Technical
Journal

Volume 3 Issue May 1982

icL] Technical
Journal

oo 82
Contents

Volume 3 Issue 1

Information Technology Year 1982

Dennis J. Blackwell 3
Software of the ICL System 25

M.A. Cave 5
Security in a large general-purpose operating system: ICL’s approach

in VME/2900

T.A. Parker 29

Systems evolution dynamics of VME/B
B.A. Kitchenham 43

Software aspects of the Exeter Community Health Services
Computer Project
The Exeter Project Team edited by D.J. Clarke and J. Sparrow 58

Associative data management system
L.E. Crockford 82

Evaluating manufacturing testing strategies
M. Small and D. Murray 97

ICL TECHNICAL JOURNAL MAY 1982 1

iIcL] Technical
| Journal

The ICL Technical Journal is published twice a year by Peter Peregrinus Limited
on behalf of International Computers Limited

Editor
J.Howlett
ICL House, Putney, London SW15 1SW, England

Editorial Board

J. Howlett (Editor) D.W. Kilby
D.W.Davies k.H. Macdonald
(National Physical Laboratory) B.M. Murphy
D.P.Jenkins J M. Pinkerton
(Royal Signals & Radar Establishment) E.C.P. Portman
C.H.Devonald

All correspondence and papers to be considered for publication should be addressed
to the Editor

1982 subscription rates: annual subscription £11.50 UK, £13.50 ($32.00) overseas,
airmail supplement £5.00, single copy price £6.75. Cheques should be made out to
‘Peter Peregrinus Ltd.’, and sent to Peter Peregrinus Ltd., Station House, Nightingale
Road, Hitchin, Herts. SG5 1SA, England, Telephone: Hitchin 53331 (s.t.d. 0462
53331).

The views expressed in the papers are those of the authors and do not necessarily
represent ICL policy

Publisher
Peter Peregrinus Limited
PO Box 8, Southgate House, Stevenage, Herts SG1 1HQ, England

This publication is copyright under the Berne Convention and the International
Copyright Convention. All rights reserved. Apart from any copying under the UK
Copyright Act 1956, part 1, section 7, whereby a single copy of an article may be
supplied, under certain conditions, for the purposes of research or private study, by
a library of a class prescribed by the UK Board of Trade Regulations (Statutory
Instruments 1957, No. 868), no part of this publication may be reproduced, stored
in a retrieval system or transmitted in any form or by any means without the prior
permission of the copyright owners. Permission is however, not required to copy
abstracts of papers or articles on condition that a full reference to the source is
shown. Multiple copying of the contents of the publication without permission is
always illegal.

© 1982 International Computers Ltd.
Printed by A.McLay & Co. Ltd., London and Cardiff ISSN 0142-1557

2 ICL TECHNICAL JOURNAL MAY 1982

el 82
Information Technology
Year 1982

Dennis J. Blackwell

ICL Director for Quality Assurance, Bracknell, Berkshire, UK

‘Information Technology (IT for short) is the fastest developing area of industrial
and business activity in the western world. Its markets are huge, its applications
multitudinous, and its potential for increasing efficiency immense. Without doubt
it will be the engine for economic growth for at least the rest of the century.
Britain’s economic prosperity depends on the success with which we manufacture
its products and provide and exploit its services. This is the message that must be
got over to everyone in this country — the general public, school children, as well as
industry, trade and commerce.’

These are the words with which Kenneth Baker, Minister for Information Tech-
nology, launched 1982 as Information Technology Year.

Information Technology is not easy to define; fortunately there is no need for
me to attempt a definition for the readers of this Journal, who will all be conscious
of the enormous range of ideas, techniques, technologies and applications which the
name covers, In ICL I have the task of directing the company’s program for IT82
and I want here to offer some thoughts stimulated by the occasion and this
responsibility.

It has become almost a cliché to say that the electronic digital computer is one
of the great inventions of all time, No-one who knows anything about it is in any
doubt about this. But there is still a great weight of negative and hostile attitudes:
one hears with great regularity that computers destroy jobs, invade privacy and
open up new pathways to fraud, and stories still circulate about gas bills for
£1000000 and demands for payment of £0.00 and similar nonsenses — all accom-
panied by ‘it’s because the computer doesn’t know any better’. I very much hope
that IT82 will do a great deal towards combatting these attitudes and replacing
them by positive ones. The computer is the vehicle which carries information tech-
nology into use in all our lives. It puts possibilities for enormous power into our
hands and of course this, like any other power, can be used to serve bad ends. But
it can be, and of course already is being, used to very many very good ends, many

ICL TECHNICAL JOURNAL MAY 1982 3

of which are a long way from what one usually thinks of as technological — leisure
activities, the arts, in fact the general enrichment of life. What is needed is more
education in the nature and uses of this new technology, spread right through the
population because it is for everyone, not for just a select few, so that we get a
better understanding of the possibilities which it offers and are better able to
control its powers and to exploit these for socially good ends.

One of the most striking and encouraging features of the IT scene is the strong
appeal it has for the young. There is clearly something which captures their imagi-
nations and releases latent taients. Any number of examples could be quoted of
young — often very young, under 10 years old — children showing skills which no-
one had any idea they possessed. It has often been said that there are only three
fields in which infant prodigies appear — music, mathematics, chess: is IT a fourth?

As a company whose business is entirely in the field of information technology,
ICL. welcomes the initiative of IT82. My personal aim and responsibility are to
ensure that our programme for the year will support and enhance the national
programme and will enable ICL, its staff and the users of its products to contribute
to the social and educational aims of the year.

4 ICL TECHNICAL JOURNAL MAY 1982

Software for the ICL System 25

M.A.Cave

ICL Distributed Systems Development Division, Bracknell, Berkshire, UK

Abstract

The paper complements that by Walton! on the hardware and architecture
of the ICL System 25 small-business machine. It describes the organisation
of the facilities provided by the standard software for the machine. This
software has been developed from, and is compatible with, that for the
earlier System Ten, extended to handle new peripherals and to provide
extra services, including transaction processing and comprehensive com-
munications facilities.

1 Introduction

As was stated in the paper by Walton' on the architecture of System 25, the
machine is the successor to the ICL System Ten, originally a Singer product, of
which approaching 10,000 are in use world-wide, mainly for small-scale business
data-processing. It is a feature of both System 25 and System Ten that there is no
operating system or executive in the usual sense of these terms, the functions
normally associated with such software being provided here by the basic hardware
architecture.

A comprehensive set of software packages was provided for System Ten, collectively
called DMF (Data Management Facilities)-II and including an input/output package
LIOCS (Logical Input/Output Control Software), a disc maintenance and file
handling system CSM (Conversational System Manager), a program loader with job
control facilities, an assembler, an RPG (Report Program Generator) compiler, a
SORT package and a range of program development aids such as editors and testers.
A corresponding package DMF-III has been developed for System-25, backwards
compatible with DMF-II, and in addition new software as follows:

(i) Disc management software to support new discs with 512 byte sectors,
and to offer new access methods giving improved performance and larger
disc capacities.

(ii) New communications software aimed at integration with ICL’s IPA and
IBM’s SNA.

(iii) A TP (transaction processing) system, offering standard video and printing
facilities.
(iv) A COBOLlanguage system
(v) Additicnal utilities such as joblogging and screen processing.

ICL TECHNICAL JOURNAL MAY 1982 5

2 Overview: main components of System 25 software

This Section gives a brief statement of the main components of the software and
shows how they fit together, concentrating on the run-time aspects. Later sections
give more details and deal briefly with the development tools.

2.1 Main-store architecture of System 25

The paper by Walton® describes this in some detail. A very simple view, which will
help in the understanding of the present paper, is that there is a variable number, up
to 20, of program partitions, each of which has access to a single Common store
partition and has direct access to the disc I/O channels.

2.2 Principal software components

These are broadly grouped as follows:

LIOCS Logical I/O Control Software.
The 1/0 package, offering access to a wide range of magnetic media such as
floppy diskettes, fixed and exchangeable discs, magnetic tape. The facilities
offered permit the opening and closing of files and the reading, writing and
up-dating of records serially or by number or key. Most of the code is
resident in Common and is therefore directly accessible from a program
partition.

CSM Conversational System Manager.
This creates and maintains the environment in which LIOCS and the rest of
the system run. It contains the following elements:

Filestore maintenance facilities
Conversational loader
Job-stream file support

It can normally be accessed via any video workstation and uses a private
interface to the operator. Most of the code is non-resident and is run as an
application program.

IAS Interactive Applications Support.
Provides support to applications programs written in a high-level language.
It provides the control software and run-time library for the TP system
and the corresponding support for batch programs.

CAM Communications Access Manager.
This provides the wide range of communications facilities which are avail-
able on System 25, allowing inter-working with both ICL and IBM equip-
ment. The ICL facilities permit connections using ICLC-03 and X-25

protocols, those for IBM the use of BISYNC (3270) and SNA (SDLC)
protocols.

Fig. 1 shows how these fit together in the total system.

6 ICL TECHNICAL JOURNAL MAY 1982

applications

COMMS IAS CSM
LI0CS
HARDWARE
Fig. 1 Software interfaces

2.3 Further components

Screen and printer drivers. These permit any combination of standard printers and
videos to be driven, up to 10 on a single partition. There are four sets of facilities:

printer handling
basic video handling
screen processing
conversational loader

The printer handling software supports the standard printer functions required for
the spooler; it contains only the basic device drivers, a spooler print application
being expected to interface between the spool file and this handler.

Basic video handling supports the display of pre-formatted screens (templates) and
further text, control over the keyboard and the input of data, basic validation of

input data, etc.

Standard applications. A wide range is offered, including:

development aids

‘batch’ utilities, e.g. SORT
communications packages, e.g. video emulation
Industry and Retail packages

These normally run in and use a single partition.

ICL TECHNICAL JOURNAL MAY 1982

3 General housekeeping package DMF-III

This provides the facilities on System 25 for structuring and accessing data on mag-
netic media and for loading and running programs. It consists of three separate
elements:

a set of data structures on disc
the run-time access package LIOCS
the general-purpose utility CSM

This Section of the paper is concerned with the details of the data structures and of
the workings of the LIOCS package.

3.1 Data structures on disc

Each physical disc is generally defined to be one volume, which consists of a
contiguous set of physical sectors each of 512 bytes. The sectors are numbered and
can be arranged by the user (or management) so as to give the best performance
when accessed serially.

Each volume is split into one or more pools, each of which consists of a set of
contiguous sectors, and contains an index of all the pools into which it is split. One
volume, designated PRIMARY SYSRES, normally contains an index of all pools on
all volumes and additional bootstrap software for initial program loading, IPL. Not
all of these volumes need to be online at once; CSM permits a new volume to be
introduced and all the pools on it to be linked to the PRIMARY SYSRES. A
partition may, however, be assigned via CSM to any volume, from which it may
access only the pools on that volume or linked to it. Each pool contains one or
more files, each consisting of a set of records, to which the user can gain access via
LIOCS.

There are various kinds of pool and file, in which the way records are held and
physically accessed differ. This gives the user significant freedom in choosing the
type of pool and file for optimal performance. Records may be blocked, such that a
number of records are transferred at any one time, thereby reducing the total
number of disc accesses over a series of LIOCS calls.

DMF supports the following types of pool:

Relative pools are the main kind to be used by application programs for holding
data records, and consist of a set of blocked records which can be accessed by
record or block number. They always contain only one file.

Linked Sequential pools are normally used only for holding source programs where
records have to be frequently inserted and deleted. They contain one or more files,
each of which consists of a chain of records which can (normally) only be accessed
serially. LIOCS supports only unblocked records, although the user is able to pack
records outside the control of LIOCS.

8 ICL TECHNICAL JOURNAL MAY 1982

Program pools contain object program files in such a manner that they can be
loaded and run efficiently.

Superimposed upon these pool types is an indexing facility. This permits a separate
index to be created outside the data to be indexed. This facility is used by the new
loader in accessing program files by name, as well as offering indexing of user files
in relative and linked sequential pools. Each index is held in a pool whose basic
organisation is that of the relative pool.

3.1.1 Relative pools. Each relative pool can contain only one file which can be of
any of the following types:

(i) Relative — fixed length records, accessed sequentially,
or randomly via record number

(ii) Mapped Relative — as relative, but also permits insertion of
records

(iii) Direct — fixed length records, accessed randomly by
key

(iv) Variable Sequential — fixed or variable length records, accessed
sequentially

Records are blocked as follows:

blocks: —————-- p-——-——-5- ——— —b#l-————————-
sectors: ———-p—-—y~-ptl-———— P+2_——7————p+3 _____ -

records: n , ntl,n+2, X , nt3 , nt4 , o¥5 X, (X denotes

end-of-

block marker)

The block is always of a fixed size and is the basic unit of transfer for the file. One
block contains an integral number of sectors, and there is therefore sometimes an
unused area at the end of each block. At run time it is possible when accessing
relative files to request the basic unit of transfer for the file to be a multiple of the
block size — this is referred to as the bucket size. The use of buckets is transparent
to the data structures, other than that the size of the pool must be a multiple of
both block and bucket size.

Files which have only one record per block are referred to as being unblocked.

Relative Files. Records are always of fixed size, and can be accessed via record
number or sequentially by ascending record numbers.

The record number can be converted to a block number by knowing the number of
records to a block. This can be converted to a sector address by knowing the

ICL TECHNICAL JOURNAL MAY 1982 9

number of sectors to a block, and this, added to the base address of the pool, gives
the disc address: —_—

| |

volume address 000000 | :
|

|

|
:———I — pool base
I I

L block base

m — required record

| I
—_
999999 | t

|

-
Optionally, records can be flagged as ‘available’, ‘in use’, or ‘deleted’ — permitting
functions equivalent to ‘insert’ and ‘delete’ to be provided. When records have
status flags the file must be initialised when it is created, to mark all records as

‘available’.

Direct Files: Hashing. The structure of direct files is very similar to that of relative
files, with fixed length records and blocking. Records must have status flags. The
main difference is that the records are accessed via a key which is converted to a
record or block number, using a key transformation (hashing) algorithm which can
be either system-supplied or user-written.

Hashing allows a non-unique number to be generated from a character string (i.e.
the number of possible keys is normally more than the number of records in the
pool). Where two records with different keys result in the same hashed number a
‘collision’ is said to have occurred. The larger the ratio of the number of possible
keys to the number of records or blocks in the file the greater the chance of a
collision occurring. When a collision occurs a further hash number is derived to
yield an alternative record or block number, which could result in another collision
and further hashing. This sequence of numbers is referred to as a collision chain.
The performance of access to a direct file is therefore determined by how long the
collision chain gets. The following is an example of a collision chain in an unblocked
file:

Read “key a”

I Collision Chain
hash |

| i

I I key b data
hash :

| {

‘ D 7

| _—
hash |I

| R

i I key ¢ data
hash ,'

i | D = deleted

e TKys @) I=inuse

10 ICL TECHNICAL JOURNAL MAY 1982

As a guide, when an unblocked file is 80% full two accesses are needed on average
to find the required record, and it is recommended that such files be 20-30% larger
than necessary for all the records which are likely to be held.

Records are flagged as ‘in use’, ‘available’ or ‘deleted’ and such files therefore have
to be initialised.

The end of the chain is denoted by an ‘available’ record, and ‘deleted’ records are
ignored when searching for a key. If a record is to be written and no such key
already exists then the first ‘deleted’ record, if any, will be overwritten, otherwise
the ‘available’ record will be overwritten. If the key already exists then the previous
version will normally be overwritten. Optionally, the first ‘deleted’ record can be
overwritten, if one occurs before the extant version of the record. This will result in
multiple copies of records to be present in the file, and possible confusion when a
later version of the record is deleted.

The above descriptions referred to unblocked files (one record per block). DMF
also permits blocked records to be handled, where the hashing process yields a
block number. All records in the block are effectively in the same collision chain,
but are available in the one disc transfer. The following example is very similar to
the previous one, but blocked:

Read “key a”

: Collision Chain

hash !
| !
: 1 keyb [data [D/-———- !
| |

hash !
' i
- —I keya | data I keyc |data

The number of records in the block is called the blocking factor; in this case, for a
blocking factor of two, the file can be up to 93% full and still require only two
accesses on average to find the desired record. As the blocking factor increases, so
the number of records which can be found in two accesses increases.

Note that the collision chain described above is unique to each key. That is, the
collisions occur where two chains cross. This is achieved by using the original key
for rehashing.

The performance of access to direct files is also obviously affected by ‘deleted’
records which extend collision chains, and the user will frequently have to tidy such
files. Failure to do so may cause a drastic reduction in performance. Consequently
direct files are not appropriate where records have to be regularly inserted and
deleted.

Variable Sequential Files. Records in variable sequential files can be of variable
length and are always blocked. Variable sequential files are normally accessed

ICL TECHNICAL JOURNAL MAY 1982 n

serially, although the user is given the opportunity to record the block number for
later use.

The format of a block in a variable sequential file is as follows:

| | record n IL record n + 1 } record n+2 | X }
O :

l

| |

block
length |
I i _data |
I
record
length

The block and record lengths are four digits and include their own size.

3.1.2 Linked Sequential Pools. A linked sequential pool can consist of one or more
linked sequential files, all of which must have the same record length. The pool
consists of a set of continguous 512 byte sectors, each of which consists of five 100
byte logical sectors:

physical sectors —— — —— — p——————- —_— ptl— —— — — -~ =
|

logical sectors n ntl nt2 nt3 n+4 X! nt5 n+6 n+7 n+8 nt9 Xi

The 12 bytes at the end of each physical sector are unused. Each linked sequential
file consists of a chain of logical sectors:

Each logical sector contains a 6 byte chain pointer and contains either a whole
record, or part of one if the record is more than 94 bytes long. In the latter case the
record will be split:

—————————————— e ¥
T o T T T ' 1
: data i+ data(con.) !XXXXXXXXXX! !
— . J — 1 - J
The chain pointer can be in one of two forms:
unpacked — consisting of a 5 digit unpacked logical sector number,

giving up to 10 Mb

12 ICL TECHNICAL JOURNAL MAY 1982

packed — consisting of a 7 digit packed logical sector number, giving
up to 1000 Mb

Insertion and deletion of records is achieved by manipulating the chain pointers. A
chain of unused logical sectors is held at the pool level.

Doubly linked sequential files can be created where both forward and backward
pointers exist. This type of file is used by the text editor. LIOCS does not offer any
facilities for writing such records.

3.1.3 Program pools. Each program pool may consist of one or more program files.
The structure of the pool and the files is designed to optimise performance and
exploit the string-read facilities of System 25.

Each program file consists of a number of subfiles, each of which can be referred to
by name. Each subfile contains one or more overlays which can be individually
loaded.

The pool is accessed by the loader in a number of different ways; and roughly
corresponds to a relative file with 512 byte unblocked records, i.c. one per sector.

The format of the program pool can be shown as follows:

I—JI—I

F'—\<_

overlay(s) soverlay(s) !

']
I i Program File index ! :
| ! e

! E { !
| 1 1subfile index ! '
I |
L !
| subfile index | '

—_

| |
! |
! |
| |
l

]
A file is initially located by searching the index for the required name. Once located
this gives access to an index of subfiles which can again be located by name. This
results in a pointer to the overlay(s) in that subfile, which can be serially accessed:

overlay y 1 3
discriptors ! overlay 1 ! i overlay 2 -' {overlay 3 |
1
1
loadable —
units 1body 11 | body2i.......

The overlay descriptions may take either a single record or a number of consecutive
records and contain pointers for up to 71 data/code bodies, each up to 9999 bytes
long, as follows:

ICL TECHNICAL JOURNAL MAY 1982 13

T T
1 ! |

]7 Properties list 1 Body list(s)] Relocation List(s) J Comment(s) J
T T
|

Description of Pointer to the Those 1<|>cation(s) General

the overlay bodies, includes which have to be comments —
the size and modified, if the ignored at
address of each, bodies are relocated load time.
relative to involves double
Common or relocation as the

Partition origin ~ addresses are
relative to origin

Simple overlays will need one descriptor record and one body — such overlays will
therefore require only two disc accesses to load them.

The user is given access to record numbers of each overlay descriptor and therefore
is able to bypass the logic to locate by file or subfile name, avoiding repetitive
accesses to the indexes when an overlay has already been loaded during the run.

3.1.4 Indexing. This Section describes the structures built upon the basic file types
for the index access method, which permits records in one file to be accessed via a
key search through a separate index file. The index file is always in a relative pool,
as a relative file whose structure is described below. The organisation of the index
file permits both random access (by key) or serial access (ascending key order).

The index access method also permits the one file, which may be a relative, direct
or linked sequential file, to be accessed by more than one index. Such files can be
directly accessed via their normal access method(s):

READ “key a” Normal Access Methods
¥ \
I |
I Index 1 I ;Data File :
|] i
| Keya—7 — - —— :
1 | |
L | | — . :
l—l———>,]keyal...lkeyb]... I
¥ }
|
r 1 : : L record n ————— :
| Index 2 Lo |
|] i
|
| L .
L _ L !

T
READ “key b”

14 ICL TECHNICAL JOURNAL MAY 1982

Structure of the index. The structure is based upon that described by Knuth.? It is
best described by means of a simple example:

root node

) .

intermediary J AL
nodes i “B” | «“D” ': [“B> [«H™
l___l | !
I ! i :
terminal { J ¢ i
nodes [A[F] OTDN [BE O

The required entries for each of the keys “A” to “H” are designated as terminal
nodes. The tree is structured such that the required key can be compared at each
level of the structure, starting at the root node, looking for the branch on which the
key should exist. In the above example there are two keys/branches at each level of
the tree. A branch is followed if the required key is less than or the same as the key
associated with the branch. Three accesses are needed to access a terminal node in
the above example.

The above tree is balanced, with the same number of nodes between each terminal
node and the root. Consider then the example where the tree is unbalanced:

14B” | “H” i'
]

i
‘

i
1 “A” “B” | \ “D” -
i

T
1

4

{
J

+ ¥

'I “E” I' “F” 1' | “G” “H”l
| S S —— |

-

In this case the average number of disc access goes up from 3 to 3.25, and is
obviously undesirable.

DMF uses a tree structure similar to the above but with more than two keys/
branches per node. The number is determined by the size of the key, given that
each node uses a single 512 byte record/sector. Each node may have spare entries to
permit keys to be inserted and deleted. This is useful when the tree has to be re-
organised to keep it balanced (e.g. the above example of an unbalanced tree is
prevented from occurring by the algorithms for creating, inserting and deleting).
DMF will normally ensure that each node is at least half full. When an entry is

ICL TECHNICAL JOURNAL MAY 1982 15

deleted and the node becomes less than half full an attempt will be made to redis-
tribute the entries amongst ‘adjacent’ nodes at the same level in the tree and remove
that node. Similarly when a node becomes full a new node has to be introduced and
entries moved to it from the full node.

DMF requires only a small overhead of each key. For example, about 24 entries can
be held in a node for 15 byte keys, and about 42 for 6 byte keys.

The number of disc accesses # for a full balanced tree with m entries per node and a
total of k keys satisfies the relation

mn—l <k<mn

For normal usage the nodes will be 75% full on average. The Table below indicates
for three key sizes, for 75% and 100% full cases the number of keys which can be
held and accessed within 3 and 4 disc transfers, excluding the final transfer on the
data file if present.

Key Size 75% full, 100% full, 75% full, 100% full,
3 transfers 3 transfers 4 transfers 4 transfers
6 27,800 68,800 864,000 29 million

10 11,600 29.800 267,000 894,000

15 5,500 13.200 99,000 318,000

3.2 LIOCS access methods

LIOCS consists of code permanently resident in Common, some fixed areas in low
Partition and a range of macros embedded in the user programs. The code in
Common is therefore shared and not self-modifying. The macros for opening and
closing files, and accessing them, all result in branches into common. In the case of
programs written in COBOL these details are transparent to the user, being con-
tained within the COBOL run time library. In the case of TP applications still more
is done for the user in the opening and closing of files. COBOL does not offer
access to all of the facilities described below, e.g. it cannot take advantage of some
shortcuts possible when interfacing directly to LIOCS.

3.2.1 Access to files. All access to files is by means of a file control block (FCB).
This is used in the process of opening a file, and thereafter in accessing it — the
format of the FCB changes in the OPEN process to contain the physical location of
the file, etc. The FCB is held in the user program’s workspace, and the application
is able, via macros, to access and amend fields in the FCB. The macros for
opening and closing the file and accessing it all require an FCB. The FCB holds
pointers to two further areas to be supplied by the user: the block and record work
areas. The block area is used ~nly when the file to be accessed is blocked. The
record work area contains the record to be transferred.

16 ICL TECHNICAL JOURNAL MAY 1982

Filenames can be introduced into the FCB prior to OPENing the file either via the
compilation process, or via a control file. This is a linked sequential file of a specific
format.

The FCB itself is not of fixed format and must be tailored to the specific access
method(s) to be used on the file. Each file has an associated access method. The
user may specify that one of three general access methods may be used, which will
work with more than one type of file:

Basic Sequential — Relative, Direct, Variable Sequential, Linked Sequential
for non-shared serial access to files

Mixed Sequential — Relative, Direct, Variable Sequential, Linked Sequential
for shared access with updating permitted

Keyed Access — Direct, Indexed Files

These are only of relevance to LIOCS itself. Appendix 1 gives a list of the principal
macros available and the access methods for which they are valid.

3.2.2 Red tape and flawed discs. Each volume, pool and file on disc has a red tape
area associated with it, which is used by LIOCS in locating and accessing files and
handling flawed areas of disc (blots).

Volume Red Tape. The start of each volume has a reserved area for holding infor-
mation about the volume, including an index of all pools on that volume and
their locations. If the volumé is designated for SYSRES then it must also contain
an index of all pools on all volumes. A fixed area of this volume also contains the
IPL software which is required at cold startup and can be loaded via an appropriate
workstation:

ISYSRES IPL B
|F I -
| | | VOLB |
! I
I — — | ! —
1 1poola i ipool b | i poolb ! l
- ' - H |
[! |
[W — .
i : : :poolb —:
T — —
L . t
pool a | L !
i
|
!

f

ICL TECHNICAL JOURNAL MAY 1982 17

Pool red tape. The nature of pool red tape depends upon the type of pool:

Relative pools. The first sector contains a file label for the one and only file. It
is followed by a set of alternate sectors which can be used when sectors in the
data portion of the pool are found to be defective (normally when the disc is
initialised). Following the alternate sectors is a blot table listing each sector in the
data area which is defective and its alternate:

file label

alternate
sectors

blot table

data sectors

When a sector is accessed via LIOCS a check is made to see if the sector is flawed.
If so the alternate sector is used.

Note that with direct files the hashing algorithms may be used to generate numbers
which do not encompass the whole file/pool. The rest of the file is available for
relative access, e.g. for overflow records.

Linked Sequential Pools. The first sector of the pool contains the pool label, which
includes a chain of free sectors and a pointer to the rest of the file labels. Flawed
sectors are automatically excluded from the chain of free sectors.

4 Basic communications facilities

This Section necessarily mentions two particular items of System 25 hardware, the
C-Coupler and the MTIOC interface. These are described in Walton’s paper.!
Briefly, the C-Coupler provides for the connection of communication lines to the
machine and MTIOC (Multi-Terminal I/O Channel) is the main slow peripheral
interface, allowing connection of up to 10 slow peripherals onto a single twisted
pair.

Three types of communications facilities are offered by System 25:

PCA — Programmable Communications Adaptor, special firmware for the C-
Coupler which converts the protocols of remote devices to those of their
local equivalents. This permits remote devices to emulate those con-
nected via MTIOC, primarily Model 84 videos to emulate Model 85C.
The protocol supported on the remote link is an extension of that used
between Model 81 videos and System Ten. All this is transparent to the
user and to the system software which drives the device, but some
initialisation may be required.

18 ICL TECHNICAL JOURNAL MAY 1982

SCA — Synchronous Communications Adaptor, a combination of special firm-
ware for the C-Coupler and code residing in a private partition, permit-
ting System 25 programs to use private BISYNC (binary synchronous)
protocols for transmission of data to and from ‘“‘alien” mainframes or
terminals. This is achieved via a low-level interface in System 2S5 PLI and
can be used in two ways —

(i) System Ten compatible usage, for programs which were written
for the 6-bit interface of System Ten SCA

(ii) Full 8-bit usage, in essence very similar to (i) but avoiding the
intricacies of generating 8-bit control codes via a 6-bit PLI inter-
face, and therefore somewhat simpler

CAM — Communications Access Manager, a combination of special firmware for
the C-Coupler and associated partition-resident software, offering higher-
level facilities for transferring data between System 25 and a mainframe.
The protocol used for any mainframe link can be split into two major
layers —

(i) Basic transport services, responsible for getting messages safely
across the link. This is therefore concerned with the low-level
protocols used to pass messages across a line, with the format of
those messages (the framing standards) and the addressing
mechanisms.

(ii) Access level, responsible for the content of the messages and for
implementing end-to-end protocols. For instance, a video access
level determines the actual character set to be used and the
meaning of any embedded control characters. Two different
access levels may use the same control characters but attach
different meanings to them.

CAM offers the basic transport service, while the application program is
responsible for most aspects of access level. The video access levels for
IBM and ICL versions of CAM are different, in terms of both character
set and control characters. Because of such differences it is not generally
possible to develop applications for one version of CAM and then to
move to another version without significant work.

The facilities permit one or more applications in different positions to
share the use of a single mainframe connection. The interface between
application(s) and CAM is via messages passed through Common, using
LIOCS-type calls. This interface offers a range of primitive functions for
reading and writing the data on a logical stream, and some flow control
mechanisms. While there are several very different versions of CAM they
all support the same primitive functions.

The following Sections describe the various versions of CAM in terms of
what the user will see of the CAM subsystem.

ICL TECHNICAL JOURNAL MAY 1982 19

4.1 CAM/CO3

CAM/CO03 supports communications to ICL mainframes via ICLC-03 line protocols
and is the basis for offering various facilities under the general title of IPA —
Information Processing Architecture. ICLC-03 is an asymmetric protocol; that is,
the dialogue is between a primary and one or more secondaries. The mainframe will
always act as primary. The secondary is addressed as a group, with a number of
associated subsidiaries. A group/subsidiary corresponds to a logical stream support-
ing an end-to-end access level dialogue. Normally one secondary acts as a single
group.

4.1.1 IPA. An account of this important strategic concept is given in a paper by
Kemp and Reynolds® in a previous issue of this Journal. The System 25 com-
munications software provides four facilities:

RSA — Remote Service Access, permitting videos connected to one system (the
Gateway) to access not only the service(s) in that system but also remote
(Host) services.

DTS — Distributed TP Service, permitting TP applications in one service to

initiate enquiries in another and to receive replies.

GFT — General File Transfer, permitting the transfer of files from one filestore
to.another.

ADI — Application Data Interchange, permitting applications in different
machines to communicate.

Both RSA and DTS are associated with data originating from or destined for a
terminal. For use across ICLC-03 lines they are based on the existing video access
level.

Both GFT and ADI assume the existence of a fully transparent data path between
the end points, called DIAL (Device Independent Access Level). X25 offers this
automatically but ICLC-03 does not; a mechanism therefore is built above ICLC-03
to achieve the appearance of transparency.

4.2 CAM 3270

CAM 3270 provides connection to IBM machines and to others which support the
IBM 3270 Binary Synchronous protocol. It is a combination of firmware for the
communications coupler and software within System 25. It is not intended to pro-
vide 3270 screen emulation, though a suitable application can provide simple screen

20 ICL TECHNICAL JOURNAL MAY 1982

management; it is aimed rather at allowing System 25 to function as a powerful
distributed processor within an IBM network.

CAM 3270 has been used both to provide interactive filestore access to distributed
System 25s from a central IBM machine, and to provide batch transfer of files at
end-of-day for processing on the central machine.

4.3 CAM-SNA and the ISO 7-Layer Model

The CAM-SNA product will allow System 25 to become part of an IBM SNA net-
work and fulfil its potential as a distributed processor. To achieve this CAM-SNA
makes the System 25 look like an IBM 3274 or 3276 cluster controller with a
number of terminals (Logical Units, LUs) attached. A cluster controller is an SNA
Physical Unit (PU) Type 2, and up to 32 LUs can be supported by each PU. A
maximum of four lines with one PU per line can be supported and each line can run
at up to 9600 b.ps.

CAM-SNA consists of software in the 8085-based communications coupler and
software in the System 25. The communications coupler handles the SDLC
(Synchronous Data Link Control) line discipline and the modem/line connection,
equivalent to Layers 1 and 2 of the ISO 7-Layer model. The System 25 software
provides the Path Control, Transmission Control and Data Flow Control layers of
SNA, equivalent to ISO layers 3, 4 and 5. A macro interface at the Data Flow
Control level allows programs to be written to provide the particular end-user facili-
ties required, equivalent to providing ISO Layers 6 and 7. An operator facility is
provided to configure, load and control an SNA system.

5 The TP system

The TP system on System 25 offers an environment for running applications
normally written in a high-level language largely divorced from the physical at-
tributes of the system in which it is run. It has been implemented using a similar
style of program structure, interfaces and facilities as for larger machines. The
major benefits to ICL and to users are the evolution of a house style such that
applications developed for one regime can be moved to another fairly easily, and
the removal of the need for intimate hardware knowledge from the applications.

TP control takes responsibility for routing messages between devices (videos or
specialised terminals) and applications, permitting applications to be written as
though driving a single device. The interface software for driving terminals removes
all device characteristics. The TP system is designed to support a range of ‘intel-
ligent’ and ‘dumb’ terminals, with appropriate development aids offered via the
Service Definition Facilities.

TP control also offers comprehensive facilities via a device-independent interface
similar to that used for interactive devices. Via Service Definition, the TP service
will run in or ‘own’ a set of partitions. Supervisor facilities are offered to dynami-
cally affect the number of partitions being used.

ICL TECHNICAL JOURNAL MAY 1882 21

The following Sections describe the main aspects of the system in terms of applica-
tions written in a high-level language.

5.1 Basic TP system

System 25 TP is designed to separate the processing of data in the application from
the detail of device driving, thereby simplifying and speeding up the process of the
program development.

An application is split into two separate sets of elements:

File [L I | Application program
Processing | ! P t ' : ! written in COBOL
Tasks P < —t
T T e —____—_1—__-_/'/——__
AN , ’
r !
i TP :
| Control !
/I i N
___________ [R N,
;[;:rmingl L Z , ; A ! ITerminal program(s)
ocessing | | o ! i ‘0
Tasks L —_ ! — ! o

The application program (in COBOL) is split into one or more components, each of
which can perform one or more different types of task. Each terminal has an
associated task, which can send messages via TP control to an associated file proces-
sing task. Such messages consist of a header and data, and are specified so as to
obviate the need for the application to use specific device control characters — any
such controls are parameterised in the header. The file processing application is able
to reply to the terminal, as well as pass messages to other applications or to a remote
TP service, by means of the DISPLAY verb in the COBOL program. An application
component js only able to process a single message at a time, and therefore will
normally run for a discrete period of time, terminated by means of the EXIT

PROGRAM verb in the COBOL program.
An operator is normally given access to several applications via a menu selection

facility offered by the basic TP system. Each will have an associated set of files,
which are opened at ‘start of day’. Most applications will require some extra files
and context information (partial results) to be available for each operator using the
application. These are opened/initiali~ed when the operator first gains access to the
application via the menu-select facility. Whenever a component of that application
is run because a message from the terminal has been received, both sets of files are
automatically ‘opened’. Partial results are then available via the RESTORE verb. At
the end of processing the message, partial results, e.g. running totals, can be stored
using the SAVE verb.

22 ICL TECHNICAL JOURNAL MAY 1982

The way the system is implemented can be shown as follows, where it can be seen
that terminal processing tasks run in the driver partition and application programs
run in other (blind) partitions:

RTL = Run-Time Library
TPC = TP Control
VPD = Video/Printer Driver

L. i

| Lo L+ RTL/ ! Blind '
Ly ; }_:FPC :Ertltlon A,
8 N S e —
| ! P 2 : i
liCommonl | TP | » Blind !
: 1 Buffer ; ¢ Qs ! { Partition B!

POO] F T A ¥ 1
H i | ! g MTIOC
i : H ' VPD/ ,; Video/Printer '
'l e A) (® 1 Partition ——PCA/84
Iy 1
| .
{
]
I

e ——— e - oad

The video/printer driver passes messages to and from buffers held in Common.
Applications are able to run in any of a number of blind partitions allocated to TP
working. When a partition is idle a check is made to test if any messages are in the
queue for an application component. If there are, then the first overlay of the com-
ponent is loaded and entered. Any messages generated (via DISPLAY) are queued
in Common in a similar fashion. The application will run to completion (the EXIT
PROGRAM verb), at which point the partition will again become idle and look for
the next message to process. There is therefore an element of TP software ‘residing’
in each blind partition and device driver; in fact, such code may be in Common and
shared.

The TP software associated with loading and running an application component
retrieves the file descriptions for the transaction, ready for COBOL file I/O verbs
to access the associated files defined with the application.

5.2 COBOL run-time library (TP)

The design and implementation of System 25 COBOL requires a package to be
available which consists of a number of procedures called from the code generated
by the compiler. Some of these routines are associated with more complex language
constructs and are common with those for batch COBOL. Other routines exist as
system interfaces to TP and relate to particular verbs:

(i) DISPLAY — calls specific TP software to carry out message queueing as
already described.

(ii) EXIT PROGRAM — enters specific TP software to look for the next
message.

ICL TECHNICAL JOURNAL MAY 1982 23

(iii) SAVE/RESTORE - calls specific TP software to save or restore partial
results.
(iv) File I/O — calls standard COBOL file I/O software in the run time library.

5.3 Additional TP facilities

5.3.1 Screen processing/templates. The screen driver software takes complete
control over all aspects of device handling. The screen is split into one or more dis-
play windows. The application can direct the display of a template within one of
those windows, where the template consists of protected text (for the benefit of
the operator) and various fields which can be classified as:

(i) input fields (unprotected) for entry of data by the operator

(ii) reply fields (protected) for display of additional data from the application

(iii) mixed fields which are for both input and replies.

customer account no. < >
name < >
address < < > input fields
< >
Order No. Code Description Qty. Total « fixed text
< > < > < > < > < >
< >
< >
< >
< > < > < > < > < >
T
Window1 J !
A4
window 2
window 3

Fig. 2 Example of template and screen with three windows

The splitting of the video into windows permits separate areas to be reserved for
system messages and broadcasts, and allows multiple templates to be output.

Associated with the screen template facilities are a range of supporting features for
the control over the video, cursor movement and field validation.

5.3.2 Spooler/printing. The DISPLAY verb in COBOL also offers printer facilities.
These permit messages to be sent to a system application which is able to ‘compose’

24 ICL TECHNICAL JOURNAL MAY 1982

pages of print, which are then given to the printer driver. The facilities permit the
use of printer templates which save considerable programming at the COBOL level.

The facilities control the input of several documents at once and handle printer
exception conditions.

template a < | customer no. XXXXXXXXXX
name XXXXXXXXXXXKXXXXKX
address XXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXX

[

free format or other
templates

XXXXX . . indicate where
data is to be inserted

template x

Fig. 3 Example of page or print

5.3.3 Supervisory video. An interface is offered via DISPLAY to send a message
to the supervisory console, which is another video also under contro! of the TP
system. Because of the separation of the video driving from the application it is
possible to fit the interface into the video driver while permitting the supervisory
video to be used also for running applications at the same time.

This video is used to control the TP service, open and close applications, provide
status information etc. when not required for normal data entry.

6 Program development tools

System 25 offers a wide range of development tools for the production of applica-
tions written in Assembler or the supported high-level languages. The following are
the most important:

CSM, already referred to in various parts of this paper, provides a powerful tool for
the manipulation of files.

TEXT EDITOR: provides the facilities for displaying and context-editing line-by-
line

LINK EDITOR: resolves the cross-references between related modules of applica-
tions object code.

ICL TECHNICAL JOURNAL MAY 1982 25

ASSEMBLER: the basic assembler of System Ten has been enhanced to permit the
new System 25 instructions to be compiled; this is a powerful macro assembler
system.

RPG: The RPG-II compiler of System Ten has been enhanced to run under System
25 and takes advantage of the new object program format.

COBOL: a compiler is offered, together with a run-time library.

TESTER: this permits System 25 object code to be tested in situ, instruction by
instruction or up to fixed breakpoints. It can be used to test applications where a
video or workstation is available on the partition under test, or it can be used in a
“blind™ partition where the tests are to be run from a video connected to another
partition. TESTER can be used also to amend areas on disc outside the constraints
of DMF files or pools.

ALF (A Loadable Format) PATCHER: permits programs and overlays in a Program
File to be amended. It also permits overlays and bodies to be inserted or deleted.
Patches are check-summed to protect the system against mis-applied patches.

7 Concluding comment

While the foregoing account has of necessity dealt only superficially with some of
the features of the System 25 software, the author hopes that it has made evident
the power, richness and sophistication of the software provided for a modern ‘small
business computer’.

References

1 WALTON, A.: ‘Architecture of the ICL System 25°, ICL Tech. J., 1981, 2(4), pp.319-339.
2 KNUTH, D.: ‘The art of computer programming, Vol. 3’, Addison-Wesley Ltd., pp.473
3

KEMP, J. and REYNOLDS, R.: ‘The ICL information processing architecture IPA’,
ICL Tech. J., 1980, 2(2), pp. 119-131.

Appendix 1
Summary of LIOCS File I/O Macros
Macros Description can be used on file types:

general purpose D VS LS IR IMR ILS
OPEN open file
CLOSE close file
WRTEQF write end-of-file marker

Y Y Y Y
Y Y Y Y
Y

P
<
<

26 ICL TECHNICAL JOURNAL MAY 1982

sequential

BOF
EOF
QEOF
GET
GETUP
PUT
INSRT
DELETE

keyed

READ
READUP
WRITE
QWRITE
DELETD
PUTD
QPUTD

mixed

UPDATE
DELTR

indexed

BSP
BSPUP
SCAN
SCANUP
DELETI
UPDATI
PUTI
QPUTI

reset pointer to start of file
reset pointer to end of file
quick version of EOF

read ‘next’ record, no lock
read ‘next’ record, locked
write ‘next’ record

insert a record and index entry
delete a record

LT

read record by key, no lock
read record by key, locked
write record by key

quick write by key, duplicates
mark record deleted

write new record by key
quick write of new record

rewrite current record Y
rewrite current record Y

get previous record, no lock

get previous record, locked

get ‘next’ record, same key, no lock
get ‘next’ record, same key, locked
delete record/index entry

rewrite current record by key

write new record by key

quick write of new record

ICL TECHNICAL JOURNAL MAY 1982

S

e

e

e e SN L

o

L

<

<

[Y]

g L e

e

<

27

Summary of File Characteristics and Access Methods

Characteristics File Types

R D VS LS IR IMR ILS
fixed length records Y Y Y Y Y Y Y
variable length records Y
blocked Y Y Y Y Y
buckets 1 block Y
minimum record length 10 10 10 10 10 10 10
maximum record length 9800 9800 9800 9300 9800 9800 9300
records can be in sequence Y Y Y Y Y Y
more than one file per pool Y Y
normal access RorS R S S R R R
(R =random, S = serial)
access by key Y Y Y Y
access by record number Y Y
access serially Y Y Y Y Y Y Y
starting not at first record Y Y Y Y Y
insertion of records Y Y [Y]
deletion of records Y Y Y [Y] Y [Y]
Legend
[Y] refers to index only

Y refers to data file only

R = Relative IR = Indexed Relative
D = Dlrejct IMR = Indexed Mapped Relative
VS = Variable Sequential ILS = Indexed Linked Sequential
LS = Linked Sequential Y = Access via Primary index only

28 ICL TECHNICAL JOURNAL MAY 1982

Security in a large general-purpose
operating system: ICL’s approach in
VME/2900

T. A. Parker
ICL Security Consultant
Kennet House, Le Marchant Barracks, Devizes, Wilts., UK

Abstract

Now that computers are being used more and more frequently for the
storage and manipulation of sensitive data, it is becoming increasingly
important that the operating system that presumes to protect that
information from any forms of unauthorised access should be capable of
doing so. This paper describes how ICL has tackled the problem by
designing the operating system VME/2900 so as to take advantage of the
powerful support provided by the basic architecture of the 2900 range.

Security facilities, such as privacy mechanisms and the checking of log-in
passwords, are of little use if they can be corrupted or by-passed. The
paper therefore describes not only these but also the advanced software
technology that ICL has used in the production of the system and the
further work on security assurance that has been done to maximise the
integrity of the security features: security correctness is a recurring theme
throughout the paper.

The paper is a modified version of a presentation made to the Fourth
American Department of Defence Seminar on Computer Security, held
in Washington D.C. in August 1981. Some of the background material
has been described already in papers in this Journal, but has been included
here so as to keep the paper self-contained.

1 Preface

It is always difficult to describe specific features of an operating system in a way
that is independent of the release state of the system. VME/2900 is no exception;
many different system options are available and not all of the facilities described
in this paper are available on all of them. Readers to whom correctness of such
details for their system is important should consult the relevant technical manuals,

2 Background

ICL was formed in 1969 as a result of the merger of what were then the two major
and competing British computer manufacturers, ICT and English Electric. It was

ICL TECHNICAL JOURNAL MAY 1982 29

then realised that the new company would soon need a new range of machines to
replace the many, varied and mutually incompatible ones inherited from the
merger. Further, these inherited machines had architectures and hardware tech-
nologies dating from the 1950s and early 1960s, and both hardware and software
technologies had moved on a lot since then. Qut of all this, after an appropriate
gestation period, came the first of the new 2900 series. This was a revolutionary
step rather than an evolutionary one, a rare thing in the commercial computing
world.

The design of the new series was of course influenced by that of existing in-house
systems, and the architectures of other machines on the market were studied — for
example, a number of the concepts of MULTICS were very influential, particularly
in the protection sphere where some aspects still represent the state of the art even
after 12 years. Details of this history are given in the book by John Buckle' and
also in his paper® in the November 1978 issue of the ICL Technical Journal.

3 2900 Architecture

So what kind of machine did we produce? This Section looks at some of the archi-
tectural features of the 2900 and the next, Section 4, describes VME/2900 and
explains how it uses these features.

3.1 Virtual addressing

Central to the architecture of the 2900 series are the complementary concepts of
virtual store and virtual machine, and their common basis of virtual addressing.
All addressing is in terms of virtual addresses mapped on to real addresses by
hardware using segment and page tables, as shown in Fig. 1. The real addresses can
be in the real main store or in the secondary store on drum or disc: thus we have a
straightforward virtual store implementation. Each process runs in its own virtual
machine in which it has its own unique local segment table and also shares a public
segment table with all other virtual machines. It can have also global segments,
which it shares with chosen other virtual machines. It is well accepted that this kind
of hardware-supported separation of the address spaces in which different processes
run is important to good system security. The separation provided by the 2900
architecture is not merely a matter of the operating system performing checks on
the base address and displacement of an operand but is a fundamental feature of
the architecture and ensures that no process can meaningfully address the local
space of any other.

3.2 Descriptors
The primitive instruction code makes extensive use of descriptors for indirect
addressing. A descriptor is a 64-bit entity which formally describes an item of

information in store. One half contains the base address of the item in terms of
the segment number and the displacement: that is, the virtual address. The other

30 ICL TECHNICAL JOURNAL MAY 1982

half contains information relating to the unit size of the item, the number of
units it contains, whether modifiers added to the item’s address should or should
not be appropriately scaled, and so on. Descriptors are also typed according to what
kind of information they are addressing.

The principle is illustrated in Fig. 2. This shows a descriptor descriptor pointing
to a row of byte-vector descriptors, each of which is pointing to a bounded area
of virtual store: the 2900 architecture provides for the automatic checking of

LOCAL PUBLIC GLOBAL
virtual local VM1 local VM2
address
b1 1 [I C—
local segment public segment local segment local segment
' table table table table
page table page table [
page table
real address real address real address

global segment
table
Fig. 1 Virtual addressing

Vo I
{)
' i b virtual
b : | address
|
A ! virtual
o 4 ST |
i ! L_ number of units address []
] B "
L scaling :
i I ——unit size)
I type

eg:

descriptor descriptor

eq:

byte vector descriptor

Fig. 2 Descriptors

ICL TECHNICAL JOURNAL MAY 1982 31

address bounds after modification, which is clearly a most important integrity
feature. Other types of descriptor include code descriptors, semaphore descriptors
and system call descriptors.

A common source of security and other errors in non-descriptor systems is their
inadequate and sometimes omitted reference pointer validation, This is from the
point of view of not only the actual address referenced, but also the type of object
being addressed. The use of descriptors enables the detection of many of these
classes of error to be made naturally and automatically; and because descriptors
are an integral part of the system’s architecture, the consequent performance cost
is low.

3.3 Privilege

In every machine architecture there are certain low-level operations whose misuse
could be prejudicial to system security. One example is the primitive input/output
operation, which communicates directly with the system’s peripheral devices;
if a normal user program were able to utilize this directly it might be able to by-
pass any file privacy system imposed by the operating system.

In the 2900 architecture, potentially dangerous operations like this are controlled
by means of a system status which is called privilege. Only a privileged procedure
may perform privileged operations. Privileged status is obtainable only by a hard-
ware interrupt mechanism. When the VME/2900 operating system is present, such
interrupts cause entry to the most trusted part of the system, the kernel, the place
of which in the system is described later in Section 4.1.

3.4 The ACR protection system

A process’s level of trustedness is defined by the contents of a protected hardware
register, the Access Control Register or ACR. The level is called the ACR level and
the lower its numerical value the more trusted is the process. There are 16 ACR
levels, that is, 16 possible levels of trustedness.

The protection of a segment in store from unauthorised access is effected by the
combination of information carried by the segment on the one hand and by the
process attempting access on the other. The segment’s information gives the maxi-
mum level at which it may be accessed (i.e. the minimum level of trustedness) and
the modes of access that are allowed — for example, any form of modification may
be forbidden; and this is compared with the ACR level of the process and the
mode of access being requested. One mode of access to a segment is ‘Change Access’,
which concerns the ability to change the access-permission fields themselves. There
is also an Execute Permission bit which is used to prevent the accidental execution
of data (as program).

If a procedure attempts to enter another running at a different, usually lower,
ACR level, the hardware invokes a ‘system call’ mechanism which polices the

32 ICL TECHNICAL JOURNAL MAY 1982

availability of the called procedure to the caller. An important feature here is
that the mechanism will enforce entry, if permitted, at the proper entry point. It
is vital to the security of the system that a trusted program when called by a less
trusted code shall properly validate any parameters passed to it. A weakness here
might enable a malicious user to penetrate the system completely, so a special
primitive instruction, called the validate instruction, has been provided to enable
validation to be performed correctly and efficiently. This important matter is
also discussed further in Section 4.2,

3.5 Recap

It is helpful now to collect together the features described so far and to identify
how they combine together to give two dimensions of protection:

Protection between processes is provided by

— virtual addressing, supporting

— virtual store and

— virtual machines

— global segments and the control of public segments

Protection within a process is provided by

— descriptors with automatic bound checking

- a mechanism to protect input/output and other privileged operations

— a 16-level ACR protection with

— an associated mechanism for policing the transfer of control between levels

These are all basic architectural features, supported by hardware and present in
the raw machine.

3.6 Process stack

This is one further architectural feature which merits brief mention. It has no direct
security connotations but makes such an important contribution to the overall
flavour of the 2900 architecture that it would be misleading to miss it out.

The instruction code at the primitive level is based on the use of a LIFO or ‘Last In
First OQut’ stack. This is used for parameter passing and for local name space
purposes and each virtual machine has its own stack. Nested procedure calls will
cause the usual succession of name spaces to be built up on the stack, and to be
deleted on the ‘last in, first out® principle as the procedures exit. ICL has found
the process stack on 2900 to be an elegant and natural aid to the procedure call
mechanism,

These then are the main architectural features of the 2900 series machines; they
form a firm basis for the development of a secure operating system.

{ICL TECHNICAL JOURNAL MAY 1982 33

4 VME/2900

One such development is VME/2900: VME stands for Virtual Machine Environ-
ment. It is a large, mixed work-load operating system which caters for batch,
multi-access and transaction-processing applications.

4.1 Structure

VME/2900 divides into three distinct parts, separated by error handlers; this is
shown in Fig. 3. The error handler at each level traps errors occurring at any ACR
level above it and takes the appropriate action. The one at ACR 6, for example,
confines errors occurring above it to the virtual machine concerned, the rest of
the system remaining unaffected.

ACR

compilers
utilities
user code

——— job initialisation, job schedulers

job control language handler
—=——— record level file handlers

no public writable
segments above ACRS
loader, name handling & privacy control

_—L— block level file handlers

device handlers, virtual store
and virtual machine management

—————

key
director

director error handler

- kernel above director error handler

[]I] kernel error handler

superstructure

above director services

Fig. 3 VME/2900 structure

At the most trusted level is the Kernel, which handles real system resources like
store and peripheral devices. It runs mainly ‘out of process’, that is, not in a virtual
machine but on a public stack; and helps to support the virtual store/virtual
machine image of the basic architecture.

34 ICL TECHNICAL JOURNAL MAY 1982

Next above this and occupying ACR levels 4 and 5 is Director, responsible for the
handling of a more abstract view of the system’s resources. At this level are the
block-level file managers and the major security-related functions of the operating
system like the Loader, Name Handler and Privacy Controller. Uncontrolled com-
munication between virtual machines is prohibited above ACR level 5 by disallow-
ing the existence of public segments with write-access keys greater than ACR 5 and
by controlling the availability of global segments.

Levels 7 to 9 contain the Above Director software: from the security point of
view this can be considered as a sort of ‘trusted superstructure’.

Above Level 9 is the user, who must be treated as potentially malicious. Facilities
are provided for user installations to structure the levels at which the various appli-
cation programs may run between ACR 10 and 15, and these can be used by the
management to cut off unprivileged users either partially or completely from
direct use of the operating system, if this is required. I return to this point later.
Notice here that, in contrast to what is done in some contemporary machines,
compilers and general utility programs are no more trusted by the operating system
than is user code.

All operating system code segments are established with write-access key of zero;
so all operating system code is necessarily pure.

4.2 Interface control

Fig. 4 shows a selection of operating system procedures and VME/2900’s use of
the system call mechanism. The small boxes are the procedures, drawn at their
execution ACR level. The lines with blobs on the end show in each case the highest
ACR level from which the procedure can be called. In the actual system the vast
majority of procedures cannot be called at all from outside their own level, but
there remain a substantial number that can be called directly from user ACR levels;
these provide the total set of VME/2900 facilities available to the user.

As has been said already in the paper, the proper validation of parameters passed
across the interface between the user and the operating system is critical to security
correctness in any system, and VME/2900 is no exception. Much time and effort
has therefore been spent in ensuring that this validation is complete. In particular,
a package has been written for the analysis of object code which searches for
discrepancies and presents these for manual analysis and correction. It examines
actual loaded code and so detects flaws which might be introduced by post-
compilation patches and repairs which at that stage have been fully applied. The
checking is therefore as near to the ‘engine’ as possible.

Another approach has been to reduce the number of procedures available to
unprivileged users at particular installations. A package has been written which will
monitor the use of system code so that the installation manager can make unused
interfaces unavailable or restrict the availability of little-used interfaces as required.
This package has a very low performance overhead and so can be left permanently

ICL TECHNICAL JOURNAL MAY 1982 35

in the system. Any reader who is interested in further details should consult the
author.

superstructure

above director

director

kernel

Fig. 4 Access to operating system interfaces

Installations have a considerable degree of control over the availability of operating
system procedures. The ACR level from which each procedure can be called is
defined at system load time and is held in a control file interestingly called the
‘recipe’ file; this is amendable only by the installation management. There is also a
mechanism for giving trusted users access to specified additional, more powerful,
procedures, the availability of which can be tailored to meet the specific functional
requirements of the chosen trusted user classes — for example, support engineers,
operators and the system manager. There are in fact a number of areas in
VME/2900 into which hooks and options have been put and which give installation
security authorities a great deal of flexibility in deciding what they want for their
system. Indeed, the extent to which particular installations can adapt VME/2900
to suit their individual security requirements is itself a major security feature of
the system. To give a very simple example, a class of multi-access user could be
defined whose only commands were, say:

INPUT

EDIT

COBOL_COMPILE

COBOL_RUN
with no low-level code or direct use of any operating system interface being allowed
at all.
4.3 Catalogue

All major system objects are recorded in a central filestore database known as the

36 ICL TECHNICAL JOURNAL MAY 1982

Catalogue, which is controlled from ACR 5. It is organised in terms of nodes and
relationships: entries for named objects are located at the nodes, which are
connected by the relationships. Objects catalogued include Devices, Volumes, Files
and other specialised VME/2900 objects. An example of a VME/2900 object is
shown in Fig, 5, a Job Profile; the set of job profiles available to a user will deter-
mine the kind of work he can run on the system and will normally be controlled

by the system manager.
lation

Fig. 5 VME/2900 catalogue structure

Privacy controls can be applied to any or all of these objects and access can be
constrained on a general, specific or hierarchic basis. A wide variety of access types
is supported, distinguishing for example between access to a file’s contents and
access only to its name and description. All attempted violations of privacy are
logged in a security journal; an installation can arrange that such messages are
output immediately to the journal rather than held in a buffer and output only
when the buffer is full. Particularly important in the access control features is the
ability which the system manager has, to prevent users other than chosen
individuals from accessing the system from a specified terminal. Alternatively, all
users except certain named individuals can be allowed to use a particular device:
this is useful, for example, in preventing the system manager’s identity from being
used at any terminal except a particular one, and is additional to the protection
provided by the manager’s password.

4.4 User authentication

Users are identified by a catalogued username which can have one of three security
levels: low, medium, high. A high-security user may not submit batch jobs; high

ICL TECHNICAL JOURNAL MAY 1982 37

and medium-security users must submit a password when logging in for a multi-
access (MAC) session. Such passwords can be up to 12 characters long and are
irreversibly encrypted when stored at the catalogue node for comparison on
logging-in. In this way, sight of the stored version is made useless to the would-be
penetrator.

The log-in sequence is very tightly controlled: The would-be MAC user, having once
started the sequence, will either obtain legitimate access within a certain time or
will cause the terminal to be locked out with an immediate security alarm at the
master operator’s terminal. Line breakdowns, for example, at this stage are treated
as security violations, so pulling the plug out won’t do the user any good.

A reverse password facility also is available, with which the system can be made to
identify itself to the user. By this means the user can be sure that he is signing on
to the system that he intended to sign on to.

4.5 ACR control of file-access

Another feature is program-controlled access to files, using ACR levels. By this
means the management can force access to chosen files to be through software
specially written by the installation which can perform extra protection checks,
for example can require passwords for individual files. This feature has been utilised
by the ICL database management system IDMSX, developed from the Cullinane
Corporation design. In this way IDMSX has become one of the few securely
protected database systems available commercially today.

5 Production methodology: CADES

Most modern computer operating systems offer a reasonable range of security
facilities, but few of their designers have seriously addressed the problem of
ensuring that these facilities are correctly implemented. Security features that can
be by-passed or corrupted by knowledgeable users give a false sense of security
and can therefore be a danger rather than an asset.

It is here that the use of proper software engineering design and production
techniques becomes of paramount importance. If the design of the system is well
structured and well documented it is easier to compartmentalise it and to perform
the validation processes that form the core of any theoretical analyses of its
integrity. And, of course, the system is more likely to be right in the first place.
It is particularly important for these purposes that the operating system is written
in a high-evel language. This imposes a fine-grain discipline and structure, and the
compilation process performs automatically many of the correctness checks which
would have had to be performed manually and which are probably too numerous
for that to be feasible in a low-level language.

This Section describes the methodology used by ICL, called CADES — Computer

38) ICL TECHNICAL JOURNAL MAY 1982

Aided Development and Evaluation System — and gives a flavour of the languages
used in the implementation of VME/2900.

CADES is a methodology and a set of mechanisms to support that methodology.
The VME/2900 design is top-down, data-driven and hierarchic; the prime objective
of CADES was that the product was designed before it was implemented. Everyone
knows how difficult that is in the pressures of a commercial production environ-
ment. The design methodology is supported by mechanisms which may consist
either of well-established rules for human actions and interactions (called the
CADES Design Rules) or of software products to be used by the designers and
implementers. The hierarchies of modules and data structures, together with their
attributes and relationships, are stored in the CADES database and this forms an
authorised description of the product as it is being developed. The final content of
the database is the product itself, so there is no break in continuity between design
and production. The source code and the compiled code are controlled by and are
logically a part of the database itself.

Thus CADES supports the total software development cycle from the initial design
right through to successive releases of the system, with supporting documentation;
and as a result, VME/2900 is extensively documented in a structured manner in a
micro-fiched multi-volume library known as the Project Log. For example, system-
wide cross-reference listings of the usage of data objects and of the structures of
procedure calls are available in the CADES database and can be reproduced auto-
matically for all new releases. There is a very good description of CADES in the
paper by McGuffin et a3 in the May 1980 issue of this Journal.

It is important to say at this point that CADES does not have the richness of a
design language nor the degree of formalisation enjoyed by formal languages like
SPECIAL or GYPSY# It was never intended to be used as a basis for the later
formal verification of the correctness of the design. Nevertheless there is no doubt
whatever that CADES has proved an invaluable practical tool.

The implementation language of VME/2900 is called S3 and is a development of
Algol 68; it is a well-structured high-level language with moderately strong typing
and a block structure which is very suitable for the 2900 stack architecture. The
production teams, however, actually code in what they call SDL — System Des-
cription Language — which is automatically converted into S3 by the CADES
system; this enables basic essentials like complex data mode declarations, inter-
face parameter specifications, constant and failure code values, macro expansions
and so on to be looked after automatically by CADES.

Fig. 6 shows an example of some implementation level SDL. It is actually the code
for a module which is part of the CADES system itself — we use CADES to design
and build CADES.

It is not the intention of this paper to describe Fig. 6 in detail; it is there just to
give a flavour of the language. At the top are the EXT and IO sections which list
the procedures that this procedure calls and the external data areas referenced. The

ICL TECHNICAL JOURNAL MAY 1982 39

CADES.CADES2505DL.E31110 PAGE 1

WO W s W -—

HOLON : EN_PARAMETER_VALIDATOR;
VERSION : 001;

EXT

10

: COMMON : CHECK,
MOVE,
SCANUNQ,

54.122.E.311
PHASE 50

SCLMAC : TRANSLATE_HIERARCHIC NAME,

. EN_OUTPUT_MESSAGE,

EN_EXTEND_HEAP,

s

EN_OUTPUT_PHASE,

EN_OUTPUT_LIBRARY_OPEN,

EN_TRUSTED_USERNAME,

EN_TRUSTED USERNAME_BUFFER,
EN_TRUSTED USERNAME_CURRENCY,

P : HOLON_NAMES,
SELECTORS,
NON_STD_PHASES,
GP,

ENV_DE,
ACTNAME;

FUNCTION

BEGIN

*(L)
*L)
*(L)
*(L)

(32)BYTE ANB : =

EN_ALPHANUMERIC BREAK,

AN : =
EN_ALPHANUMERIC,
NRMC:=
EN_NUMERIC;
RESULT_CODE :=
SUCCESS;
UNLESS
HOLON_NAMES IS NIL
THEN

FOR 1 to BOUND HOLON _NAMES

DO

REF() BYTE HN IS HOLON_NAMES(1),

UNLESS
LENGTH HN LE 32
AND

CHECK(ANB, HN, 0, NIL)

AND

ICL TECHNICAL JOURNAL MAY 1982

45 IF

46 LENGTHHN =0

47 THEN

48 TRUE

49 ELSE @ ALPHABETIC 1ST CHAR 7@
50 HN(0) GE “A”

51 AND

52 HN(0) LE “Z”

53 FI

Fig.6 Example implementation level SDL

interface definitions and modes of these items are all held in the CADES database:
the existence of centrally held definitions of system-wide objects like these auto-
matically reduces risks of mismatches in all of these areas. The asterisks at the
beginning of some of the lines in the FUNCTION section trigger off various sub-
stitution and validation actions when the system is converting the SDL code into
S3.

One final point of interest, to do with the CADES design: there are no GO TOs in
VME/2900 — well, hardly any!

6 Additional security work

Obviously, some of ICL’s customers will have special security requirements; a
substantial number of extra security features have been developed to satisfy these.
Work has been done also on ‘hardening’ VME/2900, not only from the point of
view of providing extra facilities but also from that of security correctness. Of
course, everybody benefits from the correctness; and some of the additional
facilities have since become standard product line items.

In the pursuit of correctness ICL has been subjecting the primitive architectural
and low-level operating system features to theoretical analysis, backed up where
appropriate by actual tests. This is a continuous process because new releases of
the system are continually providing new areas to be examined; and for this reason
ICL has attempted to automate the analysis as far as possible. Most of the tools
developed in this work are incorporated into a ‘security test package’ which in-
cludes also tests of those standard security facilities that are visible to the user.
This package is now being applied during the acceptance testing phase of each new
release of the product.

ICL also maintains close relationships with its major secure users and conducts
regular meetings devoted to the examination and discussion of security issues at
both technical and general levels.

The security of the VME/2900 system can be more clearly appreciated by standing
back and looking at the overall security structure. One current example of this is
a development of an idea put forward by Linde® of SDC, that of the ‘security
control object dependency graph’; it is hoped that this will be found useful in
identifying areas requiring most attention $

ICL TECHNICAL JOURNAL MAY 1982 41

An early ‘hardened’ version of VME/2900 was subjected to a ‘tiger team’ attack a
few years ago, with encouraging results. In that attack the system demonstrated
a reasonable degree of security in that the team failed to achieve their major pene-
tration objectives, though there were a small number of known defects which were
declared as ‘no go areas’ and others which had to be compensated for by rather
restrictive procedural controls. These defects have of course been removed since
then, but it would be foolish to claim that the system is now therefore totally
secure, What it does show is that any claim that a modern well-structured commer-
cial operating system is easy to penetrate has to be examined very carefuily. The
great majority of successful penetrations of other systems have been by teams
consisting of top-class systems penetration specialists.

A system that has been so penetrated, as VME/2900 might well be one day, can-
not be dismissed as insecure. Security is not a binary property that is either present
or not, as has been clearly recognised in Nibaldi’s valuable work.”® ICL takes a
pragmatic approach to security: the approach has to be pragmatic with so large a
system as VME/2900. Absolute security cannot be claimed: all that can be done is
to eliminate as many potential loopholes as our expertise and the state of the art
allow. :

References

1 BUCKLE, JK.: The ICL 2900 Series, McMillan, London, 1978.

2 BUCKLE, J.K.: ‘The origins of the 2900 Series’, ICL Tech. J., 1978, 1(1), pp.5-22.

3 McGUFFIN, R.W,., ELLISTON, A.E., TRANTER, B.R. and WESTMACOTT, P.M.:
‘CADES -~ software engineering in practice’, ICL Tech. J., 1980, 2(1), pp.13-28.

4 CHEHEYEL, M.H. et al.: ‘Secure system specification and verification: survey of
methodologies’, MITRE Corporation, Bedford, Mass. USA MTR-3904, Feb. 1980.

S LINDE, R.L.: ‘Operating system penetration’, Proc. US National Conference Feb. 1975,
pp. 361-368.

6 PARKER, T.A.: ‘Analysis of the security structure of a commercial operating system’,
ICL, internal paper, July 1981,

7 NIBALDIL G.H.: ‘Proposed technical evaluation criteria for trusted computer systems’,
MITRE Corporation, Bedford, Mass. USA M79-225, Oct. 1979.

8 NIBALDI, G.H.: ‘Specification of a trusted computing base’, MITRE Corporation,
Bedford, Mass. USA M79-228, Nov. 1979.

42 ICL TECHNICAL JOURNAL MAY 1982

System evolution dynamics
of VME/B

B.A.Kitchenham

ICL Product Development Group, Northern Development Division, Kidsgrove, Staffs
Abstract

The development of the ICL Operating System VME/B, was investigated
over successive system releases in the light of the theory of program
evolution dynamics developed by M.M.Lehman and L.A.Belady.

The results were mainly in accord with those predicted by the theory, thus
providing an independent verification of the general applicability of the
theory.

In addition, the particular results for VME/B base code show none of the
undesirable characteristics associated with severe complexity problems.
VME/B evolution shows a stable work rate with growth being maintained;
there is no evidence of increasing system complexity as the system ages,
nor is there any systematic increase in inter-release interval.

1 Introduction
1.1 Background

The theory of program (or system) evolution dynamics, as proposed by Belady and
Lehman,"? is concerned with the effect of change on widely used programs such as
operating systems. They take as a premise that large-scale programs undergo a
continuing cycle of maintenance and enhancement to keep pace with the changing
requirements of users and with technological innovation. Belady and Lehman?
proposed three ‘laws’ of evolution dynamics which were later expanded by
Lehman to five.>* They were able to model the evolution dynamics of a particular
system using five parameters derived from four measurements. They advocated the
use of such models as a means of improving the planning and control of system
development.

It is evident that a theory of evolution dynamics could be of great potential value
to the monitoring and control of a large operating system such as VME/B*. This
paper reports the results of an investigation of the evolution dynamics of VME/B,
intended to assess the relevance of the theory to VME/B, and if it did prove
relevant, to assess the current and future status of VME/B.

The problems associated with the development and maintenance of large operating
systems have already been documented® Belady and Lehman’s work is a first

*Since the time of writing of this article System VME/B has been renamed VME/2900.

ICL TECHNICAL JOURNAL MAY 1982 43

attempt to bring the development of large systems under intellectual and managerial:
control. The practical importance of their theory demands that it be subject to
serious study under as many and as varied conditions as possible.

However, as yet the theory has only been tested on a limited number of systems.

Lehman and Parr® identified three systems which have provided the basic data for
program evolution investigations. One was a large operating system with many
customers and two were smaller developments intended for only a limited number
of users. This study represents only the second attempt to investigate the evolution
of a large operating system. The results therefore have important implications for
the generality of Belady and Lehman’s theories and will be discussed in the context
of their ability to validate or invalidate the proposed laws.

1.2 The laws of program evolution dynamics

The theory is encapsulated in five basic principles or laws which may be summar-
ised as follows:

(i) The law of continuing change: A large system that is used undergoes
continuous change or becomes progressively less useful. The change or
decay process continues until it is considered more cost-effective to
provide a replacement system.

(ii) The law of increasing complexity: If a system is subjected to continuous
change, its complexity, which is a result of structural deterioration, will
increase unless work is done to halt or reverse the trend.

(i) The fundamental law of large-program evolution: Measures of global
project and system attributes are cyclically self-regulating with statistic-
ally determinable trends and invariances.

(iv) The law of conservation of organisational stability (invariant work rate):
The global activity rate in a large programming project is statistically
invariant.

(v) The law of conservation of familiarity (perceived complexity): For
controlled development, a large system undergoing changes must be
released at intervals determined by a safe maximum release content.
Exceeding that maximum causes problems in integration with cost over-
runs. These unpleasant results help to regulate excessive growth and thus
maintain statistical invariance.

2. Data collection and analysis
2.1 Thedata

Data were available, in computer filestore, concerning the content and develop-
ment of a number, but not all, of VME/B Base releases.

44 ICL TECHNICAL JOURNAL MAY 1982

The data, relating to the development of a release, resulted from the process of
incremental development under which VME/B is developed. Incremental develop-
ment allows many versions of VME/B to be constructed between two major releases
in the following manner: when a module (or group of modules) is considered to be
in a state suitable for in-house exposure, it is incorporated into the current version
of VME/B to create a new version (or system increment) and is used to provide the
in-house computer system. If, as a result of the in-house exposure, the module
requires correction or modification, a new version is created which in turn is
incorporated into a new increment. Thus, data were available to identify not only
which modules were handled between releases but also how many incremental ver-
sions of a module were required before it reached a state suitable for release.

VME/B Base (or Operating System) modules divide into three main groups:

Kernel-loader loaded modules, often designated Kernel; Supervisor-loader loaded
modules often designated Director; and conventionally-loaded modules often desig-
nated Above Director.

Kernel and Director are loaded during the system load sequence, Above Director is
loaded when a module is called. The data used in this investigation were limited to
Kernel and Director information spanning seven Kernel releases and ten Director
releases. Two of the Director releases and one of the Kernel releases were ‘special’
releases but because of the limited number of releases they were retained in the
analyses. The releases covered by this analysis are (in an increasing time sequence):

Release Director Kernel

5X23 DOF70 not available
5X27 DOM?25 not available
5X32 DOXOH KDCO2

5X33 DOZ08 (ATS1

5X33 DOZ70(€)AP)) KDM30
5X36 D0123 KDUF1

5X37 D0132 K0026

6.10 D0160 K0068

6.11 D0O170 K0089

621 D0179 K0102

The name given to the Kernel and Director comprising a released version of VME/B
Base code correspond to the incremental construction identifier. There are releases
of VME/B earlier than 5X23 but information concerning their detailed content was
no longer available in computer filestore; this was also the case for the 5X23 and
5X27 Kernels.

The two 5X33 releases were specials but because they were also part of the sequen-
tial development of VME/B, their inclusion was additionally justified.

Because of the discrepancy between the availability of information between Kernel
and Director, it was necessary to analyse the two systems separately. It is not an

ICL TECHNICAL JOURNAL MAY 1982 45

arbitrary decision because the production of Kernel and Director modules continues
separately and incremental versions of Kernel and Director are constructed quite
separately.

2.2 System measurements

Belady and Lehman'>? defined a number of system measurements that they used
to investigate the behaviour of a particular system. The following five measure-
ments are the primary data obtained for each release; the first four measurements
correspond to those used by Belady and Lehman,!”? the fifth is an additional
measurement available for VME/B.

®

(ii)

(iii)
@iv)

™)

(Vi)

(vii)

(viii)

(ix)

Release Sequence Number (RSN): this identifies the releases in sequence
from the base release, DOF70 for Director and KDCO?2 for Kernel.

Inter-release Interval (I): this is the interval in weeks between the construc-
tion of two incremental systems. Because this interval is based on system
construction rather than customer release, the intervals between two
Directors and two Kernels, which relate to two consecutive customer
releases, may be different.

System Size in Modules (M).

Number of Modules Handled (MH): this is a count of the number of
modules amended or new since the previous release.

Number of Module Versions Handled (MVH): this is a count of the total
number of different versions of modules handled during the development
of a release.

Also, from the five primary measurements four additional statistics were
calculated.

Actual Work Rate (AWR) = MVH/I: This is the average number of
modules handled per week including multiple versions.

Effective Work Rate (EWR) = MH/I: this is the average number of modules
handled per week excluding multiple versions.

Fractional Change (FC) = MH/M: this is the fraction of the system altered
to produce a given release.

Release Handle Rate (RHR) = MVH/MH: this is the ratio of the total
number of different module versions handled to the total number of
different modules. It is a measure of the degree of difficulty associated
with establishing the content of a release.

2.3 The analysis

Because there are only a limited number of data points (i.e. releases) available,

46

ICL TECHNICAL JOURNAL MAY 1982

the results of any statistical or graphical analysis must be treated with caution.
The procedure used in this study was to plot the measurements of interest against
either release number or system age in order to observe whether any system evolu-
tion trends could be identified and to use statistical techniques to investigate
specific hypotheses about the data.

Thus, system size was plotted against system age and release number; and work rate
(actual and effective), fractional change and release handle rate were plotted against
release number. Relationships between all the system measurements were investi-
gated using correlation analysis. In addition, the relationship between system size
and release number, for both Kernel and Director, were subjected to regression
analysis.

An additional attempt was made to investigate the complexity of VME/B base code
by comparing the average module handle rates for comparable groups of new
modules and amended modules within releases. It was expected that serious com-
plexity problems would reveal themselves in a higher average handle rate for
amended modules than for new modules. Comparable groups of modules were
identified by obtaining average handle rates within VME/B subsystems. Subsystems
that were subject to development involving at least 10 new and 10 amended
modules within a release were selected and the average handle rates for each group
of modules were calculated and compared.

3. Results

The basic program evolution measurements for Director are shown in Table 1, with
the derived measurements shown in Table 2. The equivalent results for Kernel are
shown in Tables 3 and 4.

Graphical representation of the evolution of VME/B Director and Kernel systems is
shown in Figs 1 — 10. Figs 1 and 2 show the gross sytem size of Director and

3500
1]
g
3 3000
]
=
£
§
% 2500
>
(2]
k]
& 2000
)
1 1 1 1 1 | 1
15001 é 3 ZI. 5 6 7 8 9 10
Release Sequence Number
Fig. 1 Size of Director releases subsequent to DOF70 in relation to Release Sequence
Number

ICL TECHNICAL JOURNAL MAY 1982 47

Table 1 Basic program evolution metrics for the VME/B Director

Director RSN M MH MVH [
(weeks)
DQF70 1 1991 - — -~
DOM2S 2 2032 847 1267 34
DOXOH 3 2442 1345 2686 51
DOZ038 4 2516 466 581 15
DOZ70 5 2798 §94 1295 19
DO123 6 3061 1562 3240 44
DO132 7 3086 601 748 14
DO160 8 3226 1011 1668 23
DO170 9 3228 213 241 11
DO179 10 3239 260 331 9

Table 2 Derived metrics for the VME/B Director

AWR = MVH/1 EWR = MH/I FC = MH/M RHR = MVH/MH
Director

(modules/week) (modules/week)
DOF70 — — _ _
DOM25 37 25 042 1-50
DOXOH 53 26 10:56 2-00
DOZO08 39 31 019 125
DOZ70 68 47 0:32 1-45
DO123 74 35 0-51 207
DO132 53 43 0-19 124
DO160 73 44 0-31 1-65
DO170 22 19 0-07 1-13
DO179 37 29 0-08 1-27

Table 3 Basic program evolution metrics for VME/B Kernel

I

Kernel RSN M MH MVH (weeks)
KDCO2 1 493 - — -
KDM9%0 2 745 514 1500 34
KDUF1 3 877 620 1783 34
K0026 4 900 344 679 28
KOO0638 5 960 375 768 21
KOO089 6 971 140 222 11
KO0102 7 996 310 426 10

Table 4 Derived metrics for the VME/B Kernel

Kernel AWR EWR FC RHR
KDCO02 - - - -

KDM9S0 44 15 0-69 2-92
KDUF1 52 18 0-71 2-87
K0026 24 12 0-38 1-94
KOO68 37 18 0-39 2:05
K0089 20 13 0-14 1-59
KO0102 43 31 0-31 1-37

48 ICL TECHNICAL JOURNAL MAY 1982

Size of System in Modules

250 L N . s . ,
1 2 3 4 5 6 7
Release Sequence Number
Fig. 2 Size of Kernel releases subsequent to KDCO2 in relation to Release Sequence
Number

Kernel, respectively, plotted against release number. Lehman and Belady? observed
a linear relationship between size and release number. For the Director system a
linear relationship appears a good fit to the first eight data points as shown on the
graph but the last two releases show very different growth characteristics. For the
Kernel system, the last six releases appear to be following a linear relationship
while the first releases have a different trend.

Figs 3 and 4 show the gross system size of Director and Kernel, respectively, plotted
against system age. A change of variable from release interval to system age appears

3000

25001

Size of System in Modules

20004

' 1]]

TR T | 4 8

0 50 100 150 i ZOOI J)
DOF70 DOM25 DOXOH DOZ08 DO123 DO16Y! DO179
DOZ70 DO132 DO170

(]

Age in weeks from DOF 70

Fig. 3 Size of Director releases in relation to system age

ICL TECHNICAL JOURNAL MAY 1982 49

1000F

wn
S
=
o
(o]
>
£
E
@
w
&
500}

5
(V]
N
&

] I] 4 $ M B

0 50 100 150

KDCO2 KDMS0O KDUF 1 K0OO026 KO0O068 K0O089 K0102

Age in weeks from KDCQ2
Fig. 4 Size of Kernel releases in relation to system age

to smooth the trends seen in the Figs 1 and 2. This indicates that system size is
influenced by the combined etfect of age and inter-release interval.

Figs 5 and 6 show the fraction of the system changed for Director and Kernel, res-
pectively. The Director results appear to show a cyclic pattern of peaks and troughs
imposed on a declining trend. The Kernel results appear to show a generally declin-
ing trend. The fraction of the system changed per release is believed to be related to
inter-release interval.’ The correlation between fractional change and inter-release
interval was 0-96 for Director and 090 for Kernel. In spite of the small number of
releases both these correlations are significant (p <0-01 for the Director correla-

o7
0-6-
o
w05k
¢
g
S o4t
£
O
_U, 03 -
c
o
S 02
o
w
01
1 1 1 - 1 L 1 1 i
1 2 3 4 5 6 7 8 9 10
Release Sequence Number
Fig.5 Fraction of Director altered in each release subsequent to DOF70

50 ICL TECHNICAL JOURNAL MAY 1982

tion, p <0-05 for the Kernel correlation). The apparent decrease in change with
release number is probably related to the fact that the later releases have, in general,

had small inter-release intervals. Thus, although both Director and Kernel show sig-

nificant negative correlations with release number (-0-69 and -0-87 respectively),

Director shows a high but not significant negative correlation between release

number and inter-release interval (—0-63) and Kemel shows a highly significant

negative correlation (-097).

08f
O 07+
'S
o 06F
o
5
g osr
]
U, 0[.
&
B 0-3r
o
L 02
01f
0 1 3 1 i 1 N
1 3 4 5 6 7
Release Sequence Number
Fig.6 Fraction of Kernel altered in each release subsequent to KDCO2
. 2:00F
4
T
o
L
o
o
[%]
]
§ 1500
I
(7]
)]
o
[
o
o
1-00 1 1 1 1 1 1 1 1 i
1 2 3 4 5 6 7 8 9 10
Release Sequence Number
Fig. 7 The Release Handle Rate for Director releases subsequent to DOF70

Figs 7 and 8 show the release handle rate for Director and Kernel, respectively, The
pattern for Director appears to be a cyclic pattern of troughs and peaks, while the
pattern for Kernel appears to be one of a general decrease in handle rate with
increasing release number. Relationships between release handle rate and inter
release interval revealed highly significant correlations for both Director (0-93) and
Kernel (094). Kernel revealed also a highly significant negative correlation between
release number and release handle rate (-095), but this result is complicated by
virtue of the correlation between release number and inter-release interval. Director,

ICL TECHNICAL JOURNAL MAY 1982 51

:

Release Handle Rate (RHR)
N
8

1-00
1 2 3 4 5 6 7
Reiease Sequence Number
Fig. 8 The Release Handle Rate for Kernel releases subsequent to KDCO2

however, revealed only a small non-significant correlation between release number
and release handle rate (~0-40), in contrast to the results for fractional change.

Figs 9 and 10 show the actual and effective work rates for both Director and Kernel.
The pattern for Director and Kernel is a widely fluctuating work rate and a more
stable effective work rate.

80r

701

60

40
AWR

Work Rates in Modules per Week

301 EWR

20|

1 —1 1 1 1 L
4 5 6 7 8 9 10
Release Sequence Number

-
Xy
w

Fig. 9 Actual Work Rate (AWR) and Effective Work Rate (EWR) for Director releases
subsequent to DOF70

The variation of actual work rate is over three times that observed for effective
work rate for both Director and Kernel. In addition, the Director work rates were
over twice as variable as the Kernel rates. Neither actual work rate nor effective

52 ICL TECHNICAL JOURNAL MAY 1982

wu
(=]
T

AWR

~
(o]
T

Work Rate in Modules per week
N w
<

=3

1 2 3 4 5
Release Sequence Number

L

D

Fig. 10 Actual Work Rate (AWR) and Effective Work Rate (EWR) for Kernel releases
subsequent to KDCO2

work rate revealed any significant relationships with system size or release number.

For both Director and Kernel, effective work rate was not related to the number of

modules handled or the number of module versions handled, neither was it related

to inter-release interval. However, actual work rate showed a significant correlation

with number of modules handled (0-77 for Director and 0-84 for Kernel) and for

Director also showed a significant correlation with the number of module versions
handled (0-71). Like the effective work rate, the actual work rate was not signifi-

cantly correlated with inter-release interval.

All the correlations observed between the system measurements are shown in
Table 5 for Director and Table 6 for Kernel.

Table 5 Correlations observed among the Director measurements *
RSN M MH MVH I FC RHR AWR
M 0-94
MH -0-49 -0-25
MVH -0-41 -0-19 0-98
I -063 -0-49 0-90 092
FC -0:69 —0-52 0-95 0-93 0-96
RHR -040 -0-21 0-96 0-99 093 0-92
AWR ~-0-10 017 0-77 0-71 043 0-59 0-66
EWR 0-08 0-28 0-28. 0-16 -0:13 0-10 0-16 0-80

* Correlations greater than 0:67 are significant at 0-05 probability level
Correlations greater than 0-80 are significant at 0-10 probability level

In order to investigate the complexity of new and amended modules, each release
was investigated at the level of its constituent subsystems. A number of subsystems
which experienced major software developments during the production of a release

ICL TECHNICAL JOURNAL MAY 1982 83

Table 6 Correlations* observed among the Kernel measurements

RSN M MH MVH I FC RHR AWR
M 0-93
MH -0-78 ~0-66
MVH —0-87 -0-76 0-97
I -0-97 -0-84 0-86 0-90
FC —0-87 —0-80 0-98 0-98 0-90
RHR -0-95 —-0-86 0-88 0-96 0-94 0-94
AWR —0-38 —0-36 0-84 0-76 0-45 0-79 0-59
EWR 0-55 043 0-02 -0-15 0446 —0-08 -0-38 0-51

* Correlations greater than 0-81 are significant at 0-05 probability level.

Correlations greater than 0-92 are significant at 0-01 probability level.

were selected and analysed further in terms of the handle rates obtained for new
and amended modules.

The results of this investigation are summarised in Table 7. There was no evidence
of any significant trends either within release or comparing results sequentially
across releases. Thus, in terms of handle rate, the effort involved in establishing new
modules in VME/B subsystems is essentially the same as the effort involved in
establishing code enhancements.

4. Discussion

The theory of program evolution dynamics relies to a great extent on the validity
of the five laws proposed by Lehman.® Although the results from a limited number
of releases on one particular system cannot be said to support or disprove the
theory, it is possible to investigate which, if any, of the particular laws, or principles,
appear to be of practical use.

Table 7 Handle rate for new and amended modules for Director and Kernel
subsystems within release

Number of Average Average
System subsystems handle rate handle rate
identifier contributing for amended for new

to averages modules modules
DOM25 5 1-64 215
DOXOH 6 1-84 1-99
DOZ08 3 1-23 1-30
DOZ70 2 1-25 1-21
DO123 7 2:22 2:07
DO132 1 1-11 1-43
DO160 4 1-62 2:79
KDM90 3 2:42 2-82
KDUF1 4 3-71 2-11
KOO068 2 1-78 1-85
KO0O102 1 1-53 192

54 ICL TECHNICAL JOURNAL MAY 1982

Part of the first law (of continuing change) can readily be seen to apply to both
Director and Kernel systems; by observing the increase in size with increasing age,
and the continuing amount of change to which the systems are subject, in terms
of the module handle counts and observed work rates. The additional statement in
the law that systems become progressively less useful if they are not changed
cannot be directly verified, it can only be implied by the slightly circular argument
that the systems would not be changed if they were in a useful state.

The second law (of increasing complexity) is difficult to investigate explicitly
without some objective measure of system complexity. Originally!+? the fraction of
modules handled during a release was used as a complexity measure but later® it
was pointed out that fractional change was likely to be influenced mainly by release
interval. The results in this study certainly confirm the relationship between release
interval and fractional change. The measure used in this study as an indication of
complexity is the ratio of total number of module versions to total number of mod-
ules handled, the release handle rate. This measure was chosen, not only because it
is plausible to suggest that in a complex system more attempts will be required
before a module is suitable for release than in a simple system, but also because
handle rates of individual modules have been shown to be related to various pro-
gram complexity measurements.”

Even after identitying a potential complexity measure, it is still not possible to test
the law explicitly. However, both the Director releases that had large retease handle
rates also exhibited some of the problems Belady and Lehman attribute to complex
systems. The DOXOH release (release number 3) slipped five months compared
with original estimate. The DO123 release (release number 6) required major
redesign such that certain facilities originally planned for DO123 were included
in later releases; and even so the reduced release was a month late and required
three remakes. Anecdotal evidence cannot prove or disprove an hypothesis but it
does offer some support.

In an attempt to assess the complexity of VME/B, the handle rates of new and
amended modules were compared. Thus, at present it appears to be no more diffi-
cult to amend old modules than to write new modules; this implies that VME/B is
avoiding the worst implications of continuing change and structural decay.

The third law asserts that system evolution trends exist and can be identified. It
may be considered in conjunction with the fourth law. The fourth law is a particu-
larisation of the third law which states that the work rate observed during the
evolution of large systems will be statistically invariant. Lehman and his co-
workers?3* demonstrated the invariance of work rate by demonstrating a linear
relationship between cumulative number of modules handied and system age.
Because there is an a priori possibility of observing a relationship between two
monotonically increasing measurements like age and cumulative amount of change,
the method used in this study was to establish that work rate was independent of
system size, modules handled per release and inter-release interval. For the effec-
tive work rate (i.e. the average number of modules changed per week per release),
the results of the correlation analysis support the hypothesis of independence for
both Director and Kernel. For the actual work rate (i.e. the average number of

ICL TECHNICAL JOURNAL MAY 1982 55

module versions handled per week per release), the results were more complicated.
The AWR showed no significant correlation with inter-release interval or system
size for both Director and Kernel systems but did show a significant correlation
with the number of modules changed.

Thus, in general, the results of the analysis of VME/B do support the hypothesis of
an invariant work rate, implying support for both the third and fourth laws of
system evolution theory.

The fifth law states that there is a limit to the amount of change that a system can
readily absorb during the development of a new release. Although this law is also
a particularisation of the third law, it can only be given anecdotal support by this
study. The two Director releases that experienced major problems did correspond
to the two releases that experienced the largest fractional change: i.e. more than
50% of modules in each release were changed. It is, therefore, possible to suggest
that Director releases should limit themselves to less than 50% change. Lehman®»®
also suggests that self-regulatory phenomena will be observed in this case, i.e. that
releases which exceed the limit will be followed by small ‘tidy-up’ releases. The
releases subsequent to Director releases 3 and 6 were small in terms of fractional
change but this result is complicated by the fact that the inter-release interval was
also small.

From the above discussion it is clear that historical records ot the development of
the Director and Kernel systems of VME/B demonstrate some of the trends and
invariance predicted by the theory of system evolution. It is, therefore, useful to
consider the implications of the theory to VME/B.

Belady and Lehman? observed a break-down in the development of a large opera-
ting system, which they attributed to excess complexity. They observed a fall in
growth rate and work rate, an excessive increase in fractional change, and an un-
planned increase in inter-release interval prior to the complete break-down in devel-
opment. The results observed for VME/B base code do not exhibit any such severe
problems and, therefore, suggest that VME/B is developing in a controlled manner
and keeping potential complexity problems in check.

The particular trends in the development of VME/B must be considered in the
context of management decisions. It is the stated policy of management to keep to
regular, small releases; this policy has been a management goal since the 5X36
release and has been established for the last two releases of Director and Kernel.
The policy of small inter-release intervals when coupled with an essentially invari-
ant work rate would be expected to restrict the fractional change per release. This
decrease in fractional change was observed for the last two Director releases and
the last but one Kernel release. Nonetheless, some unexpected results have occurred.
The last but one Director release suffered an extremely low work rate; this may be
attributable to the fact that it was primarily a bug clearance rather than a facility
release. Also, the last Kernel release exhibited a dramatic increase in effective work
rate which resulted in a higher fractional change than would have been expected.
There is no obvious explanation for the Kernel result in terms of changes in work-
ing methods or staffing levels.

The results for the latest Director and Kernel releases may reflect the need for a

56 ICL TECHNICAL JOURNAL MAY 1982

period of adjustment when large systems adjust to new working conditions. How-
ever, the Kernel result does highlight a potential danger when relying on small
inter-release intervals, if the committed release content exceeds the expected capa-
city for change. The results observed for the release handle rate indicate that the
Kernel system has absorbed the increase in work rate without an increase in
complexity, but it will be important to check that the next Kernel release has not
been adversely affected.

The current state of VME/B having been established, it is also necessary to consider
the implications of system evolution dynamics for future development. The current
strategy is to continue development of VME/B on the basis of small release intervals
with the flexibility of allowing certain releases to be primarily bug clearance or
‘tidy-up’ releases. This management policy should both prevent the build up of
excessive system change between releases and permit the containment of structural
decay and complexity.

The important constraint on this policy is the invariance of work rate. This invari-
ance implies that the amount of change that can be implemented between two
short release-interval releases is strictly limited. It is, therefore, important that the
content of successive releases be planned in the light of this constraint.

Finally, the exercise of monitoring the system evolution of VME/B will be con-
tinued in the hope that any potential problems will be identified by the system
measurements and subject to correction before they develop into actual problems.

Acknowledgments

I should like to thank Ms V. J. Newman for developing the programs required to
automate the comparison of successive system releases.

Thanks are also due to Mrs C. Lodge and Mrs R. A. Fry for their help in the
preparation of the manuscript.

References

1 BELADY, L.A. and LEHMAN, M.M.: Programming system dynamics or the meta-
dynamics of systems in maintenance and growth, IBM Research Report RC 3546, 1971.

2 BELADY, L.A. and LEHMAN, M.M.: The evolution dynamics of large programs,
IBM Research Report RC 5615, 1975.

3 LEHMAN, M.M.: The software engineering environment, Infotech State of the Art
Conference ‘Beyond structured programming’, 1978.

4 LEHMAN, M.M.: Laws of program evolution — rules and tools for programming manage-
ment, Infotech State of the Art Conference ‘Why software projects fail’, 1978.

5 LEHMAN, M.M. and PARR, F.N.: Program evolution and its impact on software
engineering, Proc. 2nd Int. Conf. Software Engineering, 1976.

6 BROOKS,F.P.: The mythical man month, Addison-Wesley, Reading, Mass., 1975.

7 KITCHENHAM, B.A.: Measures of programming complexity, ICL Tech. J., 1981, 2,
298-316.

ICL TECHNICAL JOURNAL MAY 1982 57

Software aspects of the
Exeter Community Health Services
Computer Project

The Exeter Project Team
Edited by
D.J. Clarke, Chief Programmer, and
J. Sparrow, Director

Royal Devon & Exeter Hospital, Exeter, Devon, UK

Abstract

The Exeter Project is a full scale application of real-time computer tech-
niques to the provision, co-ordination and management of health services
for a population of about 300,000 patients in the Exeter District of South
West England. Both Primary Care and Hospital services are involved, a
particular feature being the use of Visual Display Units by general practi-
tioners in their surgeries and by nurses on their hospital wards.

This paper describes the structure and main function of the software sys-
tems which have been developed for the project using an ICL 1904A.
Applications have been running progressively on this machine since
January 1974 and are now being transferred to ICL ME29 and DEC PDP11
equipment.

1 Outline of the Exeter Project
1.1 History and Aims

The Exeter Community Health Services Computer Project was one of a number of
experimental projects initially supported by the Department of Health and Social
Security (DHSS). It was set up in 1969 following feasibility and preliminary studies
which had demonstrated the practicality of using real-time techniques, with Visual
Display Units (VDUs), to assist general practitioners in the surgery, and the further
possibility of joining medical data from a number of sources (GP, hospital, local
authority services) and making these available where required.

The objectives of the Exeter Project were (and still are):
(i) better patient care
(i) increased clinical and administrative efficiency

and (iii) improved facilities for management and research.

The project firmly believes that the patient should be the centre of any well
directed system of medical care. Although several different agencies may be respon-

58 ICL TECHNICAL JOURNAL MAY 1982

sible for different activities, there is an obvious need, both in the clinical care of the
individual and in the planning and management of health services generally, for
information about patients to be brought together and considered as a coherent
entity. Thus, in addition to the direct improvement of particular services, one of
the main functions of the Project has been to set up a community-based medical
information system.

At the Exeter Project the heart of the system is the file of patient records — the
database. The database designed by the project has been in use since early in
1974, and is directly accessible on-line to two health centres (one rural, one urban),
two specialised hospitals (orthopaedic and eyes), and one District General Hospital
organised in two separate locations. In addition three other urban health centres
and five small hospitals access and amend the database via terminals located in the
general hospital.

The first patient records (for the rural health centre) were added to the file in
January 1974, Prior to this the patient medical records had been summarised, and
stored on an interim file. With the availability of a real-time system this interim
file, then containing some 10,000 patient records, was transferred to the database
using conventional batch processing methods. In the following August the ortho-
paedic hospital was accepted into the system, followed rapidly by the general
hospital and the first of the urban health centres. The remaining health centres
started registering patients in October 1976. Since the initial registration of health
centre patients, all additions to the database have been made using VDUs. At health
centres it is the normal practice for a team of ‘paramedical summarisers’ to assist
GPs with the task of converting patient case note folders, and for clerical staff to
register the patients on the database using VDUs. The registration of all patients at
health centres takes place intensively over a relatively short period of time. At
hospitals such an approach would be prohibitive and it has been the practice to
register patients only as they come into contact with the hospital, i.e. through
outpatient clinics, admissions from waiting list, and accident emergency admissions.
Hospital registrations are therefore gradual, and growth is relatively constant. When
both hospitals have been fully registered the database will contain records for some
300,000 patients. At the beginning of 1982 it had records for 260,000 patients,
growing at the rate of 2,000 per month.

1.2 Applications

The following is a summary of the main applications implemented. They all involve
the use of VDU and hard copy terminals by NHS staff at their normal place of
work (i.e. surgery, ward, department).

(A) Primary Care:
Registration
Summary medical history
Medication spectrum and repeat prescriptions
Vaccination and immunisation
Reassessments due

ICL TECHNICAL JOURNAL MAY 1982 59

Control screens (e.g. hypertension)

Referrals

Archive data (e.g. hospital discharge letters)

Surname index

Practice management (leaving list, register addendum etc.)

(B) Medical Records:
Full community index
Registration
Surname index
Waiting list management
Admissions, discharges and transfers
Case note labels
Out-patient diaries

(C) Ward systems:
Creation of nursing orders from standard phrases
Care plans
Reporting
Ward layout
Admission, discharge, transfers tof/from wards
Nursing procedures
Trainee nurse allocation
Nursing management information
Nursing dependency
Pharmacy information
Pathology laboratory urgent results

(D) Other systems

Password allocation and control

System measurement

Pathology laboratory — histopathology and cytology
Nursing personnel

1.3 Equipment

The Project uses an ICL 1904 A computer with 128 x 1024 words of core storage.
Real-time activity is supported by a communications network: an ICL 7903 Com-
munications Processor links remote VDUs (via telephone line and modems) and
termiprinters (locally or remotely connected typewriter terminals capable of
operating at 30 characters per second) to the central processor. Modems allow
operation of remote VDUs at 4800 baud, and remote termiprinters at 300 baud,
Sites local to the computer, i.e. the hospitals, use VDUs connected to the central
processor via a Cluster Control Unit, and operate via direct cables at approxi-
mately 100,000 characters per second. The terminal network extending to four
hospitals and two health centres consists of 51 VDUs connected locally, 20 VDUs
connected remotely and 27 printers connected to the 7903 both locally and

60 ICL TECHNICAL JOURNAL MAY 1982

remotely. The database is held on EDS 60 disc drives (60 million character
exchangeable disc units). There are currently 11 drives connected via three disc
controllers. The real-time system requires 70k words of core store and a minimum
of seven drives, with the database distributed over five disc packs.

In the future the hospital-based system will be transferred to ICL ME29 computers
(1 for medical records, 1 for ward based system, and the two interconnected).
The primary care system is being re-written for a minicomputer, and a microcom-
puter implementation is envisaged.

1.4 Experience

In the early days of the project National Health Service users in general were appre-
hensive about the application of computers to patient care. Over the last decade
this attitude has changed completely to one where doctors, nurses, administrative
and technical staff within the service have begun to appreciate the additional value
that computerisation of medical records brings. The demand for new systems and
for improvements to old applications from current and potential users now out-
strips the ability of the computing staff in the NHS to satisfy the demands. This has
led to a growth in systems packaged for the NHS.

Initially there was considerable anxiety concerning the confidentiality and security
of medical data when held on a computer. These fears have largely disappeared with
the advent of terminal interactive computing in the Exeter style. Users of the
Exeter system, which in storing GP clinical records touches on the most sensitive
data held by the NHS, are now convinced that the computer system is more confi-
dential than the old manual system. The British Medical Association and the Royal
College of General Practitioners have also been sufficiently convinced to recom-
mend the Exeter level of confidentiality for any future system developed else-
where,

National and international visitors are a regular part of the Exeter scene. The inte-
grated patient record nature of the project is widely acclaimed by those from
abroad although the NHS itself has been somewhat slow to exploit its undoubted
potential. All visitors who see for themselves how GPs, and to a lesser extent nurses,
have eliminated the need for keeping manual records extol the benefits of the
system,

Locally the system has been valued sufficiently to ensure that all the applications
currently implemented will be transferred to new equipment giving it at least a
further ten years life extension. The project file structure conceived and brought
into operation before any packaged database system existed stands up very well in
comparison.

2 Software overview

2.1 Strategy

Programs to date have been coded predominantly in PLAN, with some batch pro-
grams coded in COBOL. The real-time system was developed using the ICL Driver
concept, in which communications processing and disc transfers are processed by

ICL TECHNICAL JOURNAL MAY 1982 61

ICL supplied routines. The user is left to code only the processing of the incoming
message, and of constructing the reply. This processing is carried out by beads, self-
contained segments which return control to Driver after processing. Information is
passed between beads and Driver via a common area called the TAB (Task Adminj-
stration Block) and Driver action (go to next bead; read a file record; write a file
record; output a message etc.) is determined by the content of the TAB. The
sequence of beads and Driver routines between the start of processing of an input
message and transmitting the reply is termed a thread. In a simple system there is
only one TAB (single-threading) and the TAB, once allocated to a message, is
unavailable for further messages. Thus one message must be processed completely
before processing of another message can commence. If the processing requires
file activity, then the real-time program is idle during the file transfers. A multi-
threading system has a number of TABs and when activity on one TAB is held up
awaiting a transfer, processing can continue on one of the other TABS. At any
time processing may be in progress for as many messages as there are TABs. At the
present time the system can have up to 6 TABs, there being a facility for dynami-
cally changing the number.

2.2 General overview

The Exeter program has been developed within the framework of standard ICL
software, particularly Multi-Threading Driver and Communications Manager. The
resulting program occupies 70k words of memory, of which about 10k is for
overlaid beads. There are over 1000 beads amounting to more than 400k words of
instructions. The program normally operates with three threads (transactions
processed in parallel) but can be increased to a 6-thread system. The size of the
program is graphically illustrated by Fig. 1.

PROGRAM
1000 + BEADS
50k + WORDS CORE RESIDENT
400k + WORDS OVERLAID
MULTI-THREADING UP TO 6 PARALLEL MESSAGES"

FILES/RECORDS
41 DATA FILES
~ 250,000 PATIENT RECORDS CURRENTLY
~ 500,000 PATIENT RECORDS CAPACITY

FILE ACCESSES
200,000 + FILE ACCESSES/DAY TO DATA FILE

(40 + % ARE UPDATES)
100,000 + FILE ACCESSES/DAY TO OVERLAY FILE

Fig. 1

62 ICL TECHNICAL JOURNAL MAY 1982

Each thread in the system requires a number of common areas, the most important
of which are:-

The Task Administration Block (TAB) which contains all the information
necessary to control the processing of a message and is the area used to
transfer data between beads and Driver itself. The standard TAB has been
expanded by the Project with an additional 13 words.

The Associated Core Area (ACA), Input Output Area (IOA) and Message
Area (MA) are addressed from the TAB and may be freely used by beads.
The MA is used for incoming and outgoing messages. The ACA is written to
a disc file at the end of each message and read at the beginning of the next.
This enables data to be transferred between threads.

A common area introduced by the Project is the Terminal Block, one of
which is associated with each terminal. This contains details of the terminal,
and current user of the terminal. It is addressed from the TAB.

User-written code has been incorporated in Communications Manager to
simplify signing-on. The general flow of messages through Communications
Manager, Driver and Project beads is shown diagrammatically on the accom-
panying flowchart and described below.

If the input password is ail numeric a modification by the Project causes Comms
Manager to enter the Current ‘Operational’ real-time program. If Comms Manager
detects an error in the password it will display the appropriate error message.

Once a password has been assigned to an appropriate Driver program, Comms
Manager will establish a link to route subsequent messages from that terminal to
the same program. When Driver decides that an input message is due for pro-
cessing it allocates a TAB, ACA, MA and IOA and places the message in the MA.
Control is passed to Bead 1.

Bead 1 uses the Project TERMINAL BLOCK to deduce if ‘this’ terminal is currently
signed on. If not, sign-on procedures are entered which, if the password is accept-
able, exit to the bead given in the USER DETAILS file after having initialised the
ACA with details from this file. If the terminal is already signed on the previous
applications thread will have set the appropriate re-entry bead and ACA file bucket
number in the Terminal Block. Bead 1 will read in the ACA and exit to the re-entry
bead.

At the end of the thread the applications software will set the re-entry bead in the
terminal block, roll out the ACA to the ACA file and pass the output message to
Driver in the MA. It will then request the TAB be deallocated. Driver will pass the
output message to Comms Manager for transmission to the VDU.

This sequence of events, in a much simplified form, is shown on Fig. 2. This shows
only one small part of the system in more than outline detail. It gives an indication
of the overall size and complexity of the program.

ICL TECHNICAL JOURNAL MAY 1982 63

uonD|ndiunw

pup Bul)jpuby Ua83id5 - WYHS

uonoynsuod Anjdsip- 3q

241UBD Y} ID3Yy - IJH
1St Buljiom - qm

dd1l

I WHIL/IWVHSIDQ/IOHITM
NaA 13yio

ﬁ

f/mao;oﬁ urdnias
- PD23Q DI}
TTe—

- ala
5 mT.
2 ~'o
=~ Al
o p1033.
Hdl pd0339J S Z = Juaod
%20) 3 3 Q pDay
b 3 xapu| |D20
Q.v:&: ® 3 uaoc/ 5o ! 1
/A.w\.\ -~ oLt
pPDaq isJiy
uoljpo|ddo
! uiwpp D} Idsoy ‘ @
Bursinu | papmul sod E
s i Buijiodau -
~ — abipyosip
I uolssiwpp
~ siapJio
_l/mEo: piom
poaiy) / uo ubis < ‘_M:u
5U01}D2;1ddDp Jay}0 plestp
ul
. ! R \
// T~ // / \\ \
e T A
poaqg oyt o~ #2019
a1y VIV I poaq oUW}
VOl | YW | VIV Aﬁmdﬁ.
219} swoiboid auwil}-1Dal 19y)0

SN3iD}s —]
1DUIWIRY |\

A9 A

T

i0113 wo-ubis|

Jabounw swwod

]

Ap|ds1p

uaaids uo-ubis
Apidsip

ICL TECHNICAL JOURNAL MAY 1982

64

SwIaIsAs Jo onewaydss g "By

MomUcuE mEEou

_

Lo>__u_

sautnos yndino

_

-,
| | |

Ko\dsip

(U234 mau) (40413 yum

EENRL] >o_am_uo\;.—.?uobm Mau)
UOISUI X JU3aJdS JosIa JuoI}DWIIJUOD
Koydsip 3|quISSD 91quassD

1 Bulysixa 0y
jutud |abossaw ppo
XX1

xapul julid y3ndyno
Aianb JqWassn

/

| |

H (40449 Ypm ._- (U3340S MaU)
(Ua312s MAU)== Ap|dsIpad) uaalds
- uopwIuod [uaaads Joudd {uonypiysibal
9|qWasso 9)|qWaIssD " Ko|dsip
Bu 16601
Bui)puoy
3l
ayopdn
op ovvv

£z ~—
wa CO.CUCD&

JwounddND= A3y

33nou
}22)19s

(0=A3ay)uo-ubis

u3alds
awoy

ICL TECHNICAL JOURNAL MAY 1982

3 Printing Systems

All systems have the need to produce printed reports on demand; here, ICL termi-
printers are available for printing. The Project has developed a set of routines
known collectively as TXX. This system utilises Print files to store data for printing,
or pointers to that data, and to contain a record of each print run from that data.

The processing within TXX falls naturally into two sections:-
(A) Place records on the Print file.

(a) Add new record(s)
(b) Replace existing record(s)

(B) Print from the Print file.

(@) Normal run to print previously unprinted records and end _

(b) As (a) except that the termiprinter assumes an idle state at the end,
allowing further output without the need to sign-on, (Spontaneous
Output — SPONTOP)

(c) Repeat last print run

(d) Resume current run after a ‘break-in’

(¢) Abandon current run.

During a print run the option is given of adding additional information to the print
record e.g. date, time, user ID etc.

Fig. 3 illustrates the structure of all print-files.

TXX handles the sign-on of a termiprinter, and after sign-on the user will request
printing from a particular print sub-file. Any termiprinter will print from any print
sub-file but only one termiprinter at a time may access a particular sub-file.

There are two modes of printing run, spontaneous and normal.

— In spontaneous mode TXX will print any outstanding data on the sub-file and
then cause the termiprinter to go idle. As soon as more data is added to the
sub-file TXX will initiate printing of it.

— In normal mode TXX will print any outstanding data on a sub-file and, having
reached the end of data, terminate the print run. Any more data entered into
that sub-file will have to be requested afresh by the user.

To maintain activity of the termiprinter each output message must generate a reply
to force the continuation of printing. TXX makes use of the ‘Answer Back’ facility
to accomplish this. Each output message is terminated by a control sequence which
causes the termiprinter to respond by sending a ‘wired-in’ message to the computer.
In this way printing is accomplished as a pseudo-conversation. Data on the print
files is not cleared after printing and is available for repeat prints up to the end of
the day. It may be reprinted on the original termi or any other.

66 ICL TECHNICAL JOURNAL MAY 1982

Typing ‘break-in’ at any point during a print run will cause an interrupt, the
response to which will be a request for instructions. The run may be restarted by
the user merely typing a form number which must be less than or equal to the last
form number printed; or it may be abandoned, by giving an ‘abandon’ request, in
which case the run is terminated and the termi will await further instructions. The
user may then make a further print request, for any material on the Print file to
which he is signed on, and this will be treated in the same way as a print request
following a sign-on,

sub-file hdr
sub-file user ‘B
headers doc R 4
print index index to run
UKLMN - o
user ‘A’
. . .
user ‘B
Ipr'm't
limcges
user'C’ for run
|IJKLMN
|
1
user'p’
user 'E’
doc ‘P’ doc ‘Q’ doc ‘R’ doc 'S’ doc 'T'

— sub files may be of different sizes

— print images may be added while printing is in progress

— automatic printing as soon as print images are added is possible
— print runs may be repeated

Fig. 3 Print file structure

ICL TECHNICAL JOURNAL MAY 1982 67

The termiprinter may be signed-off, which is treated the same as an abandon
request except that the termiprinter signs itself off at the end, rather than awaiting
intructions. A termiprinter other than the one the user is on may be signed off,
but only if it is not currently printing.

Fig. 4 shows a sample of termiprinter output. This would be produced on pre-
printed self-adhesive labels.

— SIGN ON requested —
Enter your password & SEND
Password suppressed for confidentiality.
AWAITING INSTRUCTIONS
< PRLNFORTR Parameter requesting print run.

START OF PRINT RUN 812L

PRINTED ON 05.12.80 AT 11.14

ALIGN SATIONERY

THEN TO START PRESS “CTL" AND “A” TOGETHER

10 00 643
ZZ—HOLES 13.12.42 ZZ—-HOLES 1000643 001
Raymond Mike Male M

Raymond Mike Mr 812L
10 00 643
Z2Z—HOLES 13.12.42 20 Pellinore Road 13.12.42 TR N
Raymond Mile Male M Beacon Heath

Exeter Male M TRA
1000643 Devon
Z2Z—HOLES 13.12.42 EX14QT
Raymond Mike Male M Budleigh 1683 Gp Osm 1277
10 00 643 Road Rolter
ZZ—-HOLES 13.12.42 A ALEXANDER
Raymond Mike Male M The Health Centre

Trial Street:
10 00 643 Testown 05.12.80
ZZ—HOLES 13.12.42
Raymond Mike Male M

PRINTING INTERRUPTED
(IF INSTRUCTIONS DO NOT APPEAR BELOW, PRESS ‘CTL” AND A"
TOGETHER)

TYPE NUMBER OF FORM FROM WHICH TO RESTART
OR TYPE “AB’* TO ABANDON THIS RUN
OR TYPE “OFF'" TO SIGN OFF
< QFF Instruction to sign-off termiprinter
RUN ABANDONED
END OF PRINT RUN 812L
002 FORMS PRINTED
THIS TERMIPRINTER IS NOW SIGNED OFF

Fig. 4 Example of termiprinter output

68 ICL TECHNICAL JOURNAL MAY 1982

4 Error handling

The purposes of error recovery are as follows:-
(i) trapping errors.
(i) taking corrective action.
(iii) reporting the error as soon as possible to the outside world using the on-
line console termiprinter.
(iv) producing as much information as possible concerning the error.
(v) minimising the hold up on the system — during error recovery the program
is in single-threading mode.

Bead 0, the error bead in a Driver program, can be invoked in the following ways:-

(@) on discovering an error in one of its beads an application may enter it
directly.

(b) if there is a file handling error a linkage exists to Bead 0.

{¢) in the case of unanticipated system errors (e.g. transmission failures,
unavailabiles etc.) Driver enters Bead O directly.

All information relevant to the error (e.g. registers, address of error, contents of
TAB and Terminal Block etc.) is stored and Driver requested to put the program
into Exception Mode (i.e. single-threading) thereby the reporting of the error is
given the highest priority.

The error bead analyses the exception code associated with each error and deter-
mines to which specific error bead control will be passed.

The processing in the specific error beads involves the setting up of appropriate
error messages for output to the console termiprinter. Depending upon its gravity
each error is assigned an error value in the range from 0-7. Those errors whose
error value is less than 2 are not reported at all (e.g. unavailables, availables etc.).
All other errors cause a message to be printed on the termi so that immediate
action can be taken by operators if necessary.

Only errors with an error value of 3 or greater generate a detailed spooled report.
The information is written to a George II disc spooling file in the standard format
for printing by George’s print module, #OUTA. This method of printing prevents
any delay to the real-time program. A George II output file is opened during
initialisation in readiness for the first error report generated by the system. After
such a report has been written the file is renamed and closed and the next available
spooling file is opened by the program.

Control is then passed to the final bead in error recovery, that is, the bead respon-
sible for choosing the bead to which control is to be returned. It is also responsible
for certain standard actions and general winding up of error recovery. In certain
catastrophic circumstances the program can be suspended by this bead. Also the
decision is taken here whether or not to sign off a terminal when a serious fault
has occurred.

The structure of Error Handling is shown in Fig. 5.

ICL TECHNICAL JOURNAL MAY 1982 69

from application

from device routines

beads —
driver
bead 0O
(error bead)
—— T - — ——
- JE
i_ 1 , [1
I specific I |
I | error bead | |
L ——— — —
D S I
error reporting & /termiprinter reports
spooling beads
. spooled reports (using
George 2 spooling)
catastrophic recoverable error warning unsafe for
error-suspend appl error bead appl next bead

possible further action by application

e.g. a warning to the operator

Fig. 5 Error handling

5 File handling

5.1 General

The project’s system is very intensive in its use of files, The patient record file is
spread over five physical files, contains more than a quarter of a million patient
records and has a capacity for up to half a million patient records. There are other
files for nursing records, details of health centres, information, logging and many
more to a total of 41 separate files. In a typical day there are over 200,000 accesses
to these files of which over 40% are updates. This excludes program overlay activity
which adds a further 100,000 disc reads. To cope with this range of files and high

level of activity the project has developed a sophisticated file handling system.

70

ICL TECHNICAL JOURNAL MAY 1982

user sign-off

This system conforms to the requirements of Driver and all accesses are made
using standard (DAH3) disc input/output macros using the Direct Response feature,
which allows processing to continue while disc transfers are in progress. A common
structure has been developed for all files but the special requirements of logging
(separate recording of all file updates on a journal), and file locking (reserving a
file or part file for the duration of a transaction) have required particular attention
and these are dealt with later.

from peripheral monitor

b i

test FBI FBlI/
I -

FBI set clear level 1

__________ [—— FHR
SOCON K ,
exception l |
L t 1 r

Q

1

‘A |exception routine l_evel 3 level 2
— , —Te—— issue SD macro -] distributor
l_n_pljgf.s_s'_ file processing allocate UWA
yes :no process complete
|
set 1set \
ERI
FBI ! % }
level &4
de-allocate UWA eneral
clear FBI 9 ‘ra
routines
to peripheral monitor vy

— Il file handling routines, 41 files

— level |, valid request codes and address of
corresponding level 3 routine

— level 2, allocate UWA and enter correct level 3 routine

— level 3, disc input/output functions

— level 4, checks and common routines

Fig. 6 File handling schematic

The general processing flow through the file handling routines is shown in Fig. 6.
The program’s 41 Direct Access files are each assigned to a file handling routine.
In all, there is a maximum of 11 file handlers. Prior to entry to Driver, after exiting
from the bead, a subroutine is called which extracts the driver file number from the
TAB and substitutes its appropriate file handling routine number. In fact, one file
handler services up to 10 Direct Access files and the necessary queuing for these file
handlers is dealt with by Peripheral Monitor on a standard first-in-first-out basis.
These queues are controlled by use of the Free/Busy Indicator (FBI).

The following files have their own file handlers:-

(@) Update Log
(p) 1 handler for each Intermediate Update Log

ICL TECHNICAL JOURNAL MAY 1982 71

(¢) George Il Spooling File
(d) ! file handler to queue locking requests.

On entry to file handling from Periphéral Monitor the Free/Busy Indicator is tested.
If clear, processing passes via Level 1 to Level 2 where the Unit Work Area for the
specified file is allocated and control is passed to the appropriate Level 3 routine.

At this level a disc input/output instruction is issued after which the Exception
Routine is entered. If the exception indicates the transfer is still in progress the
Free/Busy Indicator is set and control passed to Peripheral Monitor Continuation
Routine. For all other exceptions the error reply indicator is set and linkage is set
up to proceed to Bead O so that a spooled report can be produced for this excep-
tion condition.

On subsequent entry to file handling from Peripheral Monitor with the Free/Busy
Indicator set the state of the disc transfer is tested; if incomplete, control is
returned to Peripheral Monitor, otherwise processing of the request continues.

On exit from the Level 3 routine the file’s Unit Work Area is deallocated and
the Free/Busy Indicator cleared and finally Peripheral Monitor Continuation
Routine is entered in order that Driver can pass control to the next bead.

5.2 Update logging

Every update to major files is separately recorded on a journal file referred to as the
Update Log. This contains details of every update, including the ‘before update:
state of the bucket being written and the ‘after update’ state of the same bucket.
Markers are also placed on the journal to indicate completion of transactions
(Thread End Marker (TEM)). Details of updates are held in a core buffer and this
is written to disc whenever it changes. The buffer may therefore be written several
times before it is filled. To prevent excessive queuing of these disc transfers all
intermediate states of the buffer are written to small (single bucket) buffer files
with only the contents of the full buffer being written to the journal itself. The
management of these intermediate files and of the use of the buffer presents
special problems and difficulties.

A schematic of the processing is shown in Fig. 7. The logging routine issues a read
macro to transfer the ‘before’ state of the bucket being logged direct from the disc
to the logging buffer. The ‘after’ state is obtained from the thread’s buffer (i.e.
MA, 10A or ACA) defined on the TAB request area.

File Handling for the intermediate files (IULs) is entered to record the ‘before’
and ‘after’ state. This IUL routine first checks that there is available space in the
buffer for the ‘before’ and ‘after’ states; if not, the Master Update Log File
Handling Routine (FHR) is entered to write away and then clear the buffer.

As file accesses are multi-threaded, processing is interrupted after issuing each disc
input/output instruction. Similarly, if processing cannot proceed on a particular

72 ICL TECHNICAL JOURNAL MAY 1982

path it can be ‘interrupted’ to continue on some other task. This is achieved in
FHRs by setting the appropriate Free/Busy Indicator and passing control to Peri-
pheral Monitor Continuation routine,

Within logging the interrupt point is determined by an indicator which is always set
before entering Peripheral Monitor.

If the buffer is already being written to the Master Update Log then no more can be
added to the buffer until that transfer is complete and the buffer cleared.

Whenever a read is initiated a count of reads is incremented. Owing to the physical
discontinuities in processing it is possible for the Master Update Log File Handling
to be entered while ‘before’ states are still being read into the buffer. Naturally the
logging buffer cannot be written until these reads are complete. After writing
Master Update Log the buffer is cleared.

_J

intermediate log

esora x|\ AN

earlier logged buckets (A)

B \
\ y
‘X' before state

/ ‘X' after state E
from 10A or other R\ \ N \\

memory locations

end \

later logged buckets
master log

—

update request for record ‘X’
— buffer partially full from earlier updates
— read before state to buffer
transter after state from I0A

— transfer whote of buffer (partiaily full) to 'intermediate’ log

mo O w >
|

— filled bufter written to ‘master’ log

Fig. 7 Update logging

5.3 File locking

As the Project’s system allows users to update files, and as requests from several
users can be processed in parallel, there is a need for a mechanism to prevent
updates of one user counteracting those of another should both be trying to change
the same data item (See Fig. 8). This is implemented by only allowing an update if
the message requesting the update has reserved the file, or part of file, being

ICL TECHNICAL JOURNAL MAY 1982 73

updated for its own use. Details of all locked areas are maintained in a common
area, the locking table.

All threads wishing to update data files enter the file locking routine with a request
to lock the required files or part files. The threads are able to specify whether the
locking request is to be queued if the file is already locked by another thread. At
the end of each thread a routine is entered to unlock the files locked by that
thread.

message A message B

reads record 'X'

m3— -

reads record ‘X’

writes record ‘X’

writes record ‘X’

both messages read the same version of the record
the update from message B remove the update
from message ‘A’

Fig. 8 The multiple update problem

The locking routine, having vetted the parameters giving the files to be locked and
having checked that no other thread has any locks on this file, sets up in the locking
table the file number and bucket ranges given by the parameters and exits back to
the calling routine.

To cope with queuing there is a file handling routine for locking which is entered
from Driver in the normal way via its file handling queue. This routine checks to
see if the thread which has the locks has unlocked the files yet and if so clears
the Free/Busy Indicator to tell Driver that the queued thread can now continue
and perform its locks.

The file locking system is shown schematically in Fig. 9.

74 ICL TECHNICAL JOURNAL MAY 1982

message A message B
locking table

record X (ocked for
message A

locks record ‘X’

locks record ‘X’
request queued
processing suspended
lock @ (FHR)
record X required
for message B

updates record ‘X’

request
actioned

|
|
|
1
l
|
I
|

. locking tables '
locking

ends table record X locked for
\ message B
cleared

processing of
message 'B’
continues

Fig. 9 File locking
6 Database Security

6.1 General

The database maintained by the computer is a vital source of information to many
areas of hospital and heaith centre activity. A large quantity of the data is not
readily available in any other form. For some data, particularly medical notes,
there is no paper copy of the input. In such circumstances it is a mandatory require-
ment that no data be lost because of system malfunction, either hardware or soft-
ware. Further, the service is offered on as close as possible to a 24 hour day basis
and any breaks should be kept to a minimum.

To achieve the required level of data security and system availability a number of
safeguards and recovery procedures are operated. All rely on the Update Log which
has already been described.

ICL TECHNICAL JOURNAL MAY 1982 75

All files are dumped daily. If a disc or file becomes unavailable during the day the
copy may be restored and brought to its current state by re-applying all updates
to it as recorded on the Update Log.

In the event of a system break rapid re-establishment of the service is possible. This
requires that all updates outstanding and incomplete at the time of the break are
removed. The stripback process accomplishes this. File restoring and Stripback are
described more fully in the following paragraphs and accompanying diagrams
(Fig. 10).

unanticipated

fault
files
//,
processor
. files
program
[
|
|
|
update
log
on reload
((
updates for end | updates for updates for
MSG 124 % | ms6 125 MSG 124

7 |),
updates for MSG 124 removed updates for MSG 125 removed

system restored to safe state with all partial updates removed
with all partial updates removed

Fig. 10 Stripback

76 ICL TECHNICAL JOURNAL MAY 1982

6.2 Restoring files thread

Before the start of the real-time day, the complete database is dumped to the copy
discs and if, for example, a head crash destroys the data on a disc, its copy is put
on-ine and the above thread, using the Update Log, restores the files of that disc.
This sub-thread is part of the restart path in the initialisation thread.

The ‘before’ state of the update on the log is compared with the corresponding
bucket from the file. If they match (i.e. we have the correct dump on-line) the
‘after’ state from the log is written to the file. Then the count of updates for this
file is decremented and the process continues until that file is completely restored
(i.e. count of updates for this file = zero). This process is repeated for all the files
affected by the break.

6.3 Stripback

Stripback is entered in the restart path of the real-time system. During its process-
ing it can determine which threads if any were incomplete at the time of the break.
Such threads may have been updating files at the time the system went down,
leading to inconsistencies in the data. Therefore these files have to be returned to
an unupdated state.

The bucket of the file being updated is recorded on the Update Log in both its
‘before’ and its ‘after’ state. Both buckets on the log are preceded by a bucket
descriptor giving details relevant to the update, e.g. file and bucket numbers, mes-
sage number, update type etc. Certain of these fields are used by Stripback to
ensure that the correct buckets are being accessed.

At the end of the updating thread a Thread End Marker (TEM) is written to the
log, to signify that all updating requests have finished. Stripback reads back through
the log from the last bucket written, comparing and unupdating until a TEM is
encountered.,

Buckets that have been accessed by Stripback on the log will have a marker set
within the six word Envelope Descriptor which precedes the bucket descriptor on
each logged bucket. Records within the Update Log bucket that have been used in
stripping back will have their record type changed. This is to ensure that the log
remains compatible with overnight batch programs which use the Update Log.

7 System functions

7.1 General

A number of enhancements have been added to the Driver system to increase its
utility, to give greater control over it, and to provide analysis of activity. The
functions provided are:-
(i) Long duration tasks
A system that allows housekeeping tasks (e.g. file integrity checking, and

ICL TECHNICAL JOURNAL MAY 1982 77

timing-out interactive terminals) to proceed under the control of Driver
but without interfering with message processing activity.

(i) Add/Delete TABs
Allows TABs (and their associated areas) to be added to or deleted from
the program. The number of TABs in the system limits the number of
messages that can be processed in parallel. The maximum number of
TAB:s in the project’s program is six.

(iii) Operator threads
Provide an interface to the operators who may set closedown time, broad-
cast messages to all terminals and exercise other controls on the system.

(iv) System measurement
Details of each bead, message, and file access are kept on a magnetic tape
file — the System Measurement file.

(v) Testing aids
This system allows a user to view memory contents. With restricted pass-
words and in test programs memory contents can be altered.

Each of these systems is described in greater detail in the following paragraphs.

7.2 Long-duration tasks (LDTs)

Long duration tasks are threads which are not attached to a physical terminal and
run in the background whenever activity is low enough on terminal-based threads.
At the end of each terminal-based thread a decision is taken at first to see if the
message rate is low enough to run LDTs and secondly which LDT requires running.
It is necessary that the program is never suspended; if it were, the LDT activity
would be dependent on terminal messages. To prevent suspension the LDT soft-
ware issues a disc read (to the ACA file) whenever there is no other activity taking
place. The LDT software keeps a control area consisting of chained records (one
per LDT) with details about each task (start time, interval between runs, thread
identifier etc.).

The task records are initially set up on file by a batch program; this file is read in
during initialisation by the real-time program and kept in core throughout, being
written away every time the records are amended. Should the program crash on
reload the records will be in the state at which they were last used. This is shown
diagrammatically at Fig. 11.

7.3 Addition and deletion of tabs

In order to make best use of core and of the multithreading aspect of the real-
time program there is a facility to add and delete TABs using #ELASTIC. This
means that at peak times the program can have many TABs and at other times
can go on with a few TABs on the real time program, releasing core for develop-
ment and other batch purposes.

Both addition and deletion are initiated from an operator thread. Addition of a
TAB is simple in that it is sufficient to perform a GIVE instruction and, having

78 ICL TECHNICAL JOURNAL MAY 1982

obtained the memory required, set up the necessary words to make it acceptable
as a TAB with Message Area, Input-Output Area and Additional Core Area.
Deletion is slightly more complicated because only the TAB in the highest memory
locations can be removed. The operator thread to delete TAB does itself require a
TAB. If this is the highest TAB it is deleted, but otherwise the thread is passed

between TABs until the required one is obtained and which can then be deleted.

To implement this system an additional monitor routine has been written to
control memory management. Requests to allocate or de-allocate TABs are set up

as requests to this monitor.

normal
thread end

OK to use this

something for

conditions

thread?

this threadto

thread to
perform
required
function

Fig. 11 Long-duration tasks

7.4 Operator threads

system stats

message rate

number of
tfree TABS

task table

details of

tasks needing
to be carried
out and when

eg.
file checking
timing -out
terminals
removing

old data

These threads enable an operator to communicate with and control the system,
using a VDU, The available functions are:-

set or unset system closing time,
set or unset a broadcast message,

ICL TECHNICAL JOURNAL MAY 1982

79

display/amend details of Long Duration Tasks,
add/delete a TAB

‘wrong‘ or ‘right’ a terminal

make the surname index file available.

7.5 System measurement

Each bead in the system is entered and left via system measurement routines.
These record items such as the bead number, the request code, the file number
if a file is being accessed and various other items relating to the system
performance. The data is written to a FIND-2 compatible tape file. The file is
double buffered and all output is managed from the System Management routines
independently of other file handling — file requests are not channelled through
Peripheral Monitor.

7.6 Testing aids

The purpose of the testing aids is to allow users access to information in core and to
display or alter such information. They are roughly divided into two types: those
used mainly to obtain information concerning the real time program, and those
used in the development and testing of new systems. However ail functions can be
used for testing both live and development programs.

The main functions are as follows:-

TAB — display the contents of the TAB
DISPLAY — display the contents of a section of memory
FREE — release a VDU that has become inoperable
WRONG/RIGHT — make terminals available/unavailable to the system
MESSAGE — transfer a message from one VDU to another
RSPNS — performance checks, timed processing and 1/O sequences
ALTER — change contents of a memory location (restricted to few
passwords)

TEST AIDS — invokes various testing procedures, including a trace
SEARCH — search memory for specified content

8 Review

The foregoing paragraphs have described the real-time system implemented by the
Exeter Project and show the complexity that is inherent in a multi-user,
multifunction system of this kind. A successful implementation of an undertaking
of this magnitude requires a disciplined and orderly approach. The Driver structure
lends itself well to a structured design with individual processes being clearly
defined and capable of separate development and implementation. The effort
required has involved a large team of programmers and analysts and their individual
contributions could only be amalgamated into a coherent whole by building on a
well defined framework, which Driver provided. Even so it has been necessary to
provide a number of functions beyond those provided and as described in these
pages they have all been successfully implemented.

The biggest lesson learnt from the experiment is the undoubted need for terminal
interactive computer facilities in the field of medical data collection and retrieval.

80 ICL TECHNICAL JOURNAL MAY 1982

The need to access the data from multiple places within the District and the need
to have up-to-date and accurate information at all times also means that systems
must be extremely reliable and operate throughout the 24 hour day, seven days a
week. It is encouraging to note that all the current developments in patient care
computing, although in the main not going for the fully integrated nature of the
Exeter Project, are certainly following the interactive philosophy pioneered in
Exeter.

Other papers on various aspects of the Exeter Project are listed in the Bibliography
and re-prints of any of these may be obtained from the Project.

Acknowledgments

All members of the Exeter Project have contributed to making it a success. Thanks
must go to many of them for providing much of the basic material on which this
paper is based and to the Exeter District users of the system who have remained

loyal to us from the outset and who have proved the system in day to day
operation since 1974.

References

1 Computer Users’ Ethical Sub-Committee of the Exeter C.H.S. Computer Project, Submis-
sion to the DATA PROTECTION COMMITTEE, October 1976.
2 CLARKE, DJ., FISHER, R.H. and LING, G.: ‘Computer-held patient records: the Exeter
Project’, Information Privacy, 1979, 1 (4).
3 CLARKE, D.J.: ‘A patient database for the NHS’, Computer Bulletin, 1978.
4 ROUSE, J.D.: ‘Hospital computer registration system with community links’, Medical
Record, 1978, 19 (1). '
5 HEAD, A.E.: ‘Maintaining the nursing record with the aid of a computer’, Conference
Proceedings of MEDCOMP 77, pp. 469-483.
6 HEAD, A.E.: ‘Nursing systems implications for management and research’, November
1977 (Not published).
7 BRADSHAW-SMITH, Dr. J.H.: ‘General practice record keeping using a real-time
computer’, Conference Proceedings of MEDCOMP 77, pp. 303-314.
8 GRUMMITT, A.: Real-time record management in general practice, Int. J. Bio-Medical
Computing, 19717, (8).
9 Department of Pharmacy, Royal Devon & Exeter Hospital (Wonford), Drug Information
System in conjunction with Exeter C.H.S. Computer Project (not published).
10 KUMPEL, Z.: Referral letters -— the enclosure of the general practitioner’s computerized
record, J. Royal College of General Practitioners, March 1978, 28, pp. 163-167.
11 SPARROW, J., FISHER, R.H.: ‘Using computers in the NHS — the long term view.,
March 1976 (Not published).
12 Exeter C.H.S.: Computer project and International Computers Ltd., A Summary of the
Exeter Community Health Services Computer Project, 1975, (Not published).
13 LOSHAK, D.: ‘Real time for a change of record’, World Medicine, 1979, 14, pp. 21-29.
14 ELLIOTT, M.K. and FISHER, R.H.: ‘Management audit — the Fxeter method’, Nursing
Times, 1979, 75 (22), pp. 89-92.
15 FISHER, R.H.: ‘An overall framework for primary care computing’, Conference Proceed-
ings, GP-INFO-80.
16 SPARROW, J.: Approximate costs of Primary Care Systems, June 1980. (Not published).
17 SPARROW, J. and KUMPEL, Z.: ‘The costs involved in running fully computerized
primary care systems for a district’, Medical Informatics 1980, 5 (3), pp. 181-192.
18 HEAD, A.E. and SAMPSON, N.: ’Learner allocation and statistics system, 9 February
1981. (Not published).

ICL TECHNICAL JOURNAL MAY 1982 81

Associative data
management system

L.E. Crockford

ICL Office Systems Research Unit, Stevenage, Hertfordshire, UK

Abstract

The needs of database users and their expectations of data management
systems are outlined and an associative data management system (ADMS),
designed to meet those needs, is introduced. The basic features of ADMS,
its use of a content-addressable file store, its flexible message interpreter
and its simple model of data are described.

1 Databases — their users and custodians

A database comprises data or facts that have been collected to model some
real-world system or organisation. The data are concerned with identifying and
qualifying the objects or concepts that have a role in the system and with the
relationships that exist between the objects. To be useful as a model the data must
represent the true state of the system that is being modelled and, unless the system
is static, the database must be either continuously or periodically brought up to
date with insertions, deletions and changes.

Those individuals who have collected the facts and those whose duty it is to main-
tain the database by up-dating have a claim to ownership of the data. Other people
are permitted by the owners to examine and make use of the data. It is a convenient
generalisation to refer to all these collectively as the ‘users’.

Another group owns, or has responsibility for, those devices that store and allow
retrieval of the data and thus has custody of the database. Until comparatively
recently the custodian group, recognisable as the data-processing department, and
user group have been distinct and with sometimes conflicting interests. With the
trend to localised use of smaller computers the distinction is often blurred or non-
existent as users take custody of their own data.

The database may be used by its owners and others to satisfy simple enquiries
about the real-world objects. Another objective may be to enable the users to
predict the future behaviour of the system and hence to exercise some control over
it. The predictions are made by the processes of induction and deduction from
retrieved subsets of the data or from aggregations of some data items. This objective

82 ICL TECHNICAL JOURNAL MAY 1982

is served by what is commonly called a management information system. The data
collection, updating, enquiry and management information functions are embodied
in one or more data management programs provided by the custodians or by a
software vendor.

The users have a right to expect that the means provided to access their data are
easy to employ and give a ‘while-you-wait’ service in most circumstances. They
expect also some protection against misuses and abuses of their data.

The interests of the custodians are best served by keeping the number of different
data management programs to a minimum and by ensuring that those that are
supplied to a group of users continue to be useful if and when those users require a
change in database form.

2 User expectation

2.1 Users want a simple view of their data

Above all else users desire and need a simple view of their data; a view that is
similar to that given by a familiar existing, or replaced, non-computer system. They
do not want to be burdened with details of how their data have been mapped into
record and file structures or how the files may be linked together if necessary.

A user requesting the selection and retrieval of some of his data should not have to
supply such details to the data management program which should, in most circum-
stances, obtain them by inference. Exceptionally a user’s request could be executed
in more than one way, giving different results. It is desirable that the user can
resolve ambiguities of this kind by supplying with his request, or subsequently, a
small amount of additional and meaningful information.

2.2 Users want to express their needs simply

Broadly there are two kinds of user. On the one hand is the user who spends a
high proportion of his time at an interactive terminal — updating and accessing
data on a regular repetitive basis. At the other extreme is the irregular, infrequent
user.

The regular user is likely to be skilled in operating the terminal and to have a good
working knowledge of the database — its content and structure. Such users want to
be able to state their known needs with the minimum amount of typing effort. To
satisfy these users the data management program should support an enquiry-update
language with such facilities as form-illing and macro substitution and with useful
default actions.

In contrast, the infrequent user is probably unfamiliar with both the database and
the terminal that he must operate to gain access to the data. At the same time his
needs are likely to be more complex and hence more difficult to express. For his

ICL TECHNICAL JOURNAL MAY 1982 83

satisfaction the enquiry language should be rich in facilities and flexible enough
to allow expression that comes close to natural language. The program should
provide helpful information on request or when the user has made a mistake,
should allow the user to examine the structure of the data and should offer a menu
choice of alternatives in ambiguous situations.

2.3 Users expect a fast response

Response time is the interval between the sending, from a terminal, of a request to
a data management program and that program responding, to the terminal, with
some useful information.

In general it is difficult for a user to switch his attention to some other business
during the interval which thus represents, to him, lost or unproductive time. Res-
ponse times are obviously important to the regular user as they directly affect his
productivity. The infrequent user whose requirements are often vaguely defined
initially may need to issue many requests of an exploratory nature before obtain-
ing something useful. Clearly it is equally important that this user gets fast
responses. Response time is the sum of five components; message handling delays,
translation and interpretation of request, queueing to access the data, data access
and selection and, finally, formatting the response.

Potentially the largest component is that of data access and selection and the
data management program will employ indexing techniques to reduce the number
of accesses required. Secondary index files have an additional value, particularly
to the infrequent user who may wish to ‘browse’ through them and, since the
files have been produced from his data and at his expense, they should be
considered as part of the data base.

The data management program should have the ability to recognise requests that
will take a long time to service. Such requests should be placed in a separate back-
ground queue having first responded to the user with an estimate of the expected
delay. He then has the options of aborting that task or allowing it to continue while
he proceeds with other matters.

2.4 Users expect protection against misuse

A database is open to misuse in two ways; data may be accessed and information
obtained by unauthorised persons and data may be lost or rendered unusable
during updating.

Programs that give access to databases via remote terminals should use a combi-
nation of personal identity checking techniques to prevent the invasion of privacy
by completely unauthorised persons. The data privacy situation may be compli-
cated by the requirement that some persons are authorised to access some but not
all of the data. In these circumstances, the program must have the ability to
identify a user and present him with a view of the database that omits the data he
is not permitted to access.

84 ICL TECHNICAL JOURNAL MAY 1982

When a database is being updated, the program must give protection against
mechanical or electronic failures by journalising the update transactions and using
appropriate error recovery routines.

The program should also protect the database from accidental misuse by its owners
or deliberate abuse from others. An obvious safeguard is to permit updating by a
few skilled authorised persons only. Each request to erase data should then be
vetted to ensure that the removal of the data will not make the database incon-
sistent. Similarly, the contents of new or changed records should be validated to
ensure against duplications and logical conflicts. Questions of privacy and security
are disa:ssed in more detail in the paper by Parker in this issue of the ICL Technical
Journal.

3 General purpose data management

From the point of view of those who supply and maintain programs for the
management of data, it is desirable that the number of different programs is small.
Ideally there could be a single, general-purpose, program for database updating and
retrieval with the backing of a few utility programs for file loading, copying and re-
organising and for the creation of index files.

To reach this ideal the general-purpose program must offer a wide range of facilities
to the users and must be totally independent of the data to be managed. A high
degree of isolation can be achieved by referring to data only via the intermediation
of data description tables. Full data independence is obtained by using tables which
give not only the physical storage details but describe also the relationships between
items of data. Collectively these tables are called a data model — since they contain
data about data.

The data model should have sufficient generality to encompass the whole range of
database structures and yet be able to offer to the users simple views of their data.

4 Associative data management system

The remainder of this paper is taken up with a description of some of the more
important or interesting features of an Associative Data Management System —
ADMS.

ADMS has the status of an on-going research project which commenced at
Stevenage in 1977. The early aim of the project was simply to demonstrate the
effectiveness of the Content Addressable File Store* — CAFS — as a component
in data management systems. As the work progressed, it became evident that the
data-modelling and language interpreting techniques that were being developed
were equally as important to the demonstration as CAFS itself. Their joint
contributions have made it possible to construct a general-purpose enquiry and
update program that goes a long way towards satisfying all the expectations of
database users.

ICL TECHNICAL JOURNAL MAY 1982 85

The CAFS machine uses purpose-built hardware to achieve high-speed, autono-
mous and paralle]l searching through data files. This power, used in conjunction
with coarse primary and secondary indexes to files, gives the program the ability
to respond quickly to a user’s request. The useful contents of secondary index
files are made available to user’s inspection by including them in the data model.

The hardware File Correlation Unit, described in Reference 3 but available only
in enhanced versions of CAFS, is used to facilitate the linking of files in an associ-
ative manner, i.e. via common data elements. It will be seen later that this allows
users to be completely ignorant of any record and file structuring within their
database.

The data model, which will be described later, is basically simple but gives total
data independence and supports a number of useful features such as privacy
restrictions, update vetting and database navigation by inference.

The user language for ADMS is called AQL — from Associative Query Language.
This is partly and provisionally specified in Refernce 4. Of interest here are the
structures and algorithms used to interpret messages in AQL.

5 AQL message interpreter

The interpreter for messages in AQL has three basic parts shown schematically in
Fig. 1.

The first part divides the incoming message into word units. These are words, as
normally understood by the term, or individual non-alphabetic symbols. This task is
complicated by the use of macros, i.e. any word that is encountered may have been
defined as substituting for a stored sub-message. This necessitates the use of a push-
down stack containing pointers into the incoming message and sub-message strings.
Whenever a macro requires a parameter this is obtained by a temporary reversion to
the original message.

In the second part of the interpreter a classification for the current word is sought.

Any word that was enclosed in quotation marks is 2 literal value, class 0. Apart
from these, and the special case of end-of-message, class 1, the class of a word is
sought by looking up the dictionary part of the data model and then, if necessary, a
vocabulary table. If the word can be found in the dictionary it is the name of a
data element and is in class 2. The vocabulary table contains both class and a sub-
classification of all words that are entered in it — see Fig. 2 for an example. A word
that cannot be classified is normally regarded as an error although individual users
may opt for these words to be classed as literal values, thus avoiding the need for
quotation marks.

For efficient and fast classification both dictionary and vocabulary tables are
structured as balanced search trees.

86 ICL TECHNICAL JOURNAL MAY 1982

Luser message

message

stack

data-model

state

pointer /

get next word

\g_ macro table

word

vocabulary /

word
classifier

class

new state

class/state
matrix

select

procedure

interpretive
procedure

next word

Fig. 1 Message interpretation — schematic

ICL TECHNICAL JOURNAL MAY 1982

87

Class Sub-class WORD OR SYMBOL AND SYNONYMS

FOR SUCH WHEN WHENEVER WHERE WITH
COUNT

DISPLAY FETCH GET RETRIEVE
LIST

HOLD

LOCK

TOTAL

GREATEST LATEST MAXIMUM
EARLIEST SMALLEST MINIMUM
PRINTER

= EQUAL EQUALS IS WAS

< BEFORE EARLIER FEWER LESS SMALLER
> AFTER BIGGER GREATER LATER MORE
UNEQUAL

(AT) LEAST

(AT) MOST

EXIST EXISTS PRESENT
ABSENT

— (RANGE OF VALUES)
NEITHER NOR NOT

AND BUT

.OR

{

) _

AT DOES EITHER FROMPLEASE THAN THATTO. ..
ANY SCORE

BAR

WEIGHT

ALL

[

]

OF VIA

FIRST

LAST

NEXT

PREVIOUS

#

SET

DAY DAYS

MONTH MONTHS

YEAR YEARS

~

10

1
12

13

14
15

16

N=0QOI0OWN—-OO—=00ON=00=0ON=00~NOOUPWN=00NOOTPLWN-=00

Fig. 2 Word classification table

88 ICL TECHNICAL JOURNAL MAY 1982

The final part of the interpreter uses word-class/state matrices, an example of which
is presented in Fig. 3. The matrix is entered for each word, using the class of that
word and the current state of the interpreter. The cell that is addressed contains
two numbers; the first is used to select one from a set of interpretative procedures
— see Fig. 4 — and the second gives the next state to be adopted.

STATE:
0 1 2 3 4

P S P S P S P S P S

o 1 0 7 1 9 2 12 1 18 1

1 8 0 8 0 8 0 8 0 0 O

2 3 1 3 1 10 2 3 1 0 o0

3 2 1 2 1 2 1 2 1 0o o0

4 14 2 14 2 14 2 14 2 0 o0

5 4 1 4 1 0 0 4 1 0 0

6 5 1 5 1 2 2 5 1 0 o0

7 6 1 6 1 11 2 6 1 0 0

\gl?:S%: 8 2 0 2 1 2 2 2 1 o0 o
9 2 3 2 3 0 0 2 3 0 0

19 2 0 2 1 13 2 2 1 0 o0

M 0 0 1 1 11 2 15 1 0 0

12 16 1 16 1 16 2 16 1 0 0

13 17 1 17 1 0 0 17 1 0 o0

4 0 0 2 4 0 0 0 0 0 0

5 0 0 1 1 0 0 0 0 0 o

% ©0 0 20 1 0 0 0 0 0 0

P =PROCEDURE
S = NEXT STATE

Fig. 3 Example of class/state matrix

Example: The receipt of the word LIST in class 4 when the interpreter is in state 0
(its initial state) will invoke the procedure to initialise the formation of a retrieval
program and send the interpreter into retriever context — state 2.

Obviously a matrix, as initially set up, can be used to allow context dependent
meanings to be attached to words, giving a degree of flexibility to the language. For
example, the words AND and OR when encountered in selection context are taken
as logical operators but they are ignored in retrieval context. Thus in the message:

DISPLAY NAME AND ADDRESS WHERE JOB IS CLERK AND AGE
MORE THAN 65

the first occurrence of AND is ignored.
Much more flexibility can be obtained by allowing the interpreter procedures to
cause an ‘escape’ to the use of a different matrix or to modify the entries in the

matrix in use. So far the potential of the latter has not been explored.

1CL TECHNICAL JOURNAL MAY 1982 89

°

PROCEDURE

ERROR REPORTING

ESCAPE

NULL

DATA ELEMENT IN PREDICATE
RELATIONSHIP

OPERATOR

PARENTHESES IN PREDICATE
SEARCH VALUE

END OF ENQUIRY MESSAGE
RETRIEVAL FORMAT

10 DATA ELEMENT IN RETRIEVER
1 PARENTHESES IN RETRIEVER
12 WEIGHT OR THRESHOLD

13 UNLIMITED RETRIEVAL

14 RETRIEVER START

15 VALUE SET

16 ‘VIA’ STEERING

17 SET CURRENCY

18 SET SUBSCRIPT

19 SET UNION

20 DATE STEP QUALIFIER

OCONOOONPWN=0O

Fig. 4 Interpretative procedures

6 Data model for ADMS

The ADMS data model obtains generality while retaining simplicity by using ele-
mentary concepts from set, relation and graph theories.

The database is modelled as a directed graph in which all the sets of data elements
appear as nodes and the directed connections or arcs show the recorded relations-
ships between these sets. A directed graph may be represented pictorially for
human assimilation, as in the illustrations to this paper, or alternatively in tabular
form by listing the end nodes on each of the arcs. The latter form is used to both
define and store the graph.

Supplementary labelling information attached to the nodes serves a number of
purposes. The labels are used to divide the graph into a number of cliques, each
corresponding to a stored set of records, and to give a storage description to each
data element within a record set. A further use of labels is to indicate access
restrictions on some elements.

Additional information, called weights, on the arcs of the graph may be present to
qualify the relation type. The relation may be a correspondence (1:1) or a function
(n:1). In the latter case the weight gives lower and upper limits to the value of n.
Correspondences and functions normally exist between the sets of attributes of a

90 ICL TECHNICAL JOURNAL MAY 1982

real-world entity and its naming or identifying set. Relations between entities are
usually of the many-to-many kind (m: n). These relations cannot be represented in
the ADMS model but there is, fortunately, a simple transform that changes such
relations to two functions, m:1 and n:1.

As an example of this transform, consider a database concerned with sales. Two of
the entities are SALESMAN and CUSTOMER and two distinct relations between
them are recorded. The first is of the form ‘salesman is assigned to customer’ and
the second ‘salesman has obtained order from customer’ — see Fig. 5. Both of the

assigned

obtained order from

Fig. 5 Transform for many-to-many relations

part - no
3

pant - no

uses used-on

Fig. 6 Transform for a relation on a set

ICL TECHNICAL JOURNAL MAY 1982 N

relations are of the many-to-many kind. The first is transformed by the introduction
of a compound entity set SALESMANxCUSTOMER (ASSIGNMENT), or more
simply ASSIGNED, each of whose members is an instance of the relation, i.e. the
solution set for the relation. A similar treatment of the second relation yields the
compound entity set SALESMAN«CUSTOMER (ORDER) but since each instance
is documented on a numbered order-form this set may be replaced by an ORDER-
NUMBER set.

Two other transforms may be required before the graph model is usable.

The first of these is needed in the situation where there is a relation between an
entity set and itself. For example, in a manufacturing database the raw materials,
bought-in parts and assemblies are each given a part number and there is a bill-

of-materials relation on the PART-NO set as in Fig. 6. The resulting double con-
nection represents an ambiguity which is resolved by inserting a dummy entity

set, SUPERIOR-PART and INFERIOR-PART in each arc.

For the implicit navigation algorithm to work successfully, the graph model should
have the property that any two or more nodes have at least one common meeting
point or upper bound. The graph modelling a job-matching database, shown in
Fig. 7, does not have this property - for example, LOCATION and NAME do not
have an upper bound in common — until it is transformed by the introduction of
the dummy set called SAME-SKILL.

—~
/same\

el

location address

Fig. 7 Transform to provide an upper bound

7 Inferential navigation using the graph model

The graph model allows users to be completely ignorant of the way that their
data have been stored; they nead only to know the names of the elements of data
and to have a broad sense of how they are related.

92 ICL TECHNICAL JOURNAL MAY 1982

To illustrate this, a small section of a typical database containing personnel records
is modelled in Fig. 8. In this database the static details of staff such as name, sex
and date of joining are recorded in one set, while a history of changes to salary is
maintained in a set of records containing increase amount, new salary and start and
end dates. Similarly, there is a set of records maintaining a history of changes to
job title, Users of the database are required to learn the names of data elements that
are of interest to them and to be aware that JOB and SALARY are time-dependent.

salary-history

—

*A—some—person
/\

/ increase // ™~ ~ @
e ~
(¥

?/\

j o*b

job-history
g @

\person-detoils/

Fig. 8 Simplified model for personnel database

Suppose that a user wishes to discover what was the total salary bill for the company
on 1st April, 1981. His requirement would be expressed in AQL as:-

GET TOTAL SALARY AT 01/04/81
The message interpreter would expand this to

GET TOTAL SALARY WHERE SALARY-START IS NOT AFTER 01/04/81
AND SALARY-END IS ABSENT OR NOT BEFORE 01/04/81

by using the macro definition for AT.

Three nodes on the graph have been named; SALARY, SALARY-START and
SALARY-END. The navigation algorithm finds that these have a common upper

ICL TECHNICAL JOURNAL MAY 1982 93

bound at SALARY+PERSON. Since this node and all those named are present in
the clique that forms the SALARY-HISTORY set, it is inferred that a search
through this set is necessary and sufficient.

Another user has a more complicated need; to find the current range of salaries for
female programmers. In AQL this is:

GET LARGEST AND SMALLEST SALARY NOW WHERE SEX IS F AND
JOB NOW IS PROGRAMMER

The word NOW, like AT in the previous example, is a globally defined time-depend-
ent macro and expands to SALARY-END ABSENT at its first occurrence and to
JOB-END ABSENT at its second. The set of named nodes contains SALARY,
SALARY-END, SEX, JOB and JOB-END with a common meet point at the dummy
node SAME-PERSON. Since a search on a single record set is obviously not suf-
ficient, an optimum path through the graph is sought that will visit ail the named
nodes and terminate at the meeting point. The path is then translated into a chain
of searching tasks.

In this example, the first task in the chain is to search the JOB-HISTORY set,
identifying the persons currently titled programmer and entering their PERSON
identifier into the File Correlation Unit (FCU) of the CAFS machine. Next task is
to search the PERSON-DETAILS set looking for records where SEX contains F
and where the PERSON number appears in the FCU. The PERSON numbers from
records satisfying these criteria are re-entered into the FCU. Finally, the SALARY-
HISTORY set is searched and records identified where the PERSON number is in
the FCU and the SALARY-END date is missing. From these records the CAFS
picks out the maximum and minimum values of SALARY which are then displayed
to the user.

There are two situations where a user’s request may be ambiguous and he is asked
for supplementary information.

Hlustrative of the first situation is the AQL request:
LIST ALL CUSTOMER AND NAME FOR DEPT XYZ

in the context of the model in Fig. 5. What is requested is either a list of customers
assigned to salesmen in department XYZ or a list of customers who have placed
orders with those salesmen. The ambiguity is discovered by the navigation al-
gorithm when it finds the alternative meeting points at ORDER-NUMBER and
ASSIGNED. To resolve the ambiguity the user is invited to select, and include in
his request, one of the phrases VIA ORDER-NUMBER or VIA ASSIGNED.

The graph of Fig. 6 contains a source of ambiguities in the choice of path offered
between PART-NO (and its inferiors) and the uppermost node. Users are asked to
remove the choice by using a VIA or OF phrase as in:

GET USED-QTY WHERE DESCRIP OF INFERIOR-PART IS WIDGET

94 ICL TECHNICAL JOURNAL MAY 1982

8 Integrity of updates

The graph model may be used to shield off some of the effects of human misuse
during updating processes.

Updating is at the record-set level and associated with each set that may be up-
dated is a data element containing unique record numbers. Access to this element is
an essential part of any updating transaction and if, therefore, it is indicated in the
graph that groups of users are denied such access then users in those groups cannot
carry out any of the update functions on the record set concerned.

Fig. 9 shows the skeleton outline of a model for an orders database with three sets
of records — ORDERS, CUSTOMERS AND PRODUCTS. Weights on the arcs of
graph give the lower limit for n in each of the n:1 relations. These weights show,
for instance, that while there must be at least one product for any description, a
product can exist even if there are no orders for it.

orders

customers products

URN=unique record number

Fig. 9 Skeleton of orders database model

Permitted users can freely insert into the lower sets, i.e. new customer and product
records — the system checking for the uniqueness of customer or product number.
The insertion of an order, however, will not be allowed if a search of the inferior
sets reveals that the order is for a non-existing product or placed by a customer
whose details are not recorded.

Conversely, the model indicates that orders may be freely deleted by authorised
users but no customer or product record may be removed if a search shows that
there are one or more related orders.

ICL TECHNICAL JOURNAL MAY 1982 95

9 Conclusions and acknowledgments

A general purpose enquiry program, ADAM, based on that used to demonstrate
CAFS and associative data management has been made available to a number of
different groups of users® who have accepted it with enthusiasm. This is regarded
as vindication of the claims for ADMS made earlier. Meanwhile, the research con-
tinues with emphasis on the needs and expectations of that large group of users
whose data are loosely structured in the form of documents, letters and memoranda.

The author is indebted to the Department of Industry for their funding support of
ADMS as an Advanced Computer Technology Project, and to colleagues in the
Research Unit and Marketing for their advice, criticism and collaboration.

References

1 PARKER, T.: ‘Security in a large general-purpose operating system: ICL’s approach in
VME 2900°, ICL Tech. J., 1982, 3 (1), pp.

2 MALLER, V.AJ.: ‘The Content Addressable File Store, CAFS’, ICL Tech. J., 1979, 1
(3), pp- 265-279.

3 BABB, E.: ‘Implementing a relational database by means of specialised hardware’, ACM
TODS, 1979, 4(1).

4 CROCKFORD, L.E.: ‘AQL - a provisional specification. ICL Office Systems Research
Unit’, Internal document, November 1981.

5 CARMICHAEL, J.W.S.: ‘Personnel on CAFS’: ‘a case study’, ICL Tech. J., 1981, 2(3),
pp.244-252.

96 ICL TECHNICAL JOURNAL MAY 1982

Evaluating manufacturing
testing strategies

M.Small and D.Murray

ICL Mainframe Systems Development Division, West Gorton, Manchester, UK

Abstract

The paper describes a model which has been developed and used in ICL to
evaluate the relative performance, in terms of both cost and quality, of
alternative strategies for testing in manufacturing. The model is based on
an application of basic probability theory to the incidence and repair of
faults, the quality of any item with respect to any fault or class of faults
being measured by the probability that it is free of that fault or class of
faults. The flow process creating a product from components to sub-
assemblies to assemblies to final product is studied, also the effects on final
quality of the initial qualities of the components, the increasing number
involved as the assembly proceeds and the probability of damage by any of
the processes including repair of a detected fault. Loading on the test and
repair facilities is studied, also total and unit costs. The model has been
programmed and run on an ICL 2900 machine.

1 Introduction

This paper arises from the requirement to design manufacturing systems which can
achieve a desired level of quality in a product within an acceptable cost. This leads
to a need to understand the relationships between the quality of the constituent
parts of the product, the processes which produce them and the testing which is
applied at various stages. The need to give consideration to these matters is brought
about by the rapid increase in complexity of computer systems of a given value,
owing to the exploitation of techniques such as the very large-scale integration of
electronic circuits, and the potential for more faults which this leads to.

The manufacture of computer systems poses severe testing requirements. Most of
the electronic circuits which make up a computer system are manufactured on
small slices of silicon known as integrated circuits. This method of making circuits
gives rise to significant reductions in power consumption, size and above all cost.
However the basic manufacturing processes for these integrated circuits yield few
good components. For some circuits a yield of 10% correct devices from the silicon
processing stages is normal. On the other hand to achieve a quality level of 99% for
a system containing 5000 integrated circuits requires that only about 2 in a million
integrated circuits may be faulty at that level. This increase in quality can only be
brought about by testing. It must also be achieved in spite of the damage caused by
the intervening processes. Therefore the testing strategies adopted are a major
aspect of the manufacturing system and hence have an important influence on
manufacturing costs.

ICL TECHNICAL JOURNAL MAY 1982 97

This paper describes a mathematical model which relates the quality of the product
output to the parameters of the processes and testing involved in its manufacture.
The model further covers the relationships between quality and the flow rates
required at the various stages to sustain the required output of systems. From the
flow rates an assessment of the testing capacity required can be made and hence
overall testing costs determined. Finally a computer system which incorporates
these models is described. The models themselves have been validated in part by
observations of existing systems in ICL. The modelling system has been used,
within ICL, to evaluate testing strategy proposals and, although the results have
met with acceptance amongst other experts, the systems modelled have yet to be
fully implemented.

2 Typical products and processes

The major constituent building blocks of ICL products are multilayer printed
circuit boards carrying integrated circuits. The printed circuit boards are sandwiches,
bonded from mixtures of signal-carrying layers and power-carrying layers, suitably
isolated by insulating layers. Interconnections, from one side of a layer to the
other, or from one layer to another, are achieved by conventional through-hole
plating techniques. Continuity and isolation tests are performed on the layers
before bonding takes place, and upon the muitilayer board after bonding. Use is
made of test jigs comprising many thousands of test probes, known as ‘beds of
nails’, connected to test computers using test data derived from design files con-
tained in computer databases.

Integrated circuits, which have been tested by their manufacturer, are retested using
commercial Automatic Test Equipment (ATE), and those which pass this test are
assembled onto the multilayer boards. The interconnections are then retested again
using the bed-of-nails technique to access the connecting pins to the integrated
circuits or other components and the edge fingers of the board, prior to applying
power to the board and carrying out a functional test.

These boards are then assembled with other components such as cables and con-
nectors and tested as units. The units are then assembled into products and tested.
Finally the products comprising a computer system are brought together and the
system as a whole tested.

2.1 Attributes of printed circuit boards

It is pertinent to list some of the many attributes of a printed circuit board which
require to be correct for high quality to be obtained:

Printed circuit tracks are continuous and no short circuits exist.

Track widths are to specification and tracks are not resistive.

Insulation thickness is correct.

Decoupling capacitors are correctly mounted and soldered.

Integrated circuits are correctly mounted and soldered.

All integrated circuits function to specification and with safety margins (voltage,
temperature, timing).

Physical dimensions are correct so that edge pins locate in sockets.

This list is not exhaustive, but serves to illustrate that a wide range of different

98 {CL TECHNICAL JOURNAL MAY 1982

kinds of test together with strict quality control procedures is required to ensure a
high quality in the final product.

3 A concept of quality

Quality may be thought of as a measure of the absence of faults in a product. Any
complex object, such as a computer system, can be faulty in a very large number of
ways, so many ways in fact that some concept is necessary to reduce the problem
to manageable proportions. The concept proposed is that all faults which have some
similar property be grouped together and the group as a whole, rather than the
individual faults, be considered. These groups of faults will be calied fault classes.

Faults may be grouped into virtually any classification that is considered to be
useful, the only important rules are: each fault class must be essentially inde-
pendent of all other classes and the list of classes should be complete. This latter
requirement is far more difficult to achieve and in practice any statement of quality
can only be made with respect to some defined list of fault classes.

For the purpose of examining manufacturing systems at least those classes of fault
which are inherent in the raw material, or bought-in components, plus those which
arise due to the various manufacturing processes must be considered. A base level of
quality is set by the inherent material and process fault rates. This level may be
improved by the application of tests. Various forms of test may be available, each
detecting different classes of faults with different degrees of effectiveness. The final
quality, therefore, is a complex function of the fault classes considered, the base
quality and the characteristics of the test stages. For the manufacturing system to
yield a high quality product the material, processes and tests must be well matched.

3.1 Representation of quality

Quality may be represented numerically as the probability that a product is free
from a certain class of fault. This probability can be thought of as the proportion of
items which would be fault-free in an infinitely large sample (batch). The observed
proportion of fault-free items in any finite batch will show the normal variations
due to sampling effects.

The following symbols will be used to represent quality at the input to and the
output from a process or test, the output being the derived variable:-

For fault classj:

Let g; be the probability of freedom from faults of this class prior to the
process or test.

Let q} be the probability of freedom from faults of this class among things
which have undergone the process or passed the test.

3.1.1 Quality and numbers of faults: As well as knowing about the quality of a
product, it is also useful to have information concerning the fault rates. This is
because the actual fault rates may be observed during the manufacturing and testing
processes and may be used for control purposes; also the repair capacity required
will be determined by the number of faults found.

ICL TECHNICAL JOURNAL MAY 1982 99

Quality and fault rates are related by a fault distribution. This gives the probabilities
that various numbers of faults will occur per class or per product and includes zero
faults which is, of course, the quality. The fault distribution may be a set of ob-
served values or be represented by a mathematical model. Two such models are the
single fault model in which it is assumed that no more than one fault may occur,
and the Poisson model in which it is assumed that there are an infinitely large
number of possible faults each of which is equiprobable.

The Poisson model gives the average number of faults as a function of the quality:

M; =log.('q))
where M; is the average numbers of faults of class ;.

Neither of the above models is completely satisfactory since faults are not usually
equiprobable and although there may be more than one fault there is a finite limit
to the number of faults. To deal with this the system described here contains
another model which is similar to the binomial model. The assumption made is that
a component may have no more than one fault per class. This is useful where com-
ponents such as integrated circuits are being considered and more than one fault per
component is irrelevant. Thus the maximum number of faults per class is limited to
the total number of components in the assembly. The average number of faults is
given by:

k
M= % (1-qy
i=1

where k is the number of components and g;; is the quality of the ith component.

The average number of faults in total (M) over n fault classes is

n
M= 5 M
j=1
and the probability of no faults:

Q=TTllj

=1
3.2 Influence of processes on quality

For the purpose of modelling test strategies a manufacturing system may be repre-
sented by an implosion tree, see Fig. 1. Basic components are bought in or created
by production processes and combined into sub-assemblies by assembly processes.
The sub-assemblies and components may be subjected to tests at any point. Thus it
is necessary to include the effects of the processes as well as the tests upon quality.
As far as quality is concerned there are three effects of a process which must be

100 ICL TECHNICAL JOURNAL MAY 1982

modelled: these are the effect of combining items together, the production of new
attributes and the introduction of damage.

power

supply
components

power supply

manufacturing
processes

printed
circuit
components

printed circuit

manufacturing
processes

Fig. 1 A manufacturing system

cable
components

cable

manufacturing
processes

<44

unit
assembly
process

tested
unit

H

ICL TECHNICAL JOURNAL MAY 1982

101

3.2.1 Collection. A process may bring together several items. This can be dealt with
as follows: First, where several items have the same fault class the quality of the
assembly in respect of that class is the product of the item qualities, Second, the
list of fault classes which must be considered for the assembly must be arranged to
include all of those applying to the individual items.

Let q} be the quality of an assembly of # items in respect of fault classj after
assembly but before considering other effects.

Let q;; be the quality of the ith item possessing that fault class:
n

Theng;= TT a;
i=1

3.2.2 Damage. A process may cause deterioration and hence reduce the quality in
respect of some or all of the fault classes. This effect may be described for the
process by the probability that faults of each fault class will occur during the
process.

Let 4; be the probability that faults of class j may be introduced during the
process.

Then g; = g; (1-4))

3.2.3 Production. A production process changes the material input to it. The
change may be in the form of the material (moulding etc.) or it may be to create
new features (drilling etc.). Both these kinds of change may be considered to create
new fault classes. Where the change is small it may be useful to absorb the new
classes into existing ones; for example through-hole plating may be absorbed into
interconnect quality. Although, strictly speaking, the quality of output from a
process depends upon both the quality of the material into the process and the
characteristic of the process itself most processes are characterised by their output
quality rather than the true process characteristic.

3.3 Testing and its relationship to quality

The quality of items passing a test can be expected to be greater than the quality
of those submitted for test providing that the test detects the relevant kinds of
faults and is non-destructive. The actual quality of items passing a test depends, for
each fault class, upon the quality of items input and the test detection rate for
faults of that kind. There are various models which have been described!>? relating
post-test quality to pre-test quality and test detection. The difference between
these models concerns the assumption made regarding the distribution of numbers
of faults. Both of the models cited above assume that the test detection rate is the
same for all faults and that it is only necessary to detect one of many faults to
identify the item as bad. This leads to an increase in the apparent effectiveness of
the test when input quality is low and the probability of more than one fault is
high. These models are appropriate where items which fail the test are discarded,
as are integrated circuits for example.

102 ICL TECHNICAL JOURNAL MAY 1982

The system described here contains a model which takes account of the variations
in fault rates and test detection rates across the different classes of fault as well
as the influence of the repair process. In this model, which is illustrated in Fig. 2, the
test is assigned a detection characteristic for each fault class which is the proportion
of items faulty in that class which will give rise to a fail result. This characteristic
is represented as follows:

Let d; be the detection rate for class ;.

Let p; be the probability that class j passes the test.

1-0

<
w

0-8

post test and repair quality qaj

dj-test detection rate

01
o] 1 1 1 1 1 1 i _ 1 i
0 01 02 03 04 05 0.6 07 08 09 1.0
q; pre-test and repair quality
Fig. 2 Improvement in quality from test and repair

If the flow of items into test is taken to be 1:

theng=q; + (1 - g)(1 - dp)

If the probability that the item passes the test is P, then assuming that no good
items are rejected

n
P=TT p
j=1
where n is the number of fault classes and the probability F that the item fails the
test is

F=1-P

ICL TECHNICAL JOURNAL MAY 1982 103

Since of those passing the test for any fault class only g; are fault free the quality of
those which pass is:

q;=q;llg; + (1 - gq;) (1 - d))]

The overall quality of items passing the test Q' when all the fault classes are taken
into account is

n
ThenQ'= TT g¢;
j=1

Since the pre- and the post-test qualities are known the number of faults removed
by the test can also be determined using the fault distributions.

3.3.1 Feedback through repair

In many cases those items which fail a test are all scrapped, integrated circuits being
an example. In this case the above formula for quality out from test clearly applies.
However in other cases the items failing the test are sent to a repair stage and
thence back into the test as illustrated in Fig. 3. This complicates matters since the
quality of input to the test is modified for the repaired items. However, providing
certain simplifications can be accepted, it can be shown that the quality of items
passing the test is the same with feedback through repair as without.

flow through repair Rz

F
EM-F)
flow through test’ X=1.R

Fig. 3 Flows through test and repair

104 ICL TECHNICAL JOURNAL MAY 1982

The simple model relies upon the assumptions that the scrap rate and the damage
rate during repair are so small as to be ignored. Also, the repair process and the
replacement components are assumed to be no better than original.

Because of these assumptions concerning the repair process, the above formula for
post-test quality still applies even for those items which failed the test and were
repaired and retested. This can be understood as follows: for those assemblies
which failed the test for this fault class (f) the repair process raised the quality to
the same level as the original input (i.e. ¢;) and hence the above formula applies.
However for those assemblies which failed the test because of some other factor the
repair process will have no effect on this fault class (f) and since retest is the same
test no more information can be obtained.

3.3.2 Calculating flows through test and repair. The steady-state flows around a
test and repair stage, where failed items are repaired and then retumed to be
retested at the failing test stage, may be determined by analysis, assuming the input
flow to be constant. The method of analysis, which was suggested by the referee, is
to separate the flow out of repair into that which contains items which are as good
as the untested input and that which contains the bad items. This is shown in
Fig. 3.

E=07
E=1 E=0'5
o
3+
s
2
)
g 2r
o
-
£
]
2
1+
0 1 | S L 1 L 1 L)
0 0-1 0-2 03 04 05 06 07 08 08 10
pre test quality
Fig. 4 Influence of quality on tester loading

Test detection = 0-95
E - effectiveness of repair

ICL TECHNICAL JOURNAL MAY 1982 105

Suppose that the repair process is capable of raising a proportion E of the items
submitted for repair to the same quality as the input prior to test and that the rest
of the items submitted for repair remain faulty. Also assume that there is no scrap.
By means of these assumptions the quality model, as discussed above, remains valid
and the imperfections of the repair process are accounted for by increases in the
flows around the system.

If the untested input flow is assumed to be 1, the proportion which fail the test
first time is F, and the flow into repair is R. The output from repair can be seen to
be divided into two parts, that which is as good as the untested input having a flow
R E and that which is bad having a flow R(1 - £). The flows around the system are:

flow through repair:
R=F(Q+REY+R(1-E)

ie. R=F/E(1-F)

flow through the test:

X=(1+RE)+R(1-E)=1+R

The way in which flow through the test varies with untested quality for a fixed test
detection characteristic and varying repair effectiveness is shown in Fig. 4.

In addition the average number of times a failed item passes around the repair loop
can be determined:

Z=R[F=1/E(1-F)
3.4 Calculation of costs

Once the flow rates through test and repair have been determined for a given set of
circumstances, input quality and test detection, the loading on the test equipment
and hence the costs can be calculated. The total cost is the important factor since
ignoring some of the less obvious cost factors can easily lead to a distorted view.
The total cost of a test strategy includes all the costs associated with acquiring the
resources necessary, using and maintaining these resources for a given period of
time and, finally, disposing of them.

The total costs of a test strategy form part of the Life Cycle Costs of the products
produced using the equipment. Hence they are also of interest from this point of
view. In this context the performance of the equipment is also relevant since the
quality of the output product has cost implications. However this subject is not
dealt with here.

3.4.1 Cost breakdown. The total costs of a test strategy may be evaluated using the

cost breakdown structure described by Blanchard* in which the total cost is broken
down into a research and development cost, an investment cost and an operations

106 ICL TECHNICAL JOURNAL MAY 1982

cost. This is illustratea in Fig. 5. For the purpose of comparing testing strategies the
following meaning and breakdown of these cost categories is used:

Research and Development Cost. This covers all the costs associated with basic
research, feasibility studies, engineering design, the construction and testing of
prototypes and the provision of design documentation. These costs apply where all
or part of the test equipment being considered is to be developed in house. They
must not be neglected since they can exceed the cost of producing the equipment
when it has been developed. The cost of developing the control software, test soft-
ware and writing or generating the test data including the costs of documentation
and validation must also be included in this cost.

Investment cost. This covers all the costs incurred in acquiring the required testing
capacity and making it operational. If the tester is produced in-house it includes
the manufacturing costs, both recurring and non recurring. If the tester is bought in
the cost includes the purchase price or an equivalent cost if the tester is leased or
hired. Factors also to be included are the cost of installing the equipment, the cost
of providing the floorspace and environment required, any support investment
necessary (for example spares holding), the cost of test fixtures and training costs.

_ Research and — Tester Development
Development Cost — Test Software Development
Cost of Tester
E Installation
Floorspace
Total Cost = + —Investment Cost =+ Environment
of Ownership Support tnvestment
Fixtures
Training
!: Labour Cost
| Operations and - Energy Costs
Maintenance - EMaintenance Cost
Support Cost
LDisposaI
Fig. 5 Test equipment: total cost of ownership

Operations and maintenance cost. This covers all the costs associated with operating
and maintaining the equipment. It includes the labour costs of operating the tester
and, where applicable, the labour costs of repairing the items failing the test. This
latter cost is essential to make the influence of tester diagnosis visible. The
operating cost should cover the energy requirements of the testers. Where the
equipment is maintained in-house the indirect as well as the direct maintenance
costs must be included, for example training maintenance personnel etc. The cost
of maintenance of the software and test data, as well as modifications to the equip-
ment, must be included in the support cost.

ICL TECHNICAL JOURNAL MAY 1982 107

3.4.2 Total cost and unit cost. The total cost can be determined for a given amort-
isation period for the test equipment. This is calculated as the total of the develop-
ment costs, the investment costs and the operations and maintenance costs for that
period.

From the total costs the cost per unit of output may also be determined. The unit
cost is the total cost divided by the total volume of production output over that
period.

3.5 Determination of tester capacity required

The time required on a tester to achieve a given output over a given period of time
can be determined from the flow through the tester, the test and diagnosis times
and the availability ratio of the tester. (The availability ratio reflects the reliability
and repairability of the test equipment.) The number of testers required and hence
the total cost follows from the time required.

Let:
D, be the output required from the tester over the period.
T, be the tester time for a fault free item.
T, be the additional tester time required to diagnose a faulty item.
A be the availability ratio of the tester.
R be the flow into repair for unit output.
X be the flow through the tester for unit output.

Then the time required on the test equipment for that period is:
Treq =D, (X Ty +R Ty)/A

The time available per tester T, is set by the proposed work pattern, (hours per
shift, shifts per day, days per period). From the time required and the time avail-
able the number of testers needed may be determined:

N= Treq/Tav

If &V is not an integer this equation holds only if the excess capacity can be used for
other work. Otherwise the number of testers must be rounded up. The policy to be
used must be decided by the user.

4 Implementation of the modelling system

The modelling system is implemented to run on an ICL 2900 series computer in a
VME 2900 environment.® It is designed to be used interactively from a video/
keyboard but may also be used non-interactively from batch jobs. A model of a
particular test system is represented by data provided by the user. The data
required comprise three parts:

Definitions of cost and quality parameters for the entities involved, (i.e. the
components, processes and tests).

108 ICL TECHNICAL JOURNAL MAY 1982

A description of the structure of each strategy to be evaluated.
Data controlling the operation of the system.

The data are set up by means of task-oriented extensions to VME 2900 SCL, the
system control language. This makes maximum use of the facilities provided by
VME 2900 to assist the user and minimises the programming effort required to
implement the system.

interactive
input and
editing
component output
éfcuslst prodcess strategies and work
an data pattern
data tester data
data

model
evaluation

—

results

B

interactive display

report
listings

Fig. 6 The modeliing system

ICL TECHNICAL JOURNAL MAY 1982 109

Data are entered into the system by calling one of a set procedures by an SCL
statement. A procedure is, in effect, a small program which performs some function
and is complete in itself. Each procedure is known by two names; a full name which
is chosen to be meaningful and an abbreviated name to facilitate interactive use.
Each procedure has a set of parameters, and the data are passed to the procedure
by means of these. The parameters are identified by name. Where practical the
system has default values for parameters and these are used unless specifically
changed by the user. A template showing the parameters required and their default
values may be called up and used to input the data for any command. This is
achieved by means of the standard VME 2900 facility known as screen prompting.

While the system is in use data are held in the virtual machine store. This is an ICL
2900 series facility which makes a large amount of program memory available to
each user. The data may be set up by procedures executed there and then or may
be taken from files set up previously. Entity data and structure data may be filed
separately. Hence definitions of standard components, processes and tests may be
shared between models, and models may be preserved between sessions.

4.1 Entity definition procedures

DESCRIBE FAULT: enables names to be given for each fault class. These names
will be printed out in reports.

DESCRIBE COMPONENT: sets up the quality data for a particular component
which forms part of the product to be tested. These data are the quality of the
component, as it is received into the system, in respect of each fault class which is
relevant. The component is given a name which may be used later, in the
appropriate places, to refer to the data which has been set up.

DESCRIBE TEST: sets up the data necessary to describe a particular type of test
and its associated repair stage. The data give:

The name of the test type.

The classes of faults detected and their detection rates.

The repair effectiveness.

The test, diagnosis and repair times.

The various costs associated with the life cycle of the equipment.
The work pattern and amortisation assumption to be used.

DESCRIBE PROCESS: sets up the data necessary to describe a particular type of
process. The data give the name of the process and the damage rates which the pro-
cess causes for the various fault classes.

ALTER COMPONENT, ALTER TEST, ALTER PROCESS: these procedures
enable data already set up describing components, tests and processes to be altered.

4.2 Describing the structure of the strategy

As mentioned previously the manufacturing system for a product can be considered
to be an implosion tree. The method used here for dealing with this structure involves

110 ICL TECHNICAL JOURNAL MAY 1982

the use of a push down stack. Data concerning a particular component or subas-
sembly may be entered on the top of the stack, pushing any existing data down.
Procedures are then available which operate on the data at the top of the stack to
represent the influence of the processes and tests. These procedures replace the data
input from the top of the stack with the result leaving this as the topmost element.
This is similar to the method of doing arithmetic which is known as reverse Polish.

The procedures which are available are:

COMPONENT: enters the data for a component on the top of the stack. The data
may be specified at the time the procedure is called or alternatively the name of a
component for which data has been given by the DESCRIBE COMPONENT pro-
cedure may be given.

COLLECT SAME: models the effect of there being several of the element currently
at top of stack. It has the effect of raising the quality values for each of the fault
classes to the power of the number given and multiplying the quantities upon which
flow and hence costs will be based. The element at the top of stack may represent a
single component or be the accumulated result of previous operations representing
an assembly.

COLLECT DIFFERENT: models the effect of combining together several elements
starting with the top element on the stack and working down. It multiplies together
the values of quality for fault classes which are common between the elements and
adds up the quantities to be used for flow computation. The elements may be the
same or different and may represent single components or assemblies.

PROCESS: models the effect of a process on the element at the top of the stack. It
has the effect of reducing the quality of the various fault classes in proportion to
the damage rates for the process. The damage rates may be given directly or the
name of a previously described process may be given.

TEST: models the effect of a test stage on the element at the top of the stack. The
quality data for the various fault classes are modified according to the fault detection
rates for those classes. Flow rates are determined and resource usage is calculated,
from which testing costs can be worked out when the total strategy has been
evaluated. The data defining the test may be given directly or the name of a
previously described test can be given.

Control procedures

TEST STRATEGY MODEL: once the user is logged in, this procedure must be
called to connect to the modelling system. It assigns the libraries containing the
system and thus makes the various procedures available to the user. The call on this
procedure should be preceded by the SCL ‘BEGIN’ statement to create a new
lexical level since the effect of the procedure will continue until the end of the
block as signified by a matching ‘END’ statement or the user logging out.

STRATEGY: this procedure is called to indicate the start of a model to evaluate a
particular test strategy. Only one strategy may be evaluated at once but several

ICL TECHNICAL JOURNAL MAY 1982 111

strategies may be evaluated in sequence during one session. The parameters to this
procedure are the name of the strategy, the name of the entity file and the name of
the trace file to be used. The entity file parameter, which is optional, specifies a
file containing entity definitions set up by previous runs. Thus a standard set of
component, process and test definitions may be used for several models. New
entities may be introduced during the evaluation of a strategy and, if required, the
amended entity data saved for future use. The trace file is used to contain a record
of each step of the evaluation of the strategy and the intermediate results obtained.
These data can be used to understand how the overall results summarised in the
report were obtained.

OBEYFILE: the procedure calls forming all or part of a test strategy model may be
entered into a file in the VME 2900 filestore using the normal file handing procedure
provided, (INPUTFILE, SCREENEDIT etc.). This procedure enables such data to
be executed. The procedure has one parameter which is the name of the file con-
taining the data.

REPORT: this procedure produces a summary report of the results obtained for the
strategy being evaluated up to the point at which it is called. Data specifying the
production rate required must be given. The report is written to a file which may be
spooled to a printer or displayed on a video.

The report is in tabular form and is divided into sections containing the following
information:

A summary of the details of the model as set up by the model definition commands.

Test performance information comprising for each test stage of the test strategy the
input and output qualities for each fault class, the average number of faults
detected, the number remaining after test, the average test and repair times and the
total test and repair times for the strategy.

Overall cost and quality performance of the test strategy giving: the total costs,
the cost breakdown, numbers of testers required, output qualities obtained and unit
test and repair costs.

SAVE: indicates that the entity definition currently set up are to be saved in the
specified file for future use.

HELP: at any time while using the system the user can have a ‘mini user guide’
displayed on the terminal by calling the macro HELP. A list will be displayed of all
the commands together with their abbreviations and a brief indication of their
functions. More detailed information on an individual command can then be ob-
tained if required.

DEFAULTS: this procedure changes the general default values used by the system.
This allows general policy changes, such as altering the number of shifts worked,
amortisation time of equipment etc., to be evaluated quickly and easily.

112 ICL TECHNICAL JOURNAL MAY 1982

4.3 Calibration of the model parameters

Data concerning faults found on approximately 10,000 printed circuit boards
during manufacturing and installation were analysed to determine process fault
rates and test detection characteristics in a form suitable for use in the modelling
system. There were 10 board types but, for simplicity, these were divided into three
classes on the basis of differences in the test strategy used. These classes were
central processor unit boards, store unit boards and peripheral coupler boards. The
test strategy for which the data were collected consisted of a post assembly con-
tinuity test, a functional test, a unit test and finally installation tests. The functional
test applied was different for each board type.

The total fault rate for each class of fault and each type of board prior to cold test
was determined from the observed fault detection rates. From the total fault rate
and the detection rates for each test the test detection characteristic for single
faults together with the pre- and post-test quality levels were calculated. From these
data the model gives expected values for the board failure rate at each test stage,
this figure was determined and compared with the observations. The predicted
board failure rates were found to match the observed values closely as is shown in
Fig. 7.

ror
09
0-8[
07
06| o
05}

04

modelied defect rate

0-3F

02

01 |

0 1 L 1 1 1 L 1 i 1 |
0 ot 01 03 046 05 o6 07 08 09 10

actual defect rate

Fig. 7 Model predictions using observed data
o CPU PCBs
x Store PCBs
CJecwm PCBs

Since the total numbers of faults detected and hence the size of the sample from
which each test detection characteristic was known, it was possible, using statistical

ICL TECHNICAL JOURNAL MAY 1982 113

data, to estimate the range of possible detection characteristics. An example of the
test detection rates observed for a functional test stage is shown in the Table 1.

Table 1. Observed test characteristics

Tester Type - FUNCTIONAL (Test Rig)
Pcb Type - Central Processor Unit

Fault Class Detection Characteristic
Observed Range 0-95
Confidence
Minimum Maximum

PROCESS ERRORS

Open circuit track 0-932 0-89 0-95
Short circuit track 0-909 0-82 094
Wiring - - -
Through plated holes 1 0-69 1

ASSEMBLY ERRORS

Short circuit (solder) 1 0-98 1
Track cut in error - — -
Incorrect Assembly 1 0-99 1
Wiring 0-929 0-85 0-97
Dry Joint 1 0-69 1
Bent pins — - -
Damage 1 0-86 1

COMPONENT FAULTS

Integrated circuit faults 0-806 0-78 0-83
Miscellaneous Components 0-745 0-68 0-81
Resistor faults 0-952 091 0-98
OVERALL 0-881 0-87 0-89

4.4 Use of the system

The system described here was used in the design of the manufacturing test system
for a medium sized computer mainframe. The test system in question covered PCBs
from bare board test through their assembly into the final product and final system
test. Six possible testing strategies were evaluated against a range of possible
untested quality values. Results were obtained showing the output quality and cost
breakdown for the various strategies and untested quality levels. This information
was used to make the final choice of the test methods to be used, the testing/repair
capacities required and to set quality targets for the different stages.

The information used was gathered by a combined team comprising design

14 ICL TECHNICAL JOURNAL MAY 1982

engineers, manufacturing engineers, test engineers, test programmers and quality
engineers. This team defined the test strategies and fault classes to be considered
and obtained and agreed the values to be used for the vaious parameters. A target
output quality level had been set and it was one of the objectives for the chosen
strategy that this target should be achieved.

\
strategy 'A’ \ strategy 'B"’
o
¥ 3
o
a
BTy
[]
v
2 2f
bl
e}
[
o
w
it
v 1L
2z
©
v
0 i 1 1 1 i L 1 1 1 1
0 01 02 03 04 05 06 07 08 09 10
untested input quality
Fig. 8 Influence of quality on cost

The test strategies evaluated comprised various combinations of tests from the
following test types:

Component test (of integrated circuits at goods inward).
Bare board continuity test.

Assembled board continuity test.

Board functional test (probe type).

Board functional test (edge finger type).

Store board test.

Assembled processor internal fault detection.
Assembled processor microcode diagnostics.
Assembled processor scan in scan out diagnostics.
Assembled processor order code level function tests.
Assembled processor system software level tests.

Fault profiles for the major subtypes of board and test characteristics for the
various test types were estimated. This exercise, in itself, brought to light problems

ICL TECHNICAL JOURNAL MAY 1982 115

for which solutions were tound. The multidisciplined nature of the team was of
great help and promoted useful interchange of views and ideas.

The kind of results obtained from the evaluation are illustrated in Fig. 8. This
shows the influence on test and repair cost per board of different test strategies and
untested quality levels, and that test and repair costs are very heavily de-
pendent upon untested quality. For the strategies illustrated there is a break-even
untested quality level above which one strategy is cheaper and below which the
other is cheaper. Hence the choice of strategy becomes dependent upon the confi-
dence which can be placed on the estimates of the untested quality level.

5 Conclusions

A method of modelling the performance and cost of manufacturing test strategies
has been described. This model has been programmed for an ICL 2900 series com-
puter in a VME 2900 environment. Data have been collected from which the values
of parameters describing the existing processes can be deduced. The modelling sys-
tem has been used to evaluate several possible test strategies for a computer main-
frame. This exercise proved worthwhile since problems were identified, solutions
were found and conclusions were reached in a logical and quantified manner. In
general it was shown that testing costs are more sensitive to untested quality level
than to testing strategy assuming a fixed output quality must be achieved. Hence
control of processes and bought in quality is very important in controlling testing
costs. Future work will be to include the influence of queuing and the determin-
ation of work in progress in the modelling system.

Acknowledgments

To H.Baron who suggested the idea of the computer program, to C.W.Bartlett for
the reverse Polish system, to R Whittaker, P.Dillon and K.T.Burrows who designed
and produced the software, to R.F.Guest, J.J.Stewart and K.Hoyle who constructed
the models.

Some of the material reported here was presented at the international conferences,
INTERNEPCON 1980 and AUTOMATIC TESTING 1981. We are grateful to
NETWORK of Birmingham UK, who organised the 1981 meeting and who
published the proceedings, for permission to reproduce this material.

References

1 WADSACK, R.L.: ‘Fault coverage in digital integrated circuits’, Bell Systems Tech. J.,
1978, 57.

2 WILLIAMS, T.W.: ‘Testing logic networks and designing for testability, Computer, Oct.
1979.

3 SMALL, M. and MURRAY, D.: ‘A quality model of manufacturing and test processes,
INTERNEPCON, UK 1980;

4 BLANCHARD, B.S.: Design and manage to life cycle cost, M/A Press, USA.

WHITTAKER, R.: ‘User guide to manufacturing test and repair cost estimation program’,

ICL Internal Document EDSIN277.

6 SMALL, M.: ‘A manufacturing test performance and cost model’, Proc, Automatic Testing
81.

w

116 ICL TECHNICAL JOURNAL MAY 1982

