the user the mobility necessary for operating on distributed plants.

In parallel with the exercise reported here BSC have developed their own expert
system which is basically a simple virtual tree approach; this can be applied to less
complex problems. However, we are convinced that the ICLX approach is what is
needed for fault diagnosis in areas of complex interactive control, and it is in such
areas that that expertise is most scarce.

ICL TECHNICAL JOURNAL NOVEMBER 1983 359

Dragon: the development of an
expert sizing system

M.J.R. Keen
Knowledge Engineering Group, Mainframe Systems Development Division, Bracknell, Berks.

Abstract

Considerable interest is now being shown in the development of knowledge-
based systems - so called ‘expert systems’ - for use in a wide variety of
different situations. Being dissatisfied with the capabilities of computer
performance modelling and prediction (‘sizing’) systems that have been
produced using conventional techniques, the author embarked on a project
to build a pilot sizing system (called ‘Dragon’) using the rule-based
approach of expert systems. This paper explains the background to this
work and describes the tools and techniques that have been used. Details
are given of the state of development of the Dragon system some eight
months after serious work began. The paper is illustrated with examples
taken from the Dragon knowledge base and with a typical consultation
with the system.

1 Sizing in a computer sales environment

Like all computer manufacturers, ICL is in business to sell computer hardware and
software. A key part of this selling process is the ‘sizing’ of the customer’s require­
ments: agreeing with the customer his perception of his future needs, and matching
this with sufficient computer resources. This involves:

(a) establishing the nature of the customer’s future needs
(b) estimating the computer resource requirements for each part of this future

need
(c) Combining these estimates to produce total/peak resource demands
(d) Choosing a suitable computer configuration, based on:

— providing sufficient processing power
— maximum practical device utilisations
— the avoidance of system bottlenecks
— storage and memory requirements
— contingencies, etc.

(e) Ensuring response time targets/turnaround deadlines are met.

Frequently, several iterations are required, to balance cost, functionality and
performance, before a satisfactory result is achieved.

Over the years, ICL has accumulated a great deal of experience at sizing up
customers’ workload requirements — particularly in the mainframe area. However,

360 ICL TECHNICAL JOURNAL NOVEMBER 1983

the real expertise is held by just a few individuals and, as always, there are too few
experts to meet the demand. This expertise covers four main aspects of the sizing
process:-

(i) textbook knowledge of the theory and techniques of performance model­
ling and prediction — e.g. queuing theory

(ii) an understanding of the functionality and characteristics of the computer
products — both hardware and software — that are likely to be proposed

(iii) heuristic knowledge about likely system bottlenecks, and areas of perfor­
mance interaction

(iv) knowing what information is required to describe any particular type of
workload and how to fill in the inevitable gaps in the information that is
available.

It is in the fourth of these areas that much of the real expertise of sizing lies in that:

- Customers often find it difficult to describe their future needs in detail
- this description is frequently ‘patchy’, with some aspects of the workload being

described precisely while other, equally important, parts of the workload are
virtually undefined

- sales timescales often preclude detailed workload analysis and sizing.

Further practical difficulties arise from the great many numbers that need to be
manipulated during the course of a sizing - particularly where workload resource
requirements have to be evaluated in detail. This produces both straightforward
arithmetic errors and, more seriously as they are more difficult to trap, errors
owing to omissions from the calculations.

As in any other area where expertise is in limited supply, short cuts have to be
taken - increasing the risk to both ICL and its customers. Quite obviously, what is
required is a computer system that can both automate the numeric side of the sizing
process and take on the role of the sizing expert — for all straightforward sizing
situations. This would then free experts to concentrate on the really complex and
novel problems, developing the knowledge for an even more expert system in the
future.

Such a system would start by establishing the customer’s future workload by asking
a series of questions, adapting the questioning to the type of workload and the level
of information available. Like the human expert, the system would need to change
its line of questioning if one course was found to be unproductive. Where the user is
uncertain of the answer to a question, the system would need to be able to give
advice and make helpful suggestions based on what is already known — again like
the human expert. The system would need to insist on certain minimum levels of
information being provided and should then fill in the gaps where the user has been
unable to answer less significant questions by taking knowledgeable defaults. Once
the customer’s workload has been defined, its computer resource requirements
would be ‘costed’ and this mapped onto a suitable hardware configuration. This
would be modelled to ensure performance constraints — such as response time

ICL TECHNICAL JOURNAL NOVEMBER 1983 361

targets - will be met. The system would need to produce a summary report for in­
clusion in sales proposals.

Such a system, as described above, would need to be highly flexible with a well
engineered user interface that enabled it to be responsive to different levels of user
skills. The ability of the system to explain its advice and lines of questioning would
be crucial to its acceptance by those who have to use its advice as the basis for
significant commercial decisions.

2 Conventional performance modelling

The type of system just described goes far beyond the scope of conventional
performance-modelling systems. Most of the development work on such systems
has been directed towards the later stages of the sizing process — the analysis of
bottlenecks and queues - and these can only be used once the resource require­
ments of the workload have been defined. There are good reasons why this has been
the case:

(i) The analysis of queuing situations can largely be carried out independently
of any particular computer architecture - hardware or software.
Although such models may have to be ‘adjusted’ to reflect the details of
particular manufacturers’ designs, they are widely applicable. Thus a
queuing model of a moving-head disc system can be applied to a whole
family of such devices, simply inputting the relevant hardware speeds as
required.

(ii) The production of a system to perform resource costing requires both
extensive knowledge of the architecture of the particular software being
modelled and full details of path lengths, store use, etc. This is not
normally available outside the organisation producing the software.

(iii) The use of conventional third generation programming languages (Fortran,
Basic, COBOL, Pascal, etc.) requires considerable design effort to create
the data structures to hold the knowledge base in an easily maintained
form, and to manage the user dialogues. Failure to do this, for instance by
embedding product knowledge within program code, produces a system
that is both difficult and expensive to maintain.

Thus, while one can generalise and say that there is a substantial body of experience
in modelling computer dynamics — analysing the queues and bottlenecks — such
techniques are of little use in predicting future needs unless one can assemble all the
necessary resource demands. Such information must be complete, correct, sensible
etc., if the results of the queuing analysis are to have any value. Moreover, the
analysis tools themselves generally require human experts to use them.

So, the building of a sizing system as described earlier would break much new
ground and might well demand the use of ‘novel’ techniques. A possibility was the
use of the expert system rule-based approach.

362 ICL TECHNICAL JOURNAL NOVEMBER 1983

3 Knowledge-based systems

More popularly referred to as ‘expert systems’, knowledge-based systems embody
organised knowledge about particular areas of human expertise which enable them
to perform as skillful and cost-effective consultants. Having been developed out of
research into artificial intelligence, such systems are an attempt to emulate the
workings of a human expert. Some notable examples of practical expert systems
that have been developed during the past few years are:-

MYCIN which is concerned with the diagnosis and treatment of bacterial
infections

PROSPECTOR which evaluates geological survey data for potential mineral
deposits

DENDRAL which analyses mass spectrometry data.

The distinguishing feature of any true expert system is the separation of the know­
ledge side of the system from the mechanisms that make use of the knowledge.
These two parts of an expert system are referred to as:

— the knowledge base, and
— the inference engine.

The power of any expert system is in its knowledge base. It is produced by express­
ing the human expert’s knowledge as a set of ‘rules’. This is done using a declarative
programming style in which rules take the form:

IF ‘condition’ THEN deduce ‘result’.

The complete set of expert’s rules are processed to form the data structures that
make up the knowledge base. Quite obviously a knowledge base is particular to a
single area of knowledge (or domain) and for each new domain a new knowledge
base has to be developed.

The inference engine provides the deductive mechanisms that make use of the
information stored in the knowledge base. It also provides the user interface,
including pseudonatural language processing for a smooth human interface and an
ability to explain its own ‘thinking’ by displaying appropriate text stored within
the knowledge base - for instance, to explain why a particular question is being
asked. In theory, at least, the inference engine could be used for many different
expert systems.

To build an expert system, one must make the choice between using a specialised
programming language such as LISP or PROLOG, or basing the system on a package
or expert system ‘shell’. Of the languages, LISP is long established and much
favoured in the USA where most expert systems have been developed using the
language. PROLOG, on the other hand, is a much more recent development with a
growing following around Europe (and in Japan). [At this point it should be noted
that an expert system can be produced using conventional programming languages,
though this would involve much more coding.] An expert system ‘shell’ is a

ICL TECHNICAL JOURNAL NOVEMBER 1063 363

package for building and running expert systems and, as such, contains the software
both for processing the rules to form the knowledge base and for the inference
engine itself. Two shells which are currently available are:

EMYCIN from the USA and written in LISP, and
SAGE produced in the UK and written in Pascal.

Using a ‘shell’, one can generally expect to make rapid progress, though the design
of the shell system may constrain the type of expert system that it can be used to
build. Use of a language offers the promise of greater flexibility — at the cost of
more programming effort.

Wishing to make rapid progress, it was first decided to investigate the use of an
expert system shell for building the sizing system. As LISP was not available on
2900, EMYCIN was largely ruled out, so SAGE was considered in detail.

4 SAGE

SAGE is a package for developing and running consultative expert systems. It was
developed by SPL at Abingdon (near Oxford) and was first released in the middle
of 1982. It is running both on ICL’s 2900 series mainframes and ICL PERQ.
The SAGE package is in two parts:

(i) The SAGE ‘compiler’ which produces the knowledge base from the expert
rules written in the SAGE programming language.

(ii) The SAGE ‘executive’ or inference engine.

The very high-level SAGE programming language which is used to encode the
expert’s knowledge is more like a stylised form of English than a conventional
programming language. This allows rules to be written using the terminology of the
expert while questions can be phrased in language that the end user will understand.
The SAGE language is declarative (in that statements can be expressed in any order)
rather than procedural and is based on the use of a small number of keywords. This
permits stylistic flexibility on the part of the rule writer.

The main statement types used in a SAGE program are

ACTIONS

ASSERTIONS

OBJECTS

RULEs

QUESTIONS

which control the consultation and govern the behaviour
and overall course of action of the consultation
entities with associated probability ; they can also be used
as simple YES/NO switches
entities with associated numeric values, bounded by defined
ranges and with inbuilt default clauses
which enable the value of an ASSERTION or OBJECT to
be established in a particular situation
which ask the user to input the value of an ASSERTION or
OBJECT.

364 ICL TECHNICAL JOURNAL NOVEMBER 1983

Text can be associated with all elements of the knowledge base, providing both
questioning in end users’ terms and the ability of the SAGE system to explain its
deductive reasoning. Where the SAGE language is inappropriate — for instance for
algorithmic procedures such as certain queuing theory calculations — these can be
written in an appropriate language (e.g. Pascal) and integrated into the SAGE
system.

The SAGE executive provides the user interface to the expert system. It manages
the consultation on a goal directed basis and provides a range of command and
diagnostic facilities, including:

HELP
TRACE to display the logical inference process of the expert system,

and
LOG to produce a hard copy of the consultation.

Part completed consultations can be SAVEd for subsequent RESTORing for
iteration purposes.

During the course of a consultation, the end user may ask for:

— a question to be explained
— the reason why a question has been asked
— details of the current state of the consultation

using the information and text contained in the Knowledge Base.

Experience has shown that, despite the advanced thinking that is built into the
SAGE package, it is easy to use by nonprogrammers. Moreover, the end product —
the expert system — will be robust and can easily be made highly usable.

5 Dragon

In the late summer of 1982, consideration was being given to finding a solution to
the problem described earlier - producing a sizing system for use by ICL sales staff.
This coincided with the wish to find suitable domains of expertise to evaluate the
newly announced SAGE package. Such domains would have to be able to justify
in their own right the development of expert systems.

It was decided to combine those two activities and in October 1982 work started
on an evaluation prototype - subsequently named Dragon. To provide a fairly
complete picture of the problems to be handled in an expert sizing system, it was
decided that Dragon would need to take a vertical slice through all the main steps in
the sizing process, while at the same time restricting the range of products to be
covered, to speed development.

Coding of the rules began in November, based on an existing set of detailed sizing
knowledge, and before the middle of December the first part of the knowledge base
was up, running and usable. This enabled the resource requirement of a TPMS/IDMS

ICL TECHNICAL JOURNAL NOVEMBER 1983

system to be calculated - database size, processor and I/O costs per message, and
main store quotas (TPMS is the VME 2900 TP monitor and IDMS is the CODASYL
database management system.)

By the end of March 1983 a fairly complete version of Dragon was running and
demonstrable. This performed the following functions:

— detailed evaluation of the resource requirements of a TPMS/IDMS system
— gross evaluation of MAC (multi-access) and batch resource requirements
— combining TP, MAC and batch workloads
— selection of a suitable 2900 series configuration to run the combined workloads
— calculation of response times (using a priority network queuing model written

in Pascal)
— report production.

The network queuing model is of the class of such models often associated with the
name of Dr. J. Buzen in the US and developed independently by ICL in the UK.
Although it would be inappropriate to describe the model in detail in this paper, it
is worth noting that the model takes advantage of the fact that the VME operating
system assigns the same priorities to both the processor and peripheral systems, and
that this effectively operates on a pre-emptive basis. Thus throughput of high-
priority work is unaffected by work at lower priority. This enables the throughput
of high-priority work (e.g. TP) to be calculated by itself and then lower-priority
throughput to be calculated by subtracting TP throughput from that of the
combined workload as a whole. The model calculates the service rate of the central
system at varying levels of concurrency, with transaction queue lengths being used
to calculate mean response times. 95th percentile response times, which depend
on the higher variants of the service time distribution, are calculated by appropriate
approximation of the central system characteristics.

Since March, the Dragon system has undergone extensive testing and refinement,
particularly with a view to adding to the responsiveness of the system. The system
now uses some 600 SAGE rules (or rule equivalents) and has taken between 16 and
20 man weeks of effort to produce so far — excluding the writing of the network
queuing model - this short time being a direct result of the extensive human sizing
knowledge base already existing inside ICL.

Where a coherent knowledge base does not already exist, a very great deal of effort
can be involved in the knowledge elicitation process required to gather together the
rules for an expert system. This is likely to be greater than the actual time spent
coding up the rules. Even where a human knowledge base exists, the operation of
encoding this knowledge into expert system rules is likely to uncover omissions and
inconsistencies in the knowledge base. Certainly this occurred during the building
of the Dragon system.

Validation of Dragon has been carried out at two levels:

(i) The performance information contained in the SAGE rules has been vali-

366 ICL TECHNICAL JOURNAL NOVEMBER 1983

dated by extensive comparison of ‘hand’ calculations against measure­
ments.

(ii) The Dragon logic has been compared with validated hand sizings, princi­
pally using the SAGE TRACE facility.

In the second of these, and the only specific to the development of SAGE-based
expert systems, very few errors have been encountered in encoding the rules and
these have rapidly been revealed using the TRACE facility.

A short annotated extract from the log of a typical Dragon consultation is given
in Appendix 1. This shows precisely what is displayed on the screen and illustrates
both the general style of the conversation between the user and the system, and
the range of commands and responses. The form of the SAGE rules used in Dragon
is illustrated by the extract given in Appendix 2; this is from the part that calcu­
lated the size of the database.

Dragon can be accommodated on an ICL PERQ; the example from which the
Appendices are taken was run on a 2900 system under VME, which was support­
ing about 80 interactive users.

6 Conclusions

At the start of the work described in this paper, it was not certain whether it was
possible/practical to build the type of all-embracing sizing system required by ICL
sales staff. As a result of the development of Dragon, we now know that not only
is such a system possible, but also that the use of expert system techniques enables
a totally practical, robust, usable system to be created. Such a system can reflect
many of the attributes of the human expert:

— a flexible approach to questioning
— the ability to explain questions
— the offering of alternatives
— the filling in of gaps in the client’s information by making knowledgeable

assumptions, etc.

For the beginner to knowledge engineering, the use o f the SAGE package enables
knowledge to be encoded rapidly without die need to worry about data structures,
user interfaces, etc. The very high level declarative language used to specify know­
ledge to SAGE enables rapid development with few coding errors. SAGE’s ready
acceptance by nonprogrammers (such as the author) makes it possible for the
expert system to be created directly by the person with the knowledge rather than
working through an intermediary.

Acknowledgment

This paper was presented at the 11th European Conference on Computer Measurement,
Copenhagen, October 4th-7th, 1983 and is published with the permission of the organisers.

ICL TECHNICAL JOURNAL NOVEMBER 1983 367

The following are extracts from a consultation in which the system is used to
specify the resources needed to handle a stated workload. The computer messages
are given first, followed by the user’s response.

Appendix 1 Typical consultation

Type BEGIN to begin

Please type a command : BEGIN

This is the fifth version of the ICL sizing model.

Profiles of three workload types - TP, MAC, batch - can be
entered into the model, which will evaluate and report on
the resource cost of running each one.

The three sets of resource costs are then brought together and
various sizing techniques are used to select a configuration
suitable for running the combined workload, with interactive
response times being calculated. A final summary is produced.

* * Are you familiar with the use of this model?
(You may answer yes or no) : N (= NO)

The model has been designed so that if the answer to a
detailed question is unknown you do not need to guess but
may simply respond "U" to indicate that the answer is
unknown. The model will then attempt to obtain the
information it requires by asking other questions, or by
taking default values.

However, a limited number of questions must be answered
if the evaluation is to proceed; such questions are clearly
identified and you will not be allowed to proceed
without giving a definite answer.

Should you need further guidance in order to answer a
question, or WANT TO KNOW THE DEFAULT ACTION
ON A QUESTION, this can be obtained by replying "?"

* * The model can carry out sizings at various levels of detail.
For this sizing, which of the following do you want the
model to carry out?

1 a simple sizing
2 a detailed sizing
3 an expert sizing

368 ICL TECHNICAL JOURNAL NOVEMBER 1983

Make a choice : 1

* * Do you wish the model to evaluate a TP/IDMS workload?
(You may answer yes or no) : Y

* First consider the size of the database.

What is the total number of records (in thousands) to be
stored in the database?

(range is 0 -+100000) : 202

What is the average amount of data held in each individual
database record, in bytes?

(Range 0-+1000) : 35

What is the number of different types of record to be held
in the database?

(Range is 1 -* 1000) : 8

What is the number of different types of sets to be held in
the database?

(Range is 1-+1000) : 8

The resilience and security of the TP system can be improved
by "duplexing" the online database.

Do you require all or part of your database to be duplexed?
(You may answer yes or no) : ?

Duplexing involves maintaining two up-to-date copies of
the database online. If during normal operation there is a
failure that makes one copy unavailable, the system is able
to continue using the single remaining copy without
interrupting the service. However, this does require extra
online disc storage to hold two copies and extra database
writes to keep both copies up-to-date.

The default is not to use the duplex facility.
Please reply : N

* » # « # # * * «

With a packing density of 0.70, the total disc storage
requirement for the IDMS database is 18.71 Mb. The
recommended database page size is 2332.00 bytes.

(other options
simply take the
model into more
detail)

(= YES)

(default taken)

(first result -
size of database)

ICL TECHNICAL JOURNAL NOVEMBER 1983

[The question-and-answer session continues, dealing with OCP, I/O, mainstore and
disc store requirements and throughput. The last is as follows.]

* Now consider the throughput required.

What is the peak message rate to be supported by the TP/IDMS
system, in messages per second?

(Range 0-M 00) : 10

What is the maximum number of terminals to be connected
to the system at any one time?

(Range 1-> 2000) : 600

Do you specifically want a dual OCP system to be proposed?
(You may answer yes or no) : N

* * * * * * * * *

The specified work load will require a total OCP capacity of
0.71 MIPS. Thus it will require a 2988 OCP based
configuration. For this workload the chosen OCP system
will deliver a total of 1.56 MIPS, giving an OCP utilisation
of 45.46%

[Extracts from the summary produced by the system are:]

1 WORKLOAD

The specified workload consists of:-

TP/IDMS
A TP/IDMS workload with the following

peak message rate
max. number of active terminals
number of message types
av. number of transaction phases
Percentage of update messages
average message profiler-

input message length
output message length
number of input format effectors
number of output format effectors
message analyser path
application path
number of DML calls
number of physical DB accesses

profile:-
: 10.00 per sec
: 600.00
: 13.00
: 1.45
: 30.00%

39.00 chs.
293.00 chs.
3.90
29.30
1050.00 pli
379.47 pli
7.80
4.16

370 ICL TECHNICAL JOURNAL NOVEMBER 1983

2 CONFIGURATION

To run the combined workload within the given constraints —
i.e. a maximum OCP utilisation of 70.00% — requires the
following configuration:-

2988 OCP system
3.34 Mb. main store
1.00 string(s) of discs with:-

3.00 EDS 80 drives
7.00 FDS 160 drives

With the above configuration, the average mainframe response time will be:
for TP 0.52 seconds.

Appendix 2 Some of the rules used by the system

The following short extract shows the style of the rules built into the system; it is taken
from the part that calculates the size and main features of the database. The conventions
are as follows:

1 SAGE keywords are in capitals
2 SAGE entities AREA, ACTION, OBJECT, RULE, QUESTION, ASSERTION are all

followed by the name of the entity. This name identifies the entity to the model
3 Text strings are in quotes

AREA idms_db_main:
"Calculates size of IDMS database"

ACTION consider_db_size:
"Consider the total database size"
CONSIDER idms_db_size

OBJECT idms_db_size:
"the total database storage requirements in Mb'
(0,500000)

(the area of the model
concerned with
calculating DB size)

(sets the goal of this
area as entity

idms_db_size)
(descriptive text)
(valid range)

RULE db_size_calc_l:
"This calculates the size of the database" (alternative rules:
idms_db_size IS (total_nbr_db_pages * db_page_size 1 - used when no.
*(1 + percent_db_duplex/100))/1000000 of pages, and record
PROVIDED nbr_db records ̂ 0 AND length, are given or

av_record_data_length # 0 can be found;

ICL TECHNICAL JOURNAL NOVEMBER 1983 371

RULE db_size_calc_2:
"This calculates the size of the database"
idms_size_database IS gross_data_vol *
(1 + percent_db_duplex/100)/db_packing_density
PROVIDED nbr_db_records = 0 OR

2 — when only gross
vol. is known
"nbr_db_records = 0",
etc. is catch-all clause

av_rec_data_length = 0

OBJECT total_nbr_db_pages: (next level entity, required by
"the total number of pages held in the IDMS database" Rule 1 to calculate db size)
(2, 250 000000)

RULE calc_tot_db_pages
"This calculates the total number of database pages"
total_nbr_db_pages IS nbr_space_man_pages + nbr_data_pages

OBJECT nbr_$pace_man_pages
"the number of database pages required for space management"
(1,250 000)

RULE calc_space_man_pages:
"This calculates the number of space management pages requires"
nbr_space_man_pages IS
round ((2 * nbr_data_pages / (db_page_size-40)) + 0.5)

OBJECT nbr_data_pages
"the total number of data pages in the database"
(1,250 000 000)

RULE calc_nbr_data_pages
"This calculates the number of data pages required"
nbr_data_pages IS
round ((nbr_db_records * 1000 * av_db_record_length

/ (db_packing_density * (db_page_size - 40))) + 0.5)

These are followed by rules for setting the packing density, which give this as 0.60,0.65
or 0.70 according as the average record length is greater than 800 characters, between 600
and 800 or less than 600, respectively; and then by rules that use the page size already
calculated to give the optimum page size for MDSS discs. And so on.

372 ICL TECHNICAL JOURNAL NOVEMBER 1983

The logic language PROLOG M
in database technology and
intelligent know ledge-based

system s
E. Babb

ICL Systems Strategy Centre, Stevenage, Hertfordshire

Abstract

The paper is concerned with the problem of accessing and updating a large
shared body of data stored in a computer, in a way that will avoid the
pitfalls to which many existing systems are liable: that is, of allowing
insertion of data that can never be retrieved, deletions that cause previously
inserted data to become unavailable, and insertion and deletion rules that
contradict each other. The system proposed uses the implication network
datamodel and is described here in terms of a logic language developed by
the author for the purpose, PROLOG-M, meaning ‘PROLOG plus model’.
As well as forming a single unified system for controlling access to the
stored data and maintaining its selfconsistency, the system also provides
a compact version of standard logic, called model variable logic, which is
described. Examples of the use of the model are given, including a ‘real-
life’ system running on an ICL content addressable file store (CAFS)
installation.

1 Introduction: The implication network model

The most widely accepted practice in modelling data is to describe the real world to
which the data applies by a collection of relationships between variables. The
variables can be, for example pressure and time in the case of a physical system or
part-number and supplier-name in the case of a commercial system. Tests are some­
times included for checking the validity of data, but a weakness of many systems is
that there is nothing to prevent any of the relationships being deleted inadvertently,
and hence large chunks of the model lost, unless some specific test has been included
to guard against this.

During the 1970s the author was involved in the design of the ICL content address­
able file store, CAFS. One of the principal ideas in the CAFS database query
language FIDL1,2 was the implication network datamodel. This prescribed exactly
how the data was viewed, in the sense that it reflected the way it was connected in
the real world, and was also able to check the consistency of insertions and deletions;
when a proposed update would lead to an inconsistency the user was required to
either remove his updating information or to change the structure of his model.

ICL TECHNICAL JOURNAL NOVEMBER 1983 373

The model has been developed beyond the form used in FIDL. A main purpose is
to allow a large number of computer users to access a shared body of data in safety.
Because of the model, the system behaves like a human in that each proposed
alteration is checked against all previous entries; thus for a system concerned with
engineering parts and their suppliers we can imagine the following dialogue with
the computer:

(user)

(computer)

1 suppliers of particular parts can only exist, if parts and suppliers
already exist separately.
OK

2 GKN is a supplier
OK

3 supplier GKN supplies a MOTOR
sorry, contradicts statement 1, there is no separate part called
MOTOR

4 MOTOR is a part
OK

5 supplier GKN supplies a MOTOR
OK

6 remove supplier GKN
sorry, contradicts statement 1 or 5

In practice these statements would be written in the formal logic language
PROLOG-M, but this example gives an impression of what would be possible if a
computerised natural language translator was used.

An important feature of PROLOG-M is the facility called model variable logic.
Model variable logic is a generalisation of the current CAFS query language FIDL.
In this language no explicit reference to relation names is required and so to obtain
the suppliers of parts weighing more than 2 kg, the user can type:

?supplier: part-weight>2.00

The user need only have a general understanding of the meaning behind the special
model variables ‘supplier’ and ‘part-weight’ for him to pose this query. This short­
hand in FIDL and in PROLOG-M has been made possible because they both use the
implication network model. PROLOG-M extends the shorthand in FIDL to allow
queries with quantifiers ‘all’ and ‘some’ to be compactly expressed. For example,
the part numbers which have not been used on any order can be found using the
query:

?part-number : not some order-number

Paraphrased into English this becomes ‘list the part-numbers not used on some (or
any) order-number’.

PROLOG-M also extends the implication network model. In addition to the purely
physical predicates (relations) allowed in FIDL, predicates can also be defined in
terms of general rules.

374 ICL TECHNICAL JOURNAL NOVEMBER 1983

The implication network model (Section 2) provides the model builder with a
single unified method of restricting access to the model and of maintaining its
internal consistency. The present paper describes it in terms of the logic language
PROLOG-M, a development of PROLOG meaning ‘PROLOG plus model*. The
explanation is given mainly in terms of a model of a part supplier and orderer
system for which a sample dialogue is provided (Section 3). Models are also illus­
trated by applications to modelling family relationships and a library system
(Section 4). Finally, the valuable concept of model variable logic (Section 5) is
defined and explained.

1.1 Glossary o f logic programming

1.1.1 PROLOG-M. This is an enhanced totally logical form of standard
PROLOG3,4 implemented using a technique called the finite computation principle5.
Finite computation principle is a transformation technique that takes a potentially
infinite program specified in logic, and transforms it into an executable program.
PROLOG-M currently uses a LISP-like notation for predicates. However, the more
familiar conventional mathematical notation is used in this paper.

1.1.2 Variables and constants. Variables are written in lower case and constants
in upper case.

1.1.3 Free variables. Such a variable currently has no special value attached to it.

1.1.4 Bound variables. Such a variable contains a definite value which can be
printed out. A variable can be bound to integers, lists, sets, relations, and even
function or predicate definitions.

1.1.5 Predicates. These express relations among variables and have the form
p(xl, x 2 , . . . xn) where p is a predicate name and x l , x2 . . . are variables. In a
logic language we define the meaning of a predicate by means o f assertions: (p«-
means ‘p defined as true’)

(user) ?owns(JOHN, 2, BICYCLE, 80)«-
(computer) OK

?o wns(JOHN,3 .BOAT,1000)«-
OK

which defines JOHN as the owner of two bicycles each worth £80 and three boats
each worth £1000. This predicate can then be questioned:

(user) ?owns(JOHN,qty .item,value)
(computer) qty = 2, item = BICYCLE, value = 80

qty = 3, item = BOAT, value = 1000

Notice that unlike a normal function or procedure, such a call causes any variables
that are ‘free’ to print out all the values that the earlier assertions have defined.

ICL TECHNICAL JOURNAL NOVEMBER 1983 375

1.1.6 System predicates. These are predicates that have been built into the
machine. For example the predicate ‘plus (x, y, z)’ would normally correspond to
the equation x = y + z in mathematics. Such a predicate can be used just like the
‘owns’ predicate above as the following examples show:

(user) ?plus(x,3,4)
(computer) x = 7

?plus(7,3,w)
w = 4

?plus(x,y,ll)
sorry, infinite or uncomputable

Notice how even arithmetic predicates are reversible. This is very useful in data-
models because it allows us to include arithmetic processes as if they were stored
relations. Notice also that if insufficient information is provided the system is able
to let the user know; PROLOG-M does not attempt infinite computations. Generally,
in this paper built-in predicates are referenced using conventional mathematical
notation.

1.1.7 Definition o f new predicates. Logic languages allow new predicates to be
defined in terms of existing predicates. For example: (a*-b below means a is defined
as b)

(user) ?o wner-total(o wner,item ,tot)«-
owner(owner,item,qty,value)&tot=qty*value

gives a new predicate where the total value ‘to t’ of all the items is given by multi­
plying the number of items ‘qty’ by the value of an individual item. Thus when this
predicate is queried we obtain:

(user) ?owner-total(owner,item,tot)
owner = JOHN, item = BICYCLE, tot = 160
owner = JOHN, item = BOAT tot = 3000

However, just to emphasise reversibility the following query can also be asked:

(user) ?owner-total(owner,item,3000)
owner = JOHN, item = BOAT

with the third argument position bound to 3000.

1.1.8 Deletion. Definitions are deleted by typing an identical statement to the
original assertion, but preceeded by a ‘not’. For example:

(user) ?not owns (JOHN,2,BICYCLE,80)+-
(computer) OK

will remove the earlier entry from the predicate ‘owns’.

376 ICL TECHNICAL JOURNAL NOVEMBER 1983

1.1.9 Logical implies. This uses the symbol ‘=>\ If p(x)=*q(x) then this means
that if p(x) is true then q(x) must be true. However, if for example q(x) is true it
does not mean that p(x) is true. If we regard p and q as sets then the set q must
contain the set p.

1.1.10 Formulas. Formulas in this paper are restricted to conjunctions of
predicates. This implies no loss of generality as the predicates themselves can be
defined in terms of disjunctions.

1.1.11 Universal and existential quantifiers. These are meta predicates that
test if an expression is true for all or some value(s) of a variable(s), respectively.

1.1.12 Implication network. The implication network p-*-q is defined in Section
2 as having the dual meaning:

(a) p=*q
(b) representing the two formulas p & q, q.

In general q can itself be a network in which case it represents further logical implies
and formulas.

2 The implication network model

The implication network provides the model builder with a single unified method
of specifying constraints on changes and access to the model so that the consistency
of the model is always maintained.

PROLOG currently contains no concept of a model and so all operations are
unconstrained (see the sample dialogue in the glossary explaining predicate). The
purpose of including the implication network model in PROLOG is to provide the
same kind of constraints and compact language facility that ICL is now building
into some of its CAFS database products. The insertion or deletion of data (and
rules) can now be prevented, if they prove to be inconsistent with the model.

The implication network described in the following provides a constraint on
inserts and deletions to the model. This is done by the machine calling an update
predicate which by using the network determines if the new model state is still
consistent with the network. The compact model variable logic is provided by a
master predicate which again uses the network to give the relationship between
any combination of model variables.

2.1 Constructing an implication network

2.1.1 Stage 1 - identifying constraints. The model builder first identifies the
elementary predicates. When an argument position in two different predicates refers
to the same class of object then the same variable name must be used. For example
he might identify three predicates in a part supplier system:

ICL TECHNICAL JOURNAL NOVEMBER 1983 377

ps(part supplier)
p(part,partweight)
s(supplier,suppliercity)

He then observes that the existence of some entities implies the existence of other
entities in the system. In terms of the model this means that data in one predicate
logically implies that certain data must exist in other predicates. For example, he
might decide that the existence of a supplier of a part logically implies that
suppliers and parts must also exist separately:

ps(part .supplier) => p(part,partweight) &
ps(part,supplier) =*> s(supplier, suppliercity)

The user can assert:

(user) ?ps(NUT,GKN) <-

but he will only get the response OK if the data NUT exists in p and GKN exists in
s. It also follows that an attempt to remove NUT from p using:

will be unsuccessful unless NUT,GKN is missing from ps.

2.1.2 Stage 2 - identifying the connection between entities. The model builder
also wishes to be able to retrieve information from all the predicates just as if he
were observing reality. For example, he observes that three formulas are sufficient:

ps(p art .supplier) & p(part,partweight) & s(supplier,suppliercity)
p(part,partweight)
s(supplier, suppliercity)

The first formula simply joins all predicates together on the assumption that they
are all connected by being part of the same model. The other two formulas are
necessary because the ‘logical implies’ constraint above allows a part pi to exist in
p even though pi does not exist in ps. No separate formula is needed to represent
the ps predicate because this can only contain parts and suppliers that exist. Notice
that the formula p&s is not included, because such a join has no physical meaning.

2.1.3 Stage 3 - drawing the implication network. It is possible to write the
‘logical implies’ identified in Stage 1 in the form of a network rather than the two
expressions used earlier:

The three formulas identified in Stage 2 appear from this network by constructing
each formula from the conjunction of each predicate with all predicates that this

(user) ?not p(NUT,77) <-

ps(part .supplier)
p(part,partweight)

s(supplier, suppliercity)

378 ICL TECHNICAL JOURNAL NOVEMBER 1983

predicate logically implies. Such an interpretation seems to serve well as it specifi­
cally excludes unnatural connections such as p&s while unifying the idea of
constraint and connection.

When the network has this dual interpretation, the arrow *-*■’ represents both logical
implies *=>’ and a set of formulas connecting the predicates together. Thus the
implication network o f the part supplier system is:

The systems analyst/scientist when using this network model must always visualise
both these formal interpretations when constructing a model.

2.2 Using the implication network

The network is stored in a computer as a predicate called ‘network’. Thus the net­
work above would be input to the computer using the two assertions:

?network(ps(part,supplier), p(part,partweight)) +■
?network(ps(part, supplier), s(supplier,suppliercity)) +-

Every update automatically invokes the logical implies’ interpretation of this
network using the update predicate defined below. However, every query auto­
matically invokes the ‘formula’ interpretation of this network using the master
predicate below.

2.2.1 Update predicate. The update predicate checks that all the logical implica­
tions between the predicates in the network are true after any alteration to the
predicates composing the model. Thus in terms of the part supplier example, we
replace every -+ by => and check the resulting formula:

for all part, supplier, partweight, suppliercity

is true for all states of the model variables.

2.2.2 Master predicate. The master predicate m (xlpc2,. . .) uses the model
variables x l ,x 2 ,. . . and selects the formulas in the model which include all these
varables. Surplus variables are ignored after these formulas are interpreted and the
data from all the formulas united into a single set. For example, if we ask the model
how the variable’s partweight and suppliercity are related the system will use the
formula ps&p&s. However, if the user asks for a list of suppliers and their cities the
system uses formulas ps&p&s and s, although in this case because ps&p&s**s the
larger formula is redundant and only s is used.

p(part,partweight)
y

s(supplier, suppliercity)

ps(part .supplier)
p(part, partweight)

s(supplier,suppliercity)

ICL TECHNICAL JOURNAL NOVEMBER 1963 379

2.3 Formal definition o f the model

A formal definition of the implication network model is given in the Appendix.

3 Dialogue with a simplified part-supplier-orderer system

This session illustrates setting up a part-supplier-orderer model, changing the data
and rules in the model and querying the model. The orders model contains two
predicates ps and pso with typical data as shown below. The first predicate ps gives
the unit price of a part from a particular supplier. The second predicate pso gives
the quantity of parts that an orderer wants from a supplier.

Each query or assertion is preceded by a question mark generated by the machine.
The output messages below are the absolute minimum; a commercial version of
PROLOG-M would explain itself if asked.

ps (part, supplier,price)
NUT GKN 2
BOLT GKN 3
WASHER GKN 1
BOLT LUCAS 1000

pso(part, supplier,orderer, qty)
NUT GKN JIM 200
BOLT LUCAS HENRY 2

3.1 Creating the model

An extra model variable ‘cost’ is required which gives the total cost of each order
by multiplying the unit price by the quantity. This is represented by a predicate
ord by typing the definition:

(user) ?ord(part,supplier,orderer,qty .price,cost) ■*-
pso(part,supplier,orderer,qty)sp & cost = qty * price

(computer) OK

In addition, the user does not want orders placed unless there is a price quoted in
the part-supplier catalogue ps. Thus he wants this new ord predicate to imply the
ps predicate. The implication network is therefore:

ord(part, supplier, orderer, qty .price, cost) ->ps(part, supplier, price)

To create the data above we assert that ord implies ps using the system predicate
called network:

(user) ?network(ord(part,supplier,orderer,qty .price,cost),
ps(part,supplier,price)

(computer) OK

380 ICL TECHNICAL JOURNAL NOVEMBER 1983

3.2 Insertion o f data

The predicates pso and ps are now updated using a series of PROLOG-M assertions:

?ps(BOLT,LUCAS,1000) +-
OK

After this and every change to a predicate the update predicate is called to check
that ord still implies ps. In this case, the update predicate is still true after this
assertion, and so a further assertion is made:

?pso(BOLT,LUCAS,HENRY,2) +-
OK

The pair BOLT LUCAS is present in the implied predicate ps and so this insert is
allowed. The user now types:

?pso(NUT,GKN,JIM,200) +-
INFINITE OR UNCOMPUTABLE TASK

The pair NUT,GKN does not exist in the implied predicate ps and so the insert is
flagged uncomputable awaiting a suitable update to the predicate ps. Pairs of
inserts can be made:

?pso(NUT,GKN,JIM,200) «- & ps(NUT,GKN,2) +-
OK

The pso update is attempted first. However, this is delayed because of the absence
of NUT.GKN in ps. The insert ps is therefore attempted followed now by a success­
ful insertion to pso.

The dialogue above continues until all the tabulated data above has been inserted
into the predicates composing the model.

3.3 Deletion o f data

To illustrate deletion here is a short session to remove some data:

?not ps(NUT,GKN,2) +-
INFINITE OR UNCOMPUTABLE TASK

Breaks logical implication ord to ps and is therefore uncomputable. To delete this
item we must first remove ‘NUT,GKN,JIM,200’ from pso by adding this in the
above command:

?not pso(NUT,GKN,JIM,200) +- & not ps(NUT,GKN,2) +-
OK

This is just two assertions written on one line. The allows the machine to choose

ICL TECHNICAL JOURNAL NOVEMBER 1983 381

the execution order so that the overall deletion is successful.

3.4 Querying the model

In this session the data is assumed to be as in the box above. To list parts using
formula ps the user types:

(user) ?m(part)
(computer) part=NUT

part=BOLT
part=W ASHER

This uses formula ps to retrieve this information. To list the suppliers of washers
the system again uses formula ps:

?m(part,supplier) & part=WASHER
supplier=GKN part= WASHER

To list the parts, except BOLT the user types:

?m(part) & not part=BOLT
part=NUT
part=W ASHER

To list part, supplier pairs even when the query involves other variables a ‘colon’
is used. To obtain the suppliers of parts with a cost equal to 400 the user types:

?part,supplier: m(part,supplier,price) & cost=400
part=NUT supplier=GKN

However, because the ‘cost’ predicate is reversible we can also obtain the cost of
all orders for part NUT and supplier GKN:

?cost:m(part, supplier, price) & part=NUT & supplier=GKN
cost = 400

To obtain the parts which have been ordered from some or any person, the user
types:

?m(part) & some orderer(m(part,orderer))
part=NUT
part=BOLT

To obtain the parts which have not been ordered from some person, the user types:

?m(part) & not some orderer(m(part,orderer))
part=W ASHER

382 ICL TECHNICAL JOURNAL NOVEMBER 1983

To list parts and suppliers:

?m(p art,supplier)
part=NUT supplier=GKN
part=BOLT supplier=GKN
part=WASHER supplier=GKN
part=BOLT supplier=LUCAS

From this listing it can be seen that the supplier of all parts is GKN. To list this
using the computer the user types:

?m(supplier) & all part (m(part)^m(part,supplier))
supplier=GKN

The suppliers of not all parts:

?m(supplier) & not all part (m(part)=>m(part,supplier))
supplier=LUCAS

The other parts made by the supplier of NUTs: (the ‘_x ’ allows two model variables,
ranging over the set of parts, to exist at once)

?part:m(part_x,supplier) & part_x=NUT &
m(part,supplier) & not part=part_x part=BOLT

part=W ASHER

4 Examples of networks

The networks that follow should really only contain predicates but sometimes the
definitions of predicates are included instead, in which case they are in italics.

4.1 Family network

The following model could be used by a local authority, government or educa­
tional authority to model the members of a family. The model variables are male,
female, father, mother and child. A practical model would be much larger and
would include many additional facts such as name of doctor, age, record of illnesses,
qualifications etc.

We would store facts as quite neutral assertions such as:

?pmale(JOHN-SMITH) <-

However, by including constraint rules we can reduce the chance of errors. Thus
using the model below, the statement:

?pfemale(JOHN-SMITH) <-

ICL TECHNICAL JOURNAL NOVEMBER 1983 383

will be flagged as uncomputable because we have included a rule that males and
females cannot have the same name. This is not to say we could not include
additional predicates to represent people whose names are ambiguous, such as
Leslie.

1
pmale (male) -*• not pfemale (male)

2
pfemale (female) -*■ not pmale (female)

4

parent (father, mother, child)

-*■ pfather (father) -► pmale (father)

3 5
■ -> pmother (mother) -* pfemale (mother)

-*• pmale (child) or pfemale (child)

where the numbered rules mean:

1 A male is not a female. We cannot include a name into the pmale predicate
if that name already exists in the pfemale predicate.

2 A female is not a male.
3 A father and mother are only parents of a child, if there exist a father and

mother and their child is male or female.
4 A father is male.
5 A mother is female.

4.2 Library network

A town library contains the following rules.

1 A borrower is someone who is a client of the library and who has fewer than
six books on loan.

2 A client of the library is someone who is older than 5 years, lives in Stevenage
and is a ratepayer.

1
pborrower (client,book,borrowdate) -*■ pclient (client,age,town) & test

using pborrower that books per
borrower less than six

2
pclient (clientage.town) -*■ age>5 & town=STEVENAGE &

ratepayer (client, town)

384 ICL TECHNICAL JOURNAL NOVEMBER 1983

The main purpose of this model is to check updates to the model. Thus each time
a book is borrowed we assert:

?pborrow(JACK-SMITH,PRIDE-AND-PREJUDICE,50CT1983>-

Two checks are then made by the model. First that JACK-SMITH is a client of the
library using pclient. Secondly, that JACK-SMITH has borrowed fewer than six
books. In this system the user must remove the original assertion when a book is
returned.

In addition to this crucial update role, the model can also be used to answer some
quite useful questions such as ‘what books have seven year olds borrowed’:

?m(book,age) & age=7.

4.3 An actual orders model

The following orders model has run on the ICL CAFS and consists of six basic
predicates. Each predicate describes some semi-independent aspect of an order.
Thus the supplier predicate s describes supplier together with a large number of
descriptive argument places such as location, name etc.

s(supplier-number,. . . .),
p(part-number,. . .),
ps(part-number,supplier-number,. . .),
o(order-number,supplier-number,. . .) ,
po(part-number,order-number,. . .) ,
pod(part-number,order-number,delivery date ,. . .)

dates when parts in an order will be delivered

available suppliers
available parts
catalogue of parts and supplier
complete order to a supplier
entry in order for a part

These were combined into the following network model:

r P

-*■ p s -

pod -> po -

^ o
s

However, this is only part of the network. In fact, each predicate has a primary key
which uniquely identifies each entry in the predicate. For example, the primary key
of the ps predicate is the ‘part-number, supplier-number’ pair, which can be
checked by a predicate key (ps). Thus to represent this there is an additional link in
the network:

ps(part-number,supplier-number,. . .)->key (ps)

ICL TECHNICAL JOURNAL NOVEMBER 1983 385

Even larger networks result from including job-number in the model so that the
originator of an order is also included. Some of these predicates can contain 10 to
20 arguments. To answer a query by actually writing this out would be impracti-
cally complicated - hence, the need for the master predicate.

5 Model variable logic

One of the big advantages of the implication network model is that model variables
can even allow logic queries to be posed with no mention of the master predicate.
The resulting logic language, although completely formal, has a compactness
comparable with English and introduces the notion of ‘typing’ into logic. Although
the translation is carried out by the machine, it is nevertheless important that the
rule be simple enough for the machine translation to be easily explainable.

5.1 Conjunction rule

Consider the query ‘suppliers of NUTs ordered by JIM’:

?supplier:part=NUT & orderer=JIM

The machine accumulates all the variables mentioned before the colon and in the
conjunction. It then includes a master predicate with all these variables as its
argument:

?supplier:m(supplier,part,orderer) & part=NUT & orderer=JIM.

This set of accumulated variables is called the context. A colon such as the one
above creates a new local context starting with just the variables before the colon.

5.2 Disjunction rule

The suppliers of the part NUT or to the orderer JIM is written as:

?supplier:part=NUT or orderer=JIM

Such a query is actually implemented as two separate processes:

?supplier: part=NUT
?supplier: orderer=JIM

but with their outputs being combined. Thus using our conjunction rule we obtain:

?supplier:m(supplier,part) & part=NUT
?supplier:m(supplier,orderer) & orderer=JIM

which translates back to the single query:

386 ICL TECHNICAL JOURNAL NOVEMBER 1983

?supplier:m(supplier,part)& part=NUT or
m(supplier,orderer)&orderer=JIM

This shows that the context for each component of a disjunction is dealt with
separately.

5.3 Some quantifiers

Queries involving quantifiers are particularly complicated in standard predicate
calculus. One big benefit of model variables is in simplifying queries involving the
quantifiers. The parts with no orderers can be obtained using the query:

?part: not some orderer

Explicitly, this means: consider each part in the set of parts m(part) and retrieve a
part if no relationship m(part,orderer) can be found. Thus we would expect this to
translate to:

?part:m(part) & not some orderer(m(part,orderer))

In detail, the original query is first transformed to normal logic notation:

?part: not some orderer(true)

The only free variable in this expression is ‘part’ and so we add m(part) using our
conjunction rule:

?part:m(part) & not some orderer(true)

However, quantifiers create local variables and therefore local contexts. Thus the
context where true has been written is part and orderer and so ‘true’ is replaced by
m(part,orderer) to give:

?part:m(part) & not some orderer(m(part,orderer))

The answer to this query is WASHER using the data provided in Section 3.

5.4 Universal quantifiers

The suppliers of all the parts, in the catalogue of parts except NUT, can be
obtained using:

?supplier : all part: part O N U T

The colon after a quantified variable is a way of restricting the set of parts con­
sidered by a quantifier, in this case excluding NUT.

Translation of this occurs as follows. The only free variable in the whole expression

ICL TECHNICAL JOURNAL NOVEMBER 1983 387

is ‘supplier’ and so from the conjunction rule the above translates to:

?supplier: m(supplier) & all part:part <>NUT(true)

As mentioned earlier, the colon resets the context and so ‘part:part < >NUT’
translates to ‘part:m(part)&part O N U T ’ using the conjunction rule. However, the
context where ‘true’ has been written is ‘supplier’ and the locally created ‘part’ so
that “true” is replaced by m(supplier,part) to give the explicit query:

?supplier : m(supplier) &
all part:m(part)&part < >NUT(m(supplier,part))

5.5 Dialogue with model variable logic

The earlier session using explicit reference to the master predicate is repeated here
using model variable logic:

?part:
?supplier,part:part=W ASHER
?part:not part=BOLT
?part,supplier : price <20
?p art: some orderer
?p art: not some orderer
?part,supplier:
?supplier: all part
?supplier: not all part

lis t the other parts supplied by the supplier of a different part _ x equal to NUT:

?part: some supplier(part_x=NUT & not part=part_x)

In each case the query is greatly simplified and a large amount of unnecessary detail
removed.

6 Discussion

This paper has suggested the incorporation of the implication network model into a
logic language. The combination of the two ideas is the model building language
PROLOG-M.

A restricted form of the implication network model is already used with some
success by certain customers of the ICL content addressable file store (CAFS).1,2,6
In current database systems, the model has helped users to avoid inserting invalid
data and removing data on which other data depends. It has also made it possible
for many queries which, in the past, could only be posed by skilled programmers to
be posed by users directly.

An orders model,2 using an implication network, has been efficiently implemented

ICL TECHNICAL JOURNAL NOVEMBER 1983

using CAFS. The model contained 15 to 20 predicates with 60 Mbytes of physical
data in the form o f relations. The nonphysical predicates were restricted to certain
built-in operations such as the checking of primary keys. However, instead of
checking the consistency of the whole model each time a change is made, only the
areas of the model actually affected are checked for consistency.

Logic may not be considered efficient enough for the construction of all algorithms.
The model variable logic might be the final point where a language meets the user.
Underneath is the model and the predicates used in the model. However, under­
neath this is the existing library for performing specific computational tasks.

Most of the examples in this paper have been in the database and intelligent know­
ledge base area. However, PROLOG-M can be used to model scientific systems. In
this case the model relates variables such as time, distance, voltage, flux, atomic-
weight, etc.

Here is a simple database example which compares model variable logic with
standard logic. We want the supplier who supplies all the parts in the part catalogue.
In standard logic this must be written:

s : S(s,-,-,-)&all p (P(p,-,-,- >=>SP(s,p,-))

Using tuple variables7 this would be written as:

S.s : all P some SP (SP.s=S.s & SP.p=P.p)

Using model variables:

s : allp

Apart from the brevity of model variable logic, it also paraphrases easily into
English — in this case “supplier of all parts” .

7 Conclusion

This paper has suggested that a unified mathematical model should be included as
an integral part of a logic language. The benefits o f this approach are the compact
model variable logic and an improved consistency in data or rules in the model.

Acknowledgments

The late Roy Mitchell, Vic Mailer, Norman Truman, Len Crockford, Martin Stears,
Owen Evans and the other members of the ICL Systems Strategy Centre, Stevenage,
helped to formulate and develop the ideas in this paper. Their considerable help is
gratefully appreciated by the author.

ICL TECHNICAL JOURNAL NOVEMBER 1983 389

References

1 ADDIS, T.F.: ‘A relation based language interpreter for a content addressable file store’,
ACM Trans. Database Syst.„ March 1982.

2 BABB, E.: ‘Joined normal form: a storage encoding for relational databases’, ibid.
December 1982.

3 CLOCKSIN, W. and MELLISH, C.: Programming in PROLOG, Springer-Verlag, 1981.
4 KOWALSKI, R.A.: Logic for problem solving. North Holland, 1979.
5 BABB, E.: ‘Finite computation principle - An alternative method of adapting resolution

for logic programming’, Presented at Logic programming 83, Portugal
6 BABB, E.: ‘Implementing a relational database by means of specialised hardware’, ACM

Trans. Database Syst., 4, (1), 1979,1-29.
7 CODD, E.F.: ‘A relational model of data for a large shared data bank’, Commun.ACM,

13, (6), June 1970.

Appendix

Formal definition o f the implication network model

The model can be defined formally in predicate calculus as a predicate called model
which relates a set of model variables.

Formal definition of the model

(1) model (w l,w l,. . .) +-u & m (w l,w 2,. . .)

If the update predicate is true then use the master predicate to
generate instances of w l,w2,w2,. . .

(2) m(wl ,w 2,. . .) « - formula(h) &
(wl ,w 2,. . .) is a subset of (zl ,z2 ,. . .)&

interpret h

Consider each formula h. (*formula (h) defined below)
If the variables (w l,w 2,. . .) are a subset of the
variables (z l,z2 ,. . .) used in formula h then interpret
formula h and thereby bind the variables in (w l,w 2,. . .)

(3) u +- for all model variables, for all f(. .),g(. . .)
f(xl,x2, . . .) - > g(yl,y2, . ..)= >

f(x l,x 2 ,. . . >>g(yl,y2,. . .)

Check that every link (f -»• g) obeys the logical implication
f=>g for all model variables

* The formulas are obtained from the network f -+ g by creating one
formula per node; nodes can be empty. Thus at node x we create a
formula which is the conjunction of the predicate at x with all the
predicates directly or indirectly pointed to by x.

390 ICL TECHNICAL JOURNAL NOVEMBER 1983

Using the formal model

These formal definitions are explained using a part-supplier model:

fl (part .supplier)
-*■ f2(part)

^ f3(supplier)

Master predicate

The master predicate, rule 2, is used to obtain the instances of supplier:

(user) ?m(supplier)

Using the definition of the master predicate above we first generate all the formulas
in the model in turn:

(m/c) ?formula(h)
h=fl(part,supplier)&f2(supplier) therefore zl=part, z2=supplier
h=f2(part) therefore zl=part
h=f3(supplier) therefore zl=supplier

The model variable xl=supplier is a subset of zl=part, z2=supplier and so the
instances of h=fl (part,supplier)&f2(supplier) can be generated:

(m/c) ?h
supplier = GKN
supplier = LUCAS

The variable xl=supplier is also a subset of zl=supplier and so the instances of
h=f3(supplier) can also be generated:

(m/c) ?h
supplier = GKN
supplier = LUCAS
supplier = GEC

Update predicate

Updates are checked against the update predicate given in rule 3 above: In English
this line checks that every arrow:

f “*g

obeys the logical implication f=*g for all model variables. In this example there are
two links obtained using the query:

ICL TECHNICAL JOURNAL NOVEMBER 1983 391

(m/c) ?network(f,g)
f=(f 1, part ,supplier)g=(f2, part)
f=(fl,part ,supplier)g=(f2,supplier)

Thus there are two tests to check that f\=>f2 and fl=>f3 for all instances of supplier
and part:

(m/c) ?for all (part.supplier) (f 1 (part,supplier) => f2(part) &
f 1 (part,supplier) => f3(supplier))

392 ICL TECHNICAL JOURNAL NOVEMBER 1983

QPROC: a natural language
d a tabase enquiry system
implemented in PROLOG

M.G. Wallace and V. West
ICL Application Systems Division, Bracknell, Berkshire

Abstract

QPROC is an interactive natural language enquiry system providing access
to a relational database. Both the system and its database are implemented
in the PROLOG language. The paper aims to demonstrate the power and
practicality of PROLOG for this type of application. After an introduction
to QPROCs facilities and its architecture, the main body of the paper is
concerned with the most interesting aspects of the implementation. These
include the representation of natural language grammar and the generation
of formal database queries.

1 Introduction

In 1979 ICL, the BBC and the Science & Engineering Research Council set up a
bursary at the University of Southampton to investigate the use of natural language
for database enquiries. The work was undertaken by one of us (MGW)1 and a pilot
implementation (QPROC) was completed.

QPROC is an interactive natural language enquiry system providing access to a
relational database. Both the system and its database are implemented in the
PROLOG language. This paper does not call for any great familiarity with PROLOG,
but the reader may find it helpful to consult the glossary of terms given by Babb2
in his paper in the same issue of this journal; a fuller treatment is given in the book
by Clocksin and Mellish.3 PROLOG provides two features which make it particularly
suitable for parsing natural language: sophisticated pattern matching and automatic
backtracking. It has therefore often been chosen for natural language applica-
tions.4,5,6

The main aim of this paper is to demonstrate the power and practicality of
PROLOG for this type of application. After an introduction to QPROCs facilities
(Section 2) and its architecture (Section 3), the main body of the paper is concerned
with the most interesting aspects of the implementation (Section 4). The original
version of QPROC ran under UNIX7 on the Southampton PDP 11/34 and was
converted to run under VME on the ICL 2900 using the PROLOG system developed
at the University of York.® Some remarks on the portability of PROLOG are given
in Section 5.

ICL TECHNICAL JOURNAL NOVEMBER 1983 393

2 Facilities

The following session on an election database illustrates some of the QPROC
facilities. Each of the user’s queries or commands is followed by the system’s
response. A query must end with a question mark, full stop or exclamation mark.
The queries have been numbered for reference in the notes that follow. The election
database records (fictitious) details of candidates, constituencies and elections.

How old is Mrs Smith? (1)
37

List the Tory candidates. (2)
2 were found:

Smith Disraeli

Which seats are Smith and Bolton the members for? (3)
Smith: Worthing
Bolton: Southampton

Who stood at Worthing for the Labour party in 1974? (4)
Jones

Smith won what, when, where? (5)
elect 1
electl: 1974
1974 and electl: Worthing

Where were the elections in 1974 and 1975? (6)
electl: Worthing
elect2: Newham

Name a seat whose member is a Liberal. (7)
Southampton

Who stood in an election at Southampton? (8)
3 were found:

Freeston Robson Bolton

Who stood in the election at Southampton? (9)
The computer cannot understand what
“the election at Southampton” refers to.

Who is a professor around here? (10)
?????? ????

Bolton

Bye (11)
Goodbye

394 ICL TECHNICAL JOURNAL NOVEMBER 1983

Notes

(4) The prepositional phrase ‘at Worthing’ qualifies the verb ‘stood’.

(6) The prepositional phrase ‘in 1974 and 1975’ qualifies the noun ‘elec­
tions’.

(7) Relative clauses may be freely used.

(8 ,9) As there was more than one election at Southampton, the singular
definite noun phrase ‘the election at Southampton’ causes an error
message. This condition is known as presupposition failure.

(10) Unrecognised words are ignored, the offending word(s) being indicated
by question marks.

3 Architecture

Fig. 1 illustrates the run-time architecture, which consists of application-independent
and application-dependent components. The application-independent components
are the initialiser, controller, parser, lexical analyser and formal query language
interpreter.

The INITIALISER consults the other PROLOG files and enters the CONTROLLER
which accepts the next natural language query from the user and passes it to the
PARSER for grammatical analysis. The parser is generated by a PROLOG program
from the natural language grammar rules (see Section 4.1). To dissect the query
into its individual words the parser uses the LEXICAL ANALYSER. The result of
parsing is a formal database query which the controller passes to the FORMAL
QUERY LANGUAGE INTERPRETER. The query is expressed in a language
known as ‘DESCRIPTIONS AND QUALIFIERS’ (see Section 4.3.1). The parser
may also generate formal (sub) queries, primarily to find the references of definite
noun phrases like ‘the election at Southampton’.

The application-dependent components are the live dictionary, data dictionary,
data values and data. The live dictionary contains entries for all the natural language
words relevant to the application (its generation is described later in this Section).
The data dictionary provides a definition for the application relational database, in
terms of its relations, attributes and domains. The data values give the values which
may exist for each domain, which may be more extensive than those currently in
the data. The data provides the database contents.

Fig. 2 illustrates the generation of the application live dictionary. This involves two
further application-independent components, the core dictionary and the
dictionary generator, and one further application-dependent component, the
application dictionary. The core dictionary contains entries for the natural language
words common to all applications (the current English version contains words like
‘a’, ‘and’, ‘is’, ‘list’, ‘which’ and ‘who’). The application dictionary contains entries
for the natural language words specific to an application but not included in the

ICL TECHNICAL JOURNAL NOVEMBER 1983 39S

key:

program file of complex PROLOG rules

(data file of PROLOG facts and simple rules

Fig. 1 Run-time architecture

data dictionary or data values (e.g. synonyms like ‘Tory’ for ‘Conservative’ and
‘seat’ for ‘constituency’).

4 Implementation

The aspects of the implementation discussed here are:

— the representation of natural language grammar
— the natural language dictionaries
— the generation of formal database queries
— an additional component, the convertor: its place in the architecture is de­

scribed below.

396 ICL TECHNICAL JOURNAL NOVEMBER 1983

4.1 The representation o f natural language grammar

4.1.1 The grammar compiler. Fig. 3 illustrates the generation of the parser. The
grammar compiler generates it from the grammar rules. All the components involved
are application independent.

The grammar rules are expressed in a short-hand form of PROLOG which is more
readable and concise than the full form (for a detailed discussion see Clocksin and
Mellish).3 Some PROLOG implementations support grammar rule notation, but
QPROC contains its own, more general, grammar compiler to generate the full form.
Extra features in the grammar compiler include:

— left recursion is permitted in rules
— the start and end points of the current phrase are available for error reporting:

see for example Section 2, query 9
— the ability to look ahead at subsequent words in the sentence.

4.1.2 Semantics. Because QPROC is only attempting to recognise the restricted
semantics of queries that can be put to a relational database, the analysis of the
sentence is more limited than would be necessary for general linguistic purposes.

A sentence has a verb and a number of verb modifiers. The verb modifiers are noun
phrases or adverbial phrases that modify the verb. In the sentence:

Smith contested an election at Worthing

ICL TECHNICAL JOURNAL NOVEMBER 1983 397

the verb is ‘contested’, and the verb modifiers are ‘Smith’, ‘an election’ and ‘at
Worthing’. The verb modifiers can be distinguished by their grammar. If one
appears before the verb it is the subject. After the verb it is an object.

QPROC’s dictionary associates with each verb a database relation and with each
proper noun a data value. Thus we can illustrate a simple example of mapping a
natural language query onto a database:

sentence: Bolton contested which election?
grammar: subject verb object
meanings: ‘Bolton’ contest X (variable)

database: contest person election
‘Smith’ ‘elect 1’
‘Bolton’ ‘elect 1’

PROLOG grammar rule notation this analysis can be expressed as:

sentence (Meaning) -*■ subj(Value),
verb (Relation, Attributes),
objects (list),

{Match ([Value I L ist], Attributes, Args),
Meaning = . . [Relation I Args]}

Fig. 3 Generation of the parser

398 ICL TECHNICAL JOURNAL NOVEMBER 1983

This grammar states that a ‘sentence’ comprises:

‘subj’ and ‘verb’ and ‘objects’

Each of these must also have a grammatical definition. The goals in curly brackets
are ordinary PROLOG goals, which derive the meaning.

For the query ‘Bolton contested which election?’, the ‘meaning’ would be the
PROLOG structure:

‘contest (‘Bolton’, X)’

and when this is executed against the database it yields the answer X = ‘electl’.

4.1.3 Using database domains. In the query:

Who contested an election in 1974 in Newham?

the two verb modifiers ‘in 1974’ and ‘in Newham’ are grammatically indistinguish­
able. Their order of occurrence within the sentence might equally well be reversed
so even this cannot be used to make the distinction between them. However, verb
modifiers can be distinguished not only grammatically, but also semantically. When
a verb modifier is interpreted onto the database it is associated with a database
domain. In the election database, ‘Newham’ is mapped to the data value ‘Newham’
which belongs to the domain of ‘constituencies’. ‘1974’ is a ‘date’. Thus the
example sentence is mapped onto the database as follows:

sentence: Who contested an election in 1974 in Newham?
grammar: Subject verb object in-object in-object
meanings: person:X contest election:Y date: 1974 constituency:Newham

(the name before a colon is a domain name, which is usually the same as the attri­
bute name)

database: contest person election date constituency
‘Smith’ ‘elect 1’ 1974 ‘Newham’
‘Jones’ ‘electl’ 1974 ‘Newham’

4.1.4 The noun phrase. The simplest noun phrase is a name, ‘Bolton’. QPROC
deals with compound noun phrases, as well, which may include:

a determiner *the’, ‘a’
a number ‘10’
adjectives ‘southern’, ‘50 year old’
classifiers and headnouns ‘Newham election’
postmodifiers ‘The vote for Smith'
relative clauses "The seat where Bolton was the M F

ICL TECHNICAL JOURNAL NOVEMBER 1983

The components of a noun phrase are to some extent reflected in the syntax of
descriptions and qualifiers, given in Table 1, Section 4.3.1.

Adjectives, classifiers, postmodifiers and relative clauses are only meaningful if they
can be linked with the headnoun of the noun phrase. To forge this link QPROC
uses the data dictionary. Thus if the database has a relation ‘candidate’ with
attributes ‘vote’ and ‘person’ then ‘the vote for Smith’ means ‘the value of the
“vote” attribute in the candidate relation, where the “person” attribute is
“Smith” ’.

To illustrate the preceding discussion we now give one of the PROLOG clauses for
‘nounphrase’ which actually occurs in QPROC; the lines have been numbered for
reference in the notes that follow:

nounphrase (Dom: Desc, Num & Case) -> (1)
nounphrase (Dom: Descl, _ & Case), (2)
(explicit (findrefs (Dom: Descl, Desc, F, L), F, L); (3)
nounmod (Dom: Desc 1, Desc, Num)) (4)

Notes

(1) ‘nounphrase’ returns a description (‘Desc’), with an associated database
domain (‘Dom’). For grammatical purposes it also returns a number
(‘Num’) and case (‘Case’) (see also Section 4.2 ‘inflection’).

(2) The clause is left recursive, its first goal being a call to ‘nounphrase’ itself.

(3) ‘findrefs’ checks if the nounphrase is definite (e.g. 'the candidates at
Newham’), and if so finds all the references in the database.

‘explicit’ makes available the start and end points (‘F’ and ‘L’) of the
nounphrase in the sentence which contains it. If ‘findrefs’ fails, it notes an
error (see Section 2, query 9).

(4) If ‘findrefs’ fails, the goal ‘nounmod’ is called to look for postmodifiers.

4.2 The natural language dictionaries

The core, application and live dictionaries have already been introduced in Section
3. The form of dictionary entry used is described below (the live dictionary is
slightly different).

Each dictionary entry is a PROLOG fact for the predicate ‘die’ and has four
elements:

part of speech
word
inflection
meaning

400 ICL TECHNICAL JOURNAL NOVEMBER 1983

An example is

die (relative pronoun, “who” .
QPROC supports the following:

, _ , person: _)

Part o f speech. Example(s)
sentence (example) bye
verb be, list, win
noun seat
noun phrase M rs.. .
adjective old
value (names a data value) tory
relative pronoun who
interrogative pronoun who
determiner the
interrogative determiner how many, which
preposition for
particle not
conjunctive and, or

Pronouns, adverbs and interjections are not yet provided.

Word. This may be a single word, e.g. ‘who’, or may have a continuation, e.g.
‘ “how” ___ “many” ’, ‘ “what” ____ die (verb, _ , _ , be)’. The last expects any
verb with meaning ‘be’ after the word ‘what’.

Inflection. Only irregular inflections are held in the dictionary as regular ones are
deduced by the lexical analyser. Many words have no inflection, indicated by

For verbs, the possible inflections are:
present, infinitive, perfect, past participle (‘-e n ’)

so there are entries like:
die (verb, “did” , perfect, die (“do”))

For nouns, the possible inflections are
number & case

where number is singular or plural or both and case is nominative or accusative or
both, or genitive. An example is

die (relpron, “whom” , _ & accusative, person _)

Meaning. Several types of meaning are illustrated in the above example:
function word, recognised by the parser, e.g. ‘be’
synonym, e.g. ldic(“do”)’
variable over a specified domain, e.g. person: _)

4.3 The generation o f formal database queries

4.3.1 Descriptions and qualifiers. The formal query language used, called
‘DESCRIPTIONS AND QUALIFIERS’, is recursively defined in terms of descrip­

ICL TECHNICAL JOURNAL NOVEMBER 1983 401

tions which refer to sets of data items and qualifiers which assert how the items are
related. This structure is close to the structure of natural language, as descriptions
interpret nounphrases and qualifiers interpret clauses. It is intended to be
independent of the particular natural language.

Once the query has been interpreted by the formal query language interpreter, not
only will the meanings be available but also the references in the database of each
nounphrase. This potentially helps with the interpretation of succeeding queries
which operate within the context of preceding ones or refer back to them, but
QPROC does not yet take advantage of this. It also helps with the diagnosis and
reporting of presupposition failure (see Section 2 query 9).

The syntax of DESCRIPTIONS AND QUALIFIERS is shown in Table 1. A query
is expressed as a PROLOG structure, using the functors ‘desc’ and ‘qual’, certain
operators (t , &, or, not, is, =) and some atoms (‘true’, ‘false’, ‘any’ etc.). The
RELATIONS and ATTRIBUTES are those of the application database. VARIABLE
stands for a PROLOG variable and LITERAL for a PROLOG atom or integer.

Table 1 The Syntax of DESCRIPTIONS AND QUALIFIERS

Notation
Terminals appear in lower case, nonterminals in upper case.

Alternatives are separated by a vertical bar.

. . . indicates optional repetition.

Query
QUERY -* RULE

Qualifiers
QUALIFIER
RULE

ARGUMENTS
VALUE

qual (VARIABLE, RULE)
true [false I
RELATION f [ARGUMENTS] I
not RULE I
RULE & RULE I
RULE or RULE I
DESCRIPTION is QUALIFIER
ATTRIBUTE = VALUE {.ATTRIBUTE = VALUE}.. .
VARIABLE | LITERAL

Descriptions
DESCRIPTION -► LITERAL I

desc (DETERMINER, INTEGER, QUALIFIER) I
DESCRIPTION & DESCRIPTION!
DESCRIPTION or DESCRIPTION

DETERMINER -► anylthe Iwhatlnolall

4.3.2 Two natural language queries and their interpretations. The interpretation
of a sentence or clause is a formal QUALIFIER. A simple sentence comprises a verb
and a number of verb modifiers. The verb is interpreted as a formal relation, and
the verb modifiers supply attribute values for that relation. The sentence

402 ICL TECHNICAL JOURNAL NOVEMBER 1983

Every Tory candidate contested an election

has the interpretation

<Desc 1> is qual (V1, <Desc 2 > is qual (V2, contest! [person = V I, election = V2]))

where <Desc 1> and <Desc 2 > are defined below.

The relation ‘contest’ interprets the verb “to contest’, and the verb modifiers, ‘Every
Tory candidate’ and ‘an election’ supply values for the two attributes ‘person’ and
‘election’.

‘<Desc 1>’ is the formal DESCRIPTION which interprets the nounphrase ‘Every
Tory candidate’. As this is a definite nounphrase, the parser finds all its references
and returns the formal DESCRIPTION (<Desc 1>): ‘Smith’ & ‘Disraeli’.

‘<Desc 2 > ’ is the following DESCRIPTION:

desc (any, 1, qual (V, true))

This is a vacuous DESCRIPTION which matches any value. The constraint that it
must be an election is imposed through the variable ‘V2’, which can only match
values in the ‘election’ attribute of the relation ‘contest’. The whole formula is
satisfied if for each value ‘Smith’ and ‘Disraeli’ there is a tuple in the relation
contest with that value for the ‘person’ attribute. There is no constraint on the
‘election’ attribute as any value will do.

A similar sentence is:

‘One election was contested by every Tory candidate’

which is interpreted as:

desc (any, 1, qual (V, true)) is qual (V2,

‘Smith’ & Disraeli’ is qual (V I, contest t [person = V I, election = V2]))

The descriptions are just as before but their order within the formal query is
reversed. This formal QUALIFIER is only satisfied if there is some election, ‘E’,
such that each of ‘Smith’ and ‘Disraeli’ occur as the ‘person’ attribute of some tuple
in the ‘contest’ relation whose ‘election’ attribute is ‘E \

4.3.3 Generating formal subqueries during parsing. PROLOG’S pattern-matching
capabilities enable formal subqueries to be generated during the parsing process.
This is best illustrated by another example from QPROC (the lines have been
numbered for reference in the notes that follow):

ICL TECHNICAL JOURNAL NOVEMBER 1983 403

(1) sentence (Desc is qual (V, Qual), Mods) -»•
(2) qnph (Dom: Desc, Num & accusative),
(3) sentence (Qual, [modf (acc,Dom:V) I Mods]).

This is one of the grammar rules for sentences. It deals with queries like:

‘Which seat did Bolton win?’

(1) ‘sentence’ has two arguments. The first argument, ‘Desc is qual (V, Qual)’ is the
formal QUALIFIER returned if the clause succeeds. ‘Desc’ is the formal
DESCRIPTION returned from (2), and ‘Qual’ is the formal QUALIFIER
returned from (3).

The second argument, ‘Mods’, holds a list of sentence premodifiers, e.g. ‘In
1974 at Worthing who stood for the liberals?’

(2) ‘qnph’ is a grammar predicate which recognises question elements, such as
‘Which seat’. The arguments are the same as for the ‘nounphrase’ (see Section
4.1.4 above). Notice that the ‘case’, which is generally returned as a result
from ‘qnph’, is an input value, ‘accusative’, in this call. This reflects
PROLOG’S facility to use arguments indiscriminately for input or output.

(3) ‘Sentence’ is called recursively. The list of premodifiers now includes a new
element, modf (acc, Dom:V) on the front of the list. This will be used to fill
in the object of the verb ‘win’ in dealing with the remainder of the sentence
‘ . . . did Bolton win?’.
The final interpretation of the sentence is:

desc (what, 1, qual (W, true)) is qual (V, ‘Bolton’ is qual (X, wint [person = X,
constituency = V]))

4.4 The convertor

To interface QPROC to an independent database management system (DBMS),
formal queries must be expressed in the form required by the DBMS and passed
to it rather than to the formal query language interpreter. QPROC contains a
convertor which converts the ‘DESCRIPTIONS AND QUALIFIERS’ formal query
into the form required by the ICL Personal Data System (PDS)9 :

list ATTRIBUTES where RULE

where ATTRIBUTES names which attributes of which relations are required and
RULE defines which tuples of the relations are to be selected.

A simple example of conversion is the query from Section 4.3.3 above:

Which seat did Bolton win?

404 ICL TECHNICAL JOURNAL NOVEMBER 1983

The formal interpretation is:

desc (what, 1, qual (W, true) is qual (V,
‘Bolton’ is qual (X,
win t [person=X, constituency = V])).

This is converted to the PDS list command:

list win. constituency where win. person = “Bolton” .

PROLOG’S pattern-matching capabilities make it a particularly appropriate language
for implementing such convertors.

5 PROLOG portability

The main changes needed to bridge QPROC from UNIX PROLOG to York
PROLOG were:

(a) Explicit uses of ASCII character codes were replaced by their EBCDIC
equivalents. It is unfortunate that PROLOG implementations still require
character codes rather than characters in some constructs (e.g. as arguments
of the ‘put’ predicate)

(b) The notation A.B for the list with head A and tail B had to be replaced by
[A | B]. There is no international standard for the language yet, so such
differences between implementations can be expected.

(c) Owing to limits in UNIX PROLOG, QPROC was too large to run as a single
process under UNIX and was split into three processes communicating via
UNIX pipes. Under VME on ICL 2900, QPROC runs as a single process.
Different PROLOG implementations can be expected to vary considerably
in their limits.

6 Conclusion

The main aim of this paper has been to demonstrate the practical use of PROLOG
on an application of some complexity. The current version of QPROC offers the
casual user a subset of English covering a wide variety of the queries relevant to a
database. The power of the PROLOG language is indicated by the compactness of
the implementation. The total size of all the application-independent components
is only 2500 lines, with the election database components accounting for another
400. Our experience indicates that the use of PROLOG can reduce complex tasks
like natural language understanding to more mangeable proportions.

References

1 WALLACE, M.G.: ‘QPROC: a natural language inquiry system*, Pb.D. Thesis, University
of Southampton, 1983.

2 BABB, E.: "The logic language PROLOG-M in database technology and intelligent
knowledge-based systems’, ICL Tech. /., 3, (4), 373-392.

ICL TECHNICAL JOURNAL NOVEMBER 1983 405

3 CLOCKSIN, W.F., and MELLISH, C.S.: Programming in Prolog, Springer-Verlag, 1981.
4 DAHL, V.: ‘Un Systtme Deduct if d’Interrogation de Banques de Donnees en Espagnol’,

Ph.D. Thesis, University of Marseilles, 1977.
5 PASERO, R.: ‘A dialogue in natural language’ Proceedings of the First International

Logic Programming Conference, University of Marseilles, 1982.
6 WARREN, D.H.D. and PEREIRA, F.C.N.: ‘An efficient easily adaptable system for

interpreting natural language queries’, Research Paper 155, Department of Artifical
Intelligence, University of Edinburgh, 1982.

7 CLOCKSIN, W.F. and MELLISH, C.S.: ‘The Unix Prolog system’, Software Report 5,
Department of Artificial Intelligence, University of Edinburgh, 1979.

8 SPIVEY, J.M.: ‘The University of York portable prolog system: user’s guide’, University
of York, 1982.

9 International Computers Limited: The personal data system (PDS70)’. Restricted Publi­
cation 2230, ICL House, Putney, London, 1982.

406 ICL TECHNICAL JOURNAL NOVEMBER 1983

Modelling softw are support

P. Mellor
ICL Customer Service & Quality Division, Stevenage, Hertfordshire

Abstract

The papet describes a mathematical model for use in forecasting the cost
of providing support for software products, which takes into account (i)
software reliability (ii) support techniques (iii) commercial policy and (iv)
engineers’ time consumed in responding to incidents. The representation of
reliability is based on the work of Dr. B. Iittlewood of City University, in
which failure is treated as being due to a number of independent Poisson
sources having different rates. Three different support techniques are
modelled: fix-on-fail, systems maintenance file release and use of known
error log (the terms are explained in the paper). The effects of commercial
policies such as the application of a warranty period can be studied, and
customer queries are included as well as product failures.

A first version of the model has been programmed in Pascal for the ICL
Personal Computer, and samples of output are used to illustrate points in
its operation and application. Work is continuing on improvements and
refinements to the model, using information gathered by the ICL software-
support organisations. An accurate simulation of actual product failure
data is presented.

1 Software failure and repair, and the need for modelling

1.1 The peculiar nature o f software failure

Why does software fail, and how can we measure its reliability? The same questions
can be asked about hardware and reasonable answers can be given, but for software
the situation is far more complicated and far less well understood; there is not even
general agreement on how to define software reliability, even though achieving high
reliability is one of the major challenges facing the computer industry. Defining
failure is equally problematical. One definition of failure in a product is ‘deviation
from specification’, but the specification of a piece of software as complex as an
operating system will almost certainly be incomplete and contain ambiguities, to
the extent that such a simple definition will be inapplicable. Alternatively the
product may be within the formal specification but may fail in the sense of not
fulfilling in some way what the customer regards as his reasonable expectations; or
there may be an obvious deviation from the specification, but this has so trivial an
effect on the customer’s work that it is not worth while to go to the trouble of a
query.

Software does not fail as a consequence of age or wear. It fails because a human
mistake was made in the design, or in the writing of the code (which can be regarded

ICL TECHNICAL JOURNAL NOVEMBER 1983 407

simply as a more detailed stage of the design process). The result of the mistake is
what is usually called a bug in the product. This is not necessarily a localised error
in the code; it may result, for example, from conflicting interpretations of an inter­
face specification being made by separate writers of different modules of code, or
from an error made by the writer of the user manual which misleads the customer.
Then, since all software faults are essentially design faults and are either present in
the product or not, can they be said to be in any sense random? The treatment of
software faults that will be described in this paper is based on assumptions of
randomness, which can arise in either of these ways:

— A bug will only generate a failure in response to a certain subset of all possible
inputs to the system. Encountering an input from this ‘bad’ subset is a random
event. The subset which causes failure is different for each bug, and the fre­
quency of failure caused by a given bug depends on the size of its bad subset.

— The total number of bugs and their individual frequencies are not known, and
therefore we can treat them as random variables: this is the Bayesian approach.
We have certain expectations of what the frequencies of bugs in a new product
will be before making any observations of failures, which we express by assign­
ing a probability to a bug having a frequency in a given range (the prior
probability distribution). The observation increases our knowledge and changes
our expectation, so that we can then assign different probabilities to the fre­
quencies (the posterior distribution): this is so even if the bugs are removed as
they are found.2

An important point, made most clearly by Campbell and Ott13, is that a record of
product failure distribution in time contains information even about events which
have not happened, provided that they have been exposed to the ‘risk’ of happening
during the relevant period. Realising this, we can use our observations to deduce a
frequency distribution for the faults that are left in a product as well as those that
have already caused a failure.

Admitting that different bugs may result in different frequencies of failure has
the important implication that software with many infrequent bugs may be more
reliable than software with a few frequent bugs. The important thing to determine
is not ‘the number of bugs in a program’ but ‘how sure are we that this program
will perform satisfactorily for a given period of time?’

Mostly, software faults are removable; and software differs from hardware in that
repair permanently changes the reliability of the product. Repair of hardware
essentially replaces a failed component, which has ceased to perform to specifica­
tion, by one that performs correctly; but the new component has the same reliability
as the one it replaces and will itself eventually fail. Hence the reliability of the
product is unchanged by repair. By contrast, a software product (with a static
specification) becomes more and more reliable as faults are removed, and once right
will perform correctly for ever. Further, while a hardware repair corrects only the
single example of the product on which it is carried out, a software repair can be
very easily applied to every example of the product in the field. A countereffect
is that a software repair can itself introduce other faults, so that the reliability of

408 ICL TECHNICAL JOURNAL NOVEMBER 1983

the product can be reduced as a consequence of the repair. This applies equally to
any change made to the product, such as the addition of new code to provide
enhancements; and since almost every software product does require enhancements
from time to time, this implies that repair must be properly managed so as to
ensure that on average reliability improves. Table 1 summarises the main differences
between software and hardware from the points of view of reliability and repair.
A final comment here, however, is that the ‘hardening of software and softening of
hardware’ is tending to blur these distinctions; design faults in complex hardware
bear a strong resemblance to software faults, and faults in ‘firmware’ or software
distributed on ROM are in many respects like those of hardware.

1.2 The need for, and value of, a model

The users of most products expect the supplier to offer a service of support which
will at least keep the product in good working order and repair failures quickly and
effectively. To plan a strategy for such a service for a new product the supplier
must know the likely demand for the service and the effect o f technological and

Table 1 Differences between hardware and software from the support point o f view

Hardware Software

Specification simple, complete extremely complex, almost
certainly incomplete

Design perfect. Design faults removed
prior to production

imperfect. All faults are
design faults

Manufacture imperfect. Substandard
components removed by
‘bum-in’

perfect. New faults not intro­
duced during copying and
distribution

Effect of structure
on reliability

well-defined, beneficial poorly understood.
‘Integration faults’ frequent

Quality measures MTBF well defined and
completely describes failure
characteristics

MTBF may not exist in some
circumstances
Reliability = Pr { system will
fail before a given tim e} and
failure rate should be used

Cost of failure predictable, containable unpredictable, may be
catastrophic

Serviceability MTTR can be ascertained for
each component.

each fault different.
Some not repairable

Cost of repair predictable from cost of
spare and MTTR

depends on diagnosis and fix
time. Widely variable

Reliability after
repair

as before failure permanently altered.
Probably better, possibly
worse!

Effectiveness of repair around 100% can be as low as 50%
Repair requires: movement of personnel and

materials
movement of information

Cost of product update
throughout field

prohibitive relatively small

ICL TECHNICAL JOURNAL NOVEMBER 1983 409

commercial decisions on the cost of providing it.

This is essentially a question of forecasting the costs of future operations on the
basis of whatever relevant information is available, and what is needed if this
forecasting is to be a rational process is a theoretical model - a mathematical
model, in effect — that simulates the behaviour of the complete system formed by
the product in the field combined with the supporting service. When such a model
has been developed and its validity established by checking it against historical data,
it can be used not only for forecasting but also for what is usually called sensitivity
analysis: this means observing how the output — usually a predicted cost — varies
as input parameters to the model are varied, and showing how the cost would be
affected by changes that might be made in the real world in which the product is
being used. The paper describes a model developed for this purpose in the ICL
Customer Service & Quality Division.

1.3 Relevant published work

Because of the recent interest in ultra reliable systems in which software plays a
crucial role, and of the inherent difficulty of defining, measuring and predicting
software reliability, the literature on the subject has grown enormously over the
past few years. Many of the published papers propose mathematical models of
software failure and fault removal and the researcher is in danger of getting lost in
this thicket; fortunately guidance is available in a group of excellent survey papers
by Dale and Harris.4, s,< The earliest of these models is that o f Jelinsky and
Moranda,9 published in 1972, the basic assumptions of which have persisted to a
surprising extent: as Littlewood1,3 has pointed out, most of the later models are
essentially variations on this with corrections and refinements added. One particu­
larly questionable assumption made by Jelinsky and Moranda is that all bugs in a
product contribute equally to the failure rate, littlewood abandons this assumption
in his proposed models and uses Bayesian techniques to represent the different
effects of different, individual bugs; his work on stochastic reliability growth2 is the
basis of the failure-rate part of the ICL model.

All these published models deal with the debugging of a single program in a stable
environment; they are concerned solely with the effects on reliability and not at all
with the cost aspects of the repair process. To be useful to a vendor of computer
systems a model must take into account the following:

— ‘customer effects’: change in the apparent failure rate due to a change in usage
of the product; variations in customers’ skill in fault recognition and avoidance;
reluctance to report failures, so as to save time; making general queries
unrelated to failure

— presence in the field of many copies of each product, and variation of this
population with time

— effect of delays in fault diagnosis or repair
— differing cost to the customer of different failures, i.e. variation of the

severity of the effect
— differing cost to the vendor of different failures, i.e. variation in the resources

consumed in diagnosis and repair.

410 ICL TECHNICAL JOURNAL NOVEMBER 1983

Most published models, including the present one, treat the software product as a
‘black box’ and aim to predict its future reliability from past observations. In de­
signing the present model it was felt that it would not be profitable to try to relate
the detailed structure of the product to the bug content; the work of
Kitchenham7, for example, has shown that the use of complexity metrics may give
no better prediction of bug content of the various modules of a big software
product than does a simple count of the number of instructions in each module.

1.4 Background to the ICL model: functioning o f the software support service

The terminology in use is defined in this Section. The usage of the terms ‘fault’ and
‘failure’ is consistent with that of Anderson and Lee.8

Any software product may contain bugs, which can lead to failure in use, and
features which can lead the customer to make direct queries to the support service.
These are referred to together as event sources; the issue of software to the field
distributes the full set of sources with each copy of the product. Each copy is
called an instance of a source, and an event generated by any instance is called a
manifestation of that source. A manifestation can be either a product failure (PF)
or a query related to something other than a failure, termed a nonfailure query
(NFQ). A source can be turned o f f by being dealt with by one of the mechanisms
described below; until turned off it is active.

Each source has its own intrinsic failure rate, but the failure rate observed in the
field will vary from one customer to another, depending on the type and intensity
of his use of the product. This effect of usage is represented by a stress factor which
is combined with the intrinsic rate to give a local failure rate for each individual
instance. The use of stress factors is explained later in the paper; it is usual10,11’13 to
classify installations into three stress levels.

The essential function of the support service is the resolution of events generated in
the field. The ICL support organisations record information relating to faults and
their repair in the maintenance database (MDB). An important part of this is the
known error log (KEL), which contains symptoms by which the manifestations of
known faults may be recognised.

Software repairs or patches are held in another part of the MDB and cross-referenced
from the KEL.

The service is organised hierarchically, and for the purposes of the model three
levels are assumed. The initial contact with the customer is a query to the first
level; this can be due to a product failure or can be a nonfailure query, in either
case the event may not pass beyond the query stage — which may still entail con­
siderable work within the support organisation - or may lead to a bug report being
raised. This will be passed to the higher levels and will be closed by being put into
one of a number of closure categories. Four categories are used in the model, al­
though in practice a much finer division is used. The four are as follows:

— New product error (NPE). A new fault is found in the software or in the docu-

ICL TECHNICAL JOURNAL NOVEMBER 1983 411

mentation, and can be corrected. This improves things for all customers for
that product.

— Usability. Includes user error, operator error, request for explanation. Solves
the one customer’s problem.

— Known error (KE). The recurrence of a fault previously entered in the known
error log (KEL).

— Unresolved. Relates to a situation in which there is insufficient evidence for
any decision to be made, or that the query is withdrawn later. Queries in this
category may have taken a considerable resource from both customer and
vendor, but there is no apparent value to either.

In the handling of these, the first (NPE) would be expected to consume most time,
the third (KE) the least, and the others to be more variable.

The event source will be dealt with by one or other of several support mechanisms.
The model takes into account the three following:

- Fix-on-fail (EOF). The single instance of a source which has manifested itself is
turned off by software repair. The response to a nonfailure query should have
the same effect, since the customer can be expected not to repeat the same
query.

- Known error log (KEL). Once a new product error or usability problem has
been disposed of and a fix, if applicable, is available it is entered on the known
error log. Subsequent manifestations of other instances of the same source will
then be closed as ‘known error’.

- Systems maintenance file (SMF). This is also known as bug clearance release. It
consists of the issue to the whole field of software repairs for all known
product faults, or of a version of the software with all these faults source-
cleared, which is identical from the point of view of the model. This turns off
all instances of known products faults, but does not affect the nonfailure query
sources.

2 The ICL model

2.1 Objectives

The aim is to provide a means of calculating, at each moment in the period simu­
lated, the expected rate of generation of support events by all the systems in the
field, corrected for turnoff by one or other of the support mechanisms or by
expiry of a warranty. The events are then classified as known/new errors and
product failure/nonfailure query events, allocated to closure classes and their costs
assigned; accumulated costs are calculated, and classified in various ways. Success­
fully resolved events have a feedback effect on the field via the fix-on-fail, known
error log and systems maintenance file mechanisms. An estimate of the expected
reliability of each system can be calculated.

2.2 Basic assumptions

The theoretical basis on which the model rests is the assumption that each instance
of an active fault or nonfailure query is an independent Poisson source with its

412 ICL TECHNICAL JOURNAL NOVEMBER 1983

individual rate. It follows from this that the flow of events from the whole
field is a nonstationary Poisson process whose instantaneous rate is the sum of the
rates of all those instances that are active at that moment; this rate varies with time
because the number o f active instances varies. If the rate at time t is f (t) then the
accumulated number of events up to that time has a Poisson distribution with mean
F(t), where

Appendix 1 gives a derivation of the nonstationary Poisson distribution from
assumptions which are in fact less restrictive than those made here.

From this we can calculate the expected accumulation of events and the probability
of the number accumulated in any period lying within any given bounds. It can be
helpful to use the fact that a Poisson distribution with a large mean F approximates
to a normal distribution with mean and variance both equal to F.

In simplified cases, such as a constant population, we can derive explicit formulae
for the accumulation of events; but in the general case this is not possible and a
computer program which treats the period under study as made up of a number of
time dices has to be used.

2.3 Time and population

The period being studied is divided into intervals, typically of length 1 year; time-
dependent quantities are specified by their values at interval boundaries and it is
assumed that linear interpolation suffices to give intermediate values.

Each interval is divided into a number of time slices, short compared with the
interval length and typically of the order of a few days; variables are treated as if
they changed stepwise at the start of each slice.

Let Mj = initial population of systems in the field; i.e. the number present just
prior to the start of the first interval

Mi = population at the start of interval i; the first interval is i = 0, so M0 = Mj
Df = number of systems delivered during interval i
Pj = probability that a system is still in the field j intervals after delivery

Let L be the length of the interval, h that of the slice and 7/ (= iL) the start time of
interval i. Then the assumption of linear interpolation within an interval gives the
population M(t) at a time t in the interval i as

o

Then M j= M jP j+ ^ D / fy - i (1)

M(t) = M{ + (Mi+1 - Mt)(t - TOIL where Tt < t < Ti+1 (2)

ICL TECHNICAL JOURNAL NOVEMBER 1983 413

We need to divide the population into stress levels and commercial categories, and
the proportions in each will generally vary with time. A warranty may apply in
some commercial categories, and a system whose warranty has expired will take no
part in support operations. Other systems are called active. Let

Mg{t) = total number of systems in stress level g at time t
Mcg(t) = number of active systems in stress level g at time t
Ps{k,t) = probability that a system present at time t will still be present and

Also let Y(t) be the total accumulated operational time for the population up to
time t: this is the total running time for all systems, weighted for stress and corrected
for warranty. The weighting for stress level g is represented by a stress factor/^; if
the accumulated time for stress g is Yg{t), then

The stress factor f g must take into account the ratio of running to elapsed time as
well as the effects of customer usage; it must be made clear whether estimated
failure rates refer to elapsed time or to running time and the stress factor used
consistently. Time can be measured in any units — hours, days or years — so long,
of course, as the same units are used throughout.

The field population is assumed to be given prior to the simulation, and is not
changed by events occurring during the run. There is no representation of, for
example, increased sales due to improved product reliability.

Fig. 1 gives an example of a population graph.

In this example, population is initially zero. The number of systems delivered in
each of the six successive years is 100, 200, 250, 200, 100 and 50, respectively. The
standard withdrawal rate is used, i.e. normal with mean 5 years. Percentage of
systems left in each year after delivery is 99, 95, 87, 63, 37, 13, 5, 1 and 0,
respectively. Note that population peaks and then declines as deliveries tail off.

2.4 Event generation and effect o f support feedback

2.4.1 Probability o f event manifestation: The standard notation Pr {statement} is
used to denote the probability that the statement in the brackets is true, and
Pr \a\b) the probability of a, given that b is true.

If events are generated by a Poisson source with rate r, then
{rtf1

Pr \n events are generated in period of length t \ = ----- exp (- rt)

active at time t+k

(3)

so

Pr {no events generated} = exp (- rt)
Pr { at least 1 event generated} = 1 - exp(-rr)

414 ICL TECHNICAL JOURNAL NOVEMBER 1983

We group the sources into classes according to intrinsic rates, and say that all
sources in class a have the same intrinsic rate ra ; then an instance of a class a source
on a system in stress level g will have a local rate raf g and

Pr {no event from this source in slice of length h } = exp(-raf gh) (4)

Fig. 1 System population and accumulated operational time

Consider now the manifestation of a source with rate ra on m y system in the field
up to time t. The total accumulated exposure time is Y(t), and so

Pr {no manifestation of source in class a on any system by time t }
“ exp [-r, 7(f)] (5)

To be turned off by fix-on-fail, an instance of a source must manifest itself. Eqn. 4
therefore gives the probability that any instance of a class a source on a stress level
g system will not be fixed as a result of manifesting itself in a given time slice.
Eqn. 5 applies to all instances of a class a source and gives the probability that the
source:

ICL TECHNICAL JOURNAL NOVEMBER 1983 415

- is not on the known error log at time t, or
— if r is the time of the last systems maintenance file release, has not been turned

off by that SMF.

2.4.2 Effect o f imperfect fix and delay: There will be a delay between the
manifestation of a source instance and its fix-on-fail, entry on the known error log
or inclusion in the systems maintenance file. The model in its present form treats
the average delay as constant, k , so that t must be replaced by t~k in eqn. 5 above
and Y(t) taken as zero for t< k . In fix-on-fail delay means that the fix is applied
[k/h] slices further on, where as usual [x] means the integral part of x. Fix-on-
fail simulation is generally complicated and is treated separately below.

The case of the imperfect fix is handled by introducing the parameter

Pf = Pr {any source instance is successfully fixed after manifestation}

Taking /y as constant is equivalent to assuming:

(i) all fix attempts have the same probability of success
(ii) this probability is not affected by manifestations of other instances of the

same source
(iii) only working fixes are included on the systems maintenance file

and to ignoring the facts that:

(i) later attempts to fix an instance will be more likely to succeed than the
earlier ones

(ii) use of the known error log will spread this effect over all instances of the
same source

(iii) once a good fix is on the known error log subsequent manifestations are
fixed with certainty

(iv) bad fixes can get on to the systems maintenance file
(v) a bad fix may not merely fail to clear the original bug but may also intro­

duce a new source.

It is part of the quality control function to ensure that we are able to ignore (iv)
and (v). A support world in which these were major factors would be chaotic.

Accepting these limitations we proceed as follows (with a slight change of notation
for the sake of simplicity).

If p is the probability that a fix is good (so that q = \~p is the probability that it is
bad) then for a source of rate r and exposure time y

Pr {source is not fixed}

= Pr { source is not manifest}

416 ICL TECHNICAL JOURNAL NOVEMBER 1983

+ 1 Pr { source manifest n times and is fixed badly every time}
«=1

00 (rvT
= exp(-/y) + X -----— exp(-0 ’V

n!
n=l

= exp(- ry) exp (ryq) = exp(- ryp)

Eqn. 4 now becomes (substituting raf g for r, h for y , P f for p in the above):

Pr {class a source on stress £ system generates no fix in any slice h >
= exp(- ra f g P fh) (6)

If Tv is the time of the vth systems maintenance file release, then eqn. 5 becomes
(substituting ra for r, Y(Tv- k) for y, P f for p):

Pr {class a fault still active after vth SMF} = exp[- ra PfY(Tv- k)] (7)

For nonfailure query sources this probability is 1 always.

The symptoms which will assist the recognition of future manifestations of a
source can be on the known error log before a good fix is available, and so we
ignore Pf when calculating the probability that a source is known. We still assume
that there is a delay before the KEL entry is made, however, so that:

Pr {class a source is not on KEL at time t } = exp[-rfl Y(t-k)} (8)

If a source is not on the known error log it cannot have been dealt with either by
fix-on-fail or by system maintenance file release. Eqn. 8 therefore gives the
expected proportion of all class a sources which are still active and unknown.

2.4.3 Representation o f differing source frequencies: We have already made the
rather crude assumption that event sources can be grouped into classes, with all
sources in one class having the same intrinsic rate. Given this, any chosen fre­
quency distribution of source rates can be simulated by assigning different propor­
tions of sources to the different classes and any overall failure rate by choosing the
appropriate total number of sources. The rates in each class having been chosen, the
number of sources in each class is called the quality profile of the product. Products
with different profiles behave very differently, even though they may appear to
have the same failure rate when issued.

Fig. 2 gives a theoretical example; it shows the rates of support events generated by
the whole population in the field of two products with different quality profiles,
on the assumption that:

- the system population is that of Fig. 1
— each product runs on every system in the field

ICL TECHNICAL JOURNAL NOVEMBER 1963 417

Table 2 Rates and product profiles

Class 1 2 3 4 5
Rate (events/day) 2 x 10‘3 6-3 x 10-4 2 x 10"4 6-3 x 10_S 2 x 10_s
Product 1 (sources) 0 0 140 240 420
Product 2 (sources) 14 24 42 100 206

Class 6 , 7 8 9 10
Rate (events/day) 6-3 x 10~® 2 x 10~* 6-3 x 10~7 2 x 10"7 6-3 x 10‘8
Product 1 (sources) 1000 2060 3560 5760 6840
Product 2 (sources) 356 576 684 0 0

— a systems maintenance file is issued for each product around the end of the
second year

— only product faults are considered, and possible nonfailure queries ignored.

Ten classes of event source are defined, with the rate decreasing by a constant factor

418 ICL TECHNICAL JOURNAL NOVEMBER 1983

of V 10 from each class to the next; the rates and the product profiles are in
Table 2.

The example has been constructed so that Product 1 has 10 times the number of
faults as Product 2, but these have Only 1/10 the frequency; so the initial failure
rates are identical. Since the numbers of copies of the two products are always the
same, the differences in the numbers of support events shown in Fig. 2 can arise
only from the differences between the two profiles. The following points shown by
Fig. 2 are worth noting.

— The initial rate is zero, since the initial population is zero, and increases rapidly
as the population grows.

— Early rates from the two products are almost identical. The fewer, more fre­
quent, sources in Product 2 are cleared more rapidly by fix-on-fail and its rate
declines a little more rapidly, relative to population, than Product 1.

— Overall effect of fix-on-fail is slight; when it is the sole mechanism in operation
the rate follows changes in population almost exactly.

— The effect of systems maintenance file release is dramatic, and much greater
for Product 2 than for Product 1. Bearing in mind that the effect of SMF is to
remove from the whole population all known faults at the time of issue, this
shows that far more are known for Product 2 than for 1.

The graphs have been smoothed slightly from the original printer output; there
would be some more smoothing in a real-life case because the SMF release is not
applied to all systems simultaneously.

Fig. 3 shows the accumulating life-cycle cost of supporting each product, on the
assumptions that a known fault costs 0-2 engineer days per event and a new fault
10. The significant points to note here are:

— since proportionately more of the events from Product 2 are closed as ‘known
error’, and these cost much less than ‘new error’, the difference in cost is even
greater than the difference in event rate. The two products have the same
initial failure rate but after 6 years Product 1 has cost more than four times as
much to support as Product 2.

— since SMF release affects known sources, it has less effect on the cost rate than
it has on the event rate. There is in fact a kink in the graph at 2 years, but this
is barely discernible.

Figs. 4, 5, 6 illustrate the effects of differing quality profiles in a different way.
These are based on the assumptions that the field population is constant at 100
systems and that the only support mechanism in force is fix-on-fail. The graphs
show total product failures, those closed as ‘known error’ and those closed as ‘new
error’. Six source classes are assumed, with rates and profiles as in Table 3.

Significant points here are:

— total event rate decreases by half during the six years with Profile 1, decreases
slightly with Profile 2 and stays virtually constant with Profile 3

ICL TECHNICAL JOURNAL NOVEMBER 1983 419

Q-QL^ — ----- ,---------- .---------- ,---------- ----------- -----------j
0 1 2 3 4 5 6

tim e,years

Fig. 3 Accumulating life-cycle cost of support: total and for each software product

— with Profile 1 new faults decrease to 10% of the total in 1 year, whereas with
Profile 2 they are still more than 20% of total, and with Profile 3 more than
50%, after 6 years.

This example was constructed artificially for purposes of illustration. The follow­
ing paragraph is intended to give some idea of what quality profile to expect in
real life and to introduce the concept of a continuous distribution of probability
of source frequency.

2.4.4 Exponential frequency distribution: Consider the application of eqn. 7 to
the period of testing the product before it is released to the field. This is equivalent
to a systems maintenance file release at t = 0 but with T(0) = H, where H is the total
exposure of the product during the testing period. The equation shows that all but
the very infrequent faults will be removed with virtual certainty before the release.
This conclusion is supported by such observations as have been made, which suggest
that frequencies of individual sources in the field are in fact very low, and that high
failure rates are caused by there being very many, very infrequent sources. (A bug

420 ICL TECHNICAL JOURNAL NOVEMBER 1983

Table 3 Rates o f source classes and profiles

Class 1 2 3 4 5 6
Rate (events/day) 6 x 10-4 6 x 10-s 6 x 10-6 6 x 10-7 6x10"* 6 x 10-9
Profile 1 (Fig. 4) 100 400 1600 4000 0 0
Profile 2 (Fig. 5) 0 1000 4000 16000 40000 0
Profile 3 (Fig. 6) 0 0 10000 40000 160000 400000

Fig. 4 Known, new and total event rates. Quality profile 1

with a frequency of 1 event in 10* years has been reported on a widely used
operating system which had clocked up that order of operational time.)

To quantify this qualitative judgement, consider a continuous distribution of failure
rate. Writing as usual Pr { x /y } for the probability of x, given y , and pdf for
probability density function, let p0(r) be the prior pdf for r at t = 0 and pw(r)
the posterior pdf at t = H. Then for a single source at t = H, ignoring delays and
other effects,

ICL TECHNICAL JOURNAL NOVEMBER 1983 421

ev
er

ts
 p

er
 d

ay
 f

ro
m

 w
ho

le
 fi

el
d

P//(/) = pdf (rate of source = r | source not manifest during period H)

Pr { source not manifest during H I rate = r } Po(r)

J Pr {source not manifest during H | rate =r) Po(r) dr

by Bayes Theorem
OO

= exp(-Hr) p 0(r) I I exp(-Hr) p 0(r) dr
n *

422 ICL TECHNICAL JOURNAL NOVEMBER 1983

If we now assume Po(r) = 1 (an improper uniform distribution) it follows that
(r) = H exp (-Hr), an exponential distribution with expectation 1 jH. This is

intuitively appealing since we should expect a fault with a rate less than 1/H to
show up less than once during the exposure period H, and one with rate greater
than 1/H to show up at least once.

I am indebted to Dr. B. Littlewood for this proof, which corrects and generalises an
earlier attempt to justify exponential distribution of frequencies.

littlewood criticises the assumption of the improper prior distribution, and also
points out that the exponential is a special case of the gamma distribution considered
in his 1981 paper2. Gamma distributions form a two-parameter family, each being
defined by a ‘shape’ parameter and a ‘scale’ parameter, the latter defining the mean
of the distribution. The exponential distribution is a gamma distribution with the
shape parameter 1. A more rigorous treatment would be to assume a gamma distri­
bution and use observed failure rates to estimate the parameters; the resulting

ICL TECHNICAL JOURNAL NOVEMBER 1983 423

distribution could then be used to predict future reliability. It is likely that different
distributions would be needed for product failures and nonfailure queries,
respectively.

To investigate the behaviour of a certain type of ‘uniform’ distribution of fault
frequency, a run of the model was done with 1000 faults in each of 10 classes. The
rates were in the ratio V 10 between adjacent classes. The number of sources still
active in each class after a 10-year mn on one system is given in Table 4.

Table 4 Remaining sources in each class after 10 years running time

Class 1 2 3 , 4 . 5 .
Rate 3 x 10~2 9487 x 1(T3 3 x 10-3 9487 x KT* 3 x KT4
Sources 0 0 0-02 31 334

Class 6 c 7 8 ^ 9 . 10
Rate 9487 x 10-5 3 x 10"5 9487 x 10-6 3 x 10"* 9487 x 10~7
Sources 707 896 965 989 996

2.4.5 Simulating fix-on-fail: Since this applies to individual source instances
spread over a changing population its simulation is complex. First, the number of
fixes generated in any slice is calculated for each instance of a class a source on a
stress level g system; this is then added to the fixes to be applied [k/h] slices later,
carrying forward the fixes from the previous slice and allowing for withdrawals
from the field and expiries of warranties.

Further manifestations of the same instance in later slices, but before the ‘target’
slice for application of the fix, must not generate fixes. Finally, if Tm is the time of
the with systems maintenance file release all fixes generated prior to Tm - k are
deducted from the accumulating total; and the number of active instances at any
time is obtained by subtracting the number of fixes from the number of instances,
treating instances from each class at each stress level separately.

Let Aag(t) and Fâ (t) be the number of active instances remaining, and the number
of fixes to be applied, respectively, for class a sources on level g systems at time t

Tm = time of most recent (with) systems maintenance file release, or zero if
none has been made

Pa(t) = Pr {class a source still active after last SMF}

= 1 if there has been no SMF release, or if the source class consists of
nonfailure query sources (see eqn. 7)

t - k
then Fag(t) = £ Aag(z) Ps(z, t) [1 - exp (- ra fg Pf h)} (9)

z=Tm~k

424 ICL TECHNICAL JOURNAL NOVEMBER 1983

where the summation is slice-by-slice

and Aag(t) = Mcg(t) Pa{t) - Fag{t) (10)

2.4.6 Expected rates and accumulation o f support events: If R (t) and E(t) are the
expectations of the total event rate from the field and the total accumulation,
respectively, then

* (0 = X T na ra fg Aag(t)
a g

E(t) = f R(u)du = ^ R(z)h (approximately)
o J z=0

(U)

(12)

where na is the number of class a sources in the product, and, as before, the
summation is slice-by-slice.

The expectation of the rate of generation of new errors is R ^ if) where, from eqn. 8,

r n (0 = 2 fg Mcg(t) Z nara exP \~ra y (f_*)] (!3)
g a

and the expectation of the rate for known errors Rg(t) is

Rfc(0 = R {t) “ R]v(t) (14)

2.5 Calculation o f costs

The present version of the model treats the calculation of costs very crudely: a
constant average cost in engineer days per event is assumed, with different values
for each of four event types, the split being product failure and nonfailure queries,
and known/new sources within each. Different probabilities of closure in each of
the four main categories described in Section 1.4 (these probabilities depending on
event type) and the treatment of the resulting costs must await a later version of
the model.

A further refinement which should be included is that the calculation must take
into account the probability of not recognising a known fault from the entry in the
known error log. That this is significant is shown by the large number of reports
closed eventually as ‘known error’ at the top level of the support hierarchy. With
perfect recognition we should expect all known faults to be closed at the lowest
level, or even not to appear at all since in practice the customer has access to the
known error log and could be expected to recognise these himself; there would then
be no cost to the support organisation other than that of providing the log.

ICL TECHNICAL JOURNAL NOVEMBER 1983 425

An alternative approach would be to treat cost as a random variable with a given
distribution, and log-normal has been suggested as a starting hypothesis. This leads
to studies of the sums of random numbers of random variables; the mean and
variance of the distribution of total cost resulting from this approach can be found
without too much difficulty.

2.6 Input to the model

The maintenance database is the main source of product reliability data, together
with the monthly returns from the field collected by the product service evaluation
organisation. In particular, failure during validation of a product is recorded in the
database. By matching bug reports to entries in the known error log it is possible
to estimate the frequency of manifestation of each known fault, correcting for
suppression of some known errors before they reach the database as mentioned in
Section 2.5. Proportions of fault reports closed in various categories and at various
support levels can be estimated from statistics provided by the software support
centres.

Information on costs is more of a problem, telephone queries in particular being
notoriously difficult to cost. The best sources are the audits carried out by the first
and second lines of support.

3 Comments and conclusions

3.1 Failure rate and frequency distribution o f sources

The same instantaneous failure rate could result from any number of different fre­
quency distributions over an appropriate number of sources. The behaviour of the
product when exposed in the field and subject to the improving effect of support
mechanisms will, however, be completely different for each distribution. This is
illustrated by Figs. 2-6.

Basically, the presence of many infrequent sources results in slow growth in re­
liability, whereas a few frequent sources lead to rapid growth. What is observed in
practice is closer to the former than the latter.

3.2 Implications for software-reliability measurement

When software is being validated, targets for reliability have to be set in order to
ensure that a specified support cost is not exceeded after the product has been
released to the field. It is obviously insufficient to specify either a simple failure
rate or MTBF (mean time between failures), or a maximum bug content - even if
this latter could be estimated during validation. In fact, software reliability can be
fully specified only by using some conceptual model of the process of generation
of events; the model must take into account the distribution of source frequencies
and targets must be specified in terms of the model.

As an example of how this might work in practice, consider the special case of the

426 ICL TECHNICAL JOURNAL NOVEMBER 1983

exponential distribution of frequencies discussed in Section 2.4.3. The mean was
found there to be 1///, where / / i s a measure of the total exposure of the product so
far. This will not generally be known when the product arrives in validation because
up to that time it will have lived in a fairly uncontrolled environment. However, the
total exposure V during validation can be measured and the problem is to use this
and other measurements to estimate H and the total number of faults or bugs in
the product N. On the exponential assumption, future behaviour can then be
predicted.

We assume that faults are removed as they are found during the validation. R 2 and
R 2, the failure rates at the start and end, respectively, of the validation process,
must be measured.

One possible way to estimate these is to use a graphical technique described by
Campbell and O tt13, and adapted by Dale and Harris4. The accumulated number of
faults found is plotted against time and what is called the least convex majorant
is drawn: this is the ‘smallest’ smooth convex curve lying above all the points. The
slope of the tangent at any point is an estimate of the instantaneous failure rate at
the corresponding time.

Given V ,R t and R 2 the calculation of H andN is as follows.

The expected rate at the start is R , = N/H. (15)

The expected number of faults found during validation

= N Pr {fault manifests itself during period V (

= NV/(H+ V)

The expected number of faults remaining after validation is therefore

N - NVftH + V) = NHI(H + V)

Since the total exposure time is now H + V the expected rate of each bug left is
1 /(//+ F), and so the total rate after validation is

= N pdf(r) Pr {fault manifests during V \ rate = r } dr
o

= JV H exp(- Hr) [1 - exp (- Vr)\ dr
o

R 2 =NH/(H+ v y (16)

ICL TECHNICAL JOURNAL NOVEMBER 1963 427

Substituting H = N /R i from eqn. 15 we obtain the equation for N: *

(/?! - - 2Ri R 2 N - R i 2R i ^ = 0

from which, taking the positive root

N= KR, [R2) \KRi ~ *2)

and hence H from eqn. 15.

This derivation is based on the assumption of the exponential distribution; for a
more general gamma distribution there would be a shape parameter also to be
estimated.

Use of a model in this way makes it possible to define reliability targets in meaning­
ful terms. In this example the validation could continue until the expected number
of faults remaining was such as to guarantee that support costs would stay within
prescribed limits. Without a model, development and validation teams have no way
of relating their efforts to product quality and support cost.

3.3 Effectiveness o f support mechanisms

It is evident that the two mechanisms that rely on input from the whole field,
systems maintenance file and known error log, are vastly more effective than fix-on-
fail, which affects only individual sites. In fact, SMF release is so effective that if
well timed it should be possible by this mechanism to reduce the flow of fault
reports concerning any widely-dispersed stable product virtually to zero, given a
well managed support effort. Unfortunately, it is a fact that complex software
products such as operating systems must evolve to remain useful, and it is the
necessary continual updating that defeats the improvement process.

Fig. 7 illustrates the effect of product reissue. It shows graphs of event rate for two
products, in this case with identical profiles. Both are subject to SMF releases after
2 years and 4 years, but only Product 2 is reissued. The assumption is that reissue
introduces a certain percentage of new code (in this case 20) with the same quality
profile as the original, into the field.

The two big drops in event rate are due to SMF release. The fairly large increase is
due to reissue.

The quality profile for both products is given in Table 5. Note that this is similar
to the profile obtained by running the model for a time on an initially ‘uniform’
distribution over similar classes.

The population is the same for Figs. 1 and 2, but the lower profile means that the

* The convexity of the curve fitted to the observations guarantees that /?, >Z?a. If a convex
curve could not be fitted, the failure rate would not be decreasing during the validation and
the process would be meaningless.

428 ICL TECHNICAL JOURNAL NOVEMBER 1983

Table 5 Quality profile for products in Fig. 7

Class 1 2 3 ^ 4
Rate 3 x 10 '3 9-487 x 10"* 3x10"* 9-487 x 10"s
Sources 1 3 33 70

Class 5 6 ^ 7 , 8
Rate 3 x 10_s 9-487 x 10"6 3x10"* 9-487 x 10~7
Sources 90 96 99 100

Fig. 7 Event rates: total and for each product. Both products have SMF at years 2 and 4.
Only one has 20% reissue at year 3

highest rate attained before the first SMF is less than half that in Fig. 2.

An important consequence of the effectiveness of the SMF mechanism is that the
event rate will be relatively very high in the early part of the life of any product.

ICL TECHNICAL JOURNAL NOVEMBER 19B3 429

This will cause problems in providing support resources, for example, diagnosticians,
and the consequential queueing effects will become important in these early stages.
Nonfailure queries, on the other hand, are dealt with only by fix-on-fail types of
mechanism, so a steady workload, more or less proportional to the population in
the field, must be expected.

The issue of SMF releases and the maintenance of the known error log are important
overheads on the support operation and must be included in the life-cycle costs of
the products.

3.4 Some shortcomings o f the present model

1 The basic hypothesis that software failure can be described by a discrete set of
independent, removable Poisson sources is assumed almost universally in soft­
ware reliability modelling. It should not be forgotten that this is only a hypo­
thesis, to be modified in the light of experience. It is common experience, for
example, among software writers and supporters that faults are sometimes not
independent.

2 The treatment of sources as belonging to discrete categories is at best a poor
approximation to the use of a realistic frequency distribution.

3 Stress factor is a blunderbuss weapon for attacking the problem of customer
effects. The effects are not usually uniform over all sources, the difference being
particularly marked between validation and user environments.* Stress is diffi­
cult to measure using historical data and even more difficult to predict.
Littlewood suggests the use of ‘explanatory variables’ instead.

4 Effects of queues are omitted, and it is inaccurate to treat the delay in applying
a fix as constant.

5 Introduction of new faults into the product by bad fixes is not modelled.
6 Two different uses of the known error log are not properly distinguished. These

are
- to recognise a fault even before a fix is available
- to recognise a fault and extract the relevant fix from the database.

7 It does not take into account the structure of a complex piece of software.

4 Possible developments of the model

The following suggested developments would redress some of the shortcomings
listed.

1 Treat the source frequencies as having a continuous distribution. This will
simplify the model (as well as making it more realistic).

2 Treat similarly the delay in applying a fix. The probability that a source is fixed
within a given time is then the sum of two random variables, ‘time to manifesta­
tion’ and ‘time to fix’; its distribution is the convolution of the distributions of
these.

3 Treat the distribution of costs by the method mentioned in Section 2.5, the
* This is expressed in ‘Sparrow’s Law’: the fault that is so unlikely that it is not expected to

manifest itself in the whole life cycle of the product always appears twice on the first day of
issue.

430 ICL TECHNICAL JOURNAL NOVEMBER 1983

‘sum of a random number of random variables’.
4 The model deals with the effect of the support mechanisms on the flow of

events. It should deal also with the reverse effect, which can manifest itself as
queues forming in the support organisation and causing increased delays in
applying fixes. This is not amenable to classical queuing theory which provides
a manageable analytic solution only for the steady state of a system, because
here there is no steady state. The time-slice approach should allow an adequate
simulation, given an input defining the available support resources.

5 Represent priority. At present the ICL organisation assigns priorities in five
categories reflecting the cost of the failure to the customer. This will complicate
the queuing effect referred to in (4) above and will require the distribution of
the cost of failure to be modelled.

Acknowledgements

I would like to thank Dr. B. Littlewood of City University for his help and advice,
particularly on the software-failure aspect; Dr. Barbara Kitchenham of ICL’s
Mainframe Systems Development Division, Kidsgrove, for encouragement and help;
J.R. Sparrow, until recently on 3rd-line support in ICL’s Distributed Systems
Development Division and now the proprietor of the company he calls ‘diggers’,
for his wit and wisdom on the subject of support, which are now sadly missed;
and E.D. Link, Manager, Service Operations and Methods, and other colleagues in
Customer Support & Quality Division, for not allowing me to forget the urgent
practicalities of support costing.

References

1 LITTLEWOOD, B.: ‘How to measure software reliability and how not to’, IEEE Trans.,
1979, R-28, 103-110.

2 LITTLEWOOD, B.: 'Stochastic reliability growth: a model for fault-removal in computer-
programs and hardware designs’, IEEE Trans. 1981, R-30, 313-320.

3 KEILLER, P.A, LITTLEWOOD, B., MILLER, D.R. and SOFER, A.: ‘On the quality of
software reliability prediction’, Proc. NATO Advanced Study Institute of Electronic
Systems Effectiveness and Life Cycle Costing, 19-31 July 1982, Springer-Verlag

4 DALE, C.J. and HARRIS, L.N.: ‘Approaches to software reliability prediction*, British
Aerospace pic, Dynamics Group, Stevenage Division. 1982 Proceedings Annual Reliability
and Maintainability Symposium.

5 DALE, C.J. and HARRIS, L.N.: 'Reliability aspects of microprocessor systems’. BAe
Report ST 2S3S8,1981. Available from Department of Industry, report T816164.

6 DALE, C.J. and HARRIS, L.N.: ‘Software reliability evaluation methods’. BAe Report
ST26750, Sept. 1982.

7 KITCHENHAM, B.A.: ‘Measures of programming complexity’, ICL Tech. /., 1981, 2, (3),
298-316.

8 ANDERSON, T. and LEE, P.A.: 'Fault tolerance - principles and practice’, Prentice-Hall
International, 1981.

9 JELINSKI, Z. and MORANDA, P.B.: ‘Software reliability research. Statistical computer
performance evaluation’, Academic Press, New York, 1972.

10 DRURY, M., STRASS, P., BOWMER, R.A. and GODDING, J.F.: *A model for software
failure rates’, ICL Quality & Statistics internal report CQA/A/R293. 28/6/76.

11 DRURY, M., STRASS, P., BOWMER, R.A. and GODDING, J.F.: ‘Effects of workload and
processing power on software failure rates’, ICL Quality & Statistics internal report CQA/A/
R.294. 28/6/76.

ICL TECHNICAL JOURNAL NOVEMBER 1983 431

12 DRURY, M., STRASS, P., BOWMER, R.A. and GODDING, J.F.: ‘A prediction of VME/B
failure rates. ICL Quality & Statistics internal report CQA/A/R.295. 28/6/76.

13 CAMPBELL, G. and OTT, K.O.: ‘Statistical evaluation of major human errors during the
development of new technological systems’, Nuclear Sci. &Eng., 1979, 71, 267-279.

Appendix 1

Nonstationary Poisson process

Consider an accumulating discrete process, such as the number of bug reports
received during the life-cycle of a product subject to ‘random’ failures.

Assume:

1 Events are independent

2 The average rate at which events occur varies with time, but over any suffici­
ently short interval St the probability of an event occurring is fS t w here /is in
general a function of t.

It follows from the assumption of independence that the probability of more than
one event occurring in 51 is of order (/51)2, and that therefore the probability that
no event occurs in 61 is l - /6 f , to order fS t

Let Pn = Pn(t) = Pr {n events have occurred up to time t }

Then Pn(t + St) = Pr {n events have occurred up to time t + St }
+ Pr {n events up to t, 0 events between t, t + S t }
+ Pr {n - 1 events up to t, 1 event between t, t + S t)
+ Pr {n - 2 events up to t, 2 events between t, t + S t }

etc.

= Pn(t) (1 - fS t) + fPn_ i (r) St + terms of order (St)2
i.e. Pn(t + 6 0 - fP n(i) = fPn_ 1(t)St

Dividing by Sr and letting 5 1 tend to 0 gives the differential equation

i t P n * fPn = fP n - , (A l)

If the counting of the events starts at t = 0, the initial conditions are / o(0) = 1,
/>„(0) = 0 for all n > 0.

The equation for *o(0 is

P0(t +St) = Pr { 0 events up to t, 0 events between t, t + 6 r}

= JW) (l - /6 0 leading to
p Q' + fP 0 - 0 (writing Pf for dP/dt), with P0 (0) = 1 (A2)

432 ICL TECHNICAL JOURNAL NOVEMBER 1983

the solution of which is

t

Po(t) exp[-F(r)] where f(u)du (A3)

With this definition of F(t) the general equation, eqn. A1, can be written

C'„ = / ¾ . , Where Qn - eFPn
Since Qo(0) = Po(0) = 1 and Qn(0) = P„(0) = 0 for n > 0

<2o(0 = eF(t> P0(t) = 1

and for all n > 1,

t t

2 „ (0 = f K u)Q n_ l (u) du = f Qn^ l («) dF{u)
o J o '

Hence
t

<2,(0= / dF = F(t)

(2, (0 = (FdF = F*/2
O''

t
Q3(t) = [F*dF = F«/31

<r

and in general Qn(0 = Fnjn\ (A6)

giving the general solution for Pn

P„(t) = -T T O 1 " exp [~F(t)] (AT)
n\

Putting f = constant, k say, gives F(t) = k t and the ordinary stationary Poisson
distribution (k t f exp (-k t)/n l, for which the mean and variance are both kt.
In the general form (eqn. A7), F(t) replaces kt, which is the result quoted in
Section 2.2.

(A4)

(A5)

ICL TECHNICAL JOURNAL NOVEMBER 1983 433

Appendix 2

Comparison o f output from the event generation part o f the model with actual
product data

Objectives

(i) To see if the model is capable of simulating observed product behaviour (in
this case the manifestation of new faults).

(ii) To see if the model will predict later product behaviour taking as input only
data from an early period.

Method

A particular version of a suitable product was selected. All entries in the known
error log relating to it were extracted and the dates of entry recorded. Entries were
divided into product faults and nonfailure query sources. To see if the simulation
would work for a subset of the total sources, a separate record was kept of those
product faults in a particular identifiable subset. Since the accumulated running
time for the product at each date in the chosen period was known, it was then
possible to plot graphs of the accumulated number of faults found against total
running time for the product. The method of Section 3.2 could then be applied to
estimate the total number of sources, and the expected frequency of an individual
source, assuming an exponential distribution of frequencies. Note that although
Section 3.2 describes the debugging of a single copy of the product, the method
applies equally to the multicopy case provided total running time is used and only
the first occurrence of each fault is recorded.

Having so obtained the parameters defining the exponential distribution, it was
necessary to define source classes to represent the situation. The procedure was
as follows:

Probability function for the distribution is Pr { rate of source < r } = 1 - exp (- Hr)

where H, the inverse of the mean, has been estimated from the graph.

The probability distribution for source frequencies was divided into ten equal seg­
ments, i.e. the probability of the frequency being in any segment is 0-1, by defining
boundary frequencies

1 10
— log --------- , where z = 1,2........9
H 10 - i

It can be shown that the mean of any segment (a, b) of an exponential distribution
is

a exp (-Ha) - b exp (- Hb)

exp {-Ha) - exp (-Hb)

434 ICL TECHNICAL JOURNAL NOVEMBER 1983

Fig. 9 Simulation of accumulation of known faults: nonfailure queries

and from this was found the mean of each of the ten equal segments. The resulting
values were taken as the rates of ten source classes each containing l/10th of the
total sources.

Using this quality profile and a constant population of one system the model was
run for a suitable time period (1000 days). The accumulated number of new
failures generated by the simulation was then plotted against time to the same scale

ICL TECHNICAL JOURNAL NOVEMBER 1983 436

150r

125 -

100 -

Fig. 10 Simulation of accumulation of known faults: subset faults

Fig. 11 Simulation of accumulation of known faults: total product faults

as the original graph of actual data, and simulation and actual experience were
compared.

The above procedure was followed for each of the three categories of fault,
estimating the quality profile from the slope of the graph as close to the start and
end of the data as possible. Finally, a run was done for the total product faults,
taking the second rate from the slope of the graph at 80 days, to test the predictive
ability of the model.

436 ICL TECHNICAL JOURNAL NOVEMBER 1983

700r

Fig. 12 Projects of accumulated known faults from first 80 days data “ total product faults

Table 6 Results of estimating quality profiles

Nonfailure query
sources

Subset
faults

Total product faults Total product faults
(based on first 80
days only)

Stait (running days) 4 8 8 8
End (running days) 910 940 940 80
Operational time, V 906 932 932 72
Start rate, R1
(events per day)

0-33 0-26 1-92 1-92

End rate, R2
(events per day)

0-03 032 •23 1-46

Sources at start
(estimated)

140 131 947 938

Sources at end
(estimated)

44 46 327 817

Sources found
(estimated)

96 85 620 121

Sources found
(actual)

100 58 478 140

H 419-0 503-7 493-3 488-4

ICL TECHNICAL JOURNAL NOVEMBER 1983 437

Table 7 Source classes and rates used to simulate estimated profiles (all rates x 1000)

Source class: 1 2 3 4 5 6 7 8 9 10

Nonfailure query 7-88
(14 sources per class)

4-57 3-32 2-51 1-91 1-43 1-03 0-688 0-389 0-124

Subset faults: 6-56
(13-1 sources per class)

3-80 2-77 2-09 1-59 1-19 0-86 0-57 0-32 0-10

Total faults: 6-69
(94-7 sources per class)

3-88 2-82 2-14 1-62 1-21 0-88 0-58 0-33 0-10

Total faults: 6-76
(based on first 80 days)
(93-8 sources per class)

3-92 2-85 216 1-64 1-23 0-88 0-59 0-33 0-11

Results

Fig. 8 shows the graphs of the actual accumulated faults. The cutoff line at day 940
is due to lack of subsequent running time information. The dotted line above each
graph is the ‘least concave majorant’, whose slope gives the instantaneous failure
rate at any time.

The event rates measured from the graphs and the calculated numbers of faults are
shown in Table 6. The difference between the estimated numbers of sources at the
start and end of the period considered agrees fairly well in all cases with the actual
number of faults observed.

Table 7 shows the calculated quality profiles input to the simulation, and Figs. 9-12
show the simulated and actual graphs superimposed for each of the four exercises.

Conclusion

Agreement is very close between simulated and actual graphs for nonfailure queries
and total product faults (Figs. 9 and 11) and not quite so good for the subset of
product faults (Fig. 10). What is particularly striking is that the quality profile based
on the first 80 days of data alone is almost identical to that derived from the whole
940 days, and the ‘projected’ graph of Fig. 12 is indistinguishable from the ‘simu­
lated’ graph of Fig. 11.

This indicates that the model is capable of predicting the generation of support
events from software products with reasonable accuracy, and that the assumption
of an exponential distribution of source frequencies is adequate for the simulation,
at least to a first approximation and for the product considered.

438 ICL TECHNICAL JOURNAL NOVEMBER 1983

Icl| Technical
__ I Journal

Pages contained in each issue

1 (1) 1-96
1 (2) 97-192
1 (3) 193-300
2 (1) 1-116
2 (2) 117-220
2(3) 221-316

2 (4) 317-424
3 (1) 1-116
3 (2) 117-228
3 (3) 229-344
3 (4) 345-452

Subject index
Volumes 1-3

A Agriculture
Computing for the needs of development in the
smallholder section

Tottle, G.P. 1982 3 (2) 137-154
Computers in support of agriculture in developing
countries

Tottle, G.P. 19791 (2) 99-115
Applications (computer)
see Agriculture, COBOL, DAP, Econometrics, Health,
Plasma, RADS, Statistics
Architecture (hardware, software, systems)
see IPA, System 25, Reliability, VCS
Array (processing, processor)
Data routing and transposition in processor arrays

Jesshope C.R. 1980 2 (2) 191-206
see also DAP

Associative (Storage, retrieval)
see Data management

B Bayes (Bayesian)
see Modelling

ICL TECHNICAL JOURNAL NOVEMBER 1983 439

Bulletin
Viewdata and the ICL Bulletin System

Olivey, D.R. and Sugden, R.
Business
see Data processing

C CADES
CADES — software engineering in practice

McGuffin, R.W., Elliston, A.E., Tranter, B.R, and
Westmacott, P.N.

CAFS
Personnel on CAFS: a case study

Carmichael, J.W.S.
The content addressable file store — CAFS

Mailer, V.A.J.
Wind of change

Scarrott, G.G.
Checkpoint
An analysis of checkpointing

Brock, A.
COBOL
The use of COBOL for scientific data processing

Harle, T. and Carpenter, R.
Communications
see CSP, IPA, Networking, OSI, X.25
Com plexity
Measures of programming complexity

Kitchenham, B.A.
Computer languages
see COBOL, CSP, FORTRAN, PROLOG, RADS
Computer system s
see Reliability, Sizing, System 25
Content addressing
see CAFS
CSP
Specification in CSP language of the ECMA-72
Class 4 transport protocol

Mapstone, A.S.

D DAP
DAP in action

Howlett, J., Parkinson, D. and Sylwestrowicz, J.D.
Recognition of hand-written characters using the DAP

Pecht, J. and Ramm, I.

1981 2 (4) 365-378

1980 2(1) 13-28

1981 2 (3) 244-252

1979 1 (3) 265-279

1978 1(1) 35-49

19791 (3)211-228

1982 3(2) 189-198

1981 2 (3) 298-316

1983 3 (3) 297-312

1983 3 (3) 330-344

1982 3 (2) 199-217

440 ICL TECHNICAL JOURNAL NOVEMBER 1983

A moving-mesh plasma equilibrium problem on the
ICL Distributed Array Processor

Kirby, P.
Applications of the ICL Distributed Array Processor
in econometric computations

1981 2 (4) 403-424

Sylwestrowicz, J.D.
Solution of elliptic partial differential equations
on the ICL Distributed Array Processor

1981 2 (3) 280-286

Webb, S.J.
Software and algorithms for the Distributed Array
Processor

1980 2 (2) 175-190

Gostick, R.W.
Wind of change

19791 (2) 116-135

Scarrott, G.G.
Database
A dynamic database for econometric modelling

19781(1) 35-49

Walters, T.J.
Database enquiry/querying/technology
see PROLOG
Database technology
see PROLOG
Data dictionary
The data dictionary system in analysis and design

1981 2 (3) 223-243

Bourne, T.J.
Data integrity
Data integrity and the implications for back-up

1979 1 (3) 292-298

Macdonald, K.H.
Data interchange
see IPA
Data management
Associative data management system

1981 2 (3) 271-279

Crockford, L.E.
Data routing
see Array
Data processing
Distributed computing in business data processing

1982 3(1) 82-96

Wilkes, M.V.
Defensive programming
see ME29
Design
see Hardware design
Diagnostics
see Expert systems
Differential equations
see DAP (Kirby, Webb)
Discs
see Data integrity
D istributed Array Processor
see DAP

19781(1) 66-70

ICL TECHNICAL JOURNAL NOVEMBER 1983 441

Distributed com puting (processing)
see Data processing, PERQ

Econometrics
see DAP (Sylwestrowicz), Database
Encipherment (encryption)
Some techniques for handling encipherment keys

Jones, R.W.
Error correction
see Data integrity. Reliability
Expert system s
Towards an 'expert' diagnostic system

Addis, T.R.
'Dragon': the development of an expert sizing system

Keen, M.J.R.
Expert systems in heavy industry: an application of
ICLX in a British Steel Corporation works

Hakami, B. and Newborn, J.

FORTRAN (DAP)
see DAP (Gostick, Kirby, Webb)

Hand-written characters
see DAP (Pecht and Ramm)
Hardware architecture
see DAP, Reliability, System 25, VCS
Hardware design
Hardware design faults: A classification and some
measurements

Faulkner, T.L. Bartlett, C.W. and Small, M.
A high level logic design system

Williams, M.J.Y. and McGuffin, R.W.
Hardware monitoring
Hardware monitoring on the 2900 range

Boswell, A.J. and Brogan, M.W.
Health services
Software aspects of the Exeter Community Health
Services Computer Project

Clarke, D.J. and Sparrow, J. (eds.)
Human factors
see VDUs
Humanities
Computing in the humanities

Hockey, S.

1982 3 (2) 175-188

1980 2(1) 79-105

1983 3 (4) 360-372

1983 3(4)347-359

1982 3 (2) 218-228

1981 2 (3) 287-297

19791 (2) 136-146

1982 3(1) 58-81

1979 1 (3) 280-290

ICL TECHNICAL JOURNAL NOVEMBER 1983

I ICL 29 0 0
The origins of the 2900 series

Buckle, J.K.
see also Security, VME
ICL Bulletin/CA FS/DAP/IPA/MA CROLAN/M E29/
PERQ/RADS
see Bulletin etc.
ICLX
see Expert systems
I KBS (Intelligent Knowledge-Based System)
see PROLOG
Information processing architecture
see IPA
Information technology
The advance of Information Technology

Pinkerton, J.M.M.
Information Technology Year 1982

Blackwell, D.J.
Integrity (o f data)
A general model for integrity control

Brenner, J.B.
see also Data integrity
Interrupt driving
see Programming
IPA
IPA networking architecture

Brenner, J.B.
IPA data interchange and networking facilities

Lloyd, R.V.S.
The IPA telecommunications function

Turner, K.J.
IPA community management

Goss, S.T.F.
The ICL information processing architecture IPA

Kemp, J. and Reynolds, R.

Job control
The new frontier: three essays on job control

Barron, D.W.

Languages (com puter, programming)
see COBOL, CSP, FORTRAN, PROLOG, RADS
Laser (printer)
see Printer
Logic (design)
see Hardware design

19781(1) 5-22

1982 3(2) 119-136

1982 3(1) 3-4

19781 (1) 71-89

19833(3) 234-249

1983 3(3) 250-264

1983 3(3) 265-277

1983 3(3) 278-288

19802(2) 119-131

1979 1 (2) 180-190

ICL TECHNICAL JOURNAL NOVEMBER 1983 443

M MACROLAN
MACROLAN: A high-performance network

Stevens, R.W.
Manufacturing
see Hardware design, Testing
M eteorology
Meteosat 1: Europe's first meteorological satellite

Ainsworth, D.
ME 2 9
ME 29 Initial program load — an exercise in defensive
programming

Lakin, R.
Modelling
Modelling software support

Mellor, P.
A Bayesian approach to test modelling

Small, M. and Bartlett, C.W.
Network models of system performance

Berners-Lee, C.M.
see also DAP (Syiwestrowicz), Database, Integrity
control
Monitoring
see Hardware monitoring

N Networking
see I PA, OSI, X.25

O Open System s Interworking (OSI)
Standards for open-network operation

Houldsworth, J.
Using Open System Interconnection standards

Brenner, J.B.
see also IPA, Telecommunications
Operating system s
see VME

P PERQ
The PERQ workstation and the distributed
computing environment

Loveluck, J.M.
Personnel
see CAFS (Carmichael)
Plasma
see DAP (Kirby)

1983 3 (3) 298-296

1979 1 (3) 195-210

1980 2(1) 29-46

1983 3 (4) 407-438

1980 2 (2) 207-218

19791 (2) 147-171

19781(1) 50-65

1980 2(1) 106-116

1982 3(2) 155-174

ICL TECHNICAL JOURNAL NOVEMBER 1983

Pipeline
Flow of instructions through a pipelined processor

Wood, W.F.
Printer
Advanced technology in printing: the laser printer

Keen, A.J.
Privacy
see Security
Programming
Structured programming techniques in interrupt-
driven routines

Palmer, P.F.
see also Complexity
PROLOG
The logic language PROLOG-M in database technology
and intelligent knowledge-based systems

Babb, E.
QPROC: A natural language database enquiry system
implemented in PROLOG

Wallace, M.G. & West, V.
Programming languages
see COBOL, CSP, FORTRAN, PROLOG, RADS
Protocol (communications)
see CSP, I PA, OSI, X.25

Q QPROC
see PROLOG

R RADS
Development philosophy and fundamental processing
concepts of the ICL Rapid Application Development
System RADS

Brown, A.P.G., Cash, H.G. and Gradwell, D.J.L.
Reliability
Project Little — an experimental ultra reliable system

Brenner, J.B. Burton, C.P., Kitto, A.D. and
Portman, E.C.P.

s Security
Security and privacy of data held in computers

Pinkerton, J.M.M.
see also Encipherment, VME (Parker)
Sizing

1980 2(1) 59-78

1979 1 (2) 172-179

1979 1 (3) 247-264

1983 3(4)373-392

1983 3(4) 393-406

1981 2 (4) 379-402

1980 2(1) 47-58

1980 2(1) 3-10

ICL TECHNICAL JOURNAL NOVEMBER 1983 445

Sizing computer systems and workloads
Brock, A.

see also Expert systems
Smallholder
see Agriculture
Software (cost/support)
see Modelling
Software (methods, techniques)
see Complexity, DAP (Gostick), Programming,
System 25
Software engineering
see CADES
Standards (communications)
see OSI
Statistical processing
Statistical and related systems

Cooper, B.E.
System s (com puter etc.}
see Computer systems etc.
System 2 5
Software of the ICL System 25

Cave, M.A.
Architecture of the ICL System 25

Walton, A.

Telecommunications
see IPA, OSI, X.25
Terminals
see VDU
Testing
Evaluating manufacturing testing strategies

Small, M. and Murray, D.
see also Modelling (Small and Bartlett)

Viewdata
see Bulletin
Virtual machine environm ent VME
Security in a large general-purpose operating system:
ICL's approach in VME/2900

Parker, T.A.
VME/B: a model for the realisation of a total system
concept

Warboys, B.C.
Systems evolution dynamics of VME/B

Kitchenham, B.A.
Visual display unit VDU

19781(1) 23-34

1979 1 (3) 229-246

1982 3(1) 5-28

1981 2 (4) 319-339

1982 3(1) 97-116

1982 3(1) 29-42

1980 2 (2) 132-146

1982 3(1) 43-57

446 ICL TECHNICAL JOURNAL NOVEMBER 1983

Birds, Bs and CRTs
MacArthur, I.D.

Voice generation
Giving the computer a voice
Underwood, M.J.

X X .2 5
Designing for the X.25 telecommunications standard

Turner, K.J.

1980 2 (2) 147-174

1981 2 (3) 253-270

1981 2 (4) 340-364

ICL TECHNICAL JOURNAL NOVEMBER 1983 447

Author index
Volumes 1-3

ADDIS, T.R.: Towards an 'expert' diagnostic
system

AINSWORTH, D.: Meteosat 1: Europe's first
meteorological satellite

BABB, E.: The logic language PROLOG M in
database technology and intelligent knowledge-
based systems

BARRON, D.W.: The new frontier: three essays on
job control

BARTLETT, C.W.: see FAULKNER eta l. (1982)
BARTLETT, C.W.: see SMALL and BARTLETT (1980)
BERNERS-LEE, C.M.: Network models of system

performance
BLACKWELL, D.J.: Information Technology

Year 1982
BOSWELL, A.J. and BROGAN, M.W.: Hardware

monitoring on the 2900 range
BOURNE, T.J.: The data dictionary system in

analysis and design
BRENNER, J.B.: A general model for integrity

control
BRENNER, J.B.: IPA networking architecture
BRENNER, J.B.: Using Open System Inter­

connection standards
BRENNER, J.B., BURTON, C.P., KITTO, A.D. and

PORTMAN, E.C.P.: Project Little — an experi­
mental ultra reliable system

BROCK, A.: Sizing computer systems and workloads
BROCK, A.: An analysis of checkpointing
BROGAN, M.W.: see BOSWELL and BROGAN (1979)
BROWN, A.P.G., COSH, H.G. and GRADWELL,

D.J.L.: Development philosophy and fundamental
processing concepts of the ICL Rapid Application
Development System RADS

BUCKLE, J.K.: The origins of the 2900 series
BURTON, C.P.: see BRENNER e ta l. (1980)

1980 2(1) 79-105

1979 1 (3) 195-210

1983 3 (4) 373-392

1979 1 (2) 180-190

1979 1 (2) 147-171

1982 3(1) 3-4

1979 1 (2) 136-146

1979 1 (3) 292-298

19781(1) 71-89
1983 3(3) 234-249

1980 2 (1) 106-116

1980 2(1) 47-58
19781(1) 23-34
19791 (3)211-228

1981 2 (4) 379-402
19781 (1) 5-22

ICL TECHNICAL JOURNAL NOVEMBER 1983

C CARMICH AE L. J.W.S.: Personnel on CAFS:
a case study 1981 2 (3) 244-252

CARPENTER. R.: see HARLE and CARPENTER (1982)
CAVE, M.A.: Software of the ICL System 25 1982 3(1) 5-28
CLARKE. D J. and SPARROW, J. (Eds.): Software

aspects of the Exeter Community Health Services
Computer Project

COOPER, B.E.: Statistical and related systems
COSH, H.G.: see BROWN e ta l. (1981)
CROCKFORD, L.E.: Associative data management

1982 3(1) 58-81
1979 1 (3) 229-246

system

E ELLISTON, A.E.: see McGUFFIN e ta l. (1980)

1982 3(1) 82-96

F FAULKNER, T.L., BARTLETT, C.W. and SMALL, M.:
Hardware design faults: A classification and
some measurements 1982 3 (2) 218-228

G GOSS, S.T.F.: IPA community management
GOSTICK, R.W.: Software and algorithms for the

1983 3 (3) 278-288

Distributed-Array Processor
GRADWELL, D.J.L.: see BROWN eta l. (1981)

1979 1 (2) 116-135

H HAKAMI, B. and NEWBORN, J.: Expert systems
in heavy industry: an application of ICLX in
a British Steel Corporation works

HARLE, T. and CARPENTER, R.: The use of COBOL
1983 3 (4) 347-359

for scientific data processing
HOCKEY, S.: Computing in the humanities

1982 3 (2) 189-198
1979 1 (3) 280-290

HOULDSWORTH, J.: Standards for open-network
operation

HOWLETT, J., PARKINSON, D. and
19781 (1) 50-65

SYLWESTROWICZ, J.D.: DAP in action
HUGHES, C.J.: Evolution of switched tele­

1983 3 (3) 330-344

communication networks 19833(3) 313-329

J JESSHOPE, C.R.: Data routing and transposition
in processor arrays

JONES, R.W.: Some techniques for handling
1980 2 (2) 191-206

encipherment keys 1982 3(2) 175-188

K KEEN, A.J.: Advanced technology in printing:
the laser printer 19791 (2) 172-179

ICL TECHNICAL JOURNAL NOVEMBER 1983 449

KEEN, M.J.R.: 'Dragon': the development of an
expert sizing system

KEMP, J. and REYNOLDS, R.: The ICL
information processing architecture IPA

KIRBY, P.: A moving-mesh plasma equilibrium
problem on the ICL Distributed Array Processor

KITCHENHAM, B.A.: Measures of programming
complexity

KITCHENHAM, B.A.: System evolution dynamics
of VME/B

KITTO, A.D.: see BRENNER e tg l. (1980)

1983 3 (4) 360-372

1980 2(2) 119-131

1981 2 (4) 403-424

1981 2 (3) 298-316

1982 3(1) 43-57

L LAKIN, R.: ME 29 Initial program load: an
exercise in defensive programming

LLOYD, R.V.S.: IPA data interchange and
networking facilities

LOVELUCK, J.M.: The PERQ workstation and the
distributed computing environment

1980 2(1) 29-46

1983 3 (3) 250-264

1982 3 (2) 155-174

M MacARTHUR, I.D.: Birds, Bs and CRTs 1980 2 (2) 147-174
MACDONALD, K.H.: Data integrity and implications

for back-up 1981 2 (3) 271-279
MALLER, V.A.J.: The content addressable file

store - CAFS 1979 1 (3) 265-279
MAPSTONE, A.S.: Specification in CSP language of

the ECMA-72 Class 4 transport protocol 1983 3 (3) 297-312
McGUFFIN, R.W., ELLISTON, A.E., TRANTER, B.R.

and WESTMACOTT, P.N.: CADES - Software
engineering in practice 1980 2(1) 13-28

McGUFFIN, R.W. see WILLIAMS and McGUFFIN (1981)
MELLOR, P.: Modelling software support 1983 3 (4) 407-438
MURRAY, D.: see SMALL and MURRAY (1982)

N NEWBORN, J.: see HAKAMI and NEWBORN (1983)

O OLIVEY, D.R. and SUGDEN, R,: Viewdata and the
ICL Bulletin system 1981 2 (4) 365-378

P PALMER, P.R.: Structured programming techniques
in interrupt-driven routines 1979 1 (3) 247-264

PARKER, T.A.: Security in a large general-purpose
operating system: ICL's approach in VME/2900 1982 3 (1) 29-42

PARKINSON, D.: see HOWLETTefa/. (1983)
PECHT, J. and RAMM, 1.: Recognition of hand­

written characters using the DAP 1982 3 (2) 199-217

450 ICL TECHNICAL JOURNAL NOVEMBER 1983

PINKERTON, Security and privacy of data
held in computers 1980 2(1) 3-12

PINKERTON, J.M.M.: The advance of
Information Technology 1982 3 (2) 119-136

PORTMAN, E.C.P.: see BRENNER e ta l. (1980)

R RAMM, I.: see PECHT and RAMM (1982)
REYNOLDS, R.: see KEMP and REYNOLDS (1980)

s SCARROTT, C.G.: Wind of change
SMALL, M. and BARTLETT, C.W.: A Bayesian

approach to test modelling
SMALL, M.: see FAULKNER e ta l. (1982)
SMALL, M. and MURRAY, D.: Evaluating

manufacturing testing strategies
SPARROW, J.: see CLARKE and SPARROW (1982)
STEVENS, R.W.: MACROLAN: A high-performance

network
SUGDEN, R.: see OLIVEY and SUGDEN (1981)
SYLWESTROWICZ, J.D.: Applications of the ICL

Distributed Array Processor in econometric
computations

SYLWESTROWICZ. J.D.: see HOWLETTefa/. (1983)

19781(1) 35-49

1980 2(2) 207-218

1982 3(1) 97-116

1983 3 (3) 289-296

1981 2 (3) 280-286

TAYLOR. N.R.: see KITCHENHAM AND TAYLOR (1983)
TOTTLE, G.P.: Computers in support of agriculture

in developing countries
TOTTLE, C.P.: Computing for the needs of

development in the smallholder sector
TRANTER, B.R.: see McGUFFIN e ta l. (1980)
TURNER, K.J.: Designing for the X.25 tele­

communications standard
TURNER, K.J.: The IPA telecommunications

function

19791(2) 99-115

1982 3(2) 137-154

1981 2 (4) 340-364

1983 3(3) 265-277

u UNDERWOOD, M.J.: Giving the computer a voice 1981 2 (3) 253-270

W WALLACE, M.G. and WEST. V.: QPROC: a natural
language database enquiry system implemented in
PROLOG

WALTERS, T.J.: A dynamic database for
econometric modelling

WALTON. A.: Architecture of the ICL System 25
WARBOYS, B.C.: VME/B: a model for the

1983 3(4)393-406

1981 2 (3) 223-243
1981 2 (4) 319-339

ICL TECHNICAL JOURNAL NOVEMBER 1983 451

realisation of a total system concept
WEBB, S.J.: Solution of elliptic partial differential

equations on the ICL Distributed Array Processor
WEST, V.: see WALLACE and WEST (1983)
WESTMACOTT, P.N.: see McGUFFIN e ta l. (1980)
WILLIAMS, M.J.Y. and McGUFFIN, R.W.:

A high level logic design system
WILKES, M.V.: Distributed computing in business

data processing
WOOD, W.F.: Flow of instructions through a

pipelined processor

1980 2 (2) 132-146

1980 2(2) 175-190

1981 2 (3) 287-297

19781(1) 66-79

1980 2(1) 59-78

452 ICL TECHNICAL JOURNAL NOVEMBER 1983

