Technical
Journal

Volume 2 Issue 4 November 1981

Technical
Journal

Contents

Volume 2 Issue 4

Architecture of the ICL System 25
A. Walton 319

Designing for the X.25 telecommunications standard
K.J. Turner 340

Viewdata and the ICL Bulletin System
D.R.Olivey and R.Sugden 365

Development philosophy and fundamental processing concepts
of the ICL Rapid Application Development System RADS
A.P.G.Brown, H G.Cosh and D.J.L.Gradwell 379

A moving-mesh plasma equilibrium problem on the ICL Distributed
Array Processor
P.Kirby 403

Editorial Board

Professor Wilkes retired from his Chair at Cambridge in the autumn of 1980 and is now living
in America; he has decided to resign from the Editorial Board, on grounds of practicality. The
Board and the management of ICL take this opportunity to record their very warm appreciation
of the great amount he has done for the Technical Journal. His wisdom and his advice, based on
his unrivalled experience as one of the pioneers of the computer age, and his insistence as a
scientist and a scholar on high but realistic standards have been invaluable. The Board sends its
thanks and good wishes to a colleague who is greatly respected and whose company has always
been enjoyed.

It is the Board’s good fortune that Mr. Donald Davies of the National Physical Laboratory has
accepted the Company’s invitation to become a member. He too has experience going back to
the earliest days of the digital computer, for whilst Professor Wilkes was building one classic
machine, EDSAC, at Cambridge, he was one of the team which was building another, ACE, at
NPL. The Board welcomes Mr. Davies with this issue of the Journal.

ICL TECHNICAL JOURNAL NOVEMBER 1981 317

iIcL] Technical
Journal

The ICL Technical Journal is published twice a year by Peter Peregrinus Limited
on behalf of International Computers Limited

Editor

J Howlett

ICL House, Putney, London SW15 1SW, England
Editorial Board

J. Howlett (Editor) D.W. Kilby

D .W.Davies K.H. Macdonald
(National Physical Laboratory) B.M. Murphy
D.P.Jenkins J M. Pinkerton

(Royal Signals & Radar Establishment) E.C.P. Portman
C.H.Devonald

All correspondence and papers to be considered for publication should be addressed
to the Editor

Annual subscription rate: £10 (cheques should be made out to ‘Peter Peregrinus
Ltd.’, and sent to Peter Peregrinus Ltd., Station House, Nightingale Road, Hitchin,
Herts, SG5 1RJ, England. Telephone: Hitchin 53331 (s.t.d. 0462 53331).

The views expressed in the papers are those of the authors and do not necessarily
represent ICL policy

Publisher
Peter Peregrinus Limited
PO Box 8, Southgate House, Stevenage, Herts SG1 1HQ, England

This publication is copyright under the Berne Convention and the International
Copyright Convention. All rights reserved. Apart from any copying under the UK
Copyright Act 1956, part 1, section 7, whereby a single copy of an article may be
supplied, under certain conditions, for the purposes of research or private study, by
a library of a class prescribed by the UK Board of Trade Regulations (Statutory
Instruments 1957, No. 868), no part of this publication may be reproduced, stored
in a retrieval system or transmitted in any form or by any means without the prior
permission of the copyright owners. Permission is however, not required to copy
abstracts of papers or articles on condition that a full reference to the source is
shown. Multiple copying of the contents of the publication without permission is
always illegal.

© 1981 International Computers Ltd

Printed by AMcLay & Co. Ltd., London and Cardiff ISSN 01421557

318 ICL TECHNICAL JOURNAL NOVEMBER 1981

Architecture of the ICL System 25

Alan Waiton
ICL Distributed Systems Division, Bracknell, Berks., UK

Abstract

The organisation and operation of the hardware of the ICL System 25
small-business machine is described. The relation to the existing System
Ten, with which it is compatible, is indicated.

1 Introduction

System 25 is a physically small, powerful and versatile computer aimed primarily at
the needs of commercial data-processing. It is compatible with the ICL System Ten
which has proved a very popular and successful small-business machine and of
which approaching 10,000 are in use world-wide. System Ten was designed in 1968,
since which time there have been considerable advances in both physical technology
and concepts of computer architecture. The design of System 25 exploits these
advances to give a machine which is in every sense more powerful and versatile than
System Ten while retaining all the good features of the earlier machine, especially
its ease of use. In essence, the aim of the new design is to provide in a single small
system, and simultaneously if required, all the various services which are being
requested in business operations, such as batch, transaction and distributed proces-
sing, word processing, and control of such devices as Point-of-Sale and Factory Data
Collection terminals.

The machine is shown in Plate 1.

Particular features of System 25 architecture are as follows:

(i) Features derived from the Primitive Level Interface, which is the definition
of the prime interface between the software and the hardware and includes
the instruction set, store map, data and arithmetic standards etc. It is
based on that for System Ten with extensions for handling 8-bit data and
new high-capacity discs, maintaining exact compatibility wherever possible
so as to allow direct transfer of programs. The main features here are:

(@) Partitioned store, to allow multi-programming with guaranteed
independence and protection for the programs

(b) Decimal arithmetic and decimal addressing; this allows computation
on input data without the need for time-consuming decimal-to-
binary conversion, and also makes the use of the machine easier and
more natural.

(¢) Variablelength store-to-store operations, to allow efficient use of
main-store space.

ICL TECHNICAL JOURNAL NOVEMBER 1981 319

(ii) Support for a number of communication protocols, allowing System 25 to
be used as a secondary station to ICL and IBM mainframes or as a primary
station driving remote peripherals.

(i) Means for supporting a wide range of peripherals via either System 25
standard interfaces (carried over from System Ten) or various Industry
Standard interfaces. The main slow peripheral interface, for example, will
allow the connection of up to 10 peripherals at distances of up to 1500m.

(iv) The System 25 Bus, which is the key feature of the hardware organisation
and on which the above features depend. It is a set of physically separate
bussed highways, used to interconnect the modules which make up the
system. Each highway is designed for its particular purpose, resulting in
cost-effective systern modules and efficient transfer of data within the
system; and the architecture provides ample scope for the incremental
introduction of future enhancements.

The present paper describes in some detail the organisation and operation of the
hardware and the means by which these and other features are realised. It concludes
with a short note on the main software packages which are provided for support
of the hardware; these will be dealt with in more detail in a second paper, to be
published in the next issue of this Journal.

2 Hardware Organisation
2.1 Summary

The key to the System 25 hardware organisation is a set of bussed highways col-
lectively known as the System 25 Bus, which is used to interconnect a number of
modules to create a system as shown in Fig. 1.

A system contains at least one of the following system modules, each of which
consists of one or more boards interconnected via the backplane containing the
System 25 Bus:

- a Control Processor which is responsibie for the overall supervision of the
system and for data transfers from slow peripherals

- an Instruction Processor which executes the System 25 Instruction Set

- a Store module
a Disc Controller plus its associated Disc Adaptor which is responsible for
fast I/0 transfers
a Slow Peripheral Coupler to drive, an external slow peripheral interface for
the connection of peripherals such as VDUs, printers.

There are two external slow peripheral interfaces supported by System 25, which
have been carried over from System Ten. The main slow peripheral interface is the
MTIOC interface (Multi Terminal Input Output Channel), which allows connection
of up to ten slow peripherals onto a single twisted pair. The MDIOC interface

320 ICL TECHNICAL JOURNAL NOVEMBER 1981

wn
=
[42]
-

I AL LT ARSI S S SR SNSRI S IR TS -_—_—_7| R it D at o b us
| \ ! i
| l l
‘ ‘] 1
! l | | ! | I I f
1
! ! |
e e | oc bl b
| l | | | 1 | |
- I ! T 1
10 : : Y
bus I :
T T | }
I | | }
! | | T 7 disc
j i K | f bus
: 1l it 1 i
T oo e ! » !
! [} t ! { { l {
H T] T T I | b |
| | 1 I 1 | T 7 T
| 1 I | i 1 I |] |
MTIOC MDI0C V24 ! | | |
disc drive interfaces
/10 couplers for ‘
external peripheral adaptors for disc drives
interfaces
Fig. 1 Basic structure of System 25
Notes Key
(i) Arrows indicate master/slave ST = Store Modules
relationship IP = Instruction Processor
(ii) Dotted lines indicate control CP = Control Processor
information only DC = Disc Controller
(iii) MTIOC etc. explained in text *C = Qther Controllers

T =T Coupler - MTIOC Interface
D =D Coupler = MDIOC Interface
C =C Coupler - Communication Lines

(Multi Device Input Output Channel) allows connection of Point-of-Sale and
Factory Data Collection terminals carried over from System Ten.

System 25 also supports a number of local disc drive interfaces which are specific
to the particular disc drive; and a variety of communications lines and their associ-
ated protocols.

2.2 System 25 Bus

The System 25 Bus consists of two main bussed highways — the Store Bus and the
I/O Bus — and a subsidiary Disc Bus. There are two lines common to all modules; a

ICL TECHNICAL JOURNAL NOVEMBER 1981 321

System Reset line and a System Fail line.

The System 25 Bus is tracked in the back plane. The common lines, Store Bus and
I/O Bus are tracked to all board locations. The Disc Bus is only tracked to those
locations which house a Disc Controller and its associated Disc Adaptors.

On any of the highways, transfers across the highway can only be initiated by a
master module. The other module involved in the transfer is a slave module.

2.2.1 Store Bus: The Store Bus is used to transfer either one or five bytes of data
between one of the master modules and one of the store modules (a slave module)
and consists of

- 23 Address lines (7 bit binary Block Address and a 4 digit decimal Byte
Address within a block)

- 40 Bidirectional Data lines (5 bytes)

- 2 Store Function lines

- 1 Store Mode line

- 3 Interface Control lines

-1 Master Clock line (4 MHz, equivalent to a clock period of 250nsec)

Transfers on the Store Bus occur in synchronism with the Master Clock.

A ‘daisy-chain’ Bus Request line is used to resolve contention for use of the Store
Bus. When a master module obtains access to the Store Bus, it will set Bus Reserved
to inhibit the contention logic for one slot time. At the same time the master
module enables the address and data onto the bus lines. The store module will
respond with data in time to be latched into the master module at the end of the
second slot. Thus a single transfer takes two clock periods.

During the second slot contention can take place for the next store cycle.

The store is defined to have two modes of operation. In Word mode, 5 bytes of
data are transfered in parallel across the bus. In Byte mode, a multiplexor in the
store module is used to transfer a single byte of data on the lowest numbered byte
data lines.

The store cycle is 500ns (two clock periods) giving bandwidth of 10Mbyte/s in
Word mode and 2Mbytes/s in Byte mode.

2.2.2 I/O Bus: The 1/O Bus is driven by the Control Processor (the master module)
and is used as the transfer path for control information to other modules and as a
byte multiplexing interface for the transfer of data to or from I/O Couplers. It
consists of

- 8 Bidirectional data lines
- 2 Function lines

- 2 Function Qualifier lines
- 5 Interface Control lines
- 1 Strobe Line

322 ICL TECHNICAL JOURNAL NOVEMBER 1981

The transfer of a single byte of data takes a minimum of 8 interactions on the I/O
Bus.

The 1/O Bus provides for up to 64 Input/Output Channels (IOCs) which are inde-
pendent logical transfer paths, a single coupler may have more than one IOC.

Each 10C is defined to have a set of 4 output registers which are written to by the
Control Processor and a set of 4 input registers which are read by the Control
Processor. Access to these registers is controlled by the Function and Function
Qualifier lines.

The Control Processor can select a particular IOC by writing the I0C number to
one of the output registers (Come On Line) and the selected 10C will then remain
‘On Line’ until ‘Offline’ is set or another 10C is selected.

The Control Processor will initiate the transfer of a block of data by writing to the
Control Word register of the selected IOC. Thereafter the transfers of the
command, data and status bytes for the block of data are initiated by an interrupt
from the 10C.

There is a single bussed interrupt line which is set by an I0C requesting service.
A ‘daisy chained’ Interrupt Acknowledge line will cause the highest priority inter-
rupting IOC to place its IOC number on the data lines.

The Control Processor will bring the interrupting IOC Online and read from the
input registers the interrupt type, associated data and the assigned partition
number. The Control Processor will then write any output data to the output
registers. Finally, the Control Processor will clear the interrupt by writing to the
Clear Interrupt register and set the I0C Offline.

2.2.3 Disc Bus: The Disc Bus is driven by the Disc Controller and is used as the
transfer path for control information to Disc Adaptors, and as a block multiplexing
interface for the transfer of data to or from Disc Adaptors. It consists of

- 8 Bussed Bidirectional Data lines
- 1 Bussed Control line
1 Select line to each Adaptor
1 Service Request line from each Disc Adaptor
1 Strobe line.

The Disc Bus consists of one or more physically separate segments, each driven by
one Disc Controller.

Each Disc Adaptor contains a buffer which is used to store the disc transfer
parameters sent across the data lines by the Disc Controller.

When the Disc Adaptor is ready to transfer a block of data, it requests service from
the Disc Controller. The Disc Controller will initiate a data transfer operation and
the block of data is transferred across the disc bus in synchronism with the Strobe
line at 3Mbytes/s.

1CL TECHNICAL JOURNAL NOVEMBER 1981 323

2.3 External Peripheral Interfaces

2.3.1 MTIOC Interface: The MTIOC interface (Multi Terminal Input Output
Channel) is the main interface for connecting slow peripherals onto System 25, and
has been carried over from System Ten. Up to 10 terminals may be multi-dropped
onto a single twisted pair cable which can be up to 1500m long.

Data is transmitted bit-serially as 7 data bits and two check bits at a bit rate of
28kHz or 56kHz, using frequency modulated encoding. The equivalent byte rate is
nominally 1500 or 2700 characters transferred per second. Successful transmission
of a byte of data in one direction is followed by an Acknowledge transmission in
the other direction. If no acknowledgment is detected, the data byte is auto-
matically retransmitted.

The protocol of the MTIOC interface allows for four commands:- Read, Write,
Read Control and Write Control. Interpretation of the commands depends on the
particular peripheral. In between transfers, the terminals are polled in sequence.
The selected terminal will acknowledge the poll if it requires service.

Electrical isolation of the interface is achieved by transformer coupling at the
terminal.

2.3.2 MDIOC Interface: The MDIOC interface (Multi Device Input Output Channel)
is used for connecting Point-of-Sale or Factory Data Collection terminals into
System 25 via the D coupler (see Fig. 1). It allows the connection of a single
terminal up to 12000m from System 25 via a single twisted pair. The data transfer
rate depends on the direction of the transfer and length of line and can be set to the
following data rates (in characters per second).

Output to Input from Maximum
Terminal Terminal Line Length
120 1200 12000m
1200 3600 6000m
2400 4800 1000m

Data is transmitted as 7 data bits and one parity bit using an asynchronous trans-
mission protocol. Optical couplers in the D Coupler give electrical isolation. The
terminal provides the line current which is modulated by the terminal for input
data, and the impedance at the D Coupler is modulated for output data.

The coupler contains a multiplexor for the connection of up to 16 lines into a
single 10C, and two IOCs with a total connection capability of 32 lines.

2.3.3 Communication Interfaces: CCITT V24 interfaces are provided for the con-

nection of modems and associated communications lines. System 25 will support a
variety of protocols, including:

324 ICL TECHNICAL JOURNAL NOVEMBER 1981

ICL COl

ICL CO3 binary synchronous protocols
IBM 3270

IBM SNA SDLC

X25 HDLC

There is a special binary synchronous protocol for the connection of remote
System 25 or System Ten video terminals.

2.3.4 Other External Interfaces: Other external interfaces can be supported by the
use of special-purpose couplers, for example:

RS 232 interface for special purpose printers.
Cartridge Magnetic Tape Drive interface.

2.4 System Modules

2.4.1 Instruction Processor: The Instruction Processor is a master module on the
Store Bus and a slave module on the I/O Bus. It is responsible for execution of the
System 25 Order Code.

Instruction execution is initiated by commands on the I/O bus from the Control
Processor and continues until an I/O instruction is encountered or it is commanded
to switch to another partition by the Control Processor. For 1/O instructions, the
relevant real addresses are computed and stored in the control store and the Control
Processor is informed by an interrupt on the I/O Bus.

When commanded to switch partition it will continue processing until the next suc-
cessful branch instruction before suspending operations and informing the Control
Processor.

2.4.2 Control Processor: The Control Processor is @ master module on the Store
Bus and the master module of the I/O bus. It is responsible for the overall control
of the system and for transferring data between Slow Peripherals (via the I/O Bus)
and main store (via the Store Bus).

It initiates processing by the Instruction Processor and controls switching between
partitions.

It initiates slow peripheral operations by translating the I/O instruction into com-
mands which are then routed to the appropriate coupler. It maintains the store
address and counts associated with the transfer, and operates as a byte multi-
plexor for the transfer of data between the I/O Bus and Store Bus. It initiates
transfers to fast peripherals which then proceed autonomously under the control
of a disc controller. At the end of the transfer the Control Processor will initiate
a partition switch to the originating partition.

It uses a configuration table in the control store to translate logical device numbers
into real device numbers.

ICL TECHNICAL JOURNAL NOVEMBER 1981 325

2.4.3 Store Modules: A store module is a slave on the Store Bus and provides a
five-byte-wide random access store. It will generate parity when writing to store,
and check the stored parity when reading from store.

2.4.4 Disc Controllers: A disc controller is @ master module on the Store Bus, is
a slave module on the 1/O Bus and is tie master module of a Disc Bus.

It is responsible for scheduling disc operations and for transferring data between
Disc Adaptors (via the Disc Bus) and Main Store (via the Store Bus). It initiates
disc operations at the request of the Control Processor by translating commands
contained within the Control Block associated with a Disc 1/O instruction and
routing the information to the appropriate Disc Adaptor.

It maintains the store address associated with the transfer, and operates as a block
multiplexor for the transfer of data between the Disc Bus and Store Bus.

A Disc Adaptor is responsible for interfacing the disc drives into System 25 and for
transforming the protocols and data formats used within System 25 into commands
and data across the disc drive interfaces. There is a different Disc Adaptor for each
type of disc drive.

2.4.5 Slow Peripheral Couplers: A Slow Peripheral Coupler is a slave on the 1/O Bus
and controls one or more external peripheral interfaces of communications lines. It
is responsible for driving the external interface and for transforming the protocols
and data formats used by the peripherals or communications lines into those used
within System 25.

Each Slow Peripheral Coupler consists of one or more logical Input Output Channels
(IOC). There is a different Slow Peripheral Coupler for each type of external
interface as follows:

T Coupler for MTIOC interfaces

D Coupler for MDIOC interfaces

C Coupler for communications lines

R Coupler for Cartridge Magnetic Tape
V' Coupler for special interfaces

3 System 25 Primitive Level Interface

The Primitive Level Interface of a system is the main interface between the hard-
ware of the system and the software running in the system. It consists of a definition
of the Instruction Set plus a definition of associated data standards, store map,
arithmetic standards, etc.

The System 25 Primitive Level Interface is based on that of System Ten, with a

limited number of extensions to support the new high capacity discs, to improve
performance and to handle 8-bit data.

326 ICL TECHNICAL JOURNAL NOVEMBER 1981

3.1 Data Standards

3.1.1 Data Codes: Data is stored within System 25 as 8-bit bytes as follows:

Bit No. 8 7 6 5 4 3 2 1

T T T T I | _
[]] 1 | | LSbit

[I
MS bit | e

Zone Numeric

The bits are numbered from 1 to 8; bit 8 is the most significant bit and bit 1 the
least. Bits 8 to 5 contain the Zone code of the byte and have a value in the range
0 to 15. Bits 4 to 1 contain the Numeric code of the byte and have a value in the
range 0 to 15.

The characters assigned to the codes are given in Table 1 for Zone codes 0-7 and
correspond to the ISO 7 bit set. Zone codes 8-15 do not have assigned characters.

The 6 bit subset which is compatible with System Ten consists of Zone codes 2-5
(i.e. bits 8 and 6 are ignored).

3.1.2 Numeric Data: Numeric data is stored as variable length Binary Coded
Decimal (BCD) byte strings in sign and modulus form. The Numeric code of each
byte has a value in the range 0-9. For positive numbers each byte has a Zone code
of 3, so that numbers are stored as their character code.

For negative numbers each byte except the least significant byte has a Zone code of
3. The least significant byte has a Zone code of 5. Thus the character representation
of the least significant byte for the numerals 0 to 9 is P to Y, as in the following
table:

Numeral 0 1 2 3 4 5 6 7 8 9 Positive number

Character P Q R S T U V W X Y Negative number

Example: -1234 is stored as 123T.
3.2 Store Map

The Main Store is divided into a number of areas as shown in Fig. 2.

(@) Control Store from 0 to 2999, which contains I/O control and configur-
ation data for use by the Control Processor.

(b) Common Store from absolute address 3000 which contains information
accessible to all partitions. Write access is prohibited to locations 0 to 299
of Common. This area is called Protected Common.

(¢) Partition Store. An area of store for each partition which contains the
partition program, data and Index Registers.

ICL TECHNICAL JOURNAL NOVEMBER 1981 327

Table 1 Character codes

Column 0 1 2 3 4 5 6 7

Bit

0 0 o o o0 0 0 0 8

0 0 0 0 1 1 1 1 7 ZONE
CODE

0 0 1 1 0 0 1 1 6

Bit 4 3 2 1 0 1 0 1 0 1 0 1 5
0 0 0 0 NUL DLE SP O @ P ' p
0 0 0 1SOH DCI ! 1 A Q a q
0 0 1 0STX DC2 "2 B R b
0 0 1 1 ETX DC3 £ 3 C S ¢ s
0 1 0 0 EOT D4 $ 4 D T a4 t
0 1 0 1 ENO NAK % 5 E U e u
0 1 1 0 ACK SYN & 6 F Vv f v
0 1 1 1BEL ETB ' 7 G W g w
1 0 0 0 BS CAN (8 H X h x
1 0 0 1 HT EM) 9 1 Y i y
1 o 1 o0 LF SUB ¥ :] Z z
{0 1 1 vr ESC + : K [k |
1 1 0 o0 FF FS , < L\ 1 |
1 1 0 1 CR GS ; = M] m }
1 1 1 0 SO RS : > N N n
1 1 1 1 s8I Us / ? 0 o DEL

3.2.1 Control Store: The lowest numbered area of main store is called the Control
Store which has been added for System 25. This area of store is not accessible to
the partitions, except from Partition 0 in special circumstances, and is used to hold
control information for Input/Output operations and for general system operation.

A duplicate set of A and B registers hold the control words in absolute address form
and other registers are used by the Control Processor to progress the state of 1/O
transfers.

An area of control store is used to hold a translation table for the mapping of the

logical device numbers within an 1/O Instruction into real device numbers and 10C
numbers.

328 ICL TECHNICAL JOURNAL NOVEMBER 1981

STORE |
20000 : i 0o0oop
19999 ! I 6999P
! PARTITIONQ |
! STORE !
13000 : i 000OP
12999 I 9999C
| COMMON |
: STORE |
3000 ¢ 0000C
2999 | 1 2999
I CONTROL |
: STORE X
0 | ! 0000
Absolute Relative
Addresses Addresses

Fig. 2 Main store layout

3.2.2 Common Store: There is an area of Main Store accessible to all programs
called Common. The size of Common is set during Initial Program Load to a value
in the range 10000 to 80000 bytes, in units of 1000 bytes.

The first 300 bytes are called Protected Common and write access is inhibited. It is
used to hold the Program Pointer (P register — 5 bytes) and Input/Output Control
Words (A and B registers — 5 bytes each) for each partition.

The next 700 bytes are used for entry points to supervisory routines, tables control-
ling shared resources (such as disc), and a Mailbox for communication between
partitions.

The remainder of Common is used to hold shared routines (e.g. housekeeping
routines) and buffer areas for the bulk transfer of data between partitions.

3.2.3 Partition Store: Each program in System 25 operates within its own area of
main store called a Partition and the System 25 architecture allows for up to 20
partitions. The size of each partition is set during Initial Program Load to a value in
the range 0 to 80000 bytes, in units of 1000 bytes.

There is no defined structure within the partition store and its use is determined by
the user program. However, bytes 11-14, 21-24, 31-34 are used as index registers
by the instructions, and bytes 40-44 are used to hold the contents of the P Register
when a Program Check occurs.

3.3 Arithmetic operations

Arithmetic operations use two operands called the A operand and the B operand,

ICL TECHNICAL JOURNAL NOVEMBER 1981 329

which are fetched from the A and B Fields. The result is stored in the B Field.

The basic arithmetic functions are Add, Subtract, Multiply and Divide, with these
conventions:

Add — the A Operand is added to the B Operand.

Subtract — the A Operand is subtracted from the B Operand.
Multiply — the A Operand is multiplied by the B Operand.
Divide — the B Operand is divided by the A Operand.

3.3.1 Numeric Fields: Numeric data is stored in variable length fields of up to 10
bytes.

The A Operand is contained within the A Field as shown below

<___ _— éﬂFE@ ______ >
(LA)
MSbyte [] LS byte
A address sign byte

The length of the A Field is defined by the contents of the LA field in the
instruction.

The B Operand is contained in the B Field or the Extended B Field as shown below

Extended B field for Multiplication and Division

€ T
B field Extension to B field
o e S S
(LB) (LA)
MS byte | ! .
B addreds sign byte —# sign of dividend or product *

The length of the B Field is defined by the contents of the LB Field in the
instruction and the length of the extension to the B Field is defined by the contents
of the LA Field.

3.3.2 Addition and subtraction: Addition and subtraction of numeric data is per-
formed digit by digit starting with the least significant bytes of the two operands.
The result of each byteisstored before the next more significant bytes are accessed.

The arithmetic operations performed on the two numeric parts of the bytes depend
upon the Zone codes of the least significant bytes as defined in the table below.
Zone codes 0-3 and 8-11 are treated a. a positive, codes 4-7 and 12-15 are treated
as negative. The zone code of the result is set to 3 or 5.

330 ICL TECHNICAL JOURNAL NOVEMBER 1981

1 ! ! [
: Function | Boperand | Aoperand | Operation ! Result |
I ! ! | [e !
|I E : : | Sign | Zone Code:
e S I e —— e — e
' ADD |, + .+ | B+A L+ i 3 |
! ! + : - L B-A o+ 3
: : - : + 1 B-A | - 5 !
i
| S R A TN I
| i ' ! |
SUBTRACT !+ 1+ | B-A 1+ | 3
: : + 1 - | B+A : + | 3 :
. | - | + ! B+A | - | 5 i
S I S S Su SN S S

If the value of A is greater than the value of B, and the operation is B - A, then
the sum is complemented and the sign of the result is inverted.

If the A operand is shorter than the B operand, it is effectively extended with zeros
on the left during the operation.

If the A operand is longer than the B operand, it is truncated from the left and the
truncated part is ignored.

3.3.3 Multiplication: Multiplication is performed by a sequence of additions of the
A operand, extend=d with a zero digit, to the extended B field. The number of
additions is determined by the value of the digits of the B operand.

The zone of the least significant byte of the extended B-field is set according to the
signs of the A and B operands. Zone codes 0-3 and 8-11 are treated as positive signs.

! Operand Signs i Result |
= e e -
I A : B ! Sign i Zone Code |
e . - Ao mmm e A 1
1 ! | ! I
. | + | + [3 |
Lot L- ! - l 5 !
|- A | 5 !
I - fl [

!) I | | 3 :
__________________ — e e

The result of using overlapped operands is undefined.

3.3.4 Division: Division is performed by a sequence of subtractions of the A
operand (divisor), extended with a zero digit, from the extended B field which
contains the B operand (dividend).

The result (quotient) is stored in the B field and the remainder is storzd in the
extension to the B field.

The Zone code of the least significant byte of the B field is set according to the
signs of the A and B operands.

ICL TECHNICAL JOURNAL NOVEMBER 1981 331

" Operand Signs | Quotient i
|
77777777777777777777777 [_->'—‘__‘7*—_T)77<_ I |
A B ; Sign | ZoneCode
T e e e Tmmmm B -
L4 + ! ' 3 i
' + - i - : 5 !
L + | - ! 5 :
| | | i
! - - | [3 !
i | | i

The sign of the B operand is not changed and becomes the sign of the remainder.

The result of using overlapped operands is not defined.

3.4 Address format

The addresses on System 25 are represented as decimal numbers in the range
00000 to 79999, the first digit being a page number in the range O to 7. The whole
address is stored in part of a 4-byte address word, together with a marker C which
takes the value 0 if the address is relative to a partition base and 1 if it is relative to
the Common base.

The format is as follows:
The decimal digits d3, d2, d1, dO giving the address within the page with d3 the
most significant (thousands) and dO the least significant (units), are binary-coded

in bits 4 to 1 of the four bytes. Bit 4 is the most significant, bit 1 the least.

The page number p is stored in inverse form in bit 5 of each of bytes 1, 2, 3 with
the most significant bit in byte 3.

The marker C is stored in bit 7 of byte 4 and its inverse in bit 6.
The remaining bits — that is, bits 6 to 8 of bytes 1 to 3 and bit 5 of byte 4 — are

not used by address computation.

The layout is shown in the diagram below.

Byte 0 1 2 1 3 |

Bit 8 * * * 0
7 # * * C
6 * * * E
5 PO Pi 17 * *not used
4
3 D3 D3 D1 DO
2
1

332 ICL TECHNICAL JOURNAL NOVEMBER 1981

The convention used here and in the following paragraphs is that a capital letter
indicates a field and the corresponding lower-case letter the content of that field:
thus p is the number of the page stored in the page-number field P, and the sub-
field D3 of the address field contains the decimal digit d3.

3.5 Instruction format
3.5.1 General description: System 25 uses 2-address instructions of the form
F,A,B

where F is the function code and A,B are operand addresses. The interpretation of
the contents of the address fields depends on the contents of other fields stored in
the instruction word, as follows:

LA,LB give the lengths of the operands
AC, BC are address markers

IA,IB concern indexing

EIX concerns extended indexing

IDA, IDB concern direct/indirect addressing

These are explained in the succeeding paragraphs.

An instruction occupies 10 bytes, which we number conventionally 0 to 9 from the
left. The A,B addresses, in binary coded decimal, are held in bytes 1to4 and 6to 9,
respectively, with the format described in Section 3.4. The decimal digits are coded
in bits 4 to 1 of the respective bytes, with bit 4 as the most significant bit. They
must be in the range 0 to 9; a value in the range 10 to 15 will cause a Program
Check.

The detailed layout of the instruction is shown in the diagram below, where the
columns are the bytes and the rows the bits within the bytes. Bit 8 of each byte is
always zero and bit 6, which normally contains the inverse of bit 7, is ignored.

Byte 0 1 2 3 4 5 6 7 8 9
Bit |8 0 0 0 0 0 0 0 0 0 0
7 F3 | F2 | F1 | FO | AC| 1Al |1AO0 | IB1 | IBO | BC
6 * * » * * * * * * *
5 DA |PAO PAl PA2 | F4 | IDB |PBO | PBIi | PB2 | EIX
4
3 LA A3 | A2 ! Al {A0O| LB | B3 | B2 | Bl | BO
2
1 L
L. A - i

3.5.2 F, the Function: The function field F comprises 5 bits FO to F4 located as
follows:

F3 to FO in bit 7 of each of bytes O to 3 respectively
F4, inverted, in bit 5 of byte 4

ICL TECHNICAL JOURNAL NOVEMBER 1981 333

3.5.3 A and B, the Addresses (cf. Section 3.4): An address is specified by the
combination of the P field (bits 5 of bytes 1-3 or 6-8) and four decimal digits
(binary coded in bits 4-1 of bytes 14 or 6-9). The P field gives the page number in
the range 0-7, stored in inverse form, and the decimal digits the adress of a byte
within a page.

For the A address for example the P field is stored as follows:

bit5byttl PAD1 0 I 0 I 1 0
2 PAIl 1 0 O 1 1 0 0
3 PA21 1 1 1 0 0 0 O©

page number 0 1 2 3 4 5 6 7

and similarly for B.

In the decimal address, A3 is the most significant digit (i.e. the thousands digit) and
AQ the least (i.e. the units digit).

3.5.4 LA and LB, the Operand Lengths: These fields are normally used to define
the lengths of the operands in bytes; their contents can have values in the range 0 to
9, with the value 0 indicating a length of 10 bytes.

For some instructions the two fields are used together to give a single operand
length in the range 1 to 100 bytes; in this case LA is the tens digit and LB the units,
with 00 indicating a length of 100 bytes.

3.5.5 AC and BC, the Address Markers: These are used to indicate whether the
address is relative to Common base or to a partition base. If AC is set to 1, the A
address is in Common; if to 0, it is in the partition store and therefore relative to
the current partition base.

3.5.6 IA, IB and EIX: Indexing: The 1A, IB fields are used to specify whether or
not the relevant addresses are to be indexed and if so, which index registers are to
be used. For the A address the interpretation is as follows:

1Al IAO Index Register
0 0 No indexing
0 1 11P to 14P
1 0 21P to 24P
1 1 31P to 34P

and similarly for B. The location of the index registers is given in Section 3.2.3.

The EIX field concerns extended indexing, explained in Section 3.6.1 below. This isa
1-bit field, stored in inverse form in bit 5 of byte 9. If this bit is set to 0, extended
indexing is specified.

3.5.7 IDA and IDB: Indirect Addressing: These fields arz used to indicate whether
the contents of an address field (possibly indexed) are to be used as the operand

334 ICL TECHNICAL. JOURNAL NOVEMBEF: 1981

address directly, or whether they point to another 4-digit field which contains the
required address in relative address format but not aligned to a boundary.

The instruction contains the values of the field in inverse form; the interpretation is

@ = 1 indicates direct addressing for A
IDA = 0 indicates indirect addressing for A

and similarly for B. The operation is explained further in Section 3.6.
3.6 Address Computation

3.6.1 Operand Relative Address: The relative address of the A Operand is evaluated
in two stages as follows:

First, if indirection is specified (IDA = 0), the A field in the instruction (PA, A3,
A2, Al, AO and AC) is used to fetch the four byte field containing the indirect
address, which is then used in place of the A fieid.

Second, if indexing is specified (IA # 0), the contents of the specified index register
are added.

If extended indexing is not specified (EIX = 1), the addition is performed
modulo 10000.

If extended indexing is specified (EIX = 0), the addition is performed modulo
80000.

3.6.2 A Operand Address Marker, ac: The address marker of the A operand, ac, is
evaluated in two stages in parallel with the evaluation of the operand relative
address as follows:

First, if indirection is specified (IDA = 0), bit 7 of byte A+3 (of the indirect address
field) is fetched and used in place of the AC field.

Second, if indexing is specified (IA # 0) and extended indexing also is specified, bit
7 of the least significant byte of the specified index register is combined (logical OR)
with the AC field to generate the address marker.

3.6.3 A Operand Absolute Address: If ac =0, the A operand is in Partition and the
A operand absolute address is formed by adding the A operand relative address to
the partition base address

If ac = 1, the A operand is in Common and the A operand absolute address is
formed by adding the A operand relative address to the Common base address
(3000).

3.6.4 B Operand Address: The B operand address is formed in a similar manner
using the PB, B3, B2, B, B0 and BC fields in conjunction with IDB and 1B.

{CL. TECHNICAL JOURNAL NOVEMBER 1981 335

3.7 Instruction Set

Computational
Instructions

Address
Arithmetic
Instructions

Data

Transfer
Instructions

Control
Instructions

Input/Output
Instructions

Mnemonic

| ROoUR®»

AAl
AA
SAI

SA
CA

MC
M

MN
FN

PK
UPK

SR
SwW
TS

4 Input/Output Operations

4.1 General:

*

Function

Instruction Name Code
Add 4
Subtract 7
Multiply 6
Divide 5
Compare 14
Indirect Length Compare 30
Logical Instructions: LA 20
— And 3
—Or 1
— Not Equivalent 2
Move Address 3
Modify Address

Instructions: LA 2
— Add Address Immedijate 0
- Add Address 1
— Subtract Address

Immediate 2
— Subtract Address 3
— Compare Address 4
Move Character 8
Indirect Length Move

Character 24
Move Numeric 9
Form Numeric 13
Exchange 15
Pack 31
Unpack 29
Edit 12
Branch 11
Set Mode 10
Read 0
Write 1
Start Read 16
Start Write 17
Test 10 Status 18

*New Instructions for System 25

System 25 Input/Output normally operates in a strictly synchronous manner in

336

ICL TECHNICAL JOURNAL NOVEMBER 1981

that when a Read or Write Instruction is encountered, the partition is suspended
until the /O transfer is complete.

However, use of the Start Read and Start Write instructions will allow the partition
to continue processing until the next IfO instruction is given. Use of the Test 10
Status instruction allows the progress of the I/O transfer to be monitored.

In System 25, peripherals are divided into two types:-

slow peripherals which are assigned to a single partition and can only be driven
by that partition.

fast peripherals which are shared between all partitions and can be driven by any
partition.

The System 25 I/O instructions provide direct control of all the peripherals
assigned to a partition, although disc transfers are normally controlled by invoking
supervisory routines.

4.2 Slow Peripheral Control:

Up to 10 slow peripheral devices may be driven by a single partition and the IO
instruction contains the logical device number, the address of an area of store for
the data transfer and a count of the number of bytes to be transferred.

There are four I/O operations:

Read — Transfers up to 10000 bytes of data from the peripheral into store

Write — Transfers up to 10000 bytes of data from main store to the peripheral
Read Control is reserved for loading programs.

Write Control was used by System Ten to generate control codes outside the 64
character set across the MTIOC interfaces and for compatibility, this is retained
on System 25. However on System 25 the 8 bit store allows control characters
to be sent with a Write Instruction.

4.3 Fast Peripheral Control

For fast peripherals (discs and magnetic tapes) the logical device number is replaced
by a Fast Access Channel (FAC) number. Specific numbers have been allocated for
different types of fast peripherals as follows:

0 is used for discs.
1 to 4 are used to address up to four tape drives.
5 to 9 are not used.

4.3.1 Disc Control: System 25 Discs are organised as a logical set of sequential 512
byte sectors. The mapping of logical sectors into real track, head, sector numbers is
performed by the Disc Adaptor and is dependent on the particular disc character-
istics. System Ten discs are organised as logical 100 byte sectors.

ICL TECHNICAL JOURNAL NOVEMBER 1981 337

The B field in the 10 instruction contains a pointer to a 6 byte Control Block which
contains the disc drive number (0 to 15), function, count and sector number.
System Ten disc transfers were always a single sector of 100 characters. System 25
compatible data disc transfers provide the same operation and five 100 byte blocks
are mapped into a single 512 byte sector on the disc and the logical sector number
in the Control Block is divided by 5 to give the equivalent 512 byte sector number.

The System 25 disc functions are

Compatible Mode Read or Write — transfers a single 100 byte sector using
System Ten Control Block format (maximum sector number = 99,999)

Extended Compatible Mode Read or Write — transfers a single 100 byte sector
using System 25 Control Block format (maximum sector number = 9,999,999)

String Read and Write — a string of up to 10,000 bytes starting at the beginning
of a sector and extending over several sectors is transferred for one instruction,
using System 25 Control Block format (maximum sector number = 999,999)

Other functions are provided to format the disc and read the status of the previous
transfer.

4.3.2 Magnetic Tape Control: The use of the 10 instruction fields is the same as to
the slow peripherals. The Read and Write instructions cause the transfer of a single
block of data to or from the tape.

The Read Control instruction is used to access status information from the tape
controller and the Write Control instruction is used for control commands for the
control of the tape, ¢.g. Rewind.

Cartridge Magnetic Tape is driven as a ‘slow peripheral’.

5 System 25 Software

System 25 software is largely derived from System Ten to allow the large number
of application programs developed for that machine to run on System without
change.

System 25 can be run with various levels of software support; at the lowest level a
program can be loaded directly into a partition and can run and control its
peripherals without reference to any supervisory program. The main ICL supporting
software is provided in the following three packages, which together give the
facilities normally provided by an operating system.

5.1 DMF III (Data Management Fucilities)

This is the basic supervisor package and is derived from the System Ten equivalent,
DMF II. It consists of the following components:

CSM (Conversational System Manager) which provides facilities for the main-

338 ICL TECHNICAL JOURNAL NOVEMBER 1981

tenance of the file store and loading programs

LIOCS (Logical Input/Output Control Software) which is a set of housekeeping
routines for the logical control of the disc and magnetic tape

Utilities for sorting and editing files

5.2 IAS (Interactive Applications Support)

This provides an environment for transaction processing applications, in which the
control of slow peripherals is separated from the application program. It consists of
the following components:

Video/Printer Drivers which control up to 10 Videos or printers on a single
interface

Data Buffer and Message Handling Routines which are used to pass data between
the application programs and the Video/Printer drivers.

5.3 CAM (Communications Access Manager)

This provides a simple macro interface for application programs for the control of
communication lines. There is a different CAM package for each communication
line protocol. It consists of the following components:

Communication Line Driver which performs the low-level control of the line
Data Buffer and Message Queue handling routines

Macro Interface Routines which convert the macro calls from the application
program into messages and data blocks

As was stated in the introduction, the software will be described in more detail in
a second paper.

ICL TECHNICAL JOURNAL NOVEMBER 1981 339

Designing for the X.25
telecommunications standard

K. J. Turner

ICL Information Processing Architecture Division, Kidsgrove, Staffs

Abstract

Packet switching is becoming increasingly important in telecommunications
systems in many countries and the ‘X.25 Recommendation’ of the Inter-
national Telegraph and Telephone Consultative Committee (CCITT) is now
widely accepted as defining the standard for the interface to a public
packet-switched network. The paper describes the ICL Communications
System Controller, a hardware device with associated software, which has
been designed to interface ICL main frame computers to X.25 packet-
switched networks. The description is preceded by a short account of X.25
and of ICL’s own communication protocol ICLC-03. The essential function
of the CSC is to convert between ICLC-03 and other protocols: the con-
version between ICLC-03 and X.25 is discussed.

1 Introduction
1.1 X.25

1.1.1 X.25 history: X.25 is probably the most important telecommunications
standard to have appeared in recent years. It represents the substantial agreement
between communications experts on the interface to Public Data Networks of the
packet-switching variety.

Packet-switching began in earnest around 1968 with the opening of networks such
as ARPANET (US) and SITA, the international airlines’ system. Many countries
followed suit in implementing their own packet-switching networks, for example
EPSS (UK), RETD (Spain) and TELENET (USA). With great foresight CCITT
(International Telegraph and Telephone Consultative Committee) saw the future
importance of this developing communications technology and began a programme
of work to produce an international specification for interfacing to such networks.
Thus was Recommendation X.25! born in 1976, to be enhanced within a year by
the publication of an alternative link protocol with improved error recovery.

Following the publication of X.25 a considerable amount of activity ensued as
older networks were brought into line with the recommendation and new networks

340 ICL TECHNICAL JOURNAL NOVEMBER 1981

were implemented in direct conformance to it. Typical of these new networks were
TRANSPAC (France) and SAPONET (South Africa).

It was inevitable that such widespread and diverse implementations of X.25 would
lead to various interpretations of the recommendation and would suggest desirable
enhancements to it. CCITT therefore began the revision of X.25 with a view to
reconciling the differences in interpretation that had arisen. The result was a new
and much larger version of X.252 in 1980. At present the conformance of packet-
switching networks worldwide to the revised recommendation is patchy, but there
is hope of a high degree of commonality by 1982.3 Recent networks such as PSS
(UK) are already largely in agreement with the latest version.

An interesting property of X.25 networks is that it is fairly easy to couple them
together, and indeed CCITT has evolved Recommendation X.75% for just this
purpose. By provision of such ‘gateways’ between X.25 networks it becomes
possible to make calls through the concatenation of several of them. Thus X.25
may lay the foundation for truly international digital data communication.

The following two Sections give a brief overview of X.25. For further background
information there are good texts on packet-switching in general* and on X.25% in
particular.

1.1.2 X.25 services and facilities: Packet-switching is a digital communications
technique which fragments data into ‘packets’ of an agreed maximum size and then
multiplexes them onto the communications channel with data from other sources.
Because the communication channel can carry interleaved packets from many
sources its capacity can be utilised very effectively. This is to be contrasted with a
circuit-switched connection where plant (lines and switches) will typically be
dedicated to that connection. The average utilisation of a communications connec-
tion is often low, particularly for interactive traffic, thus leading to inefficient usage
of the associated plant. An authority which administers both packet-switched and
circuit-switched connections may well be able to offer more competitive rates for a
packet-switched connection because the operating capacity may be more nearly
reached. The actual choice of connection type must depend, however, on the
specific application and on other factors such as the availability of equipment.

Since data from many sources can be multiplexed onto one channel, the packets of
each stream need to be distinguished by some kind of address: in X.25 this is
termed the Logical Channel Number (LCN). X.25 defines only the interface
between the DTE (Data Terminal Equipment, supplied by the manufacturer) and
the DCE (Data Circuit-terminating Equipment, usually supplied by the network
authority). Many of the parameters of X.25 are therefore local only, that is they
apply to the DTE-DCE link. Of course they generally have an end-to-end (DTE to
DTE) effect, but usually in a loosely coupled way. The LCN in X.25 is therefore
for DTE-DCE addressing only.

To establish a connection from one DTE to another via an X.25 network it is
necessary to make what is termed a virtual call, which identifies the destination
DTE by means of a unique subscriber number. As part of establishing the call

ICL. TECHNICAL JOURNAL NOVEMBER 1981 341

each DTE-DCE pair will select a logical channel of its link or which to transfer data.
The identifier, the Logical Channel Number, of this will generally be different
at each end. Completion of the virtual call results in a virtual circuit which persists
until the call is terminated (by either party). This kind of temporary association
between DTEs is termed a Switched Virtual Circuit (SVC). By way of contrast, a
fixed association may also be set up by agreement with the network administration
and the other party: this requires no call to set it up or clear to terminate it and is
called a Permanent Virtual Circuit (PVC). As shown in Fig. 1, a DTE may have
concurrent virtual circuits to several DTEs or even to itself (for test purposes).

X.25 provides a number of options which are available on subscription to the
network or on call set-up, as appropriate. They include :

incoming calls barred charging information
outgoing calls barred membership of a private group of subscribers
reverse charging flow control parameters

call re-direction

DTE A DTE B
1 1

LCN 42—

v

Fig. 1 Examples of Virtual Circuits
Permanent Virtual Circuit {(PVC)
~ ——- Switched Virtual Circuit {SVC)

342 ICL TECHNICAL JOURNAL NOVEMBER 1981

Most of these have obvious parallels in the telephone network. Only the flow
control parameters are unusual in being peculiar to the digital transmission
technique used.

The Virtual Circuit service is the only one which is generally available on X.25
networks. A more recent addition to X.25 is the Datagram service which (like Telex)
allows the transmission of individually addressed messages. To capitalise on the
widespread provision of Virtual Circuits, CCITT has defined a Fast Select facility
which in some respects resembles the Datagram Service. A Fast Select call sets up
a transient Virtual Circuit, allowing a block of data to be sent with the request. The
recipient may either clear the call immediately (optionally supplying a block of
data in response) or turn it into a normal virtual call. Thus Fast Select may serve a
transaction-oriented application or an enquiry-type of application where the
response may be brief or lengthy.

1.1.3 X.25 operation: X.25 is a three-level protocol which conforms to the
principle of layer independence. While each layer must know what functions are
provided to it by the layer below and what functions are required of it by the layer
above, it does not need to have any knowledge of the mechanisms within the
adjacent layers by means of which these functions are provided. Such a protocol
may be modelled by the familiar ‘onion skin’ architecture.® The three levels of
X.25 are:

(i) the Physical (or Transmission) Level
(ii) the Link (or Frame) Level
(iii) the Network (or Packet) Level

In concert they define the procedures across the DTE-DCE interface for establish-
ing connections, transmitting data and breaking connections. The functions of the
levels may be briefly summarised as follows:

(i) Physical Level
This concerns the control of the modem (or equivalent) and the trans-
mission of data. Two separate recommendations apply here: X.21% (for
digital transmission) and X.21 bis®> (for analogue transmission). X.21 bis
(which describes the use of the familiar V-Series modems) is the most
commonly found type of interface at present. X.25 connections are full-
duplex and so are normally by leased line.

(ii)) Link Level
This concerns the control of the DTE-DCE link. Two alternative protocols
are used, both of which are variants of HDLC (High-Level Data Link
Controf): LAP (Link Access Protocol) which is related to the International
Standards Organisation (ISO)’ and the European Computer Manufacturers
Association (ECMA)® Unbalanced Class, and LAPB (Link Access Protocol
Balanced) which is compatible with ISO® and ECMA!® Balanced Class.
Both LAP and LAPB offer two-way simultaneous transparent data transfer
(with protection against loss, corruption and duplication of data) and flow
control facilities. They differ, however, in the way connection, disconnec-

ICL TECHNICAL JOURNAL NOVEMBER 1981 343

tion and error recovery are handled. LAPB is generally agreed to be
superior to LAP and is'preferred by CCITT.
(iii) Network Level

This concerns the control of the conversations multiplexed over the DTE-
DCE link. The protocol closely resembles that used at Link Level, but
offers the important advantages of multiplexing and interconnection of
DTEs with differing characteristics (e.g. packet size or throughput).
Another important function is the provision of an expedited data route,
e.g. for interrupt or break-in.

1.1.4 X.25 Between DTEs: Although X.25 is strictly a DTE-DCE interface
standard, it is quite easy to adapt it for point-to-point DTE-DTE links. There are
some minor asymmetries in X.25 which can be removed by building sufficient
flexibility into a DTE: later Sections mention a few of these. The benefit of X.25
DTE-DTE operation is that the same implementation and protocol can be used for
private or public connections.

1.1.5 Related protocols: An X.25 DTE requires a relatively high degree of
sophistication that would be expensive to provide in a simple terminal. CCITT
identified the need for easy attachment of basic terminals such as teletypewriters
to X.25 networks and evolved the interlinked X.3, X.28 and X.29 Recommenda-
tions. Like X.25 these have been revised since their initial issue®.

X.3 defines the behaviour of a Packet Assembler/Disassembler (PAD) which con-
centrates the traffic from asynchronous terminals onto X.25. X.28 specifies the
interface between the PAD and the terminal. X.29 describes the conversation
between the PAD and the controlling DTE. X.29 may thus be viewed as a higher —
level protocol which is carried over X.25. X.29 does not, however, fit into the more
modern communications architectures mentioned in Section 1.2.3 and may
therefore be supplanted in the long term by other Virtual Terminal Protocols.

1.2 ICL communications

1.2.1 The ICLC-03 communication protocol: ICL’s current communication
protocol Full XBM, also known as ICLC-03, is multi-level. The principal components
of ICLC-03 are:

(i) Transmission Level
(i) Link Level

(iii)) Group Level

(iv) Access Level

These hierarchically organised levels constitute the means whereby data is trans-
ported on behalf of applications or users. There is an obvious similarity to the
corresponding functions in X.25.

(i) Transmission level

This concerns the control of the modem (or equivalent) and the trans-
mission of data. Connections may be either half-duplex or full-duplex.

344 ICL TECHNICAL JOURNAL NOVEMBER 1981

(ii) Link Level
This concerns the control of the link between a primary and one or more
secondaries. The protocol is two-way alternate and is derived from the
ISO Basic Mode procedures.?

(iii) Group Level
This concerns the control of the conversations multiplexed over a primary-
secondary link.

(iv) Access Level
This concerns the control of the sequencing and presentation of applica-
tion or user messages. Unlike the lower three levels, Access Level occurs
in several varieties to match the needs of differing devices and functions.
Of these, the Device Independent Access Level (DIAL) and the Logical
Connection Control Access Level (LCC) particularly concern the subject
of this paper.

Like X.25, DIAL offers two-way simultaneous, transparent data transfer and flow
control, together with control functions for expedited data and for error recovery.
Indeed DIAL and X.25 offer such similar facilities that the mapping between them
is almost one-to-one.

ICLC-03 distinguishes clearly between data transfer and connection control
functions. LCC provides facilities for mainframe control of connection, discon-
nection, and error handling. As with DIAL, these map onto X.25 in a natural way.

The close correspondence between ICLC-03 and X.25 makes protocol conversion
from one to the other particularly practicable. Some examples of the relationship
between the two are given below. The attraction to ICL of ICLC-03 in X.25
protocol conversion is the ease with which large communications systems can be
built out of local ICL networks interconnected by public X.25 networks.

ICLC-03 X.25
connect call
disconnect clear

reset reset

access level data packet
data packet sequence
program interrupt
function

For the connection of PAD-concentrated teletypes a similarly convenient mapping
of X.29 on to the ICLC-03 Scroll Mode Access Level can be defined.

ICL TECHNICAL JOURNAL NOVEMBER 1981 345

1.2.2 ICL Communications System Controller CSC: ICL’'s Communications
System Controller hardware (CSC) is designed to front-end the larger ICL 2900
mainframes via a high-speed trunk interface. Communications lines are interfaced
by hardware units known as couplers. CSC’s primary functions are to act as a
concentrator for ICLC-03 communications traffic and to convert other communica-
tions traffic to ICLC-03 form. It is in this latter function that the majority of the
interest and complexity lies. Currently CSC offers conversion of three classes of
protocol:

(i) Asynchronous (teletypewriter)
(ii) Synchronous (video, clustered video)
(iii) Bit-oriented (X.25, X.29)

This paper addresses itself solely to the design of an X.25 protocol converter.

The CSC system software may be broadly divided into Kernel and Communications.
A Peripheral sub-system is also used during development. The Kernel offers the
usual resource management facilities such as scheduling, buffer allocation, timer
control, error handling and hardware interfacing. The Communications subsystem
comprises a number of Protocol Converters and the ICLC-03 multiplexer, which
may be regarded as a kind of null protocol converter. A significant amount of
code is shared between the protocol converters because of the inevitable
commonality of functions to be performed. The general structure of CSC and
its relationship to the mainframe are illustrated in Fig. 2.

After the next Section giving a short note on the ICL general information process-
ing architecture IPA, the rest of the paper is concerned with CSC. The three main
Sections deal with the following aspects:

Section 2- Functionality. The services provided by CSC.

Section 3- Architecture. The basic design of CSC and an indication of the
mechanisms by means of which these services are provided. In
particular, three important software components - Driver, Connector
and Multiplexer - are described.

Section 4. Resource Management. Scheduling, flow control, handling of errors
and collection of statistical information are described.

The final Section deals briefly with the testing of this equipment.

1.2.3 ICL Information Processing Architecture IP4: Considerable interest has
been shown in recent years in the development of Open Systems Interconnec-
tion (OSI).+'? The concept which underlies OSI is that any host or terminal in a
community should be able to interwork with any other. As a step towards this goal
ISO have evolved a Reference Model™ which defines an appropriate system
architecture. The functions of this model are separate into seven layers, each of

346 ICL TECHNICAL JOURNAL NOVEMBER 1981

application

[

ICLC-03
mainframe communications
manager

1

trunk link
manager

trunk link
manager

1

ICLC-03
communications
manager

csc |

Il 1

ICLC-03 protocol
multiplexer converter
(e.g. to X.25)

A l

coupler coupler

manager manager

ICLC-03 other protocol
(eg. X.25)

Fig. 2 CSC structure and relationship to mainframe

ICL TECHNICAL JOURNAL NOVEMBER 1981 347

which builds progressively on the layers below it. The principal layers are:

Information Processing | 7 Application Layer (user programs/facilities)
6 Presentation Layer (device characteristics)

Functions 5 Session Layer (synchronisation)

4 Transport Layer (end-to-end-connection)
Telecommunications 3 Network Layer (routing)
Functions 2 Data Link Layer (data transfer)

1 Physical Layer (electrical)

ICL has adopted the OSI model as the basis of its Information Processing Architec-
ture (IPA).!* The particular relevance of X.25 to IPA is that it can serve as the major
part of the lower three layers of the model.

2 Functionality

2.1 Split of functions

As explained in the paper by Kemp and Reynolds,™ there are many possible ways
of partitioning the layers of the IPA model between different functional units. For
protocol conversion of X.25 the most natural choice was to separate the lower
three layers and implement them in CSC. The networking capability is therefore
vested in CSC and the end-to-end control is handled by the mainframe.

The other split of function between the mainframe and CSC is that of control as
opposed to data transfer. The general philosophy of ICLC-03 is that the mainframe
is responsible for overall control. It is therefore the mainframe which initiates
conections, breaks them and decides how to recover from serious errors, although
it is CSC that carries out the detail of these operations.

2.2 Services

As well as standard X.25, CSC also implements the ICL DTE-DTE variant for point-
to-point operation.

At the Physical Level X.25 has a choice of connection service: X.21 or X.21 bis.
CSC supports only the latter.

At the Link Level X.25 has the option of operating with either of the access
protocols LAP, LAPB referred to in Section 1.1.3(ii)). Both of these are
implemented in CSC because the older networks have not yet converted from LAP
to LAPB.

It was explained in Section 1.1.2 that X.25 offers two main types of service:
Virtual Circuits and Datagrams. It was also noted that Virtual Circuits, which are
very similar to physical circuits, fall into two classes: Switched Virtual Circuits
(SVCs) which are analogous to Public Switched Telephone Network connections,

348 {CL TECHNICAL JOURNAL NOVEMBER 1981

and Permanent Virtual Circuits (PVCs) which are analogous to leased-line con-
nections. The concept of a Datagram is rather foreign to many communications
protocols, which usually follow the pattern of connect/exchange transactions/
disconnect. In particular, the mapping of datagrams on to ICLC-03 would be fairly
difficult. It is also unlikely that datagrams will be widely available on X.25
networks in the near future.

CSC therefore supports the Virtual Circuit service only. Besides the basic SVC/PVC
Split mentioned above, Switched Virtual Circuits are further categorised as
Inward (ISVC), Bothway (BSVC) or OQutward (OSVC). These labels refer to which
end originates the call, not to which end originates the data since a virtual circuit
is intrinsically symmetrical once it is set up. Note that it is really the logical
channels of the DTE - DCE interface, rather than the virtual circuits, which have a
call direction.

2.3 Facilities

Facilities in the X.25 sense refer to the options available with a particular service.
In the case of CSC they define the properties of the virtual circuits. When a
Switched Virtual Circuit (SVC) is set up the required facilities are specified in the
call request or are given default values. X.25 allows facilities, particularly those re-
lated to flow control, to be negotiated. The recipient of the call may either reject the
call if the requested facilities are unsuitable or accept the call with modified facilities.
This dynamic set-up of facilities is not available on a Permanent Virtual Circuit;
instead, the facilities must be agreed at subscription time with the network
authority and sometimes also with the other party.

The choice and negotiation of call facilities is not really an appropriate matter for a
front-end processor like CSC. For example, the decision to accept a reverse charge
call may require reference to a file of accredited users. CSC therefore handles all
facilities transparently and leaves call analysis or synthesis to the mainframe.
Although the same level of sophistication is not needed at the Link or Physical
Levels their connection is handled in the same way for consistency.

A wide range of facilities is available on virtual circuits. The ones permitted by CSC
are as follows, although it should be noted that the support of a number of them is
dependent on the host operating system:

fast select

reverse charging

call redirection

call charge notification

membership of a private group of subscribers
variable choice of flow control parameters
negotiable choice of flow control parameters
sub-addressing

packet re-transmission

The facility names are fairly self-explanatory, but a few require further description.
Sub-addressing allows the network subscriber address to be extended by further

ICL TECHNICAL JOURNAL NOVEMBER 1981 349

information to determine the process or function required of the called DTE.
CSC does not use sub-addressing since the call request has fields which allow this
requirement to be specified more comprehensively. Packet re-transmission refers to
the ability of the DTE to retransmit an unacknowledged packet on request. This is
not needed for interfacing to an X.25 network but may be required for DTE-DTE
operation, where symmetry is necessary.

It is difficult to design a single DTE implementation which will work against all or
even most X.25 networks because the facilities offered, and sometimes their en-
codings, vary widely.!® The general approach with CSC was to support the common
features and to tolerate variations in the protocol where these were known.
Detailed study of individual network specifications was often necessary to
determine incompatibilities.

2.4 Parameters

The operation of each level of X.25 is characterised by a large number of para-
meters. At the Physical Level they specify the modem and line characteristics. At
the Link Level they specify the frame size, time-outs, retry limits, etc. At the
Network Level they specify the packet size, throughput requirement, circuit
type, etc. Although some of these parameters (such as the Link Level addresses)
are fixed by convention in X.25, CSC permits their values to be varied to maximise
the range of applications in which CSC may be used. Thus DTE-DTE X.25
operation at Link Level is simply achieved by giving one end the X.25 DTE address
and the other end the X.25 DCE address.

ICL’s 2900 operating systems have the concept of a catalogue which defines the
potential hardware configuration. Configuration parameters are held centrally in
this catalogue and are distributed when connections are set up. CSC therefore
obtains its X.25 parameters dynamically as required. One consequence of this is
that CSC is unaware which logical channels correspond to each type of Virtual
Circuit. This is convenient in DTE-DTE X.25 operation since what is an Inward
Switched Virtual Circuit at one end is an Outward Switched Virtual circuit at the
other.

3 Architecture
3.1 Protocol conversion

In general terms, protocol conversion requires the abstraction of the essential
concepts of a protocol, such as ‘message’, ‘acknowledgment’ or ‘reset’ and the defi-
nition of their mapping onto another protocol. A protocol converter takes respon-
sibility for operation of the outboard protocol and wherever possible hides the
details of this from the mainframe. For example, a protocol converter performs its
own flow control and undertakes autonomous error recovery, within prescribed
limits. Where the two protocols to be mapped are hierarchically layered it may be
possible to set up a good correspondence between the levels of each protocol. It
might then seem that conversion could simply be carried out on a level-by-level
basis. In practice this is not normally feasible since although the functions of two

350 ICL TECHNICAL JOURNAL NOVEMBER 1981

inboard link

ICLC-03
secondary
interface converter
interface
converter
| _ICLC-03 _ || outboard
protocol protocol
outboard — [y —
driver levels levels
outboard link inboard link outboard link
a b
Fig. 3 Protocol Converter mode |
(a) Linear

(b) Layered

levels may correspond fairly well the means of achieving them usually do not. This
is the case with protocol conversion between ICLC-03 and X.25.

Protocol conversion is generally quite complex, but is made easier in CSC because
of its specially designed architecture. Fig. 3 shows two representations of the
abstract protocol converter model developed for CSC. The linear representation is
useful for explaining the data flow through CSC whereas the layered representation
is useful for showing the correspondence between the two protocols. The ICLC-03
Secondary component is what the mainframe sees; the task of the protocol converter
is to make this reflect the outside world as faithfully as possible. The Qutboard
Driver software is responsible for the levels of the target protocol. The Interface
Converter is at first glance redundant, and indeed is a null function in some of the
CSC protocol converters. However, it serves the useful purpose of allowing different
varieties of ICLC-03 Secondary and Outboard Driver to be coupled. For example,
the Scroll Mode Access Level may be coupled to Asynchronous Driver for local
teletypewriters or to the X.25 Driver for remote telety pewriters concentrated by a
Packet Assembler/Disassembler (PAD). Conversely the X.25 Driver may be coupled
to the Device Independent Access Level for X.25 conversion (see Section 1.2.1(iv))
or to the Scroll Mode Access Level for X.29 conversion.

The structure of the X.25 Protocol Convertor is shown in Fig. 4 in both forms.
Also shown is the relationship of the connection control function to the levels of
the model. Connection control appears as a separate Group and Access Level in
parallel with those of the data route.

3.2 Relationship between levels

Each connection at each level is represented in CSC by a program instance, that

ICL TECHNICAL JOURNAL NOVEMBER 1981 351

inboard link

trans-
mission
level
link
level
o ————— —
' l 1CLC-03
group group
level tevel
i
!
1 [1
connec - data data
tion access access
access level level
level
! T I _
| interface interface
I converter converter
|
1
% l n
|
: ______ network network
| level level
|
|
1
F
I I
{ network
| level
! multi -
| plexer X.25
1
(I
|
e tink
\ level
|
1
! Il
1
Il_ ______________ physical
level
a —

outboard link

Fig. 4 ICLC-03/X.25 Protocol Converter

(a) Linear
(b) Layered
data flow

— —- control flow

352 ICL TECHNICAL JOURNAL NOVEMBER 1981

interface converter

access level network level

group level network level
multiplexer

link level link level

transmission

physical level
level

ICLC-03 X.25
connection b connection

is, a piece of shared code together with the data structures particular to that
connection. In X.25 the relationship between Physical and Link Level instances is
one-to-one and that between Link and Network Level instances is one-to-many.
However, for reasons of throughput and resilience it is highly desirable to have
several physical connections to the network. At some point this multiplicity of
connections must be brought together to allow alternative routing of messages. This
gives rise to three variations:

(i) Multi-line, where one Link Level is carried over several physical connec-
tions.
(ii) Multi-link, where each Link Level is carried over just one physical connec-
tion but the Network Level is supported by several Link Levels.
(iif) Multi-circuit, where the mutiplexing is carried out at a higher level than
X.25 (for example in the Transport Layer).

The first two possibilities require an intermediate level of protocol between the
Physical/Link or Link/Network Levels. The third possibility has the attraction of
requiring no change to X.25. It would be feasible to employ multi-line or multi-
link operation at the same time as multi-circuit operation since the former provides
resilience to line failures and the latter provides resilience to network failures. Since
CSC was designed with a view to embracing the structure of X.25 variants it has the
capability of representing the relationship between two levels as one-to-one, one-to-
many, many-to-one or many-to-many. This flexibility would also allow the CSC
X.25 implementation to be used in other contexts, for example for pure HDLC: in

iCL TECHNICAL JOURNAL NOVEMBER 1981 353

this case there would be no Network Level in CSC. Some examples of the structures
that might be built in this way are shown in Fig. 5. Although CSC does not have the
protocol elements to do other than X.25, it was felt to be important to devise the
correct architecture to allow them to be siotted in if required. CSC models the
relationship between levels by chained entries in Physical, Link and Network
Level tables. These are tied together under the overall ownership of the Stream
table, a stream being the logical level of multiplexing across the CSC-mainframe
interface. Each table entry describes the address and status of an instance and
points to its data space. The instance’s data space contains its control block,
parameters and work variables.

network
level
link physical
level level
network
level a] -
link physical
level level
d
network physical
level level
link
level
_ | tink
network physical | level
level level
b physical
level
_| tink
level
network link physical | e
level level level
network link physical
level level level

c

Fig. 5 Structures that can be represented in CSC
(a) Standard X.25
{b) Multi-line X.25
{c) Multi-link X.25
{d} Standard HDLC
{e)} Multi-point HDLC

354 ICL TECHNICAL JOURNAL NOVEMBER 1981

instance and points to its data space. The instance’s data space contains its control
block, parameters and work variables.

As explained in Section 3.3, every effort was made to make the various levels
conform to the same pattern. Thus the table entries and their corresponding data
spaces have the same format. This means that the three-level structure adopted for
X.25 could in principle be extended to any number of levels although in practice
this has not been necessary.

3.3 Level Model

3.3.1 General structure: The natural architecture for a hierarchically structured
protocol such as X.25 is one in which the individual levels are rigidly isolated. This
preserves the independence of the levels and results in a clean functional split when
it comes to implementation and testing. The principle has been carried even further
in the design of the CSC X.25 driver in that the individual levels have been made as
far as practicable to follow the same model. This approach has several advantages:

(i) Understanding and maintaining an admittedly complex piece of software is
made easier.
(ii) Sharing of code between levels (in particular, the Link and Network Levels)
is practicable.
(iii) Design and documentation effort can be reduced owing to she commonality
of interfaces.
(iv) Asingle test-bed can be used to develop all of the levels.

Viewed externally a level has two types of interfaces: data transfer and connection
control. The basic commands defined on these interfaces are as follows:

i LOAD PARAMETERS - initialise level instance
READ — input a message
data transfer WRITE — output a message
QUIESCE — abort outstanding transfer
requests
[CONNECT — create level instance
connection DISCONNECT — delete level instance
control
ABANDON — abort outstanding connection
requests

A number of variations on these are defined in the command parameters. For
example, READ and WRITE are qualified ‘control’ (e.g. reset, interrupt) or ‘data’

ICL TECHNICAL JOURNAL NOVEMBER 1981 355

network level link level physical level

pa—— —

driver driver r driver [_

multi- multi- multi-
plexer plexer [7] plexer
driver driver driver

Fig. 6 Relationship between data transfer instances

(pure data). Both the data transfer and connection control interfaces use the same
underlying mechanisms although there are a few differences: for example, the data
transfer interface may be operated in a two-way simultaneous fashion as well as
two-way alternate.

3.3.2 Data transfer: The Network Level is in some senses the most general of the
three levels for it contains both data transfer and multiplexing sub-levels. Section
3.2 describes the concept of multi-line and multi-link operation, where it may be
necessary for a level to drive several lower-level instances. This may also happen at
the Physical Level if the communications coupler is multi-channel. The general
model of X.25 data transfer in CSC embraces these possibilities as shown in Fig. 6.

Each Driver in the model handles the data transfer of one level instance (line, link,
or virtual circuit). The Multiplexers at each level serve two functions: they multi-
plex the traffic at one level onto the lower level and they isolate the Drivers from
each other. If CSC were to implement multi-line or multi-link procedures the
associated protocol would be handled in the Multiplexers. In this sense the Multi-
plexers may be viewed as intermediate sub-levels of the three main levels.

3.3.3 Connection control: Connection control is exercised by a separate hierarchy
of levels which parallels the data hierarchy. There is a deeper point here which is
not fully exploited in CSC, namely that the function of a level can be viewed from
many aspects: data transfer, connection control, error management, testing, atc.
Thus many hierarchies co-exist as different facets of the same architecture. Each
CSC level has a Connecter function associated with it. In the interest of common-
ality the Connecters all conform to the same internal interface standard.

Connection of a level instance requires the higher level to be notified that a new
instance is available for use. Conversely, disconnection requires the higher level to
be told to delete the instance from its scheduling queues. To avoid conflict over the
use of the instance, a control function is provided which allows higher level data
transfer to be disabled pending re-connection or disconnection.

Summarising these points, connection is exercised via the Connecter (for

356 ICL TECHNICAL JOURNAL NOVEMBER 1981

network level link level physical level

conn- Jconn- :'“ conn-
ecter . . .
muftiplexer) ecter muttiplexer ! ecter multiplexer
1 |
|
' i
1 |
______ N I -
1
conn- 1] |conn- " Jconn-
ecter : I~ |ecter 'l :‘ ecter
|
by ! !
]
¥ ¥
I
: ! 1
1! L
- i
I i
N |l
b 1]
']
i i
[Ll
logical logical
connection connection
control control

Fig. 7 Relationship between connection control instances

connection of a level instance) and via the Multiplexer (for use of a lower level).
This is illustrated in Fig. 7.

3.3.4 Composite model: Previous Sections have introduced the concepts of the
Driver, Connecter and Multiplexer. An instance of the Driver and Connecter exists
per line, link or virtual circuit, but the Multiplexer is single-instance per level. The
functions of these three components are as follows:

interfacing to higher level

essage transfer
Driver fmessag sfe
error detection and recovery

timer control

. . .
interfacing to connection control

Connecter overall control of instance

error reporting

interfacing to lower level

Multiplexer multiplexing

|__scheduling

ICL TECHNICAL JOURNAL NOVEMBER 1981 357

The relationship between the Connecter and the Driver is symbiotic. As well as
performing message transfer for the Connecter, the Driver also looks after other
functions such as time-out and error recovery. Only if the Driver detects a serious
or persistent error does it inform the Connecter. In error conditions or during
(dis)connection the Connecter can disable the Driver, preventing input or output.
Errors are notified to the mainframe, where the decision to recover or abandon the
connection is made. If the Connecter is told to continue operation it resets the
connection and enables the Driver.

The Multiplexer performs input and output on behalf of the Drivers, thereby
isolating them from the lower level. One aspect of this is that the Multiplexer takes
responsibility for the message header (address and control fields). Supervision of
the address field is clearly appropriate since it is intrinsic to the multiplexing
function. The Multiplexer maintains a list of connected instances at its level so that
it can route incoming messages on the basis of their address. Supervision of the
control field is less obviously appropriate since this concerns Driver or Connecter
operation. However, CSC can optimise on buffer usage when dealing with super-
visory messages (which are quite common). Since these consist of the message
header only it is not necessary to allocate a buffer to them. The Multiplexer there-
fore extracts or inserts the control field along with the address field, but allows
the Driver or Connecter direct and transparent use of it.

For simplicity all Connecter messages are routed through the Driver so that the
Multiplexer has to schedule transfers on behalf of Drivers only. There is a very

upper driver
level
. lower
multiplexer —T—
level
connector |7 T T T T TTTTTTTTT
[i
! |
| |
| !
| [
! i
I |
[1
connection control connection control

Fig. 8 Compozite model of an X.25 level
—— data flow
——=" control flow

358 ICL TECHNICAL JOURNAL NGVEMBER 1981

simple and convenient division of message types between the Driver and the Con-
necter: the former receives numbered messages (data, acknowledgements, etc.) and
the latter receives unnumbered ones (connect, reset, disconnect, etc.) Since the
Muitiplexer has to handle the control field anyway, it carries out this numbered/
unnumbered categorisation although it does not perform the Driver/Connecter
split. Because of the structure of X.25 control fields it is possible for the Multi-
plexer to categorise message types without being aware of their meaning.

Some X.25 functions require co-ordinated control of all the instances at a level:
specifically, this is needed on disconnection of a level (which leaves upper levels
unsupported) and on Network Level restart (which re-initialises all circuits). The
Multiplexer takes responsibility for this overail control of a level, making use of the
list of connected instances which it maintains for multiplexing purposes.

The above observations on the inter-relationship between the Driver, Connecter
and Multiplexer are brought together in the composite model in Fig. 8.

4 Resource Management
4.1 Scheduling

Although the Kernel software in the CSC (see Section 1.2.2) provides overall system
scheduling, the X.25 subsystem is responsible for allocating processing to individual
instances at each level. To prevent excessive path lengths through this software each
level is scheduled separately. There is normally just one instance at the Physical and
Link Levels so scheduling is unnecessary. However, consistent with the principle of
making the levels resemble each other a general output scheduling algorithm was
designed.

This algorithm assigns to each instance a priority which is defined such that its
throughput is twice that of an instance at the next lowest priority. Certain com-
plexities arise in the design: for example, it is desirable to service higher priority
requests which occur during processing of a lower priority instance, yet higher
priorities must not be allowed to lock out lower ones for long periods. This is
achieved by allocating a processing quota to each priority. The quota expresses the
relative throughput required and is dynamically calculated from the number of
instances and average message length for that priority level.

Those familiar with X.25 will have realised that the scheduling priority closely
resembles the Throughput Class defined for virtual circuits, and this indeed was the
justification for an algorithm of this form. However, it was reckoned that the cost
of running such an algorithm would be a significant contribution to the CSC
processing load. A simple single-priority scheduler was therefore implemented.
Although this means that a mixture of bulk and interactive X.25 traffic may not
be optimally handled it does result in a compact and efficient design.

Two considerations in the design of the output scheduler were how to determine
which instances required service and whether to lock on to active instances. The

ICL TECHNICAL JOURNAL NOVEMBER 1981 359

scheduling system adopted operates ‘on demand’, that is, Drivers requiring service
(i.e. output) notify the Multiplexer and have their requests queued by it. The
alternative procedure of having the Multiplexer scan the Drivers for traffic was
judged to be less efficient as the Drivers are usually inactive. Since a Driver is
allowed to have only one service request outstanding (but may have others pending)
the question arose of whether to remain with a Driver until all its requests were
satisfied. If a message is preserved until all its component frames or packets have
been acknowledged, locking on to a Driver could be beneficial as far as buffering is
concerned. However, CSC can delete buffers as soon as acknowledgements are
received. It was therefore decided to service requests one at a time in strict rotation
of Drivers, thereby precluding heavily utilised instances impeding traffic on others.

Once the Multiplexer has selected a Driver to service, the allocation of a lower level
instance to carry out the request is quite straightforward. The Multiplexer
maintains a queue of lower-level instances that are available for output and simply
selects the first of these. If several alternative physical connections were available to
an X.25 network this algorithm would automatically ensure that output traffic was
allocated to them in proportion to their capacity. (The physical connections need
not be all of the same speed).

As far as input scheduling is concerned, the chronological order of message arrivals
determines the processing sequence. The only point worth mentioning is that the
method used in CSC for communicating between levels is more efficient when input
responses are passed in bursts. The Multiplexer therefore does not lock on to a
lower-level instance which has input, but takes input messages in strict rotation
from all the instances.

4.2 Buffering

X.25 is defined such that the units of Physical, Link and Network Level transmis-
sion are the same. It is therefore feasible to share the buffers of a message between
all levels. There are two subtle pitfalls in doing this, however. One is that an ac-
knowledgment for message buffers may be received at a higher level before lower
level acknowledgment has yet been received. Although the provisions of X.25
exclude this possibility, the DTE must protect itself against possible errors since the
consequence would be continued use of buffers which have been freed elsewhere in
the system. The other pitfall is encountered if a request to retransmit parts of a
message is received at a higher level before lower levels have yet finished with the
associated buffers. It may then happen that a level is required to have the same
buffers queued for transmission more than once. This is not possible in X.25
proper, but may happen in DTE-DTE X.25 operation.

CSC implements a general solution to both the above problems. Each level is
allowed to queue the buffers associated with a message once. But each level (and
sub-level, to allow for the Multiplexers) must mark the buffers as being in use.
Only the last user of the buffers may free them. A request to re-transmit a buffer
which is still queued at a lower level is suspended until the lower level has finished.
Clearly this approach may be applied to any number of levels.

360 ICL TECHNICAL JOURNAL NOVEMBER 1981

The question arises of whether the same message buffers can be shared between
both the ICLC-03 secondary and X.25 levels. Unfortunately this is not possible
because both halves of the protocol convertor operate independently. Particular
difficulties in sharing buffers would occur in the event of a reset on one side or the
other. CSC therefore copies the message in the Interface Converter. Although this
imposes a performance penalty there are several advantages in doing so:

(i) Message fragmentation can easily be changed (for example, the ICLC-03
Link Level packet size is fixed but a variety of X.25 packet sizes can be
catered for).

(if) Character conversion or checking can be performed simultaneously. This
is not necessary for pure X.25 interfacing but is essential for X.29 where
character parity, for example, must be generated or checked.

(iii) Autonomous operation of the inboard and outboard protocols can be
preserved.

4.3 Flow Control

X.25 offers a variety of facilities for data flow control. Indeed these overlap suf-
ficiently that it is not clear what subset to choose. Although the message size and
throughput parameters have a bearing on the flow control, the primary mechanism
is a ‘window’ which limits the number of messages that may be outstanding,
awaiting acknowledgment. There are several ways to regulate the flow of input
data:

(i) Acknowledgments to input can be delayed. This is possible but not recom-
mended at Link Level, but is permissible at Network Level. The disad-
vantage of this technique is that sufficient buffering must be permanently
allocated to accommodate the window. The effect on the remote station is
also undesirable in that it does not know to cease transmission until the
window is full, so its own buffering is increased.

(ii) The remote station can be told to suspend transmission. This is achieved at
Link or Network Level by a special supervisory message, but it may not
prevent the window becoming full since there may be messages already in
the pipeline. However, the remote station is advised of the blockage as
soon as possible.

(ili) Input data which cannot be buffered can be discarded and a request for
re-transmission issued later. This is permissible at Link Leve] but is not
always permissible at Network Level, since only some X.25 networks offer
packet re-transmission. The advantage of this technique is that buffers do
not need to be locked down for each circuit in case the window becomes
full. The disadvantages are the need for re-transmission, and the limitation
to those networks which support packet re-transmission.

CSC uses technique (ii) for its flow control, but can also use technique (iii) with
suitable networks. This has the advantage that the same algorithm could be used at

ICL TECHNICAL JOURNAL NOVEMBER 1981 361

Link and Network Level to maximise commonality. However, as already observed
in Section 4.2 the X.25 levels share the buffers of a message. There is therefore
little point in controlling the input of the same buffers at more than one level. In
order to preserve the independence of the access level conversations CSC operates
its flow control at Network Level only.

4.4 Error control

Although CSC has autonomy in managing its X.25 operations, it is ultimately
subject to mainframe control. CSC therefore notifies the mainframe of any change
in connection status: successful (dis)connection, unsuccessful (dis)connection,
unsolicited (dis)connection, or unrecoverable error. The reason for a failure is
specifically identified and diagnostic information (e.g. the message which caused
the error) is supplied.

Many error conditions are possible in X.25. A number of these are fairly harmless
and can safely be ignored by a DTE. CSC adopts a defensive approach to error
detection and in general checks for only these errors which would cause subsequent
(and often indeterminate) failure if untrapped.

X.25 failures are often context-dependent: to resolve them requires knowledge of
the protocol exchanges prior to the error. A convenient feature of the inter-level
interface mechanism in CSC is that a trace of all messages is kept. The progress of a
message through the levels or the history of the messages at a level may therefore
be determined.

4.5 Statistics

There are many reasons for maintaining statistics about X.25: for example, per-
formance assessment, reliability monitoring and network accounting. Because of
the cost of keeping statistics CSC maintains only a rudimentary set, which none-
theless enables a variety of interesting information to be derived. An overall system

picture can be obtained by combining the mainframe and CSC statistics.

The same set of statistics is computed by CSC at each X.25 level although the
meaning of terms like ‘supervisory message’ and ‘failure’ obviously differs from
level to level:

(i) Total number of data messages

(ii) Total number of supervisory messages
(iii) Total number of failures (recoverable and unrecoverable)
(iv) Totals peculiar to internal CSC operation

From these statistics it is possible to calculate factors like the throughput, the line
error rate and the effectiveness of the X.25 double-numbering (which allows ac-
knowledgments to be carried in data messages). CSC tuning information can also be
obtained.

362 ICL TECHNICAL JOURNAL NOVEMBER 1981

5 Testing
5.1 Development aids

Because of the complexity of the CSC X.25 developments it was essential to provide
a graded series of test environments, leading up to the reference test described in
the next Section:

(i) Isolated testing of levels

(ii) Hierarchical testing of levels
(iif) Testing against a protocol simulator
(iv) Testing in loop-back mode

(v) Testing with point-to-point connection

To facilitate the off-line testing of levels two test-beds were developed: a Higher-
Level Simulator and a Lower-Level Simulator, which simulate the interfaces to a
level. One consequence of designing all levels to a common interface standard was
that the same test-beds could be used to test the Physical, Link or Network Level.
Furthermore the test-beds could be operated independently at any level, so that a
level could be checked in isolation or a set of levels could be checked in con-
junction. It was therefore possible to develop all of the X.25 code in parallel, not in
series as might have been expected.

A variety of communications monitoring equipment is now available with an X.25
capability. The actual facilities offered vary widely between manufacturers, in some
cases being little more than HDLC and in others being full network simulation. Two
testers were used during CSC development: one with basic X.25 features but
flexible enough to generate any protocol sequence, and one with complete
simulation of specific networks. The use of the basic X.25 tester was justified by
the fact that there are many conditions that do not usually arise in normal transfer
but which must be checked.

Loop-back and point-to-point testing are virtually the same, but the latter gives
more confidence in that two systems are involved. As mentioned in previous
Sections the asymmetries of X.25 can easily be overcome, which makes self-testing
quite feasible.

5.2 Reference tests

Ultimately the X.25 DTE must be connected to a real network. Although network
administrations differ in their requirements the manufacturer must usually demon-
strate conformance to electrical safety standards and to X.25 protocol standards.
The network administration carries out an initial investigation of this and grants
temporary ‘permission to connect’ if the results are satisfactory. Full permission is
not granted until the DTE’s implementation of the protocol has been confirmed by
operation on the network for a trial period. It is very useful if a DTE can be
checked in advance against a reference tester for the network. Some commercially
available communications monitors have been approved for this purpose, and
as already mentioned one was used during CSC development.

ICL TECHNICAL JOURNAL NOVEMBER 1981 363

6 Conclusions

It will be apparent from this paper that many interlocking design decisions have to
be made in the implementation of an X.25 DTE. This is aggravated by the nature of
the X.25 Recommendation itself, which is almost exclusively DCE-oriented.
Experience on the CSC has shown that a properly designed arthitecture considerably
eases the implementation of a complex protocol like X.25. Careful isolation of
layers and functions allows the task to be partitioned into manageable units and
facilitates testing and maintenance. Although the CSC design is only one of several
feasible alternatives, it is hoped that its principles may prove of interest to others
working in this challenging and important field.

Acknowledgments

Several people within ICL and the CSC project have helped to mould the design
presented in this paper. Particular mention must be made of R.J.Gillman who
collaborated on the overall design and who developed network-independent
standards for ICL implementation of X.25. The architectural model stems from the
pioneering work of D.J.Ackerman. Thanks are also due to Carol Thorley for typing
the manuscript.

References

1 CCITT: X-Series (Public Data Network) Recommendations, Orange Book Vol. VIIL.2.
International Telecommunications Union, Geneva, 1977.
2 CCITT: X-Series (Public Data Network) Recommendations, Yellow Book Vols. VIilL.2
and VIIL 3. International Telecommunications Union, Geneva, 1981.
3 RYBCZYNSKI, AM. and PALFRAMAN, J.D.: A common X.25 Interface to Public Data
Networks Computer Networks, 1980, 4, 97-110.
4 DAVIES, D.W., BARBER, D.L.A., PRICE, W.L. and SOLOMONIDES, C.M.: Computer
Networks and their protocols. Wiley, New York, 1979.
5 SLOMAN, M.S.: X.25 Explained. Computer Communications, 1978, 1(6), 310-326.
6 HOULDSWORTH,J.: Standards for open network architecture. /ICL Tech. J., 1(1), 1978,
50-65.
7 ISO: International Standard 6159 (HDLC Unbalanced Class of Procedures). International
Organisation for Standardisation, Geneva, 1980.
8 ECMA: Standard 60 (HDLC Unbalanced Class of Procedure). European Computer Manu-
facturers Association, Geneva, 1979.
9 1SO: Draft International Standard 6256 (HDLC Balanced Class of Procedures). Inter-
national Organisation for Standardisation, Geneva, 1978.
10 ECMA: Standard 61 (HDLC Balanced Class of Procedure). European Computer Manu-
facturers Association, Geneva, 1979.
11 ISO: International Standard 1745 (Basic Mode Control Procedures). International
Organisation for Standardisation, Geneva, 1971.
12 BRENNER, J.B.: Using Open System Interconnection standards. /CL Tech. J., 1980,
2(1), 106-116.
13 ISO: Draft Proposal 7498 (Open Systems Interconnection Basic Reference Model). Inter-
national Organisation for Standardisation, Geneva, 1980.
14 KEMP, J. and REYNOLDS, R.: The ICL information processing architecture IPA. ICL
Tech. J., 1980, 2(2), 119-131.
15 HESS, M.L., BRETHES, M. and SAITO, A.: A comparison of four X.25 Public Network
Interfaces. Proceedings of the International Conference on Communications, Boston,
1979, 38.6.1-38.6.8.

364 ICL TECHNICAL JOURNAL NOVEMBER 1981

Viewdata and the ICL
Bulletin System

D.R.Olivey
Baric Computing Services Ltd., Feltham, UK
R.Sugden
ICL, Feltham, UK

Abstract

Viewdata is one of the newest areas of interest in computers. The paper
describes the design and implementation problems encountered in pro-
ducing ME29 BULLETIN, ICL’s first Viewdata product.

1 Introduction

Viewdata, or VIDEOTEX as it is now becoming called, is as yet a loosely defined
area of computer systems, but at its broadest it is concerned with making online
computer systems available to a mass audience. It attempts to achieve this by
building on the components of current TP technology, standardising and simpli-
fying wherever possible.

Its current implementations, centred around PRESTEL,* are mainly concerned
with data-display functions but attention is increasingly being paid to the provision
of interactive facilities.

The Viewdata concept as we now know it began in the Post Office Research
Department in 1970/71. The evolution of the original ideas into a working,
marketable product has been a team effort, involving the Post Office, terminal
suppliers and information providers, but special note must be made of the work of
Sam Fedida who is generally acknowledged as the ‘father’ of Viewdata. The results
of this heavy investment over a period of ten years has been PRESTEL, a public
Viewdata system now available over two thirds of the country. Although ac-
knowledged to be behind its original commercial targets, PRESTEL can certainly
claim to be a technical success; in mid July 1981, PRESTEL supported 10212
registered sets which make an average of 185 500 data retrievals per day.

Why is Viewdata more cost effective than conventional TP technology? Its chief
advantages are:-

(@) It reduces terminal costs by use of cheap mass-produced terminals, built
around television sets. All sets are built to a common PRESTEL standard

*Note: PRESTEL is the registered Trade Mark of the Post Office (British Telecom) Viewdata
Service

ICL TECHNICAL JOURNAL NOVEMBER 1981 365

thus allowing any terminal to connect to any Viewdata system. Further,
the terminals are multi-purpose; they can be used as television or Teletex
receivers, as play-back equipment for Video Cassette Recorders or, with
additional electronics, as a home computer.

(b) The Viewdata terminals available allow colour and simple block graphics
to be introduced to the commercial terminal market at an acceptable price.
(¢) Viewdata attacks network costs and installation delays by

(i) using the existing Public Switched Network rather than dedicated

lines

(ii) removing the need for and cost of conventional modems by the use
of built in modems within each receiver. Connection to the tele-
phone network is by simple jack plug

(iii) the mainframe resources needed to handle any given number of
terminals are minimised by the use of autodial and disconnect

(iv) the human interface to the system is explicitly designed for use by
untrained staff.

This last item needs to be explored further. The designers of PRESTEL have clearly
done a great deal of work on simplifying the user interface. Very little background
knowledge is necessary for a user to use the system; on certain terminals for
example it is possible to dial-up, input a username and receive the first screen by a
single key depression. Once on the system, all screens should offer guidance on
what to do next whilst the syntax of the user inputs themselves is very simple.
Interestingly, while many system designers are trying to move towards an ‘English’
style of input, PRESTEL has gone to the other extreme. All commands are built
from the 12 character set 0 to 9,* and #. The system is usable because so few com-
mands are necessary; 7 commands (¥0#, *number #, *#, *00, *09, number and #)
are adequate for most tasks, so users soon forget about the strangeness of the com-
mands. The use of so few characters has the advantage that it allows very small (and
cheap) keyboards to be used; ultimately the keypad of a press-button telephone
(which also uses the same 12 characters) can be used in a combined telephone/
terminal system.

The technical success of Viewdata as a means of disseminating information is self-
evident to anyone who has seen a demonstration of either PRESTEL or BULLETIN;
its commercial viability is dependent upon the usefulness and hence value of the
information stored within the system. It soon becomes apparent that the major cost
in running a Viewdata system is maintaining the accuracy and timeliness of this
information.

On dedicated systems such as PRESTEL, running on a stand-alone computer, the
cost of data maintenance is high because most material is still updated by hand
through an editing keyboard. PRESTEL is cost effective since it provides a national
audience for the data. The aim of BULLETIN is to make Viewdata systems viable
in a smaller, company-wide environment. This can be achieved if Viewdata users
can be provided with easy access to the users’ already computerised data and
applications. The requirement, therefore, is for the integration of Viewdata into the

366 ICL TECHNICAL JOURNAL NOVEMBER 1981

complete DP environment. How this integration is achieved in practice is explained
in Section 3.

2 Design criteria and objectives

It must be assumed that the end-users of a Viewdata system are non-specialists who
have no desire to become computer experts. It can be assumed however, at least in
the UK. that users will be familiar with the PRESTEL interface and,
indeed, it seems important for the development of Viewdata as a whole that our
interfaces ‘reinforce’ the PRESTEL style. Like most of its competitors, therefore,
BULLETIN has chosen to adopt a terminal interface which utilises not only the
PRESTEL hardware interface but also the PRESTEL terminal end user interface.
Where BULLETIN goes beyond PRESTEL in facilities, sympathetic extensions of
the PRESTEL interfaces have been attempted.

It is worth making the point that most users regard the excellent response times of
PRESTEL as an integral part of the user interface. Since BULLETIN supports its
terminals through a front-end processor, some compromise has to be accepted here
but the maintenance of response times is seen as a vital part of the usability of the
overall product.

Below the terminal user interface, any Viewdata system can be regarded as a fairly
typical online system. This implies the need for:

(@) resilience; the BULLETIN pagestore must withstand failures on terminals,
disc drives and in the BULLETIN software itself

(b) recovery, after a failure, the system must be capable of restarting its
service as soon as possible without the loss of any confirmed data

(c) online updating; when editing, the system must guard against simultaneous
updating of the same data

(d) minimum system operator involvement; it is likely that BULLETIN will
be run as a continuous background system

(¢) HELP facilities; as a system aimed at non expert users, the system must be
capable of helping terminal users when they get stuck.

Finally, there were two commercial constraints. Although detailed design did not
start until July 1980, there was a requirement for a demonstrable product on the

recently announced ME29! in January 1981. This implied that implementation
must use reliable and well proven design concepts. Further it was recognised that no
changes could be made in ME29 firmware over the time period of the first phase of
the development. The system was therefore built as a superstructure product with
the possibility of using special hardware external to the ME29.

3 The system
3.1 Definitions

Since BULLETIN is required to offer PRESTEL compatibility at the user

ICL TECHNICAL JOURNAL NOVEMBER 1981 367

terminal level, it is necessary at this point to define the basic Viewdata terminology
Since its prime concern is information retrieval, a Viewdata system is centred
around a file of screen images, which in BULLETIN is known as the pagestore.
Each screenful of information is known as a frame; while up to 26 frames on the
same topic are linked together to form a page. Data access is by page number, a
numeric string, of up to 11 digits, assigned to every page. Requesting a particular
page number causes the first frame, known as frame A, of the page to be displayed
on the screen. The other frames within the page, labelled B to Z, respectively, can
be viewed in sequence by requesting the next frame with the # command. Direct
access to non-A frames is not permitted.

Although pages are free-standing entities, pages are related to each other through a
numeric tree structure in which the 10 filials of a page, formed by adding another
digit (0-9) to the right hand end of its page number, are defined as being ‘owned’ by
that page. In BULLETIN, the page ownership system is taken further; a particular
page may be defined as a start page or start node for an Information Owner; all
filials of the start page and so on down the tree structure are then defined as being
owned by that information owner. These concepts are illustrated by Fig. 1.

frame letters

page 350

filial routes

page
page 3500 3509

2 non-filial
routes
9
a a a
page page
35056 350591
~—_ 2
1
a a
page ¢ page a
350567 350591
Fig. 1 Viewdata pagestore structures

368 ICL TECHNICAL JOURNAL NOVEMBER 1981

The terminal user wishing to retrieve data from the system navigates his way
through the pagestore with a very simple set of user commands. If the page number
required is already known, it may be called up directly. In most cases, however, the
user will need to search for the required data; the low numbered pages in a Viewdata
system are therefore primarily used for indexing pages. As an aid to indexing, a
built in routing facility is provided on each frame. When a frame is set up, the
editor may define up to 10 routes to other page numbers. When the frame is on
view, a response of a single digit will cause the system to automatically retrieve
frame A of the page referred to in the corresponding entry in the routing table. A
response of O retrieves the first page referred to in the routing table, a response of
9 retrieves the page pointed to by the last entry, etc. Thus movement through the
indexing pages to the data pages is by single-character user responses.

The default routing system follows the filial ownership system; that is the routes
on a frame point to frame A of the 10 filials of the current page. It is also possible
to define the entries in a routing table explicitly and this allows an indexing frame
to steer a user to any part of the pagestore.

In addition to the frame retrieval commands, it is also possible to recall the frame
last viewed (*#) and to request the redisplay of the current screen, (x00).

3.2 The pagestore

3.2.1 The file: The basis of any Viewdata system similar to PRESTEL is its page-
store so the major design decision in implementing BULLETIN was to choose a file
structure for the pagestore which would be both reliable and familiar but which
would also meet the accessing requirements.

As was described in Section 3.1, access to the pagestore is always by explicit,
usually random, page number. However the nature of the filial pagestore system
means that the page numbers key set itself will not be random; instead it will
comprise dense bands of page numbers separated by large gaps. Thus the most
obvious file structure, a hashed random file, was ruled out because of the difficulties
of producing an algorithm which would spread the user-defined page numbers
evenly across the file. This led to the adoption of a standard index-sequential file
maintained to 1900/ME29 Direct Access Housekeeping standards (DAHK) as the
basis of the pagestore. This also had the advantage of allowing existing ME29
utilities to be used in the pagestore create/dump function. It was also recognised,
however, that conventional index-sequential files have performance problems when
used for high-throughput retrieval functions. The target for BULLETIN is to
perform no more than a single disc transfer for each frame read, but index-
sequential structures require up to 3 index reads plus extra transfers for overflow
records. The index problems have been met by the provision of a buffer stack
within the BULLETIN Retriever (see Section 3.4). This is maintained on a usage
basis so that frequently used index records (and data frames) are retained in store
indefinitely. Degradation of the system due to overflow can be prevented by regular
use of the BULLETIN dump/reorganise utility. The initial versions of BULLETIN
do not meet the target of one transfer per frame but further improvements in the

ICL TECHNICAL JOURNAL NOVEMBER 1981 369

code are expected to keep the system from becoming disc bound on normal ME29
configurations.

Since index-sequential structures have always been recognised as a less than ideal
choice, care has been taken to ensure that the whole pagestore accessing system is
easily replaceable. Now that the initial product is completed, it is hoped to spend
some time and effort reviewing the possible replacement file structures. This is
likely to be either a non-DAHK variant of conventional random files or a straight
conversion to the standard database system, known as TME-RAPID, which is now
integrated with the operating system.

3.2.2 Record formats: The terminal end-user is aware only of the existence of pages
and frames within the pagestore but much ‘red-tape’ material describing usernames,
passwords, security restrictions etc. also has to be stored. All of this information is
represented by different record types existing within the single physical file. The
convenience to the user of maintaining a single, easily portable, pagestore is seen as
being well worth the software complexity necessary to cope with a single file
containing 20 different record types.

3.2.3 Screen contents: The frame records within the pagestores contain the colour
and graphic control data ready for display on the users terminals. To the outsider,
the use of colours and graphics is the most obviously novel feature of Viewdata;
in practice it is one of the easiest elements of the systems to handle.

The designers tackled the problem of describing colours and graphics within the
ISO character set by redefining the use of the ESC (ISO 1/11) character. ESC is
now used to define the start of a control function character pair; the second
character defines the function required. Full details are given in the British Telecom
specification® but as an example ESC followed by A causes all data up to the next
control character to be output in red. Other ESC/character sequences allow use of
six colours (plus white) for both alpha and graphical displays. All control character
pairs occupy a single, usually space-filled, character position on the screen.

When in the graphics mode, the terminal interprets the ISO data characters 2/0 to
3/15 and 6/0 to 7/15 as indexes to a table of 64 graphic shapes. The character set
used is compatible with that used by the British TELETEXT services CEEFAX and
ORACLE, thus simplifying the building of television sets capable of receiving both
Viewdata and Teletext.

The generation of the colours and graphics therefore is a feature of the terminal
itself and requires no mainframe intervention. Thus, support of a fully interactive
system, in which data is both entered and retrieved through terminals, presents few
problems in character handling in that the colour and graphic characters are seen by
the mainframe as standard ISO data. The problem areas lie in providing facilities to
map existing ME29 files (which use a 64 character set) on to the colour and
graphics of a Viewdata frame. The problems in trying to print the Viewdata
character set (160 characters and graphics in any of seven colours) on a standard
ICL line printer can also be imagined!

370 ICL TECHNICAL JOURNAL NOVEMBER 1981

It is worth mentioning in passing that the introduction of colour terminals adds a
surprising degree of complexity to the design of screen layouts. A good colour
display can add life and impact to the most boring information but poor design can
confuse and tire users far more than the equivalent monochrome display.

3.3 Handling of Viewdata terminals

The PRESTEL receiver protocol is asynchronous full duplex and cannot be handled
directly by any of the existing ME29 couplers. Fortunately, a solution to this
problem had already been found as part of the THORNTEL “special’ developed by
ICL’s Letchworth Development Centre (LDC) for Thorn Television Rentals; the
chosen solution was to produce a Viewdata Protocol Convertor based on the LDC
CREAM product. The convertor for BULLETIN, known as the BULLETIN Link
Unit, (abbreviated to BLU), was originally built around an INTEL 8085 linked to
standard ICL boards. This supported up to four Viewdata terminals and converted
the PRESTEL format data to ICL CO1 protocol for mainframe processing. The
Mark 2 BLU, built around an INTEL 8086 and supporting up to 8 Viewdata lines,
is now superseding the original BLU.

The BLU performs three functions. First, it controls the content of the terminal
screen. The terminal operator has the illusion that data typed in through the key-
board is copied directly on to the screen. In practice, the BLU inspects every
character as it is typed and echoes it back to the screen if appropriate. Advantage
has been taken of this system to produce an ‘intelligent’ terminal user interface
particularly in the area of screen-editing functions.

Secondly, the BLU acts as a data concentrator. Up to four (eight in the Mark 2

BLU) Viewdata lines are handled and their messages queued for onwards trans-
mission to the ME29 over a 4800 baud line (9600 baud in the Mark 2 BLU). To the
ME29, the BLU is seen as a Queuing Line Sharing Adaptor (QLSA) with each
Viewdata line addressable as an individual 7181 video terminal.

Finally, the BLU in conjunction with its Model 20 British Telecom modems handies
the auto-answer and auto-disconnection of the Viewdata terminals. In sizing terms,
an 8 port BLU can be equated with a 7502. Our measurements indicate that four
8-port BLUs can be supported by an ME29/35 with response times of about 2
seconds assuming 9600 baud links to the BLU. The 32 ports in such a system can
serve 32 concurrent users so that in a commercial environment some 100 or more
Viewdata terminals may use the system on a dial-up basis. Clearly, the maximum
number of terminals that can use the system effectively is dependent upon the
application and the pattern of calls during peak periods. The ability of a com-
paratively few BLU ports to handle a large terminal population is one of the main
economic strengths of Viewdata vis-a-vis standard TP terminals.

It is also possible to situate the BLU remotely from the ME29, possibly linked to
the mainframes by a leased line. This should save telephone costs by allowing a
clustered population of terminals to access their BLU at local rather than STD
telephone rates.

ICL TECHNICAL JOURNAL NOVEMBER 1981 371

3.4 The software

3.4.1 Basic retrieval functions: Section 3.1 defined the terminology of Viewdata
and outlined the range of commands available for data retrieval. These are handled
in BULLETIN by the Retriever, a free standing TP program which analyses the
users’ requests and satisfies them with frames of data. The retriever also controls
access to the system generally. Access to the retriever is under the scope of a
username; this may have a password and terminal list defined to limit its use to
authorised staff. Once connected to the system, a user may only retrieve pages
which explicitly include his username in their access control list; thus a pagestore
may contain pages which are freely available, marked as viewable by a username
called PUBLIC; pages which are available only to a list of specific usernames; or
pages which are available only 1o the person who created them.

The other main task of the Retriever is the management of the Viewdata terminal
network. Since Viewdata terminals compete for ports on the BLU, close control on
the state of the system must be maintained if the network is not to become choked
by failed lines and abandoned terminals. The Retriever is kept aware of any terminal
mishaps by the use of status messages transmitted from each BLU at one minute
intervals; in particular they inform the Retriever of any unused terminals or, more
accurately, any keyboards which have not been touched in the last minute. If a
terminal keyboard is idle for five successive minutes, the Retriever disconnects the
port to allow other users access to the system.

Although timeout checks are common features in online systems, the ability of
BULLETIN to distinguish between genuinely idle terminals (no keyboard activity)
and those being used by slow typists does seem to be a comparatively novel feature.

3.4.2 Retrieval extensions: Although the original concept of Viewdata was that of a
data-retrieval system <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>