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The IC L information 
processing architecture I PA

J.Kemp and R.Reynolds
ICL Marketing Division, Slough, Berks

Abstract

IPA embodies ICL’s strategy and plans for information processing over at 
least the next 10 to 20 years. It is not itself a product but a comprehensive 
and consistent set of systems concepts, design rules and function descrip­
tions, together with specifications for interfaces and protocols, in accord­
ance with which all existing software and hardware products will evolve 
and all new products will be developed. In broadest terms its objective is 
the provision of standard methods for linking together computers, 
computer systems and terminals via either public or private telecommuni­
cation lines or networks, extending to international linkings. The formal 
structure of IPA is based on the ISO seven-layered model for Open Systems 
Interconnection. The paper explains the need for such an architecture, 
describes the essence of the ISO model and shows its close relation to the 
existing ICL communications architecture Full XBM, from which IPA 
has evolved. The paper shows also how the principles of IPA can be imple­
mented in various circumstances and describes some of the first products 
and user services which will be made available.

1 Why is an architecture needed?

The early development of the digital electronic computer was dominated by the 
concept of the centralised installation. This was largely a consequence of the high 
cost of the processor and main random-access store with the physical bulk, large 
power demands and need fora controlled air-conditioned environment contributing. 
As the possibilities increased for the transmission of digitally encoded information 
over the telephone lines available from the national telecommunications authorities — 
the PO in the UK, the PTT’s in most other countries and certain regulated com­
panies in the USA -  there was a great increase in the use of the computer from 
terminals remote from the centre, and of increasingly wide variety. But the standard 
remained, essentially, the central machine though now with possibly very large 
numbers — such as hundreds — of terminals directly connected.

This type of structure, with simple terminals all connected to a single powerful 
mainframe machine, does not present any deep problems of system management 
and co-ordination of data, and the disciplines necessary for successful operation 
became well understood. There are many systems of this kind all over the world, 
some on a very large scale, which have been operating very successfully indeed for 
many years now. But over the past few years the cost of both processing power and
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storage capacity have fallen dramatically as a consequence of developments in 
micro-electronics. The physical size and power consumption of the equipment have 
been reduced equally dramatically and now only the largest systems need to be 
housed in air-conditioned or otherwise special accommodation. At the same time, 
all the world’s telecommunications authorities are accelerating the growth of digital 
communication services: for example, a public packet-switched network TRANSPAC 
is now operating in France and a corresponding service PSS will be opened by the 
PO in Britain in the near future. All this has made the dispersal of processing power 
and data storage from the centre a much more practical and economic possibility 
and similarly for the devolution of authority and the diversification of electronic 
applications. The user community, which now includes virtually the whole of the 
business world, has already seen great value in such developments and there is a 
real demand that, to put it most simply, it should be possible to connect any piece 
of equipment to any other and to transfer any kind or quantity of information, 
with everything kept properly under control and without the user needing to 
concern himself with anything but the job in hand.

This presents problems of an entirely different order of complexity from those of 
the simple centralised system with its directly connected terminals. Purely tactical 
or ad hoc solutions are no longer sufficient and indeed we are no longer dealing 
with simple data processing but rather with the interconnection of a wide variety 
of tasks aided by computers and associated devices: in fact, with all aspects of 
information processing and handling in general. There is clearly a need for a firm 
strategy for linking equipment together if one is to avoid the situation in which 
every new demand presents a new problem. But the strategy must be based on 
fundamental and widely accepted principles if the products to which it leads are to 
meet the needs of such a wide range of users. It must also allow for needs which 
have not yet been specified. The term ‘architecture’ has come to be used for the 
embodiment of such a strategy in the computer world and considerations of this 
kind have led ICL to the development of IPA.

IPA is not a product in the sense of a particular piece of hardware or software but a 
coherent set of rules and conventions which provide for the unified and compre­
hensive interconnection of the main ICL products such as data-processing systems, 
business systems and terminals, and give also the capability for connecting these 
to other products either from ICL or from other manufacturers.

2 IPA and the ISO 7-Layered Model for Open Systems Interconnection

The overwhelming majority of linkings between computers and associated devices 
such as terminals and satellite processors are made over lines provided by the 
national telecommunication authorities such as the PTT’s. At one end of such a 
link User A despatches some information, which we can call a ‘message’, together 
with a destination, which we can call the ‘address’ of User B at the other end, and 
it is the responsibility of the PTT to deliver this safely, that is, without errors and 
to the correct address. How this is achieved, in particular how any errors in trans­
mission are detected and corrected, is no concern of A or B; and what is in the 
message is no concern of the PTT. Thus there is a clear separation between the 
information processing function, which is the concern of the users, and the corn-
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munication function, which is the concern of the communication authority. But 
the manufacturer of the computing and other equipment must be aware of the 
requirements of this authority and must ensure that the signals constituting the 
messages which are put into the communication system conform in every way to 
the standards and conventions to which that system is built. Therefore whilst there 
is this separation between the processing and communication functions, the archi­
tecture which we have been discussing cannot avoid a close involvement with the 
architectures of international telecommunications systems.

There has been intensive study by international bodies for several years past of the 
question of what has become known as Open Systems Interconnection, or OSI. 
This means that if OSI were achieved in any community — which ideally should be 
the whole world — then there would be no technical barriers to the user of any 
computer, terminal or similar device communicating with any other within the 
community. The telephone and Telex are familiar examples of virtually world-wide 
OSI. The paper by Houldsworth1 in the first issue of this Journal discusses this 
concept and the technical problems which underly its realisation. Recently the 
International Standards Organisation (ISO) has published2 a formalisation of the 
fundamental structure of information processing and communication, which has 
become known as the ISO 7-Layered Reference Model for OSI. This, like IPA, is 
a set of concepts. It separates the full processing—plus—communication spectrum 
into an ordered set of seven subactivities or layers, in such a way that only adjacent 
layers interact with one another. The effect of this is both to make clear and to 
bound the consequences of a change in the implementation of any layer. In particu­
lar, the model makes the vital separation between processing and communication. 
The model and its relevance to the aims and realisation of OSI are discussed by 
Brenner.3 We shall give a brief account of the model in Section 3 of this paper.

IPA and the ISO model are concerned with the same problem and it is evident that 
their aims have a lot in common. Further, the model is the outcome of truly inter­
national studies by groups of acknowledged experts in this field and is an expression 
of fundamental concepts which have already gained international acceptance. 
Therefore ICL, who have a general policy of adhering to international standards 
wherever possible, have incorporated the ISO model into the structure of IPA. It is 
not entirely accidental that the structure of the current ICL communications 
protocol Full XBM (also known as ICLC-03) is already quite close to that of the 
ISO model.

3 The ISO model and full XBM

Fig. 1 gives the structure of the model

The details are discussed at length in the definitive ISO publication2 and more 
briefly by Brenner.3

The top layers 7,6,5 are concerned with the information processing functions and 
with ensuring that the messages which are to be transmitted between the com­
municating parties contain all the information necessary to specify the task to be 
performed and to control the interchange in whatever way is desired. The top
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(endpoint) (endpo in t)
layer 7 application user programs,IPA facilities - - — 7
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1 physical electrical signals

% telecommunications media, e.g. c ab les ,  microwaves

Fig. 1 ISO 7-layered model for OSI

ISO layer Full XBM

7 ap p l ica t io n information

6
a c c e s s

process ing
functions

5

A null

3 group te lecom m unica t ion
func tions

2 link

1 transm iss ion

telecommunications m edia ,  
e.g. c ab le s ,  microwaves

Fig. 2 Comparison between Full XBM and the ISO model

layer 7, the ‘applications’ layer, concerns the actual work which the users wish to 
do; they do not need to concern themselves with or even to be aware of the others 
below. The lower layers 4,3,2,1 are concerned with ensuring that the actual signals 
input to the communications system — for example, the public telecommunications 
network — meet the requirements of that system. The basic concept is that infor­
mation originating in any one layer is handed down through the layers below until 
it reaches the physical communications medium; after transmission it is handed up 
through the layers at the receiving end until it reaches the equivalent layer. A 
principle of fundamental importance is that whatever is ‘done’ to an information 
stream as it moves down from one level to the next below at the sending end is 
‘undone’ as it moves correspondingly upwards through the layers at the receiving 
end. This means that communication is between layers at the same level -  ‘peer’
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layers — and that to any layer the layers below together appear as nothing more 
than a delay line. For this reason David Ackerman of ICL, in his early work in this 
field, used the terms ‘onion skin architecture’ and ‘principle of complementary 
reflection’.

Over the past few years ICL has developed a series of structures for communications 
of which the latest and most comprehensive before IPA was Full XBM, originally 
called ICLC-03. XBM means Extended Basic Mode. This has much in common with 
the ISO model as Fig. 2 shows.

like the ISO mode, Full XBM embodies the principles of:

separation of information processing from telecommunication
interfaces only between adjacent layers
end-to-end communication only between ‘peer’ layers.

It was thus a natural evolutionary step to adopt the structure of the ISO model as 
the basis of the new architecture IPA.

4 Initial implementations of IPA

4.1 Communications processors

The first major ICL hardware product designed according to the principles of IPA 
is the Multi-Function Communication Processor, MFCP. This expresses in physical 
terms the important separation between the processing and communications 
functions. Fig. 3 shows the structure.

( mainframe )

Fig. 3 The ISO Model and the ICL Multi-Function Communications Processor; MFCP

The MFCP provides the functions of layers 4,3,2,1 of the ISO model. Its purpose is 
to take care of all the operations which have to be performed in order to  connect a 
mainframe (host) computer to a telecommunications system, such as for example a 
public packet-switched network. The top three layers are in the host machine. 
Layer 7 is of course the ‘real’ work which is to  be done and is all the user need 
know about; layers 6 and 5 deal with data format, control of terminals and flow 
control and are implemented in the system software.

A great benefit resulting from this structure is that the host computer (meaning in 
effect the user) is insulated from changes in the communication system. Thus if the
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latter is a packet-switched network using the X-25 protocol, as is the case for the 
French TRANSPAC, the British PSS and other important networks, this can be 
provided in the MFCP by appropriate software or micro-code in layers 3,2,1. But 
other protocols, such as X-21 for circuit-switched networks, are emerging and these 
could be implemented if the need developed.

I S 0  l a y e r s

7 6 5 4 3 2 1

a

ISO l a y e r s

6 5 4 3 2 1

b

Fig. 4 a All ISO model layers in one unit b Application in 'back-end' processor

Communication between the host computer and the MFCP is via a high-speed 
channel and it is important that the host need not be concerned with the physical 
form of this -  for example, whether it carries a single bit stream or is a 32-bit high­
way. Therefore a new protocol has been defined for the purpose embodying the 
rules governing how information is to be transferred between layer 5 (in the host) 
and layer 4 (in the MFCP).

This implementation, with the whole of the transport function of the ISO model in 
the MFCP and the processing functions in the host, is clearly one of several possi­
bilities. Two extremes are equally possible (shown diagrammatically in Fig. 4a and 
4Z>):

(a) a fully-integrated system with all the processing and transport capabilities 
(i.e. all seven layers) in one unit

(b) a single unit providing the capabilities of layers 1 to 6, acting as a front- 
end to a machine dedicated to processing; then only layer 7 would be 
implemented in the latter.
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Any other allocation can be made but the order of the layers must not be varied — 
a basic principle of the ISO model is that the functions of the various layers have 
been defined and there must be interaction only between adjacent layers. The 
important point is that if the principles of the model are held to, then there is 
plenty of scope for flexibility in design of equipment with no risk of loss of co­
herence, compatibility and standardisation.

4.2 Packet switching terminals

Packet switching is being adopted by many of the world’s telecommunication 
authorities and the relevant X-25 protocol has gained equally wide acceptance. 
(There is a thorough discussion of the concepts and merits of packet switching, and 
of the relevant protocols including X-25, in the book by Davies et a/.4) ICL has 
therefore produced new models of the 7501 and 7502 terminals for connection to 
such networks. These control all levels of X-25 and thus relieve the mainframe of 
any need for knowledge of the existence of the network. The implementation does 
not however include the possibility of polling across the network because this 
would bring in an expensive overhead.

The implementation is known as PSTS, meaning Packet Switching Terminal Sys­
tems. The terminals are already in use in France with the TRANSPAC network and 
will be available for connection to the British PSS when this opens. Implementations 
for other X-25 networks will be made available as the need arises.

Fig. 5 shows the X-25 connections with the 7501 and 7502.

Fig. 5 Packet Switching Terminal Systems, PSTS
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5 Some user services

To show what this means at the practical user level, we now describe some of the 
main services to be made available under IPA.

The following is an example of an entirely realistic situation. User A, with a small 
machine and a terminal, has some data which he wishes to process by means of a 
program P running on a large machine M at a distant site to which he has access. 
This program will need to use some other data held in a file F at third site. He 
wishes to have the results printed out on his local printer and also to transmit 
them to user B at a fourth site, for up-dating one of his (B’s) files. All these files, 
programs and so on are known by names to the participants and these are the only 
identifiers which A wishes to use in initiating the various activities.

The services to be described enable this kind of activity to be carried out as a 
routine matter. They are all implemented as software running under the main 
ICL operating systems VME/B, VME/K and TME. DME users also are catered for 
under the IPA umbrella, as they may assume the role of an ‘associate’ in an IPA 
community, so that a DME machine can act as a host providing a service such as 
MAC to the community. It is the adherence to the principles of IPA which makes it 
possible to provide the services in such a general form; that is, in standard forms 
which, so far as the user is concerned, are independent of the equipment and the 
communications system being used.

The services are: Remote Session Access (RSA)
Distributed Message Router (DMR)
Distributed Application Facility (DAF)
File Transfer Facility (FTF)
Application Data Interchange (ADI)
Range Remote Job Entry (RRJE)

5.1 Remote Session Access (RSA) (Fig. 6)

This facility allows the user of a terminal connected to an IPA mainframe to access 
a service resident in another processor to which he is not directly connected. This is 
essentially a ‘pass-through’ facility which allows complete transparency through 
intervening machines to the required service. The link between the terminal user 
and the machine offering the service is achieved by the input of an appropriate 
simple message from the terminal keyboard.

An example of RSA in use might be when the terminal operator wishes to use a 
TP service which is not available on the machine to which he is directly connected. 
Once connected to the ‘remote’ TP service the operator is unaware that RSA is 
being used. Breaking the RSA link is as simple as establishing it; the terminal user 
then drops back to the machine environment to which he is directly connected.

In this type of organisation the machine ‘passed through’ is called the Agent and the 
machine offering the service is called the Server. The RSA connection is on a 
session basis, not message-by-message.

126 ICL TECHNICAL JOURNAL NOVEMBER 1980



Fig. 6 Remote Session Access (RSA)

5.2 Distributed Message Router (DMR) (Fig. 7)

Some user input messages may relate to files or applications which are not available 
locally and which therefore need to be transmitted to a remote system for proces­
sing. Using DMR, any message input by the terminal operator will be examined for 
a destination indicator and routed to that destination, which may be the local or a 
remote mainframe.

This facility is of particular use where adjacent messages, for example in a stock 
control system, need to be processed against files or applications resident locally or 
in distant processors. DMR would be used to despatch the messages to the appro­
priate destinations. Once again the operator is unaware of this routing activity, 
except perhaps for a variation in response time resulting from the extra transmission 
delays.

Here, unlike RSA, routing activity is handled on a message-by-message basis.

5.3 Distributed Application Facility (DAF) (Fig. 8)

This enables the processing of different tasks, or different parts of the same task, to 
be distributed amongst different parts of the system or network. A terminal oper-
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ator may send messages to a particular application for which data is not available 
locally, or which requires treatment by an application residing elsewhere in the 
processing network. Without operator intervention or awareness the local application 
will arrange t r ansmission of either the original message or an entirely different one, 
depending on the requirements, to the appropriate distant application through the 
use of DAF. When the distant application has processed the message it may reply to 
the originating application in the local machine or it can optionally reply directly to 
the terminal operator.

server
machine

server
machine

Fig. 7 Distributed Message Router (DMR)

Fig. 8 Distributed Application Facility (DAF)

An example is the request of a credit check for a customer whose account has been 
idle for some time and whose records have been archived in order to minimise

128 ICL TECHNICAL JOURNAL NOVEMBER 1980



local storage requirements. The local credit check program recognises that the 
account is not held locally and accordingly makes the enquiry upon the files held at 
the central site. When the reply is sent back from the centre the message can go 
either first to  the local application or directly to the terminal user.

5.4 File Transfer Facility (FTF) (Fig. 9)

In conjunction with DAF, FTF will respond to commands in Job Control Language 
(JCL), for example from a terminal or from within an application program, to 
transfer a file between two systems.

An example might be the transfer of a summary of a day’s local transactions at a 
branch office or shop to a central location for updating the central files. Another 
use of FTF could be the transmission of centrally developed source program files 
to remote systems for testing for local use.

local
updates
file

central
updates
file

Fig. 9 File Transfer Facility (FTF)

5.5 Application Data Interchange (ADI) (Fig. 10)

This is the facility whereby an application program in one computer can communi­
cate with another program in another computer without involving TP control or 
software. It is particularly useful when a high level dialogue is required between two 
related programs which are not operating on a TP message/transaction basis.

An example might be an overnight run of an application program which gathers the 
accumulated data and statistics of the previous day’s work from a number of 
remote systems. The central and remote programs would have an intimate protocol 
relevant only to themselves for gathering the data.

Alternatively, and perhaps more important, as ADI offers a transparent ‘pipe’ 
through which data passes, it can be used for connection to alien (non-ICL)
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machines, when the interpretation of the incoming data can be handled by the 
application within the ICL mainframe. In this way it is possible to have a meaning­
ful conversation at the application level with other manufacturers’ machines.

Fig. 10 Application Data Interchange (ADI)

Fig. 11 Range Remote John Entry (RRJE)

5.6 Range Remote Job Entry (RRJE) (Fig. 11)

The RRJE facility offers the ability to input work for processing, including source 
code, data and JCL, from a machine emulating an RJE terminal to a host system. 
Output from the host can be received and spooled by the emulating machine, for 
eventual printing.

An example could be the transfer of jobs from one IPA host to another. Using 
RRJE, the entire JOB envelope — that is, the JCL, the job itself and any other
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relevant information — could be moved from one host to another, executed and the 
results then despatched to the appropriate site.

6 Concluding remarks

This paper is intended as a broad overview of IPA. We have aimed to bring out the 
fundamental nature of the principles on which the architecture is based, its power 
and generality and its scope for unlimited development. As will be clear, a great 
deal of technical detail is involved in its implementation; it is intended that later 
papers in this Journal will deal with some of this.
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VME/B a model for the realisation 
of a total system concept

B.C.Warboys
ICL Product Development Group, Northern Development Division, Kidsgrove, Staffs

Abstract

Almost a decade has elapsed since the foundations of the VME/B system 
design were laid. The paper is an attempt to isolate the fundamental initial 
design motivations. During the decade most exposure has inevitably been 
given to the extensive set of capabilities provided by the system. As a result 
the original motivations tend to be obscured by the, admittedly most 
important, facility discussions. It therefore seemed appropriate to restate 
the fundamentals uncluttered by details of such facility support. This may 
well cause disappointment to those who expect to find a facility overview 
within; however, I felt that a highly personal statement of the original 
design motivations would be worthwhile after such a long interval.

‘The writers against religion, whilst they oppose every system, are wisely 
careful never to set up any of their own’ (Edmund Burke).

No such precaution was taken by the author and in fact a decade has flown by since 
the lapse and this paper. The paper is both an attack on the then (1971) state of 
operating systems and an attempt to provide a positive response to that attack.

Inevitably when attempting to outline the initial design concepts for such a project 
after such a long interval there is some difficulty in separating current motivations 
from those of ten years beforehand. The paper is therefore somewhat of a mixture 
of history, present thoughts and future predictions. Apologies are offered for such 
self-indulgence; it is hoped that the reader will understand and forgive.

1 Scope

The reader who perseveres will read about system concepts and motivations. Little 
or no mention is made of the extensive processing and support capabilities of the 
VME/B system. These are well documented in a series of ICL technical publications 
to which the interested reader is referred.

Thus there is little or no description of the scheduling mechanisms, the control 
language, the filestore or the virtual store. It is hoped that some future papers in 
this series will provide technical background to some of these areas.

132 ICL TECHNICAL JOURNAL NOVEMBER 1980



The VME/B system is currently packaged and marketed as a large general-purpose 
system supporting the concurrent operation of batch, multi-access, remote job 
entry and transaction processing services. It is offered to support large ICL 2900 
series systems.

2 Introduction

In any description of an entity it is useful to detail not only what it is but also what 
it is not. The classical view of a computer operating system ‘to  share the hardware 
which it controls among a number of users, making unpredictable demands upon its
resources.........efficiently, reliably and unobtrusively’ is too narrow to enable a
reasonable presentation of VME/B’s objectives and philosophy. There are so many 
preconceptions about the components of an operating system and even more about 
what its functions should be.

Instead the paper reflects the basic thinking behind the original design intentions 
that the time had come (in 1971) to challenge the boundaries and dichotomies 
which had grown up around that mythical entity ‘the operating system’; to challenge 
the concept of a single unit capable of satisfying the diverse needs of all users.

Well, so the King is dead: now what do we do? Clearly the first task is to examine 
the origins of any legend in order to understand society’s dependence on it; to 
examine the divisions and boundaries that give shape to the legend and distinguish 
between those that have prospered through the lack of any formulation of 
theorems, those that reflect the constraints of recent knowledge and practice and 
those that exist through our present conception of the very nature of the system we 
are providing.

The paper thus attempts to gradually identify what was perceived as the users needs. 
It demonstrates that VME/B is not just a ‘product’ but a unified and comprehensive 
set of system concepts, design rules and functions. These provide the basis for the 
development and integration of ICL products of many types, both existing and new. 
The paper seeks to establish that the ‘packaged’ VME/B system as currently pre­
ferred is a particular usage of the design and thence to differentiate between 
module capabilities and their packaging, mapping and binding into marketed 
systems.

Any set of software capabilities must choose how to colonise the wilderness between 
the rich pastures of available technical possibilities and the forest of users’ demands 
for capabilities.

Such a colonisation requires the identification of the characteristics of the com­
ponents, the style of their combination, and a supporting methodology allowing the 
flexible assemblage of components to provide the necessary application services 
(Fig. 1).

So what were the possibilities, what were the demands?
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The sixties had generated a number of techniques:

structured programming, top-down design, procedures, capability machines, 
data-bases and communication protocols.

The architecture of the 2900 range had drawn from this base and had reflected 
the latest thinking into the structure within which module designers could begin 
to function. The 2900 architecture has been outlined elsewhere1 and the reader 
is referred to such publications if further background reading is required.

From the viewpoint of the software module designer the architectural features 
which framed the basis for a sympathetic software implementation were as follows.

3.1 Architectural support for the procedure

Historically the dichotomy between software packages, in particular those which 
had come to be known as the operating system and the applications system, had 
grown to such an extent that the concept of privilege had enshrined a single level 
boundary between the ‘good’ guys with wide capabilities and the ‘bad’ guys with 
narrow ones. The justification, probably after the event, was that one of the 
principal roles of the operating system was to hide the details of hardware from the 
application writers. In practice one highly stylised and complex interface had 
merely been replaced by another.

3 Technical possibilities

demand for capabili ties

kit of p a r t s

technical possibilit ies

s ty le /
methodology

Fig. 1

The advent of high level languages and then of application data interfaces in fact 
presented the applications developer with a stylised high level interface which now 
required support from mapping code rather than an abstracted hardware interface. 
However few people had seemed to notice and a sharp distinction grew up between 
the mapping support provided by the ‘run-time library’ and that provided by the 
‘operating system’. The 360 architecture in fact provided two code-calling 
mechanisms something like ‘BALR 14, 15’ for library calls and something like 
‘SVC 23’ for operating system calls.
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Further, once within the operating system, it (the operating system) invoked 
procedures within itself using the library calling convention of BALR 14,15. Thus 
three classes of procedures could be identified

(i) User available library procedures (subroutines)
(ii) Operating system interface procedures

(iii) Operating system available library procedures.

Fig. 2

Not only did this enshrine for the system the level and structuring of support 
offered by the various libraries but also cut off general access to operating system 
procedures which were of potential value to the user. Since that time the growth 
of microcode machines has introduced a fourth level of library: that of the hard­
ware-provided microcode-procedure library.

It was clear that if we were going to exploit to the full the opportunities presented 
by more flexible hardware machines, the new lessons of data management and the 
wide use of high level application languages such distinctions would only inhibit 
the freedom for flexible system restructuring to meet the challenges of the rapid 
evolution of computing theory, technique and hardware economies.

Thus 2900 offered a number of facilities which were specifically designed in order 
to ensure that such distinctions were not pre-ordained for the system designer:

(a) The call (the procedure invocation) was a universal mechanism inde­
pendent of the privilege and priority of the calling and called procedures.

(b) The binding of a called procedure to its caller was accomplished by the 
‘insertion’ of a pointer (a call descriptor) between the call and the target 
procedure. This ‘insertion’ could be delayed, if necessary, until call time
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and it was this generalisation of binding mechanisms which offered real 
opportunities to rethink the mechanisms needed to flexibly assemble a 
variety of application services.

(c) The ‘work-space’ for a procedure was mechanised, by a hardware stack, 
such that all procedures could operate in the same way. This was clearly 
a prerequisite for the delayed binding of procedures into application 
environments. There was little point in delaying the classification of 
procedures into levels of privilege if the code body of such procedures was 
dependent on the level chosen.

In practice, for efficiency reasons most binding is performed at either system 
generation, system initialisation or module load time as part of the packaging of 
the product for field release.

Clearly the possibilities available through such a general technique could not be 
ignored in the resulting software system design.

3.2 Architectural support for virtual machines

Historically the other major distinction which had become cemented into systems 
architecture reflected the need for multiple users to access the computing service 
simultaneously. To support such access most machines implemented some form of 
base-displacement protection mechanism limiting access by a user program to a 
‘local’ store plus a set of operating system interface procedures, i.e. the SVCs 
mentioned above were included in the base-displacement domain. This mapping 
did much to enshrine the concept of a ‘program’ as the basic user processing unit 
and hence encourage the development of monolithic application programs to fit 
into these highly stylised protection domains. Further since the user had no access 
to any form of concurrency apart from the ‘program level’ a plethora of tasking 
techniques evolved such as to enable the applications writer to have some access to 
parallel processing capabilities. The combination of the lack of distinction between 
the protection of tasks and shared variables within a program led to a number of 
rather complex parallel language definitions culminating in PL/1-like approaches. 
Such approaches placed considerable strain on the skills of the applications develop­
er. Indeed since then a number of treatises, books even, have been written attempt­
ing to provide aids in mastering such complexity.

2900 offered the possibility of a more thoughtful and general approach to sharing 
and concurrency through the notion of procedure capabilities within virtual machine 
domains. However, it must be admitted that the further developments particularly 
in information processing theory have demonstrated that in the future wider 
generalisations are going to be necessary. These will basically derive from a better 
understanding of the nature of naming and relationships in information processing. 
However, it is already clear that the lifting of many of the artificial barriers has 
presented better opportunities for developing a coherent approach.

The virtual machine in 2900 is thus viewed as the assembly point for a set of 
capabilities to provide an applications service. The procedure base offers a flexible
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mechanism for mapping real world objects into capabilities and the scene is set 
enabling us to look at the provision of a set of modules enabling the assemblage of 
highly specific application-processing services.

However, at this point, it is worth noting the constraints, implicit in our style of 
business, which were imposed by the large number of established commercial prac­
tices, especially since the manufacturers had in the first place been responsible for the 
establishment of these practices. These included the rather peculiar style of mapping 
required for FORTRAN and COBOL applications and in ICL’s case the style of 
control language made familiar to users through the George 3 operating system. 
Thus the virtual machine needed to become a flexible localised container in which 
opportunities for rationalisations could be exploited whilst allowing familiar 
techniques to continue to be exploited. Indeed the current style of command 
language interface, deriving from the George 3 vocabulary,is likely to continue for 
at least another decade.

4 Capabilities

So what processing services are necessary and what style and methodology is 
required to provide the framework for such services? To answer this question we 
must look at the pressures which were growing within the industry which in turn 
were dictating these requirements. There were two basic areas of pressure, one 
deriving from the economics of application software development and one from the 
technological developments in the science and practice of the industry.

4.1 Application development

From the viewpoint of the computer user striving for a cost-effective applications 
service there appeared to be three problems which were of particular concern and 
where an increased application of software engineering principles could be of 
immense benefit to him.

(i) Program duplication — duplication in his own programming because of 
ignorance of the work of others, differing languages, change of computing 
system or partial change of requirements, and duplication of system 
support software, which in the final analysis he has to pay for.

(ii) The poor design and implementation of the images presented to the user 
and their irrational variation from one application to another.

(iii) The management of large application program suites — getting them 
written, used and maintained.

4.2 Technology development

From the state of the industry a number of pressures were arising and these can 
broadly be divided into the three areas of Hardware technology, Information tech­
nology and System and Information theory.
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4.2.1 Hardware technology:

(a) Processing power. The cost of hardware was reducing rapidly which 
generated the twin challenges of the effective utilisation of more power by 
the competent user and the utilisation of a powerful system by an in­
creasing population of non-professional users.

(b) Accessible storage. Most social and business revolutions have derived from 
the ready availability of an enlarged information base. The huge explosion 
in the amounts of accessible storage over the last decade and its even 
greater explosion in the next posed problems of distributed databases, 
friendly interfaces and rapid access and protection of very large information 
banks. Clearly an approach to filestore, database structure and naming was 
required that both coped with existing skills and practices but at the same 
time left the door open to deal with new vastly different demands.

(c) Novel machines. It was becoming clear that the general purpose machines 
prevalent in 1971 would rapidly be complemented by a whole ‘mish-mash’ 
of special purpose engines. The ICL DAP and CAFS machines are already 
available and there are a number of ‘Reduction’ machines which have 
demonstrated the potential of very high and functional programming 
languages as directly executable languages. Clearly the system partitioning 
and hardware mapping would have to take account of this aspect.

(d) Networks. The network business was taking off spurred on by a number of
influences:

the growth of distributed processing in the market place;

the demands to interlink data-processing systems and components in a
flexible way;

the mutterings about automatic offices and electronic mail.

Oearly no longer could communications facilities be treated as add-on goodies to a 
batch processing service; an integrated approach to both centralised and distributed 
processing was required. See for example the paper by Kemp and Reynolds2 on the 
recently-released ICL Information Processing Architecture, IPA.

4.2.2 Information technology: File organisations had arrived, indexed sequential, 
keys, records, were accepted jargon. The CODASYL work and the work of CODD3 
were producing implementations of management information systems with immense 
scope and potential. There was clearly a need both to absorb the lessons on naming 
conventions, data structuring and relational theory and to produce solutions which 
allowed freedom of evolution of the applications database independently of the 
applications suite. In particular many applications would for the first time be 
changing from tape-based unconnected file-processing approaches to disc-based 
interconnected integrated management-information systems.
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4.2.3 System and information theory: It was the era of ‘modularity’ — the need 
to get rid of monoliths and move to off-the-shelf interchangeable applications 
modules together with a style and a methodology for packaging such modules.

4.3 Summary o f  required capabilities

(i) Cost-effective applications development environment, in particular the 
availability of modular programming support techniques

(ii) ‘Synergetic’ man machine interfaces
(iii) Exploitation of very large information bases and current information 

theory
(iv) Exploitation of ‘novel’ machines
(v) Exploitation of distributed systems

S Response

5.1 Recap on the story so far

The paper has thus far attempted to outline the three main areas o f influence.

(i) The existence of historical boundaries and the opportunities offered by 
the 2900 architecture as a basis for a more flexible approach to techno­
logical possibilities.

(ii) The challenges presented by a whole new set of technological possibilities.
(iii) The demands for capabilities from an often embittered user population.

The rest of the paper is an attempt to demonstrate the extent to which the system 
style has grasped these opportunities and challenges and gone some way to under­
standing how much of operating system sentiment was fact and how much fiction.

5.2 Functionally-oriented environments

Earlier the paper had identified that the set of capabilities which were needed 
effectively demanded a style, a set of mechanisms for easing the lot of the devel­
opers o f applications systems. It had identified that historically monolithic applica­
tions development had derived from two main sources.

(a) The widespread classification into two worlds -  operating system and 
application program.

(b) The lack of support for modular program development systems.

It then identified the basic elements of the 2900 building style, that is, procedures 
and virtual machines. Particular emphasis was given to the concept of delayed 
binding of procedures to support the mapping of a set of real-world entities into a 
set of functionally oriented environments existing within the boundaries of an 
architecturally supported Virtual Machine. Further in performing this mapping we 
did not wish to  reintroduce unnecessary boundaries but rather allow as much free­
dom as possible in the selection of procedures to support a given set of application- 
provided packages. The final requirement was clearly to then provide a generalised
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naming and control structure allowing the flexible assemblage of procedures to 
present the required application images.

In order that such environments could freely exist it was necessary to ensure that:

(a) we were not building interpreters on top of interpreters and thereby 
creating systems with a certain hierachic elegance but very poor perform­
ance;

(b) the maximum use was made of defaults and naming contexts in order to 
localise identifiers;

(c) once packaged environments had been established they would be re-used 
(inherited) in order that the minimum amount of time was spent in 
creating the tailor-made environments. Clearly the object of the exercise 
was the execution of work in such environments rather than their initial 
establishment.

(d) the mechanisms for the building of a set of ‘user-friendly’ interfaces were 
freely available. We took the view that no single definition of user-friendly 
was likely to serve the needs of all users. Further the state of the industry 
was such that the definition of ‘friendly’ was likely to evolve rapidly in the 
next two decades or so.

The approach taken to ensuring that such objectives were indeed satisfied was:

(i) to provide a single naming system within which all real-world objects could 
be described, the relations between them could be specified and a set of 
local (i.e. environment specific) ‘currencies’ could be used to access such 
objects once they had been mapped (‘selected’) from the real world into 
the processing environment; see section 5.3.5 for further explanation;

(ii) to allow such currencies to identify (and hence directly invoke) primitives 
which were needed to support the environment and hence avoid the need 
for intermediate interpreters;

(iii) to provide a block-structured scoping system allowing both the re-use of 
tailored nested environments and to ensure that such environments were 
tidily deleted when no longer required. The system adopted was very 
similar to that used for variables in any Algol-like language. However, all 
real-world entities when mapped through the naming (and thence pro­
cedural support) system were subject to the same scoping rules;

(iv) to provide a ‘profile’ system allowing for the establishment of a variety of 
human input command languages which controlled the assembling and- 
thence execution of the set of procedures required to support a given 
application.

Note that in all of the above there has been no necessity to distinguish between the 
providers of procedures. We shall however, identify functions which need ‘public’ 
access (and hence privilege) in order to support this model. It is such functions 
which help to identify the classical operating system functions which are ‘real’ and 
those which evolved through habit or manufacturer’s policies.
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Notice also that, as yet, no real mention has been made of the mapping of inform­
ation and programs onto storage. Indeed this paper will not attempt to describe 
the various sophisticated techniques which are needed to ensure an effective 
utilisation of file storage and main store. Clearly much of the system implementa­
tion was and is concerned with this mapping but this is seen as of secondary strategic 
importance to the basic concepts outlined above. Indeed it was imperative that with 
the rapid evolution of storage technology the mapping of the storage hierarchy 
should be flexible and distinct from the support given to the general system 
structure.

5.3 Basic system principles

Thus the system was viewed in concept as supporting four basic activities.

(a) System description — involving the description of all of the named objects 
required to be accessed by the various users and managers of a distributed 
computer system. Note no distinction has had to be made between 
operator, system manager, programmer or application user. This system 
description may turn out to be distributed throughout a network and 
indeed encompass a variety of different naming systems and standards.

(b) User entry — involving the creation and management (and thence deletion) 
of an environment tailored to meet the demands of this particular user 
within a set of installation defined user types.

(c) Object naming — being the mechanism required for the provision of a local 
view of the generic system description. In particular in a distributed net­
work it was considered of primary importance that the user was given a 
consistent and personalised way of naming an object independent of the 
controlling system managing the object.

(d) Object manipulation — once an object had been named, the user needed a 
local ‘currency’ guaranteeing his required private access which when 
subsequently used to manipulate that object would police its conformance 
to the behaviour which he had established for it (rather like the concept of 
types, classes and monitors).

Fig. 3 outlines the entities and environments which support these basic activities.

5.3.1 Loading: Before more detailed analysis of these basic system activities there 
is one point worth reiterating. The basic 2900 approach has been viewed as providing 
mechanisms for the translation of any activity into a set of procedure capabilities. 
Clearly the procedures provided from a number of sources are themselves named 
objects. Thus when visualising named objects one should remember that the 
procedures supporting them are included in that set. In other words the system is 
basically providing mechanisms for name translation and the naming system copes 
both with the naming of primary objects (e.g. users, files, devices) and their sup­
porting derived objects (e.g. procedures, events, data areas). The process of providing 
named procedures to support object selection and manipulation is known as 
‘loading’. Thus basically whenever a user names and then manipulates an object the 
system ‘dynamically’ provides the named procedures for supporting these opera­
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tions, hence the importance of the delayed binding and run-time privilege classifica­
tion mechanisms outlined earlier.

As noted earlier the system generation (packaging) process can of course preload to 
optimise the process for identified packaged requirements. In fact VME/B, currently 
marketed as an ‘Operating System’ product, is mostly packaged this way at present.

activity entity environment

s y s t e m ______________ |rea l  world o b je c t s |
description

d is tr ibu ted  system 
cata logue

user  entry- user packages app lica t io n  service

|object 'scoping'

[manipulation environment

object naming----------n am es  of se lec ted  o b jec ts

blocks

c ontext

o bjec t _____
m a n ip u la t io n

se lec tion  / manipulation 
of o b j e c t s braries

Fig. 3

5.3.2 System description: To support a complete description of a set of named 
objects the concept of a names catalogue was introduced. As a design statement the 
catalogue was not dependent on any processing centre of a distributed system and 
indeed might appear in several such centres. It is organised in terms of nodes and 
relationships. Entries for named objects are located at nodes and the nodes are 
connected by relationships. For example a file node is connected to a volume node 
by a placement relationship.

Privacy relationships define access rights and in particular control the translation 
(mapping) possible between objects and the implied support procedures. Thus 
rather than provide a rigid partitioning between operating system capabilities 
(functions) and user-provided procedures the system provides, through the loader 
and catalogue mechanisms, a general capability for establishing as part of a system 
description the mapping between objects and the privilege, priority etc of the 
underlying and often implied support procedures. Clearly once we have established 
a global, protected loading and cataloguing system we can generate secure systems.

5.3.3 User entry: User entry to the system is viewed merely as the ‘selection’ of 
a user node. Clearly as a result of such a selection the implied support procedure
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(normally referred to as LOGIN) can select required (allowed) processing environ­
ments and required (allowed) manipulation facilities. The capabilities (provided 
through named procedures) reflecting the installation’s view of this particular 
user’s needs and competence.

However, more is required. The original objective was to hide the complexity of 
translation between the user’s view and the generic description of the network. 
Further in an ‘open’ system one might expect to see several different underlying 
network views and indeed (with the advent of CAFS, DAP and other novel 
machines) different types of processing capabilities. Thus the system provides two 
other basic mechanisms:

(а) implicit ‘loading’ and thence ‘unloading’ of capabilities. This is 
accomplished as mentioned earlier by giving scope to all loaded capabilities 
and selected objects. The system adopted was the simplest. That is a block- 
structured system such as is used to control variables in ALGOL 60. Most 
‘loading’ is implicit since the system objective was to provide the user 

with access to named objects and the underlying support procedures vary 
according to the hardware supporting any application. Clearly the support 
procedures required for mapping to an array processor are different from 
those required to support a conventional machine.

(б) re-use and sharing capabilities. Clearly the establishment (binding) of 
procedures to support each and every named object takes a great deal of 
processing time but once established many environments rarely alter (e.g. 
a cash dispenser terminal in a banking network). Hence the system supports 
the concept of multilevel sharing and re-use of environments. This allows 
the installation to produce (system generate) a set of prepackaged environ­
ments with selected capabilities; the previously mentioned LOGIN pro­
cedure then merely has to link to the appropriate member upon user entry 
to the network.

5.3.4 Object naming: The paper has so far merely established a general mech­
anism for naming objects within a network and providing a tailored environment 
for their subsequent processing. Clearly the user having been presented with a 
tailored processing environment now needs to access objects using purely local 
terms. He does not wish to understand other people’s naming system nor indeed to 
know all the names and naming structures in the universe. Thus the system provides 
a context mechanism. This can be viewed as the glue necessary for relating a purely 
local name to a fully qualified name within the network catalogue(s).

Thus a series of translation tables are provided allowing the user to gain coherent 
access to the naming systems within the network and thus to gain independence 
from any given processing node’s naming structure. In a world of ever increasing 
open system interconnection and thence rapidly expanding information bases it is 
imperative that the necessary mechanisms be provided for the user to have a single 
coherent naming system.

5.3.5 Object manipulation: We have now provided the mechanisms for users to 
select objects into a tailored personalised processing environment. What remains is
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to provide processing capabilities. The naming of an object is not the end of the 
matter; clearly one needs mechanisms for describing the ‘correct’ behaviour of any 
entity processing that object. Thus in order to identify the specific selection of a 
named object for a specific purpose a system of ‘currencies’ was introduced. A 
currency is a local pointer to a specific object selection. It thus acts as a ‘bookmark’ 
remembering where this user has accessed the catalogue. It further acts as a des­
cription of the permitted accesses (including other people’s right to concurrent 
access) afforded by a particular selection or series of selections. And lastly it gives 
the route to the ‘possibly implicitly’ loaded procedure capabilities that give the 
facilities for manipulation of the selected object.

link to network 
system description

link to o th e r  
network users

link to underly ing 
proceedure capabil it ies

Fig. 4

Thus as an example a user may select a real file and thence a file manager and 
thence a record. The combination of file, processing agent (i.e. access method), file 
position and processing buffer resulting in a record currency. In the case of a serial 
file therefore repeated usage of a record currency might always yield ‘the next 
record’ into the processing buffer.

Clearly the support of such currencies is undertaken by a whole series of procedures 
specifically designed to support a set of required processing capabilities. The set is 
infinite and the role changing as the hardware interface moves and as the definition of 
the object types and operations required to support networked information proces­
sing is developed.

5.3.6 Applications development: The model established so far has only dealt with 
naming, name translation into procedure capabilities and environment provision. 
In passing it has dealt with the demands generated as a result of wishing to exploit
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the capabilities of distributed systems and novel machines. It has as yet not sought 
to specifically satisfy the demands for synergetic man—machine interfaces and 
cost-effective applications development environments. The model has however 
identified the mechanisms for the provision of such processing environments and 
the underlying support necessary for the implicit ‘loading’ and ‘unloading’ of the 
supporting procedure based capabilities.

What additional capabilities are required to support these other demands? Basically 
the system design took the view that there was little to choose between the require­
ments necessary for basic system structuring and those required for application 
structuring. That is to develop applications as a set of modular capabilities, to allow 
for the flexible assemblage of such modules into services, to  provide the mechanisms 
to create and thence re-use packaged environments and to provide maximum trans­
parency of required capabilities to the end user. The list of requirements is the same 
as has been identified earlier. Thus the capabilities:

(a) to extend the catalogue — system description;
(Z>) to extend environment packaging — user entry;
(c) to extend the context mechanism — object naming:
(d) to extend the currency (procedure capabilities) mechanisms — object 

manipulation,

provide the basics for modular applications development. The capabilities are 
augmented by a System Control Language4 which reflects

(a) the block-structured scoping of objects;
(b) the procedure-based capabilities system;
(c) the need to provide a single language for all applications binding since we 

have not distinguished types of user as a basis for system design but rather 
as a packaging requirement;

(d) the need to combine application modules, system procedures into pro­
cessing services and hence provides good communication (e.g. variables) 
facilities;

Thus one can see that the control language is not an ‘add-on goody’ but rather a 
continuous extension of the basic system concepts.

6 Conclusion

The paper has attempted to identify the causes of monolithic and expensive oper­
ating system development and thence monolithic and expensive applications 
development. It has then identified what the VME/B design identified as the four 
main system concepts necessary for the support of both distributed and modular 
system developments. That is, system description, user entry, object naming and 
object manipulation. It has not discussed many things including concurrency, file­
store or hardware management. That is not to  say that these are not important, in 
fact, of course they are the essence of what one might term the operating system 
procedures contributions. The reader will, one hopes, see that the provision of such 
manipulation capabilities is secondary to the provision of a coherent naming and
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processing capabilities system and indeed that the implementation of such manipu­
lative functions will rapidly evolve as the economics of system construction change 
over the next decade.
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Birds, Bs and CRTs

I.D. MacArthur
ICL Communications System Segment, Northern Development Division 

Kidsgrove, Staffs

Abstract

Nowadays it is popular to criticise Visual Display Units (VDUs) as a 
possible hazard to their operators. ICL is well aware of the concern in this 
area and this paper presents the views of one VDU designer. Cathode Ray 
Tubes (CRTs) have been around for more than 70 years and have been 
used for data display since the earliest days of computers. It is the author’s 
considered belief that we shall be living with them for many years yet.

The purpose of this paper is to spell out some of the basic facts of VDU 
design which apply to all VDUs made by all manufacturers. In this way it is 
hoped to present in a compact form some of the facts which affect the 
appearance of the VDU screen. It must be stressed at the outset that there 
are very few absolute truths in the design of VDUs; most of the decisions 
are subjective and there are few standards to guide the engineer. The main 
sections of the paper deal with operators and their needs, VDU design, 
physical CRT parameters and safety and health.

The Bs are all around us: Business — Big Business — Brothers — Big 
Brothers -  Breadwinners -  Boredom — Backache. The Birds are of course 
our delightful operators.

1 The operator

The whole purpose of a VDU is to communicate something speedily to an operator. 
VDUs do this by displaying alpha-numeric characters and sometimes graphics on 
the face of a CRT or other device.

If the operator is totally absorbed in the task of debugging a program, designing a 
bridge or taking over a company then past experience suggests he or she is unlikely 
to complain about the VDU. However, as VDUs are applied to more and more 
mundane tasks with less job interest, a bored office person is likely to find fault 
with her environment and colleagues. I think it is the growing penetration of VDUs 
into office work that makes them currently a target for criticism.

As a VDU designer I feel obliged to attempt to deflect the operator’s wrath from 
the VDU and redirect it where it properly belongs — against the furniture, canteen 
facilities, air conditioning and management shortcomings in general. To this end it 
is a good idea to study the operator’s vital statistics and make sure that the VDU is 
designed to harmonise rather than conflict with her needs.
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This subject has been very well researched and a recent report1 is recommended to 
the reader who wants more detail. A good summary is also provided in another 
report2 which gives general recommendations while omitting much of the detailed 
background.

It must be stressed that even the best VDU in the world can be rendered unusable if 
badly installed, particularly in its siting relatively to windows and lights. The design 
of desks, chairs and office equipment generally is well covered in the above reports.

Whilst most of the operators’ requirements are well covered, a few points relating 
to the design of VDUs are worth considering.

1.1 Environmental needs

Apart from the visual factors already mentioned and the usual office environment 
considerations of temperature, humidity and ventilation, there are one or two points 
concerning VDUs and their operators.

(a) Noise: Although VDUs are nominally silent it is surprising how much noise a 
proficient typist can make on a ‘silent’ keyboard. Whereas this may be quite insig­
nificant in a computer room or in a ‘data prep’ area, it can cause annoyance in a 
very quiet office. It should be realised however that the quietness of a keyboard is 
related to its feel, and a very quiet keyboard may feel soft and lack a positive 
tactile response -  one of the many compromises in VDU design must be invoked 
here. The same applies to fans, which can range from the Kiplingesque to the 
miniature RB211.

(b) Cooling: Fans have been mentioned and are generally an unmitigated nuisance. 
A blast of hot air in the face from a neighbouring VDU will usually result in retalia­
tory action. The experienced operator can usually overcome this particular problem 
by sticking some paper over the air outlet with selotape: the reader is left to guess 
what that does to the internal temperature of the VDU.

All electronic equipment dissipates heat to some extent and the 100W or so from a 
typical VDU can normally be handled by convection. For comparison, a human 
body also dissipates about 100W.

It is clearly good design to run equipment as cool as possible and to this end adequate 
ventilation must be provided; but care should be taken to see that warm air is direc­
ted away from the operator.

2 VDU design

2.1 Character shapes and sizes

It is generally accepted that the optimum size of character for viewing subtends an 
angle of about 20 min of arc corresponding to a size of 3 mm when viewed from a 
typical distance of 600 mm (2 ft).

148 ICL TECHNICAL JOURNAL NOVEMBER 1980



Johann Gutenberg is reputed to have invented printing with moveable type about 
1448 and printers have been perfecting the technique ever since. It would therefore 
seem reasonable to assume that after more than 500 years development, printed 
characters have achieved acceptable proportions. A number of modem type fonts 
have been analysed (see Appendix A) yielding the quoted proportions, which I 
believe represent the optimum for viewing by today’s operators. Similarly various 
printed texts have been analysed to yield optimum line spacing (see Appendix B).

From these analyses it would appear that the CRT screen should accommodate a 
display width of about 240 mm and a height of 160 mm for 25 rows of 80 
characters.

These figures are in good agreement with what is achievable on a 15 in diagonal 
CRT. A 12 in CRT is obviously useable, but will need a closer viewing distance. 
Fig. 1 summarises the optimum dimensions.

UC width

descender
(d)

lower cose characters

Fig. 1 Optimum character parameters 

£ = 1 - 6 3 - ^  = 1 -4 9 ^  = 0-43 £ = 1 - 9 ^ = 0 - 1 3

2.2 Scanning o f  character generation

Let us now turn our attention to how such screenfuls of data are to be generated. 
Unless storage tubes are to be used it is necessary to refresh the display. This means 
scanning the same data repeatedly so that it appears as a steady flicker-free picture — 
more on this anon.

Fig. 2 shows a simple representation of a magnetically deflected CRT such as used 
in virtually all modern VDUs. Since a CRT generates only a single spot of light, 
characters are generated by deflecting this spot using magnetic fields. There are four 
well established techniques for doing this.
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The oldest, most versatile and unquestionably most expensive technique shown in 
Fig. 3a is the cursive drawing where the electron beam is deflected around the out­
line of each character. This technique is widely used in large graphical and radar 
displays. It is capable of very good results but is unlikely to be seen in a display 
costing less than £20,000.

e lectron  beam

Jiggle scan (Fig. 3b), where the beam is deflected very quickly to scan the character 
position combined with slower vertical and horizontal scans, is capable of providing 
a very good display at moderate cost. In the early days of VDUs this scanning 
technique was much used largely because it required a store access every 10 ps 
or so, which was easily obtained using delay-line techniques. Nowadays, the avail­
ability of faster semiconductor stores and the cost of the additional scanning 
circuitry have largely caused the jiggle scan technique to be superseded by raster 
scan displays.

All television (TV) sets use the raster scan (Fig. 3c) where the electron beam is 
deflected by two continuously running scanning circuits normally called the line 
and field scan circuits. The line circuit usually deflects the beam horizontally while 
the field deflects it vertically. I shall have a lot more to say about line and field 
frequencies, but for the moment it suffices to say that European TV uses a line 
frequency of 15625 Hz and a field frequency of 50 Hz.

A development of the raster scan is the step scan raster (Fig. 3d) where the vertical 
scan is not uniform but speeds up between rows. Since the amount of speed up can 
be adjusted, it is now possible to adjust the character height independently of 
overall height. Table 1 summarises the pros and cons of raster and step scans.
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Fig. 3 (a) Cursive scan
(&) Jiggle scan
(c) Raster scan
(d) Step scan

2.3 Character generation

Fundamentally a CRT screen is a matrix of possible display dots — something like 
% million of them and each one must be scanned at least 50 times per second, 
allowing less than 100 ns for each dot.

We therefore have a number of interrelated parameters to work with.

(a) CRT spot size and amount of defocussing
(b) Scan line spacing
(c) Number of dots in the character cell
(d) Number characters on the screen
(e) Line frequency
(f) Field frequency
(g) Acceptable character quality 
(ih) Acceptable cost.

(a) Spot size: If the spot size is too large then it will be difficult to read the charac­
ters — especially some lower case ones. If the spot size is too small the character 
will appear dotty and unpleasant to the eye. If the spot size varies much from one 
part of the screen to another, again the eye will notice this and be distracted.

ICL TECHNICAL JOURNAL NOVEMBER 1980 151



152 
IC

L T
E

C
H

N
IC

A
L

 JO
U

R
N

A
L

 N
O

V
E

M
B

E
R

 1980

Table 1 Raster scan pros and cons

Pro Con

Low cost — 50 years or so development of TV has 
eroded the costs of the components 
to rock bottom.

Timing - as the line scan frequency is increased this timing 
gets more difficult owing to the energy recovery 
circuits’ limited speed.

Low power — since the scans are repetitive and of 
constant amplitude it is normal to use 
energy-recovery drive circuits.

Coarseness “ the TV lines are fixed distance apart tending to 
produce dotty characters on the screen.

Compatible - provided line and field frequencies are 
equivalent a data display can also display 
TV pictures.

Fixed character 
height

since a finite number of lines must be 
allocated to  each row of characters and also to the 
inter-row gap, a compromise between spacing and 
character height must be made.

Transmission - well established waveforms for 
transmission by single coaxial cable.

Interlace - can be used but beware of flicker.

Step scan pros and cons

Pro Con

Adjustment - adjustment of character height allowing 
increased matrix size, e.g. 9 x 7 or greater.

Cannot

Incompatible

— display TV pictures or contiguous graphics, 

cannot be displayed on standard TV monitors.

Transmission - can be transmitted by coaxial cable just 
like conventional raster.

Cost - more expensive than raster scan adding perhaps 
5% to cost of scan circuits.

Better display - display quality is noticeably better than 
for raster scan.



CRT spots are not clear, round, sharp-edged circles as sometimes thought (see 
Fig. 4). The light output varies across the diameter of the spot in a nearly Gaussian 
fashion making the spot appear to have fuzzy edges. Further, the spot may not be 
circular but become pear shaped due to astigmatism in the electron optical system 
and defocussed due to the deflection.

Fig. 4 Typical CRT spot

(b) Scan line spacing: Here the choice is easier. If a TV raster is used then the spacing 
is determined by the number of lines and the overall height. If a step scan is used 
then the spacing is adjustable anyway: this highlights one of the CRT’s main ad­
vantages over the matrix panel, namely that the spot size can be larger than the 
matrix of the character generator, thus eliminating the dotty appearance associated 
with plasma panels and similar devices.

lower case  
with

descenders

upper
case

Inter - row 
gap

r 1

Fig. 5 5 x 7  character cell

(c) Number o f  dots per character: In order to cope with characters like A M G E, 
etc., it is normal to provide a character cell with an odd number of dots in each 
direction so as to retain the character symmetry. In general the more dots we use
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the better the quality of the character, but as I show below additional dots are 
expensive, especially in terms of bandwidth and light output.

lower c a s e  
with

d e s c e n d e r s

Inter -  row 
gap

r “ l
i
i

Fig. 6 7 x 9  character cell

Much the most common cell size is known as 5 x 7, meaning an upper case letter 
cell 5 dots wide and 7 dots high: see Fig. 5 . Another popular cell size is 7 x 9, shown 
in Fig. 6. To provide correctly proportioned characters as defined earlier it is 
necessary to provide four lines in the inter-row gap for a 5 x 7 and five lines for a 
7 x 9 ,  giving a total of 13 or 17 lines per row and leading to the need for a lot of 
lines per page.

The effect of number of lines on line and field frequencies is shown in Fig. 7: the 
basis of the derivation is given in Appendix C. This shows the limits imposed by 
flicker and acoustic noise.

The effect of line frequency on dot time and light output is shown in Figs. 8 and 9 
for 5 x 7 and 7 x 9  cells, respectively, and the derivation is given in Appendix D. It 
will be observed how the light output is reduced by increasing the matrix size and 
the corresponding line rate.

(d) Interlace: Interlace is a method of apparently increasing the number of lines per 
page. The technique is to produce two interleaved fields as shown in Fig. 10. Here 
for clarity I have reduced the number of lines per field to 5½.
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Fig. 7 Number of displayed lines as a function of line and field frequencies. See Appendix C 
for derivation.
'European mains frequency 
t  US mains frequency

Fig. 8  Showing reduction in dot time (increase in video bandwidth) caused by increasing 
matrix size and line rate to  give better resolution
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In European TV for example each field contains 312½ lines, giving a total of 625 
lines. Of course some of these are consumed by field flyback so that a typical TV 
picture actually contains about 525 viewable lines. This seems like good value until 
one realises that the use of interlace causes increased flicker, since the refresh rate 
is now effectively halved. This is of no consequence in TV applications but in VDUs, 
where the viewing distance may be only 500 mm or so, it is crucial. It is especially 
important to realise that each field could contain exactly the same number of half 
lines if severe flicker problems are to be avoided. My observations suggest that 
interlace flicker will be objectionable if the angle subtended by two adjacent TV 
lines is greater than about 30 seconds of arc.

Fig. 9 See Appendix D for derivation of Figs. 8 and 9. Note the decrease in light output for 
two typical VDU parameters at points A and B as discussed in the text

Some manufacturers overcome the flicker problem by using a long persistence 
phosphor, but this leads to other problems such as low brightness, short screen life 
and smearing with changing picture content.

3 Physical CRT parameters

3.1 Problems

It is a sad fact that although the CRT is the best available display device it is not 
perfect. It suffers from the following problems:

(a) It is an emitter of light and is thus prone to being ‘washed out’ by high 
levels of ambient illumination. The brightness can be turned up but only 
so far.
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Fig. 10 Interlace

(b) Since a CRT works by projecting a beam of electrons from an electron gun, 
a considerable depth is needed behind the screen (hence the current interest 
in flat panel displays): obviously, as shown in Fig. 11, the bigger the 
deflection angle the shorter the tube. The largest deflection angle currently 
in use is 110° and this is common for VDUs. However, large deflection 
angles bring their own drawbacks in the form of focussing problems and 
geometry.

Fig. 11 Tube angles

(c) CRTs being full of vacuum need very strong glass envelopes and to achieve 
this the manufacturers make the screen spherical rather than flat, for the 
same reason that bridge builders use arches. This produces a very robust 
tube but brings a few more problems in its wake.

3.2 Distortion

The problem the VDU designer faces is exactly the opposite of that of the cart-
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ographer — how do you represent a flat sheet of paper on the spherical surface of 
the CRT? He cannot, of course, so a compromise is needed. Terms like pincushion, 
barrel, keystone and trapezium are used (see Fig. 12) and all of them are present to 
some extent in every CRT display. In order to define a standard, we at ICL relate 
the display as seen to a rectangular display viewed from a distance of 600 mm 
normal to the centre of the screen. It is most important to realise that the picture 
can only be assessed when being viewed from the correct position.

pincush ion

keystone 

Fig. 12 Distortion

3.3 Stability

It is desirable that the display should appear completely static and flicker-free to 
the operator; and to achieve this the VDU designer has to steer a path through a 
minefield of problems.

Probably the most difficult problem is presented by the fact that a CRT will respond 
to magnetic fields. Permanent magnets are used to correct picture distortion for 
example, but alternating fields, especially at mains frequency, can cause problems.

Consider a VDU operating at 60 Hz refresh rate running on 50 Hz mains supply. 
Any stray field at 50 Hz (from a transformer for example) will cause a 10 Hz beat 
which shows up as an objectionable wobble. Such a field need only be about 1 /10th 
of the earth’s magnetic field. Three solutions are possible:

(а) screen the CRT with mumetal — pretty effective but very expensive. This 
method is used in precision displays,

(б) run the refresh at the local mains frequency (very commonly done in the
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USA where 60 Hz mains are used). However, it is not a suitable solution 
for SO Hz mains since 50 Hz will give rise to flicker problems. However 
many cheaper VDUs do use this method — for the time being!

(c) provide adequate shielding and orientation of the mains transformer.

Fig. 13 (a) Bare CRT
[b) CRT with 50% filter
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3.4 Contrast

The CRT creates its display by exciting a phosphor with its electron beam. The 
phosphor emits light which we see as the display. However most phosphors are 
whitish granular powders, when unexcited, and of course act as a reflector. As a 
result the difference between light emitted and light reflected can be quite small.

The apparent brightness of a surface is called its ‘luminance’ and is expressed in 
candelas per square metre (cd m“ 2) (or by the older units ‘foot-lamberts’).

If Ls is the luminance of the spot
and L b is the luminance of the background
then contrast ratio is defined as

As far as legibility of CRT displays is concerned it can be demonstrated that high 
contrast is more beneficial than high brightness.

The minimum recommended value for contrast ratio is usually 3.

Most VDUs nowadays use a contrast enhancement screen in front of the CRT (see 
Fig. 13). Even greater improvement is possible with filters whose spectral transfer 
function matches the spectral response of the phosphor, but these tend to be 
expensive.

Polarising filters are not much used with CRTs since very little of the light reflected 
from the phosphor is in fact polarised even after passing through the filter. This is 
because of the granular nature of the phosphor. Polarising filters are expensive and 
have shiny surfaces.

3.5 Reflections

The previous paragraphs considered light reflected from the phosphor which being 
granular gives largely Lambertian reflection. (A uniformly illuminated Lambertian 
surface appears equally bright from whatever angle it is viewed, see Fig. 14.)

/ / 1 1 / 1 / / 1 1 ) ) 1

lamberti'an specular

Fig. 14 Surface reflections
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A shiny surface exhibits specular reflection as in a mirror, where the majority of the 
light reflected is along a path which makes an angle to the normal of the surface 
equal to that of the incident light.

All real surfaces of course exhibit a combination of the different types of reflection 
and in addition they also absorb and/or transmit light. Untreated glass reflects 
about 3-4%  of the light incident upon it and absorbs or transmits the rest. Reflec­
tion from untreated glass is highly specular, which means that clear images of, for 
example, fluorescent lights or windows may be formed.

The shape of the surface has a very important effect on the nature of the reflected 
image. A flat surface will produce a ‘natural’ sized image as in a plane mirror whereas 
a convex surface will produce a smaller image but one which is visible over a wide 
angle. These effects are shown graphically in Fig. 15 and the derivation is in 
Appendix E. A typical VDU might have a spherical surface radius of about 0*65 m.

Fig. 15 Magnification and angle of view for 0*6 m viewing distance. See Appendix E for the 
derivation of these curves.

Subjectively the effect is that reflections, of say a fluourescent light, are smaller and 
hence less objectionable in a convex surface but being visible over a wide angle are 
very difficult to eliminate by moving the screen whereas the converse is true with a 
flat surface.

The choice of flat or convex is subject to much heated debate and each has its 
advocates. All that I can conclude is that there is no one best surface for all appli­
cations. The choice is also complicated by the availability of various antireflection 
treatments.
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3.6 Antireflection surfaces

There are basically four ways of tackling reflections and all have their good and bad 
points:

(a) Roughened surface;
(b) Angled screen;
(c) Dichroic coating;
(d) Mesh filters.

(a) Roughened surface: By roughening the surface, reflections can be diffused and 
made less objectionable. This treatment can be applied to glass (by etching in acid) 
and a panel thus treated, bonded onto the face of the CRT, is known as a ‘bonded 
faceplate’.

Fig. 16 Curved screen and hood

On plastic panels (flat or curved) a similar effect can be achieved with an applied 
coating.

This technique for tackling reflections is widely used but does have serious draw­
backs.

(i) The roughened surface not only diffuses reflected light, it also diffuses 
transmitted light (e.g. the characters on the CRT screen). This causes a loss 
of focus and severely limits the resolution.

(h) Bonded faceplates are expensive, mainly because of the difficult bonding 
operation.

(b) Angled screen: This is illustrated in Fig. 16. It will be seen that there is effective­
ly a hood over the screen and any reflections reaching the viewer from the curved 
screen will be of the matt lining of the hood.

162 ICL TECHNICAL JOURNAL NOVEMBER 1980



This technique has been used very effectively in viewing hoods for oscilloscopes, 
but would be very bulky when used with say a IS in CRT. This bulk would 1 think 
be unacceptable on a VDU in a general office.

(c) Dichroic coating: Probably the most effective treatment of all, and certainly the 
most expensive. This is the type of coating sometimes known as ‘blooming’ on 
camera lenses. It can only be applied to glass and being applied under vacuum is a 
capital intensive operation. The technique is used for aircraft instrumentation but is 
not economic for large areas such as CRT faceplates at present.

(d) Mesh filters: Placing a fine mesh in front of the CRT can be effective in reducing 
reflections. A mesh itself reflects light poorly since the individual wires tend to 
scatter the incident light and since it casts a shadow on the CRT screen it works 
well in enhancing the contrast. But although it can be very effective it suffers from 
a number of drawbacks and I know of only one manufacturer who has used it with 
a VDU.

The problems are:

(/) it collects dust and allows dust to percolate through and to adhere to the 
CRT screen, attracted by the high voltage. It is difficult to clean;

(//) being fragile it is liable to damage in use and when being cleaned;
(///) it restricts the angle of view.

3.7 Choice o f  phosphor

The phosphor is a material which emits light when excited by the electron beam 
and there are a number of useful ones around for use in CRTs. The parameters of 
most interest are as follows.
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(a) Colour: Most colours from red through yellow and green to blue and violet are 
available as are mixtures of colours, e.g. ‘white’.

Visually the reds and blue—violet colours are poor. They are necessary of course for 
multicolour displays (e.g., colour TV) but are not suitable on their own. This leaves 
the greens, yellows and whites.

Although many VDUs use white and this is generally the best for viewing at dis­
tances over a metre or so, there is a growing body of opinion which considers that 
white is tiring when viewed close to as in many VDU applications.

(b) Efficiencey (visual): The efficiency, expressed in lumens/watt, defines how 
much visible light is given out for a given excitation and since the VDU designer is 
seldom endowed with too much light this is a significant parameter. Fortunately 
the greens, yellow and whites are among the best.

(c) Persistence: The use of a long persistence phosphor is regarded by some as the 
obvious solution to the flicker problem. This is a fallacy. The light output from a 
phosphor does not cease instantly when the excitation is removed but decays, 
roughly exponentially.

A typical phosphor characteristic is shown in Fig. 19. It will be observed that the 
output drops quickly at the beginning and even a long persistence phosphor will 
produce a noticeable fluctuation if the refresh frequency is reduced much below 
50 Hz. The eye is very sensitive to small changes in light output.

As a result the use of a long persistence phosphor has much less effect on flicker 
than might have been supposed.
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In experiments conducted by ICL some years ago the use of a long persistence 
phosphor was found to be ineffective since the eye was sensitive to changes of as 
little as 6%.

A long persistence phosphor can be effective in minimising interlace flicker but 
introduces smearing and tails on a moving cursor and changing picture which can be 
annoying.

Fig. 19 Phosphor persistence

(d) Resistance to burning: Most phosphors eventually suffer a permanent loss of 
light output and this is hastened by operation at high level output. The long persist­
ence phosphors are worst in this respect. It is not uncommon for a brand new tube 
to show permanent burn marks after only a few seconds use. The problem is made 
worse because long persistence phosphors are less efficient than the short/medium 
ones and there is a temptation to run them harder to maintain picture brightness.

4 Safety and health

It can be stated that VDUs present no known health or safety hazard. Easily stated, 
but how do we justify the statement? This subject has been extensively documented, 
so I will only summarise the situation here.
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The possible safety hazards specifically appropriate to VDUs are as follows.

4.1 Implosion o f  the CRT

In principle it is possible for the CRT glass bowl to shatter either due to impact 
from some hard object or due to its own internal stress. The pressure difference due 
to the internal vacuum could then cause glass particles to be thrown about.

All modern TV sets and VDUs incorporate a protection device known as the tension 
band (or T-Band) designed to prevent glass flying. Such VDUs have a very good 
safety record.

Despite the very high level of safety built into all CRTs, many VDUs incorporate 
additional protection in the form of either a bonded faceplate or plastic screen 
in front of the tube. This also provides contrast enhancement and anti-reflection 
treatment.

4.2 Ionising radiation

CRTs are high voltage devices and can generate X-rays. However, the glass used in 
the CRT construction contains lead which absorbs these rays and in any case the 
voltage level is very low compared with that required to produce energetic X-rays 
such as used for X-ray photographs.

In practice the radiation level is well below the accepted safety level. In most cases 
it is comparable to the background cosmic radiation and all the health authorities 
agree there is no health hazard from the CRT.

4.3 High voltages

Whilst it is true that VDUs use high voltages (up to 20,000 V), and these figures are 
often used to impress, it is usually the case that the power supplies generating these 
voltages produce very little current and in consequence these high voltages are often 
less dangerous than the normal 240-V mains supply.

All VDUs supplied by ICL have to meet stringent international safety standards as 
does all data processing equipment.

4.4 Health hazards

These alleged hazards are currently attracting a lot of attention but medical opinion 
is that there is no known reason to think that VDUs constitute a hazard. Currently 
speculation is based on two VDU operators in the USA who contracted cataracts in 
the eye, but investigations have revealed no connection between these afflictions 
and the operation of VDUs.

Sources of possible hazard to health currently of interest include:

(a) visual effects e.g. flicker, contrast, colour, stability, focus etc., which are 
dealt with elsewhere in this paper

166 ICL TECHNICAL JOURNAL NOVEMBER 1980



(6) heat; every VDU dissipates a certain amount of heat and some concern 
has been expressed that this could cause dryness of the eyes. This view is 
refuted by medical opinion and in any case there are many more potent 
sources of heat: a single bar electric fire (1 kW) releases at least five times 
more heat than a typical VDU.

(c) Non-ionising radiation, e.g. infrared, ultraviolet, radio waves etc.

Certain regions of the electromagnetic spectrum are well researched and understood 
whilst others are not. The radio spectrum between say 3 x 104 m and 3 x 10_1 m is 
well understood and controlled and there are far more potent emitters than VDUs 
around. Between 3 x 10-1 m and 3 x l 0 _ 3 mi t  gets progressively more difficult to 
make detectors. Between 3 x 10-3 m and 3 x 10_6m it is currently almost impos­
sible to make detectors (other than thermopiles which are not very sensitive).

So we have little knowledge of radiation in these wavelengths. Wavelengths below 
3 x 10-6 bring us into the region of infrared and optical wavelengths which again 
are well understood.

Current speculation that VDUs can cause harmful radiation in these unmeasurable 
wavelengths can thus only be regarded as mischievous unless simultaneously directed 
with equal force at Hifi, central heating, TV and motor cars.

4.5 Psychological

The very real fears that many people have about their future employment are 
unlikely to be alleviated by the introduction to  their offices of new technologies, of 
which the VDU is probably the most visible and may consequently become the 
focus of their discontent.

I think that the best the VDU designer can do is to ensure his VDU is built to ac­
ceptable safety and health standards and produces as good a display as possible. He 
should also be sympathetic and patient in explaining the merits and short comings 
of his product.

5 Conclusion

A paper like this cannot conclude with a few neat recommendations. The subject 
is too broad and there are so many solutions that no single set of parameters can be 
regarded as the final answer.

Time and attitudes change. Had CRT operators in the late 1930s insisted on refresh 
rates above 50 Hz we would have had no radar. Nowadays people expect better 
conditions and demand higher standards and rightly so in my opinion.

The problems attributed to VDUs will, I think, diminish as generations of operators 
accept VDUs as part of their environment rather than ‘new technology’, provided 
VDU manufacturers maintain high standards. Appendix F concludes this paper 
with a few possible solutions to the problem of selecting character and line formats.
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The last word will however rest with the buyer of VDUs, who will undoubtedly 
compare the display quality of my offering with the best available and its cost with 
the cheapest.
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Appendix A

Analysis of various type fonts

Font Name
Character 
width (MO

UC
height (H)

Stroke (t) 
thickness

Descender LC
height (h)

t
H

H
W

d
h

H
h

Alt. Gothic No. 3 2*0 4-8 0*8 1*2 3*5 0*17 2*4 0*34 1*4
Eras Medium 4*5 5*7 0*8 2*0 4*2 0*14 1*3 0*48 1*4
Ero stile Extended 6*4 5-5 0*7 1*8 3*8 0*13 0*9 0*47 1*4
Filio Light 3*5 4-2 0*5 1-2 3*3 0*10 1*5 0*36 1*6
Futura Medium 3-3 5*0 0*7 1*3 3*0 0*14 1*5 0*43 1*7
Helvetica 4*0 5*5 0-8 1-4 3*7 0*15 1*4 0*38 1*5
Unvers 57 2-4 4-9 0*7 1*4 3*2 0*14 2*0 0*44 1*5
Adler Typewriter 1*2 2*3 0-2 0*7 1*6 0*09 1*9 0*44 1*4
Facit Golf Ball 1*3 2-4 1*3 0*8 1*6 0*13 1*8 0*50 1*5
Average 0*13 1*63 0*43 1*49

ICL VDU
Type 7561/1 (in terms of dots) (note 2) 0*17 1*5 0*5 1*5

Notes: (a) dimensions are measured between the centres of the strokes. See Fig. 1.
(b) because height and width are adjustable independently in a VDU the dimensions of the dots may not be the same in the vertical and 

horizontal directions.



Appendix B

Analysis of row spacing

Source of data Row space 
LC height (h )

Row space 
UC height (h)

Typewriter 2*7 1*9
Texas instruments calculator manual 2*1 1*8
Corgi paperback 3-0 1*9
Radio society o f  Great Britain manual 2*7 1*9
Signetics catalogue 2-7 2*0
Design engineering magazine 2*6 1*8
Average 2*6 1*9
ICL VDU type 7561/1 2-8 1-8
(in terms of dots)

See also notes a and b in Appendix A.

Appendix C

Effect of number of displayed lines on line and field frequencies 
(derivation of Fig. 7)
It is assumed that field flyback time is constant at 960 ms 

Let = line repetition frequency (f^ =y—= line period),

fp  = field repetition frequency (tp  = y -  = field period)

N  = number of lines available to display data excluding those during field flyback

n = number of lines during field flyback.
4 960

Hence f p  ----------  where n = ------
(N + n) tL

4  (kHz) 15 17*5 20 22-5 25

N
150 91-2 104*9 118-2 131-1 143-7
175 79*2 92-2 103-0 114-95 125-6
200 70*0 80-7 91-2 101-5 111-6
300 47*7 55-2 62-7 70-0 77-2
350 41-2 47-7 54-2 60-6 66-8
400 36*2 42-0 47-7 53-4 59-0

Appendix D

Effect of line frequency (fL ) on video bandwidth and line output
(shown graphically in Figs. 8 and 9)

Based upon the following assumptions which are typical of VDU applications
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80 characters per row.
7 or 9 dots per character (5 x 7 or 7 x 9 matrix including 2 dots intercharacter 
gap)
Line flyback blanking time 13 /us 
Field frequency 50 Hz 
Phosphor time constant TP = 10 /us.

Dot period tD
SL -  13 h -  13
--------- o r----------
80x7 80x9

ps

If we assume light output rises linearly with t which is reasonable \itD <Tp 

Bm *p _
2 2 •

then area X  = =

t f T n
If we assume light output decays as B= B e  p

then area Y= f  ,Ip  dr and MTP <TF area Y~*TP.
tn

Kt*
Total area under curve = X + Y  = - j -  + Tp

1B0 = Average light output = j  —  + Tp

If we normalise this so that

Bo = 1 when tD = 100 ns TF = 20 ms TP = 10 jus

this reduces to B0 = 1014 ̂  ignoring high order terms or more conveniently

B0 =—„where t,
10“

D is in ns.
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Whence we can calculate the following table of light output.

Line frequency, 7 dots/char 9 dots/char
4 *D Bo fD Bo

14 104 1-09 81 0-66
16 88 0-78 69 0-47
18 76 0-58 59 0-35
20 66 0-44 51 0-26
22 58 0-34 45 0-20
24 51 0-26 40 0-16
26 45 0-21 35 0-13
28 51 0-16 32 0-10
30 36 0-13 28 0-08

Appendix E

Reflection from CRT face

The nuisance value of a reflection from the CRT face depends upon the size of the 
image as well as its brightness. The magnifications calculated below compare the 
size of the image with the size it would have if viewed direct.

Obviously a reflection is only objectionable if it falls within an operator’s field of 
view and to minimise this the angular field of view calculated below should be 
minimised. A typical CRT has a radius of 0*65 m and it will be seen that a flat screen 
would be better provided it could be positioned to suit the operator. There is no 
consensus of opinion on whether a flat or a curved screen is better.

(a) Magnification

object

image magnification =
R»u

Hence assume a light say 
at u = 5 m from the screen 
and calculate magnification 
for different values of 
screen radius R.

R*u
R .3 u .2 u 2

R(m)
0-5
0-6
0- 7 
0-8
1-  0 
2
3
4
5

10

magnification
0-048
0-057
0-065
0-074
0-091
0-167
0-231
0-286
0-333
0-5
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angular field of view 9z2(£*2o<) where f j  z  tan-1 W 
d

(¾) Angle o f  view

Hence for a typical 15 in CRT 
viewed from 0*6 m 
d = 0*6 m 
w = 0*125 m

R 0°
0*5 81*5
0*6 71*6
0*7 64*7
0*8 59*5
0*9 55*5
1 52*3
2 37*9
5 29*3

10 26*4
Infinity

(flat) 23*54

Appendix F
Selecting character and line formats: possible solutions

1 2 3 4 5
Matrix 5 x 7 5 x 7 7 x 9 5 x 7 7 x 9
Descenders 2 2 2 2 2
Inter row 4 1 1 4 3
Lines/row 13 10 12 13 14

Scan raster step step raster raster
No of rows 24 24 24 22 24
No of lines in field flyback 19 15 19 25 14
Line freq. kHz 20 15*625 18*4 15*625 21
Field freq. Hz 60*4 61*3 60 50 60
Dot time, ns 59 84 53 86 49
Graphics possible no no possible possible

All the above combinations give possible acceptable pictures. They are by no means 
exhaustive and all assume 80 characters per row and standard 12 /as line flyback.

Comments:
1 Should give reasonable picture maybe a bit dotty but could be used with 

continuous graphics
2 Should give good picture but not compatible with graphics.
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3 Should give very good picture but not compatible with graphics.
4 Reasonable picture uses ‘standard’ UK line and field frequencies compatible 

with graphics and TV but probably not acceptable due to low field frequency 
causing flicker.

5 Should give good picture compatible with graphics but pushing the technology 
needing fast scan circuits and character generator. Character quality would not 
be as good as 3.
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Solution of elliptic partial differential 
equations on the ICL Distributed 

Array Processor

SJ.Webb
ICL DAP Marketing Unit, London 

Abstract

Thg ICL Distributed Array Processor (DAP) is a radical departure from 
conventional serial computer architecture which is capable of performing 
operations simultaneously on many different pieces of data. Conventional 
methods for solving partial differential equations are tailored for serial 
computers and do not exploit the parallelism of the DAP. The paper 
discusses some of the most important of these methods and shows how, by 
considering the problems with parallel processing in mind, powerful and 
efficient parallel algorithms can be devised.

1 Introduction

Partial differential equations can be used to describe a very great number of 
scientific and commercially relevant problems, from the evolution of the weather to 
the flow of oil in a subterranean reservoir. A discussion of these applications, 
ranging from purely scientific through engineering and defence to commerce, is be­
yond the scope of this paper but in general it can be said that the methods of solu­
tion have a great deal in common; and, in particular, they all demand vast amounts 
of computer time.

The Distributed Array Processor (DAP)1"3 is an array, in the versions now being 
built, of 64 x 64 identical processing elements (i.e., 4096 in total) each with its 
own store of 4096 bits. The DAP can perform the same operation simultaneously 
on many pieces of data and is thus a SIMD — single instruction, multiple data — 
computer. As we shall see, the methods used to solve partial differential equations 
on a computer require identical operations to be performed on large numbers of 
different pieces of data, which is precisely the task to which the DAP is ideally 
suited.

As is well known, all practical methods for the numerical integration of partial 
differential equations involve discretisation, that is, replacement of the differential 
coefficients by finite differences. This reduces the problem to that of solving a 
(usually large) set of linear algebraic equations; non-linear systems can almost 
always be made to depend on a linearised system. This algebraic system can then be
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solved either by a direct method or by an iterative method. The former will give the 
solution after a finite, pre-determined number of computational steps; the latter 
approaches the solution by successive approximations. Direct methods are described 
in Section 2; these are applicable to one-dimensional problems and also have wider 
applicability for inverting matrices generally. Iterative methods, which are almost 
always used for two or three dimensional problems, are described in Section 3.

The paper deals only with elliptic equations. These are of very great importance in 
physical and engineering applications as they describe all steady-state and diffusion- 
type phenomena. The equations of Laplace and Poisson are the standard forms.

2 Direct methods

2.1 General methods

We start by considering methods which apply to any set of linear algebraic 
equations, not necessarily arising from the discretisation of a partial differential 
equation.

The standard method is Gaussian elimination;4 it will produce an exact solution 
after a finite, predetermined number of steps. Consider for example the solution of 
the following set of four equations in four unknowns:

x  + 3y + Iz  + w = 32
x  + Ay + 9z + 2w = 44

2x + 8y + 19z + 3w = 87
3x + I3y + 33z + 4w =144 (1)

The method falls into two distinct parts, a forward elimination followed by a back 
substitution. In the first, the x  terms are eliminated from the second, third and fourth 
equations by subtracting multiples of the first; the new second equation is then 
used to eliminate the y  and z terms from the new third and fourth, and similarly for 
the z terms. This results in the equations taking the following triangular form:

x + 3y + 7z + w 
y  + 2z + w 

z -  w 
w

32
12
-1

4

The second part, the back substitution, gives explicitly the values of each of the 
unknowns. We do this by substituting the value of w into the third equation to give 
z, and so on fory  and x.

On a serial computer this is the most efficient method for solving a set of linear 
equations and takes of the order of n3 operations to solve n simultaneous equations. 
On a parallel computer such as the DAP the method is not, however, the most 
efficient.

Consider for example solving the above set (1) on a DAP. We may perform the first

176 ICL TECHNICAL JOURNAL NOVEMBER I960



elimination entirely in parallel because we can subtract the first equation from the 
second, third and fourth at the same time; but when we come to eliminate the y  
terms we only subtract the second equation from the third and fourth. Thus the 
degree of parallelism decreases as the forward elimination proceeds until in the last 
elimination we only have to subtract the penultimate equation from the last. More­
over we must then perform the back substitution which for the same reason as for 
the forward elimination is not at all suitable for a parallel computer.

Both these problems are overcome if we use a variation of Gaussian elimination 
known as the Gauss-Jordan method.4 On a serial computer this is not as efficient as 
Gaussian elimination, taking approximately twice the number of operations to pro­
duce the solution. But on a parallel computer with n x n  processors we can solve a 
set of n linear equations in a number of steps proportional to n by this method. The 
difference between the Gauss-Jordan method and Gaussian elimination appears 
when the degree o f parallelism begins to decrease in the forward elimination stage. 
The first step is the same in both methods and gives:

x  + 3y+  7z + w = 32 
y  + 2z + w = 12 

2y + 5z + w = 23 
4y + 12z+w  = 48

At the second step we eliminate not only below the second equation but above also, 
producing

x  + z -2 w  = -4  
y  + 2z + w = 12 

z -  w = -1 
4z -3w  = 0

We do the same when eliminating the z and w terms, getting finally

x = 1
7 =2

z = 3
w = 4

Notice that by seeking to maximise the parallelism at each step we have also 
removed the need to perform the back substitution.

Any set of equations

A T = Q  (2)

where the matrix A  is non-singular may be solved on the DAP by the Gauss-Jordan 
method. For the number of equations N  <  64 the solution is obtained exactly as 
described above. The DAP Fortran for the simplified method without pivoting— 
which means that the process will be numerically unstable for some ill-conditioned 
matrices A  — is given in Fig. 1. The variables LC, LR  are logical matrices, LV is a 
logical vector, A is a real matrix and B a real vector. N  is the number of equations.
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DO 10 I = 1, N 
LR = ROW(I)
LC = COLO)
LV = EL(I)

set row i in LR .TRUE, 
set column i in LC .TRUE, 
set element i in LV .TRUE.

S = 1/AO.I)
A(LR) = A*S divide pivotal row of A and rhs Q by pivotal element
Q(LV) = Q*S

A(.NOT.LR) = A -  MATC(A(LC))*MATR(A(LR)) 
10 Q(.NOT.LV) = Q -  A(LC)*B(LV)

select pivotal column and expand 
columnwise, multiply by pivotal 
row spread row-wise and subtract 
from A. Do likewise for Q which 
at the end contains the solution

Fig. 1 DAP Fortran program for Gauss-Jordan method

The functions ROW, COL, EL set the zth row, column or element of a logical 
matrix or (for EL) vector to .TRUE. The functions MATC and MATR create 
matrices of columns and rows, respectively, from a vector. The paper by Gostick3 
gives more details of DAP Fortran.

Pivoting, either partial or full, may be performed by choosing LR  and LC  by some 
other criterion such as the position of the largest element in a row. The operations 
are then identical to those shown above, although there are a few extra masking 
operations to mark and order the elements selected as pivots.

P.E, (1,1) 

P.E. (2,1)

P.E. (64,1)

P.E. (1,2) P.E. (1,64)

a1,1 a1,2 

a2,1 a2,2

a1,3 a1,4 

a2,3 a2,4

a1,127 a1,128 

a2,127 a2,128

a3,1 a3,2 

a4,1 a4,2

a127,1

a128,1

Fig. 2a Crinkled storage mode for 128 x 128 matrix

If the number of equations N  >  64, we can use standard matrix partitioning or a 
technique known as ‘crinkling’. Partitioning splits the problem into portions which 
will fit on to the DAP, whilst crinkling maps the larger problem on to the DAP by 
‘folding’ until it fits. For example, a 128 x 128 matrix may be mapped on to a 
64 x 64 DAP by storing more than one element per processing element, as in 
Fig. 2a. Partitioning is illustrated in Fig. 2b.
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P.E. (1,64)

P.E. (1,1)

P.E. (2,1)

P.E. (64,1)

Fig. 2b Partitioned storage mode for 128 x 128 matrix
The original matrix is regarded as partitioned into four 64 x 64 matrices and the elements 
stored in the P.E.s as shown

P.E.<1'2)

a1,1 a1,65 

a65,1 a65,65

a1,2 a1,66 

a65,2 a65.66

» • • a1,64 a1,128 

a65,64 a65,128

a2,1 a2,65 

a66,1 a66,65

a64,1 a64,65 

a128,1 a 128,65

2.2 Tridiagonal system

This is an important form which arises from the discretisation of Poisson’s Equation 
in one dimension and which plays an important role in some iterative methods to 
be discussed later. It is characterised by being very sparse — i.e. by having only a 
few nonzero elements in each row or column — and with the nonzero elements 
forming a regular pattern, only the leading diagonal and one element on either side 
of this in each row being nonzero. This is illustrated in Fig. 3.

Fig. 3 Tridiagonal system

For this set of equations the Gaussian algorithm takes a particularly simple form.s 
The first step is to eliminate all nonzero elements to the left of the leading diagonal 
and the second is to back-substitute to obtain the solution; no new nonzero 
elements are generated outside the diagonal so the matrix retains its sparsity pattern 
and no extra storage is required.

On a serial computer the method gives the solution for a set of n equations in 2n 
steps; on the DAP we can solve such a set in log2 n parallel steps, as follows. 
Consider the ith line

ai Tj— j + bj T/ + Cf T/+1 — Qi (3)
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We can rewrite this with Tt on the left side:

Tt = (Qi/bd ~ (.a jb ,) T, _ ! -  (ct/bi) Ti+, (4)

Substituting this and the corresponding equations for 7}_ t and 7/+i into eqn. 3 
and writing Q\ -  Qi/bj etc. we get

"«/«/-1 Ti - 2 - (■ 1 + a'i c'i-1 + c'i a/+ i ) T j -  c't c/+ j 7>+ 2

= (2; - a /G / - i - c /Q /+1 (5)

and have eliminated 7}_t and 7}+i. We now repeat this, substituting for 7} _ 2 and 
7 -̂+2 in terms of T(, 7f_ 4 and 7^+4 , and so on. After log2 n substitutions we have 
an explicit expression for each Tt.

c 1 0 0

a2 b 2 c2 0 

0 a3 *3 c3

0 0 a .  b .4 4 .

* 1 0 c 1 0 

0 0 c'2

a3 0 0

0 0 . 0 6 .  4 4

>

0 0 0

0 fc"
b 2 0 0

0 0 *3
0

0 0 0
n

b 4

Fig. 4 Cyclic reduction method for 4 x 4 tridiagonal system

For four equations the process is shown diagrammatically in Fig. 4. The two 
diagonals adjacent to the leading diagonal ‘skip out’ progressively towards the out­
side of the matrix, leaving eventually only the leading diagonal.. The DAP Fortran 
program for this cyclic reduction process* is easily derived from eqn. 5 and for a set 
of 64 equations is given in Fig. 5.

REAL A( ), B( ), C( ), T( ), Q( ) Declare non-zero terms of matrix A
as vectors A,B,C. Also declare solu­
tion T and rhs Q

K = 1
DO 10 I = 1,6
A = A/B normalise to the diagonal element
C = C/B 
Q = Q/B

B = 1 -  A*SHRP(C,K)-C#SHLP(A,K) 
Q = Q -  A*SHRP(Q,K) -  C*SHLP(Q,K) 
A = -  A*SHRP(A,K)
C = -  C*SHLP(C,K)

10 K = K + K 
T = Q/B

form the new terms A, B, C, Q as in 
eon. 5.
A*SHRP(C,K) = a,- Cj-.k, since the
function SHRP shifts the vector C k 
places right.

complete the solution

Fig. 5 DAP Fortran program for solution of tridiagonal set by cyclic reduction

*1 am indebted to Professor Dennis Parkinson, ICL and Queen Mary College, University of 
London, for this information.
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The program works equally well if A,B,C,T,Q are long vectors and we run the DO 
loop from 1 to 12; thus we can solve a set of 4096 equations.

2.3 Limitations o f  direct methods

These methods are less useful for problems in more than one dimension. This is 
because the sparsity pattern of the original matrix is not preserved in either the 
elimination or the back-substitution process, as it is in the one-dimensional case. 
Areas which consisted entirely of zeros become filled with nonzero elements and in 
the two-dimensional case, for example, the storage requirements are proportional to 
n2 as opposed to n for the one-dimensional case; and on a serial machine the execu­
tion time is proportional to n3 compared to n again. So, as stated in the Introduc­
tion, iterative methods are used for problems in two or more dimensions.

3 Iterative methods

3.1 Point Jacobi and Gauss-Seidel methods

Consider the problem of solving Poisson’s Equation in two dimensions:

b2T/bx2 + d2T/c)y2 =Q

with the values of T  given on a closed boundary in the x  -  y  plane. This could 
describe, for example, the steady-state temperature distribution in some conducting 
material, when the function Q (x,y) on the right side would describe the heat source 
or sink. Making the standard replacement of derivatives by finite differences and for 
convenience scaling the independent variables x,y  so that the spacings Ax, Ay are 
both unity, we have

7), j - 1  + Ti_ i j -  47/,/ + 7/ /+ 1 + 7/+1 / = Q ij  (7)

If we assume a 64 x 64 grid this gives a set of 4096 equations for the 7/,/. The 
simplest iterative method is the Point Jacobi which from a given approximate 
solution forms a new approximation 1 * by replacing each value by the 
mean of its’itaur nearest neighbours:

7<?;*> = 0-25 [ 7*,32 j + 7 ¾  + T , %  + Tf f l  j -  (2/,/] (8)

If one starts with an initial (guessed) solution 7’(0) and carries out the process 
successively this is analogous to allowing the initial solution to ‘diffuse’ to the 
correct solution.

Eqn.8  maybe performed at each point simultaneously and the DAP Fortran follows 
easily:

T= 0-25 * (T V  )  + 7-(-,) + 7 V )  + 7X+,) -  0  

The notation is explained in the paper by Gostick.3
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The mean of the four nearest neighbours to each point can be found with only two 
additions rather than three, by writing the process:

T = n , - )  + T(-,)
T  = 0-25* (T+T(+,+ )- Q)

However, whilst this method is the simplest it is also the slowest to converge. Con­
vergence can be improved by using the slightly more complex Gauss-Seidel scheme, 
which is a natural extension of Point Jacobi. In the latter we have to store all the 
values at both the old and the new iteration levels; if instead we overwrite the old 
value with the new immediately that has been calculated we halve the storage 
requirements and also improve the convergence, because at every step we are using 
more recent values. This algorithm is

T {f J 1> = 0-25 [ + + T+f+\ TiiPi,i~ QiJ

We cannot immediately construct DAP Fortran to compute all the values at the 
new iteration level simultaneously because at each point the new value depends 
upon two old and two new values. Consider however scanning through the mesh as 
in Fig. 6 , calculating each new value by the Gauss-Seidel algorithm.

i

1 2  3 4 5
2 3 4 5
3 4 5
4 5
5

Fig. 6 Step sequence for Gauss-Seidel process on DAP

The first step is to up-date the corner point (Step 1). This then allows us to up-date 
the next points in the i and j  directions, which can be done simultaneously in Step 
2. Then (Step 3) the next three points can be calculated simultaneously and at the 
same time the first point can be up-dated for the second time because this does not 
directly affect the points 3. Similarly at Step 4 the points 4 are up-dated and 
simultaneously points 2 for the second time, and so on. Thus as the first iteration 
sweeps across the mesh the second follows behind it and behind that the subse­
quent iterations.

This process is made possible because the difference scheme only couples a point to 
its nearest neighbours. Thus at some stage in the iteration we are up-dating one set 
of points, the black cells in Fig. 7, at say, odd numbered iterations and the white 
cells at even iterations. We therefore redefine the iterative scheme slightly to define 
one iteration level at the black points and another at the white, rather than have the 
mesh points at a number of different iteration levels. The two levels are defined first 
by calculating new values at the black points using the old values at the white and 
then using these new values at the black points to form new values at the white. In
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this scheme all the black points are at the same iteration level and all the white at 
an adjacent level. Note however that on our 64 x 64 mesh it will take 32 steps for 
information about the boundary to reach the centre and therefore at least this 
number for the process to converge.

Fig. 7 Two-level scheme for Gauss-Seidel process on DAP

The DAP Fortran for this algorithm is now easy to define:

BLACK = .NOT .WHITE
T (BLACK) = 0-25 * (T (-,) + T(,-) + T(+,) + T(,+) " Q)
T (WHITE) = 0-25 * (T (-,) + T(,-) + T(+,) + T(,+) -  Q)

As before a faster version is possible using only two additions in each line. All that 
is needed is to define the WHITE mask:

WHITE = ALTC(1).LEQ.ALTR(1)

which gives F T F . .
T F T . .
F T F . .

ALTC and ALTR are DAP Fortran functions which set alternate rows and columns, 
respectively, TRUE.

3.2 Successive overrelaxation

This is a variation of the Gauss-Seidel method which was first found empirically to 
improve the rate of convergence and was later proved analytically to do so.6 The 
essence of the method is to find the amount by which a Gauss-Seidel iteration 
would alter the value at a point and then to make a greater change; the aim is to try 
to push the solution closer to the correct solution than the Gauss-Seidel iteration 
would take it. The scheme is now

T’(p + i ) = j ip )  + a t  (1 0 )
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where A T  is the amount by which the Gauss-Seidel process would change the value 
and co is the overrelaxation parameter.

Since AT= Tq s ~ this is equivalent to

7<P+i) = (7 -  co) T<p) + coTGS (11)

It has been shown6 that this process will converge if co is less than 2. However, the 
number of iterations required for convergence does not vary smoothly with co but 
has a sharp minimum at an optimum value, in the neighbourhood of which it varies 
very quickly: Fig. 8  shows this behaviour qualitatively

Fig. 8 Variation of convergence rate with overrelaxation parameter

This is the only major drawback of what is a powerful iterative method. The 
Figure shows that it is better to overestimate <o than to underestimate. The usual 
method of finding co for any particular case is by trial and error; exact methods are 
available but these can be as costly in computation as the solution process itself.

The DAP Fortran follows easily from the Gauss-Seidel coding.

BLACK = .NOT. WHITE
T (BLACK) = (1 -  co)*T + 0.25*co *(T(-,) + T(,-) + T(+,) + T(,+) -Q)
T (WHITE) = (1 -  co)*T + 0-25*co *(T(-,) + T(,-) + T( +,) + T(,+) -Q)

3.3 Combined direct and iterative methods

Powerful methods can be constructed by suitably combining the direct and itera­
tive methods already described. If we consider a two-dimensional problem as a 
series of weakly-coupled one-dimensional problems we can use the tridiagonal 
method of para. 2 .2  to solve the latter and then introduce the coupling iteratively. 
For example, let us consider the columns (/) of the two-dimensional mesh as one­
dimensional meshes coupled by the rows (i). For a column /  the one-dimensional 
problem is formulated

jiP+1) _ 27<p +1> + 7<P!+1) = Qt
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which we can solve using the cyclic reduction method. If we now put in explicitly 
the coupling of these one-dimensional meshes the complete problem becomes, for 
the point (/,/)

( 12)

This is the Line Jacobi method-, as with the point methods we can define a black/ 
white ordering of the columns and so extend to Line Gauss-Seidel and to the 
more frequently used Line Successive Overrelaxation (LSOR) method.6 The code 
for LSOR follows readily from Eqn. 12 and that for the tridiagonal algorithm of 
para. 2.2. It is given in Appendix 1.

The difficulty with schemes of this class is that we must choose which mesh direc­
tion to treat implicitly and which explicitly. In some cases where solutions exhibit 
preferred directions and these coincide with a mesh direction the choice is simple: 
we solve implicitly in this direction. In this type of problem LSOR works particu­
larly well. In most cases however this is not so and convergence is retarded by the 
explicit coupling of the columns.

One way to resolve this new problem is to alternate the direction in which the 
mesh is solved implicitly; this is known as the Alternating Direction Implicit (ADI) 
method7 and is an extension of the Line Jacobi method. The algorithm can be 
written

ptp+Vi) -  2 + t (p +^) + 0 t (p +½)1 i + ■*; 7 ' i + u  e  1 i i

Here p is in iteration parameter. The method first solves implicitly in the /-direction, 
giving 7^ + ^ ) ,  and then in the /-direction using the TtP+Vl) which has just been 
found. Both the implicit solutions are found by using the method for the tridiagonal 
set given in para. 2.2. Whilst with a single iteration parameter p the convergence 
rate of ADI is similar to that of SOR, it can be accelerated considerably by using 
several parameters in cyclic order.

Once again the DAP Fortran code follows easily from eqn. 13 in conjunction with 
that for the tridiagonal set given in Fig. 5, para. 2.2. It is given in full in Appendix 
2.

(13<0

7<P+1) 7<P+1) + T 'fp + llj . n T’fp+ l)
1  / , / - 1  Z i , /  +  7 i , / + l  +  P  i ; /

=  Q  -  \ T t p  +½) -  0  T l P  +*4)+ T i P  +½ ) -  « T ( d  + 14)] (13/>)

ICL TECHNICAL JOURNAL NOVEMBER 1980 185



4. Some DAP timings

The ADI, LSOR and Point SOR methods as described in this paper have all been 
used to solve a Poisson problem on DAP with various mesh sizes? The execution 
times for these runs are given in Table 1.

Table 1. Times per iteration, seconds

Method 64 x6 4 Mesh size 256 x 256

SOR 000854 0-0532
LSOR 00589 0-231
ADI 0-0497 0-420

It is worth noting that during the tridiagonal part of the LSOR algorithm on the 
64 x 64 problem (that is, the DO loop to Label 15 in Appendix 1) the DAP is 
working at only 50% efficiency. This is because at any step through this loop only 
the results from the alternate lines are used. The efficiency cannot be increased for 
this size of mesh (unless processors are made to co-operate on some instructions) 
but a 64 x 128 problem could be solved with the same processing time. If we 
examine the processing time per mesh point for the cases of Table 1 we see the 
result of this effect, shown in Table 2.

Table 2. Times pei mesh point per iteration, microseconds

Method 64x6 4 Mesh size 256 x 256

SOR 2-1 0-81
LSOR 14-4 3-5
ADI 12-1 6-4

We see that, comparing the times per mesh point for LSOR on a 642 and a 2562 
problem, the solution for 16 times as many points is being obtained in only 4 times 
as long. A factor 2 arises because of the inefficiency of the black/white ordering of 
the lines and the other factor of 2 from the tridiagonal algorithm.

In order to solve for lines 256 long we first perform two steps substituting for 
alternate points to reduce to 128 and then to 64 points. We then solve for these 64 
points and back-substitute to obtain the solution at all 256 points in each line, 
having saved the coefficients needed to enable us to do so. These two steps keep all 
the processors busy all the time and are 100% efficient, whereas during the tridiago­
nal algorithm the efficiency decreases as zeros are shifted in from the edges. The 
forward elimination and back-substitution increase the ratio of efficient usage and 
this accounts for the extra factor of 2 in the move from a 642 to a 2562 problem.

5 Concluding discussion

It has been shown in this paper that a parallel processor such as DAP can be used to 
solve large finite difference problems effectively and efficiently. It has been shown 
also that the balance of cost per iteration in the case of the iterative methods is
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rather different from what it is on a serial machine. For instance, simple Point SOR 
appears rather more attractive on DAP than the more widely used LSOR. This is 
due to an inherent inefficiency within the tridiagonal algorithm implemented on 
DAP: whilst it is effective, it is only during the first step that all the processors are 
doing useful work and therefore it is inefficient.

It must however be pointed out that the example chosen to illustrate the solution 
by SOR and LSOR was a particularly simple isotropic problem. On a stiffer aniso­
tropic problem SOR could well have difficulty and might not converge at all, but 
LSOR could be expected to do particularly well. Also on such a problem ADI 
could well run into trouble.

An area which has not been touched on in this paper but which has become of 
considerable interest recently is the solving of linear equations by preconditioned 
conjugate gradient methods. The conjugate gradient algorithm is inherently parallel 
and has been coded in DAP Fortran .9 With a suitable choice of preconditioning 
matrix this could give a very powerful parallel algorithm which would avoid the 
basic problem of the overrelaxation methods, that of choosing the overrelaxation 
parameter. Experience with this method of attack on the problem will be reported 
in a subsequent paper in this Journal.

Appendix 1
DAP Fortran for line successive overrelaxation (LSOR) method

SUBROUTINE LSOR (A,B,D,E,G,T,Q,ITN, TOL, OMEGA) 
REAL A(,), B(,), D(,), E(,), G(,), T(,), Q(,), RHSQ, RESQ 
REAL AT(,), ET(,), GT(,)
LOGICAL BLACK(,)

5

BLACK = ALTC(l) set up mask BLACK with alternate
columns .TRUE.

ITN = 0
OMEGAM = 1.- OMEGA
RHS = 0 
AT = A
ET = E 
GT = G
TRACE 1 (OMEGA, TOL) trace variables OMEGA and TOL
RES = Q -  (A*T(-,) + B*T(,-)  + D*T(,+) + E*T(+,) + G*T)

RM = MAXV(ABS(RES))
RN = SQRT(SUM(RES**2)/4096 
TRACE 2 (ITN, RM, RN)

calculate current residual 
find maximum absolute residual 
calculate rms residual

IF(RN.LT.TOL.AND.RM.LT.TOL).OR.ITN.GT.100) GO TO 2

ITN = ITN + 1 
DO 15 IODD = 1,2

check RM,RN against convergence 
criteria
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RHS (BLACK) = Q -  D*T(,+) -  B*T(,-) form RHS on alternate columns
using solution from east and west 
neighbours

K = 1
begin tri-diagonal loop

10 A = A/G aiTi_i+giTi+eiTi+1 = rhsj
B=B/G as -* aj/gj etc.
RHS = RHS/G
RHS = RHS -  A*SHSP(RHS,K) -  E*SHNP(RHS,K)

rhsj -* rhs; - a irhsi_ il-e irhsi+k
G = 1. -  A*SHSP(E,K) -  E*SHNP(A,K) gj -► 1 -  k- eiai+k 
IF (K.EQ.32) GO TO 11 finish if this is the 6 th step 

"^ -a ja^k
ei-> -eiei+k

double k

complete solution

restore a,e,g

A = -  A*SHSP(A,K)
E = -  E*SHNP(E,K)
K = K*2 
GOTO 10 

11 RHS = RHS/G 
A = AT 
E = ET 
G = GT
T(BLACK) = OMEGAM*T +OMEGA*RHS overrelax solution on BLACK lines 

15 BLACK = .NOT.BLACK change BLACK to select other set
of lines

GO TO 5 
2 TOL= RM 

RETURN 
END

Appendix 2
DAP Fortran for alternating direction implicit (ADI) method*

SUBROUTINE ADI (A,B,D,E,G,T,Q,ITN,TOL,OMEGA)
REAL A(,),B(, ),D(,),E(,),G(,),T(,),Q(,)
REAL RESQ, RHOLIST( )
REAL EF(,),WF(,),NF(,))SF(,)
REAL AT(,),VT(,),ET(,),BT(.)>HT(,),DT(,)
EQUIVALENCE (AT,BT), (VT,HT), (ET,DT)
EQUIVALENCE (EF,NF), (WF,SF)

RHOLIST = 0 
RHOLIST(l) = 0-5248616 
RHOLIST(2) = 1-698467 
RHOLIST(3)= 7-883137 
RHOLIST(4) = 40-47514

set up Wachpress parameters

100
ITN = 0
DO 900 IRHO: 1,4

RHO = RHOLIST(IRHO)
*1 am indebted to David Hunt, ICL, for details of this program.

perform 4 iterations with different 
parameters, using parameters 
cyclically

188 ICL TECHNICAL JOURNAL NOVEMBER 1980



RES = Q -  A*T(-,) -  B*T(,-) -  D*T(,+) -E*T(+,) -G*T 
RM=MAXV (ABS(RES)) calculate maximum residual

first solve implicitly along rows
BT = B
DT = D calculate coefficients
HT = -  (B + D + RHO)

N = 1 tridiagonal loop
200 EF = -  BT/SHEC(HT,N)

WF = -DT/SHWC(HT,N)
RES = RES + EF*SHEP(RES,N) + WF*SHWP(RES,N)
HT = HT + EF*SHEP(DT,N) + WF*SHWP(BT,N)
IF(N.EQ.32) GO TO 210 
BT = EF*SHEP(BT,N)
DT = WF*SHWP(DT,N)
N = N + N 
GO TO 200

210 T = T + RES/HT update solution
RES = Q -  A*T(-,) -  B*T(,-) -  D*T(,+) -  E*T(+,) -  G*T 
RMT = MAXV(ABS(RES)) calculate new residual
IF(RMT.GT.RM) RM=RMT

now solve implicitly along columns
AT = A
ET = E calculate coefficients
VT = -  (A + E + RHO)
N = 1 tridiagonal loop

400 SF = -  AT/SHSC(VT,N)
NF = -  ET/SHNC(VT,N)
RES = RES + SF*SHSP(RES,N) + NF*SHNP(RES,N)
VT = VT + SF*SHSP(ET,N) + NF*SHNP(AT,N)
IF (N.EQ.32) GO TO 410 
AT = SF*SHSP(AT,N)
ET = NF*SHNP(ET,N)
GO TO 400

410 T = T + RES/VT update solution

900 ITN = ITN + 1 loop for next iteration
IF (RM.LT.TOL.OR.ITN.GE.lOO) RETURN exit if convergence

is achieved
GO TO 100 
END
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Data routing and transpositions 
in processor arrays

C.RJesshope
Department of Computer Science, University of Reading, Whiteknights Park, Reading RG62AX

Abstract

Processor arrays require the alignment of data with target processors. This 
creates overheads to some algorithms in the form of routing through some 
form of network connecting the processors. Routing is often associated 
with the transposition of sets of data in the processor array’s memory. This 
paper defines and evaluates the use of a fc-dimensional cyclic network and 
proceeds to establish timings for a general class of mapping on this network. 
Some multidimensional mappings on the two-dimensional DAP array are 
used to illustrate the results.

1 Introduction

1.1 Processor arrays

Processor arrays are a new breed of computer which make use of parallelism to 
increase machine performance. Processor arrays normally operate in lock step, with 
one instruction stream controlling a number of identical processors. Designs for 
processor arrays vary enormously. At one end of the range are machines such as the 
Burroughs BSP, 1 which has a small number (16) of relatively complex, floating 
point processors. This contrasts with machines such as ICL’s DAP,2 ’3 which has a 
large number (4096) of very simple processors. If they can be effectively utilised 
such large arrays of processors hold great promise for the future of computing. 
Obviously cost must limit the complexity of the individual processors if many are 
to be put together. However, with the rapid escalation of the so called ‘micropro­
cessor revolution’, designs like DAP with its bit serial processors may soon be 
superseded by similar sized arrays of 16 or even 32 bit microprocessors. Alternatively 
VLSI may make much larger DAP designs feasible, for example 16, 64 or even 
256K processor arrays. These large arrays have the potential for very rapid 
computation. However, to capitalise on this, there are two major problems which 
must be overcome.

1.2 Parallelism

The most obvious problem associated with large arrays of processors can be 
summed up by the word ‘parallelism’. It is essential in any algorithm to use as many
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processors as possible. The array processor is useless if only a few of the processors 
are effectively being used during a computation. Thus algorithms must be found 
which have enough parallelism to utilise the full array of processors. There is a 
growing body of literature (cf4 “ 6) which testify to the fact that most algorithms 
contain inherent parallelism (or if not, alternative algorithms can be found). However 
what most of these papers fail to consider is one of the fundamental problems 
associated with processor arrays, that of data organisation and its associated over­
heads in data routing.

1.3 Data routing

In a processor array the total memory available is generally partitioned between the 
processors so that each has its own slice of memory. Thus each processor will have 
access to data in its own memory plus data available from a neighbouring processor. 
These neighbours will be defined by some connectivity pattern or routing network. 
In the Burroughs BSP a full crossbar switch is implemented which connects every 
processor to every partition of memory, thus any processor can access any memory 
location in one pass through this switch. However the cost of such a switch increases 
as the product of inputs and outputs and becomes prohibitive for even modest 
arrays of processors. In the DAP the processors are connected in a two-dimensional 
grid pattern with cyclic connections possible at the boundaries of the grid.7 Thus 
routing can be considered as an operation which transfers data from one processor 
to its neighbour, or which corresponds to one pass through the switching network. 
Many such operations or passes may be required to forward data from its source to 
its destination. Thus data routing can be a large overhead to the parallel imple­
mentation of an algorithm. In fact it has been put forward that some algorithms 
will be limited by data routing.8 For example with N 3 processors N x N  matrix 
multiplication can be performed using one multiplication and log2iVadds.9 However 
2N  data-routing operations are required to perform this algorithm on a two-dimen­
sional mesh-connected array. Thus if the routing operation executes at the same 
rate as arithmetic, data routing would dominate the calculation. This situation is 
somewhat ameliorated on most processors as routing, being a simple operation, 
usually executes faster than arithmetic. For example on the DAP the ratio between 
execution rates of data routing and floating point arithmetic, r, is 30. However data 
routing can still generate a significant overhead on many algorithms. Furthermore 
the overhead is likely to increase with the size of the array of processors.

1.4 Data mappings

In more complex algorithms the overheads from data routing often occur in the 
mapping of one data structure to another. Data structures are varied dynamically to 
obtain the maximum amount of parallelism at each algorithmic step.10’11 The 
mappings usually take the form of transpositions of blocks of data about diagonals 
in processor-memory space. A simple example of this is shown in Fig. 1 for a four 
processor array. In Fig. la a 4 x 4 matrix is stored by rows. The processors there­
fore have parallel access to rows and sequential access to columns. At another stage 
in the computation, the algorithm may require parallel access to columns and 
sequential access to rows. In this case the data structure must be physically trans-

192 ICL TECHNICAL JOURNAL NOVEMBER 1980



posed as in Fig. 1 b. These mappings are encountered when partitioning a multi­
dimensional computational space onto the processor array. In this example a two- 
dimensional data array maps neatly onto a single dimensional processor array.

A ,., A 2 ,1 A  3,1 A A ,1

A 1 , 2 A  2 , 2 A 3,2 A a ,  2

A l ,3 A 2,3 A 3 ,  3 A 4 ,3

V A 2  , A A  3,  A V

T L
P
0

P
1

P
2 P3

A  1,1 A 1,2 A 1,3 A 1 ,A

A 2,1 A 2 ,2 A 2 ,3 A 2,A

A 3,l A 3 ,2 A 3,3 A 3 ,4

\ , i A A ,2 A A ,  3 \ a

_L
P

0
P

1 P2
P

3

a
processors

b

processors

Fig. 1 4x4 matrix stored in a four-processor array
a by rows 
b by columns

An alternative data structure can be used to avoid the dynamic mapping in certain 
circumstances. For example, if each processor can index independently any location 
within its own memory, then diagonals of the processor-memory space may also be 
accessed in parallel (e.g. Illiac IV12). Fig. 2 shows the skewed matrix storage scheme 
that allows parallel access to both rows and columns.13 However it must be noted 
that to align sequentially accessed rows or columns data must be routed between 
processors. To access row or column i the data must be routed /-1 processors to the 
left. If each processor is connected cyclically to its left and right neighbour, then to 
access all rows requires four routing operations. Similarly to access all columns 
requires four routing operations. Compare this with the routing required for the 
transposition in Fig. 1, where each circulant diagonal must be routed by the number 
of places shown in Fig. 3a. The sum of these distances is 4, so all rows and all 
columns can be accessed in parallel at the expense of only four routing operations 
in this case. If rows and columns of a data structure are accessed more than once 
then the advantages of dynamic data mapping become obvious. This situation 
occurs in complex algorithms which can be separated into independent operations 
on more than one dimension of a data structure. One such algorithm is the fast 
Fourier transform. 11

Like skewed data storage the transposition of a data structure requires parallel 
access to diagonals in processor-memory space. This in turn requires independent 
processor indexing. Where this facility is not available, as in the DAP, a further 
transformation14 must take place before and after the data routing. This trans­
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formation, illustrated in Fig. 3 in two stages, transforms circulant diagonals to rows 
and vice versa. The general algorithm is described in the Appendix; it requires 
N  log2 N  memory accesses for N  diagonals.

1 , 1 © 1 , 3 1 , 4

A A @ A
3 , 3 3 , 4 3 , 1 ©

© 2. ,  3 4 ,  4 4 , 1

processors

/ \  row 2

o column 2

Fig. 2 Skewed matrix storage of a 4x4 matrix in a four-processor array

a b c

Fig. 3 Example of the exchange algorithm to yield rows from cyclic diagonals, in a 4x4 matrix

2 Some properties of connectivity networks

In the example considered in Section 1 a simple network of connections was 
postulated, where each processor was connected only to its left and right neigh­
bours. In the DAP a two-dimensional network of connections has been used with 
cyclic connections in each dimension. In order to keep the results produced in this 
paper as general as possible, a ^-dimensional network of cyclic connections is 
assumed, where each processor has a ‘left’ and ‘right’ neighbour in each dimension.
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This network is defined more formally below. However this is not the only possible 
connection strategy15 which can be used; Stone16 and Grosch17 look at the pos­
sibilities of computing with the perfect shuffle network.

2.1 k-dimensional cyclic networks

The model used in this paper is of an array of P processors with SIMD organisation. 
Each processor has its own memory and in addition can communicate with other 
processors (or their memory) in the array by means of a connectivity network. The 
connectivity network has P nodes, one associated with each processing element 
with unique integer identifiers { i j , where {z} = j 0 z <  P - 1} and where P = Q k 
and Q = 2q . The connections in the network can then be defined as follows. Each 
node in the set jzjcan be connected to one of the nodes in the set j/j, where [/} 
= |  (f ± Q®-1) modulo Q 1 <£<k}.It follows from the SIMD organisation that each 
node in the setjzj must make corresponding connections in the setj/}.

Some properties of this network are now considered; some of these properties were 
derived by Jesshope. 18

2.1.1 Property 1: If Dk is the maximum number of routing operations required to 
pass data between any two nodes in the network then

This property may be used as a measure of the amount of routing required for 
problems which involve long range communication; data transpositions in processor- 
memory space belong to this class of problem. It is one measure of the effectiveness 
of a given configuration of P nodes. The ideal, that found in scalar computers, is 
for Dk to have the value of 1.

2.1.2 Property 2: If Fk is the number of routing operations required to pass one 
item of data from one node to all others in the network then

This property may be used as a measure of the amount of routing required for 
problems involving fan-out and fan-in. Examples are broadcasting and in any 
problem which involves the summation of data arrays mapped over the processor 
array. Again the ideal for Fk is a value of 1. It should also be pointed out that some 
processor arrays have additional facilities for broadcasting data; however this 
measure is still a valid one for fan-in problems.

2.1.3 Property 3: If Sk is the sum of all routing operations required to pass/* 
items of data from one node, one to each node in the network, then

Dk = k  Ql 2 (1)

Fk = k ( Q - l ) (2)

Sk = k  Qk+l/4 (3)
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This property is more concerned with data transposition. In fact it is a measure of 
the amount of routing required to transpose a P x  P  array in processor-memory 
space. The example in Section 1 illustrates this (see Fig. 3a). The next property 
considered is also concerned with data transposition, it is an extension of property 
3 and gives a measure of the routing required to transpose rectangular sets of data.

2.1.4 Property 4: If Sk (B) is the sum of all routing operations required to pass 
P/B items of data from one node /, to all other nodes /  where ( /- /)  is divisible by B 
(B is a power of 2 ), then

Sk (B) = (Jc- [\ogQ B]F* ) & +'l4B

2.2 Cost and effectiveness

One simple measure of cost which can be applied to switching networks of this type 
is the number of possible connections which can be established. For example in the 
cross-bar switch which connects every input to every output, the cost is pro­
portional to the products of inputs and outputs (i.e.,/*2 for P inputs and outputs). 
This configuration is thus only economic for small arrays of processors, the BSP 
with 16 processors being a good example.

For the -dimensional cyclic network the cost is proportional to 2kP, the number 
of possible connections, with a limit of P  log2 P for the network which forms a 
binary hypercube. 19 One- and three-dimensional connection patterns are illustrated 
in Fig. 4 for an eight-processor array. The crossbar switch would of course have 
switches everywhere in the matrix.
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Fig. 4 Connectivity matrices for an eight-processor array
a one-dimensional cyclic b three-dimensional cyclic

Table 1 lists some of the measures defined above for different configurations of a 
4096 processor array. The cost function used gives the number of connections per

* [ ] p  and [ ] £, denote the integer floor and ceiling functions, respectively.
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node. It can be seen that all measures are minimised for k  = log2 P, where all long 
range routing becomes a log2 P  process. However, for a large array of this type the 
most cost-effective configuration is given for k  = 2 , as this gives the greatest im­
provement in the networks effectiveness for a given incremental cost. An order of 
magnitude change is made going from 1 to 2 dimensions, while the benefits diminish 
going to higher dimensions.

Table 1 Configuration and properties of a 4096 processor array

k Cost* Q Dk Pk Sk

i 2 4096 2048 4095 4-19xl06
2 4 64 46 126 l-31xl05
3 6 16 24 45 4-91xl04
4 8 8 16 28 3-27xl04
6 12 4 12 18 2-46xl04

12 12t 2 12 12 2-46xl04

♦Connections per node
t  For Q=2, (i+Q°~ *) modulo Q* = ') modulo £?*

3 Data transpositions

The routing requirements for the transposition of data in processor-memory space 
are now examined. A generalised mapping is defined and the properties given in the 
previous section are used to derive timings for this mapping.

3.1 The general mapping

The general mapping is defined as a transposition of a rectangular subset of array 
memory, consisting of L  processors by L/B  store locations. Obviously if L divides P 
then P/L such transpositions may be performed simultaneously for the same cost. 
Also, as the set to be transposed is rectangular, the elements or blocks of memory 
which are actually transposed must also be rectangular and in the same ratio. Thus 
diagonals consisting of blocks of B processors by one store location are transposed 
about the major diagonal, which consists of L/B  such blocks (see Fig. 5a). It is 
assumed that B and L are powers of 2.

To perform the transposition, diagonals of the structure must be accessed by the 
processors, routed by the appropriate distance and restored. Fig. 5 gives routing 
distances over the linear set for each diagonal. However to access diagonals of 
processor memory requires an independent processor indexing facility (in a SIMD 
organisation each processor receives the same address). If this facility is not avail­
able on a particular architecture, then the algorithm described in Section 1 and 
defined in the Appendix must be used. This algorithm will map L/B  circulant 
diagonals onto L/B  store rows and to perform this it will require L/B  log2 L/B  
exchanges in memory. Once this has been performed the data routing can be 
performed in parallel and the transposed structure can be recreated using the 
converse of the exchange algorithm.
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Three special cases of the transposition algorithm are considered below. Each gives 
different results depending on the number of dimensions in the network that L  and 
B  span. The routing operations in each case are given by the function Rk (L, B ) for 
the k-dimensional network.
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Fig. 5 Transposition of data in a processor array with shift distances indicated for each 
diagonal 
a Case 1 and 2 
b Case 3

3.1.1 Case 1 (see Fig. 5a): In this the simplest of the cases it is assumed that L 
completely spans a subspace of the network of k -m  dimensions.

i.e.Z, = Qk~ m where 0 < m  < k  (4)

As each of the diagonals must be routed by multiples of B processors and as all 
possible multiples in a network of k - m  dimensions are used then the number of 
routing operations are given by property 4 for a network of k - m  dimensions.

i.e. Rk (L, B) = (k -  m -  [\ogQ B]F) Qk ~ m +1/4B

Rearranging this and substituting from eqn. 4 gives

R k (L ,B)=[l °gQ L/B]c ~  (5)

3.1.2 Case 2 (see Fig. 5a): In this case L  does not span a complete subspace in the
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network and B and L , the first block and the whole set, are both in the same 
dimension of the network.

i.e. Qk~ m ~ 1 < L  <  Qfc~ m/2, 0 < m < k
(6)

and B > Q k~ m ~ x

In this case the routing can be considered as if in a one-dimensional network, as 
all routing operations will be by multiples Qk~ m ~ l. Thus

It should be noted that the factor 2 in the sum arises from the fact that in the 
absence of cyclic connections at the set boundary, the upper and lower diagonals 
must be routed independently in the opposite directions. Thus on average only one 
half of the processors are active for the shifting operations. It is thus possible to 
make optimisations in some cases. For example in Fig. 6a (Q = 8 , L  = 4, B  = 1, 
k  = 1, m = 0) it can be seen that the -  3 route can be performed using the combina­
tion of the 3 and 2 routes. Also in Fig. 6b (Q = 16,Z, = B,B = 1, k  = 1, m = 0) the 
- 7 , - 6  and -  5 routes can be saved using combinations of the 3 , 4 , 5 and 7 routes.

3.1.3 Case 3 (see Fig. 5b): This last case can be considered as a combination of the 
above two cases. Here the set lies between two dimensions in the network but the 
first block does not.

B < Q k ~ m ~ 1

In order to make full use of the cyclic connections modulo Qk ~ m ~ l, the trans­
position can be considered as the product of two mappings.

K Q k  -  m  - 1 /=1

which gives

(7)

i.e. Qk ~ m~ 1< L < Q k ~ m/2 0  < m < k
(8)

which gives
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Again it may be possible to make some optimisations to the second term in the 
above expression, as described above for case 2 .

3 2 1 0 3 2

2 1 0 -1 2

1 0 -1 -2

0 -1 -2 3(2) (2 ) 3

processors

b

Fig. 6 Examples of optimisations made in case 2 
a Q=8 L=A B=1 Ar=1

-3  route performed using a combination of 3 and 2 routes 
b  Q=16 L=8 fl=1 Ar=1

-7 , - 6  and - 5  routes performed using combinations of 3 , 4 , 5  and 7 routes

4 Applications

To understand the importance of the results derived above, it is necessary to under­
stand when these transpositions are likely to occur and how they affect the compu­
tation in which they occur. The most important point is how much overhead data 
manipulation adds to a given algorithm and how this may be minimised.

Remember that from Section 2 the measures Dk and Fk gave an indication of the 
effectiveness of a network. In the ideal case these measures would both be equal to
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one and then for any parallel operation operands could be fetched from the memory 
in one step with no overhead associated with the alignment of the correct data. 
However for the class of networks considered here both Dk and Fk are greater than 
one and unless processors only access data in their own partitions of memory, data 
alignment will generate an overhead to the computation. This overhead will take 
the form of routing operations through the connectivity network. Truly indepen­
dent computations on parallel data can be found in some data processing applica­
tions: for example in a payroll calculation employee / f ’s hours, rate and salary are 
independent of employee B's. This is an ideal computation for processor arrays, 
provided there are sufficient employees to share out between the processing 
elements. However this situation does not occur often in applications in the physical 
sciences, although many mesh problems can be made independent by the factorisa­
tion of a problem or algorithm. For example relaxation is a factorisation applied to 
matrix inversion over a set of mesh-defined values. This factorisation reduces long 
range dependencies to an iteration over short range dependencies. Other mesh- 
related techniques require the factorisation of an algorithm over the component 
dimensions of a mesh. For example on certain problems a Fourier analysis in one 
dimension of a mesh will decouple the problem giving independent problems in the 
others.20

4.1 Factorisation and parallelism

Algorithms which can be factored often give a choice of implementation, as many 
have sequential and parallel counterparts. However it is often the case that a parallel 
implementation of an algorithm loses some efficiency in the process of obtaining 
parallelism. This may mean an additive factor, a multiplicative factor or even an 
order of magnitude change in the complexity of the algorithm. A good example is 
the tridiagonal solver; a sequential algorithm requires 0(N ) operations for an order 
N  system but the parallel implementation of the same algorithm requires 
0 (N  log2 N ) operations. However because N  operations may be performed in 
parallel the algorithm requires only 0(log2 N) steps and gives a speedup over the 
sequential algorithm. Now if the problem can be factored and N  such system must 
be solved it is obvious that most benefits will be obtained from applying the se­
quential algorithm using the parallelism available over the N  independent systems to 
be solved.

In some situations the factorisation is symmetrical and the same algorithm must be 
performed in each of the dimensions of the factorisation. In this case at different 
stages in the algorithm the access changes from parallel to sequential and vice versa. 
this implies a transposition in processor-memory space. A good example of this is 
the fast Fourier transform, where even a one-dimensional transform may be factored 
down to the prime components in its length.11 However the most common factor­
isation is over a mesh of defined values,10 where for example one-dimensional 
transforms are performed in each dimension in turn. Although the parallel imple­
mentation of the fast Fourier transform is only marginally less efficient than the 
sequential implementation, it is still more efficient to  perform independent trans­
forms on each dimension in turn, transposing the data in processor-memory space.11 
The reason for this is that the parallel implementation also contains long range 
routing.
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4.2 Multi-dimensional mappings

To illustrate the overheads associated with data routing in the situations described 
above, two examples will be considered, which show how the size of the mesh and 
the extent of parallelism alter the mapping and overheads.

4.2.1 Example 1: Consider first the ideal situation, where a 643 mesh is to be 
mapped onto the 642 DAP processor array. Obviously two dimensions map exactly 
onto the parallelism available, leaving the third dimension as a sequentially indexable 
set. To transpose dimensions in this structure the routing requirements are given by 
Case 1 in Section 3 with L = Q = 64 and B = 1. This gives an operation count 
proportional to the square of one dimension of mesh array:

* * (G ,1 ) = G2/4= 1024

In comparison, the arithmetic operation count for the fast Fourier transform is 
proportional to Q log2 Q for one dimension in the mesh:

A ( Q ) = i Q l o g 2 Q = 960

Thus the number of routing operations dominates the overall operation count. 
However on the DAP the relative execution rate between routing the floating 
point arithmetic, r, is 30 and therefore the overhead generated by the transpositions 
is not too significant. This situation may easily be reversed if the balance between 
arithmetic and routing changes. On the DAP this does not require a major hardware 
change, as the following examples illustrate.

(i) Using low-precision fixed-point representation of data, e.g. picture-pro­
cessing pattern recognition (r = 2 ).

(ii) Using number theoretic algorithms and integer arithmetic, e.g. number 
theoretic transforms21 where 32-bit integer addition and shifting replace 
floating point arithmetic (r= 3).

(iii) Using block floating point representation, where one exponent is used to 
scale all mantissas within a block of floating point numbers (r = 15).

Data structures do not always map neatly onto the array size and when this occurs 
the interleaving of other dimensions over the processor array creates a greater 
variety of more complex mappings.

4.2.2.Example 2: Consider now the mapping of a 323 mesh over the same 642 DAP 
processor array. The easiest and least efficient approach is to map two of the three 
dimensions over the processor array using only 25% of the processing power. Other 
mappings interleave the third dimension across the processor array. For example 
two symmetrical mappings which interleave the third dimension equally between 
the other two are shown in Fig. 7. The so-called low-order interleaving is often best 
for mesh problems as it maintains local routing between adjacent data in all three 
coordinate directions. What then are the relative costs for symmetrically transposing 
these two structures?
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Fig. 7 Symmetrical mappings of a part of a 323 
a High-order interleaving of Z  in X  and 
b Low-order interleaving of Z  in X  and

processors

b

2mesh over the 64 processor array
Y
Y

*0 Z2 0 3 1 2
1 3 \

2 2 2 3 3 2 3 3
• • • •

X o tsl o 0 1 1 0 1 1
\

2 0 2 1 3 0 3 1

\ 7

V o 2 1 3 0 3 1 2 2 2 3 3 2 3 3

V o 0 1 1 0 1 1 0 2 0 3 1 2 1 3

\ 7

X2 Z0 3 0 2 1 3 1 2 2 3 2 2 3 3 3

V o 1 0 0 1 1 1 0 2 1 2 0 3 1 3

processors

Fig. 8 Exchange pattern required to transpose X  and Z  in processor-processor space, for low- 
order interleaving
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Consider the X Z  case. Because data in the Z  coordinate is interleaved across the 
processor array some rearrangement is required before a transposition can be made 
in processor-memory space. This rearrangement transposes the Z  and X  coordinates 
in processor-processor space as shown in Fig. 8 . The same exchange pattern is 
performed over all of the array for each level in the indexable set. Having done this 
the transposition is completed using Case 1 from Section 3 with L = Q = 64 and 
B = 8 . The total number of routing operations is given by

- § ( 1 0  + § )  = 208

For the high-order interleaving the exchange pattern in processor-processor space 
is given in Fig. 9. It can be seen that here the routing required is long range. In 
addition the transposition in processor-memory space uses the less efficient Case 2 
from section 3 with L = Q/2 = 32 and B = 4.

Thus the total number of routing operations required for this case is given by 

- § ( 2 + ! ) + § ( § -  1) = 744 

which is four times slower than the alternative.

Fig. 9 Exchange pattern required to transpose X  and Z in processor-processor space, for 
high-order interleaving
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5 Conclusions

Processor arrays have the capacity for virtually limitless processing power, only if 
they can be used efficiently and without too many overheads. This paper has 
investigated one of these overheads, that of data routing, as applied to the 
transposition of data sets in processor-memory space.

These transpositions are used in many algorithms and the routing required can 
often dominate the operation count. For example, consider any algorithm which is 
factored between memory and processors. The algorithm is likely to have complexity 
of 0(N ),e.g. tridiagonal solver,or 0 (N  log2 A/),e.g. fast Fourier transform. However 
the data routing for the transposition of data is 0 (N  Dfc), where Dk is given in 
Property 1 and lies between 0(P) and 0(log P) depending on the connectivity 
structure used. In practice however and actual overhead to calculation will depend 
on the relative execution rate between routing and arithmetic, r.

Therefore a measure M  can be defined as the ratio of the average routing distance 
per operation and the ratio r. This will give a feeling for the overhead to be 
expected in algorithms which require communication other than nearest neighbour. 
If it is assumed that the routing distances are evenly distributed between 1 and Dk , 
the maximum routing distance in a given network, then

M = Vi{Dk + \)tr

For a well balanced processor array this measure M  should be near unity.

Consider the DAP and BSP, the two contrasting processor array designs mentioned 
in the Introduction. For floating point arithmetic the measure for the DAP is given 
by

MDAp = K(k (2/2)/30 *  1

On the BSP all operands require only one pass through the crossbar switching 
networks so that Dk = 1. However for triadic operations on the BSP r = 1 , so

^ bsp = 1

Although both machines are well balanced in the above situation consider the effects 
of scaling up these two processor arrays. The crossbar switch on the BSP is not 
suitable for scaling, as the cost of such a switch will soon become prohibitive. Any 
other switching network would not give Dk = 1. On the DAP the situation is 
different, the array size can be increased easily, butZ>fc increases as the square root 
of the number of processors if a two-dimensional geometry is maintained. Routing 
will therefore become more important on such arrays.

Appendix

An algorithm is given for rearranging sets of data so that cyclic diagonals become 
rows and vice versa. This technique is required when rotating sets of data, to obtain
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parallelism in the routing steps, if the processors do not have individual indexing 
facilities.

For a set of L processors by L/B  store rows, with diagonal blocks of B processors 
by one store row the algorithms are as follows:

For/=1,2 ,. . . ,  log2 L/B do 
disable even groups of L/2> processors 

For /=1,2 , . . . ,  L/B do

move row (/) to row (/ ±-----) modulo LjB
End B2!

End
The minus sign creates rows and the plus sign recreates diagonals. Fig. 3 gives a 
simple example on a 4 x 4 set.
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A Bayesian approach 
to test modelling*

M.Small and C.W.Bartlett
ICL Product Development Group, Northern Development Division, West Gorton, Manchester

Abstract

The problems of designing test systems for medium to large machines at 
the same time as their development are described. It is shown that there is 
a consequent need to model the performance of handwritten tests, possibly 
before they are written and before the hardware design is complete. Use of a 
Bayesian model is proposed. Definitions, in a Bayesian context, are offered 
for: test context; test characteristics; test performance; coverage; 
resolution; and accuracy. The construction of a Bayesian model is des­
cribed and the experimental verification of its correctness discussed. The 
paper ends with a description of the utility of the technique during the 
development of test systems for a small system and for a processor of 
about 6000 dilics. An indication is given of the utility of the results of a 
model in the design of field maintenance strategies.

1 Introduction

The exigencies of the development of medium to large processors present severe 
constraints on the provision of their testing systems. Commercial pressures force a 
condensed time scale for the design and development phase. In this short time scale 
there is often not adequate time to provision a generated (i.e. derived from the 
detailed logic design by algorithmic methods) test system before production starts 
or even before first customer delivery. It therefore becomes necessary to consider 
the provision o f handwritten tests to cover early production and customer use 
until such time as sufficient product stability exists for the supply of generated 
tests to be practical.

However, at the time at which the design o f a hand-written test system must 
commence there is only scant information, regarding the hardware design available. 
A means is therefore required of integrating the development of the hardware and 
test systems in order to minimise the risks of ending up with an inadequate means 
of diagnosing failures.

Further problems arise from the scale of the effort required for handwritten tests. 
Depending on the ratio of ‘random’ to Tegular’ logic, between 10 and 50 bytes of 
test code are required for each dilic. For a medium sized processor of c.6000 dilics,

*This paper was presented at the Second International Conference on Reliability and Maintain­
ability, September 8-12, 1980/Perros Guirec, France. It is reprinted here with the permission 
of the conference chairman.
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writing of some 200 kbytes is indicated. With this scale of effort it will be advan­
tageous if it is possible to investigate the applicability of tests previously provisioned 
for similar designs.

It thus becomes clear that a means of modelling the performance of test systems is 
required. A model using Bayesian statistics is preferred for a number of reasons.

(a) Experimental verification is possible without a need to choose sets of 
faults according to a presumed distribution of actual faults.

(b) The inferences drawn from a particular test result are clearly a function of 
one’s prior knowledge of the state of the system. For example a test, run 
at random, giving a pass result would be believed. The same test, giving the 
same result, would not be believed if the device under test was emitting 
smoke.

(c) As evidence emerges from the field about actual fault distributions, the 
recommended actions on each test result can easily be re-evaluated.

2 A Bayesian model of a test system

A test system may be represented by two pieces o f data, one describing the input to 
the test and the other the test itself. From these data it is possible to derive further 
data representing the inference which may be drawn when particular test results are 
obtained.

In the model presented here, the input to the test is described by the set of proba­
bilities, before the test is applied, that the device under test (d.u.t.) is in each of 
a specified set of working or faulty states. This data is called the test context since 
it describes the circumstances under which the test is run.

The characteristics of the test are represented by another set of probabilities. For 
each of the specified test inputs these give the probabilities that each test result 
would be obtained if that input were present. This data is called the test character­
istics.

From these two pieces of data it is possible to calculate using Bayes Theorem a 
third piece of data giving for each test result the probabilities that this result was 
obtained because the d.u.t. was in each of its specified states. Hence this data 
represents the inference which may be drawn and can be called the inference data.

This inference data can be used to compile and evaluate various decision rules 
which represent the actions to be taken when various test results are obtained in the 
specified test context. From the decision rule, using the inference data, 
performance figures for fault coverage, fault resolution and accuracy can be 
determined.
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3 Test context

This is a specification of the classes of input to the test, together with their rates of 
occurrence. The classes of input may be both types and locations of faults in the 
d.u.t. The rates of occurrence may be estimated from experience (reliability data) 
or obtained from a previous test result.

It may conveniently take the form of a table (Table 1).

Table 1: Probabilities of inputs

Test input A priori 
probabilities

«1 Pr(aO
«2 Priaf)
«3 Pr(a 3)
»r Pr(ar)

Note ^  Pr{at) = \
< = i

3.1 Classes o f  faults

Any set of classifications for faults which is useful may be used providing the fault 
classes do not overlap. In our use o f this model we were interested in predicting the 
performance of the test system for solid failures in terms of resolution to exchange­
able spares item. Therefore we considered all solid failures on each PCB to be a class. 
Each test input was defined to be any fault from that class being present.

A test input representing the absence o f the specified fault classes may be included 
if this is relevant (e.g. when running tests at random or when evaluating system 
software).

3.2 Estimation o f  rates o f  occurrence

The probable rates of occurrence of each test input can be estimated from reliability 
data; this being either reliability predictions or field returns. An understanding of 
the variations in these data must be applied. For example reliability can be expected 
to change with the age of the individual system. Differing values of test input 
probabilities can be calculated to suit the circumstances and more than one test 
context may be relevant.

As an example consider the case where a single solid failure has occurred in the 
d.u.t. The probability that this failure lies in any given area of the d.u.t. is pro­
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portional to the failure rate (X) for that area. (The failure rate being the reciprocal 
of the mean time between failures (m.t.b.f.).)

X(a(.) = l/m.t.b.f.fa,) 

Pr a  X (¾)

Since a failure has occurred somewhere within the d.u.t. the constant associated 
with this proportionality (K) can be determined as follows:

Pr{ai)=

since 2  M a/ ) = 1

i = 1

then K  = 1 / ^ j  X (a,)
/ = i

4 Test characteristics

This is a specification of a test covering the specified classes of inputs to the test 
and the results which may be obtained. It gives for each element of the test context 
the probabilities, given that the test was applied in the presence of that input, of 
obtaining each of the test results. This specification takes slightly differing forms 
depending upon the nature of the test. For a fixed test sequence a table is appropri­
ate. Where tests are conditionally applied the tables may be assembled into a tree.

4.1 Fixed test sequences

Where a test can be considered to be a series of subtests which are applied in strict 
sequence until the first positive (failure) result is obtained this is called a fixed test 
sequence. This is usually the case for test programs and may be usefully applied to 
selected sequences of system software (e.g. initial program load). The results of 
such sequences can be called Test (1) Fail to Test (s) Fail, where there are s sub­
tests. In addition there is a negative result (all tests pass). Thus a fixed sequence of s 
sub-tests has s + 1 results. The characteristics of a fixed test sequence can be usefully 
represented as a table (Table 2).

4.2 Estimating test characteristics

Test characteristics in the form shown in Table 2 can be estimated with increasing 
accuracy as information concerning the d.u.t. and the test itself becomes known in 
more detail. In the early stages of a project only the approximate structure and 
partitioning of the d.u.t. may be known. At the same time the structure of the test
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Table 2 Test characteristics
Prfbj\aj) = probability of obtaining result bj if the test input is at

Test result

Test Fail (1) Fail (s) A ll  pass
input ( * i ) ibs) ( * S + D

« 1 i > ( & i U i ) Pr(bs \ax) F X V i  k )
« 2
a3

ar Pr(bt 1 ar) Pr(bs \ap Pr{bs+t 1 ar)

itself may only be an outline proposal. At this stage very approximate estimates, 
based on experience, may be made. These will be useful to estimate the general 
testability of the system and to  evaluate proposals for tests. Later on when schematic 
diagrams for prototypes become available and the draft code for the test software 
is written a much more accurate set of figures can be constructed. This can be done by 
considering possible failure modes and their consequences. An example of this is 
given in.1 This information can be built up incrementally and estimates of 
varying accuracy combined.

Fig. 1 A fixed test sequence
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This process of estimation is of course intensely subjective. However a few simple 
techniques can be used to guard against the dangers of this subjectivity. First, the 
estimates should always be jointly agreed between the hardware designer and the 
test designer. The hardware designer will tend to overestimate, the test designer 
to underestimate, so a reasonable balance will be obtained. Secondly, once a set of 
estimates has been derived which are consistent with achievement of the overall 
system objectives, then these estimates should be adopted as targets and progress 
towards achieving these targets should be monitored by experimental insertion of 
faults as the hardware is commissioned. Any effects of under achievement can then 
be evaluated by insertion in the model and appropriate management actions or 
engineering trade-offs determined.

Fig. 2 A conditional test sequence
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Nevertheless one may still be left with doubts. However our experience shows that 
it is better to have subjective information than no information at all. In addition 
subjectivity may have its own benefits in that experience and expert knowledge can 
be incorporated. This is not usually the case for automatically generated data.

4.3 Conditional test sequences

Where the next test to be applied at any point in a sequence of tests depends upon 
the outcome of one or more previous tests this is known as a conditional test 
sequence. Such sequences are typically used to narrow down the area containing a 
fault. Such sequences may be represented as a tree of fixed test sequences (Fig. 2).

Each test or fixed test sequence can be represented by test characteristics data as 
previously described. It should be noted that this data will depend upon the place 
of the test in the sequence unless the tests are completely independent.

5 Inference data

This data can be calculated from the test context and test characteristics using 
Bayesian statistics. It gives the probability of obtaining each result and the prob­
abilities for each result that this arose as a consequence of each of the test inputs 
being present.

5.1 Result probabilities

Let the probability of obtaining the/th  result (bf) be Pr(br) 

r

Then **(*/) =S  /V(^>fV(by 1¾) 
i = l

5.2 Backward probabilities (Bayes Theorem)

Let the probability that the /th  result (pj) arose because the ith test input (at) was 
present be Pr(Of\bj)

ThenPr ( a ^ b ^ P r  (bf  1¾).Pr (<%)

5.3 Test performance

The actual performance of the test system when the actions following the test are 
defined by some specified decision rule, can be evaluated using the inference data. 
The usual dimensions of test performance are fault coverage, fault resolution and 
accuracy of resolution.
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5.4 Fault coverage

This is the proportion of the specified set of fault classes (i.e. test inputs) detected 
by the test in the specified context.

Let the fault cover be C. Since all the test results except the last (s + 1th) represent 
the detection of a fault the implicit decision rule is that a fail result is to be taken 
as a fault detected.

5.5 Fault resolution and accuracy

The fault resolution is the number of items implied as being faulty by the test 
results used with a particular decision rule. The accuracy of this resolution is the 
proportion of times that this will be correct (i.e. the fault lies within the listed 
items).

To determine resolution and accuracy a decision rule must be specified and the 
number of items associated with each test input must be known. Two common 
decision rules which can be automatically derived from the inference data are:

Best m items for each result;

at leasty  accuracy for each result.

5.6 Best m items for each result

Let the accuracy with which m items can be determined to be faulty from the ;'th 
result 0 , )  be A m 0 ,) .

Let the number of exchangeable items associated with the/th test input (af) be S(at). 

Let the nth most likely test input to contain the fault be an.

S

k

ThenXM0 ,)= 2 j
n = 1

where k  is such that
k

2  50„)<'«<Xj5(̂ )
n = 1 n = 1
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Let the average accuracy of the test sequence be A m .

I  , s

Then^tm = \ J ]  P r t y A ^ b , )  /  Pr(bj)
/ = i  '  / = i

giving A m = ^ j  Pr(bj) Am(bj)lC 
/ = 1

5 .7 Given accuracy fo r  each result

Let the number of exchangeable items within which the fault lies with an accuracy 
of at least y  for the yth result be Ry(i;).

k
Then Ry {bj) = ^  S(_a„)

n = 1

where k  is such that:
k - 1 k

Y j Pr(an\bj) . < y < Y PrW
n = 1  n = 1

Let the average resolution of the sequence be Ry.

s

Then R y = 2 ^ ( 6 / )  Ry(*/)/C 
/ = i

Note that the average accuracy of the sequence will be at least y  and will usually 
be greater than y .  Its actual value can be calculated as above. The automatically 
derived lists o f items to  be changed in order of preference against each test result 
can be used in the field.

The average resolution can be expressed as a histogram or frequency table for 
numbers of items. Curves of average resolution against accuracy may be constructed. 
It can be seen that resolution may be increased at the expense of accuracy and 
vice versa.

6 Measurement

The above techniques have been applied to the construction of the test software, 
and to a more limited extent the system software, for the ICL ME29. The results
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obtained were confirmed by fault application experiments. These used the technique 
known as sequential sampling to reduce the numbers of faults which had to be 
applied to obtain a sufficiently accurate result with a high confidence. This tech­
nique was used to compare the observed fault coverage, resolution and accuracy of 
the tests with the modelled figures. These experiments showed the tests to be 
slightly better than as modelled. The results are summarised in Table 3. Similar 
experiments were conducted for the system software initial program load.1

7 Utility of the technique

The modelling of the test system for the ICL ME29 was performed using this tech­
nique from an early stage of development. In attempting to construct the models 
and from the results obtained it was found that relevant issues concerning the 
testability were exposed. Information was obtained from the exercise which made

Table 3 Measured results

Quantity Predicted
value

Measured value 
(0-95 confidence)

Lower Upper
limit limit

Coverage 0-95 0-89 0-98
Resolution 0-8 to 2 0-89 0-98

items or less
Accuracy 0-95 0-92 0-99

it possible to design changes both to the hardware and test software to overcome 
the problems raised. The information provided by this modelling was also of use in 
planning the logistics of the maintenance service. Since the technique is not limited 
only to test software a useful improvement to system diagnosability was obtained 
by applying it to the initial program load.

Following the success with the ME29 project the technique has been employed for 
the design of the testing system for a medium-sized high-speed processor. The 
design of the processor was evolved from the processors used on ICL 2950 and 
2960 systems, so there was an existing body of tests of potential applicability. The 
modelling technique was eminently successful in giving an early indication of those 
tests which were still of use and those which would need replacing. Whilst not yet 
complete, the results obtained to date indicate that an average resolution of 4-13 
PCBs with an accuracy of 95% should be achievable. Since the prime requirement 
of this test system is the location of the failure to a small spares kit for transporta­
tion to the site, this result is regarded as satisfactory. (On arrival at the site, further 
resolution within the indicated area is achieved by interactive use of in-built 
engineer’s facilities and tests.)

8 Conclusion

An argument for a Bayesian test modelling has been presented. The way in which
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such models may be constructed has been described. Experimental results have 
demonstrated the effectiveness of the technique.

Future work in this area will be concerned with the incorporation of results from 
the Bayesian model into a model of the maintenance activity. The objective of this 
work will be to  optimise the trade-off between accuracy and resolution with respect 
to staff and spares holding requirements.
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Notes for authors
1 Content

The ICL Technical Journal publishes papers of a high technical standard intended 
for those with a keen interest in and a good working knowledge of computers and 
computing, but who nevertheless may not be informed on the aspect covered by a 
given paper.

The content will have some relevance to ICL’s business and will be aimed at the 
technical community and ICL’s users and customers. It follows that to be accept­
able, papers on more specialised aspects of designs or applications must include 
some suitable introductory material or references.

The Journal will usually not reprint papers already published, though this does 
not necessarily exclude papers presented at conferences. It is not necessary for the 
material to  be completely new or original (but see 10,12 and 13 below). Papers will 
not reveal matter related to unannounced ICL Products.

2 Authors
Anyone may submit a paper whether employed by ICL or not. The Editor will 
judge papers on their merits irrespective of origin.

3 Length
Full papers may be of up to 10 000 words, but shorter papers are likely to be more 
readily accepted. Letters to  the Editor and reviews may also be published.

4 Typescript
Papers submitted should be typed in double spacing on one side of A4 paper with 
full left-hand margin. Mathematical expressions are best written in by hand. Care 
should be taken to form Greek letters or other unusual symbols clearly. Equations 
referred to in the text should be numbered. Detailed mathematical treatments 
should be placed in an Appendix, the results being referred to in the text.

At least two copies should be submitted, both carrying the author’s name, title 
and date of submission.

5 Diagrams and tables
Line diagrams supplied will if necessary be redrawn before publication. Be 
especially careful to label both axes of any graphs, and mark off the axes with 
values of the variables where relevant.

All diagrams should be numbered and supplied with a caption. The captions 
should be typed on a separate sheet forming part of the manuscript. Since diagrams 
may have to be separated from their manuscript every diagram should have its 
number, author’s name and brief title on the back.

All diagrams and Tables should be referred to in and explained by the text. 
Tables as well as diagrams should be numbered and appear in the typed MS at the 
approximate place, at which they are intended to be printed. Captions for Tables 
are optional. Be careful to ensure the headings of all columns in Tables are clearly 
labelled and that the units are quoted explicitly in all cases.

6 Abstract
All papers should have an abstract of not more than 200 words. This ought to be 
suitable for the various abstracting journals to use without alterations.
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7 Submission

Before submission authors are strongly urged to have their MSS proof read carefully 
by a colleague, to detect minor errors or omissions; experience shows that these can 
be very hard for an author to detect. Two copies of the MS should be sent to the 
Editor.

8 Referees
The Editor may refer papers to independent referees for comment. If the referee 
recommends revisions to the draft, the author will be called upon to make those 
revisions. Minor editorial corrections, e.g. to conform to a house style of spelling 
or notation, will be made by the Editor. Referees are anonymous.

9 Proofs
Authors will receive printed proofs for correction before publication date.

10 References
Prior work on the subject of any paper should be acknowledged, quoting selected 
early references. It is an author’s reponsibility to ensure references are quoted; it 
will be unusual for a paper to be complete without any references at all.

11 Style
Papers are often seen written in poor or obscure English. The following guidelines 
may be of help in avoiding the commoner difficulties.

•  Be brief.
•  Short sentences are better than long ones but on the other hand do not 

write telegrams.
•  Avoid nested relative clauses; preferably start new sentences.
•  Define the meaning of ordinary words used in special senses. Define acronyms 

or sets of initials by quoting the full meaning the first time the initials are 
mentioned.

•  Include a glossary of terms if necessary.
•  Avoid words in brackets as much as possible.
•  Avoid the frequent use of the type of construction known as a ‘buzzword’. 

This often takes the form of a noun followed by a present or past participle 
followed by another noun e.g. ‘system controlling parameters’.

•  Take care in using the word ‘it’ that the reader will easily understand what 
‘it’ refers to. An unambiguous rule, that cannot always be applied, is that 
‘it’ refers to the nearest preceding noun in the singular.

•  Several hts’ in one sentence each used in a different sense can cause consider­
able confusion. Similar remarks apply to ‘this’, ‘that’ and other prepositions.

12 Copyright
Copyright in papers published by the ICL Technical Journal rests with ICL unless 
specifically agreed otherwise before publication. Publications may be reproduced 
with permission and with due acknowledgement.

13 Acknowledgements
It is customary to acknowledge the help or advice of others at the end of papers 
when this is appropriate. If the work described is not that of the author alone it will 
usually be appropriate to mention this also.
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