
ic l I Technical
__ I Journal

Volume 2 Issue 4 November 1981

ICL Technical
Journal

Contents
Volume 2 Issue 4

Architecture of the ICL System 25
A. Walton 319

Designing for the X.25 telecommunications standard
K.J. Turner 340

Viewdata and the ICL Bulletin System
D.R.Olivey andR.Sugden 365

Development philosophy and fundamental processing concepts
of the ICL Rapid Application Development System RADS

A.P.G.Brown, H.G.Cosh and DJ.L.Gradwell 379

A moving-mesh plasma equilibrium problem on the ICL Distributed
Array Processor

P.Kirby 403

Editorial Board

Professor Wilkes retired from his Chair at Cambridge in the autumn of 1980 and is now living
in America; he has decided to resign from the Editorial Board, on grounds of practicality. The
Board and the management of ICL take this opportunity to record their very warm appreciation
of the great amount he has done for the Technical Journal. His wisdom and his advice, based on
his unrivalled experience as one of the pioneers of the computer age, and his insistence as a
scientist and a scholar on high but realistic standards have been invaluable. The Board sends its
thanks and good wishes to a colleague who is greatly respected and whose company has always
been enjoyed.

It is the Board’s good fortune that Mr. Donald Davies of the National Physical Laboratory has
accepted the Company’s invitation to become a member. He too has experience going back to
the earliest days of the digital computer, for whilst Professor Wilkes was building one classic
machine, EDSAC, at Cambridge, he was one of the team which was building another, ACE, at
NPL. The Board welcomes Mr. Davies with this issue of the Journal.

ICL TECHNICAL JOURNAL NOVEMBER 1981 317

ICL Technical
Journal

The ICL Technical Journal is published twice a year by Peter Peregrinus Limited
on behalf of International Computers Limited

Editor
J.Howlett
ICL House, Putney, London SW15 1SW, England

Editorial Board
J. Howlett (Editor) D.W. Kilby
D.W.Davies K.H. Macdonald
(National Physical Laboratory) B.M. Murphy
D.P .Jenkins J.M. Pinkerton
(Royal Signals & Radar Establishment) E.C.P. Portman
C.H.Devonald

All correspondence and papers to be considered for publication should be addressed
to the Editor

Annual subscription rate: £10 (cheques should be made out to ‘Peter Peregrinus
Ltd.’, and sent to Peter Peregrinus Ltd., Station House, Nightingale Road, Hitchin,
Herts, SG5 1RJ, England. Telephone: Hitchin 53331 (s.t.d. 0462 53331).

The views expressed in the papers are those of the authors and do not necessarily
represent ICL policy

Publisher
Peter Peregrinus Limited
PO Box 8 , Southgate House, Stevenage, Herts SGI 1HQ, England

This publication is copyright under the Berne Convention and the International
Copyright Convention. All rights reserved. Apart from any copying under the UK
Copyright Act 1956, part 1, section 7, whereby a single copy of an article may be
supplied, under certain conditions, for the purposes of research or private study, by
a library of a class prescribed by the UK Board of Trade Regulations (Statutory
Instruments 1957, No. 868), no part of this publication may be reproduced, stored
in a retrieval system or transmitted in any form or by any means without the prior
permission of the copyright owners. Permission is however, not required to copy
abstracts of papers or articles on condition that a full reference to the source is
shown. Multiple copying of the contents of the publication without permission is
always illegal.

©1981 International Computers Ltd

Printed by A.McLay & Co. Ltd., London and Cardiff ISSN 0142—1557

318 ICL TECHNICAL JOURNAL NOVEMBER 1981

Architecture of the ICL System 25
Alan Walton

I CL Distributed Systems Division, Bracknell, Berks., UK

Abstract

The organisation and operation of the hardware of the ICL System 25
small-business machine is described. The relation to the existing System
Ten, with which it is compatible, is indicated.

1 Introduction

System 25 is a physically small, powerful and versatile computer aimed primarily at
the needs of commercial data-processing. It is compatible with the ICL System Ten
which has proved a very popular and successful small-business machine and of
which approaching 10,000 are in use world-wide. System Ten was designed in 1968,
since which time there have been considerable advances in both physical technology
and concepts of computer architecture. The design of System 25 exploits these
advances to give a machine which is in every sense more powerful and versatile than
System Ten while retaining all the good features of the earlier machine, especially
its ease of use. In essence, the aim of the new design is to provide in a single small
system, and simultaneously if required, all the various services which are being
requested in business operations, such as batch, transaction and distributed proces­
sing, word processing, and control of such devices as Point-of-Sale and Factory Data
Collection terminals.

The machine is shown in Plate 1.

Particular features of System 25 architecture are as follows:

(i) Features derived from the Primitive Level Interface, which is the definition
of the prime interface between the software and the hardware and includes
the instruction set, store map, data and arithmetic standards etc. It is
based on that for System Ten with extensions for handling 8-bit data and
new high-capacity discs, maintaining exact compatibility wherever possible
so as to allow direct transfer of programs. The main features here are:

(a) Partitioned store, to allow multi-programming with guaranteed
independence and protection for the programs

(b) Decimal arithmetic and decimal addressing; this allows computation
on input data without the need for time-consuming decimal-to-
binary conversion, and also makes the use of the machine easier and
more natural.

(c) Variable-length store-to-store operations, to allow efficient use of
main-store space.

ICL TECHNICAL JOURNAL NOVEMBER 1981 319

(ii) Support for a number of communication protocols, allowing System 25 to
be used as a secondary station to ICL and IBM mainframes or as a primary
station driving remote peripherals.

(iii) Means for supporting a wide range of peripherals via either System 25
standard interfaces (carried over from System Ten) or various Industry
Standard interfaces. The main slow peripheral interface, for example, will
allow the connection of up to 10 peripherals at distances of up to 1500m.

(iv) The System 25 Bus, which is the key feature of the hardware organisation
and on which the above features depend. It is a set of physically separate
bussed highways, used to interconnect the modules which make up the
system. Each highway is designed for its particular purpose, resulting in
cost-effective system modules and efficient transfer of data within the
system; and the architecture provides ample scope for the incremental
introduction of future enhancements.

The present paper describes in some detail the organisation and operation of the
hardware and the means by which these and other features are realised. It concludes
with a short note on the main software packages which are provided for support
of the hardware; these will be dealt with in more detail in a second paper, to be
published in the next issue of this Journal.

2 Hardware Organisation

2.1 Summary

The key to the System 25 hardware organisation is a set of bussed highways col­
lectively known as the System 25 Bus, which is used to interconnect a number of
modules to create a system as shown in Fig. 1.

A system contains at least one of the following system modules, each of which
consists of one or more boards interconnected via the backplane containing the
System 25 Bus:

- a Control Processor which is responsible for the overall supervision of the
system and for data transfers from slow peripherals

- an Instruction Processor which executes the System 25 Instruction Set
- a Store module
- a Disc Controller plus its associated Disc Adaptor which is responsible for

fast I/O transfers
- a Slow Peripheral Coupler to drive, an external slow peripheral interface for

the connection of peripherals such as VDUs, printers.

There are two external slow peripheral interfaces supported by System 25, which
have been carried over from System Ten. The main slow peripheral interface is the
MTIOC interface (Multi Terminal Input Output Channel), which allows connection
of up to ten slow peripherals onto a single twisted pair. The MDIOC interface

320 ICL TECHNICAL JOURNAL NOVEMBER 1981

ICL TECHNICAL JOURNAL NOVEMBER 1981 321

The System 25 Bus is tracked in the back plane. The common lines, Store Bus and
I/O Bus are tracked to all board locations. The Disc Bus is only tracked to those
locations which house a Disc Controller and its associated Disc Adaptors.

On any of the highways, transfers across the highway can only be initiated by a
master module. The other module involved in the transfer is a slave module.

2.2.1 Store Bus: The Store Bus is used to transfer either one or five bytes of data
between one of the master modules and one of the store modules (a slave module)
and consists of

- 23 Address lines (7 bit binary Block Address and a 4 digit decimal Byte
Address within a block)

- 40 Bidirectional Data lines (5 bytes)
- 2 Store Function lines
- 1 Store Mode line
- 3 Interface Control lines
- 1 Master Clock line (4 MHz, equivalent to a clock period of 250nsec)

Transfers on the Store Bus occur in synchronism with the Master Clock.

A ‘daisy-chain’ Bus Request line is used to resolve contention for use of the Store
Bus. When a master module obtains access to the Store Bus, it will set Bus Reserved
to inhibit the contention logic for one slot time. At the same time the master
module enables the address and data onto the bus lines. The store module will
respond with data in time to be latched into the master module at the end of the
second slot. Thus a single transfer takes two clock periods.

During the second slot contention can take place for the next store cycle.

The store is defined to have two modes of operation. In Word mode, 5 bytes of
data are transfered in parallel across the bus. In Byte mode, a multiplexor in the
store module is used to transfer a single byte of data on the lowest numbered byte
data lines.

The store cycle is 500ns (two clock periods) giving bandwidth of 10Mbyte/s in
Word mode and 2Mbytes/s in Byte mode.

2.2.2 I/O Bus: The I/O Bus is driven by the Control Processor (the master module)
and is used as the transfer path for control information to other modules and as a
byte multiplexing interface for the transfer of data to or from I/O Couplers. It
consists of

- 8 Bidirectional data lines
- 2 Function lines
- 2 Function Qualifier fines
- 5 Interface Control lines
- 1 Strobe line

322 ICL TECHNICAL JOURNAL NOVEMBER 1981

The transfer of a single byte of data takes a minimum of 8 interactions on the I/O
Bus.

The I/O Bus provides for up to 64 Input/Output Channels (IOCs) which are inde­
pendent logical transfer paths, a single coupler may have more than one IOC.

Each IOC is defined to have a set of 4 output registers which are written to by the
Control Processor and a set of 4 input registers which are read by the Control
Processor. Access to these registers is controlled by the Function and Function
Qualifier lines.

The Control Processor can select a particular IOC by writing the IOC number to
one of the output registers (Come On Line) and the selected IOC will then remain
O n lin e ’ until Offline’ is set or another IOC is selected.

The Control Processor will initiate the transfer of a block of data by writing to the
Control Word register of the selected IOC. Thereafter the transfers of the
command, data and status bytes for the block of data are initiated by an interrupt
from the IOC.

There is a single bussed interrupt line which is set by an IOC requesting service.
A ‘daisy chained’ Interrupt Acknowledge line will cause the highest priority inter­
rupting IOC to place its IOC number on the data lines.

The Control Processor will bring the interrupting IOC Online and read from the
input registers the interrupt type, associated data and the assigned partition
number. The Control Processor will then write any output data to the output
registers. Finally, the Control Processor will clear the interrupt by writing to the
Clear Interrupt register and set the IOC Offline.

2.2.3 Disc Bus: The Disc Bus is driven by the Disc Controller and is used as the
transfer path for control information to Disc Adaptors, and as a block multiplexing
interface for the transfer of data to or from Disc Adaptors. It consists of

- 8 Bussed Bidirectional Data lines
- 1 Bussed Control line
- 1 Select line to each Adaptor
- 1 Service Request line from each Disc Adaptor
- 1 Strobe line.

The Disc Bus consists of one or more physically separate segments, each driven by
one Disc Controller.

Each Disc Adaptor contains a buffer which is used to store the disc transfer
parameters sent across the data lines by the Disc Controller.

When the Disc Adaptor is ready to transfer a block of data, it requests service from
the Disc Controller. The Disc Controller will initiate a data transfer operation and
the block of data is transferred across the disc bus in synchronism with the Strobe
line at 3Mbytes/s.

ICL TECHNICAL JOURNAL NOVEMBER 1981 323

2.3.1 MTIOC Interface: The MTIOC interface (Multi Terminal Input Output
Channel) is the main interface for connecting slow peripherals onto System 25, and
has been carried over from System Ten. Up to 10 terminals may be multi-dropped
onto a single twisted pair cable which can be up to 1500m long.

Data is transmitted bit-serially as 7 data bits and two check bits at a bit rate of
28kHz or 56kHz, using frequency modulated encoding. The equivalent byte rate is
nominally 1500 or 2700 characters transferred per second. Successful transmission
of a byte of data in one direction is followed by an Acknowledge transmission in
the other direction. If no acknowledgment is detected, the data byte is auto­
matically retransmitted.

The protocol of the MTIOC interface allows for four commands:- Read, Write,
Read Control and Write Control. Interpretation of the commands depends on the
particular peripheral. In between transfers, the terminals are polled in sequence.
The selected terminal will acknowledge the poll if it requires service.

Electrical isolation of the interface is achieved by transformer coupling at the
terminal.

2.3.2 MDIOCInterface: The MDIOC interface (Multi Device Input Output Channel)
is used for connecting Point-of-Sale or Factory Data Collection terminals into
System 25 via the D coupler (see Fig. 1). It allows the connection of a single
terminal up to 12000m from System 25 via a single twisted pair. The data transfer
rate depends on the direction of the transfer and length of line and can be set to the

324 ICL TECHNICAL JOURNAL NOVEMBER 1981

There is a special binary synchronous protocol for the connection of remote
System 25 or System Ten video terminals.

2.3.4 Other External Interfaces: Other external interfaces can be supported by the
use of special-purpose couplers, for example:

RS 232 interface for special purpose printers.
Cartridge Magnetic Tape Drive interface.

2.4 System Modules

2.4.1 Instruction Processor: The Instruction Processor is a master module on the
Store Bus and a slave module on the I/O Bus. It is responsible for execution of the
System 25 Order Code.

Instruction execution is initiated by commands on the I/O bus from the Control
Processor and continues until an I/O instruction is encountered or it is commanded
to switch to another partition by the Control Processor. For I/O instructions, the
relevant real addresses are computed and stored in the control store and the Control
Processor is informed by an interrupt on the I/O Bus.

When commanded to switch partition it will continue processing until the next suc­
cessful branch instruction before suspending operations and informing the Control
Processor.

2.4.2 Control Processor: The Control Processor is a master module on the Store
Bus and the master module of the I/O bus. It is responsible for the overall control
of the system and for transferring data between Slow Peripherals (via the I/O Bus)
and main store (via the Store Bus).

It initiates processing by the Instruction Processor and controls switching between
partitions.

It initiates slow peripheral operations by translating the I/O instruction into com­
mands which are then routed to the appropriate coupler. It maintains the store
address and counts associated with the transfer, and operates as a byte multi­
plexor for the transfer of data between the I/O Bus and Store Bus. It initiates
transfers to fast peripherals which then proceed autonomously under the control
of a disc controller. At the end of the transfer the Control Processor will initiate
a partition switch to the originating partition.

It uses a configuration table in the control store to translate logical device numbers
into real device numbers.

ICL TECHNICAL JOURNAL NOVEMBER 1981 325

2.4.4 Disc Controllers: A disc controller is a master module on the Store Bus, is
a slave module on the I/O Bus and is the master module of a Disc Bus.

It is responsible for scheduling disc operations and for transferring data between
Disc Adaptors (via the Disc Bus) and Main Store (via the Store Bus). It initiates
disc operations at the request of the Control Processor by translating commands
contained within the Control Block associated with a Disc I/O instruction and
routing the information to the appropriate Disc Adaptor.

It maintains the store address associated with the transfer, and operates as a block
multiplexor for the transfer of data between the Disc Bus and Store Bus.

A Disc Adaptor is responsible for interfacing the disc drives into System 25 and for
transforming the protocols and data formats used within System 25 into commands
and data across the disc drive interfaces. There is a different Disc Adaptor for each
type of disc drive.

2.4.5 Slow Peripheral Couplers: A Slow Peripheral Coupler is a slave on the I/O Bus
and controls one or more external peripheral interfaces of communications lines. It
is responsible for driving the external interface and for transforming the protocols
and data formats used by the peripherals or communications lines into those used
within System 25.

Each Slow Peripheral Coupler consists of one or more logical Input Output Channels
(IOC). There is a different Slow Peripheral Coupler for each type of external
interface as follows:

T Coupler for MTIOC interfaces
D Coupler for MDIOC interfaces
C Coupler for communications lines
R Coupler for Cartridge Magnetic Tape
V Coupler for special interfaces

Zone Numeric
The bits are numbered from 1 to 8; bit 8 is the most significant bit and bit 1 the
least. Bits 8 to 5 contain the Zone code of the byte and have a value in the range
0 to 15. Bits 4 to 1 contain the Numeric code of the byte and have a value in the
range 0 to 15.

The characters assigned to the codes are given in Table 1 for Zone codes 0-7 and
correspond to the ISO 7 bit set. Zone codes 8-15 do not have assigned characters.

The 6 bit subset which is compatible with System Ten consists of Zone codes 2-5
(i.e. bits 8 and 6 are ignored).

3.1.2 Numeric Data: Numeric data is stored as variable length Binary Coded
Decimal (BCD) byte strings in sign and modulus form. The Numeric code of each
byte has a value in the range 0-9. For positive numbers each byte has a Zone code
of 3, so that numbers are stored as their character code.

For negative numbers each byte except the least significant byte has a Zone code of
3. The least significant byte has a Zone code of 5. Thus the character representation
of the least significant byte for the numerals 0 to 9 is P to Y, as in the following
table:

ICL TECHNICAL JOURNAL NOVEMBER 1981 327

Table 1 Character codes

Column 0 1 2 3 4 5 6 7
Bit

0 0 0 0 0 0 0 0 8

0 0 0 0 1 1 1 1 7

0 0 1 1 0 0 1 1 6

4 3 2 1 0 1 0 1 0 1 0 1 5

0 0 0 0 NUL DLE SP 0 @ P 1 P

0 0 0 1 SOH DC1 ! 1 A Q a 9

0 0 1 0 STX DC2
tl 2 B R b r

0 0 1 1 F.TX DC3 £ 3 C S c s

0 1 0 0 EOT DC4 $ 4 D T d t

0 1 0 1 ENQ NAK % 5 E u e u

0 1 1 0 ACK SYN & 6 F V f V

0 1 1 1 BEL ETB
t 7 G w g w

1 0 0 0 BS CAN (8 H X h X

1 0 0 1 HT EM) 9 1 Y i y

1 0 1 0 LF SUB * J z j z

1 0 1 1 VT ESC + ; K [k {

1 1 0 0 FF FS . < L \ 1 1

1 1 0 1 CR GS - = M] m }

1 1 1 0 SO RS > N Λ n _

1 1 1 1 SI US / ? 0 0 DEL

3.2.1 Control Store: The lowest numbered area of main store is called the Control
Store which has been added for System 25. This area of store is not accessible to
the partitions, except from Partition 0 in special circumstances, and is used to hold
control information for Input/Output operations and for general system operation.

A duplicate set of A and B registers hold the control words in absolute address form
and other registers are used by the Control Processor to progress the state of I/O
transfers.

An area of control store is used to hold a translation table for the mapping of the
logical device numbers within an I/O Instruction into real device numbers and IOC
numbers.

328 ICL TECHNICAL JOURNAL NOVEMBER 1981

20000
19999 ~

13000

PARTITION 1
STORE

PARTITION 0
STORE

0000P
6999P

0000P
12999 9999C

COMMON
STORE

3000 ooooc
2999 2999

CONTROL
STORE

0 0000

Absolute Relative
Addresses Addresses

Fig. 2 Main store layout

3.2.2 Common Store: There is an area of Main Store accessible to all programs
called Common. The size of Common is set during Initial Program Load to a value
in the range 10000 to 80000 bytes, in units of 1000 bytes.

The first 300 bytes are called Protected Common and write access is inhibited. It is
used to hold the Program Pointer (P register - 5 bytes) and Input/Output Control
Words (A and B registers — 5 bytes each) for each partition.

The next 700 bytes are used for entry points to supervisory routines, tables control­
ling shared resources (such as disc), and a Mailbox for communication between
partitions.

The remainder of Common is used to hold shared routines (e.g. housekeeping
routines) and buffer areas for the bulk transfer of data between partitions.

3.2.3 Partition Store: Each program in System 25 operates within its own area of
main store called a Partition and the System 25 architecture allows for up to 20
partitions. The size of each partition is set during Initial Program Load to a value in
the range 0 to 80000 bytes, in units of 1000 bytes.

There is no defined structure within the partition store and its use is determined by
the user program. However, bytes 11-14, 21-24, 31-34 are used as index registers
by the instructions, and bytes 40-44 are used to hold the contents of the P Register
when a Program Check occurs.

3.3 Arithmetic operations

Arithmetic operations use two operands called the A operand and the B operand,

ICL TECHNICAL JOURNAL NOVEMBER 1981 329

which are fetched from the A and B Fields. The result is stored in the B Field.

The basic arithmetic functions are Add, Subtract, Multiply and Divide, with these
conventions:

Add — the A Operand is added to the B Operand.
Subtract — the A Operand is subtracted from the B Operand.
Multiply — the A Operand is multiplied by the B Operand.
Divide — the B Operand is divided by the A Operand.

3.3.1 Numeric Fields: Numeric data is stored in variable length fields of up to 10
bytes.

The A Operand is contained within the A Field as shown below

A Field ^

(LA)
MS byte | | LS byte

A address sign byte

The length of the A Field is defined by the contents of the LA field in the
instruction.

The B Operand is contained in the B Field or the Extended B Field as shown below

Extended B field for Multiplication and Division

B field Extension to B field
--- _ > < _ --------------------------------->

_______________(LB)_______________ __________ (LA)
MS byte I I \

B address sign byte sign of dividend or product 4

The length of the B Field is defined by the contents of the LB Field in the
instruction and the length of the extension to the B Field is defined by the contents
of the LA Field.

3.3.2 Addition and subtraction: Addition and subtraction of numeric data is per­
formed digit by digit starting with the least significant bytes of the two operands.
The result of each byte is stored before the next more significant bytes are accessed.

The arithmetic operations performed on the two numeric parts of the bytes depend
upon the Zone codes of the least significant bytes as defined in the table below.
Zone codes 0-3 and 8-11 are treated a, a positive, codes 4-7 and 12-15 are treated
as negative. The zone code of the result is set to 3 or 5.

< -

330 ICL TECHNICAL JOURNAL NOVEMBER 1981

I
1 Function 1

1 B operand ! A operand Operation 1 Result j
1
1
1

1
1
1

Sign
1
1
1 Zone Code |

1
' ADD +

1
l + 1 B + A

1
1 + 1

1 3 1
1 + 1

| 1 B - A 1 + 1 3
1 - 1 + 1 B - A | -

1
1 5 l

- 1 1
1 B + A 1

1
- 1

1 5 :

S u b t r a c t 1 +
1
1 +

1
1 B - A

1
1 + 1 3 l

+ 1 B + A 1 + 1 3 !- | + 11 B + A 1 - 1I 5 |
1 - 1 B - A l - 1 5 1

(_______________________L ___________t

If the value of A is greater than the value of B, and the operation is B - A, then
the sum is complemented and the sign of the result is inverted.

If the A operand is shorter than the B operand, it is effectively extended with zeros
on the left during the operation.

If the A operand is longer than the B operand, it is truncated from the left and the
truncated part is ignored.

3.3.3 Multiplication: Multiplication is performed by a sequence of additions of the
A operand, extended with a zero digit, to the extended B field. The number of
additions is determined by the value of the digits of the B operand.

The zone of the least significant byte of the extended B-field is set according to the
signs of the A and B operands. Zone codes 0-3 and 8-11 are treated as positive signs.

Operand Signs ! Result]
Ϊ 1

A I B | Sign Zone Code !
1Γ

+
!

1

Y

+
1

+

Γ

+ +
!

1
3 !
5 !
5 '

The result of using overlapped operands is undefined.

3.3.4 Division: Division is performed by a sequence of subtractions of the A
operand (divisor), extended with a zero digit, from the extended B field which
contains the B operand (dividend).

The result (quotient) is stored in the B field and the remainder is stored in the
extension to the B field.

The Zone code of the least significant byte of the B field is set according to the
signs of the A and B operands.

ICL TECHNICAL JOURNAL NOVEMBER 1981 331

Operand Signs Quotient

A B : Sign
1
' Zone Code

+ + i +
Ί

' 3
+ - ! 5

+ ! - ! 5
1
1 + I 3

The sign of the B operand is not changed and becomes the sign of the remainder.

The result of using overlapped operands is not defined.

3.4 Address format

The addresses on System 25 are represented as decimal numbers in the range
00000 to 79999, the first digit being a page number in the range 0 to 7. The whole
address is stored in part of a 4-byte address word, together with a marker C which
takes the value 0 if the address is relative to a partition base and 1 if it is relative to
the Common base.

The format is as follows:

The decimal digits d3, d2, d l, dO giving the address within the page with d3 the
most significant (thousands) and dO the least significant (units), are binary-coded
in bits 4 to 1 of the four bytes. Bit 4 is the most significant, bit 1 the least.

The page number p is stored in inverse form in bit 5 of each of bytes 1 ,2 ,3 with
the most significant bit in byte 3.

The marker C is stored in bit 7 of byte 4 and its inverse in bit 6.

The remaining bits - that is, bits 6 to 8 of bytes 1 to 3 and bit 5 of byte 4 - are
not used by address computation. *

The layout is shown in the diagram below.

*not used

332 ICL TECHNICAL JOURNAL NOVEMBER 1981

The convention used here and in the following paragraphs is that a capital letter
indicates a field and the corresponding lower-case letter the content of that field:
thus p is the number of the page stored in the page-number field P, and the sub­
field D3 of the address field contains the decimal digit d3.

3.5 Instruction format

3.5.1 General description: System 25 uses 2-address instructions of the form

F, A, B

where F is the function code and A,B are operand addresses. The interpretation of
the contents of the address fields depends on the contents of other fields stored in
the instruction word, as follows:

ICL TECHNICAL JOURNAL NOVEMBER 1981 333

and similarly for B. The location of the index registers is given in Section 3.2.3.

The EIX field concerns extended indexing, explained in Section3.6.1 below. This isa
1-bit field, stored in inverse form in bit 5 of byte 9. If this bit is set to 0, extended
indexing is specified.

3.5.7 IDA and IDB: Indirect Addressing: These fields are used to indicate whether
the contents of an address field (possibly indexed) are to be used as the operand

334 ICL TECHNICAL JOURN AL NOVEMBER 1981

address directly, or whether they point to another 4-digit field which contains the
required address in relative address format but not aligned to a boundary.

The instruction contains the values of the field in inverse form; the interpretation is

IDA = 1 indicates direct addressing for A
IDA = 0 indicates indirect addressing for A

and similarly for B. The operation is explained further in Section 3.6.

3.6 Address Computation

3.6.1 Operand Relative Address: The relative address of the A Operand is evaluated
in two stages as follows:

First, if indirection is specified (IDA = 0), the A field in the instruction (PA, A3,
A2, A1, AO and AC) is used to fetch the four byte field containing the indirect
address, which is then used in place of the A field.

Second, if indexing is specified (ΙΑ Φ 0), the contents of the specified index register
are added.

If extended indexing is not specified (EIX = 1), the addition is performed
modulo 10000.

If extended indexing is specified (EIX = 0), the addition is performed modulo
80000.

3.6.2 A Operand Address Marker, ac: The address marker of the A operand, ac, is
evaluated in two stages in parallel with the evaluation of the operand relative
address as follows:

First, if indirection is specified (IDA = 0), bit 7 of byte A+3 (of the indirect address
field) is fetched and used in place of the AC field.

Second, if indexing is specified (ΙΑ Φ 0) and extended indexing also is specified, bit
7 of the least significant byte of the specified index register is combined (logical OR)
with the AC field to generate the address marker.

3.6.3 A Operand Absolute Address: If ac = 0, the A operand is in Partition and the
A operand absolute address is formed by adding the A operand relative address to
the partition base address

If ac = 1, the A operand is in Common and the A operand absolute address is
formed by adding the A operand relative address to the Common base address
(3000).

3.6.4 B Operand Address: The B operand address is formed in a similar manner
using the PB, B3, B2, B1, B0 and BC fields in conjunction with IDB and IB.

ICL TECHNICAL JOURNAL NOVEMBER 1981 335

3.7 Instruction Set
Function

Mnemonic Instruction Name Code

Computational A Add 4
Instructions S Subtract 7

M Multiply 6
D Divide 5
C Compare 14
IC * Indirect Length Compare 30

Logical Instructions: LA 20
AM) * — And 3
OR * — Or 1
NEQ * - Not Equivalent 2

Address MA Move Address 3
Arithmetic — Modify Address
Instructions Instructions: LA 2

AAI — Add Address Immediate 0
AA — Add Address 1
SAI * - Subtract Address

Immediate 2
SA * — Subtract Address 3
CA * — Compare Address 4

Data MC Move Character 8
Transfer IM * Indirect Length Move
Instructions Character 24

MN Move Numeric 9
FN Form Numeric 13
X Exchange 15
PK * Pack 31
UPK * Unpack 29
E Edit 12

Control B Branch 11
Instructions SM Set Mode 10

Input/Output R Read 0
Instructions W Write 1

SR * Start Read 16
SW * Start Write 17
TS * Test 10 Status 18

*New Instructions for System 25

4 Input/Output Operations

4.1 General:

System 25 Input/Output normally operates in a strictly synchronous manner in

336 ICL TECHNICAL JOURNAL NOVEMBER 1981

that when a Read or Write Instruction is encountered, the partition is suspended
until the I/O transfer is complete.

However, use of the Start Read and Start Write instructions will allow the partition
to continue processing until the next I/O instruction is given. Use of the Test 10
Status instruction allows the progress of the I/O transfer to be monitored.

In System 25, peripherals are divided into two types:-

slow peripherals which are assigned to a single partition and can only be driven
by that partition.

fast peripherals which are shared between all partitions and can be driven by any
partition.

The System 25 I/O instructions provide direct control of all the peripherals
assigned to a partition, although disc transfers are normally controlled by invoking
supervisory routines.

4.2 Slow Peripheral Control:

Up to 10 slow peripheral devices may be driven by a single partition and the 10
instruction contains the logical device number, the address of an area of store for
the data transfer and a count of the number of bytes to be transferred.

There are four I/O operations:

Read — Transfers up to 10000 bytes of data from the peripheral into store
Write — Transfers up to 10000 bytes of data from main store to the peripheral
Read Control is reserved for loading programs.
Write Control was used by System Ten to generate control codes outside the 64
character set across the MTIOC interfaces and for compatibility, this is retained
on System 25. However on System 25 the 8 bit store allows control characters
to be sent with a Write Instruction.

4.3 Fast Peripheral Control

For fast peripherals (discs and magnetic tapes) the logical device number is replaced
by a Fast Access Channel (FAC) number. Specific numbers have been allocated for
different types of fast peripherals as follows:

0 is used for discs.
1 to 4 are used to address up to four tape drives.
5 to 9 are not used.

4.3.1 Disc Control: System 25 Discs are organised as a logical set of sequential 512
byte sectors. The mapping of logical sectors into real track, head, sector numbers is
performed by the Disc Adaptor and is dependent on the particular disc character­
istics. System Ten discs are organised as logical 100 byte sectors.

ICL TECHNICAL JOURNAL NOVEMBER 1981 337

The B field in the 10 instruction contains a pointer to a 6 byte Control Block which
contains the disc drive number (0 to 15), function, count and sector number.
System Ten disc transfers were always a single sector of 100 characters. System 25
compatible data disc transfers provide the same operation and five 100 byte blocks
are mapped into a single 512 byte sector on the disc and the logical sector number
in the Control Block is divided by 5 to give the equivalent 512 byte sector number.

The System 25 disc functions are

Compatible Mode Read or Write — transfers a single 100 byte sector using
System Ten Control Block format (maximum sector number = 99,999)

Extended Compatible Mode Read or Write — transfers a single 100 byte sector
using System 25 Control Block format (maximum sector number = 9,999,999)

String Read and Write — a string of up to 10,000 bytes starting at the beginning
of a sector and extending over several sectors is transferred for one instruction,
using System 25 Control Block format (maximum sector number = 999,999)

Other functions are provided to format the disc and read the status of the previous
transfer.

4.3.2 Magnetic Tape Control: The use of the IO instruction fields is the same as to
the slow peripherals. The Read and Write instructions cause the transfer of a single
block of data to or from the tape.

The Read Control instruction is used to access status information from the tape
controller and the Write Control instruction is used for control commands for the
control of the tape, e.g. Rewind.

Cartridge Magnetic Tape is driven as a ‘slow peripheral’.

5 System 25 Software

System 25 software is largely derived from System Ten to allow the large number
of application programs developed for that machine to run on System without
change.

System 25 can be run with various levels of software support; at the lowest level a
program can be loaded directly into a partition and can run and control its
peripherals without reference to any supervisory program. The main ICL supporting
software is provided in the following three packages, which together give the
facilities normally provided by an operating system.

5.1 DMF III (Data Management Facilities)

This is the basic supervisor package and is derived from the System Ten equivalent,
DMF II. It consists of the following components:

CSM (Conversational System Manager) which provides facilities for the main-

338 ICL TECHNICAL JOURNAL NOVEMBER 1981

tenance of the file store and loading programs
LIOCS (Logical Input/Output Control Software) which is a set of housekeeping

routines for the logical control of the disc and magnetic tape
Utilities for sorting and editing files

5.2 IAS (Interactive Applications Support)

This provides an environment for transaction processing applications, in which the
control of slow peripherals is separated from the application program. It consists of
the following components:

Video/Printer Drivers which control up to 10 Videos or printers on a single
interface
Data Buffer and Message Handling Routines which are used to pass data between
the application programs and the Video/Printer drivers.

5.3 CAM (Communications Access Manager)

This provides a simple macro interface for application programs for the control of
communication lines. There is a different CAM package for each communication
line protocol. It consists of the following components:

Communication Line Driver which performs the low-level control of the line
Data Buffer and Message Queue handling routines
Macro Interface Routines which convert the macro calls from the application
program into messages and data blocks

As was stated in the introduction, the software will be described in more detail in
a second paper.

ICL TECHNICAL JOURNAL NOVEMBER 1981 339

Designing for the X .25

telecommunications standard

K. J. Turner

ICL Information Processing Architecture Division, Kidsgrove, Staffs

Abstract

Packet switching is becoming increasingly important in telecommunications
systems in many countries and the ‘X.25 Recommendation’ of the Inter­
national Telegraph and Telephone Consultative Committee (CCITT) is now
widely accepted as defining the standard for the interface to a public
packet-switched network. The paper describes the ICL Communications
System Controller, a hardware device with associated software, which has
been designed to interface ICL main frame computers to X.25 packet-
switched networks. The description is preceded by a short account of X.25
and of ICL’s own communication protocol ICLC-03. The essential function
of the CSC is to convert between ICLC-03 and other protocols: the con­
version between ICLC-03 and X.25 is discussed.

1 Introduction

1.1 X.25

1.1.1 X.25 history: X.25 is probably the most important telecommunications
standard to have appeared in recent years. It represents the substantial agreement
between communications experts on the interface to Public Data Networks of the
packet-switching variety.

Packet-switching began in earnest around 1968 with the opening of networks such
as ARPANET (US) and SITA, the international airlines’ system. Many countries
followed suit in implementing their own packet-switching networks, for example
EPSS (UK), RETD (Spain) and TELENET (USA). With great foresight CCITT
(International Telegraph and Telephone Consultative Committee) saw the future
importance of this developing communications technology and began a programme
of work to produce an international specification for interfacing to such networks.
Thus was Recommendation X.251 born in 1976, to be enhanced within a year by
the publication of an alternative link protocol with improved error recovery.

Following the publication of X.25 a considerable amount of activity ensued as
older networks were brought into line with the recommendation and new networks

340 ICL TECHNICAL JOURNAL NOVEMBER 1981

were implemented in direct conformance to it. Typical of these new networks were
TRANSPAC (France) and SAPONET (South Africa).

It was inevitable that such widespread and diverse implementations of X.25 would
lead to various interpretations of the recommendation and would suggest desirable
enhancements to it. CCITT therefore began the revision of X.25 with a view to
reconciling the differences in interpretation that had arisen. The result was a new
and much larger version of X.252 in 1980. At present the conformance of packet­
switching networks worldwide to the revised recommendation is patchy, but there
is hope of a high degree of commonality by 1982.3 Recent networks such as PSS
(UK) are already largely in agreement with the latest version.

An interesting property of X.25 networks is that it is fairly easy to couple them
together, and indeed CCITT has evolved Recommendation X.752 for just this
purpose. By provision of such ‘gateways’ between X.25 networks it becomes
possible to make calls through the concatenation of several of them. Thus X.25
may lay the foundation for truly international digital data communication.

The following two Sections give a brief overview of X.25. For further background
information there are good texts on packet-switching in general4 and on X.25s in
particular.

1.1.2 X.25 services and facilities: Packet-switching is a digital communications
technique which fragments data into ‘packets’ of an agreed maximum size and then
multiplexes them onto the communications channel with data from other sources.
Because the communication channel can carry interleaved packets from many
sources its capacity can be utilised very effectively. This is to be contrasted with a
circuit-switched connection where plant (lines and switches) will typically be
dedicated to that connection. The average utilisation of a communications connec­
tion is often low, particularly for interactive traffic, thus leading to inefficient usage
of the associated plant. An authority which administers both packet-switched and
circuit-switched connections may well be able to offer more competitive rates for a
packet-switched connection because the operating capacity may be more nearly
reached. The actual choice of connection type must depend, however, on the
specific application and on other factors such as the availability of equipment.

Since data from many sources can be multiplexed onto one channel, the packets of
each stream need to be distinguished by some kind of address: in X.25 this is
termed the Logical Channel Number (LCN). X.25 defines only the interface
between the DTE (Data Terminal Equipment, supplied by the manufacturer) and
the DCE (Data Circuit-terminating Equipment, usually supplied by the network
authority). Many of the parameters of X.25 are therefore local only, that is they
apply to the DTE-DCE link. Of course they generally have an end-to-end (DTE to
DTE) effect, but usually in a loosely coupled way. The LCN in X.25 is therefore
for DTE-DCE addressing only.

To establish a connection from one DTE to another via an X.25 network it is
necessary to make what is termed a virtual call, which identifies the destination
DTE by means of a unique subscriber number. As part of establishing the call

ICL TECHNICAL JOURNAL NOVEMBER 1981 341

each DTE-DCE pair will select a logical channel of its link on which to transfer data.
The identifier, the Logical Channel Number, of this will generally be different
at each end. Completion of the virtual call results in a virtual circuit which persists
until the call is terminated (by either party). This kind of temporary association
between DTEs is termed a Switched Virtual Circuit (SVC). By way of contrast, a
fixed association may also be set up by agreement with the network administration
and the other party: this requires no call to set it up or clear to terminate it and is
called a Permanent Virtual Circuit (PVC). As shown in Fig. 1, a DTE may have
concurrent virtual circuits to several DTEs or even to itself (for test purposes).

incoming calls barred
outgoing calls barred
reverse charging
call re-direction

Fig. 1 Examples of Virtual Circuits
•------- Permanent Virtual Circuit (PVC)
------- Switched Virtual Circuit (SVC)

342 ICL TECHNICAL JOURNAL NOVEMBER 1981

Most of these have obvious parallels in the telephone network. Only the flow
control parameters are unusual in being peculiar to the digital transmission
technique used.

The Virtual Circuit service is the only one which is generally available on X.25
networks. A more recent addition to X.25 is the Datagram service which (like Telex)
allows the transmission of individually addressed messages. To capitalise on the
widespread provision of Virtual Circuits, CCITT has defined a Fast Select facility
which in some respects resembles the Datagram Service. A Fast Select call sets up
a transient Virtual Circuit, allowing a block of data to be sent with the request. The
recipient may either clear the call immediately (optionally supplying a block of
data in response) or turn it into a normal virtual call. Thus Fast Select may serve a
transaction-oriented application or an enquiry-type of application where the
response may be brief or lengthy.

1.1.3 X.25 operation: X.25 is a three-level protocol which conforms to the
principle of layer independence. While each layer must know what functions are
provided to it by the layer below and what functions are required of it by the layer
above, it does not need to have any knowledge of the mechanisms within the
adjacent layers by means of which these functions are provided. Such a protocol
may be modelled by the familiar ‘onion skin’ architecture.6 The three levels of
X.25 are:

(i) the Physical (or Transmission) Level
(ii) the Link (or Frame) Level

(iii) the Network (or Packet) Level

In concert they define the procedures across the DTE-DCE interface for establish­
ing connections, transmitting data and breaking connections. The functions of the
levels may be briefly summarised as follows:

(i) Physical Level
This concerns the control of the modem (or equivalent) and the trans­
mission of data. Two separate recommendations apply here: X.21(i) 2 (for
digital transmission) and X.21 bis2 (for analogue transmission). X.21 bis
(which describes the use of the familiar V-Series modems) is the most
commonly found type of interface at present. X.25 connections are full-
duplex and so are normally by leased line.

(ii) lin k Level
This concerns the control of the DTE-DCE link. Two alternative protocols
are used, both of which are variants of HDLC (High-Level Data Link
Control): LAP (Link Access Protocol) which is related to the International
Standards Organisation (ISO)7 and the European Computer Manufacturers
Association (ECMA)8 Unbalanced Class, and LAPB (Link Access Protocol
Balanced) which is compatible with ISO9 and ECMA10 Balanced Class.
Both LAP and LAPB offer two-way simultaneous transparent data transfer
(with protection against loss, corruption and duplication of data) and flow
control facilities. They differ, however, in the way connection, disconnec-

ICL TECHNICAL JOURNAL NOVEMBER 1981 343

tion and error recovery are handled. LAPB is generally agreed to be
superior to LAP and is’preferred by CCITT.

(iii) Network Level
This concerns the control of the conversations multiplexed over the DTE-
DCE link. The protocol closely resembles that used at link Level, but
offers the important advantages of multiplexing and interconnection of
DTEs with differing characteristics (e.g. packet size or throughput).
Another important function is the provision of an expedited data route,
e.g. for interrupt or break-in.

1.1.4 X.25 Between DTEs: Although X.25 is strictly a DTE-DCE interface
standard, it is quite easy to adapt it for point-to-point DTE-DTE links. There are
some minor asymmetries in X.25 which can be removed by building sufficient
flexibility into a DTE: later Sections mention a few of these. The benefit of X.25
DTE-DTE operation is that the same implementation and protocol can be used for
private or public connections.

1.1.5 Related protocols: An X.25 DTE requires a relatively high degree of
sophistication that would be expensive to provide in a simple terminal. CCITT
identified the need for easy attachment of basic terminals such as teletypewriters
to X.25 networks and evolved the interlinked X.3, X.28 and X.29 Recommenda­
tions. Like X.25 these have been revised since their initial issue4.

X.3 defines the behaviour of a Packet Assembler/Disassembler (PAD) which con­
centrates the traffic from asynchronous terminals onto X.25. X.28 specifies the
interface between the PAD and the terminal. X.29 describes the conversation
between the PAD and the controlling DTE. X.29 may thus be viewed as a higher -
level protocol which is carried over X.25. X.29 does not, however, fit into the more
modern communications architectures mentioned in Section 1.2.3 and may
therefore be supplanted in the long term by other Virtual Terminal Protocols.

1.2 ICL communications

1.2.1 The ICLC-03 communication protocol: ICL’s current communication
protocol Full XBM, also known as ICLC-03, is multi-level. The principal components
of ICLC-03 are:

(i) Transmission Level
(ii) Link Level

(iii) Group Level
(iv) Access Level

These hierarchically organised levels constitute the means whereby data is trans­
ported on behalf of applications or users. There is an obvious similarity to the
corresponding functions in X.25. (i) * *

(i) Transmission level
This concerns the control of the modem (or equivalent) and the trans­
mission of data. Connections may be either half-duplex or full-duplex.

344 ICL TECHNICAL JOURNAL NOVEMBER 1981

(ii) link Level
This concerns the control of the link between a primary and one or more
secondaries. The protocol is two-way alternate and is derived from the
ISO Basic Mode procedures.11

(iii) Group Level
This concerns the control of the conversations multiplexed over a primary­
secondary link.

(iv) Access Level
This concerns the control of the sequencing and presentation of applica­
tion or user messages. Unlike the lower three levels, Access Level occurs
in several varieties to match the needs of differing devices and functions.
Of these, the Device Independent Access Level (DIAL) and the Logical
Connection Control Access Level (LCC) particularly concern the subject
of this paper.

Like X.25, DIAL offers two-way simultaneous, transparent data transfer and flow
control, together with control functions for expedited data and for error recovery.
Indeed DIAL and X.25 offer such similar facilities that the mapping between them
is almost one-to-one.

ICLC-03 distinguishes clearly between data transfer and connection control
functions. LCC provides facilities for mainframe control of connection, discon­
nection, and error handling. As with DIAL, these map onto X.25 in a natural way.

The close correspondence between ICLC-03 and X.25 makes protocol conversion
from one to the other particularly practicable. Some examples of the relationship
between the two are given below. The attraction to ICL of ICLC-03 in X.25
protocol conversion is the ease with which large communications systems can be
built out of local ICL networks interconnected by public X.25 networks.

ICLC-03 X.25

connect call

disconnect clear

reset reset

access level data packet
data packet sequence

program interrupt
function

For the connection of PAD-concentrated teletypes a similarly convenient mapping
of X.29 on to the ICLC-03 Scroll Mode Access Level can be defined.

ICL TECHNICAL JOURNAL NOVEMBER 1981 345

1.2.2 ICL Communications System Controller CSC: ICL’s Communications
System Controller hardware (CSC) is designed to front-end the larger ICL 2900
mainframes via a high-speed trunk interface. Communications lines are interfaced
by hardware units known as couplers. CSC’s primary functions are to act as a
concentrator for ICLC-03 communications traffic and to convert other communica­
tions traffic to ICLC-03 form. It is in this latter function that the majority of the
interest and complexity lies. Currently CSC offers conversion of three classes of
protocol:

(i) Asynchronous (teletypewriter)
(ii) Synchronous (video, clustered video)

(iii) Bit-oriented (X.25, X.29)

This paper addresses itself solely to the design of an X.25 protocol converter.

The CSC system software maybe broadly divided into Kernel and Communications.
A Peripheral sub-system is also used during development. The Kernel offers the
usual resource management facilities such as scheduling, buffer allocation, timer
control, error handling and hardware interfacing. The Communications subsystem
comprises a number of Protocol Converters and the ICLC-03 multiplexer, which
may be regarded as a kind of null protocol converter. A significant amount of
code is shared between the protocol converters because of the inevitable
commonality of functions to be performed. The general structure of CSC and
its relationship to the mainframe are illustrated in Fig. 2.

After the next Section giving a short note on the ICL general information process­
ing architecture IP A, the rest of the paper is concerned with CSC. The three main
Sections deal with the following aspects:

Section 2- Functionality. The services provided by CSC.
Section 3- Architecture. The basic design of CSC and an indication of the

mechanisms by means of which these services are provided. In
particular, three important software components - Driver, Connector
and Multiplexer - are described.

Section 4. Resource Management. Scheduling, flow control, handling of errors
and collection of statistical information are described.

The final Section deals briefly with the testing of this equipment.

1.2.3 ICL Information Processing Architecture IPA: Considerable interest has
been shown in recent years in the development of Open Systems Interconnec­
tion (OSI).6’12 The concept which underlies OSI is that any host or terminal in a
community should be able to interwork with any other. As a step towards this goal
ISO have evolved a Reference Model13 which defines an appropriate system
architecture. The functions of this model are separate into seven layers, each of

346 ICL TECHNICAL JOURNAL NOVEMBER 1981

Fig. 2 CSC structure and relationship to mainframe

ICL TECHNICAL JOURNAL NOVEMBER 1981 347

which builds progressively on the layers below it. The principal layers are:

Information Processing

Functions

Telecommunications
Functions

7 Application Layer
6 Presentation Layer
5 Session Layer

4 Transport Layer
3 Network Layer
2 Data Link Layer
1 Physical Layer

(user programs/facilities)
(device characteristics)
(synchronisation)

(end-to-end-connection)
(routing)
(data transfer)
(electrical)

ICL has adopted the OSI model as the basis o f its Information Processing Architec­
ture (IPA).14 The particular relevance of X.25 to IPA is that it can serve as the major
part of the lower three layers of the model.

2 Functionality

2.1 Split o f functions

As explained in the paper by Kemp and Reynolds,14 there are many possible ways
of partitioning the layers of the IPA model between different functional units. For
protocol conversion of X.25 the most natural choice was to separate the lower
three layers and implement them in CSC. The networking capability is therefore
vested in CSC and the end-to-end control is handled by the mainframe.

The other split of function between the mainframe and CSC is that of control as
opposed to data transfer. The general philosophy of ICLC-03 is that the mainframe
is responsible for overall control. It is therefore the mainframe which initiates
conections, breaks them and decides how to recover from serious errors, although
it is CSC that carries out the detail of these operations.

2.2 Services

As well as standard X.25, CSC also implements the ICL DTE-DTE variant for point-
to-point operation.

At the Physical Level X.25 has a choice of connection service: X.21 or X.21 bis.
CSC supports only the latter.

At the Link Level X.25 has the option of operating with either of the access
protocols LAP, LAPB referred to in Section 1.1.3(h). Both of these are
implemented in CSC because the older networks have not yet converted from LAP
to LAPB.

It was explained in Section 1.1.2 that X.25 offers two main types of service:
Virtual Circuits and Datagrams. It was also noted that Virtual Circuits, which are
very similar to physical circuits, fall into two classes: Switched Virtual Circuits
(SVCs) which are analogous to Public Switched Telephone Network connections,

348 ICL TECHNICAL JOURNAL NOVEMBER 1981

and Permanent Virtual Circuits (PVCs) which are analogous to leased-line con­
nections. The concept of a Datagram is rather foreign to many communications
protocols, which usually follow the pattern of connect/exchange transactions/
disconnect. In particular, the mapping of datagrams on to ICLC-03 would be fairly
difficult. It is also unlikely that datagrams will be widely available on X.25
networks in the near future.

CSC therefore supports the Virtual Circuit service only. Besides the basic SVC/PVC
Split mentioned above, Switched Virtual Circuits are further categorised as
Inward (ISVC), Bothway (BSVC) or Outward (OSVC). These labels refer to which
end originates the call, not to which end originates the data since a virtual circuit
is intrinsically symmetrical once it is set up. Note that it is really the logical
channels of the DTE - DCE interface, rather than the virtual circuits, which have a
call direction.

2.3 Facilities

Facilities in the X.25 sense refer to the options available with a particular service.
In the case of CSC they define the properties of the virtual circuits. When a
Switched Virtual Circuit (SVC) is set up the required facilities are specified in the
call request or are given default values. X.25 allows facilities, particularly those re­
lated to flow control, to be negotiated. The recipient of the call may either reject the
call if the requested facilities are unsuitable or accept the call with modified facilities.
This dynamic set-up of facilities is not available on a Permanent Virtual Circuit;
instead, the facilities must be agreed at subscription time with the network
authority and sometimes also with the other party.

The choice and negotiation of call facilities is not really an appropriate matter for a
front-end processor like CSC. For example, the decision to accept a reverse charge
call may require reference to a file of accredited users. CSC therefore handles all
facilities transparently and leaves call analysis or synthesis to the mainframe.
Although the same level of sophistication is not needed at the link or Physical
Levels their connection is handled in the same way for consistency.

A wide range of facilities is available on virtual circuits. The ones permitted by CSC
are as follows, although it should be noted that the support of a number of them is
dependent on the host operating system:

fast select
reverse charging
call re-direction
call charge notification
membership of a private group of subscribers
variable choice of flow control parameters
negotiable choice of flow control parameters
sub-addressing
packet re-transmission

The facility names are fairly self-explanatory, but a few require further description.
Sub-addressing allows the network subscriber address to be extended by further

ICL TECHNICAL JOURNAL NOVEMBER 1981 349

information to determine the process or function required of the called DTE.
CSC does not use sub-addressing since the call request has fields which allow this
requirement to be specified more comprehensively. Packet re-transmission refers to
the ability of the DTE to retransmit an unacknowledged packet on request. This is
not needed for interfacing to an X.25 network but may be required for DTE-DTE
operation, where symmetry is necessary.

It is difficult to design a single DTE implementation which will work against all or
even most X.25 networks because the facilities offered, and sometimes their en­
codings, vary widely.15 The general approach with CSC was to support the common
features and to tolerate variations in the protocol where these were known.
Detailed study of individual network specifications was often necessary to
determine incompatibilities.

2.4 Parameters

The operation of each level of X.25 is characterised by a large number of para­
meters. At the Physical Level they specify the modem and line characteristics. At
the link Level they specify the frame size, time-outs, retry limits, etc. At the
Network Level they specify the packet size, throughput requirement, circuit
type, etc. Although some of these parameters (such as the Link Level addresses)
are fixed by convention in X.25, CSC permits their values to be varied to maximise
the range of applications in which CSC may be used. Thus DTE-DTE X.25
operation at Link Level is simply achieved by giving one end the X.25 DTE address
and the other end the X.25 DCE address.

ICL’s 2900 operating systems have the concept of a catalogue which defines the
potential hardware configuration. Configuration parameters are held centrally in
this catalogue and are distributed when connections are set up. CSC therefore
obtains its X.25 parameters dynamically as required. One consequence of this is
that CSC is unaware which logical channels correspond to each type of Virtual
Circuit. This is convenient in DTE-DTE X.25 operation since what is an Inward
Switched Virtual Circuit at one end is an Outward Switched Virtual circuit at the
other.

3 Architecture

3.1 Protocol conversion

In general terms, protocol conversion requires the abstraction of the essential
concepts of a protocol, such as ‘message’, ‘acknowledgment’ or ‘reset’ and the defi­
nition of their mapping onto another protocol. A protocol converter takes respon­
sibility for operation of the outboard protocol and wherever possible hides the
details of this from the mainframe. For example, a protocol converter performs its
own flow control and undertakes autonomous error recovery, within prescribed
limits. Where the two protocols to be mapped are hierarchically layered it may be
possible to set up a good correspondence between the levels of each protocol. It
might then seem that conversion could simply be carried out on a level-by-level
basis. In practice this is not normally feasible since although the functions of two

350 ICL TECHNICAL JOURNAL NOVEMBER 1981

Fig. 3 Protocol Converter mode I
(a) Linear
(/>) Layered

levels may correspond fairly well the means of achieving them usually do not. This
is the case with protocol conversion between ICLC-03 and X.25.

Protocol conversion is generally quite complex, but is made easier in CSC because
of its specially designed architecture. Fig. 3 shows two representations of the
abstract protocol converter model developed for CSC. The linear representation is
useful for explaining the data flow through CSC whereas the layered representation
is useful for showing the correspondence between the two protocols. The ICLC-03
Secondary component is what the mainframe sees; the task of the protocol converter
is to make this reflect the outside world as faithfully as possible. The Outboard
Driver software is responsible for the levels of the target protocol. The Interface
Converter is at first glance redundant, and indeed is a null function in some of the
CSC protocol converters. However, it serves the useful purpose of allowing different
varieties of ICLC-03 Secondary and Outboard Driver to be coupled. For example,
the Scroll Mode Access Level may be coupled to Asynchronous Driver for local
teletypewriters or to the X.25 Driver for remote teletypewriters concentrated by a
Packet Assembler/Disassembler (PAD). Conversely the X.25 Driver may be coupled
to the Device Independent Access Level for X.25 conversion (see Section 1.2.1(iv))
or to the Scroll Mode Access Level for X.29 conversion.

The structure of the X.25 Protocol Convertor is shown in Fig. 4 in both forms.
Also shown is the relationship of the connection control function to the levels of
the model. Connection control appears as a separate Group and Access Level in
parallel with those of the data route.

3.2 Relationship between levels

Each connection at each level is represented in CSC by a program instance, that

ICL TECHNICAL JOURNAL NOVEMBER 1981 351

Fig. 4 ICLC-03/X.25 Protocol Converter
(a) Linear
(b) Layered
------- data flow
-------control flow

352 ICL TECHNICAL JOURNAL NOVEMBER 1981

is, a piece of shared code together with the data structures particular to that
connection. In X.25 the relationship between Physical and link Level instances is
one-to-one and that between Link and Network Level instances is one-to-many.
However, for reasons of throughput and resilience it is highly desirable to have
several physical connections to the network. At some point this multiplicity of
connections must be brought together to allow alternative routing of messages. This
gives rise to three variations:

(i) Multi-line, where one Link Level is carried over several physical connec­
tions.

(ii) Multi-link, where each Link Level is carried over just one physical connec­
tion but the Network Level is supported by several Link Levels.

(iii) Multi-circuit, where the mutiplexing is carried out at a higher level than
X.25 (for example in the Transport Layer).

The first two possibilities require an intermediate level of protocol between the
Physical/Iink or Link/Network Levels. The third possibility has the attraction of
requiring no change to X.25. It would be feasible to employ multi-line or multi­
link operation at the same time as multi-circuit operation since the former provides
resilience to line failures and the latter provides resilience to network failures. Since
CSC was designed with a view to embracing the structure of X.25 variants it has the
capability of representing the relationship between two levels as one-to-one, one-to-
many, many-to-one or many-to-many. This flexibility would also allow the CSC
X.25 implementation to be used in other contexts, for example for pure HDLC: in

ICL TECHNICAL JOURNAL NOVEMBER 1981 353

this case there would be no Network Level in CSC. Some examples of the structures
that might be built in this way are shown in Fig. 5. Although CSC does not have the
protocol elements to do other than X.25, it was felt to be important to devise the
correct architecture to allow them to be slotted in if required. CSC models the
relationship between levels by chained entries in Physical, link and Network
Level tables. These are tied together under the overall ownership of the Stream
table, a stream being the logical level of multiplexing across the CSC-mainframe
interface. Each table entry describes the address and status of an instance and
points to its data space. The instance’s data space contains its control block,
parameters and work variables.

Fig. 5 Structures that can be represented in CSC
(a) Standard X.25
(,b) Multi-line X.25
(c) Multi-link X.25
(d) Standard HDLC
(a) Multi-point HDLC

354 ICL TECHNICAL JOURNAL NOVEMBER 1981

instance and points to its data space. The instance’s data space contains its control
block, parameters and work variables.

As explained in Section 3.3, every effort was made to make the various levels
conform to the same pattern. Thus the table entries and their corresponding data
spaces have the same format. This means that the three-level structure adopted for
X.25 could in principle be extended to any number of levels although in practice
this has not been necessary.

3.3 Level Model

ICL TECHNICAL JOURNAL NOVEMBER 1981 355

Fig. 6 Relationship between data transfer instances

(pure data). Both the data transfer and connection control interfaces use the same
underlying mechanisms although there are a few differences: for example, the data
transfer interface may be operated in a two-way simultaneous fashion as well as
two-way alternate.

3.3.2 Data transfer: The Network Level is in some senses the most general of the
three levels for it contains both data transfer and multiplexing sub-levels. Section
3.2 describes the concept of multi-line and multi-link operation, where it may be
necessary for a level to drive several lower-level instances. This may also happen at
the Physical Level if the communications coupler is multi-channel. The general
model of X.25 data transfer in CSC embraces these possibilities as shown in Fig. 6.

Each Driver in the model handles the data transfer of one level instance (line, link,
or virtual circuit). The Multiplexers at each level serve two functions: they multi­
plex the traffic at one level onto the lower level and they isolate the Drivers from
each other. If CSC were to implement multi-line or multi-link procedures the
associated protocol would be handled in the Multiplexers. In this sense the Multi­
plexers may be viewed as intermediate sub-levels of the three main levels.

3.3.3 Connection control: Connection control is exercised by a separate hierarchy
of levels which parallels the data hierarchy. There is a deeper point here which is
not fully exploited in CSC, namely that the function of a level can be viewed from
many aspects: data transfer, connection control, error management, testing, etc.
Thus many hierarchies co-exist as different facets of the same architecture. Each
CSC level has a Connecter function associated with it. In the interest of common­
ality the Connecters all conform to the same internal interface standard.

Connection of a level instance requires the higher level to be notified that a new
instance is available for use. Conversely, disconnection requires the higher level to
be told to delete the instance from its scheduling queues. To avoid conflict over the
use of the instance, a control function is provided which allows higher level data
transfer to be disabled pending re-connection or disconnection.

Summarising these points, connection is exercised via the Connecter (for

356 ICL TECHNICAL JOURNAL NOVEMBER 1981

Fig. 7 Relationship between connection control instances

connection of a level instance) and via the Multiplexer (for use of a lower level).
This is illustrated in Fig. 7.

3.3.4 Composite model: Previous Sections have introduced the concepts of the
Driver, Connecter and Multiplexer. An instance of the Driver and Connecter exists
per line, link or virtual circuit, but the Multiplexer is single-instance per level. The
functions of these three components are as follows:

interfacing to higher level
message transfer

error detection and recovery

timer control

interfacing to connection control

overall control of instance

error reporting

interfacing to lower level

multiplexing

scheduling

ICL TECHNICAL JOURNAL NOVEMBER 1981 357

The relationship between the Connecter and the Driver is symbiotic. As well as
performing message transfer for the Connecter, the Driver also looks after other
functions such as time-out and error recovery. Only if the Driver detects a serious
or persistent error does it inform the Connecter. In error conditions or during
(disconnection the Connecter can disable the Driver, preventing input or output.
Errors are notified to the mainframe, where the decision to recover or abandon the
connection is made. If the Connecter is told to continue operation it resets the
connection and enables the Driver.

The Multiplexer performs input and output on behalf of the Drivers, thereby
isolating them from the lower level. One aspect of this is that the Multiplexer takes
responsibility for the message header (address and control fields). Supervision of
the address field is clearly appropriate since it is intrinsic to the multiplexing
function. The Multiplexer maintains a list of connected instances at its level so that
it can route incoming messages on the basis of their address. Supervision of the
control field is less obviously appropriate since this concerns Driver or Connecter
operation. However, CSC can optimise on buffer usage when dealing with super­
visory messages (which are quite common). Since these consist of the message
header only it is not necessary to allocate a buffer to them. The Multiplexer there­
fore extracts or inserts the control field along with the address field, but allows
the Driver or Connecter direct and transparent use of it.

For simplicity all Connecter messages are routed through the Driver so that the
Multiplexer has to schedule transfers on behalf of Drivers only. There is a very

Fig. 8 Composite model of an X.25 level
------- data flow
-------control flow

358 ICL TECHNICAL JOURNAL NOVEMBER 1981

simple and convenient division of message types between the Driver and the Con­
necter: the former receives numbered messages (data, acknowledgements, etc.) and
the latter receives unnumbered ones (connect, reset, disconnect, etc.) Since the
Multiplexer has to handle the control field anyway, it carries out this numbered/
unnumbered categorisation although it does not perform the Driver/Connecter
split. Because of the structure of X.25 control fields it is possible for the Multi­
plexer to categorise message types without being aware of their meaning.

Some X.25 functions require co-ordinated control of all the instances at a level:
specifically, this is needed on disconnection of a level (which leaves upper levels
unsupported) and on Network Level restart (which re-initialises all circuits). The
Multiplexer takes responsibility for this overall control of a level, making use of the
list of connected instances which it maintains for multiplexing purposes.

The above observations on the inter-relationship between the Driver, Connecter
and Multiplexer are brought together in the composite model in Fig. 8.

4 Resource Management

4.1 Scheduling

Although the Kernel software in the CSC (see Section 1.2.2) provides overall system
scheduling, the X.25 subsystem is responsible for allocating processing to individual
instances at each level. To prevent excessive path lengths through this software each
level is scheduled separately. There is normally just one instance at the Physical and
Link Levels so scheduling is unnecessary. However, consistent with the principle of
making the levels resemble each other a general output scheduling algorithm was
designed.

This algorithm assigns to each instance a priority which is defined such that its
throughput is twice that of an instance at the next lowest priority. Certain com­
plexities arise in the design: for example, it is desirable to service higher priority
requests which occur during processing of a lower priority instance, yet higher
priorities must not be allowed to lock out lower ones for long periods. This is
achieved by allocating a processing quota to each priority. The quota expresses the
relative throughput required and is dynamically calculated from the number of
instances and average message length for that priority level.

Those familiar with X.25 will have realised that the scheduling priority closely
resembles the Throughput Class defined for virtual circuits, and this indeed was the
justification for an algorithm of this form. However, it was reckoned that the cost
of running such an algorithm would be a significant contribution to the CSC
processing load. A simple single-priority scheduler was therefore implemented.
Although this means that a mixture of bulk and interactive X.25 traffic may not
be optimally handled it does result in a compact and efficient design.

Two considerations in the design of the output scheduler were how to determine
which instances required service and whether to lock on to active instances. The

ICL TECHNICAL JOURNAL NOVEMBER 1981 359

scheduling system adopted operates ‘on demand’, that is, Drivers requiring service
(i.e. output) notify the Multiplexer and have their requests queued by it. The
alternative procedure of having the Multiplexer scan the Drivers for traffic was
judged to be less efficient as the Drivers are usually inactive. Since a Driver is
allowed to have only one service request outstanding (but may have others pending)
the question arose of whether to remain with a Driver until all its requests were
satisfied. If a message is preserved until all its component frames or packets have
been acknowledged, locking on to a Driver could be beneficial as far as buffering is
concerned. However, CSC can delete buffers as soon as acknowledgements are
received. It was therefore decided to service requests one at a time in strict rotation
of Drivers, thereby precluding heavily utilised instances impeding traffic on others.

Once the Multiplexer has selected a Driver to service, the allocation of a lower level
instance to carry out the request is quite straightforward. The Multiplexer
maintains a queue of lower-level instances that are available for output and simply
selects the first of these. If several alternative physical connections were available to
an X.25 network this algorithm would automatically ensure that output traffic was
allocated to them in proportion to their capacity. (The physical connections need
not be all of the same speed).

As far as input scheduling is concerned, the chronological order of message arrivals
determines the processing sequence. The only point worth mentioning is that the
method used in CSC for communicating between levels is more efficient when input
responses are passed in bursts. The Multiplexer therefore does not lock on to a
lower-level instance which has input, but takes input messages in strict rotation
from all the instances.

4.2 Buffering

X.25 is defined such that the units of Physical, link and Network Level transmis­
sion are the same. It is therefore feasible to share the buffers of a message between
all levels. There are two subtle pitfalls in doing this, however. One is that an ac­
knowledgment for message buffers may be received at a higher level before lower
level acknowledgment has yet been received. Although the provisions of X.25
exclude this possibility, the DTE must protect itself against possible errors since the
consequence would be continued use of buffers which have been freed elsewhere in
the system. The other pitfall is encountered if a request to retransmit parts of a
message is received at a higher level before lower levels have yet finished with the
associated buffers. It may then happen that a level is required to have the same
buffers queued for transmission more than once. This is not possible in X.25
proper, but may happen in DTE-DTE X.25 operation.

CSC implements a general solution to both the above problems. Each level is
allowed to queue the buffers associated with a message once. But each level (and
sub-level, to allow for the Multiplexers) must mark the buffers as being in use.
Only the last user of the buffers may free them. A request to re-transmit a buffer
which is still queued at a lower level is suspended until the lower level has finished.
Clearly this approach may be applied to any number of levels.

360 ICL TECHNICAL JOURNAL NOVEMBER 1981

The question arises of whether the same message buffers can be shared between
both the ICLC-03 secondary and X.25 levels. Unfortunately this is not possible
because both halves of the protocol convertor operate independently. Particular
difficulties in sharing buffers would occur in the event of a reset on one side or the
other. CSC therefore copies the message in the Interface Converter. Although this
imposes a performance penalty there are several advantages in doing so:

(i) Message fragmentation can easily be changed (for example, the ICLC-03
link Level packet size is fixed but a variety of X.25 packet sizes can be
catered for).

(ii) Character conversion or checking can be performed simultaneously. This
is not necessary for pure X.25 interfacing but is essential for X.29 where
character parity, for example, must be generated or checked.

(iii) Autonomous operation of the inboard and outboard protocols can be
preserved.

4.3 Flow Control

X.25 offers a variety of facilities for data flow control. Indeed these overlap suf­
ficiently that it is not clear what subset to choose. Although the message size and
throughput parameters have a bearing on the flow control, the primary mechanism
is a ‘window’ which limits the number of messages that may be outstanding,
awaiting acknowledgment. There are several ways to regulate the flow of input
data:

(i) Acknowledgments to input can be delayed. This is possible but not recom­
mended at link Level, but is permissible at Network Level. The disad­
vantage of this technique is that sufficient buffering must be permanently
allocated to accommodate the window. The effect on the remote station is
also undesirable in that it does not know to cease transmission until the
window is full, so its own buffering is increased.

(ii) The remote station can be told to suspend transmission. This is achieved at
Link or Network Level by a special supervisory message, but it may not
prevent the window becoming full since there may be messages already in
the pipeline. However, the remote station is advised of the blockage as
soon as possible.

(iii) Input data which cannot be buffered can be discarded and a request for
re-transmission issued later. This is permissible at Link Level but is not
always permissible at Network Level, since only some X.25 networks offer
packet re-transmission. The advantage of this technique is that buffers do
not need to be locked down for each circuit in case the window becomes
full. The disadvantages are the need for re-transmission, and the limitation
to those networks which support packet re-transmission.

CSC uses technique (ii) for its flow control, but can also use technique (iii) with
suitable networks. This has the advantage that the same algorithm could be used at

ICL TECHNICAL JOURNAL NOVEMBER 1981 361

link and Network Level to maximise commonality. However, as already observed
in Section 4.2 the X.25 levels share the buffers of a message. There is therefore
little point in controlling the input of the same buffers at more than one level. In
order to preserve the independence of the access level conversations CSC operates
its flow control at Network Level only.

4.4 Error control

Although CSC has autonomy in managing its X.25 operations, it is ultimately
subject to mainframe control. CSC therefore notifies the mainframe of any change
in connection status: successful (dis)connection, unsuccessful (dis)connection,
unsolicited (dis)connection, or unrecoverable error. The reason for a failure is
specifically identified and diagnostic information (e.g. the message which caused
the error) is supplied.

Many error conditions are possible in X.25. A number of these are fairly harmless
and can safely be ignored by a DTE. CSC adopts a defensive approach to error
detection and in general checks for only these errors which would cause subsequent
(and often indeterminate) failure if untrapped.

X.25 failures are often context-dependent: to resolve them requires knowledge of
the protocol exchanges prior to the error. A convenient feature of the inter-level
interface mechanism in CSC is that a trace of all messages is kept. The progress of a
message through the levels or the history of the messages at a level may therefore
be determined.

4.5 Statistics

There are many reasons for maintaining statistics about X.25: for example, per­
formance assessment, reliability monitoring and network accounting. Because of
the cost of keeping statistics CSC maintains only a rudimentary set, which none­
theless enables a variety of interesting information to be derived. An overall system
picture can be obtained by combining the mainframe and CSC statistics.

The same set of statistics is computed by CSC at each X.25 level although the
meaning of terms like ‘supervisory message’ and ‘failure’ obviously differs from
level to level:

(i) Total number of data messages
(ii) Total number of supervisory messages

(iii) Total number of failures (recoverable and unrecoverable)
(iv) Totals peculiar to internal CSC operation

From these statistics it is possible to calculate factors like the throughput, the line
error rate and the effectiveness of the X.25 double-numbering (which allows ac­
knowledgments to be carried in data messages). CSC tuning information can also be
obtained.

362 ICL TECHNICAL JOURNAL NOVEMBER 1981

5 Testing

5.1 Developmen t aids

Because of the complexity of the CSC X.25 developments it was essential to provide
a graded series of test environments, leading up to the reference test described in
the next Section:

(i) Isolated testing of levels
(ii) Hierarchical testing of levels

(iii) Testing against a protocol simulator
(iv) Testing in loop-back mode
(v) Testing with point-to-point connection

To facilitate the off-line testing of levels two test-beds were developed: a Higher-
Level Simulator and a Lower-Level Simulator, which simulate the interfaces to a
level. One consequence of designing all levels to a common interface standard was
that the same test-beds could be used to test the Physical, lin k or Network Level.
Furthermore the test-beds could be operated independently at any level, so that a
level could be checked in isolation or a set of levels could be checked in con­
junction. It was therefore possible to develop all of the X.25 code in parallel, not in
series as might have been expected.

A variety of communications monitoring equipment is now available with an X.25
capability. The actual facilities offered vary widely between manufacturers, in some
cases being little more than HDLC and in others being full network simulation. Two
testers were used during CSC development: one with basic X.25 features but
flexible enough to generate any protocol sequence, and one with complete
simulation of specific networks. The use of the basic X.25 tester was justified by
the fact that there are many conditions that do not usually arise in normal transfer
but which must be checked.

Loop-back and point-to-point testing are virtually the same, but the latter gives
more confidence in that two systems are involved. As mentioned in previous
Sections the asymmetries of X.25 can easily be overcome, which makes self-testing
quite feasible.

5.2 Reference tests

Ultimately the X.25 DTE must be connected to a real network. Although network
administrations differ in their requirements the manufacturer must usually demon­
strate conformance to electrical safety standards and to X.25 protocol standards.
The network administration carries out an initial investigation of this and grants
temporary ‘permission to connect’ if the results are satisfactory. Full permission is
not granted until the DTE’s implementation of the protocol has been confirmed by
operation on the network for a trial period. It is very useful if a DTE can be
checked in advance against a reference tester for the network. Some commercially
available communications monitors have been approved for this purpose, and
as already mentioned one was used during CSC development.

ICL TECHNICAL JOURNAL NOVEMBER 1981 363

6 Conclusions

It will be apparent from this paper that many interlocking design decisions have to
be made in the implementation of an X.25 DTE. This is aggravated by the nature of
the X.25 Recommendation itself, which is almost exclusively DCE-oriented.
Experience on the CSC has shown that a properly designed arthitecture considerably
eases the implementation of a complex protocol like X.25. Careful isolation of
layers and functions allows the task to be partitioned into manageable units and
facilitates testing and maintenance. Although the CSC design is only one of several
feasible alternatives, it is hoped that its principles may prove of interest to others
working in this challenging and important field.

Acknowledgments

Several people within ICL and the CSC project have helped to mould the design
presented in this paper. Particular mention must be made of R.J.Gillman who
collaborated on the overall design and who developed network-independent
standards for ICL implementation of X.25. The architectural model stems from the
pioneering work of D.J.Ackerman. Thanks are also due to Carol Thorley for typing
the manuscript.

References

1 CCITT: X-Series (Public Data Network) Recommendations, Orange Book Vol. V11I.2.
International Telecommunications Union, Geneva, 1977.

2 CCITT: X-Series (Public Data Network) Recommendations, Yellow Book Vols. VIII.2
and VIII.3. International Telecommunications Union, Geneva, 1981.

3 RYBCZYNSKI, A.M. and PALFRAMAN, J.D.: A common X.25 Interface to Public Data
Networks C o m p u te r N e tw o r k s , 1980, 4, 97-110.

4 DAVIES, D.W., BARBER, D.L.A., PRICE, W.L. and SOLOMONIDES, C.M.: C o m p u te r
N e tw o r k s a n d th e ir p r o to c o ls . Wiley, New York, 1979.

5 SLOMAN, M.S.: X.25 Explained. C o m p u te r C o m m u n ic a tio n s , 1 9 7 8 , 1(6), 310-326.
6 HOULDSWORTH,J.: Standards for open network architecture. IC L T ech . J ., 1(1), 1978,

50-65.
7 ISO: International Standard 6159 (HDLC Unbalanced Class of Procedures). International

Organisation for Standardisation, Geneva, 1980.
8 ECMA: Standard 60 (HDLC Unbalanced Class of Procedure). European Computer Manu­

facturers Association, Geneva, 1979.
9 ISO: Draft International Standard 6256 (HDLC Balanced Class of Procedures). Inter­

national Organisation for Standardisation, Geneva, 1978.
10 ECMA: Standard 61 (HDLC Balanced Class of Procedure). European Computer Manu­

facturers Association, Geneva, 1979.
11 ISO: International Standard 1745 (Basic Mode Control Procedures). International

Organisation for Standardisation, Geneva, 1971.
12 BRENNER, J.B.: Using Open System Interconnection standards. IC L T ech . J ., 1980,

2(1), 106-116.
13 ISO: Draft Proposal 7498 (Open Systems Interconnection Basic Reference Model). Inter­

national Organisation for Standardisation, Geneva, 1980.
14 KEMP, J. and REYNOLDS, R.: The ICL information processing architecture IPA. IC L

T ech . J ., 1980,2(2), 119-131.
15 HESS, M.L., BRETHES, M. and SAITO, A.: A comparison of four X.25 Public Network

Interfaces. Proceedings of the International Conference on Communications, Boston,
1979, 38.6.1-38.6.8.

364 ICL TECHNICAL JOURNAL NOVEMBER 1981

Viewdata and the ICL
Bulletin System

D.R.Olivey
Baric Computing Services Ltd., Feltham, UK

R.Sugden
ICL, Feltham, UK

Abstract

Viewdata is one of the newest areas of interest in computers. The paper
describes the design and implementation problems encountered in pro­
ducing ME29 BULLETIN, ICL’s first Viewdata product.

1 Introduction

Viewdata, or VIDEOTEX as it is now becoming called, is as yet a loosely defined
area of computer systems, but at its broadest it is concerned with making online
computer systems available to a mass audience. It attempts to achieve this by
building on the components of current TP technology, standardising and simpli­
fying wherever possible.

Its current implementations, centred around PRESTEL,* are mainly concerned
with data-display functions but attention is increasingly being paid to the provision
of interactive facilities.

The Viewdata concept as we now know it began in the Post Office Research
Department in 1970/71. The evolution of the original ideas into a working,
marketable product has been a team effort, involving the Post Office, terminal
suppliers and information providers, but special note must be made of the work of
Sam Fedida who is generally acknowledged as the ‘father’ of Viewdata. The results
of this heavy investment over a period of ten years has been PRESTEL, a public
Viewdata system now available over two thirds of the country. Although ac­
knowledged to be behind its original commercial targets, PRESTEL can certainly
claim to be a technical success; in mid July 1981, PRESTEL supported 10212
registered sets which make an average of 185 500 data retrievals per day.

Why is Viewdata more cost effective than conventional TP technology? Its chief
advantages are:-

(<z) It reduces terminal costs by use of cheap mass-produced terminals, built
around television sets. All sets are built to a common PRESTEL standard

♦Note: PRESTEL is the registered Trade Mark of the Post Office (British Telecom) Viewdata
Service

ICL TECHNICAL JOURNAL NOVEMBER 1981 365

thus allowing any terminal to connect to any Viewdata system. Further,
the terminals are multi-purpose; they can be used as television orTeletex
receivers, as play-back equipment for Video Cassette Recorders or, with
additional electronics, as a home computer.

(b) The Viewdata terminals available allow colour and simple block graphics
to be introduced to the commercial terminal market at an acceptable price.

(c) Viewdata attacks network costs and installation delays by

(i) using the existing Public Switched Network rather than dedicated
lines

(ii) removing the need for and cost of conventional modems by the use
of built in modems within each receiver. Connection to the tele­
phone network is by simple jack plug

(iii) the mainframe resources needed to handle any given number of
terminals are minimised by the use of autodial and disconnect

(iv) the human interface to the system is explicitly designed for use by
untrained staff.

This last item needs to be explored further. The designers of PRESTELhave clearly
done a great deal of work on simplifying the user interface. Very little background
knowledge is necessary for a user to use the system; on certain terminals for
example it is possible to dial-up, input a username and receive the first screen by a
single key depression. Once on the system, all screens should offer guidance on
what to do next whilst the syntax of the user inputs themselves is very simple.
Interestingly, while many system designers are trying to move towards an ‘English’
style of input, PRESTEL has gone to the other extreme. All commands are built
from the 12 character set 0 to 9,* and #. The system is usable because so few com­
mands are necessary; 7 commands (*0#, *number #, *#, *00, *09, number and #)
are adequate for most tasks, so users soon forget about the strangeness of the com­
mands. The use of so few characters has the advantage that it allows very small (and
cheap) keyboards to be used; ultimately the keypad of a press-button telephone
(which also uses the same 12 characters) can be used in a combined telephone/
terminal system.

The technical success of Viewdata as a means of disseminating information is self-
evident to anyone who has seen a demonstration of either PRESTELor BULLETIN;
its commercial viability is dependent upon the usefulness and hence value of the
information stored within the system. It soon becomes apparent that the major cost
in running a Viewdata system is maintaining the accuracy and timeliness of this
information.

On dedicated systems such as PRESTEL, running on a stand-alone computer, the
cost of data maintenance is high because most material is still updated by hand
through an editing keyboard. PRESTEL is cost effective since it provides a national
audience for the data. The aim of BULLETIN is to make Viewdata systems viable
in a smaller, company-wide environment. This can be achieved if Viewdata users
can be provided with easy access to the users’ already computerised data and
applications. The requirement, therefore, is for the integration of Viewdata into the

366 ICL TECHNICAL JOURNAL NOVEMBER 1981

complete DP environment. How this integration is achieved in practice is explained
in Section 3.

2 Design criteria and objectives

It must be assumed that the end-users of a Viewdata system are non-specialists who
have no desire to become computer experts. It can be assumed however, at least in
the UK, that users will be familiar with the PRESTEL interface and,
indeed, it seems important for the development of Viewdata as a whole that our
interfaces ‘reinforce’ the PRESTEL style. Like most of its competitors, therefore,
BULLETIN has chosen to adopt a terminal interface which utilises not only the
PRESTEL hardware interface but also the PRESTEL terminal end user interface.
Where BULLETIN goes beyond PRESTEL in facilities, sympathetic extensions of
the PRESTEL interfaces have been attempted.

It is worth making the point that most users regard the excellent response times of
PRESTEL as an integral part of the user interface. Since BULLETIN supports its
terminals through a front-end processor, some compromise has to be accepted here
but the maintenance of response times is seen as a vital part of the usability of the
overall product.

Below the terminal user interface, any Viewdata system can be regarded as a fairly
typical online system. This implies the need for:

(a) resilience ; the BULLETIN pagestore must withstand failures on terminals,
disc drives and in the BULLETIN software itself

(b) recovery; after a failure, the system must be capable of restarting its
service as soon as possible without the loss of any confirmed data

(c) online updating; when editing, the system must guard against simultaneous
updating of the same data

(d) minimum system operator involvement; it is likely that BULLETIN will
be run as a continuous background system

(e) HELP facilities; as a system aimed at non expert users, the system must be
capable of helping terminal users when they get stuck.

Finally, there were two commercial constraints. Although detailed design did not
start until July 1980, there was a requirement for a demonstrable product on the
recently announced ME291 in January 1981. This implied that implementation
must use reliable and well proven design concepts. Further it was recognised that no
changes could be made in ME29 firmware over the time period of the first phase of
the development. The system was therefore built as a superstructure product with
the possibility of using special hardware external to the ME29.

3 The system

3.1 Definitions

Since BULLETIN is required to offer PRESTEL compatibility at the user

ICL TECHNICAL JOURNAL NOVEMBER 1981 367

terminal level, it is necessary at this point to define the basic Viewdata terminology
Since its prime concern is information retrieval, a Viewdata system is centred
around a file of screen images, which in BULLETIN is known as the pagestore.
Each screenful of information is known as a frame; while up to 26 frames on the
same topic are linked together to form a page. Data access is by page number, a
numeric string, of up to 11 digits, assigned to every page. Requesting a particular
page number causes the first frame, known as frame A, of the page to be displayed
on the screen. The other frames within the page, labelled B to Z, respectively, can
be viewed in sequence by requesting the next frame with the # command. Direct
access to non-A frames is not permitted.

Although pages are free-standing entities, pages are related to each other through a
numeric tree structure in which the 10 filials of a page, formed by adding another
digit (0-9) to the right hand end of its page number, are defined as being ‘owned’ by
that page. In BULLETIN, the page ownership system is taken further; a particular
page may be defined as a start page or start node for an Information Owner; all
filials of the start page and so on down the tree structure are then defined as being
owned by that information owner. These concepts are illustrated by Fig. 1.

Fig. 1 Viewdata pagestore structures

368 ICL TECHNICAL JOURNAL NOVEMBER 1981

The terminal user wishing to retrieve data from the system navigates his way
through the pagestore with a very simple set of user commands. If the page number
required is already known, it may be called up directly. In most cases, however, the
user will need to search for the required data; the low numbered pages in a Viewdata
system are therefore primarily used for indexing pages. As an aid to indexing, a
built in routing facility is provided on each frame. When a frame is set up, the
editor may define up to 10 routes to other page numbers. When the frame is on
view, a response of a single digit will cause the system to automatically retrieve
frame A of the page referred to in the corresponding entry in the routing table. A
response of 0 retrieves the first page referred to in the routing table, a response of
9 retrieves the page pointed to by the last entry, etc. Thus movement through the
indexing pages to the data pages is by single-character user responses.

The default routing system follows the filial ownership system; that is the routes
on a frame point to frame A of the 10 filials of the current page. It is also possible
to define the entries in a routing table explicitly and this allows an indexing frame
to steer a user to any part of the pagestore.

In addition to the frame retrieval commands, it is also possible to recall the frame
last viewed (*#) and to request the redisplay of the current screen, (xoo).

3.2 The pagestore

3.2.1 The file: The basis of any Viewdata system similar to PRESTELis its page-
store so the major design decision in implementing BULLETIN was to choose a file
structure for the pagestore which would be both reliable and familiar but which
would also meet the accessing requirements.

As was described in Section 3.1, access to the pagestore is always by explicit,
usually random, page number. However the nature of the filial pagestore system
means that the page numbers key set itself will not be random; instead it will
comprise dense bands of page numbers separated by large gaps. Thus the most
obvious file structure, a hashed random file, was ruled out because of the difficulties
of producing an algorithm which would spread the user-defined page numbers
evenly across the file. This led to the adoption of a standard index-sequential file
maintained to 1900/ME29 Direct Access Housekeeping standards (DAHK) as the
basis of the pagestore. This also had the advantage of allowing existing ME29
utilities to be used in the pagestore create/dump function. It was also recognised,
however, that conventional index-sequential files have performance problems when
used for high-throughput retrieval functions. The target for BULLETIN is to
perform no more than a single disc transfer for each frame read, but index-
sequential structures require up to 3 index reads plus extra transfers for overflow
records. The index problems have been met by the provision of a buffer stack
within the BULLETIN Retriever (see Section 3.4). This is maintained on a usage
basis so that frequently used index records (and data frames) are retained in store
indefinitely. Degradation of the system due to overflow can be prevented by regular
use of the BULLETIN dump/reorganise utility. The initial versions of BULLETIN
do not meet the target of one transfer per frame but further improvements in the

ICL TECHNICAL JOURNAL NOVEMBER 1981 369

code are expected to keep the system from becoming disc bound on normal ME29
configurations.

Since index-sequential structures have always been recognised as a less than ideal
choice, care has been taken to ensure that the whole pagestore accessing system is
easily replaceable. Now that the initial product is completed, it is hoped to spend
some time and effort reviewing the possible replacement file structures. This is
likely to be either a non-DAHK variant of conventional random files or a straight
conversion to the standard database system, known as TME-RAPID, which is now
integrated with the operating system.

3.2.2 Record formats: The terminal end-user is aware only of the existence of pages
and frames within the pagestore but much ‘red-tape’ material describing usernames,
passwords, security restrictions etc. also has to be stored. All of this information is
represented by different record types existing within the single physical file. The
convenience to the user of maintaining a single, easily portable, pagestore is seen as
being well worth the software complexity necessary to cope with a single file
containing 20 different record types.

3.2.3 Screen contents: The frame records within the pagestores contain the colour
and graphic control data ready for display on the users terminals. To the outsider,
the use of colours and graphics is the most obviously novel feature of Viewdata;
in practice it is one of the easiest elements of the systems to handle.

The designers tackled the problem of describing colours and graphics within the
ISO character set by redefining the use of the ESC (ISO 1/11) character. ESC is
now used to define the start of a control function character pair; the second
character defines the function required. Full details are given in the British Telecom
specification2 but as an example ESC followed by A causes all data up to the next
control character to be output in red. Other ESC/character sequences allow use of
six colours (plus white) for both alpha and graphical displays. All control character
pairs occupy a single, usually space-filled, character position on the screen.

When in the graphics mode, the terminal interprets the ISO data characters 2/0 to
3/15 and 6/0 to 7/15 as indexes to a table of 64 graphic shapes. The character set
used is compatible with that used by the British TELETEXT services CEEFAX and
ORACLE, thus simplifying the building of television sets capable of receiving both
Viewdata and Teletext.

The generation of the colours and graphics therefore is a feature of the terminal
itself and requires no mainframe intervention. Thus, support of a fully interactive
system, in which data is both entered and retrieved through terminals, presents few
problems in character handling in that the colour and graphic characters are seen by
the mainframe as standard ISO data. The problem areas lie in providing facilities to
map existing ME29 files (which use a 64 character set) on to the colour and
graphics of a Viewdata frame. The problems in trying to print the Viewdata
character set (160 characters and graphics in any of seven colours) on a standard
ICLline printer can also be imagined!

370 ICL TECHNICAL JOURNAL NOVEMBER 1981

It is worth mentioning in passing that the introduction of colour terminals adds a
surprising degree of complexity to the design of screen layouts. A good colour
display can add life and impact to the most boring information but poor design can
confuse and tire users far more than the equivalent monochrome display.

3.3 Handling o f Viewdata terminals

The PRESTEL receiver protocol is asynchronous full duplex and cannot be handled
directly by any of the existing ME29 couplers. Fortunately, a solution to this
problem had already been found as part of the THORNTEL ‘special’ developed by
ICL’s Letch worth Development Centre (LDC) for Thom Television Rentals; the
chosen solution was to produce a Viewdata Protocol Convertor based on the LDC
CREAM product. The convertor for BULLETIN, known as the BULLETIN Link
Unit, (abbreviated to BLU), was originally built around an INTEL 8085 linked to
standard ICL boards. This supported up to four Viewdata terminals and converted
the PRESTEL format data to ICL C01 protocol for mainframe processing. The
Mark 2 BLU, built around an INTEL 8086 and supporting up to 8 Viewdata lines,
is now superseding the original BLU.

The BLU performs three functions. First, it controls the content of the terminal
screen. The terminal operator has the illusion that data typed in through the key­
board is copied directly on to the screen. In practice, the BLU inspects every
character as it is typed and echoes it back to the screen if appropriate. Advantage
has been taken of this system to produce an ‘intelligent’ terminal user interface
particularly in the area of screen-editing functions.

Secondly, the BLU acts as a data concentrator. Up to four (eight in the Mark 2
BLU) Viewdata lines are handled and their messages queued for onwards trans­
mission to the ME29 over a 4800 baud line (9600 baud in the Mark 2 BLU). To the
ME29, the BLU is seen as a Queuing Line Sharing Adaptor (QLSA) with each
Viewdata line addressable as an individual 7181 video terminal.

Finally, the BLU in conjunction with its Model 20 British Telecom modems handles
the auto-answer and auto-disconnection of the Viewdata terminals. In sizing terms,
an 8 port BLU can be equated with a 7502. Our measurements indicate that four
8-port BLUs can be supported by an ME29/35 with response times of about 2
seconds assuming 9600 baud links to the BLU. The 32 ports in such a system can
serve 32 concurrent users so that in a commercial environment some 100 or more
Viewdata terminals may use the system on a dial-up basis. Clearly, the maximum
number of terminals that can use the system effectively is dependent upon the
application and the pattern of calls during peak periods. The ability of a com­
paratively few BLU ports to handle a large terminal population is one of the main
economic strengths of Viewdata vis-a-vis standard TP terminals.

It is also possible to situate the BLU remotely from the ME29, possibly linked to
the mainframes by a leased line. This should save telephone costs by allowing a
clustered population of terminals to access their BLU at local rather than STD
telephone rates.

ICL TECHNICAL JOURNAL NOVEMBER 1981 371

3.4 The software

3.4.1 Basic retrieval functions: Section 3.1 defined the terminology of Viewdata
and outlined the range of commands available for data retrieval. These are handled
in BULLETIN by the Retriever, a free standing TP program which analyses the
users’ requests and satisfies them with frames of data. The retriever also controls
access to the system generally. Access to the retriever is under the scope of a
username; this may have a password and terminal list defined to limit its use to
authorised staff. Once connected to the system, a user may only retrieve pages
which explicitly include his username in their access control list; thus a pagestore
may contain pages which are freely available, marked as viewable by a username
called PUBLIC; pages which are available only to a list of specific usernames; or
pages which are available only to the person who created them.

The other main task of the Retriever is the management of the Viewdata terminal
network. Since Viewdata terminals compete for ports on the BLU, close control on
the state of the system must be maintained if the network is not to become choked
by failed lines and abandoned terminals. The Retriever is kept aware of any terminal
mishaps by the use of status messages transmitted from each BLU at one minute
intervals; in particular they inform the Retriever of any unused terminals or, more
accurately, any keyboards which have not been touched in the last minute. If a
terminal keyboard is idle for five successive minutes, the Retriever disconnects the
port to allow other users access to the system.

Although timeout checks are common features in online systems, the ability of
BULLETIN to distinguish between genuinely idle terminals (no keyboard activity)
and those being used by slow typists does seem to be a comparatively novel feature.

3.4.2 Retrieval extensions: Although the original concept of Viewdata was that of a
data-retrieval system (hence the word Viewdata) it has become increasingly apparent
that some degree of interaction is vital to the acceptance of Viewdata for business
use. PRESTEL recognised this with the introduction of response frames;
basically, formatted screens supporting protected and unprotected areas. Because of
the weaknesses of the PRESTEL protocol (character level parity but no block level
protection against missing characters), great care has to be taken in handling user
inputs. PRESTEL and BULLETIN handle this by ‘echoing back’ the users’ input
with a request for him to check and confirm that the data received is correct before
the system proceeds further. Since the BULLETIN retriever is a free-standing
program, all data is written to a journal for later off-line processing by user-written
software.

Frame retrieval and response frames exemplify a stand-alone Viewdata system,
largely isolated from the rest of the users computer systems. BULLETIN bridges
this gap with its ‘Window’ concept; this provides Viewdata terminal users with
access to other user-supplied TP programs. The system works by the user desig­
nating one or more frames in the pagestore as window frames; such frames are
labelled with the name of a user application program. When the terminal user
calls up a window frame, the BULLETIN retriever notes the program name and
establishes if the named application is currently available. On the ME29, under

372 ICL TECHNICAL JOURNAL NOVEMBER 1981

Fig. 2 Schematic of software

MTS, this is implemented by the TP-TP message passing system. If the user applica­
tion is loaded, the Retriever returns the text of the window frame to the terminal
screen; this will inform the user about the application he has called up. All further
user inputs are now passed directly to the user application which is responsible
for generating a reply to each input message (see Fig. 2). To simplify building a
reply, the user application is encouraged to use a frame on the pagestore as a
‘template’; application-supplied strings of data can be merged into this before the

ICL TECHNICAL JOURNAL NOVEMBER 1981 373

complete screen is output. The link between terminal and application can be ended
by either end of the link whilst the Retriever applies timeouts to the application to
prevent Viewdata terminals becoming locked out due to looping or failed applica­
tions.

The uses of this system are legion. Specific new programs could be produced to
provide, say, keyword search on one of more files, or to perform complex calcu­
lations on data supplied by the terminal user. More importantly, existing TP sys­
tems may also be modified to support enquiries from Viewdata terminals. In an
order entry system, for example, window links could be added to provide enquiry
facilities for home based salesmen to query the state of their orders, whilst it would
also be possible to provide a management facility for enquiries on orders received
so far today. It is hoped to adapt many of the existing ICL packages to provide
such enquiry systems. Carried to its logical conclusion, this system converts View­
data into a TP monitor in which the system handling aspects (log-on, terminal
fails, recovery, even charging by use) are performed by BULLETIN whilst the
application code is written by the user.

3.4.3 Updating the pagestore: It seems possible that some BULLETIN systems will
consist solely of a Retriever linked to one or more window programs. In this situation
the pagestore will be used purely to hold template pages. In most installations,
however, some if not all of the information will be held as standard text frames in
the pagestore. BULLETIN offers three techniques for maintaining the pagestore.

3.4.3.1 The Editor: The pagestore can be updated by an interactive editor that
runs alongside the Retriever. The editor operates directly on the pagestore and
includes the usual elements expected of any online system; it uses a locking system
to prevent simultaneous updating of a page, while intermediate results are kept on
a workfile until the terminal user confirms that the edit is complete. This is neces­
sary since the Editor has no control over the actions of the retrieval software; the
pagestore must be updated in such a way that the Retriever always gets coherent
results even though the page it is retrieving is currently being edited. All edits are
logged into a journal. This can be used to rebuild the complete pagestore from a
previous dump if the pagestore becomes physically corrupt.

Designing the user interface to the Editor required major extensions to the PRESTEL
interface. Again it had to be assumed that non-computer staff would use the editor,
so a menu-select interface was adopted to guide users through the system to the
appropriate point. In practice this turned out to be inefficient since it has proved
impractical to standardise the menu screens to any significant degree. This hinders
the experienced user who is forced into reading every screen. Further versions of
the editor will therefore move to a ‘keyword’ style of operation, at least at the
lowest levels of the Editor. About 10 keywords or combinations of keywords
should be sufficient to allow the experienced user to move from any editing task to
any other with a single command. Non-expert users are catered for by a structured
set of HELP screens.

When editing frames the Editor operates in screen mode. To allow colours and
graphics to be defined, a larger ‘editing keyboard’ is necessary. The extended

374 ICL TECHNICAL JOURNAL NOVEMBER 1981

character set of Viewdata adds considerably to the time taken to input frames; an
average rate of five frames per hour can be assumed on graphic data. This has led
to pressure for the development of intelligent editing systems, of which quite a
number are now available. They all consist of a micro with floppy discs driving
one or more screens and keyboards. BULLETIN is currently unable to support
these devices, so similar, though less sophisticated facilities have been provided
within the BLU. The following features are currently available:

— line insert and delete
— character insert and delete
— change all control characters (eg change all blue text to yellow text)
— move a rectangle of data from one part of the screen to another
— store an area of the screen as a macro which can be recalled later on
— move graphics half a character

3.4.3.2 Bulk formatting: The costs and complexity of inputting data by hand
through a keyboard were described in the previous Section. Where data already
exists in the ME29 it is obviously preferable to transfer it directly to the pagestore.
This task is carried out by a suite of programs known as the Bulk Formatter.

Bulk formatting, as the title suggests, produces a number of pages to a similar
layout with just the individual details on each page being different. Typically, a
template page is used and then the details of each record are placed on it to
produce the formatted pages.

Bulk formatting can potentially accept any ME29 disc file of serial or index
sequential organisation, identify record types within that file and extract all the
records of a given type. In addition, individual parts of records (fields) can be
extracted so that the whole record does not need to be formatted. These fields can
be character, numeric, or binary integers.

Each of these fields can then have all the display attributes of Viewdata associated
with them e.g. colour, flashing, background colour, double height. The position on
the Viewdata screen at which these fields are to appear must also be defined.

The pages created by this method can also have information displayed which did
not come from the record, but this is static information in as much as that it will be
identical on every frame created.

All the information required to specify the file extraction and page formatting is
supplied as a parameter set that is input and amended by a TP program driven by a
standard video.

Having converted the information itself to a BULLETIN format, a Viewdata
routing system to make the information easily accessible is created. This is achieved
by producing index pages with explicitly defined routing to steer the user to any of
the formatted pages. The user specifies the field in the record on which the index is
to be built.

ICL TECHNICAL JOURNAL NOVEMBER 1981 375

An example of the use of bulk formatting is to transfer personnel information from
a personnel file sequenced on staff number on to the pagestore, with an index being
constructed on the surname of each staff member. An extension to this would be
to index the pages on surname within department.

Further facilities are available to make the displaying on the screen more flexible.
If, for example, the text goes beyond a line, then the text will be wrapped around
to the next line with the split occurring on a word boundary. Margins can also be
specified to control where the field is displayed. Subsequent fields can then be
displayed in positions relative to the end of the previous field rather than as an
absolute position on the screen.

As the structures of many files were designed with one particular application in
mind, not all files will be in a form that can be bulk formatted immediately. These
files would require some pre-processing and although this is extra work, the Bulk
Formatter will still do the major job of embedding all the Viewdata attributes and
building the routing system.

Once a parameter set has been defined to format a file then the file may well have
more up-to-date information placed on it by another computer application. Assum­
ing that the parameter set is still adequate, all that is required is for a batch system
of programs to be rerun to update the pagestore to reflect the file amendments.
This could be done as an overnight exercise.

3.4.4.3 Pagestore updating by program: Finally, BULLETIN provides two ways of
directly updating the pagestore by user written program. The first is a subroutine
suitable for inclusion in a COBOL program which allows a user-written program to
read or write frames. This routine cannot be used concurrently with the rest of the
BULLETIN software, so is mainly of use for off-line batch programs. An example
of use would be in a BULLETIN accounting suite, run monthly, where the last
program in the suite could copy a summary of the results on to a well-known page
on the pagestore for general viewing.

The second technique allows TP programs to update the pagestore concurrently
with live use of the system. This is achieved by the user program passing messages
to and from the BULLETIN editor which performs the reads and updates on its
behalf.

4 The future

The system described in this article represents a basic Viewdata system: a pagestore
which can be viewed plus the tools for updating it. Viewdata technology is develop­
ing rapidly and continued development of BULLETIN is likely to include:

Non-ME29 environments
Since the MTS communication system is supported by DME/2 systems it has
been possible to make BULLETIN available on 2946. Although no software

376 ICL TECHNICAL JOURNAL NOVEMBER 1981

development is necessary to effect the conversion of the basic package, the long
term implications of a general move to larger machines with their higher per­
formance expectations have yet to be fully analysed. Similarly, no detailed
assessment has yet been made of running comparable Viewdata software under
other ICL operating systems.

Gateways
Gateways are currently the major development area in Viewdata. The concept is
simple enough; the national Viewdata service (PRESTEL in the UK) acts as the
centre of a star network of computers. All users connect to PRESTEL and call
up frames as normal. Certain frames are marked as Gateway frames. When these
are retrieved, PRESTEL establishes contact with a remotely situated external
computer owned by an outside organisation. All further user inputs are now
passed to the external computer which must respond to each message with a
frame similar to that of PRESTEL. The link between PRESTEL and the external
computer is via the X25 packet switching service of the country concerned.

So far three countries, Britain, Holland and The Federal Republic of Germany
have announced gateway systems, all ofwhich are basically compatible. Although
pilot schemes planned (the West German system has actually been running for a
year) are all relatively small (about eight machines each), the potential market
across Europe as a whole runs into several hundred systems. It is therefore likely
that the BULLETIN retriever will be enhanced so that it can handle the gateway
message protocol. This will allow any PRESTEL user to gain direct access to
the frames of data on the BULLETIN pagestore.

The potential of this system is enormous. To the owner of an external computer,
buying a gateway link into PRESTEL gains all PRESTEL users (currently about
10000) as potential viewers of his data. Equally, since all PRESTEL links are
charged at local charge rates, any widely distributed organisation gains a very
cheap national online system. This aspect is made more attractive by the likeli­
hood of links emerging between the various European Viewdata systems, in
particular the British, Dutch and West German systems.

Message Systems
A natural extension to displaying frames of text is to provide a mechanism for
sending messages between BULLETIN terminal users. This is expecially neces­
sary since many users will be widely dispersed and may rely on Viewdata as their
main means of contact with their headquarters: salesmen based at home for
example. However it is recognised that message systems are not the exclusive
preserve of Viewdata systems and that links with other products must be pro­
vided. In particular it seems sensible to provide for the interchange of messages
and indeed documents between BULLETIN and WORDSKIL. Such linked
systems fore-shadow the development of more generalised office automation
products which may replace existing Viewdata and word processing systems by
a single integrated product.

Conclusion
The development of BULLETIN is an important step in the path of simplifica-

ICL TECHNICAL JOURNAL NOVEMBER 1981 377

tion of access to computer-held information. The adoption of standards based on
those of PRESTEL gives BULLETIN users inexpensive terminal equipment and
simple procedures which can be combined to offer effective on-line information
services to the day-to-day operations of an enterprise.

References

1 LAKIN, R.: “ME29 Initial Program Load — an exercise in defensive programming” IC L
T e c h n ica l Jo u rn a l, May 1980, 2(1), pp.29-48.

2 Prestel Bulk Update, Technical Specification, Appendix F.

378 ICL TECHNICAL JOURNAL NOVEMBER 1981

Development philosophy and

fundamental processing
concepts of the ICL Rapid
Application Development

System RADS
A.P.G. Brown, H.G. Cosh and D.J.L. Gradwell

ICL Distributed Systems Development Division, Bracknell, Berkshire, UK

Abstract

This paper describes the Rapid Application Development System (RADS)
which is currently being specified and studied within ICL. It includes a
new programming language which is considerably more problem-oriented
than languages such as COBOL and which is intended to give significant
gains in productivity.

Unlike a number of non-procedural languages, RADS includes a complete
computational model, allowing its use, ultimately, for any programming
problem. A major part of this paper is devoted to describing this processing
model and to contrasting the facilities it provides with the acknowledged
problems of conventional programming languages. The new model presents
the compiler designer with new problems, some of which have been solved
in a prototype system.

The target system is intended to combine the facilities provided in the
basic RADS model with higher-level functions, and with the facilities of
the Data Dictionary upon which RADS is based. This it is hoped will
reduce by an order of magnitude the costs of developing and maintaining
an application. Experience with a subset of the language for report writing
confirms our belief that this is achievable.

1 Introduction

ICL’s Rapid Application Development System (RADS) is a new programming
language, integrated with a Data Dictionary System, designed to support the
development of commercial data processing applications. These may be transaction
processing or batch oriented, with data held in a Codasyl database or in COBOL
files. Together with ICL:s Data Dictionary System (DDS)1 RADS will support
the specification, documentation, coding, compilation and maintenance of the

ICL TECHNICAL JOURNAL NOVEMBER 1981 379

user’s application systems. The prime objective of RADS is to improve the pro­
ductivity of systems designers and programmers.

This paper explains the growing software crisis and the need for an order of
magnitude improvement in productivity over present day practices. It explains the
design goals of RADS and the way RADS is intended to fit together with other ICL
software products.

The major part of the paper then discusses the concepts behind the RADS language,
particularly the method of describing processes.

There are several alternative or possibly complementary approaches to improving
productivity in application development. Examples are specialist application
languages, applications packages, macro systems and framework programs. All of
these will probably be used with varying levels of user acceptance. The RADS
approach differs because it involves a new style of programming language and a
departure from the von Neumann machine which underlies conventional languages2.

The reader should note that this paper does not describe a user interface, but rather,
discusses the fundamentals of a new processing model.

We believe that the RADS processing model will provide the basis for the imple­
mentation of a more intelligent compilation system, able to yield the desired level
of productivity gains, while supporting the development of general-purpose
programs.

2 Why develop a new programming language?

2.1 The software crisis

The last two decades have seen an astonishing rate of change in the cost perform­
ance of computer hardware both in raw computation power and in information
storage. Technology improvements have halved the cost of hardware approximately
every two and a half years and there is every indication that this rate of change will
continue or even increase.

The consequence of this technology change is that the users will have much more
computer power available and that quite small enterprises will be able to afford
machines which a short while ago would be considered to be large computers.

The decreases in hardware cost is not being met by an equivalent decrease in man-
costs, so that the cost of systems development and programming is rapidly
becoming the predominant element of users investment. By the end of this decade
the hardware costs could be less than 1 0 % of users’investment in computer systems.

An analysis of users’ data-processing departments today shows that, even after
many years experience, our ability to develop new systems quickly and at low risk
leaves much to be desired3. System development costs are not easy to estimate.

380 ICL TECHNICAL JOURNAL NOVEMBER 1981

Many projects run late or fail to meet their functional objectives, and many instal­
lations spend most of their development resources on the maintenance of old sys­
tems.

While there is no doubt that our knowledge has increased and that computer
scientists now have a much wider and deeper training there is still a critical shortage
of skilled staff. Try as we may, there is no way that we can increase the supply of
staff, especially experienced staff, to keep up with the supply of computing equip­
ment.

One solution is for users to purchase their systems ready made, and to adapt their
operations to the constraints of an applications package. No doubt package
suppliers will enjoy an increase in business, but the fundamental problem of the
cost of software development remains.

We must look at ways of providing systems development staff with better tools so
that they can improve their own productivity. It is clearly cost-effective to use
more computer power to achieve this end.

Two of the factors contributing significantly to a programmer’s productivity are
his programming language and the associated development environment. In the
recent ADA studies4 ’5 it is significant that, for the first time, as much effort is
being expended on the development environment as on the language itself. We too,
believe that the development environment is of strategic importance, and have
therefore designed RADS to work with a data dictionary database, containing all
the design information about the data and the applications. However, the Data
Dictionary System has been well defined elsewhere1 and this paper concentrates
on the programming language itself.

2.2 Developments in procedural programming languages

At present the most widely used programming language is COBOL, the first version
of which was developed in 1959. Since then there have been many extensions and
improvements but the net effect on productivity is small compared to the improve­
ments from hardware developments. Of course compilers give better service because
the hardware is faster and they can use more store, but the innate effectiveness of
the computer languages has not changed. Hence, it is nearly as difficult to write a
COBOL program now as it was in 1960.

The languages PL1 and Ada represent attempts to bring programming up to date
by incorporating the good features of other languages into a new language, and
thus escaping the forwards-compatibility constraints of existing languages. Both
attempts have resulted in very large languages requiring expensive compilers but
the productivity improvement compared with their predecessors (COBOL, Fortran,
Algol, Pascal), is probably of the order of a few percentage points.

Systems like FIND 2, MARK IV and RPG2 achieve higher productivity, but at the
cost of loss of generality. Any application can be tackled as long as it fits the

ICL TECHNICAL JOURNAL NOVEMBER 1981 381

constraints of the run-time program framework. There are many such application-
utility systems, each with its own merits and restrictions. They all do some jobs
well but all lack a general computation facility that would enable them to challenge
the standard programming languages.

2.3 Structured programming

Some users have achieved increases in productivity through structured program­
ming6 which imposes a discipline on the programmer and improves his ability to
write error-free code. This is interesting because it appears to demonstrate that the
richness and variety of computer languages is both unnecessary and counter­
productive. Structured programming has influenced Ada and the COBOL 82
proposals s? but its use is permissive. Programmers are still free to create un­
structured programs if they wish.

2.4 Non-procedural languages

In a conventional procedural language like COBOL a programmer has to be very
aware of the sequence in which his program statements will be executed. Each
statement makes a small change in the state of the process and the programmer has
to ensure that these changes occur in the correct sequence to satisfy the program
requirement. It is easy to lose the thread of a program because of the lack of
structure and the need for attention to detail.

There have been a number of developments that try to raise the level at which
the programmer thinks, and to remove unnecessary procedurality from the pro­
gramming language. For example, report writers like FIND 2 restrict the program­
ming task to data selection and formatting. A pre-determined program structure
is used as a basis for the actual program, saving the programmer from having to
design and code it.

Another interesting example is the LUCID language8, where the order of
statements is irrelevant, assignments are statements of identity, that is, mathemat­
ical equations, and a variable may only have one assignment statement in the
program. The benefits of this approach are discussed later in Section 4.2.

3 Relationship of RADS to other software

The RADS language is intended primarily for use in the development of com­
mercial data processing systems. It is designed for the implementation of trans­
action processing and batch applications which may access data held in a Codasyl
(IDMS) database or in conventional files.

Because of the prevalence of COBOL systems the file standards are deliberately
compatible with COBOL, and all COBOL data item formats are supported.

The language includes facilities for defining the structure and format of files,
databases, interactive TP screens and printed reports, as well as for defining the
logic of the processing to be done by the application.

382 ICL TECHNICAL JOURNAL NOVEMBER 1981

RADS is not an interactive system in the sense of a query facility, which responds
to a query with data values. RADS allows a designer or programmer to work inter­
actively but the output from RADS is an object program which forms a component
of his application system.

3.1 The Target environment for application development

Fig. 1 is a schematic diagram of the RADS system showing its relationship to the
data dictionary database. The application definition is built up by the dictionary
user interacting with the dictionary software, which updates the dictionary data­
base for him. He has a range of tools available to him to invoke various generators,
including the RADS program compiler. All of these tools share common definitions
of the database and files. The tools generate object code that form the user’s appli­
cation run-time system.

Basing the RADS system on the Data Dictionary System provides the user with
facilities to document his systems analysis (his data model and the events and func­
tions in the company), his database and file design and any programs written in
COBOL.

Fig. 1 RADS architecture

ICL TECHNICAL JOURNAL NOVEMBER 1981 383

The dictionary provides a number of facilities important to a program development
environment:

(a) A system or program definition can be constructed incrementally and does
not have to be written in a prescribed sequence

(b) The DDS is interactive. It can respond to simple errors and prompt for
omissions while the user is at the terminal

(c) The DDS allows the user to query the program, getting different displays
of its structure or of the interactions between its components

(d) The DDS contains data descriptions that are used by COBOL and IDMS,
as well as RADS. These form a library of code that is available for use
directly

(e) The DDS facilities for authorisation of access to definitions and commands
and for version control assist with the development and controlled main­
tenance of systems

(f) The documentation of reporting facilities within DDS make separate sys­
tem and program documentation unnecessary.

4 The RADS language

This section provides a brief overview of RADS facilities and introduces the
language design philosophy. There are frequent comparisons with COBOL because
RADS is expected to be used most often in a COBOL shop as either complemen­
tary to or instead of the COBOL language.

The RADS language represents either a large jump or possibly a step in a different
direction from that in which the conventional languages are seen to be developing.
It combines the benefits of a non-procedural programming language with the
disciplines of structured programming and clear data structure definition. It pro­
vides sufficient procedurality to model the program’s interactions with the real
world. At the same time, many of the programmer’s normal tasks are taken over by
the compiler allowing him to concentrate on the logic of what he is trying to
achieve.

We believe that the long-term solution to the productivity problem is to raise the
level at which the programmer thinks, and to make compilers that are more intel­
ligent and are better able to map the program definition to the underlying hardware.

4.1 Language facility design

At the heart of RADS there is a processing model which provides the foundation
for the semantics of all RADS facilities. A RADS process is defined as a Jackson
Structure6 and can be envisaged either as a sequential process or as a data object.

384 ICL TECHNICAL JOURNAL NOVEMBER 1981

This duality serves to clarify the semantics and provide a graphic picture of the
execution of a process.

The basic model forces the programmer to structure his problem and to concentrate
on structure before details. There are no control-transfer instructions such as
GOTOs or BRANCHES in RADS because this information is represented statically
in the structure.

A second basic difference is that all arithmetic or conditional expressions in RADS
contain references to values which are at related nodes in the data structure. In
procedural languages such references refer (indirectly) to positions in memory
which hopefully contain the value the programmer wishes to use. In RADS the
allocation of memory space to support required values is entirely the responsi­
bility of the compiler and this common source of programming errors is removed.

In the development of a new language a sound basic processing model is essential to
guarantee that the language can be used for any application. Systems without such
a general model can be expected to run out of steam when the requirements become
too complex for them to handle. This is the case with certain utility systems, frame­
work programs and the like.

The RADS basic processing model can be used to solve quite complex problems
but, for the general application programmer, further facilities can be defined which
are more attuned to specific problems. In RADS these facilities are defined (by the
designers, but not necessarily in user manuals) in terms of the basic underlying
model. We can distinguish two levels of higher facility. One is a simple shorthand
like a macro facility. The second is a prescriptive statement where the user specifies
the result to be achieved and the compiler constructs the program accordingly.

For usability, many details can be left to language defaults, but it is important to
maintain a consistent guessable approach to them. This is a complex area where
care must be taken to maintain a consistent user view and avoid surprises. It is
considered important that we should not add facilities in higher level constructs
that cannot be accomplished using lower level facilities, as this would conflict with
the requirement for generality.

4.2 Input, output and databases

The COBOL programmer has to execute READ and WRITE statements to control
files and printing. In a database environment he has to control a complex interface
using many other verbs to navigate within the data structures. He has to ensure
that records are read and written at the appropriate times and pay attention to
the contents of various currency indicators.

The RADS user has no I/O commands. His definition of the process makes refer­
ence to the content of files or databases as if the data were part of his process,
which it is. It is the compiler’s task to determine when, and for how long, data is
required in memory and this can be deduced from the structure of the process.

ICL TECHNICAL JOURNAL NOVEMBER 1981 385

The definition of data required by a program is declarative. The programmer
defines a structure which can be matched or mapped to the database. This is
supplemented by selection data so that the structure plus selection determines both
the record types and occurrences required.

The integration of persistent data objects (that is, those that survive after the
execution of the process is completed) into the RADS process simplifies the defi­
nition and eliminates the Data Manipulation Language (DML) which is a common
source of errors. It also makes possible the specification of more complex validation
in the database description. It is widely agreed that such validation criteria belong
with the data description, where they need be specified once only. But current
‘record at a time’ DMLs would not allow a constraint such as ‘this set must have at
least two members’. Database processing in RADS is the subject of a separate
paper. 11

4.3 Transaction processing

The COBOL programmer is constantly aware of the functions of his program and of
the TP monitor. He has to plan his program to receive a message, process it, store
any intermediate results in a slot file and return a message to the terminal. The
system designer has to design a transaction by chopping it into a set of interactions
and defining the interfaces between them.

In RADS the unit of design is larger. The system designer starts by designing the
structure of a complete system — top down. If he wishes, a whole service may be
defined as a single structure. A service may be structured into a hierarchy of appli­
cations or transactions processed by different programs but this structuring is for
administration and tuning purposes and does not affect the logic of the system.

The run-time RADS system handles all the interfaces between the compiled RADS
program and the TP monitor, including storage of intermediate results. It is the
compiler’s task to allocate memory and to analyse its use to determine the data
to be saved between interactions.

4.4 Formatting

Printed reports and VDU screens are essentially two-dimensional media. In design­
ing report formats or screen layouts the designer typically takes a layout form and
draws boxes to contain particular elements. The mapping of data objects such as
records and items onto these formats is a tricky and tedious task for the pro­
grammer because of the wealth of boring detail and the fact that lines must be set
up for display one by one. This is why report writers enjoy such popularity, even
though their facilities are often idiosyncratic and restricted.

RADS has a clear model of formatted data objects which are envisaged as two-
dimensional blocks of media. A report may be planned as a structure of component
reports each composed of a structure of pages. Each page may be envisaged as a lay­
out of two-dimensional blocks. The contents of the blocks can be mapped or

386 ICL TECHNICAL JOURNAL NOVEMBER 1981

matched with the data within a file, enabling RADS to generate a program to print
the file (or the relevant part of it) in the requested format.

Report formatting and screen formatting facilities are intended to be used along
with standard processing facilities. Much of the formatting information can be
defaulted, or defined once in the dictionary, so that the task of preparation of
reports becomes primarily that of defining the required content.

5 Describing processing in RADS

5.1 Structuring

RADS makes extensive use of Jackson structures6 ,1 0 to define the structure of all
complex entities known to the system. In particular files, databases, database views
and RADS processes are understood by RADS through their structures. Printed
reports and interactive processes are also structured in the same way but their
consideration is beyond the scope of this paper.

The Jackson structuring methods were adopted by RADS designers because the
decompositions allowed are necessary and sufficient for the definition of all classes
of hierarchical structure. Since a hierarchy is the most complex structure that can
be mapped onto a sequence and since any program is in some sense (time) sequential
all structures processed by a program can be viewed as hierarchies by the program.
This topic is considered further in Brown et alu , which discusses sequential views
of network and relational databases.

The language constructs for describing data and process structures differ because
for data we are concerned with recognising the structure and with process structures
we are generating the structure. Thus in a data structure a choice may mean that at
this point the viewer can expect to find a debit record or a credit record. In the
process structure the conditions for generating each record type would be specified.

Before discussion of process structures we give a brief explanation of Jackson
structures. In the abstract we define the structure to consist of nodes, without
attaching any meaning to the notion of node. A node is either a terminal node or a
composite node. A composite node is composed of other nodes in a defined
structure. A terminal node is complete in itself and has no (known) substructure.

It is important to understand that the following discussion on Jackson structures
and diagrams relates to types of object. When we define the structure of a node
called X, say, we are defining a particular characteristic of a set of real data objects
that conform to that structure. It is the same distinction that data administrators
make between record types (defined by record descriptions), and the set of actual
records that conform to the description and contain real values (held in the data­
base).

ICL TECHNICAL JOURNAL NOVEMBER 1981 387

Fig. 2 Single-level decomposition of A

Fig. 3 Two-level decomposition of A

Figs. 2 and 3 show a single level and a two level-decomposition of a node, respect­
ively.
In the diagram the nodes are named. In a complete non-recursive structure the same
node may appear at more than one position, but no node may be a component
(direct or indirect) of itself.

Note that each node is a direct component of precisely one other node with the
exception of the origin or root node.

5.1.1 Types o f decomposition: There are precisely four ways in which a node may
be decomposed into its components. These four basic decompositions enable any
composite structure to be resolved into its components but, compared with other
techniques, it may be necessary to introduce extra nodes into the structure.

The four decompositions are:
1. Grouping (of nodes in an arbitrary order)
2. Sequence (of nodes in a specific order)
3 . Choice or alternative
4. Iteration (repeated occurrences of the same node)
These decompositions may be represented diagrammatically as in Fig. 4.

group or sequence choice

Fig. 4 Diagramming conventions

388 ICL TECHNICAL JOURNAL NOVEMBER 1981

The meaning of the types of decomposition may depend on the type of object
being modelled. For example sequence may represent an ordering in time (B then
C then D) or it may have spatial significance (B next to C next to D). Similarly an
iteration may represent repeated events or computations or it may mean that there
are multiple occurrences of an object.

Fig. 5 Recursive structures

5.1.2 Recursive structures: A structure is said to be recursive if the decomposition
of the structure includes a node of the same type (with the same structure) as the
original node. This is illustrated in Fig. 5.

Recursive structures can only terminate if the recursive component is either an
iterate or a component of a choice. This is shown in the two diagrams below (Fig.6).
These structures terminate when the C iteration is empty or when the D option is
present.

Fig. 6 Termination of recursive structures

ICL TECHNICAL JOURNAL NOVEMBER 1981 389

5.2.1 The basic structure o f a process: In the process model for a conventional
language the program is executed in the order in which statements are written
except when control is transferred by branch instructions. As was pointed out in
the papers on structured programming6’12’13, it is possible and desirable to
construct programs using a restrictive set of control structures.

The structured programming techniques were evolved particularly to address the
problems of GO TO statements and data scope. The GO TO problem can be
appreciated by observing that branches into the instruction sequence from other
parts of a program confuse the structure and the programmer and make that part of
the program difficult to check and to maintain.

A RADS process structure is defined only in terms of the data objects that the
process wishes to create. It is the compiler’s responsibility to determine what pro­
cedural code is necessary to construct these data objects, and to determine the
order in which it will be obeyed.

Each process has an interface which defines the external view of the process. This
interface is a data structure. Components of it are labelled INPUT, OUTPUT or
UPDATE depending on whether they are provided externally, created by the
process, or provided externally and updated by the process.

Each process may also have a private local structure that is not externally visible.
The structure of the complete process is a grouping of its interface structure and
any local structure it may have.

The following example (Fig. 7) shows the text definition (i.e. what the user actually
writes, or enters on the keyboard) and the resulting structure of a rather trivial
module that only has an interface. It adds two numbers together. In this example

Fig. 7 MODULE sum

390 ICL TECHNICAL JOURNAL NOVEMBER 1981

Fig. 8 Square-root module

and those following the Data Dictionary System convention is used, in which a star
preceding a word (e.g. *TYPE) indicates a property. The use of the same symbol to
indicate repetition, as in Figs. 6 and 8 , should not cause confusion.

We shall shortly consider modules with local structures as well.

5.2.2 Assigning values to nodes: We know that the definition of the above module
is complete because the source of the value of each node is defined. Nodes that are
INPUT are given values externally to the module. Other nodes have a *FROM
property which assigns a value.

As in LUCID8 a node has, basically only a single value. (We shall see when
considering updating that a NEW value is needed as well as an OLD value.) This
contrasts with a language like COBOL where an item may be given different values
in different ways in different parts of the program. We view the possibility of
multiple assignment statements for the same variable with the same disdain as
Dijkstra 12 viewed GO TO statements. In such a program, it is not clear when the
value is initiated, which parts of the program can change it and when the value
should be frozen or set back to unassigned. If statements that assign new values to
an item are scattered throughout a program it is very difficult for the maintainer of
that program to know what the item means at any point in the program.

Most programmers work from flow charts, which can be considered as a model of
the control structure of the program. There is no equivalent model of the data,
showing when values are generated and when they are changed.

Clearly, if a node has only one value these problems are all avoided. The RADS
designer defines the meaning of each data item and its derivation in terms of other
items within its scope. The problem of determining when the value is to be calculated

ICL TECHNICAL JOURNAL NOVEMBER 1981 391

is of no interest since it does not affect the answer and the compiler is given
maximum freedom to determine a suitable or an optimum sequence for generating
node values. It should be said however that the concept of a variable is helpful if
the module is to interact with the outside world during its execution. This will
be discussed further in Section 5.3.2.

5.2.3 Iterations in a RADS program: The RADS program structure can contain
iterations, which are similar to procedural language loops. Where a procedural
model involves changing a given set of values on each repetition until they satisfy
some condition the RADS process model generates a number of iterates, with the
values of each iterate being available to the rest of the process.

In a generated iteration the last iterate has a special significance and is termed the
yielded iterate. As with the model for assignment, the RADS iteration model is
similar to that of LUCID.

As an example, we show a module to calculate a square root.

On its interface is the argument whose root is to be found. This is an INPUT item.
There is also an OUTPUT item for the resulting root. A local processing structure
is needed that consists of an iteration of possible roots, reciprocals and errors
that are generated until an iterate occurs which is sufficiently close to the true
value.

References within expressions on nodes of the iterate (here called ‘cycle’), can
refer to nodes at the same level or to nodes higher up the structure. References at
the same level refer to the value of the item in the same iterate.

As in LUCID, *FIRST specifies the way in which the value of ‘possible-root’ is to
be computed on the first iterate of ‘cycle’. *NEXT specifies the way in which the
value of ‘possible-root’ is to be computed on the successive iterates. In this case
the ‘next’ value of ‘possible-root’ contains a reference to the current value of
‘possible-root’. The ‘next’ value calculated on one iterate becomes the actual value
on the next iterate.

For each iterate the values of root, recip and error are generated. Then if error
<0-001 this iterate becomes the yielded iterate and no *NEXT value is computed,
otherwise the next iterate is generated. The yielded iterate is not part of the itera­
tion and cannot be referenced by subscription or indexing into it. In the above
example if argument were 1 the generated iteration would be empty.

The order of the boxes in the diagram is not significant. The order in which
values can be generated is entirely dependent on the arithmetic expressions
although iterates are clearly generated in order.

392 ICL TECHNICAL JOURNAL NOVEMBER 1981

yielded

Fig. 9 Square-root module execution

Fig. 9 shows an execution of the process with values given.

5.2.4 Choices in a RADS program: The RADS program structure can contain
choices. Fig. 10 shows the ‘Daily Batch Control’ module that invokes the ‘End of
month run’ module on the first of each month, but otherwise invokes the normal
daily run. Module invocation is discussed in more detail in Section 5.2.6.

Thus we have seen that the local processing structure of a module may have any
structure built of sequences, iterations and choices to any level of complexity.
Likewise, the interface may be of arbitrary complexity possibly consisting of
several items, several files and a database.

Fig. 10 Daily Batch Control Module

ICL TECHNICAL JOURNAL NOVEMBER 1981 393

5.2.5 Name references: In the previous examples, *FIRST, *NEXT and *FROM are
properties of derived nodes. Tire syntax of these properties is an expression which,
for numeric items, is an arithmetic expression. Such expressions in most languages
contain references to named locations in working storage. RADS expressions contain
value references, which refer to nodes within the process structure. These nodes
have actual values and are not thought of as locations in working storage although
the compiler may have to allocate space to the object program.

There are conventions for determining which node is referenced by a given name.
For example the references in Fig. 8 in the ‘error’ node refer to the values within
the same iterate. The top node, ‘square-root’ could be referenced from ‘cycle error’
but would produce a compilation error diagnostic because the program would have
a circular definition.

It is possible to reference the value at any node in a process provided that the node
can be referenced unambiguously from the referencing point. There is a notional
path through the structure from the reference to the referenced node as in Fig. 11.

In Fig. 11a reference at X to H would have to indicate which iterate G was to be
chosen. A reference to S would be valid if the P option were present. If Q were
present the referenced value would not exist. It is more usual for such references to
be within choice-expressions so that the value to be used when the option is not
present can be stated. For example we might specify

*FROM P. S IF P ELSE 24 IF Q

The *FROM property need not specify an arithmetic expression. It is possible to
specify any expression from any node so long as the result of the expression is

Fig. 11 Name references in RADS

394 ICL TECHNICAL JOURNAL NOVEMBER 1981

a value of the same type, i.e. with the same structure and data characteristics, as
the object node.

Note that we prefix names using the point as separator for qualification, a.b.c.
being the c element that is a component of b which is a component of a. Sub­
scripts are written in parentheses following the iterate to which they apply.

5.2.6 Module invocation: A module can be invoked from within another module.
We give as an example a module that takes two numbers and calls the square-root
module to determine the root of the sum of their squares.

Note that only the interface of the module ‘square-root’ is visible to this module.
5.3 Updating in RADS

5.3.1 The basic update model: Updating is the replacement of a value of a node
with a new value for that node. A simple example and a more complex one will
illustrate this.

Fig. 13 shows a module ‘half’ that has an item on its interface declared as UPDATE.
The module supplies a new value for the item.

Fig. 13 Module half

ICL TECHNICAL JOURNAL NOVEMBER 1981 395

Fig. 14 Module to update the payroll file

Consider now a somewhat more complex example. The UPDATE object on the
interface of the module ‘give-pay-rise’ is a whole payroll file.

It consists of many employee records. Each employee record contains several items
including one called ‘salary’. The module is to give all the employees a 1% pay rise,
and has the above structure (Fig. 14).

In this example the *NEW property assigns new values to all the ‘salary’ items in
the file. The programmer can view the entire file update as one operation, as a
single change of state.

A new value may be specified (by a *NEW property) for a terminal node (always a
single data item) or for a compound data object. Either of the following is per­
mitted:

396 ICL TECHNICAL JOURNAL NOVEMBER 1981

A new value for a node may not be specified in more than one way.
Thus the following is not permitted as the new value for d is described twice:

Thus RADS allows state changes to be arbitrarily large. Usually, the larger the state
change, the easier it is to think about the problem. Hence, the RADS programmer
will tend to write programs with as few state changes as possible. However, although
not theoretically necessary, it is advantageous from a usability point of view to be
able to model certain state changes within the module.

5.3.2 Variables and views: Thus far we have discussed nodes in a structure that
may have at most one old value and at most one new value. We term such nodes
‘transient’.

We now introduce the concept of the ‘variable’. A variable is any node that under­
goes a succession of state changes, each one replacing its value with an updated
value. A variable that is a single item is similar to a variable in a procedural language,
except that it has no resource allocation semantics. However, a variable in RADS
may be an arbitrarily large object, for example, a file or a database.

Updating of variables is the RADS equivalent to assignment in procedural languages.
The value of a variable changes a number of times so that a reference to it retrieves
different values from different nodes in the process structure. RADS differs from
procedural languages, and avoids their lack of clarity by only allowing such assign­
ments in a very controlled way, and in grouping together a collection of individual
changes to different items and executing them simultaneously. The usefulness of
this was expounded by Gries and by Floyd,9 , 1 3 who favour a multiple assignment
statement in procedural languages.

The variable is special in RADS as it is the only node in a process structure that
may take more than two values. We provide a special mechanism to control value
changes. A node in a structure may be specified to be a ‘view’ of another node. The
node that is the view must be derived from the ‘viewed’ node. Some, but not
necessarily all of the item nodes in the view will match, or correspond to, nodes in
the viewed node. Those that are to be updated must match in a one-to-one relation­
ship.

A view is generally a transient whose nodes may only have an old and a single new
value. If a view is a variable it will have a succession of intermediate values resulting
in a final ‘new’ value. The new value of a matching node in a view will be reflected
back to update the viewed node.

ICL TECHNICAL JOURNAL NOVEMBER 1981 397

The following two diagrams show a module to update a file of customers, using a
transaction file.

FOR cust - tran
* PROCESSING- STRUCTURE

VIEW OF customer

Fig. 15 Data used by the customers update module

Fig. 15 shows the initial structure of the module. Its interface consists of the two
files. We need to specify the processing to be done for each cust-tran record. The
*PROCESSING-STRUCTURE property says that a view of the customer record
will be ‘added’ to the program’s control structure, giving that shown in Fig. 16

c u s t- tra n c u s t-n o

Fig. 16 Complete control structure for the customer-update module
398 ICL TECHNICAL JOURNAL NOVEMBER 1981

*PROCESSING-STRUCTURE is one of a number of properties available to a
RADS programmer to alter a program’s structure. We see here a good example of
the duality between data structure and process structure in RADS.

The view of ‘customer’ inherits the structure of customer. The *VALUE property
asserts that the customer number for the viewed customer must have the
specified value. The *NEW property gives the new value to the viewed node,
which is reflected back to the customer record in the customer’s file, updating it,
for each transaction.

5.3.3 State changes: If a node is designated a state change, then all the components
of a state change node that have new values specified appear to get new values at
the same time. If a node is a view, the new values of the view are reflected into the
source variable when the view changes state.

A state change node may be a component of another state change node. If this is
the case the component state change is considered to occur before the outer state
change.

References to nodes from below a common state change all refer to old values.
References from a node to another node, such that the path (see Fig. 11) passes
down to another node that is a state change node, retrieve the new value of the
referenced node.

As an example, consider the module shown in Fig. 17. The values of a, b, c are
permuted. (The new value of a is 2, and so on). The *NEW properties, refer to the
old values.

The ♦FROM on R, however, has a reference that passes through the explicit state
change, and thus references the new value, i.e. 2 .

If a variable is subordinate to a state change all update views of the variable must
be defined within the scope of the same state change since a view from outside the

♦ FROM 1 #FROM 2 * FROM 3

♦ NEW b + NEW c * NEW a
Fig. 17 State change
ICL TECHNICAL JOURNAL NOVEMBER 1981 399

state change must retrieve the single final new value. Hence from outside the
owning state change of a variable the variable appears to be a transient.

As mentioned in Section 5.3.2, a major motivation for the introduction of state
changes is to provide a model for variables. In particular, nodes that are views will
normally also be state change nodes.

5.3.4 Simultaneous equations example: To show the generality of the language a
complete program is included to generate the solution to a set of simultaneous
equations.

Fig. 18 shows the generated process structure required to solve the equations which
are represented by the problem matrix.

The only new feature here is the implied integer iterate index which is the iterate
number of a given iterate within the iteration. Its semantics are the exact equivalent
of *FIRST 1 *NEXT index+1.

The solution involves an iteration of two views. The first view selects a pivotal row,
being the first row that has a non-zero coefficient of the next variable. The row is
divided by this coefficient.

Fig. 18 Solution of simultaneous equations

400 ICL TECHNICAL JOURNAL NOVEMBER 1981

The second view selects all the other rows and subtracts an appropriate multiple of
the pivotal row from each so as to leave zero coefficients of the pivotal variable.

The p iteration repeats until all variables have been pivoted. The matrix is then a
left-hand square component with a single 1 in each row and in each column and a
right-hand column which represents the solution.

The solution is the iteration solution .col, where the values are selected in the
correct order.

At view-1 .row the structure may fail if, for example, the matrix has two identical
rows. A failure message is generated which, in this example, would become the
diagnostic for the program.

Note that in both views all the new values could be calculated simultaneously.

6 Summary

The main objective of RADS is to improve programmer productivity to meet the
requirements of the eighties. It is hoped that this can be achieved using a new pro­
cess model based upon the generation of Jackson structures.

The RADS process model differs fundamentally from the conventional
von Neumann machine which underlies procedural programming languages. In the
RADS machine the process proceeds in far fewer state changes, in each of which
many new values may be computed.

Developing a RADS program requires a complete definition of the process structure
according to structured programming rules. This enables the process to be defined
interactively and incrementally and to be easily represented in diagram form.

There is no concept of input or output commands as all data, including a database,
may be considered as part of the process itself. The process model imposes more
problems for the compiler, as it has to turn the non-procedural definition into a
procedural program and to analyse data requirements to determine the need for
memory and transfers of external data throughout the process. However, it is
possible that a compiler could do more optimisation as the problem statement is
more general. It is also less dependent upon hardware architecture and we can
easily envisage generation of code for parallel processing machines.

Experience with the general model leads us to believe that its use to describe easy
problems is straightforward. The model assists the solution of intellectually chal­
lenging problems by forcing the structuring of the problem. Coding the solution
is more straightforward than in COBOL or Fortran and is less error prone because
more of the problem is visible at any time. Also, we expect that most mistakes can
be corrected interactively and the compiler will be able to find errors that would
otherwise cause obscure faults at run-time.

ICL TECHNICAL JOURNAL NOVEMBER 1981 401

The low level model is not the complete answer to programmer productivity.
Higher-level problem-oriented facilities are very important, and our experience with
file processing and reporting programs, which use many of the RADS high level
functions, show impressive productivity gains. In general, as more high level
functions can be used, so the productivity gain increases.

RADS high level functions are defined in terms of lower level functions. This not
only ensures a rigorous definition, but also means that high level functions are
easy to explain, and easy to supplement with lower level facilities where required.

References

1 ICL Technical Publication 6504 ‘Data Dictionary System’ published by ICL in 1980.
2 BACKUS, J.: ‘Can programming be liberated from the von Neumann style?’, Com­

munications of the ACM August 1978, 21 (8).
3 RUNYAN, L. and SCHATZ, W.: ‘Applications development’, D a ta m a tio n 27 (3), March

1981.
4 US Department of Defence, ‘Requirements for Ada Programming Support Environments -

‘Stoneman’ ’ Feb. 1980.
5 Reference Manual for the Ada Programming Language, United States Department of

Defence, July 1980.
6 JACKSON, M.A.: ‘P r in c ip les o f p ro g ra m d esign Academic Press.
7 Draft Proposed Revised X3.23 American National Standard Programming Language

COBOL, published by the ANSI Technical Committee X3J4 in May 1981.
8 ASHCROFT, E.A. and WADGE, W.W.: ‘LUCID, a non-procedural language with iteration’,

Communications of the ACM, July 1977, Vol. 20, No. 7.
9 FLOYD, R.W.: ‘The paradigms of programming’, Communications of the ACM, August

1979, 22(8), pp. 455460.
0 HUGHES, J.W.: ‘A formalization and explication of the Michael Jackson method of

program design’, S o ftw a r e - P ra c tice a n d E x p e r ie n c e 1979, 9, pp. 191-202.
1 BROWN, A.P.G., COSH, H.G. and GRADWELL, D.J.L.: ‘Database processing in RADS’

in Proceedings of the First British National Conference on Databases, July 1981.
2 DAHL, O-J, DIJKSTRA, E.W. and HOARE, C.A.R.: ‘S tr u c tu r e d p r o g r a m m in g ’

Academic Press, London (1972).
3 CRIES, D.: ‘Educating the programmer : notation, proofs and the development of pro­

grams’, In fo r m a t io n P ro cess in g 1980.

402 ICL TECHNICAL JOURNAL NOVEMBER 1981

A moving-mesh plasma equilibrium
problem on the ICL Distributed

Array Processor

A description is given of a moving-mesh plasma equilibrium problem that
has been coded in DAP Fortran and run on the ICL DAP at Queen Mary
College. The problem provides an interesting example for the DAP, because
the calculation requires a range of logical and numerical operations, in
particular the respacing of the mesh as the computation proceeds. The
DAP code ran 29 times faster than a similar (but not identical) conventional
Fortran code on an ICL 2976.

1 Introduction

This paper describes a moving-mesh plasma equilibrium problem that has been run
on the Distributed Array Processor (DAP) at Queen Mary College. This work, part
of a continuing assessment of the DAP, was done to demonstrate the solution of
a substantial problem on the production machine. The equilibrium problem to be
described provides an interesting example, since it requires a range of compu­
tational operations, in particular the re-spacing o f the mesh as the calculation
proceeds. We show that all the necessary operations may be done by parallel
algorithms and may be programmed easily and naturally in DAP Fortran.

2 Background

The equilibrium equation of plasma physics is the mildly non-linear equation 1.1

With suitable boundary conditions, this describes the equilibrium of an axisymmetric
toroidal plasma. R and Z are cylindrical coordinates based on the major radius of
the torus (Fig. 1). 2πχ is the poloidal flux of magnetic field. F(x) and ρ(χ) are
arbitrary functions of χ. (F/R is the toroidal magnetic field and p is the plasma
pressure.)
The usual approach to the numerical solution of eqn. 1 is to difference the operator
on a uniform R, Z mesh and to solve the equations to obtain x(R i,Z j).2 The level
surfaces of χ (the ‘χ surfaces’ or ‘magnetic surfaces’) are then found by contouring

P.Kirby
Culham Laboratory, Abingdon, Oxon 0 X 1 4 3DB

(Euratom/UKAEA Fusion Association)

Abstract

0)

ICL TECHNICAL JOURNAL NOVEMBER 1981 403

Fig. 1 Definition of coordinates

the array of χ values. In cases of interest, these surfaces are closed and nested. We
shall think of χ as increasing monotonically outwards from its minimum value (the
magnetic axis).

Another approach, in which the χ surfaces are found as an integral part of the
equilibrium calculation, is to solve eqn. 1 in non-orthogonal ‘magnetic surface’
coordinates φ, θ . φ is a radial coordinate with closed, nested surfaces and Θ is an
arbitrary angle-like coordinate (Fig. 1). The initial φ, Θ mesh (R(0t , φφ),Ζ(θί, φ,·))
is arbitrary. The φ mesh is then adjusted until χ is made independent of Θ to a
specified accuracy i.e. χ = χ(ψ). The χ surfaces are then the known φ surfaces.
In addition to avoiding the errors involved in contouring an array of χ values, this
approach is unaffected by the existence of steep gradients and closely spaced χ
surfaces in real space. Also, the implementation of the common boundary con­
dition χ = const, is easy because the boundary is then a φ surface.

A general procedure for the solution of the equilibrium equation in φ , Θ coordinates
was given in Delucia et al.3 The steps are as follows:

(1) Set up a finite difference approximation to the equilibrium equation in
φ ,θ coordinates.

(2) Set up the shape of the boundary.
(3) Using an arbitrary position (R = R 0, Z = 0) for the axis of the φ, Θ co­

ordinates, set up an initial φ ,θ mesh i.e.

R(0i, Φί),Ζ(θ,, φ;)

(4) Solve the equilibrium equation on the initial mesh. Locate the magnetic
axis (the point of minimum χ) and set up a new initial φ , Θ mesh using the
magnetic axis as the position of the coordinate axis. The coordinate axis is
now fixed for the rest of the calculation. (The rest of the calculation

404 ICL TECHNICAL JOURNAL NOVEMBER 1981

consists of the radial adjustment of the mesh.)
(5) Solve the equilibrium equation on the new mesh and determine whether

X = χ(Ψ) t 0 the required accuracy.
(6) If x φ χ(φ), interpolate the φ mesh along the Θ lines so that χ = χ(Φ)

holds.
(7) Repeat steps (5) and (6) until the solution of the equilibrium equation

satisfies χ = χ(φ) to the required accuracy. The solution of the problem is
then complete.

It is the implementation on the DAP of this strategy that is described here.

3 Definition of the present problem

The magnetic surface equlibrium problem to be solved is set out below:

(1) Fixed boundary calculation in JET (Joint European Torus) geometry.
(2) Dirichlet boundary condition χ = 0.
(3) The toroidal current in the equilibrium is specified.
(4) φ , Θ have the domain

0 < ψ < 1

O < 0 < 2 tt

φ = 1 is the boundary, φ = 0 is the coordinate axis.
Θ = const, are straight lines (‘spokes’) from the coordinate axis to the
(fixed) boundary points.
φ is to be equally spaced in R outwards from the coordinate axis along
Z= 0.

(5) The system has up/down symmetry and is solved in the upper half-plane,
Z > 0 (0 < θ < π) .

(6) The expressions for p and F are (in dimensional form)

F(X)=R0B0 (1 - 7 (- ^ 0) 0)

P(x) = Po (~X/B0)a
(2)

R 0 , B 0 , Po . <*, β are parameters and 7 is adjusted during the calculation in
order to keep the toroidal current fixed.

(7) The magnetic field, plasma pressure and current are normalised according
to

B = B0 B

P = (B0 2IPo)P (3)

1 = (B0 IPo)T

ICL TECHNICAL JOURNAL NOVEMBER 1981 405

(8) The solution of the non-linear equations is by SOR and Picard linearisation.
An integral relation is applied at the coordinate axis.

4 Description of the calculation and implementation on the DAP

4.1 Mapping o f the problem on to the DAP

The layout of the φ ,θ mesh in real space is shown in Fig. 1 and its mapping onto
the DAP is shown in Fig. 2. For simplicity, the problem has been mapped onto one
64 x 64 plane. There would be no difficulty in principle in using a mesh 64« x 64m
with «, m > 1. The rays θ = - ΑΘ and Θ = it + ΔΘ are needed to implement up/down
symmetry. The mesh is defined by

Δφ = 1/63

Fig. 2 Mapping onto the DAP

4.2 The finite difference equations (\p> 0)

The equilibrium equation in φ , θ coordinates may be obtained by direct trans­
formation of eqn. 1. Alternatively, it may be obtained from first principles using
tensor analysis (Appendix 1). The expression is

9 9 (F F X \
(^ψψ Χφ + he ĵ Xq) + — (he^ x ψ + hee χΘ) - - ^ +PxJ (4)

406 ICL TECHNICAL JOURNAL NOVEMBER 1981

The metric coefficients h^ are given by

Λψψ = (Κ Θ 2 + z e 2) ! J

hee ~ (Κψ2 + ζ ψ2)Ι·Ι (5)

^θψ = ~(ΚψΚβ + ζ ψζ θ)Ι·ϊ

and the Jacobian J by

J = R(R^Zg - R qZ ^) . (6)

Here, χψ s 0χ/9ψ ,Λ ψ = dR/d\jj etc.

At the coordinate axis, J vanishes and so a special treatment is needed. For ψ > 0
following Delucia etal,3 we use the following centered difference schemes:

9
{htylj/ Xl//) (htpip Χψ)/,/+½ (^ψψ Χψ)/,/-½ /Αφ

(Χ φ) υ = 0(/,/+½ - χ ,·,/-·/2)/δ Ψ

Έ <*" ̂ ..
J hi

Φθθ Xq) ί+%,/ ihee Xe)i-Vij ΙΑΘ

(Χ$) /,/' (X ί+ ‘A j X ι- ‘Λ,/)/Δθ

— (λθΨ Χβ) αψ
ΦθΦ Χθ)/,/+½ (^ θΨ Χθ) 1,/-½] /Δψ

<,/

^Χΰ) <>/+ X2 f (x /+1 ,/+1 X /-1, / + 1) - (X /+ 1 j Χμ , /)) /4Δ0

9
— (λθΨ Χψ) (^Οφ Χψ) /+ ,/ (Λθψ Χψ)

(χψ) ι+ ½,/' (χ,·/+ 1 J+ 1 X//+1 j 1) + (χ ι,«,/■+1 Χ/,/-ι))/4ΔΨ

ICL TECHNICAL JOURNAL NOVEMBER 1981 407

We define the coefficients Ha

Η φφ = ϊιφφ / (Δ ψ) 2

Ηθθ =hee I (Δθ)2

ΗθΦ = Λθψ / 4 Δθ Δφ

and the coefficients («„),·,/ by

(a 0) i , j ~ β φ ψ) /,/+ 'h + β φ φ) /,/-½ + β θ θ) /'+ 'Δ j + (# ββ) /-½ ,/

(° 1) 1,/ ~ β () Ψ) /,/-½ + (Η β φ) 1-½ /

(a2) 1,/ ~ β ψ ψ) 1,/-½ + (βθφ) ί -VlJ ~ (Ηβφ),·+ %,/

(f l3) 1, / = ” (-¾ ψ) /'+ 'Δ j ~ (¾ v) /,/-½

(^4) /,/ ~ β θ θ) i -'Δ , j ~ β $ φ) ί ,/+½ + β β φ) ί , ί - ' Δ

(®5) i , j ~ β θ θ) 1+V2 J (β θ \//)/,/-½ ^ β θ '//)/,/+½

(#6) 1, / (¾ ^) / , / + '/2 - (^ 0ψ) 1- ½ J

(f l7) /, j ~ βφφ) /',/+ ‘Λ - βθφ) /-½ y + βθφ) /+ ‘/2,/

(a8)/,/' ~ (¾ Φ ^ /,/+ ‘/2 + (-¾ φ) i'+ '/2,/

Then, the finite difference representation of eqn. 4 may be written

(a0) i,/Xi',/ (a 1) /',/' X / -1 ,/-1 “ (fl2) 1,/ X /,/'-1

(a3) /,/ X ,-+1 ,/. j ~ (¢4) ,·,/ X ,·. 1 j (8)

~ (as) /,/ X,·+1 ,/ - (a6)/,/ χ j /+ j

“ (αΊ) /,/ X /,/+ 1 - (<2a) /,/ X /+ 1 ,/+ 1

in which

B/,/ = (9)

408 ICL TECHNICAL JOURNAL NOVEMBER 1981

In matrix form eqn. 8 may be written as

Αχ = Β(χ) (10)

in which A is weakly diagonally dominant.

In order to compute the coefficients Hap in eqn· 7 and the Jacobian in eqn. 9, the
derivatives R e , Z e , R ^ , Z ^ are needed at mesh points and midpoints. We use the
centered difference schemes

(Re)i,/ = (Rf+,,/ — R/-7,/) / 2Δ0

(Re)i+VlJ = (Ri + l j - R i j) / ΑΘ (11)

(^S)1,7+½ ~ ((R i+1 , /+ 1 ~ 7?,·- 1 J+ 1) + (/?,·+ 1 j ~ Ri- 1 ,/)) / 4Δ0

and similarly for the other derivatives.

In DAP Fortran, the differences are easy to evaluate using nearest neighbour shifts.
Consider, for example, the computation of eqn. 11. This may be written

RT__A(,) = (/?(,+) - R) *MAT(RDT)

W(.) = (R(,+) - R(,-))*0-5E0*MAT(f?D7’)

RT_B(,) - (W + W(+,))*0-5E0

RT(,) =W(,)

Here, the postfixes A and _B refer to the midpoints (/+½j) and (/,/+½). re­
spectively.

4.3 The finite difference equations f\p = 0)

The value of χ at the axis of the coordinates is obtained using an integral relation.
Integrating eqn. 4 over the area enclosed by the surface ψ = Δψ/2 (/' = 3/2) and
using periodicity in Θ, we obtain

2π Δ ψ /2

l (Λψψ Χφ Xg) I άθ = - J άφάθ (12)

The lower limit on the left hand side of eqn. 12 gives no contribution, since the
derivatives with respect to Θ vanish at the origin. Using the centered difference
schemes

ICL TECHNICAL JOURNAL NOVEMBER 1981 409

and the trapezoidal rule to approximate the integrals, eqn. 12 becomes

63 63

X u ^ 6(Ηψψ)/,¾ / β(//ψψ)·3Λ Xiy2

1=2

63

+ ^ ^0ψ),·,3Λ(Χ,-+1,2 " Xi-1,2) (13)

/=2

63

in which 6 = ½ for / = 2,63 and 1 otherwise. (Since the last two terms on the right
hand side of eqn 13 are very small, it would probably be sufficiently accurate to
omit them and therefore compute χ,· j as an average of the χ,· 2 .)

In DAP Fortran, the sums are obtained using the built-in function SUM. For
example, the sum on the left hand side of eqn. 13 is evaluated by

SUM 11D = SUM(STEP_FUNCTION()*HPP_D(2,))

4.4 Definition o f the boundary shape

The boundary is defined by

Riy6 4 = R0 + a cos (0,- + δ sin 0,)

Z,· 64 = ea sin 0,·

in which Λ0 , a, δ , e are parameters. For the Dee shaped cross-section in JET,

Λ0 =2·96, a = 1-25, δ =0-2539, e= l -68

0,- = (/ - 2) - 1 < / < 64

410 ICL TECHNICAL JOURNAL NOVEMBER 1981

In DAP Fortran,

R(64,) = VEC(RZERO)+VEC(ABOUND)*COS(THETA+VEC(DBOUND)

*SIN(THETA))

Z(64.) = VEC(EBOUND)*VEC(ABOUND)*SIN(THETA)

These points are fixed throughout the calculation.

4.5 Initial guess for the φ , Θ mesh

Let R c be the required position of the coordinate axis. At the start of the calcula­
tion, we make the guess R c = R 0 . When the magnetic axis (Rm) has been found,R c
is changed to R m and then remains fixed for the remainder of the calculation.

The Θ lines are defined to be straight lines joining R c to the fixed boundary points
set up in Section 4.4. The \p surfaces are then equally spaced in distance along the
Θ lines, between the coordinate axis and the boundary. The mesh values are there­
fore given by

As an example, in DAP Fortran, the expression in eqn. 14 for Z(/· is

Z(ROWS(l ,63)) = MATC(STEP)*MATR(Z(64,)).

Here, STEP is a vector containing 0(1/63)1. MATC(MATR) are built-in DAP
Fortran functions that produce matrices with each column (row) set equal to their
argument.

4.6 The initial guess for χ

The initial guess for χ is based on the value of χ at the surface of a cylinder of
length 2irR0 carrying the same current. Consider quantities normalised according to
eqn. 3. If; is a measure of the current density, the total current / is measured by

1 < j < 6 3

1 < i ^ 6 4
(14)

and the poloidal field Βθ is measured by

Be(r)~r j

ICL TECHNICAL JOURNAL NOVEMBER 1981 411

Then, each mesh point of a given colour is connected by eqn. 8 only to mesh points
of a different colour. In turn, the black, white, red and blue values may therefore
be updated simultaneously, at each stage using the latest values at the other mesh
points. With this ordering, the matrix A in eqn. 10 has diagonal blocks that are
diagonal but is not 2 -cyclic.

412 ICL TECHNICAL JOURNAL NOVEMBER 1981

In DAP Fortran, an SOR iteration (including up/down symmetry) may be written

ICL TECHNICAL JOURNAL NOVEMBER 1981 413

Q i ,/' - 4 y 2 i + >/2 , / + Q i - ‘Λ , / + Q i+ 'h , / - 1 + Q i - ' λ , / - l J

Q i - ‘Λ , / - 2 (o . i - 1 , / + Q i, i ^ j

and then approximate the integral by

63 64

v = 2 Δ φ Δθ 2 Σ e Q i j J i j - 1/2

1=2 / = 2

In DAP Fortran, the integral may be written

W(,) =Q(,-)+Q(,+)+2.0E0*Q(,)

QBARQ = 0.125*(W+W(-,))

V = TWO_DP_DT*SUM(QBAR*AJ_D)

in which AJ_D contains eJij _./2. (This procedure is probably unnecessarily compli-

414 ICL TECHNICAL JOURNAL NOVEMBER 1981

cated. A simpler, and faster, approximation to the current would probably be
sufficient.)
The final step in each iteration is to up-date the value of χ at the coordinate axis,
using eqn. 13. In DAP Fortran, with obvious notation

CH IA X IS = (SUM2 _ 1D+SUM3 _ 1D+SUM2 D)/SUM 1 _ 1D

CHI(1,) = VEC(CHIAXIS)

In the code, the iterations are performed in cycles of 50 iterations. After each cycle,
the maximum change in χ (Δχ) and the maximum residual are computed. The
equilibrium equation is considered solved when Δχ is less than some specified
tolerance.

4.8 Location o f the magnetic axis

The magnetic axis/? = R m is the point at which χ attains its minimum value. Under
the hypothesis that χ is monotonic and has up/down symmetry, the (unique) mag­
netic axis lies along Z = 0. We locate it using quadratic interpolation, as follows.

Let R ! be the position along Z = 0 of the minimum mesh value of χ and let R 0 and
R 2 be the positions of the mesh points on either side (along Z = 0) such that
/?,, < /? , < /? 2 .

The Lagrangian form of the quadratic interpolating polynomial \(R) maybe written

(/?2 - / ? !) (/ ? — / ? !) (/ ? - / ? 2)x(/?o) (/?2 - / ? ο) (Λ - / ? ο Χ / ? - / ? 2) χ (/ ? ,)

ICL TECHNICAL JOURNAL NOVEMBER 1981 415

In the mapping onto the DAP (Fig. 2), the line Z = 0 occupies two non-adjacent
columns (2 and 63). The first step in evaluating eqn. 18 is to extract the values of
X and R along yhe line Z = 0, ordering the increasing R when regarded as a long
vector. Account has to be taken of the fact that the axis value is the first element in
both columns. For example, in order to extract the values of χ, we write

WORKCHIQ = 1.0E10
V() = CHI(,63)
V () = V(+)
V(64) = 1.0E10
WORK CHI(,1)=REV(V)
WORK CHI(,2)=CHI(,2)

The position of the minimum mesh value of χ is located using the built-in function
MINP:

L(,) = MINP(WORK CHI).

416 ICL TECHNICAL JOURNAL NOVEMBER 1981

The components of the top and bottom of eqn. 18 are computed from

BOTTOM() = CHI VALS()*R DIFFS()

TOP = BOTTOM()*R SUMS()

and the position of the magnetic axis obtained from

R MAG AXIS = 0.5 EO*SUM(TOP)/SUM(BOTTOM)

4.9 Determination o f the accuracy o f the φ surfaces

The φ surfaces should eventually lie in the χ surfaces. To measure the accuracy of
a given mesh, we first compute the average value of χ around each φ surface,

64

X/ = 64 / j XiJ
i = 1

and then define the surfaces error es by

es = max Iχ , · - χ .Ι
ϊ,ϊ

The equilibrium problem is considered solved when es is less than some specified
tolerance.

In DAP Fortran,

CHI_AV(,) = MATC(SUMC(CHI)/64,0E0)

SURFACEERR = MAXV(ABS(CHI-CHI AV)).

4.10 Respacing the φ mesh

This is the most interesting aspect of the implementation on the DAP since at first
sight it might appear to be extremely difficult to do in parallel. However, as shown
below, application of the useful rule ‘organise the data, then do the arithmetic’
makes this operation quite simple.
Respacing the φ mesh may be described as follows. As a result of solving the
equilibrium equation on some mesh, values of R tj , Z^j, ., are known. A set of
new χ values (xnew)fc 2 < k < 63 is then chosen. These are to be the χ(ψΛ) on the
adjusted mesh. The values of R i k and Z i k corresponding to the (x new)k are then
found using quadratic interpolation (along each Θ ray) based on the known values
R ij, Zi j, Xi j. In terms of Fig. 2, this can be thought of as respacing the R; /> ZI>;
points down each column i.

ICL TECHNICAL JOURNAL NOVEMBER 1981 417

(In our application,p represents R and Z).

For each (xnew)k and each 0,·, we therefore need to extract the appropriate values
of (Ri 0 , R i u R i 2), (Zi 0 , Z, ,, Z i 2) and (χ ■ 0 , χ ;>, , χ,· 2). Inspection of the error
term of the interpolating polynomial shows that greatest accuracy is obtained when
Xifl is the value nearest (xnew)fc. To locate this value of x f , , we find the smallest
value of / (say l) for which the inequality

2 < 6 3
(Xnew)fc < H (Xij + X i,/+1) 2 < k < 6 3 (20)

is satisfied. Note that l = l (i,k) since (apart from its obvious dependence on k) the
inequality 20 will be satisfied at different positions along different Θ rays. The
values Xij(itk) _ i, Xi,ifi,kj+i are then used as the values χ,·0, χ,,ι, χ ,·,2

for the interpolation (and similarly for R and Z).

418 ICL TECHNICAL JOURNAL NOVEMBER 1981

For each (xnew)fc> inequality 20 is evaluated, using a logical matrix to mark
the points where it is satisfied.

DO 10 K = 2,63

L(,) = MAT(V_NEW_CHI(K)).LT.CHI_MID(,)

The first .TRUE, point down each column is the point l(i,k) referred to above. This
is extracted from the logical matrix L using the built-in DAP Fortran row-number
function, ROWN:

IV() = ROWN(L)

in which IV is an integer vector to hold the /(/,k) for each column i. The values
Xi,i(i,k) etc· are then extracted using the row-number addressing construct. For
example, for x tj , we have

CHI1(K,) = CHI(IV,)

When this process has been repeated for all k, the x f/· values are updated

CHI(,) = MATC(V_NEW_CHI)

Finally, the arithmetic in eqn. 19 is done in parallel. For example, in obvious
notation

C M CO = CHI—CHIO

ICL TECHNICAL JOURNAL NOVEMBER 1981 419

The code was run using 32 bit precision. The relevant numerical results for this case
are given below. [Note that the location of the magnetic axis was repeated three
times (‘axis iterations’) as a diagnostic check on the accuracy. This extra compu­
tation is strictly unnecessary.]

Fig. 3 A JET equilibrium computed on the ICL DAP

Values obtained when locating the magnetic axis:

420 ICL TECHNICAL JOURNAL NOVEMBER 1981

This calculation took approximately 180s of DAP processing time. Since we have
not written a conventional Fortran equivalent of the DAP code, an exact timing
comparison with other machines cannot be made. However, for orientation, a
similar calculation using the code described in Delucia etal. 3 took approximately
5200s (a factor of 29) on an ICL 2976.

6 Summary

We have demonstrated the solution of a substantial computational problem on the
production ICL DAP. No difficulties were encountered with the DAP hardware or
software. The computational operations needed for the calculation were easily
programmed in DAP Fortran. The DAP code ran approximately 29 times faster
than a similar (but not identical) conventional Fortran code on an ICL 2976.

Acknowledgments

I should like to thank the Computer Centre of Queen Mary College for the use of
the DAP. In particular, I should like to thank G.Bowgen of the DAP Support Unit
for his assistance in running the code.

ICL TECHNICAL JOURNAL NOVEMBER 1981 421

The components of the equilibrium equation j x B =V p are

\ / g (j 2 B3 - j 3 B2) = dp/dx1 (A5)

\ /g { j3 B l - j l B3) = dp/dx2 (A6)

\ f g (j l B2 - j 2 B l) = 0 (A7)

422 ICL TECHNICAL JOURNAL NOVEMBER 1981

dF 3χ _ 3F Βχ =

dx2 dx1 dx1 dx2

so that F = Fix). Multiplying eqn. A5 by B2, eqn. A6 by B1 and adding, we obtain

dp dx dp ̂ dx_ _

dx2 dx1 dx1 dx2

so that p = p(x)· Eqn. A5 may then be rewritten to give

dBi dB2
— Γ - = - V F(FX F 3 + μ0 px) (A8)
dx2 dx1

ICL TECHNICAL JOURNAL NOVEMBER 1981 423

\ /g -Κ(ΚψΖθ - ReZ^) - J .

Then, defining

^ψψ = g22 = (Re2 + Ze2)jJ

hm = £ n / v ^ " = (V + Ζ ψ2) / /

ϊιθψ = - g n l \ f g = - (RxpRe + ζ φζ θ)υ ,

Eqn. A8 may be written in its final form

424

