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Security and privacy of 
data held in computers

J.M.M. Pinkerton
ICL Marketing Division, Slough 

Abstract

Wider use of computers is leading to concern in society for the privacy of 
personal data held by computers. The responsibilities of users of computers 
to take good care of personal or other data are distinguished from those of 
suppliers. The need for formal rules governing who may see what data 
under various specific circumstances is pointed out. A simple model is 
described to help users and computer managers analyse their particular 
requirements and thereby arrive at an appropriate set of house rules, it 
being contended that once the rules have been established it is practical 
and straightforward to give effect to those rules using facilities provided by 
the supplier.

1 Introduction

The subjects of computer security and especially of the privacy of personal data are 
of growing importance and public concern. Personal privacy is the subject of 
legislation in many countries already and will presumably be in the U.K. too 
eventually.1’2’3’7 There is thus a need for better understanding of how security and 
privacy needs can be met, what and how much a computer user has to undertake 
for himself and exactly what help he can expect from his supplier. It is clear already 
that laws in most countries lay the duty of care for the privacy of data primarily on 
the user.

The objectives of this paper are as follows:

to offer some clarification of the terms used in discussing this subject; 
to expose the limitations of what any computer supplier can provide and point 

out at the same time the obligations on users in various circumstances, in­
cluding what may become legal obligations; 

to present an elementary model of security of the data at a computer installation; 
to outline the scope of a set of house rules applying general privacy guidelines to 

any given installation say; and
to show how features controlling access to data can be used to achieve privacy, 

as well as for maintaining security in the military sense.

It will become clear that successful maintenance of privacy of data held by com­
puters must depend ultimately on drawing up house rules or guidelines that must be 
laid down either by the individual user, or more generally by some administration
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for all users in a given class.s Examples of such guidelines for privacy are still very 
rare, although they are common enough for security purposes. It is the author’s 
opinion that writing such guidelines will prove to be much more difficult than has 
been widely recognised. Though it is of course not the job of any computer supplier 
to draft such rules, once they are written he could comment on their practicality. 
He must be prepared to offer facilities for supporting any reasonable and foreseeable 
scheme.

2 Definitions

All the definitions necessarily are of very wide generality.

Access to data may involve reading, writing, marking, moving, altering or destroying 
them; it may also involve merely knowing that a particular item or items are held at 
ah, or whether someone else has been able to read, write or otherwise affect them, 
and if so, when. We need to be concerned not merely with direct individual access 
at any instant, but also with access by a computer program or process that may be 
controlled by a person or group of persons indirectly.

Data: for privacy we are usually concerned with data items about individuals, but in 
the case of security the data can be of almost any class or category. Data may 
obviously also include any program code in machine-readable form.

Privacy is a term that has largely defied successful definition by lawyers and others, 
although everyone feels he knows what it means. In administrative practice, privacy 
control means granting of the right to see, record or alter one’s personal data to 
persons other than oneself. Thus it is a right claimed by most persons — in very 
varying ways and circumstances. For the most sensitive personal data outside a 
computer, access to knowledge is generally regulated by some code of ethics, 
professional or social. We believe we can trust the discretion of those who know or 
may be told details of, say, one’s health, business conduct, private life and so on. 
Once data is in a computer discretion is no longer a feasible guide as to whether 
knowledge should be passed on or not.

It should be fully recognised that computer privacy goes beyond both security and 
regulating who may have access to the data. According to the law in several coun­
tries, it may now mean that the subject of the data must be able to inspect and 
either correct or delete items of data about himself, if he can show them to be false 
or irrelevant. The law may also say that certain classes of personal data may not be 
held at all on computers.

Security requires that the system holding the data must be to an adequate degree 
resistant to attempts to get access to that data on the part of those not entitled to 
it. Thus security may be a primary objective, as in the case of national and military 
secrets, or it may be secondary to the main requirement to keep information private. 
It is generally assumed that the intruder looking for personal data will be very much 
less determined than the foreign spy. Thus the level of security precautions required 
to support privacy in computers can often afford to be less strict than in military 
or high-risk commercial applications. The sophistication of the arrangements for
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access control to ensure privacy may on the other hand conceivably need to be 
greater. With the rather limited practical experience of implementing privacy guide­
lines anywhere to date, this must still be conjectural.

3 Risks

Risks to security and thus to privacy are represented by an extremely wide variety 
of things that may happen accidentally or inadvertently, or that people may do 
deliberately.

Security of computers and data held by them have been extensively analysed and 
discussed; there is now a choice of sets of guidelines to help users to judge which 
risks are significant.4’6 A risk is significant where the product of the consequential 
loss or damage and the chance of that eventuality in, say, a year, shows the user to 
be exposed to a serious degree. It is difficult or impossible sometimes to assess risks 
to personal privacy on a strictly numerical or financial basis. Political considerations 
will loom much larger.3 The result is that careful judgment has to be exercised as to 
how serious certain threats of disclosure might be, and how much trouble or money 
it will be worth expending to counter them. Whatever level of precautions are taken 
it has to be recognised that 100% security is unattainable. All security measures are 
a nuisance and an irritation to the staff involved. Equally obviously, so long as 
human beings are involved somewhere they may represent a greater threat than the 
computer itself. Since security is no greater than the strength of the weakest link 
in the chain, it is thus important to avoid going to extremes in countering any given 
risk.

Now it is suggested security risks be considered under three broad headings:

those which users themselves must tackle because no specific facilities from 
manufacturers are relevant;

those which users can tackle far better if manufacturers’ products are suitably 
adapted or extended; and

those which users can only tackle effectively if the products are suitably contrived.

Some examples may help to illustrate this subdivision.

No computer manufacturer responsibility:

staff integrity or security; 
precautions against theft or fire; 
errors in original data before entry; 
dp application open to fraud; 
natural disaster or calamity.

Shared responsibility:

checking of errors in entering data;
checking correctness of application code as such;
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procedures for setting up and administering access regulations; 
introduction of checks on personal identity, e.g. of someone using a terminal; 
issue and control of cypher keys, passwords, ID badges, etc.

Prime manufacturers’ responsibility:

hardware and software resilience against both faults and/or design errors;
systems designed to resist misuse or malpractice;
mechanisms for personal identification;
encrypting and decrypting means for, e.g. data communications;
access control means for applying access control regulations.

In the case of shared responsibility there would be something a user could do even 
if the manufacturer provided no facility. In the last case the user can do very little 
without some facility from the manufacturer.

Please notice that the word responsibility is not used to mean legal liability. It 
implies merely that there are some things a manufacturer has to tackle if his 
customers are going readily to maintain security or to guarantee privacy.

It is apparent that the degree of choice for a user and a manufacturer varies in 
opposite directions. In the first case a user is completely free but the manufacturer 
exercises no choice. In the second, he aims to give the user a wide range of choices 
to suit the user’s circumstances. In the third he must make quite fundamental 
choices because features of the system architecture are in question. This could 
result in the user having less choice in the way those features are exploited, though 
the manufacturer must aim to leave this choice as wide as he can.

4 A conceptual model of access control

It follows from the above that it is for designers of systems or operators of computer 
installations to decide individually what sorts of risks they need to protect them­
selves against and what levels of protection are appropriate and effective in their 
own cases. The following description of a model is offered to help users in analysing 
their own needs. It was originally devised to help a group of ICL Computer Users 
Association members visualise the situations that have to be covered by their own 
house rules of access, and thus to frame appropriate procedures both for coding as 
programs for the computer and to be obeyed directly by their own staff. It is hoped 
too that consideration of such a model may help computer management to avoid 
creating some important security loophole by leaving some possibility of access out 
of account, which it is only too easy to do.

The model is described in relation to Fig. 1, which shows a simple situation in 
which one management is responsible for determining and administering the rules, 
and to Fig. 2, which shows a more complex situation as, for example, might exist in 
a bureau. The diagram is divided into two halves by a dotted line representing some 
physical barrier, for example, the enclosing walls, floor and ceiling of the computer 
room. It is assumed that the central equipment (mainframe, store and backing
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store) is within this boundary, and that the various groups of people identified will, 
under different circumstances, be either inside or outside it.

Fig. 1 Diagram of simple computer access model.

The model embraces the following components:

the physical environment and the computer equipment in it; 
several classes o i person1,
three kinds of entities stored in the computer specifically:

(a) the valuable or sensitive data or other objects,
(b) programmed procedures embodying the rules,
(c) controlling factors or parameters that determine the interpretation of 

the rules.

Let us examine each component in turn.

It is assumed that there is physical protection of part of the computer environment 
against accidents, for instance fire or flood, and against deliberate penetration by 
intruders, i.e. the door can be opened only by say a magnetically encoded card. It 
is noted that some computing equipment, e.g. the terminals or at least the com­
munication links to them, will be in uncontrolled zones where no physical security 
is practicable.

There are five significant groups o f  persons (ignoring designers and planners who 
may have been employed by the supplier, e.g. ICL). They are:

Installation management (IM) responsible for security of the installation and the 
data etc. held therein, and for the rules of the house.
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Maintenance engineers and programmers responsible to the IM for repairing or 
modifying the system.

Site operators responsible for all routine operations on site, and for reporting to the 
IM evidence of any breach of the access rules and possibly having delegated authority 
for varying the rules of access in minor respects.

A user population for whose benefit the system is set up and operated.

The rest o f  the world who have no legitimate business with the system.

An analysis using the model to devise rules is concerned with what authority for 
access each of these group needs, how that authority is to be delimited and defined 
and how it may be tested by the system when an individual tries to gain access.

There are three sorts of entities stored, starting with the ‘Objects to be accessed’. 
These may be ‘functions’ provided by hardware directly or by software, or stored 
files, records or items of data. Occasionally the objects may be items of equipment. 
The model next assumes that access to the protected objects is to be regulated by 
‘Access-controlling procedures’. These procedures are (in general) provided as 
software. To determine the outcome of each procedure there must also be a set of 
‘Access-controlling factors ’ relevant to the particular house rules a user wishes to 
enforce and the circumstances, e.g. of the time or place. These factors may be 
subdivided into, ‘externally known factors’ (like the time, date and possibly details 
of some of the access-controlling rules) and ‘internal or private factors’. Any genuine 
applicant for access knows his own identity and password and where he is at that 
moment; these are likely to be among the external factors. Internal factors could 
include, for instance, the security rating of the would-be accessor of the data, or the 
identity of the terminal from which access was being sought. They are said to be 
‘internal’ because it should not be known to the accessor whether they are involved 
in deciding to grant access or not, or, failing that, what values they must have to 
ensure access is given. Thus security may be weakened if the accessor knows what 
these internal factors are precisely, or how they are taken into consideration.

The procedures will be broadly of three kinds:

administrative procedures for setting up and for checking routine operation of 
the access-controlling rules;

executive procedures for enforcing the rules laid down in day-to-day use of the 
system;

maintenance procedures that allow privileged persons, e.g. CED engineers, to 
repair and monitor the operation of the access-control mechanism — in the most 
general sense of those words.

It may appear to be difficult in practice to draw hard and fast boundaries between 
these kinds of procedure. Nevertheless to preserve strict security, every possible 
effort must be made to maintain the distinctions. This amounts to saying that the
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limits of authority granted to the various individuals and groups quoted must be 
well defined. The authorities ought also to be kept clearly distinct from the data or 
other objects to which access may be sought.

5 A more elaborate model

In many if not most practical situations the above model is too simple, chiefly 
because it assumes that a single management is involved, with complete authority 
for laying down and amending the rules, and though it has not been said, perhaps 
also with authority to have access to all stored data, including the authorities for 
access themselves and, say, the records of all actual accesses made by all users, 
engineers and operators. However, at many sites it is not permissible for access 
authorities to be based on a strict hierarchical principle.

A site management needs to be able to delegate some authority for access to inde­
pendent management groups, each of whom will regulate its own groups of users in 
its own way. The independent (offsite) managements would in general not willingly 
give up their powers of regulating access by their own staffs. If they were forced to 
do so they would want to remove, or at worst destroy, their private data held on 
the system. This situation is now represented by Fig. 2. In this version of the model 
the direct users fall into separate groups each with its own management to regulate 
access for persons within that group.

Sets of objects private 
to various user groups

Global objects to 
be accessed

4 - d T 'fT V

Site ,
Admin > Site 

J " '  "Site"_ Executive 
/I. - .Mtee. _ i ______

Site Procedures Controlling 
A ccess Rules

SITE 
ACCESS 
CONTROLLING 
FACTORS

User Dictated 
Procedures .

T
Factors Dictated by 
User Managements

Fig. 2 Diagram of more comprehensive computer access model.

Correspondingly there are now subsidiary groups of access procedures each subdiv­
ided into administrative and executive aspects as before. Again there will be groups 
of access-controlling factors mostly private to each user group but some global for 
all user groups including say the operators, maintenance staff and site management 
itself.
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In practice it will be very important for security that no person is able to disobey 
the rules which must be framed to cater for all extraordinary situations including, 
of course, system crashes.

Obviously, any modem computer-operating system does in fact include facilities to 
allow users to implement a model such as has been described.

6 Multi-stage access control

It may be convenient to cater for a multistage access-control process — as in fact 
some systems already do. The concept is of successive levels of admission to access 
as follows:

(a) a general level determined at the start of a session and chiefly on the basis of 
external and publicly ascertainable factors; and

(b) a series of inner levels selectively and specifically controlled by internal and 
confidential or secret factors.

Obviously the way access rules apply to different groups of individuals have to be 
different; for instance the management on site will have very different responsibili­
ties and authorities from those say of remote authorised users, who may not 
physically be seen by anyone in authority. Thus personal identification is funda­
mental to any scheme of access regulation. Since permitting access will nearly 
always involve recognising a person (either individually or as a member of some 
defined group), it is suggested that this be done in the first stage on the basis of 
certain externally known or knowable factors. After that, before access by a 
‘recognised’ individual to this or that object is granted, more elaborate tests may be 
applied on the basis of more specific and detailed internal factors.

The decision process necessarily becomes more complex and elaborate, the closer 
an individual seeks to get to any highly secure or sensitive object. The rules laid 
down for a given installation must minimise any frustration or inefficiency that 
could result from over complex logical criteria designed to permit accesses succes­
sively to objects having varying security classifications.

Thus practical advantages of controlling access in stages are therefore:

that if the system is too busy to handle any more users, no time need be wasted 
identifying them or testing in finer detail for specific access permits;

that time is not wasted in going into detail over applications for access from 
those not recognised at all under the rules;

that, conversely, measures to apprehend those doing suspicious acts may be 
taken with a minimum of delay; and

that the information deducible by the unauthorised person from the reactions of 
the system to his efforts is at a minimum — he is simply aware of not being 
recognised.
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7 Formulation of house rules

To set down rules to be applied in an actual case, say an Area Health Authority,10 
the procedure would be along the following lines:

identify the different data elements and other objects at risk of improper access 
and identify the different risks to be guarded against;

distinguish the different groups of individuals, e.g. doctors, nurses, administrators, 
technicians, porters, telephone operators, etc., and, considering their chief 
responsibilities, decide what is the minimum set of authorities for access to 
different data each needs and what right to delegate access authority a member 
of one group may need to have in respect of members of some other group;

analyse as fully as possible the opportunities for inadvertent error and deliberate 
improper action on the part of each group;

from that analysis, formulate a set of rules governing access to the system and data 
held, to protect privacy and the well-being of the using organisation generally.

The rules would have to include:

lists of authorised individuals and who may see those lists, 
methods of identification of individuals, 
access criteria and 
logical combinations thereof,
records of both proper and attempts at improper access to be kept, 
alarms to be given if rules are infringed,
authorities conferred on individuals or groups to transfer access rights to others, 
the facilities and powers permitted for cancelling access rights, 
the records o f such transfers and cancellations that must be kept.

Before any rules are introduced, the detailed administration of the secure distribu­
tion to authorised persons of essential knowledge (e.g. passwords, cypher keys if 
used and proper procedures for using them) needs to be set out and carefully studied 
in detail to check that it too is free from loopholes. The computer system will in 
general be heavily involved in the day-to-day administration of the rules, including 
the secure distribution of key knowledge.

There are numerous practical points to notice in giving effect to the house rules, 
e.g. that making attempts at access visible or recording them inconspicuously is a 
security precaution in itself, that audits and regular spot checks need to be made on 
the data and the procedures and so forth. These topics are covered in a number of 
publications, e.g. Hoffman11.

It has to be admitted that comparatively few examples of such rules or procedures 
(or of the implementation details of highly secure computer systems) have been 
described. The reasons for this are fairly obvious.
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CADES-software engineering 
in practice

R.W.McGuffin, A.E.EIIiston, B.R.Tranter and P.N.Westmacott
ICL Product Development Group, Technology Division, Manchester 

Abstract

A software engineering problem -  the development of a very large operating 
system, VME/B, the constraints placed upon its development and the 
objectives of the methodology and tools devised to support it (CADES) is 
described. The methodology (top-down, data driven) and the methods and 
mechanisms used to support the methodology are discussed in detail. The 
human aspects of the use of these are given and are supported by various 
statistics. From our experience, various lessons are drawn and the objectives 
are compared with achievements. In addition, the application of the 
techniques developed to hardware and to other software developments is 
described.

1 Introduction

The design, implementation and maintenance of complex software systems require 
the same kind of disciplined design methodology and automated, mass-production 
techniques that are normally associated with hardware developments. ICL, the 
major computer manufacturer in Europe, has extensive experience in the area of 
hardware design and manufacture. The design automation system, DA4, provides a 
service to some 400 users, from high level logic design through to manufacturing 
output and field support. However, a complementary service is also provided to aid 
the development and production of operating system software. This paper describes 
the inception, design and experience of this service.

In 1965, English Electric Computers and ICT set out to produce new operating 
systems, Multijob and George 3, for their new ranges of computers. They assumed 
that those systems could be developed using extensions of the techniques used on 
earlier systems, that is, small operating systems for small machines. They assumed 
that they could treat the operating systems as collections of programs and farm out 
the development of these programs to separate groups of programmers. They, like 
other manufacturers, found that this approach was inadequate. They discovered 
that the major problem they faced was that of linking the programs together to 
form a coherent, usable system rather than developing the individual programs. 
Also, it was found that the cost of the systems, compared with earlier systems, 
increased exponentially with size, and that with the inherent increase in complexity 
of the parts, the predictability of the completion date diminished considerably.

©  1979 IEEE. Reprinted, with permission, from Proceedings, 4th International Conference on 
Software Engineering, September 17-19,1979/ Munich, Germany
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Thus, in 1970, when ICL (formed by the marriage of ICT and English Electric 
Computers) set out to produce a major operating system, VME/B, for its new range 
of computers, the 2900 series, it recognised that it had a major task on its hands.

VME/B would inevitably be a large system. It had to support all the facilities of 
general purpose systems produced for earlier machines (batch, interactive etc). It 
would also have to provide new capabilities, for example, virtual store management, 
protection levels, database management. Added to this was the requirement that it 
should be configuration independent. The 2900 series of computers was to be based 
on a radically new architecture -  this added considerably to the difficulty of 
designing and producing the operating system.

This paper will describe the system designed and built by ICL to aid the develop­
ment of VME/B; this system is called CADES — Computer-Aided Development and 
Evaluation System. Before discussing it in detail, it is of interest to consider both 
the constraints placed upon the development of VME/B and the objectives set for 
CADES.

1.1 Constraints

1.1.1 Timescales: Development of previous ICL operating systems had required 
teams of upward of 100 people. As VME/B was to be developed over a significantly 
shorter timescale, it was inevitable that an even greater number of people would be 
required. The work of this large team would have to be adequately co-ordinated 
and controlled.

1.1.2 Long life: The team would need to be able to identify and preserve the 
overall structure of the operating system. Experience on earlier systems had shown 
how difficult it was to protect a large system from structural decay. The team 
would need to be able to distinguish between features which affect the overall struc­
ture and those which were of merely local significance.

1.1.3 Resilience, enhanceability, maintainability: The methodology and computer- 
aided system would have to facilitate all stages of the operating system development 
process, that is high level design, low level design/implementation, construction, 
system generation and maintenance such that these constraints could be met.

1.2 Objectives

Given the target of producing a large new operating system on a new architecture 
with the constraints set out above it was decided to provide a design system which 
would aid development and positively encourage discipline. This system (CADES) 
had a number of well-defined objectives:

1.2.1 Method o f  working: It was recognised that human organisations are self- 
formative, that is, they will naturally be hierarchical — department manager, project 
manager, team leader etc. -  and that the methodology should be such that the 
human organisation should mirror the design structure.

14 ICL TECHNICAL JOURNAL MAY 1980



1.2.2 Communication documentation: People communicate but not very effective­
ly. CADES had to provide a mechanism of formal communication, not just at the 
output level but between natural human (and logical) groupings such that, for 
example, common code was recognised.

1.2.3 Interfaces: VME/B design was to be data driven, consequently both vertical 
and lateral interfaces were extremely important and it was vital to be able to repre­
sent and stabilise these interfaces.

1.2.4 Formal capture o f  design: It was decided that a ‘top-down’ approach to 
design would be adopted and mechanisms had to be provided to support this 
approach. Further, at each level in the design hierarchy, it was very necessary that 
the methodology highlighted design-decision points such that these design decisions 
could be safely made, and recorded formally rather than in potentially ambiguous 
natural language form.

1.2.5 Performance validation: It was desirable that measures of performance 
could be established easily from the mechanisms provided to support the develop­
ment. Further, it was essential that the performance implications of changes at high 
or low levels could be tracked.

1.2.6 ‘Own medicine ’: To provide the necessary incentive to hone the methodology 
and tools being applied to the development of VME/B, it was decided that these 
tools should be developed using the same techniques. Further, since the design of 
the operating system had commenced before the tools program was inaugurated, 
the tool providers had to make special efforts to catch up and overtake the operating 
system development.

2 The CADES system

The CADES system consists of a methodology and a set of mechanisms to support 
the methodology. That is, there is a defined method of approaching the design and 
implementation of the product which underlies all the individual activities which 
have to be performed to achieve the end result. This approach is then supported by 
detailed mechanisms which may be well-established rules for human action and 
interaction or software products to be used as tools by the designers and imple­
mentors.

The ultimate aim of the CADES system is to support the total software develop­
ment cycle from receipt of the stimuli that initiate design changes (requests for new 
facilities, and reports of faults or of inadequacies in the product) right through to 
the release of software packages, complete with supporting documentation. The 
main elements of the development cycle are represented in Fig. 1.

2.1 Methodology

2.1.1 Formal design: A fundamental rule of the CADES system is that we design 
the product before we implement it, and we capture the design in a formal manner 
in an integrated database so that the design is preserved and is available for subse-
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quent use, for example, for implementation, design amendments, etc. The design 
capture is the design method so that we do not produce a design in one manner and 
document it in another.
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Fig. 1 The software development cycle

2.1.2 Top-down design: The design method we use, known as structural modelling, 
is one of top-down iteration. That is, we start at the top by defining the whole 
product in general terms based upon its specification. This definition is then parti­
tioned at the next level down to provide a specification of its parts and each partition 
is defined in more detail. Each level of this structure defines the whole product, in 
interaction of the holon (see 2.1.3) and data hierarchy.

As we define each level, we re-evaluate the preceding (higher) level to ensure that all 
new decisions are consistent with those already recorded. If changes have to be 
made to a higher level to accommodate the new design decisions, then the level 
above is also re-evaluated and all the decisions in the level below the changed level 
are also re-evaluated in the light of the changes. This has the effect of a yoyo going 
up and down the hierarchy until no more changes are made. Then we proceed to 
define the next level of detail and repeat the process.
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In this way, we do not make any decisions until we have to , but we end up with a 
consistent set of design decisions.

2.1.3 Data-driven design: The process of making the design decisions is data 
driven. That is, the entities we are dealing with first at each level are the data to be 
manipulated at that level. The process starts by partitioning the data of the higher 
level and defining their attributes and transformations at the new level. The comple­
mentary entities involved are the ‘holons’ (a term borrowed from Koestler, and 
used to represent objects in a neutral manner without any of the connotations of 
‘procedure’, ‘macro’, etc.) which are the processes which control and use the data 
items. The higher level (parent) holon is partitioned in terms of its control of the 
data and the partitioned (child) holons are then defined in terms of their use of the 
data. The two hierarchies of data and holons are progressed in parallel, with data 
preceding holons at each level.

Each holon may have its own transient data dynamically allocated but its use of 
nontransient data, whether shared or local to the holon, is controlled via the 
interaction of the holon and data hierarchies. A holon may only manipulate data 
items which are children of the data manipulated by its parent and which are either 
owned by the holon itself or specifically made available by the holon which does 
own them. This system, as well as defining the control of the data, allows us to 
minimise the interactions of holons with data, and thus of holons with other holons.

As well as the data described above, we also wish the holons to manipulate para­
metric data. A holon may pass any data to which it has access to any holon which it 
calls. We need to ensure that the data as passed is consistent with the data expected 
by the receiving holon. This is achieved by having only one definition of the 
interface, which applies to both the called and calling holons.

2.1.4 Algorithms: The lowest level of the holon tree represents discrete funptional 
elements of the product at the implementation level. That is, they will be coded in 
a compilable language and compiled into object code which will be the product. 
Only the function of the holon needs to be coded, as its environment (the data it 
manipulates) is already defined through the data hierarchy.

At higher levels of the holon tree, the coded algorithm is a formal specification of 
the partitioning of a holon’s functions between its various component holons and 
of its use of external functions at the same level of abstraction.

2.1.5 Programming standards: We have maintained existing ideas on good program­
ming practice along with the CADES methodology. The function of the 
implementation-level holons is coded in a high-level language with all the recognised 
benefits. In addition, the choice of S3 (a language related to Algol 68) allows full 
advantage to be taken of the 2900 architecture (for example, hardware stack) while 
producing extremely efficient object code. The partitioning of the product into 
many implementation-level holons leads naturally into the production of modular 
programs where individual routines may be amended and replaced.

2.1.6 Management structure: Since we have a structure of the product as defined
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in the holon and data hierarchies, when we need another hierarchical structure we 
mirror it off these. The next structure required is, in fact, a human organisational 
structure. The organisation of the production projects is based on the structure of 
the product they are to produce. Since we have defined the interfaces between the 
elements of the product, we have also defined and minimised the interfaces between 
the groups of people producing the product and the management structure for 
controlling them as they produce it.

2.1.7 Design authorisation: Of course, we need to keep an overall control on the 
product as designed and, therefore, we have a design team responsible for the total 
product and the interfaces between the parts of the product. No changes can be 
made which affect this structure without their authorisation.

In order to ensure that a change does not slip through because the production 
project did not realise it changed the structure, an authorisation cycle must be 
followed before any changes are made. This involves authorisation by the designer 
in the project and by the project manager and then by the overall design authority 
for every change. This way we can ensure that the full implications of each change 
are recorded and that the design does not decay because the actual product moves 
away from the design representation. As well as simply checking that the change is 
acceptable, we can check that the holon and data hierarchies are altered at every 
level to reflect the change, and that the documentation is also amended where 
necessary.

The normal working documents for designers and programmers are ‘Tree pictures’ 
of the holons and data. These are simply computer-produced listings of the hier­
archical structures as described above. In addition, we use the interface definitions 
and charts of the interactions between the two hierarchies — that is, which holons 
use, or are allowed to use, which data.

2.2 Methods and mechanisms

2.2.1 Database: In order to support the methodology described above, we have a 
database system. The hierarchies of holons and data with their attributes and rela­
tionships are stored in the database, which is the authorised description of the 
product as it is being developed. The final content of the database is the product 
itself so that there is no break in continuity between design and production since 
the source code and compiled code are held in, and controlled by, the database. (In 
some cases, bulk data is physically held not in the database itself, but in conven­
tional filestore addressed by records in the database; logically, however, such data 
are considered to form part of the integrated database.)

2.2.2 User interface: The interface for the user is an end-user language, specially 
designed to represent the structure we have chosen to describe the product. The 
structure is of target records and the relationships between them and the language 
is a navigational language. It allows the user to specify target records and to navigate 
the relationships between target records. The same language is used for updating 
and interrogating the database thus simplifying the interface for the users and 
removing the margin for error in effecting required changes to the database.
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2.2.3 Language definition: The total set of target record types and possible rela­
tionships between them, and the attributes, with their descriptions, applicable to 
each target or relationship are also held in a CADES database. This database forms 
part of the definition and, therefore, the implementation of the CADES system. 
Thus, we are able to use the database navigation language to update the definition 
of the language itself. New target record types or new relationships between existing 
targets, or new attributes of targets or relationships can be defined, and we can then 
generate a new, improved version of the language. No only this, but we can hold 
different definitions of the language which we can make available to different users. 
In fact, we use a different dialect of the language for updating the language defini­
tions from that used for producing other software systems.

2.2.4 Database software: Underlying the whole system is an IDMS database. 
IDMS is ICL’s Integrated Database Management System. This system consists of 
programs and software components to handle the establishment, processing and 
administration of a database.

IDMS is an implementation of a subset of the COBOL database facility (1975) 
proposed by the Codasyl Programming Languages Committee. These committees 
have proposed standard languages for defining the content and organisation of a 
database and for defining the data manipulation functions available to COBOL 
programmers. Codasyl based database systems have been implemented on many 
different mainframes and operating systems and now form a ‘de facto’ standard.

We have produced a basic, general schema — the mechanism by which the particular 
database is described to IDMS. We then have a superstructure of CADES software 
which implements the user interface, and interprets the user’s view of the database 
(in terms of specific target records and relationships) into the IDMS schema view, 
and vice versa.

As well as handling the language itself, this superstructure performs several other 
important functions including version handling and protection, which we provide 
on several levels.

2.2.5 Versions: The total product definition and implementation is held in the 
CADES database. The product is not static but is under continuous development 
for extension and enhancement of facilities. Therefore, we need to be able to 
represent different versions of the product. Some may be under development, some 
may be in the field, but we must maintain the definition of each one. We achieve 
this by the version-handling facilities which CADES supplies on top of the IDMS 
software.

Each target record and relationship in the database can exist in different versions. 
Whenever a new version is created it inherits the attributes of the preceding version 
so that we only need to specify the changes. If a particular entity is unchanged, 
then no new version is created and the new version of the product will inherit the 
preceding version of the entity in its entirety. Since we are dealing with a very large 
product, we have divided the total database into logical regions. Each region has its 
own independent version numbering and can be developed independently of all
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other regions. We then create a new version of the total product by incorporating a 
particular version of each region.

Once again we use the product structure as the main structure and mirror the region 
structure on this. In this way, we can develop a particular subsystem of the product 
and only incorporate it into the total product when we are ready. In fact, several 
subsystems can be under independent development without interfering with each 
other and may then be incorporated one-by-one into new versions of the product 
as they become available.

2.2.6 Protection: Since different groups of people are working independently on 
different parts of the product, we need to protect the data in the database against 
unauthorised changes -  or rather changes by unauthorised people. Because the 
product structure is mirrored in the people structure and also the region structure, 
then we can use the region structure for protection. Therefore, when anybody logs 
in to the database, they log in to a region and they are prevented by the CADES 
software from altering anything in any other region.

The ordinary user in fact logs into a Database Activity which gives him access to 
one version of one region. Activities are allocated by the central design authority 
and give permission to create a new version of a region in response to a planned 
development. Thus, the user is freed from problems of region and version handling 
while the central design authority maintains control over the development of the 
product.

2.2.7 Documentation: The documentation of the product being developed is all 
held in a documentation system known as the Project Log. This consists partly of 
information extracted from the database (for example, the latest source listing of a 
holon) and partly of narrative descriptions. The whole is, however, controlled from 
the database by use of the project log reference numbering system which relates 
each part of the documentation to the entity documented, to its version and to its 
place in the hierarchies.

This forms a consistent set of maintenance, support and development documentation 
of the product. For convenience, it is held on microfiche as well as paper, with the 
parts extracted from the database being produced by a COM fiche (computer 
output microfiche) facility.

2.2.8 Tools: Since we put the definition of the product into the database, we 
obviously need to manipulate it in order to create the product. We have accordingly 
defined a set of software tools which complement the database software. During 
the development of CADES these tools have evolved considerably; descriptions in 
this paper are of the latest such tools unless otherwise indicated.

We have the data hierarchy with the bottom level defining the implementation level 
data, that is, basically in the form in which it needs to be defined for its manipula­
tion in a high-level language.

We have the holon hierarchy with the bottom level defining the implementation-
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level functions, that is, basically in the form in which it can be compiled as a high- 
level language. It also includes holon interaction by reference to the defined 
interfaces.

We also have the holon-data interaction defined in the database, as well as certain 
items of architectural information, that is, the relationships to  physical hardware 
concepts such as protection levels. The sum total of the method of defining this is 
termed the system definition language (SDL), and basically comprises the database 
navigation language described above and the function specification.

In order to create the product, we need to go through such processes as compilation 
and collection. The method we employ for this is to  use the standard ICL tools and 
to interface them to the database by means of applications which know about the 
structure and contents of the database and present standard input to the tools.

To present a module for compilation, we have an Environment Processor. This 
extracts from the database all the information about the holons which constitute 
the module -  the functions, data and interface — and presents this in a form to be 
processed by the language compiler. Having compiled any new or amended modules, 
we can then collect them together with the existing product by use of a construction 
application which extracts information from the database about the modules which 
are to constitute the product and drives the standard ICL tools to  collect together 
new and existing modules and apply any necessary architectural details.

The position of these tools in the CADES system, and the way in which they 
provide bridges between the orthogonal representations of the product in the 
CADES database, can be seen from the following diagram:
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The applications we produce have progressed through several phases. Early ones 
interacted more directly with the IDMS database, using only the version-handling 
mechanism of CADES software. The later ones (including the current environment 
processor) use the navigation language as their interface to the database, but are 
themselves written in ordinary high-level languages such as COBOL. However, for 
our newest applications, we make use of a generalised tool which we have devel­
oped, the Report Generator.

This, as its name implies, was developed first for producing printed reports from the 
contents of the database and is extensively used for this purpose. In addition, 
however, we use it to generate the input data and steering data to drive the tools. 
The construction application is one of those that we have implemented in this way.

3 Man/machine interface

In order to illustrate the changes in man/machine interaction effected over the 
years, it is necessary to compare statistics relating to early CADES usage with those 
related to our current development environment using interactive facilities affording 
vastly improved information tumround.

In particular, software development under CADES has advanced to the stage where 
the apparent overhead of maintaining the central information database does not 
detract from the competitiveness of CADES software development from the point 
of view of an individual code production unit.

3.1 Development o f  the CADES system

The CADES system, since its conception around 1970, has been developed firstly 
on System 4-70 and then on the 2900 range after a bridging phase.

The principal machine used in this latter stage has been a 2970 upgraded to a dual 
system in recent months. The average human resource strength over this period has 
been some 20-25 personnel of which five have been strategic-system designers.

The CADES software development environment has consisted of 15-20 programmers 
interacting with the machine via four video terminals and remote job submission, 
the total level of machine usage per year exceeding a million seconds of central 
processor time on a 2970.

The extent of CADES software currently in existence is some 400 implementation- 
level holons each of which consists of approximately 400 lines of SDL, making a 
total of about 160,000 lines of high-level language source code.

In recent years, all CADES development has been performed using our own 
development applications and tools, that is, CADES itself. This has resulted in a 
high standard of software being released to internal customer units.
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3.2 Development o f  VME/B

The development of VME/B has been performed from its earliest days using CADES 
by 100 to 200 designers and programmers. This includes a pool of some 20 strategists 
or strategic designers and a CADES service unit providing the front line CADES 
human and software interface to VME/B staff. This early development was on 
System 4 using an ICL produced database system called PEARL (Parts Explosion 
And Retrieval Language). Although the applications developed with this database 
were rather limited it still held 40 megabytes of data before finally being phased 
out after the transfer to 2900.

The transfer to 2900 was a major phase for VME/B CADES development and 
resulted in the establishment of an IDMS database containing 25 Megabytes of data; 
the conversion between two totally alien database structures was carried out with 
virtually no adverse impact on the users of the system. This IDMS database has a 
capacity of 183.4 Megabytes at the present time and consists of 59,952 IDMS pages 
each of 3100 bytes capacity. The content of this database has grown throughout, 
with the continual addition of new categories of information relating to VME/B 
design, production and release. At the time of writing, its data occupancy is 40 per 
cent.

On 2900 the predominant machines used for developing VME/B have been 2976 
and single and dual 2970s. Some 30 video terminals attached to one or other of 
these machines are used by VME/B development staff.

The result of all this development has been a VME/B product consisting of some 
6000 object code modules, derived from some 12,000 holons in total, arranged in a 
tree structure of typically five or six levels.

3.3 Functions o f  the CADES service unit

The prime responsibilities of the CADES service unit are to maintain the service­
ability of the database, perform database updates, generate CADES reports and 
provide a documentation service.

The record of the VME/B database is such that it has not yet been necessary to 
restore it from the archive which is performed weekly. Database journals, however, 
which hold records of all modified IDMS pages are kept for limited periods in order 
that local intermediate recoveries may be performed.

Historically, the text specified by designers in order to update the database has 
been submitted to the service unit for batching together into a daily database 
update. The designer interface for functional code and documentation amendments 
is via a common design amendment form (DAF). Around 50 of these relating to 
VME/B are processed daily of which 25, on average, contain documentation 
changes which involve retyping and eventual microfiche updates and distribution to 
around 40 different centres within the company.

The update requests submitted by designers result in a weekly report summary on
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project and system information being generated by the service unit from the data­
base. In this activity, some 60 to 80 reports are produced each week which sum­
marise typically holon, data, literal and system message information. These reports 
are COM fiched and issued to centres throughout ICL for customer support in 
addition to being used for internal reference — an example centre being the Systems 
Maintenance Centre for direct customer support.

The introduction of interactive facilities for both database update and retrieval has 
improved the CADES service interface by enabling urgent design amendments to be 
processed on the spot and nonurgent amendments left over to be batched for the 
nightly update. This has produced a real-time response where previously no better 
than daily turnrounds were being achieved. It has been necessary to develop safety 
features related to interactive usage such that in the event of database failure, the 
service unit has recourse to an information diary. In addition, the recovery and 
contingency features of CADES are such that only hardware corruption of data 
necessitates returning to a database archive.

Further interactive usage extensions are planned which will allow VME/B designers 
unlimited direct access to the CADES database, within normal protection con­
straints, for updating and retrieval purposes; the selective archiving of regional 
information combined with information recall from archive on request; and the 
selective (and protected) deletion of information from the system. All these features 
will reduce the workload on the Service Unit.

3.4 Performance o f  the database

In order to perform any database interaction, it is first necessary to log into the 
CADES system, initialise data and generally gain access permission. Thereafter, 
database retrievals and, given appropriate access, updates may be initiated with very 
little overhead and may be intermingled with VME/B System Control Language 
statements.

Typically, the amount of updating of the database is of the order of 2000 lines of 
text per day; retrieval figures are less easy to quote since retrieval is not subject to 
the same authorisation checks as update — a conservative estimate of the order of 
100,000 lines of text per day (including standard reports etc).

3.5 CADES report generation

It is necessary to provide designers with regular database information summaries. 
An advantage in this field is that the information content and format of these 
reports may also be defined in the database navigation language, the information 
then being extracted from the database using the CADES report generator. Some 
20 standard CADES reports are currently available for use, and many others are 
under either design or development.

3.6 SDL compilation and environment processing

The major CADES application as far as VME/B development is concerned, is the
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SDL compiler which is used to compile SDL code into object module format ready 
for build and release by the construction system.

The SDL compiler operates in two stages. The first stage is termed Environment 
Processing or fixing of design information into the source code; the second stage 
involves language compilation. Some 100 holons are SDL-compiled daily within 
the VME/B development environment.

«
This process may be performed directly off the CADES database such that a 
designer may update the database with a design modification interactively and 
initiate the generation of a new VME/B module immediately. The design information 
is, of course, database resident for other designers’ usage and reference — a new 
version of VME/B may then be constructed.

4 Lessons and benefits

The use of the CADES methodology and mechanisms throughout the development 
of VME/B has been a success; a large and complex operating system has been 
produced over a period of several years by a large team of designers and program­
mers. It is, of course, impossible to tell how the development of VME/B would have 
differed, or whether it would have been produced at all, had structural modelling 
and CADES not existed, but an examination of the extent to which the various 
objectives outlined above were achieved indicates that VME/B is strongest in those 
areas where CADES gave most support.

4.1 Objectives o f  and constraints on VME/B

VME/B has met its major objectives of providing the users of ICL 2900 series 
computers with a powerful general-purpose operating system capable of running 
without change on any medium to large configuration.

The application of data-driven hierarchical design has led to a stability in the 
structure of the system which has enabled enhancements to be made in a controlled 
and predictable manner as new functional requirements or changed hardware inter­
faces demand. Use of the CADES system has proved invaluable, not only in costing 
such changes but also in ensuring that the changes were complete, by retrieving 
interaction information from the database.

While it would not be true to say that VME/B was produced in the short timescale 
originally envisaged, it was no mean achievement to have produced a viable major 
new operating system from scratch within a period of five years (approximately 
750 man years). It is a moot point whether the use of CADES had any overall effect 
on the timescale for the production of the first version of VME/B — the absence of 
any comparable control project makes such measures impossible.

The reliability of the operating system was never considered to be within the scope 
of CADES, but the structure and documentation imposed by the CADES system 
has ensured that when faults are found, they can be corrected in a well-controlled 
manner without the ripple factor so often encountered in large scale software 
projects where clearance of one bug introduces another.
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4.2 Objectives o f  CADES

If we consider in turn the objectives identified above for the CADES system, we see 
that on the whole, they were met, although in most cases quantification of the 
degree of success is difficult, if not impossible.

CADES has indeed allowed and encouraged the structure of the human organisation 
to mirror the structure of the product; communication between and among 
strategists, designers and implementors has been formalised and so constrained to 
exist; interfaces between and within subsystems are well controlled and defined. 
The formal capture of the design in a top-down manner has contributed significantly 
to the development of the system, the existence of formal descriptions at various 
levels of detail having facilitated iterations of design; however, the SDL functional 
descriptions at nonimplementation levels of the design have not been totally 
successful owing, no doubt, to the lack of tools which can act upon (or animate) 
such descriptions.

The version handling capability offered by CADES is such as to support concurrently 
several externally released issues of the product while at the same time allowing 
incremental development along many independent paths.

Use of a high-level language has been almost universal in VME/B there being no 
more than 20 holons containing any assembly language code out of over 10,000 
holons.

The most significant area in which CADES has failed to meet its objectives has been 
the provision of a performance-prediction capability -  this was omitted as a low- 
priority facility, although with hindsight we see that VME/B could have benefitted 
substantially from advance warning of areas of inadequate performance.

4.3 Benefits not envisaged

A number of problem areas have arisen during the development of VME/B, which, 
while not part of the original CADES concept, have been amenable to solutions 
based on the CADES database. Most significantly, the planning of developments 
within VME/B, whether for fault correction or for new facilities, can be tied in 
with the product representation in the database through the activities which already 
associate users of the system with developments within it. Inter-project depend­
encies, resource requirements, scheduled milestones and related data can all be held 
in the database and linked directly — where applicable — to records representing 
activities, groups of people (or individuals), subsystems etc. Thus, CADES now 
embraces the total development route.

A group of people as large as that producing VME/B is bound to generate a sig­
nificant amount of documentation outside the realm of the project log. A database 
registration system for such documents has clear benefits, allowing retrieval of lists 
of documents by keywords or by author as well as straightforward reference lists; 
since the database used is also the design database we have been able to record 
relationships between, for example, strategic design documents and the subsystems
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and interfaces to be changed, and the activities in which the changes will take place.

Software faults are registered in the database linked to the holons in which the 
faults were manifested; when a solution (temporary or permanent) is found, it, too, 
is registered and associated with the fault record and with the holon to which the 
correction is to be applied.

The CADES version-handling scheme allows us to keep track of faults which may 
require clearance in different ways in different versions of the product.

The formalised filestore structure imposed by CADES for holding source and object 
code has proved invaluable in controlling the semi-automatic production of COM 
fiche support documentation.

In most of the above examples and in many other more mundane fields, the self­
defining capability of the CADES database schema, together with the built-in 
report generator, have permitted very cost-effective extensions to the CADES 
system.

S Future

In the preceding sections of this paper we have described the aims, mechanisms and 
achievements of CADES; we still have a long way to go before we can say that we 
have developed the full potential of the CADES methodology.

5.1 Further support for software development

Work is well advanced on enhancements to CADES to support the development 
and release control of hardware-test programs; this is an area very different from a 
large-scale operating system, consisting mainly of large numbers of relatively small, 
independent programs; success in this venture will support the belief that a CADES- 
style methodology and system is relevant to any branch of software engineering 
where there is a control problem, including the development of microprocessor 
software.

At the same time, we are not losing sight of those aspects of the original CADES 
concept which have not yet been developed: significant among these are a per­
formance prediction capability; control over and possible automation of test systems; 
support for high level simulation ( or animation of the structural model); and the 
formal representation of high level design concepts such as files and jobs.

5.2 Application to other disciplines

ICL’s business is to manufacture and sell computer systems, the essential components 
of which are software, firmware and hardware. It is clear that the development 
routes for hardware and firmware have much in common with that for software; 
hence the methodology and control features of CADES can usefully be applied to 
them. Further, an integrated environment for total system development is essential,
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especially in the world of VLSI, and ICL has already commenced the design of such 
a system derived from its experience with CADES.
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ME29 Initial program load- 
an exercise in defensive programming

R. Lakin
ICL Product Development Group, Southern Development Division, Kidsgrove, Staffs

Abstract

The ME29 system produced by ICL contains an initial load program which 
has been written to different criteria from its predecessors on other 
machines and systems. The concept of defensive programming has been 
used to write a loader which checks that an operation which has run to 
completion has done so corretly; and if an error is reported a support 
engineer should be able to predict with 95% certainty which component 
of the system is at fault. This paper describes the rules governing the 
writing of defensive programs in general and the ME29 loader in particular, 
and some of the tools which were used to achieve the aims of the program.

1 Introduction

The requirement for Defensive Initial Program Load (DIPL) arose from the prob­
lems encountered by field engineers when a machine failure was signalled. Until the 
present system, Initial Program Load (IPL) programs were governed more by a re­
quirement for low store occupancy than one for resilience or good fault diagnosis. 
This stress on such a requirement arose because:

(a) IPL was written in assembler code or binary, therefore large programs were 
avoided;

(b) there was no executive to support IPL;
(c) IPL had to reside on a fixed place on the load media, consequently there 

were space restrictions;
(d) there was assumed to be an adequate supply of test programs to check out 

the machine before a load was attempted;
(e) error recovery normally consisted of a reload.

The (initial program) load process consisted of two phases:

(a) run the engineers’ test programs. If any failures occur, repair the machine 
before proceeding;

(b) perform IPL.

Phase (a) was normally run at the start of day, after maintenance or machine mod­
ification or after a suspected hardware malfunction.
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As operating systems became more complex, so did the requirements for IPL 
programs; they grew in size and complexity with obvious repercussions:

(a) the program became more difficult to follow in the event of a failure;
(b) more hardware was used by IPL to perform its function;
(c) a more complex system of recording IPLs and systems on load media 

became necessary;
(d) the test programs could not hope to simulate exactly the conditions 

under which IPL ran; when the test program would work, but not IPL, 
the reason was hard to isolate.

When an engineer was called out to repair a fault, extra time had to be spent 
determining which components were affected and a further visit was often neces­
sary to supply the appropriate spare parts. The intention of DIPL is to enable an 
engineer remote from the site to determine from a telephone conversation with an 
operator whether a visit is necessary to repair the fault, and if so what spares need 
to be taken. In this way the machine can be reinstated quickly at less cost to the 
customer and to ICL. The principles and construction of DIPL are based on those 
given by Yau and Cheung1 and by Dent2 .

Traditional programming practices do not provide a suitable method of writing 
initial load programs which give the required depth of information, for example:

(a) when the program has reported a successful run, what is the probability 
that it has performed its task successfully? Only test programs attempt to 
answer this question;

(b) it is often assumed that lower-level software or hardware will perform 
correctly;

(c) performance considerations often mean that reporting of errors is in­
sufficiently covered; the same goes for sanity checks of apparently correctly 
running programs;

(d) programs written in assembly code often omit those checks which are 
automatically included in high-level language systems;

(e) the engineer often has to find his own way around an executive or 
microcode listing to be able to sort out unexpected hardware faults;

(f ) independent test programs are used to check out the system prior to 
customer work. Often the system passes the tests, only to fail when used 
in anger: it is well known that systems ‘learn’ to perform test programs 
successfully;

(g) tools used by the programmer during debugging are removed when the 
program is put into production on the grounds that it is more efficient 
without the tools;

(h) failure messages are sometimes unhelpful except to the expert on the 
program that produces the messages.

Attempts to solve these problems gave rise to a code of practice and a set of tools 
to help to achieve the aims of defence.
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2 Description of the ME29 system

Before describing DIPL it will be helpful to explain the nature of the machine on 
which it will be run. This is a physically small machine of conventional type in the 
sense that it includes a processing unit, peripherals and controllers. The processor is 
a fast architectural emulator with a special ability to create ‘soft’ machines; it has 
become known in ICL as M—1. The main features of the system are given in the 
following paragraphs, and the technical terms used here and in other parts of the 
paper are explained in the Glossary at the end.

2.1 Operator’s panel

This is the means by which an operator or an engineer communicates with the 
M -l Order Code Processor (OCP), which is described in para. 2.2. Fig. 1 shows 
this panel. It is situated on the cabinet which contains the OCP, peripheral control 
modules and a 1 Mb flexible disc. Information is sent from a hexadecimal keypad 
or control keypad and is read on an 8-digit hexadecimal display and a set of light- 
emitting diode displays. Within the panel is a microprocessor which handles the 
messages and controls the displays.

Fig. 1 Operator's panel

During normal operation the operator uses the panel to load an executive program 
which will communicate through a video console once it is running. An operator in 
possession of a key able to turn the lock on the panel is able also to perform 
functions designed to access the M—1 OCP more intimately: for example, to read 
and alter memory or to change the clock speed. Such an operator is known as a key 
operator.

The operator’s panel software keeps a log of actions and failure reports so that DIPL 
and other software may retain meaningful information. This log can be called up 
and read on the display by an operator who need not be in possession of a key (a 
non-key operator) and who can send or telephone information to an ICL engineer 
who may be remote from the site. The engineer can then diagnose the fault.

linked to the panel and on a separate board (printed circuit board, PCB) is a 
hardware diagnostic system for checking the ME29 hardware. Some of these checks 
are performed automatically as part of the load/dump sequence to ensure that the 
M—1 OCP and the stores work to specification.
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2.2 M - l  order code processor

This is a state-of-the-art machine with an instruction set designed to aid the develop­
ment and execution of emulators for existing target machines. One such target 
machine is the ICL 2903 but of course an emulator for any other can be loaded and 
machine architectures can be tailored to fit any specific requirements. The M—1 
instructions are simple enough for it to be practical to write programs for M—1 
itself rather than for a target machine, and in fact most of DIPL is written in this 
form.

2.3 Associated peripherals

DIPL is capable of loading an emulator from any of the following:

double density, double sided 1 -megabyte flexible disc cartridges 
60 Mb and 80 Mb exchangeable disc stores EDS 60 and 80

The ME29 system in its present form also supports:

operator station, DDE stations, multiple-access terminals 
band printers at 360,720 and 1130 lines per minute.

The format of files on system media is built around the Unified Direct Access 
Standard (UDAS) format used by many ICL systems. To assist in defence and to 
enable DIPL to use the same files without the need for it to know the structure of 
system files, a primitive operations file index (POFI) is formed on each volume. The 
volume header label (VOLH) exists in a fixed place on every volume and contains a 
pointer to the POFI from where the bootstrap, dump and microcode files may be 
accessed directly. If during the process of continuous development the structure of 
files within the UDAS area is changed, there will be no impact on the load system.

2.4 Documentation

The importance of good documentation cannot be over-emphasised. For this system 
the ICL engineer has three sources:

(a) the assembler program in the M—1 processor — the MICE assembler, 
described in para. 4.1 -  produces program listings which are annotated with the 
engineer’s needs in mind. Much use is made of a tracing aid known as footprints, 
described in para. 4.5. Each step of the program has a comment box in the 
listing containing the footprint number, a description of this footprint and error 
messages generated by it. Within the step each group of instructions performing 
a function is commented on with an English or an Algol-like sentence describing 
the function. On the right-hand side of the page, away from the code statements, 
there are comments referring to specific instructions. These comments do not 
describe what is done but rather how and why for sometimes a function is 
evaluated using a sequence of instructions which has been designed to avoid a set 
of instructions not used anywhere else in DIPL. An example of footprint struc­
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ture and style of comment is given in Appendix 1 and more is said about 
documentation in para. 4.8.

(ft) the technical literature which is made generally available shows the general 
construction and layout of DIPL. There is also a section detailing each footprint 
and this is duplicated in the program listing as comments.

(c) a manual provides the meaning of every failure message and footprint 
produced by DIPL, the meanings of the items in the information dump area, a 
possible diagnosis of the fault and suggestions for actions to be taken. This 
manual is in possession of the engineer at the time he receives the call from the 
customer.

There are other documents available to customers and to support programmers. 
Most important of these is the manual kept on the customer’s machine, which 
details how to use DIPL and what to do if it fails. This manual is similar to that 
held by the engineer but is expressed in terms familiar to and more suitable for the 
operator. In the event of a failure which cannot be dealt with by the operator or 
installation manager, the customer engineer can be called and will tackle the failure 
using the documents described above.

2.5 Method o f  loading

The operator proceeds as follows. The required media are loaded. The operator 
presses the LOAD button on the panel. The default load device number and load 
parameters are displayed and they may be changed by the operator. When he is 
satisfied with the parameters he presses ENTER to initiate the load sequence.

There is a facility to dump the ME29 store to a magnetic device. The operator 
starts the dump process in a way similar to load, except that the DUMP button is 
used and a separate device may, if required, be used to perform the dumping.

During the load sequence the display on the panel will show footprint messages 
showing how far the process has gone. If the load is successful an appropriate 
message is displayed and the operator may use the video console to communicate 
with the executive which has been loaded. If a fault has been detected DIPL will 
stop and the panel will show the appropriate failure message. The operator may 
then refer in his manual to that message and take a course of action suggested 
there. If the fault can be rectified by the operator he may do so and restart the load 
sequence, otherwise he may extract the relevant information from the log and 
contact an engineer. The engineer uses the documentation detailed in para. 2.4, 
together with the information sent by the operator, to determine how to correct 
the fault.

Most important to the engineer is the probability that the diagnosis given or implied 
by the failure information is correct. If tbis is incorrect the cost to the customer is 
increased by return journeys to the site and by the carrying of large kits of spares; 
furthermore the customer’s image of ICL is not enhanced when several attempts are
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needed to remedy a fault. In an attempt to reduce the number of spares carried on 
a visit the tests are designed to resolve faults to as few PCBs as possible. Therefore 
included in the resolution notes is a section devoted to the contents of the 
minimum spares kit required to repair the fault on a single call with an expected 
success rate of 95% or better. DIPL also attempts to make this minimum kit 
contain as few boards as possible, to save the engineer taking a complete machine 
to the site and to avoid the cost of retaining a large spares holding.

Sometimes the information in the error report gives a resolution to an integrated 
circuit. This arises because it is sometimes necessary to resolve to a great depth to 
distinguish between PCBs, and it does not cost much in size or speed to include this.

3 Construction of the DIPL system 

The whole of DIPL consists of several parts:

(a) operator’s panel ROM code;
(b) diagnostic card ROM code;
(c) DIPL code in the operator’s panel ROM;
(d) disc bootstrap (microcode loader);
(e) emulator and preludes or TEST CONTROL package; 
if) executive bootstrap;
(g) executive start-of-day code.

When the machine is switched on or reset, the operator’s panel code (a) checks that 
it is possible to communicate with the operator and with the diagnostic card (b). 
The load sequence starts with the panel checking that the data in its ROM is correct 
and the diagnostic card checking that the M—1 OCP can fetch and execute 
instructions. The diagnostic card is able to ‘single shot’, by software control, a 
sequence of instructions in the M—1 code (c) before it is run at full speed; we use 
this facility to check that jumps are executed correctly but it will be a simple matter 
to invoke the mechanism during fault resolution if experience shows that there is a 
need in future releases.

After the M—1 code has been loaded it checks the load device PCM and interrupt 
system before attempting a peripheral transfer. The M—1 code contains pro­
cedures to perform all peripheral transfers executed by (c) and by the disc bootstrap
(d) which also is written in M -l code. The differences between these are based 
mainly on the knowledge of the file formats on the load device: the ROM code (c) 
assumes only formats based on the primitive operations file index POFI, which 
means that it can load any bootstrap on any magnetic media device which contains 
a POFI. It is not necessary to restrict the system to use formats currently in use by 
the ME29 executive programs. New file formats may however necessitate a new 
bootstrap. More information on the place of POFI in the system is given in para. 
2.3 above.

The disc bootstrap loads an emulator and its prelude (e). The latter is ‘throw-away’ 
code which checks and initialises the emulator and the hardware which it uses and
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is then removed from the processor. Should the emulator break because of hard­
ware failure it will still be possible to load the package TEST CONTROL (e) which 
provides sophisticated test programs to resolve faults to any desired depth.

The executive bootstrap (f) is the first part of the system to use the target machine 
code. It performs the same functions as (d) but at a higher architectural level, 
loading in the executive (g). This executive contains some target code known as 
‘start-of-day’ code which is equivalent to the emulator prelude. When this has 
finished running the machine is ready for use.

These components of the load process are in the main automatic and take only a 
few seconds to complete. All parts of DIPL from (d) onwards are written to mag­
netic media devices and can be termed ‘software’, although (d) and (e) are more 
‘firmware’ in concept since in an emulator the ‘software’ is normally restricted to 
target machine code or higher.

4 Development tools and techniques

The following paragraphs describe some of the tools used by the teams developing 
the system; they are not made generally available outside ICL.

4.1 MICE assembler

This produces a binary file which may be transferred to a UDAS-formatted disc or 
converted to paper tape output for manufacturing read-only memory (ROM) 
programs. Any high-level language statements are converted by use of the macro 
scheme described in para. 4.2.

4.2 ML/1 macro assembler

This is a stand-alone general-purpose macro processor capable of converting state­
ments from virtually any format into any other. DIPL preserves the format used by 
the MICE assembler but ‘high-level’ assembly statements are created to manipulate 
the stack (para. 4.4) or to control the interpretive driver (para 4.3). The use of such 
statements makes it more difficult to generate invalid statements or statements 
which would cause widespread corruption.

4.3 Interpretive driver

Since DIPL was- concerned primarily with driving peripheral devices at the most 
primitive level, a generalised device driver has been written to accept a command 
program whose statements manipulate data buffers and action commands to the 
peripheral control modules (PCMs). The first facility this approach offers is to 
enable a new device to be driven with the minimum of development, using facilities 
already developed. In its defensive capacity it is able to detect faults and to report 
on them in a standard way, regardless of the nature of the device; this avoids 
replication of code with its possibility of error. The interpretive driver also helped 
the development of the ME29 system at a point when the method of conversation 
with peripherals was changed, by keeping those parts which were dependent on this 
change in a small part of the code.
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It is intended to extend the interpretive capability to cover more facilities, such as 
block moves, sum-checks and redundancy checks.

4.4 Run-time stack

Temporary variables and procedural linkage information are held on a dynamic stack 
whose mechanism is similar to that of the ICL 2900 range. Appendix 2 shows this 
mechanism. The use of this stack will help the engineer to trace through a fault 
which defies normal resolution, as the stack will contain the previous values of 
variables which become overwritten during the course of loading, and also the 
procedure linkage information, so that if the program has stopped at an unexpected 
point it may be possible to trace how that point was reached.

4.5 Footprints

These are used as a simple trace and sanity check mechanism. Most run-time 
libraries attached to high level languages use a trace facility and it is usual in these 
cases to switch tracing off by suppressing the listing of the trace output file. This 
means that every run of a program can become a debugging run if the results are 
not as expected. Reporting faults in this way eliminates the need to construct a 
special program for debugging and also avoids the frustration one gets when the 
error refuses to recur on demand.

One way of tracing is to use a cyclic buffer which is not printed unless the program 
dumps itself. This method is inexpensive and is in principle similar to the in-flight 
recorders used in aircraft. The method used in DIPL is to divide the code into logical 
steps and to assign a footprint number to each step. At the beginning of each step a 
procedure is entered which plants the footprint number in the operator’s display 
area, so that the operator is aware at all times of how far DIPL has progressed. 
Every error message contains the footprint number of the step which detected the 
error, so the engineer can point immediately to the section of code affected.

It is possible to keep a table of permitted sequences of footprints to check that the 
program is behaving sensibly; and to expand the footprint procedure so as to stop if 
an illegal sequence is being obeyed.

An alternative approach is suggested by Yau and Cheung, 1 using a ‘baton-passing’ 
technique by which a step finishes by planting a set value into a fixed location; the 
next step starts by checking that location for the correct value. If each step expects 
a unique value then an invalid sequence will fail before any damage is done.

A sanity check of DIPL has not yet been implemented, owing to space constraints.

4.6 Information dump area

This area is set up by DIPL during running and especially at the point of failure. 
When DIPL stops because of a failure the operator’s panel log will contain a copy of 
the information in the dump area, so that an engineer may deduce the cause of the
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failure when it is reported by the operator. Typical items of information are: 

device status
store address containing faulty information 
expected value 
observed value
footprint running at the point of interruption.

A manual describing the error messages (see para. 2.4(c)) will contain for each 
message the meaning of the values in the dump area.

4.7  Statistical analysis

A statistical program was used to give theoretical figures for resolution. The program 
is one that is used by test-program writers to present resolution and coverage figures 
for the units under test. DIPL was modelled for this purpose as a test program which 
performs tests in a fixed order and stops when an error is detected. If a test is 
completed successfully then the program can make assumptions about the coverage 
of any component and its probability of failure in a subsequent test. If a failure 
point has been reached the program uses the figures produced so far to estimate 
which components are likely to be at fault and suggests a spares kit to be 95% 
certain of repair. The output gives a list of figures for all tests and, at the end, 
estimates the overall probability of any test failing, the overall detection rate and 
the average size of spares kit required. The program makes no assumptions about 
any further information available to the engineer, so it has been necessary to insert 
additional tests to simulate the thought processes of the engineer. For example:

40 800AF Store and Check Read fails 
Dump area: Failing Address 

Expected Data 
Received Data

would be modelled as

TEST 1 Both halves of data corrupt 
TEST 2 Only least significant half corrupt
TEST 3 Only most significant half corrupt.

There are four components to be considered here:

Control store 
OCP control 
high order data 
low order data.

For these tests the probabilities might be:

Component Test 1 Test 2 Test 3
Control store 0-94 0*94 0*94
OCP control 0*06 0-02 0*02
high order data 0 0 0*04
low order data 0 0*04 0
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This Table shows that if any of the tests fails the probability that the control store 
is at fault if 0*94, but if 0*95 certainty or more is required the engineer needs to 
look at the dump area to determine which two components to take with him to 
expect to repair the machine. In the case of Tests 2 and 3 he is expected to take the 
number of spares to give him the best chance of success, so for Test 2, for example, 
he might take a spare control store and low order data board, which gives a proba­
bility of 0*98; but if a spare OCP control board is available it will be worth while to 
bring it along to ensure a virtually certain repair.

The program is unable, without over complicating the model, to take advantage of 
all the information in the dump area, such as the failing address (to help the engineer 
to decide which control store board is suspect); therefore we expect to produce 
better resolution than the program might suggest. Like any other program it is only 
as good as the data that is provided, therefore it is important that the input be as 
accurate as possible. Some of the data is obtained from tables of ‘mean time between 
failures’ of components or estimated by counting the number of dilics (integrated 
circuits) on a PCB, or even by experience in the field of a particular device or com­
ponent. It is not the author’s intention to comment on the accuracy of the various 
methods of estimation except to state that a small variation in the figures may 
possibly affect the outcome by a significant amount. Therefore the use of a statistical 
tool to produce theoretical results must be checked in the field at the earliest 
opportunity. For this the designers need feedback from the field engineers.

4.8 Documentation aids

The most important and the most underrated aid in the program listing is the 
comment. Comments are vital in documenting assembly code programs, as the 
nature of the language permits us to see the particular only at the expense of the 
general. Comments are needed to redress the balance.

Most assemblers allow comments to occupy a complete line of text or alternatively 
to follow the operands of a statement. The author used the first format to present 
the code in a high-level algorithmic or plain language form, and the second to add 
extra information pertaining to the use of an instruction or sequence of instructions. 
In addition, each step in the code contains a comment in a box which links the foot­
print information in the supporting documents to the code. This is illustrated in the 
example of Appendix 1.

A further facility is to edit out all lines except the complete line comment to 
produce a design listing; it was then easy to check that

(a) The comments accurately reflect the code,
(b) the listings and the documentation do not conflict
(c) the engineer can follow the code from the documentation and vice versa.

4.9 File structure

Files use an executive-dependent structure to place and access them. DIPL attempts 
to be system-independent by accessing system files by means of the POFI. To assist
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in defence each block contains an identification string — ‘VOLH’ or ‘POFI’, for 
example -  so that loading can terminate intelligently if the wrong block has been 
read.

Another defensive aid is the checksum of every block, to avoid undetected corrup­
tion of important data. Blocks that are moved from buffer to buffer are checked to 
ensure that information is not lost. Occasionally the data content can serve as checks 
for data corruption,examples are:

(a) address pointers being non-zero,
(b) disc addresses being within the range of the media,
(c) fixed length table entries containing their own (known) lengths,
(d) record headers containing some identifying word.

5 Results

DIPL has been developed at the same time as the rest of the system and has been 
useful in diagnosing faults during hardware development. However, it is vital that 
customers and customer engineers provide the implementors with information that 
will verify their estimates and enable them to provide an improved product in 
future releases.

A validation run was set up in which faults were injected into the M— 1 hardware. 
DIPL reacted to the faults as follows.

achieved forecast
Successfully loaded exec, or test software 49 49
Success reported but load failed 0 0

Resolved fault correctly to 1 P.C.B. 84 108
Resolved fault correctly to one unit 87 1 1 0

Detected faults but could not resolve 65 24
Crashed or looped in DIPL with no error message 6 0

Total 291 291

Success rate (% of successful loads reported
which were actually successful) 
Resolution rate (% of detected faults

1 0 0 1 0 0

resolved to 1 unit or better 71 90

Notes

(a) Definition of ‘unit’:
OCP (3 boards) 
highway (3 boards)
Diagnostic cord (1 board) 
Operators panel 
Control store (2 4  boards)
Main store (4-16 boards)
Device & PCM (1 4  boards + drive).
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(b) There were no media faults or mechanical faults injected into the system 
and there was no attempt to produce a statistical sample as would be 
found in the field. The faults were mainly generated by randomly selecting 
from the logic diagrams a number of signals to be ‘grounded’ to zero volts 
or allowed to ‘float’ by isolation of connectors.

(c) The ‘achieved’ figures are those obtained by the development system used 
for validation. The ‘forecast’ figures are those projected by the implemen- 
ters for the system that is to be released to customers.

The extra space taken up by DIPL when it is loaded into M—1 control store 
makes it necessary to define an area of control store which does not contain infor­
mation vital to dump analysis, therefore it is arranged that this area contains only 
code. Nondefensive loaders are usually sufficiently small to minimise this problem.

Let us now return to the problems outlined in the introduction and determine 
whether they have been answered.

(a) Every block of data is checked when it is read and again if it is moved in 
store; if DIPL reports a successful load then it is virtually certain that the 
store contains a correct image of the loaded program.

(b) There is no lower level software. The hardware is checked before and during 
use.

(c) Performance of DIPL is not so important as that of an emulator, so error 
reports are included. The only constraint is that of size.

(d) Checks have been consciously included.
(e) The comments on the listings are intended to help the engineer.
(f) The number of independent tests has been reduced to those necessary to 

check that M—1 will load and execute the DIPL ROM code. From the 
ROM code onwards any checks are part of the load process.

(g) No tools are removed from DIPL.
(ft) The messages are specifically addressed to the operators and to the cus­

tomer engineers.

6 Conclusions

It is the author’s opinion that defensive programming should become second nature 
to programmers, like defensive driving: every program should be written with the 
assumption that the unusual can happen. A defensive program must have three 
aims:

(a) to perform its task correctly in a perfect environment;
(b) to inform the user of any exceptional circumstances;
(c) to provide aid for a systems programmer or an engineer if an obvious 

fault condition arises.

The following guidelines are presented in order to assist the writing of defensive 
software:
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(a) Always design and plan the program assuming no trade-offs. It is easier 
to omit a facility at a later date than to try to insert it. A large number of 
enhancements lead to a condition known as architectural decay, where 
compromises made at each step produce a system that is neither good for 
the job for which it was originally written nor for the job it has been 
amended to do.

(b) Remember to whom your messages and supporting documents are ad­
dressed. Consider three kinds of addressees:

a user who is using the program and is not expected to know how it 
performs;
the author or support programmer;
an ‘ignorant expert’ (programmer or engineer) who may be brought in 
to solve a problem detected by but not necessarily caused by the 
program. He is not expected to be a specialist on the program.

(¢) Structure the program to help the expert and the support programmer. 
Tools such as footprints, procedural interfaces, stacks and standard error 
recovery methods help here. Imagine every run is a debugging run.

(d) Make sure the compilation listings contain enough comments to enable the 
engineer to link the program, its documentation and tools together.

(e) Remember that comers cut now will increase the amount of time spent 
supporting the program later; time consumed in site support costs the 
customer and ICL money and does not enhance the customer’s image of 
ICL. Beware the ‘I don’t  want it good, I want it Thursday’ attitude.

(/) Do not assume that the hardware or lower level software is faultless. The 
hardest faults to trace are those not detected until the evidence has gone 
away.

(g) Check that tasks have been completed correctly.
Qi) Do not remove any defensive tool unless absolutely necessary. When 

making trade-offs, count the cost of extra effort needed in support of a 
non-defensive program.

High-level language systems already follow many of these guidelines when a pro­
grammer is developing his software.

Error recovery and fault tolerance can be considered simply as extensions to the 
principles governing checking and detection, where the information that is gathered 
is processed by a machine instead of a man. The guidelines suggested are not 
restricted to a loading system.

A suggestion which is most useful when designing a defensive loader is to use the 
‘start small’ approach described by Dent. 2  The first steps of the program are con­
strained to use the minimum set of system components so that if there is a failure 
the cause is suitably limited. If these first steps run successfully then further steps 
may test and use a wider set. DIPL uses ‘start small’ by checking that:

(a) the operator’s panel can communicate with the operator and the diag­
nostic card;

(ft) the DIPL ROM code is correctly loaded;
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(c) the M -l OCP functions correctly;
(d) theM—1 interrupt system functions correctly;
(e) the load device PCM functions correctly;

and so on.

The justification for defensively written utilities and applications programs is that 
corrupt data written by one program can cause wholesale corruption by being 
copied and trusted by others; and if one instance of corruption can go undetected 
for a long time, how many others are still undetected? Programs written in a high- 
level language can very easily be defensive if the run-time library contains standard 
checks such as array bound address ranges, and read-after-write, provided they are 
included by default. Once we have achieved this objective there has to be some 
justification to omit defence and that has to be weighed against the increased cost 
of error detection and of repair of a non-defensive program.

There is still the fact that defensive programs are inefficient. In practice it will be 
difficult for defensive emulators and executives to perform as quickly as those 
written non-defensively. If we use without proof of the rule that *90% of the time 
you are only using only 1 0 % of the resources’ then we can write a complete system 
defensively from the outset, with the expectation that at worst 1 0 % will need to be 
traded against efficiency. With the greater emphasis on defensive techniques, micro­
code or hardware assistance will be developed to improve the performance of 
defensive software rather than the removal of defence.

7 What next?

The immediate future development will cover an interpreter capable of supporting 
all the facilities needed for DIPL, containing within itself the defence which 
currently is explicitly coded. A target code will enable defensive programs to be 
written almost without the need for the writer to be conscious of defence; and in 
those cases where the writer is expected to supply some defence information it can 
be done with the minimum of effort.

Should the defensive interpreter live up to its expectations, the facilities may be 
increased to produce a defensive emulator or a microcode package to assist the 
implementation of defensive target machine programs. For this approach to be 
acceptable to customers, fault tolerance, error detection and recovery must receive 
as much emphasis as raw speed.
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Glossary

DIPL Defensive Initial Program Load: an IPL (q.v.) coded in such a way as to give

42 ICL TECHNICAL JOURNAL MAY 1980



a measure of success if it runs to completion, and a prediction of a failing 
component if it should report a failure.

dump The facility in DIPL to write the contents of store to a magnetic media 
device for future fault analysis.

emulator A machine whose order code (known as microcode) does not itself mirror 
any particular physical machine but which may execute a program which 
presents the same interface to an executive (q.v.) or object-mode program as 
the machine which is being emulated (target machine, q.v.).

executive Supervisory software which controls the running of user programs.

IPL Initial Program Load: a program used to read an executive into a bare 
machine.

load To read a program into a machine, whether or not supported by an exec­
utive. Here synonymous with IPL.

log The operator’s panel on a ME29 machine contains a store area (log) which 
can be displayed by a non-key operator on demand. This is used by DIPL to 
supply further information when a fault is detected.

M—1 The processor at the heart of the ME29 system. It is a machine which emu­
lates the ICL 2903 code and is therefore capable of supporting a 2903-based 
executive. See also ‘emulator’.

ME29 The system comprising: M -l OCP
associated peripherals 
2903 emulator 
SUPREMO executive 
ICL-supplied utilities.

MICE Microcode for M - l : the assembly language for ME29 microcode.

microcode See ‘emulator’

OCP Order Code Processor

PCB Printed Circuit Board, or simply ‘Board’: the smallest easily-exchangeable 
unit in a computer. An engineer will not be required to replace components 
on a board whilst on site.

PCM Peripheral Control Module: a hardware module at the remote end of 
highway which controls one or more similar peripheral devices.

POFI Primitive Operations File Index: see para. 2.3

ROM Read-Only Memory: a nonvolatile memory device with information ‘burnt in’ 
to inhibit over-writing. In the case of DIPL integrated circuit ROM contains 
the first level bootstrap which is copied to the M—1 control store by the 
operator’s panel firmware.

target machine see ‘emulator’

UDAS Unified Direct Access Standard: see para. 2.3

VOLH Volume Header Label: see para. 2.3
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Appendix 1
Example of documentation footprints

Line no. 
1 0 ****************************************************
1 1 description of footprints
1 2 all footprint boxes are enclosed in asterisks and start with three

13
full stops
section number N is on a line which starts. . .  N

14 section contents
15 . .  . 1 number of this footprint
16 . . . 2 title
17 . . . 3 hardware checks performed
18 ..  .4 error messages and their meanings
19 ..  . 5 next footprint number
2 0 . .  . 6 detailed description
2 1 * * % * $ * * # * * * * >1« * * * * >1» * * * * * * # * ★  * * * * * * * * * * * * * * * * % * * * * * *

2987 ****************************************************
2988 . . .  1 7
2989 . .  . 2 store write/read test, and control store and main store size check
2990 . . . 3 main store write then checkread
2991 .. .4 40 00070 failure not reproduced on immediate retry but fails next 

time
2992 40 80071 H3 fault
2993 transmitted data wrong on write
2994 40 80072 H3 fault
2995 transmitted address wrong on write
2996 40 80073 H3 fault
2997 transmitted data wrong on read
2998 but different in register
2999 40 80074 H3 fault
3000 transmitted address wrong on read
3001 40 80075 H3 fault
3002 store write/read and X2 reflect both fail
3003 40 80076 store fault
3004 40 80077 main store to control store read incorrect
3005 . ! 5 8

3006 ..  . 6 Patterns 55555555 and AAAAAAAA are written to store and
3007 then checkread. If error occurs, the check is repeated
3008 but resolution is attempted by checking the contents of
3009 the H3 registers:
3010 transmitted data
3011 transmitted address
3012 on write and read, and then if necessary doing an X2
3013 reflect to register FA.
3014 A read from main store to control store is then
3015 performed and checked.
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3016
3017
3018
3019
3020

The sizes of control store and main store are then found by writing 
to and reading from each 4K word module until incorrect data is 
read or an address error interrupt is received. 
****************************************************

Appendix 2 
Stack mechanism

The standard names used in the 2900 range have been used where there is an obvious 
similarity.

The push-down stack contains a series of local name spaces which refer to an active 
procedure. Each local name contains:

(a) a pointer to the local name space of the procedure which is calling this one;
(b) the link for returning to the calling procedure;
(c) parameters passed to this procedure;
(d) local data for this procedure;
(e) temporary data.

lo o p
s to p

s t a c k  link  
b a s e

lo c a l n a m e  s p a c e

I I  M  I I
p a r a m e t e r s  a n d  
lo c a l d a t a

1

p a r a m s  
a n d  lo c a l

to p
of s ta c k
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f--
p r e v i o u s  p r e v io u s  lo c a l  link  s t a c k
lo c a l  n a m e  lin k  n a m e  f r o n t
b a s e  b a s e  ( S F )

(L N B )

Fig. 2 Stack mechanism 

Fig. 2.1 Layout

The lowest level is artificially set up to point to a loop stop, so that if the stack is 
emptied in error the program will stop.

A procedure call has the following effect on the stack: before the call the situation 
is as in Fig. 2.2. The local name base pointer LNB is stacked at top o f  stack TOS; the 
return link is constructed and stack at TOS. The parameters are evaluated in order 
and stacked. LNB is set to point to the stacked value of LNB.

p a r a m e te r s  
a n d  lo c a l

t
d a t a .

J

TOS

LNB SF

Fig. 2.2 Before the call
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F ig . 2 .3  O n  e n t ry

The new procedure is entered. During execution of this, local data may be stacked, 
or temporary variables or a further procedure may be called.

not accessible
m -

p a r a m s

tT
LNB link

TOS

JLLr
SF

Fig. 2.4 Inside the called procedure

When the procedure is left, the pointers LNB and SF are returned to their values 
before the call and all information above TOS can be overwritten by further uses of 
the stack.
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Project Little-an experimental 
ultra reliable system

J.B. Brenner, C.P. Burton, A.D. Kitto and E.C.P. Portman
Advanced Development Centre, Technology Division, ICL, Manchester 

Abstract

An approach to the design of simple, highly reliable, general purpose 
computer systems is described. An experimental distributed system has 
been implemented to examine the approach critically. This experimental 
system uses five single-board microcomputers, which send messages to each 
other via a bit-serial, contention-arbitrated bus based on Ethernet principles.

A representative user interface has been provided to allow application 
programs implemented in Pascal to be run.

The experimental system demonstrates user concurrency in accessing files, 
fault containment and resilience.

1 Introduction

1.1 Who are we?

Advanced Development Centre of Technology Division was set up in June 1979 to 
investigate future opportunities in a wide range of areas of interest to ICL with 
particular reference to the impact of technological advance on system structures 
and applications. The work described in this paper stems directly from the appli­
cation of lower cost computing and storage hardware which is now becoming 
available to the solution of problems common in the computing business. The Centre 
includes engineers, programmers and system designers most of whom have well 
over ten years of experience.

1.2 Project 1980

The experimental ultrareliable system described here is one of the outcomes of 
research work started several years ago, as a result of two guesses:

a guess that it would be possible to devise technical means of achieving ‘perfect’ 
D.P. system reliability, availability and maintainability;

a guess that extrapolation of hardware technology trends would bring drastic 
changes of capability and cost, which might make such techniques practicable 
for everyday use.
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We set out to discover, via a series of paper studies, how this might be done. This 
we called ‘Project 1980’ because at the time that seemed suitably futuristic.

A basic principle of this work has been the belief that computer hardware and soft­
ware systems are unreliable mainly because they are complex, not because of 
intrinsic hardware unreliability. Therefore we see simplicity as being the key to 
reliability, by making systems easier to design correctly, and to test, diagnose and 
repair.

We forsaw that future abundance and cheapness of hardware technology had the 
potential to allow simplification by use of what we called the ‘enough principle’. If 
there were to be ‘enough’ mill, storage and interconnection bandwidth, then 
utilisation could be low enough to avoid some of the complexities of queueing, 
scheduling and performance tuning. If this abundance were cheap enough, then 
complex provisions to use it efficiently might become unjustifiable — e.g., multi­
programming, virtual storage and shared code.

We also speculated that this hardware might readily consist of large quantities of 
relatively simple computers. Each such computer module would be a self-contained 
functional and physical unit, comprising processor and storage and I/O in a simple 
physical package. To reinforce the modular separateness of each computer module, 
communications with and among them would always be by consenting exchange of 
messages via high level protocols on bit serial interconnections. This introduces 
further potential for simplicity, reliability, resilience and redundancy.

We then went on to propose a federated system style of control, in which computer 
modules all have essentially equal status, so that there is no critical failure depend­
ency upon particular computers having some special position as master. With this go 
concepts of distributed control and local autonomy, plus the location independence 
of software functions, so that they can migrate to alternative hardware if there is a 
failure. There is a corresponding requirement for data consistency, such that data 
can be partitioned and replicated in different parts of the system to provide 
redundant and resilient storage of control information, programs and user data.

Software functions would be dispersed into small modules, communicating via high 
level protocols, in a way exactly equivalent to the hardware modularity, and with 
the same simplicity requirement. Comprehensive fault containment and recovery is 
also required.

The key to this distributed control, data consistency, fault containment and re­
coverability is the use of the Commitment Unit concept. We have described this in a 
previous paper in ICL Technical Journal.1

These various concepts are now to different degrees becoming visible in the guise of 
distributed systems, the electronic office and personal computers, but not (yet) in 
conventional mainframe D.P. systems. Neither have they yet been generally applied 
to achieve ultrareliability, as originally envisaged.
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1.3 Systems modelling experiment

As a result of the paper studies conducted under Project 1980 and the subsequent 
discussions with logic design engineering colleagues in Technology Division it became 
apparent in September 1977 that a major stumbling block to the credibility of the 
proposed approach lay in the feasibility of implementing the system software to 
support the proposed techniques. Doubts were expressed both of the practicability 
of implementing a system so different from those with which we had experience 
and also of the technical viability since system resource demands might inhibit 
performance to an unnacceptable degree. Accordingly, it was decided to simulate a 
minimal subset of the system on an existing service computer system and hence get 
a qualitative impression of the difficulties involved in detailing the design and 
implementing the chosen subset. It was also intended to use the modelled system to 
support some (simulated) workloads and to measure the activities in the various 
subsystems to answer the doubts about unacceptable overheads.

This work was started in October 1977. Two persons were involved part time in 
the system design and coding. A third person analysed part of the ICL corporate 
benchmark and provided synthetic workloads and the interpreter needed to execute 
them in the new environment. The programs were coded in Pascal and executed 
under the George 3 operating system on our 1904S service at West Gorton. We 
found that the facilities provided by George 3 for Communication Files formed a 
very suitable environment for linking the several concurrently executing programs 
together. By February 1978 the system was starting to function and it was possible 
to demonstrate its basic features. It was at this time that we decided to move on 
directly to a hardware-based experiment to  provide a convincing demonstration at 
the earliest date rather than complete the software-based System Modelling that 
had been planned.

2 Pilot machine structure

2.1 System requirements

We wanted to show that use of the principles of ‘simplicity’ and ‘enough’ supported 
by the commitment unit concept enabled the development of a computing system 
which functioned, was able to contain errors and was able to recover from them. 
We also wished to show that this could be achieved at reasonable cost both in 
development and manufacturing terms. The system was therefore required to contain 
real computers that could be programmed to perform applications. It needed to 
support some sort of input of data and display of results and contain a ‘file’-storage 
facility in which both data and program material could be kept. Since our principles 
implied a multicomputer system it should contain several computers linked by a 
‘loose coupling’ and at least two separate storage devices which could be used for 
file backup when required. The computers supporting the storage devices would be 
responsible for maintaining records of all changes to the content and status of the 
files for which they were responsible, so that in the event of failure in the relevant 
commitment unit the changes could be undone. This information should be stored 
in a Local Integrity Journal in the volume whose changes it records. In order to
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use the system, the programs had to be compiled and placed in the system storage, 
and ‘tools’ to enable this had to be provided. The system software needed to be 
able to load and supervise the execution of application programs, support the usual 
file storage facilities — create, open, write, read, close and delete — in the commit­
ment unit environment that we envisaged, as well as the less usual facilities of 
automatic, nonprocedural record level locking and file rollback. Finally the system 
software needed to support the recovery of jobs whose supporting hardware or soft­
ware had malfunctioned and was no longer active in the system.

2.2 Constraints and limitations

We decided to build a system which, while capable of doing ‘real work’, was con­
strained in various ways to make the implementation more sure, less costly and 
more timely. Microcomputers were used to minimise hardware design and building 
costs. Pascal, with which we were all familiar, was to be the only programming 
language used for the application software and where possible for the system soft­
ware. A monitor program was written in Intel assembly language and the Pascal 
Interpreter was written in PL/M. Random access storage was provided by flexible 
discs and hard copy output via a 30 c.p.s. hard copy terminal. Standard visual 
display terminals were attached via RS232 interfaces. In the software developed 
we took a number of short cuts which limit the utility of the present Project little  
system as a general purpose computing system.

2.3 Hardware

The insistence on simplicity indicated that each computer module should be no 
more elaborate than could be packed into one physical unit, which we chose to be 
one standard 300 x 200 mm printed circuit board. This decision freed us from 
secondary decisions such as the size of racks and cabinets, physical expansion 
capability, power supply sizing etc., which would have had to be made if a more 
flexible approach to the computer module design was taken. To simplify the 
intermodule communication hardware, a straightforward ‘open collector’ bus type 
of connection was adopted, able to support a total bus length of only ten or so 
metres.

A search at that time, both in-house and OEM, to find a possible candidate to meet 
all our single-board computer module requirements, was fruitless. Consequently we 
designed and manufactured our own module, although the start-up costs of such an 
approach put a high overhead on the cost of the small number of modules which we 
needed.

Taking advantage of the then currently available LSI technology, it was possible to 
design the module with the following features:

type 8085 CPU using 3*072 MHz clock;
Direct Memory Access (DMA) controller with four channels;
16 kbyte of EPROM (2 kbyte increments);
64 kbyte dynamic RAM with no refreshing overhead;
6  programmable counter/timers;
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type 2651 programmable Universal Synchronous/Asynchronous Receiver/Trans- 
mitter (USART) for intermodule bus communication;
Two hexadecimal digits display; 
eight sense switches; 
reset and interrupt pushbuttons; 
two serial I/O channels;
1 -byte, software-readable, changeable wired constant; 
support logic for the intermodule bus, including a relay; 
space for logic for personalising the module to support an I/O device. For ex­
ample, several modules have a controller and interface logic for doublesided 
flexible discs.

The four channels of the DMA controller were allocated to the I/O device (e.g., 
flexible disc), to the USART transmit channel, the USART receive channel, and to 
the automatic recharge channel for the latter.

The 2651 USART was chosen because of its high speed — we use it at 768 kbaud, 
in synchronous mode. A phase-locked clock divider extracts the clocking instants 
from the intermodule bus data. By using crystal-controlled transmission at nominally 
the same frequency in all modules, this scheme allows error-free reception for the 
message sizes and data content used in our intermodule bus protocol.

The direct store addressing capacity of the 8085 is 64 kbyte. The first 16 kbyte of 
this space is program selectable to be either the EPROM or the first 16 kbyte of the 
RAM.

It was important that no individual hardware failure could prevent the rest of the 
system working. The outline of the intermodule bus interface (Fig. 1) shows a relay 
contact at the boundary between the system (i.e., the bus) and the module. Opening 
the relay isolates the (possibly faulty) module from the system. We accept for the 
purpose of the experiment that the relay contacts and the copper wire bus connec­
tions are sufficiently reliable to cause no significant problem. To ensure that only 
healthy modules remain connected to the bus, the relay will open after, for 
example, ten seconds, unless it is retriggered by the software. In the isolated state 
the software can test all the intermodule bus interface hardware out as far as the 
relay contact, prior to re-establishing connection to the bus.

The original intention was that each module should have its own small power 
supply unit. However, all experiments so far have used a bulk supply for all modules.

2.4 System software

2.4.1 Overview: The system software in each computer is divided into two parts, 
the support-level software and the control program. The support-level software is 
hardware dependent and is common to each of the computers whilst the control 
program is machine independent and characterises the particular service that each 
type of computer provides.

The control programs were written in Sequential Pascal and a large part of the
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support-level software, (written in PL/M), is an interpreter based upon the Con­
current Pascal interpreter of P. Brinch Hansen. 2  The rest of the support level soft­
ware, called the kernel, is concerned with providing a simple interface to the 
hardware, mostly the transport mechanism for intercomputer communication. The 
contents of the messages sent between the computers is the responsibility of the 
control programs.

Fig. 1 Intermodule bus interface

A particular feature of Sequential Pascal is the program prefix. This is the mech­
anism by which an interface between the ideal machine and the real machine is 
defined in order that the Pascal programmer may manipulate the real machine 
resources. The kernel supports the prefix procedures defined for the control programs 
but a novel feature of our implementation is that a control program itself may also 
support a higher level of prefix procedures for use by user level programs. This 
provides a level of protection as user programs cannot access the message-generating 
code directly.

2.4.2 The kernel: The prefix procedures supported by the kernel include facilities 
to manipulate the Pascal heap, to transmit and receive data from local peripherals, 
to access timer facilities and provide the ability to transmit to and receive messages 
from other computers attached to the system bus. The code for this communications 
facility constitutes the majority of the kernel code and the mechanisms are described 
here in greater detail.
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Three actions are necessary in order that a control program can start receiving 
messages from another computer. The control program must specify its own name, 
it must provide a set o f buffers to receive the messages and it must cause the system 
bus relay to be closed to connect the computer to the system bus.

The control program provides an eight-character string which the kernel compares 
with the destination address of each message it receives, discarding those messages 
which do not match the name provided by the control program. This name can be 
changed at any time by the control program and may represent such things as the 
name of the disc volume which the control program manages.

As many buffers as required are provided by the control program to receive messages 
from other computers. The kernel initialises the DMA and the USART, so that any 
messages received are written into the control program buffers.

The control program indicates to the kernel when it wants the relay to connect the 
computer to the system bus. If the relay is to remain closed the control program 
must call the kernel at least once every ten seconds otherwise the computer is 
disconnected from the system bus. This safeguards against hardware or software 
failure causing the bus to  be jammed.

The control program may also cause a message to be transmitted by calling the 
kernel which will dispatch it once the ability to receive messageshas been established. 
The process of deciding which processor is to use the system bus next, that is the 
arbitration process, is distributed amongst all the participant processors and is 
based upon clash detection in the manner of Ethernet. 3  The kernel software is 
organised to detect clashes and to recover in an efficient manner by terminating its 
transmission quickly. If no clash occurs a message is sent out in full and on com­
pletion each computer which is connected will be interrupted by its DMA interrupt 
routine being entered.

There is no interrupt mechanism provided between the kernel and the control 
program, therefore the kernel must inform the control program of hardware activity 
via software flags associated with each message buffer and the control program 
must poll these flags.

The kernel is responsible for ensuring that messages passed to the control program 
contain no hardware-detected transmission errors. It is also responsible for detect­
ing clash conditions when two computers try to send messages at the same time and 
to recover from them in an efficient manner (i.e. clash conditions are invisible to 
the control program). It is the control program’s responsibility to recover from 
situations where messages are lost or misdirected when there is no hardware error 
detected within the computer supporting the control program. This is achieved by 
timeouts and message sequence numbers.

2.4.3 The control programs and their protocols: Two kinds of control program have 
been implemented, one to  control processing and the other to control storage 
computers. These have been named EXEC and SVOL, respectively. Each EXEC 
supports one user program at a time, providing it with facilities similar to  a typical
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microcomputer disc operating system, but with the additional facilities of check­
pointing and concurrent shared access to the filestore managed by the SVOL 
computers. Each SVOL manages only one storage device but can converse with 
many active EXECs, creating and manipulating files on their behalf. The SVOL 
control program offers the normal file facilities of create, delete, open, close, read 
and write. In addition it provides data recovery for files, by automatic recording of 
before-looks of updated records, and file- and block-level locking. These additional 
facilities may, as a user option, be omitted for any file, with a consequential saving 
in overheads in exchange for the reduced level of security.
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Fig. 2 Software structure

The underlying mechanism which allows EXECs and SVOLS to co-operate in safety 
is based upon the concept of commitment units which is at the heart of the system 
we are describing. When a user program starts, EXEC establishes a commitment unit 
series with each SVOL by sending a commitment unit introduction message which 
includes the starting transaction number for this series. SVOL will only allow the
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series to commence if the number is unique and, after commencement, will only 
allow EXEC to make file requests related to that number. File locks and recovery 
journals are related to the transaction number and in the event of the failure of an 
EXEC computer or the occurrence of deadlock situations, due to mutual exclusion 
of user programs from particular files, these trasaction numbers can be used to im­
plement the necessary actions for recovery.

For performance reasons details of file manipulation may first be recorded in 
volatile store and only later recorded permanently in the Local Integrity Journal. 
The exact implementation of SVOL is invisible to EXEC but EXEC can ensure all 
its actions are made permanent by sending the SVOL a ‘secure transaction’ message. 
This is the first phase of the ‘two-phase commit’ sequence and EXEC may send 
such messages to a number of SVOLs before going on to the second phase. The 
second phase involves sending each SVOL a ‘commit transaction’ message which 
moves the commitment series to a new transaction number. The SVOL action on 
receiving a valid commit message is to release any file locks and to discard recovery 
journals associated with the old transaction number.

If at any point SVOL is involved in a failure causing data held in volatile store to be 
lost, the SVOL will be able to return to the previous secured and commited state. 
Also EXEC itself may request SVOL to revert to the previous secured and commited 
state by sending a ‘rollback transaction’ message which will cause the release of any 
associated file locks and the implementation of any associated data recovery as 
recorded in its journals. It should be noted that commitment series in a ‘seciued’ 
state are immune to SVOL failures causing corruption of volatile store and EXEC 
has the choice to ‘rollback’ or ‘commit’ them as it chooses.

2.4.5 Job control: EXEC makes use of SVOL file facilities in order to provide job 
control and recovery as well as to meet the individual demands of the user programs. 
A shared file called ‘tasklist’ is maintained by each EXEC. It contains details of the 
user programs being run, including job parameters, program code file name and the 
last known status of the commitment series with respect to each SVOL. This file is 
duplicated on at least two SVOLs so that loss of one copy will not cause loss of 
control. In the event of EXEC hardware failure other EXECs may take over jobs 
detailed in the ‘tasklist’.

The current implementation of EXEC only allows job initiation from a terminal 
attached to the EXEC computer but the ‘tasklist’ implementation will permit 
future versions of EXEC to provide ‘batch facilities’ as well as the current inter­
active facilities.

2.4.6 User interface and application software: The experiment was to model a 
general purpose system, consequently the user interface was not designed for any 
specific applications but simply to allow user programs to take advantage of the 
special system features, namely file sharing and recovery.

EXEC allows user programs to create files which may be recoverable after failure 
and which may be shareable with other programs. If files have shared access they 
can have locking facilities at file- and block-level. The files may instead be simply
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manipulated in the manner of a single-user computer system.

Two special procedure calls are provided to invoke checkpoint facilities:

CHECKPOINT causes EXEC to commit all filestore changes made by this 
transaction since the last checkpoint, or start of program if no previous check­
point has been actioned;

ROLLBACK causes EXEC to request all filestore changes made since the last 
checkpoint to be undone.

Programs can ignore these special facilities in which case any filestore changes are 
automatically commited by EXEC when the program terminates normally or else 
automatically rolled back if the program terminates abnormally.

A number of application programs have been run on the system, either written 
especially for the system or originally for other systems. Two written for the 
system are described here. The purpose of the system development was to gain 
experience of implementing reliable systems and to demonstrate their abilities so 
there was a need for demonstration programs. The demonstration programs were to 
show that the system functioned, provided concurrent access to filestore, could 
recover from errors and would demonstrate fault containment to one computer. 
Performance was of much less importance for this experimental ‘model’ system.

The theme for these programs was that one or more files were modified by a number 
of separate programs which might also maintain separate files which needed to be 
kept consistent with the commonly accessed files. The simpler of the two programs 
was a ‘cash transfer’ program which allowed a number of bank balances to be 
credited or debited according to input from an interactive terminal. The records 
were maintained in one central file of which a duplicate copy was maintained. In 
the event of two transactions clashing in accessing a bank record they would 
automatically backoff and try again. In the event of the loss of one copy of the file, 
file updates would be suspended but balance enquiries would continue to be 
supported whilst a new second copy of the file was made available.

The second program was a Transport Pool Management’program. This manipulated 
a duplicated central file holding details of cars in a transport pool together with 
details concerning their maintenance and current ownership. In addition there were 
separate files for each department hiring cars from the pool which contained details 
of their present car holding together with their maintenance requirements. Cars 
could be hired from the transport pool and returned on or before a specified date. 
On return the files were updated to include the department’s maintenance require­
ments. This program provided facilities to simulate hardware failure during critical 
periods when the various files were in an inconsistent state and to check the consis­
tency of the files after error-recovery action had been taken.

These two programs have been demonstrated to run with a wide variety of system 
faults present, showing the system features that they were intended to show, i.e., 
concurrency, error recovery and fault containment. In addition they have provided
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initial information on the suitability of the user interface. One particular aspect was 
the choice of making the provision of duplex file copies a user responsibility. This 
was easily handled but there could be benefits in the provision of an automatic 
duplex file facility by EXEC. Any future study will involve providing an environ­
ment in which programs written for a normal environment can be made to make 
full use of the system’s special resilience features without themselves being modi­
fied.

3 Development experience

The elapsed time of development described in this paper has been approximately 
20 months but was spasmodic until the last five months, mid July to mid-December 
1979. The hardware design and commissioning took ten man-months, whilst the 
provision of software tools and implementation of the support level software took 
about the same amount of effort. These two activities were supported by four 
individuals. From July 1979 onwards a further eight man-months’ effort was used 
in integrating the system. The control programs were based upon those written for 
the software-modelling exercise.

The system simplicity and modularity contributed substantially to the ease of 
development. The hardware development was progressed with a dedicated monitor 
program in EPROM which was retained in the final version of the computer. The 
support level software was developed in a modular fashion with separate develop­
ment programs to test the message transport mechanism, Pascal interpreter etc.

The dedicated monitor EPROM was 2 kbytes in size and provided facilities to 
manipulate all the hardware on the board via a video keyboard as well as retrieving 
and storing programs on the flexible disc drives. The support level software totalled 
just more than 8  kbytes of which 6  kbytes was the Pascal interpreter. A bootstrap 
written in Pascal used to load control programs from a local disc drive or from 
another SVOL was programmed into 4 kbytes of ROM. This bootstrap also displays 
diagnostic messages in the event of control program failure.

The SVOL control program source was 2000 lines and compiled to under 20 kbytes. 
A test control program acting as an EXEC was implemented to test SVOL in a 
systematic manner, allowing SVOL to be fully tested when only two single-board 
computers had been commissioned. The EXEC control program source was 1500 
lines and compiled to 15 kbytes. Test application programs were implemented to 
exercise the user interface and test the EXEC ability to detect and report user 
program failures.

During the last six months development was made particularly easy by the modular 
nature of the system and the only bottleneck was the reliability and availability of 
the mainframe link for down-loading of the control programs. There was sufficient 
opportunity for parallel activity that the entire system could have been developed 
in less than nine months from the end of the software modelling experiment.

The system performance was seriously impeded by the use of flexible disc drives; 
the slow speed of the Pascal interpreter was another significant performance factor.
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The Pascal interpreter executes at about 1250 statements per second (4 to 5 op 
codes per statement). EXEC accesses file data in 256-byte blocks and each SVOL 
can supply three blocks per second or update two blocks per second on behalf of 
EXEC when no before-look journalising is involved. When journalising and block 
locking is involved file updates take almost two seconds per block. The current 
configuration of three EXECs and two SVOLs imposes only a very light load on the 
intercomputer transport mechanism which is capable of supporting 2 0 0  block 
transfers per second.

There are many ways of improving the performance such as the use of hard discs 
and by track buffering in RAM, also interpretation can be replaced by direct code 
execution. The object of the development exercise however was not to provide a 
high-performance system but to provide one which had the extra reliability features 
without significant extra overheads. The present system overheads for data recovery 
and checkpointing are not so great as to indicate the impracticability of the principles 
and further study should indicate more efficient control program message protocols. 
The current development has provided us with a system which is easy to program, 
to modify and to expand and will support such studies.

4 Conclusions

We have shown by this experiment that implementation of a small system based on 
our principles is feasible in a reasonable time with limited resources. We have shown 
that loosely coupled computers can co-operate in performing a particular type of 
workload with reasonable overheads and that many types of fault are contained by 
this system, allowing other work to proceed. We have shown that jobs which have 
suffered a failure may be returned to a previous state very simply and that they 
may then be restarted on the same or different hardware.

We have not shown that these provisions will support all types of workloads nor 
that a general-purpose operating environment such as VME/B with 1DMS can be 
implemented on such a substrate — although we believe that it can. We have not 
shown that multiple eight-bit microcomputers are an adequate substitute for a 
medium-scale mainframe nor do we believe that to be generally true.

We intend to continue this work using our system. There is some tidying up to do 
and there are several interesting lines to follow. A fuller control environment sup­
porting Batch, MAC and online applications will be developed. We shall extend the 
system to allow programs in languages other than Pascal. COBOL has some obvious 
attractions. We would like to attach hard discs as well as improve our implementa­
tion of SVOL with flexible discs. We have a high-resolution raster-scanned VDU 
which we intend to attach to provide text-and diagram-processing facilities. Further 
applications will also be written which will allow us to exercise the concurrent 
execution properties of our system usefully.
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Flow of instructions through 
a pipelined processor

W.F.Wood
ICL Product Development Group, Technology Division, Manchester 

Abstract
The paper describes the treatment of pipelined processors by both analytic 
and discrete-event simulation models and emphasises the importance of 
analytical models in decision making. The results obtained show that 
intrinsic delays in a pipeline may easily be erroneously attributed to 
extraneous factors such as store-accessing delays or jumps in instruction 
sequences.

1 Introduction: basic ideas on pipelines

A characteristic of many large computers or Order Code Processors is the simul­
taneous execution of several instructions. A common way of organising this is the 
use of a ‘linear pipeline’; in this the execution of several instructions from a sequence 
is overlapped, so that at any instant each instruction is undergoing a different phase 
of its execution. The processor then consists of a number of distinct functional 
units, each corresponding to a different phase of execution.

An example of a linear pipelined machine is the ICL 2980. Its division into 
functional units depends on 2900 System architecture, in which each batch job or 
terminal session has its own set of virtual store segments. Access to these is obtained 
via ‘descriptors’ which contain information about the location and nature of data. 
Included within each set of virtual store segments is one segment, known as the 
primary operand segment, to which direct access is possible. This segment may be 
used as a last-in-first-out stack containing frequently-used operands and descriptors. 
It frequently happens that a descriptor in the primary operand segment is used to 
access data in other segments. Thus there are two phases in the execution where 
store access for operands may take place, and computation may be necessary for 
stack manipulation and descriptor modification as well as for the performance of 
operations explicitly described in user procedures.

The pipeline stages within the 2980 processor correspond to the following tasks:

(a) instruction fetch;
(b) instruction decode and the generation of primary operand address;
(c) primary operand fetch;
(<d) generation and modification of addresses for indirect operands;
(e) indirect operand fetch;
( /)  string handling and performance of arithmetic on operands;
(g) writing to store.
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linear pipelines are a feature of other 2900 machines also. These do not all follow 
closely the 2900 architecture as defined at the machine instruction level, or more 
precisely the primitive interface level, PLI. The instructions passed down the pipeline 
may be not PLI instructions but instructions which provide an interpretation of a 
PLI sequence.

2 Prima facie expectations of performance

We may expect prima facie that in the absence of delays due to extraneous factors 
the throughput of a pipelined processor is governed by the ‘instruction rate per 
stage’: one instruction leaves the last stage at this rate, while every other stage 
passes an instruction along the pipeline. The first evident drawback is that the tasks 
performed at the various stages do not take the same time. Recognising this leads to 
the view that the intrinsic rate of instruction processing is that of the slowest 
stage -  the ‘bottleneck’. This is a common view of pipeline processor throughput; 
for example, it is implicit in the equations for pipeline efficiency given by 
Ramanoothy and Li1.

This manner of looking at throughput would be justified if the time to process an 
instruction were constant at each stage. In practice what tends to happen is that a 
high proportion of instructions are dealt with relatively quickly whilst progressively 
smaller numbers take longer and longer. For example, in a machine with a stack, 
code will be prepared in such a way that as far as possible access is made to the top 
of the stack or to other locations which are easily accessible by the use of pointers. 
Some instructions may however require arithmetical operations to be performed 
before the required location is computed, others may require stack manipulations 
and relatively infrequently a complete change of stack will be necessary.

Since instruction time per stage is not constant even the slowest stage is not always 
busy, and stages with a short average instruction time will sometimes cause holdups. 
Consequently the throughput is not the rate of the slowest stage but is determined 
by the products of the mean instruction time for a stage and the probability that 
that stage is usefully busy.

The danger in ignoring the variability in instruction time per stage is that, arguing 
a posteriori from the difference between calculated and observed performance, 
external factors such as store accessing or the presence of jump instructions will be 
held entirely responsible for failure to meet the ‘theoretical’ figure. Delays in 
accessing store do of course reduce processor performance and jumps can have a 
particularly important effect in a pipelined processor because a number of instruc­
tions following a conditional jump may already be partly executed when the jump 
instruction is executed. But if intrinsic pipeline delays are ignored the effects of 
these will be exaggerated and other possible ways of improving performance may be 
overlooked. For example, one way of reducing the idle time of pipeline stages is to 
place buffers between stages; if some sources of delay are ignored then the 
optimum placement of buffers will not be achieved.

Because there is overlap between the different types of delay, a reduction in any 
one will not necessarily produce a correspondingly large improvement in per­
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formance. Recognition of the fact that instruction time per stage is not constant is 
more realistic and more satisfactory theoretically than the ‘bottleneck’ approach.

3 How instruction time variability may influence throughput

In 1977 an analysis2  was carried out to estimate the performance of a four-stage 
linear pipelined processor based on what was known in ICL as the ‘primitive 
processor’. The primitive processor was developed as a general processor for use 
throughout the system, that is both within and without the order code processors 
(OCPs). An OCP could include one or more primitive processors, together with 
other units such as slave stores and decoders. 3  As part of the task of estimating 
system performance an estimate of the intrisic performance of the OCP was re­
quired.

The state of a pipelined processor is determined by the states of its component 
stages. In the absence of store delays and jump instructions a stage may be:

(a) busy ( 1 ), i.e. actively processing an instruction;
(b) waiting (0 ), i.e. awaiting the next instruction;
(c) blocked (b), i.e. unable to pass an instruction.

If there are no buffers between stages a stage will be blocked if on completing its 
work on an instruction it finds the next stage busy or blocked. In short, if there are 
no complicating factors such as conditional jumps a linear pipeline may be treated 
as a sequential service line. 4

For the purposes of a theoretical analysis we have to make some assumptions about 
the distribution of instruction times, and these must be both in reasonable accordance 
with what we know about these times in real machines and such as to enable us to 
make some progress with the mathematical treatment. We make two assumptions 
here.

First, that the behaviour of successive instructions in the pipeline is statistically 
independent of that of other instructions, and that the times taken to service the 
same instruction at different stages in the pipeline are also statistically independent.

Second, that the instruction times have what is called the Markovian character: 5 

that is, that if work on an instruction has already been in progress for a time t  then 
the probability that this will terminate in the next small interval dr is proportional 
to dr and is independent of r. In other words, the time the system has spent in a 
particular state plays no role in th  calculations. This leads to the negative exponen­
tial distribution of instruction times, as follows.

Let P(t) be the probability that a stage is still busy working on an instruction at a 
time r after receiving that instruction; this is the same as saying that the instruction 
time is at least t. The probability that this will terminate in the interval (r, r + dr) is, 
by the assumption, fx dr where n  is a constant, so the probability that it will not 
terminate in this interval is 1 -  ju dr. Therefore the probability that the stage is
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still busy at time r + dr is P(t) [ 1 -  judt] But this is P(t + dr), so we have

P(t + dr) -  f (0  = ~uP(f) dr. (1)

Hence dP/dr = -yP  and P(t) =Ae~*lt and because all instructions must have a time 
greater than zero, the constant of integration^ must be 1 and

P(t) = e - ^ .  (2)

This is the negative exponential distribution.

The proportion of instructions which have a life of between t and f + dr is 
P(t) -  P{t + dr) = ju P(t) = jue~^f, so the mean time is

tm = T  Pt e_#Wdt = 1 /m,
Jo

i.e. if the mean time for an instruction is tm then

M=1 ltm - (3)

The Markovian assumption enables us to set up a mathematical model of the system 
which we can handle. The negative exponential distribution of instruction times is 
in reasonable accord with that we observe, which is that short instruction times are 
relatively frequent and longer times progressively less frequent. Also, experience of 
analysis of queuing systems (of which this is an example) shows that the assumption 
of negative exponential distribution of things like waiting times gives at least 
qualitatively sound results in a very wide range of circumstances.

All changes in the pipeline result from a busy stage completing an instruction, and 
as the rate at which a busy stage completes instructions is constant (the Markovian 
property assumed), a statistically steady state exists. This steady state can be 
calculated from a set of dynamic equilibrium equations which show how the prob­
ability of leaving any particular state is balanced by the probability of reaching it 
from all other possible states. We can now set up these equations.

As we are considering the intrinsic performance of the pipeline we may ignore the 
effects of any delays in accessing the store and regard the first stage, the ‘instruction 
fetch’ stage, as the generator of tasks for the later stages. The rate and distribution 
of instruction arrivals is then determined by the service-time characteristics of the 
first stage. The state of the pipeline, because of this decision regarding the first 
stage, is that of the three following stages and may therefore be represented by a 
triplet of symbols, each giving the state of one stage. Thus (b,l,0) represents the 
state in which the second stage is blocked, the third is busy and the fourth is 
waiting. We denote the probability that the system is in this state by Pb 1 0  and 
correspondingly for other states.

Two factors simplify the calculation:

(a) in the absence of extra-processor holdups the final stage is never blocked; 
so no state (*>*,b) can arise and therefore P,*b = 0. Here of course *can 
be any of 1 , 0  or b;
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(6 ) for this particular machine the first (instruction fetch) stage had a quicker 
and more even rate of processing than the following stages, because of the 
simpler tasks which it performed and the presence of slave registers. We 
were therefore able to ignore the possibility that the first stage kept the 
second stage waiting, so no state (0,*,*) can arise and P0*» = 0 .

The possible transition paths between the various stages are shown diagrammatically 
in Fig. 1. The constants ju2, M3 , / 1 4  are the mean instruction rates for the second, 
third and fourth stages, respectively; these are the reciprocals of the corresponding 
mean instruction times.

Fig. 1

With these values, the equilibrium equations are:

P-l? 100 =  M4^101 ( 4 )

0*2 +  /-(4 )-^ 1 0 1  =  M4 P lb l  +  P 110 ( 5 )

0*2 +  M 3 )A lO  =  1*4-^111 +  M2A 0O ( 6 )

0*2 +  M3 +  /*4 )  A l l  = /*4^661 +/*3^610 +  M2 A 0I ( 7 )

0*2 + /* 4 )  Plbl =/*3^111 ( 8 )

0*3 + /* 4 )^ 6 1 1  =  A*2-̂ *111 ( 9 )

/*3^610 =  M2 P 110 +  M4^611 ( 1 0 )

M4-F&S1 =  M3^611 +  M2 P 161 • ( 1 1 )

With the restrictions on the first and last stages given above, every possible state is 
accounted for in the left sides of the set of equations; and each left side gives the
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probability of leaving a particular state whilst the right side gives the probability of 
reaching that state — the details of the derivation are given below. The equations as 
they stand, being homogeneous in the probabilities Pi00 etc., determine only the 
relative values of these; the absolute values are then determined by using the fact 
that because these represent the only states which can occur, the sum of the prob­
abilities must be 1: therefore

2  P = 1, summed over all states. (12)

3.1 Derivation o f  the equilibrium equations

As an example, consider eqn. 5 which deals with the state P 0̂1. In this state the 
second and fourth stages of the pipeline are busy and the third is empty and waiting, 
and can change only if either the second or fourth stage completes an instruction. 
The probability that the first event occurs in an interval dr is ju2 dr and that the 
second occurs is p4 dr; and therefore, since they are independent, the probability 
that one or other occurs is (p2 + ju4) dr. The probability of both occurring in the 
interval dr is of order (dr)2 and is therefore negligible when dr is small. Therefore 
the probability that (a) the system is in the state (1,0,1) at the instant under 
consideration and (b) it changes to a different state in the next small interval dr is 
(ju2 + M4 ) A 0 1  dr, which is the left side of eqn. 5 .

Consider now the states from which (1,0,1) can be reached directly: the only 
possibilities are (1 ,b, 1) and (1,1,0). If the initial state is (1 ,b,Y) and the fourth stage 
completes an instruction then the third stage becomes unblocked and the fourth

immediately starts working on the new instruction it has received; this gives the 
state (1,0,1) because the probability of a simultaneous change in the second stage, 
which would lead to the state (1,1,1), is of second order. The probability of this 
change occurring in the interval dr is ju4 dr and therefore of the system being in the 
state (1 ,h,l) and changing to (1,0,1) in the next interval dr is PaPim dr. The change 
from (1,1,0) to (1,0,1) corresponds to the third stage completing its work on an 
instruction and passing the instruction to the fourth stage which initially was 
waiting; and the probability here is P3P110 dr. So the total probability of changing 
into the state (1,0,1) is [p4JPlw + PaAio] dr and equating this to the probability 
of changing from this state, and dividing by dr, gives eqn. 5. The other equations 
are obtained by the same type of argument.

3.2 Calculation o f  the throughput

Let us write P2 for the probability that the second stage of the pipeline is busy, 
and similarly of P2 ,P*. Since a blocked stage cannot precede an empty stage these 
are given by the following relations:

P2 ~ P101 +P m  + Puo +Pifti + A n

P3 -  Pi 1 0  + Pbio +Pm  (13)

Pa =Pi 0 1  + Plbl +Pbbl +Pbll +P\ 11
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If we define the throughput of the pipeline as the mean rate at which instructions 
pass along it, then since the constants m give the rates at which busy stages process 
instructions, the throughput is

T  = fi2P2 = JU3 P 3  = m4 P4. * (14)

We are more interested here in the effect of the variability of the instruction times 
on the throughput than in the details of the primitive processor, so we may reason­
ably consider the simplest possible case, in which the mean rates are the same for 
each stage.

If we put A*2 = M3  = = M> say.in eqns.4-11 we get, on cancelling /a,

Aoo =■P101

2 P1 0 J = P\b\ + -^ 1 1 0

2 P1 1 0 = / • 1 1 1 + Pioo

3Pm = Pbbl + PblO

2Pi*i = Plll

2Pbn -P i  11

P
^ 610  = ^611 + P l lO  

Pbbi =? b n  + Afti-

Solving these in terms of ratios to PU 1  we get

(4a) etc

Pi 0 0 P101 A 10 ■̂ 161 P/bll Pb 10 Pbbl (15)

2/3 2/3 5/6 1 / 2 1 / 2 4/3 1

From the fact that the Ps sum to unity we then get Pm  = M and finally

P2 =P3 =P 4  =%-»=  0-564 m

so the throughput T= 0 • 564 m (16)

The point to be emphasised here is that if the instruction time per stage were 
strictly constant and equal to fj. then the rate of processing for the complete pipe­
line, which is what we have called the throughput, would also be constant and equal 
to /1 . The result we have just obtained shows that when these instruction times vary 
with a negative exponential distribution about a mean / 1  the throughput is only a 
little more than half that rate.

♦The equality of the three products expresses the fact that there is no net accumulation of 
instructions at any stage; it can however be deduced from the equilibrium equations (see 
Appendix).
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It is instructive to compare the loss in throughput resulting from variability in 
instruction times with that which results from the presence of jump instructions. 
To make sure that we do not underestimate this effect let us suppose that no jump 
is actually executed, and that no change in the instruction stream actually takes 
place, until a jump instruction has been processed by the last stage in the pipeline. 
That is, that it is not known until this stage whether or not the jump instruction 
will be obeyed and that therefore the interval between the jump instruction and the 
instruction which follows it is the time for the former to pass all the way along the 
pipeline. Thus if the mean instruction rates for the four stages are p 1( p2, M3 , M4 , 
respectively, then the mean waiting time is

W ^l/M r +I/M 2 +1/M3+ 1/M4- (17)

This assumes that the mean times per stage for instructions which follow jumps do 
not differ from those for other instructions. The mean instruction time in the 
presence of jumps is therefore

4 Effect of jump instructions

W = WfP, + (1 -  P,)IPcH4, (18)

where Pj is the proportion of instructions which are successful jumps

P c is the probability that the last stage is busy in the absence of jumps.

Consider again the case p 2  = p 3  = p 4  = p. Again to ensure that we do not under­
estimate the effect of jumps let us allow as much time for the instruction following 
a jump instruction to traverse the first stage of the pipeline as it takes for each of 
the succeeding stages; the mean instruction time is then

W = Pj.  4/p + ( 1 -  Pj)IPcn.  (19)

As a reasonable value take the proportion Pj  of jumps as one in five instructions. 
If the instruction time per stage is constant then i^  = 1 and the mean waiting time is

W = 1*6 /m

so the throughput is T  = 1 /W = 0- 625 p .  (20)

For the negative exponential case we found th a t/^  = / 4  ?  0*564p which with 
eqn. 19 gives

W = 2 -2 2 /p

and throughput T  = 0*45p. (21)

In practice we have store access time to consider as well as jumps and any com­
parison between observed and calculated throughput would be complicated by this. 
However, comparison of the results obtained above for the effects of jumps and of 
instruction time variability, respectively, shows how easy it can be to attribute loss
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of throughput in the pipeline to the wrong causes; and how the ignoring of instruc­
tion time variability could lead to bad decisions on design. For example, a policy 
of fetching instructions in advance from two or more streams could be adopted as 
a consequence of putting too much emphasis on the effect of jumps.

5 Effect of buffers

It has already been remarked that a possible way to increase the throughput of a 
pipeline is to place buffers between some, or all of the stages. The effect of such 
buffers can be calculated by the same type of process as that just given. If the time 
which a buffer takes to pass on an instruction and its related data can be ignored, 
the new situation is one in which the number of stages remains the same but the 
number of possible states has increased. A stage may now be waiting, or if busy or 
blocked may have one or more instructions present. For example if the buffer 
capacity is one instruction the stage to which it belongs is either:

(a) busy with buffer empty;
(b) busy with buffer full;
(c) waiting;
(d) blocked with buffer empty;
(e) blocked with buffer full.

The equations for the statistical equilibrium can be set up as before and solved to 
give the probability of each state of the pipeline and hence the throughput. If the 
buffers introduce delays these can be treated as additional stages in the pipeline 
with short instruction times and with capacity to hold one or more instructions, the 
pipeline stages proper having capacity for one instruction only.

6 Example: throughput calculation based on observed data

Another investigation of pipeline throughput carried out in 1977 was undertaken 
as part of one proposal for a medium-sized processor.6 >7 This machine was designed 
to the 2900 PLI so that although instructions passing down the pipeline were not 
PLI instructions (see p.60) it was possible from analysis of programs run on earlier 
machines to estimate the frequency of each instruction type and hence instruction 
times within the pipeline units. A different method of calculation was used; this 
section compares the results obtained by that method and those obtained by using 
the linear service line method which has just been described.

6.1 Original calculation for the proposed machine

The machine contained two stages, an address generation unit, AGU, and a comp- 
putation unit, CU. It was a synchronous machine. The instruction time at each 
stage had a discrete probability distribution, each instruction taking an integral 
number of machine beats. Again the primary objective was to discover the intrinsic 
throughput of the pipeline, postponing consideration of complicating factors, such 
as cases where an instruction in the first stage could not be processed until the 
result of an instruction in the second stage was known. Thus our first task was to 
estimate those delays which occurred because the time needed to complete the 
instruction present in one unit at a given moment was not the same as that need for 
the instruction then in the other.
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As a first step we may calculate either the time for which the AGU is blocked or 
the time the CU spends waiting. Choosing the latter, let

W be the mean number of beats per instruction which the CU is waiting

Gn be the number of beats which the AGU spends processing instruction n in a 
sequence

R „_ j be the number of beats which the CU spends processing the preceding 
(« -1 th) instruction

P(Gn=XJtn= Y) be the probability that G„=X and R n- Y  where X , Y, are 
integers

Then W = ^ Y  ( X -  Y)P(G„=X,R„=Y). (22)

Strictly, in this equation we should be talking of the duration of instruction pro­
cessing in a stage only if work starts on an instruction in both stages at the same 
time. It does in fact happen that whenever the CU starts work on an instruction this 
has just been cleared from the AGU, so this also starts work on a new instruction.

A reasonable assumption is that the duration of an instruction is independent of 
that of its predecessor, in which case the events Gn and R„_ t are independent. With 
this assumption eqn. 22 becomes

W = X > Y (X - Y)P(G = X )P (R  = Y) (23)

and now G is the duration of an instruction in the AGU and R  the duration of an 
instruction in the CU.

Hence W = n ^ 0 P(R = n) = n + m ). (24)

When at work on a sequence of instructions, the machine processing rate is the rate 
at which instructions leave the CU, which is

Tc  = 1/(W + Y) (25)

and the probability that the CU is busy is

PCb = Y I(W  + 7 ). (26)

Using eqn. 23 we can calculate these values if we have information on the distribu­
tions of instruction times in the AGU and CU. Two sets of such information were 
available representing two different types of work. The times for one of these sets 
are given in Table 1 and the corresponding probabilities in Table 2. From these, 
and assuming that ‘variable’ instructions all take only 16 beats, we get

A!" = 5* 18 beats, Y  = 6*11 beats

and from eqn. 24, 

W = 1‘83 beats
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Table 1 Instruction times used in para. 6.1

Weighting 
(relative frequency)

AGU beats CU beats

6*6 4 7
1*7 7 8
0*7 12 13
7*3 5 2
6*2 3 2
1*3 12 8
0-5 12 8
2*2 12 2
4*4 3 10
3-0 7 4
0*3 2 13
0*9 8 8
2*8 7 2
0*8 0 11
0*6 3 11
0*7 3 7
0*3 2 16
0-6 3 56
0*2 12 16
0*7 12 8
3*0 3 2
1-3 1 variable

Table 2 Frequency distributions of instruction times of Table 1

AGU beats

Riits<

CU beats P(R = Y)
X Y

0 0*0174 2 0*4664
1 •0282 4 •0650
2 •0130 7 •1584
3 •3362 8 •1106
4 •1432 10 •0954
5 • 1584 11 •0304
7 •1627 13 •0216
8 •0195 16 •0108

12 •1215 56 •0130
variable •0282 (value 16 taken)

Mean 5*18 Y 6*11
Variance 9-24 variance 48*3
Std. dev. 3*04 Std. dev. 6-95

and hence, from eqn. 25 and 29,

throughput Tq = 0*126 instructions per beat

CU occupation = 0*67.

6.2 Calculation based on linear service line model

In this case there are only two stages in the pipeline and the possible states are, 
with the previous notation, (b ,l), (1,0), (1,1).
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The equilibrium equations are

M2  Pbl ~ Mi Pn

Mi Pi0 = Ma Pn (27)

(Mi +M2 )P n  = Mi Pm +M2  /* * 1

where Mi, M2 afe the mean instruction rates for the AGU and CU, respectively, 
and the normalisation equation is

P u  + ^ 6 i + A o = 1- (28)

From these,

^ 1 1  = 1/[1 +(M \  +M 2 VM1 M2 ]

Pbi = (Mi /M2)Ai (29)

Pi 0  = (M2 /M1 ) A i •

Since the instruction rates are the inverses of the instruction times, these are 
equivalent to

Pn = X Y / [ X Y + X 2 + Y 2]

Pbi = Y 2/ [ X Y + X 2 + F 2]

Pl0 = X 2 / [ X Y + X 2 + F 2]

and with the values of X , Y  used previously we get

Mn =0-330, Pbl =0-390, PC b=Pn  +Pbt =0-720.

Then the throughput is Tc  = iiiPCbjY  = 0-118 instructions per beat.

This value for throughput has been calculated on the assumption that theinstruction 
times are negative exponentially distributed about the observed means A', T; and it 
agrees well with that calculated in the preceding section, using the observed distri­
bution.

An indication of the extent to which the observed distribution times departs from 
the assumed negative exponential is given by the value of the coefficient of 
variation, which is the ratio of the standard deviation to the mean. For any negative 
exponential distribution this is 1 (or 100% as it is usually quoted), because the 
mean and standard deviation are equal. From Table 2, the values are 59% for the 
AGU and 114% for the CU.

The results for the two sets of observed data are summarised in Table 3.
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Table 3

Sample 1 Sample 2
AGI: Mean beats X 5.18 4*5

Variance 9*24 3*81
Std. dev. _ 3*04 1*95

CU: Mean beats Y 6-11 6*80
Variance 48*30 86*60
Std. dev. 6-95 9*31

CU mean waiting W 1-83 1*46
CU occupation P(^b 0'72 0*79
CU throughput Tc 0*118 0*116

6.3 Difficulties in the service-line treatment

Three difficulties encountered in this method of treating the problem have already 
been mentioned:

(a) jumps;
(b) distribution of instruction times departing from negative exponential;
(c) delays due to store accessing

A method for correcting for jumps has been described in para. 4. Instruction time 
distributions which are not negative exponential can be dealt with by treating a 
stage as an assembly of cells. Stages with a coefficient of variation smaller than that 
of the negative exponential (that is, less than 100%) can be treated as a sequence of 
exponential stages, only one of which may be occupied at a time. Stages with greater 
than 100% variation can be treated as a set of cells in parallel: each instruction 
enters one cell and one cell only, the probability of entering a given cell being fixed. 
Again each cell has a negative exponential distribution. In both series and parallel 
cases the man processing rates of separate cells differ and are fixed so as to simulate 
the characteristics of the original stage.6 Once we have dropped the assumption of 
exponential services times, store accessing delays can be treated as part of the 
instruction time of the stage making the access.

There are however other problems:

(a) not all instructions proceed to the end of the pipeline;
(b) certain phases of some instructions keep two or more stages busy simul­

taneously;
(c) the presence of certain types of instruction may inhibit the progress of 

certain other instructions.

Instructions which do not go to the end of the pipeline are simply those whose 
execution requires only the earlier stages. Cooperation between stages may be 
required when, for example, a stage with limited arithmetic facilities needs to 
perform a multiplication which can be done more rapidly by recourse to a special 
unit. Inhibiting the flow of instructions will be necessary, for example, when one 
instruction needs to make use of a modifier and a later instruction is an explicit 
‘set modfier’ command.
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These problems can be dealt with in the sequential service line model, as has been 
indicated. But their combined effect is to  make a different method of treatment 
more attractive, the method of discrete event simulation, which we now describe.

7 Treatment by the method o f discrete event simulation

This method avoids certain of the mathematical difficulties inherent in the service­
line approach by providing a model in which the significant events and the times at 
which they occur are represented directly. Problems will still arise however in 
ensuring that the statistical information used by the model is representative of what 
happens in practice.

7.1 ICL program SIPI

In 1978 a discrete event simulation program called SIPI was produced, to provide 
a means of studying the behaviour of linear pipelines.7 When applied to OCPs the 
program could be used, for example, to help in deciding the optimum number of 
stages: that is, it was intended for use at relatively early stages of machine develop­
ment. Previous applications of this method to the study of pipeline throughput had 
been concerned with particular machines and had used actual instruction sequences. 
SIPI was used in the early stages in the design of a machine known as S4.

SIPI, written in Algol 60, uses the event-scheduling approach.8 By producing our 
own simulation control routines using a general problem-oriented language we were 
able to get direct access to tables of scheduled events. This was desirable because 
the method used for dealing with jumps required the removal of scheduled events 
before they were due to be executed. The simulation model embodied in the program 
is at the same level of abstraction as the service-line model but was more complete. 
That is, instruction sequences are represented by the instruction times required at 
each stage and the times of individual instructions are assumed to be independent. 
On the other hand each of the factors such as interstage dependencies which 
interrupt the smooth flow of instructions is dealt with directly not as a correction 
or as if an afterthought.

The essential inputs to the program for a simulation run are:

the number of pipeline stages;
the times to process instructions at each stage;
an indication of whether or not a stage has a buffer, and if so, the size.

There are two methods by which the user can give the distribution of instruction 
times for each stage. There are standard distributions such as the normal or the 
negative exponential which have explicit mathematical forms depending on a few 
parameters such as the mean and variance, or the mean only in the case of the 
negative exponential. In these cases the form can be specified and the parameters 
given, and sample values generated from random numbers. In other cases, where 
the distribution is empirical, the user may input details in a form similar to Table 2. 
SIPI then rearranges the data in a form suitable for addressing with the help of a 
pseudo-random number generator, and during a simulation run each delay is selected 
with the appropriate frequency. In this second type of input the mean and standard 
deviation are calculated by the program and provided as part of the output.
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For store-accessing delays it is necessary first to specify which stages may access the 
store; then the delays may be stated in one of the forms used for presenting the 
instruction times. The tabular form of input is useful for representing store hierarchy, 
in which case there are discontinuities in the curve of delay against probability.

To deal with interference in the operation of two stages, the stages concerned are 
specified and the probability given that this particular form of check to instruction 
flow occurs. Other inputs give the proportions of instructions completed at each 
stage without passing to the end of the pipeline, the proportions of jump instruc­
tions and specify the stages on which the different classes of jump depend. Since 
input data are likely to have been obtained from extant machines and ratios are 
likely to be available in terms of completed instructions, the program can treat such 
things as the proportions of jump instructions as ratios between completed instruc­
tions. Adjustments must then be made within the program in applying the data to 
events which occur as the instructions reach the different stages of the pipeline.

The frequencies of occurrence of the different types of instruction are assumed to 
be independent. The corresponding events during a simulation run are generated 
using a pseudo-random number generator in accordance with the probabilities 
implicit in the input data. The state of the pipeline of the machine being studied is 
held as an array of integers describing in coded form each stage as ‘blocked’, ‘busy’, 
‘full’ etc. The completion of an instruction at a stage is an event scheduled when 
work begins on that instruction within the stage.

7.2 Treatment o f  jumps and interstage interference

Execution of a jump involves clearing the instructions following it, which implies 
aborting scheduled events in the simulation model. The representation of interference 
between stages in the target machine takes the following form:

first the earlier of the two stages is ‘forced’ to remain in the busy state without 
passing on an instruction, until the later and all intervening stages are cleared of 
instructions by completing work on instructions in the normal way.

then the instruction in the earlier stage is allowed to pass along the pipeline.

Depending on the type of interference being simulated, the second phase may or 
may not involve preventing instructions moving down the pipeline

finally the later stages having been cleared by the instruction o f interest, normal 
flow is again permitted.

As we enter further into the details of the ways in which the operations of different 
stages may interfere with one another, and of the problems of preserving consistency 
in our model (such as arise when a jump emanates from a stage between two co­
operating stages), we leave the world of abstract models for that in which a detailed 
simulation of the execution of instruction sequences is required.

7.3 Example: some results o f  simulation runs with SIPI

To give an idea of the flexibility of the SIPI program and of the information it can
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provide, Tables 4 -7  summarise the main results of four runs. These all refer to a 
fictious eight-stage machine with a beat time of 80 ns in which store accesses can be 
made from stages 1,3 and 5. Stage 6 is simply a buffer of capacity nine instructions, 
including partial results, and a processing time of 1 beat per instruction; all other 
stages can be provided with buffers which do not contribute to the time taken to 
process an instruction. Interlocked stages always involve stages 2 or 4 as first stage 
and stage 7 as second stage.

Table 4 Run 1 Buffered
Time 8079 beats = 646ms
Instructions processed 2160 = 3*34 mJ.p.s
Jumps executed 268 Interlock instructions 167 Early-finish instructions 1074

Stage 1 . 2 3 4 5 6 . 7 . 8

Mean insti. time
(beats) 1 . 1»5*. 2* . 1

Buffer capacity 1 . . . 9 . 1

State at end full,busy . busy empty . empty . empty . empty . busy empty
Instr. in stage 2 0 . 0 . 0 . 0 0
Instr. processed 3104 2862 . 2418 2004 . 1654 1560 . 1501 818
Jumps 0 0 . 0 142 . 0 0 . 126 . 0
Insti. end here 0 170 . 700 . 146 0 . 0 . 557 . 818
Store accesses 453 0 . 75 . 0 . 103 0 0 0
Blocks begin here 0 68 0 . 98 . 0 . 0 0 . 0
Blocks end here 0 0 . 0 . 0 0 0 166 . 0
Percentage of time empty 0 33 . 44 47 . 69 76 64 . 90

busy 78 52 . 39 . 4$ . 31 20 . 36 . 10
blocked 22 15 17 . 5 0 . 4 0 . 0

"Instruction times marked thus are the sum of a constant and a negative exponential term. 
Others are constant.

Table 5 Run 2 Unbuffered, instruction times as in Run 1
Time 8449 beatss 680ms
Instructions processed 2105 B 3* 10 m.i.ps
Jumps executed 267 Interlock instructions 165 Early-fmish instructions 1031

State 1 2 3 4 5 . 6 . 7 . 8

Mean instr. time
(beats) 1 . 1 . 1 1*5*. 1 1 2* . 1

Buffer capacity 0 0 . 0 0 0 . 9 0 0

State at end full, busy. full, busy. full, busy. full, busy. full, busy. empty . full, busy. empty
Instr. in stage 1 1 1 I 1 0 . 1 0
Instr. processed 2736 . 2560 . 2181 1922 . 1582 1454 1453 805
Jumps 0  . 0 0 131 . 0 0 136 0
Instr. end here 0 194 172 149 0 0 512 80S
Store accesses 417 0 62 0 . 112 0 0 0
Blocks begin here 0  . 48 0 97 . 0 0 0 0
Blocks end here 
Percentage of time

0  . 0 0 0 0 0 165 0

empty 0  . 32 . 44 49 71 73 . 66 91
busy 68 . 45 33 . 44 29 . 18 34 19
blocked 32 . 24 22 . 6 . 0 . 9 0 0

The proportions of jumps, interlocks and early-finish instructions were the same in 
all four runs, as follows:

jumps 12* 5% of instructions completed
interlock instructions 7* 5% of instructions completed 
early -finish instructions 5 0 • 0% of instructions completed

as were the proportions of instructions making store accesses, as follows: 
from stage 1 12*5 % of instructions entering this stage

stage 2 2* 5 % of instructions entering this stage
stage 3 6*25% of instructions entering this stage
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The properties varied in these runs were the buffering and the instruction 
processing times. Runs 1 and 3 were for buffered systems, Runs 2 and 4 for 
unbuffered; Stage 6 remained the 9-instruction buffer in all four cases. Runs 1 and 2 
used one set of values for the processing times, Runs 3 and 4 another. The details 
for each rim are given in the relevant Table. Each table gives the length of time 
simulated, the effective throughput in millions of instructions completed per 
second (m.i.p.s), the conditions at the end of the simulated period and the percent­
ages of the time during which each stage was in each of its possible states — Empty 
(i.e. idle), Busy or Blocked.
Table 6 Run 3 Buffered
Time 6499 beats * 520ms
Instructions processed 1034=-1-99 m i p j
Jumps executed 123 Interlock instructions 74 Early-finish instructions 522

Stage 1 2 3 . 4 5 6 . 7 . 8

Mean instr. time
(beats) 2* . 2* . 2* . 3* . 2* . 1 4* . 2*

Buffer capacity 1 1 • . 9 . 1

State at end full, busy. empty . full, busy. empty . busy busy busy empty
Instr. in stage 2 0 2 0 1 1 1 0
Instr. processed 1519 1375 1144 948 767 734 . 704 . 398
Jumps 0 . 0 0 61 0 0 62 . 0
Instr. end here 0 86 94 89 . 0 0 . 253 . 389
Store accesses 219 0 32 . 0 . 43 0 . 0 . 0
Blocks begin here 0 35 0 . 39 . 0 0 0 0
Blocks end hoe  
Percentage of time

0 0 0 0 . 0 0 . 74 0

empty 0 25 . 44 45 72 82 . 57 . 88
busy 71 59 . 40 . 53 28 12 . 42 12
blocked 29 15 . 17 2 0 7 . 1 0

Table 7 R un  4  U nbuffered , instruc tion  tim es a s in R un 3
Time 7999 beats = 640ms
Instructions processed 1177 = 1*84 m.i.p.s
Jumps executed 144 Interlock instructions 87 Early-finish instructions 600

Stage 1 2 3 . 4 . 5 . 6 . 7 . 8

Mean instr. time
(beats) 2* . 2* 2* . 3* . 2* . 4* . 2*

Buffer capacity 0 . 0 0 . 0 0 . 9 0 . 0

State at end full, busy. busy empty full, busy. empty . empty . empty . empty
Instr. in stage 1 . 1 0 . 1 0 . 0 0 0
Instr. processed 1524 . 1418 1216 1051 . 865 797 797 433

Jumps 0 0 0 . 67 0 . 0 77 0
Instr. end here 0 . 107 116 90 . 0 . 0 . 287 433
Store accesses 258 0 32 . 0 41 0 0 . 0
Blocks begin here 0 . 36 0 51 0 . 0 0 0
Blocks end here 0 . 0 0 . 0 . 0 . 0 . 87 . 0
Percentage of time

empty 0 . 27 42 47 73 76 58 89
busy 63 . 49 35 . 48 27 . 11 41 11
blocked 37 . 24 23 5 0 . 14 0

8 Value of modelling pipeline throughput

Reference has been made in this paper to detailed discrete-event simulation models 
of OOP behaviour. Such models appear to offer an escape from the intractable 
problems presented by actual systems to provide a heuristic way of improving 
design. At the other end of the scale, when a policy such as the use of a linear pipe­
line is first adopted, only a very simple model of its operation may be presented. 
The object of the paper has been to show that it is possible to develop the thinking 
behind the original policy without being overwhelmed with detail.
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Detail in discrete-event simulation tends to be full, because the inclusion of detail 
provides confidence in the model as a trustworthy representation of the system. 
The inclusion of detail is facilitated by the use of special-purpose simulation 
languages. However, the very inclusion of detail may obscure important character­
istics of the system which is being studied; and any attempt to design consciously 
for better performance involves some kind of generalisation. A problem in the 
detail simulation of an OCP is the choice of instruction sequences to run on the 
model. To do justice to the work carried out in producing the model, we must be 
sure that these sequences are representative of those encountered ‘in the field’ in 
the use they make of the processor. A related problem is that of drawing general 
conclusions from what may appear to be unconnected sets of results. A third 
problem is that of deciding with what faithfulness to represent features of the 
system outside the OCP.

In addition to these difficulties there may be real dangers in resorting to a full 
simulation too early in the course of a design. In order to produce a detailed 
model a number of design decisions must be taken. In other cases assumptions 
about the design may be made in the course of producing the model, assumptions 
which may not be stated outside the simulation or concerning matters of detail 
which do not lend themselves to general statement. The result is that only a part of 
the problem is studied and only some of the possibilities are tried, while the simula­
tion program may be defended as the best possible depiction of the problem and as 
the best possible representation of the machine which is being designed.

Analytic models use less computer time, provide faster turnround and are easier 
to set up and to modify than discrete event models. Above all they provide insight 
into the behaviour of the system being modeled. At a later stage in the design pro­
cess a simulation model such as SIPI provides information about machine behaviour 
in a form which makes generalisation possible in a form meaningful to the design 
engineer. When subsequently a detailed simulation is used, those decisions already 
made will have been made consciously. The process may be viewed as a hierarchical 
structure of learning loops. While such a process is going on in connection with the 
Order Code Processor a similar process is taking place in connection with other 
aspects of the machine such as store accessing.

The sequential service line and pipeline models presented in this paper have been 
interpreted as Order Code Processors along which pass instruction streams. Pipe­
lines occur elsewhere in computer systems where digital machines cooperate in the 
transmission and ordering of information, and the same models may be used to 
study their performance also.

Appendix
Solution o f the equilibrium equations

Eqns. 4—11 being linear are easily solved. Solving in terms of the ratios of the 
probabilities to P1U and writing P1M = Pioo/Pm and similarly for the other ratios 
we get :
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„ _ M3 M4 2m2 + M 3 + M4
MOO — -TT r *

M2(M2+M4> M 2+M3+M4

Aoi -  • Pioo
M4

[0*2 + M j 
l(#*2 +/*4 ]

M j2 + M2  M4 , M2  

M4 ) 0*2 + M3 + M4 ) M3 + M4]

]
As a check on the algebra we find that putting i*2 = /x3 = ju4 in these expressions 
gives the same numerical values as were found in para. 3.2.

The throughput T  is given by T  = M2  ^ 2  = M3  F3 = M4  F4 (eqn. 14). From the above 
solution we find, after some straightforward but rather tedious algebra, that the 
three products are indeed equal (which gives quite a powerful check on the algebra) 
and that

M Z ^ 2  = M3 P3 = M4 ^ 4

Again putting M2  = M3  = M4  this reduces to 22/39, agreeing with the value obtained 
in para. 3.2.
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Towards an ‘expert’ 
diagnostic system

T.R. Addis
ICL Research and Advanced Development Centre, Stevenage, Herts 

Abstract

‘Expert’ systems are computer-based systems that are capable of acquiring 
knowledge from experts and making it available to the less skilled. The 
paper describes how these particular techniques can be applied to fault­
finding in computers. After giving examples of successful implementations 
of ‘expert’ systems in other fields it describes diagnostic aids being 
developed within ICL. Two systems are dealt with known as CRIB and 
RAFFLES, respectively. The paper shows how information-theory 
concepts can be used to improve the efficiency of the search strategy and 
how the ICL Content Addressable File Store (CAFS) can be used in the 
implementation for part of the process. The diagnostic aids described, 
which can be related to different elements of the diagnostic skill, will 
eventually be united to form an ‘expert’ diagnostic system of considerable 
power.

1 Introduction

An ‘expert’ system is a program and database that captures the knowledge of 
experts in a recognised field, makes this knowledge coherent and then available to 
less experienced people within that field by a man-machine dialogue. One of the 
important properties of such systems is the ability to provide an explanation for 
any given advice. One method of providing a diagnostic aid for computer systems, 
both hardware and software, falls conveniently within this paradigm of an ‘expert’ 
system.

Modern hardware and software are becoming more complex and are demanding a 
much greater level of diagnostic skill and competence from engineers and system 
experts. However, the availability of highly qualified and experienced personnel is 
becoming less as systems proliferate. Apart from developing more reliable systems, 
a solution to this shortage is to reduce the time spent by the skilled in finding 
faults. This can be achieved by providing better fault-locating aids so that either the 
more competent can find faults quicker or the less competent (more available) and 
even untrained people can locate faults which would otherwise require greater skill. 
Compounding this requirement for greater skill is the need for rapidly communica­
ting new modifications of systems and fault-locating techniques gleaned from 
others’ experience.

The first part of this paper is a brief review of some successful implementations of 
‘expert’ systems. The second part describes work being done by ICL that is moving 
towards an ‘expert’ system for finding faults in both hardware and software. This
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work is being done by ICL’s Technical Services and the Research and Advanced 
Development Centre. It has evolved from two techniques, both of which are con­
cerned with searching a known faults database. The first technique was developed 
in conjunction with Brunei University (Dr. R. Hartley) and is embodied in a system 
called CRIB. This system responds to described symptoms with recommended tests. 
The CRIB system was then modified extensively as a combined effort by Technical 
Services, RADC and Brunei in order to make it usable by software diagnostic 
specialists1. The other technique which is being developed by Technical Services 
was proposed by RADC to overcome some of the technical problems encountered 
with CRIB. This other technique is embodied in the RAFFLES system2 and is based 
upon generating optimum search strategies. A third technique for dealing with 
previously unencountered faults is being explored by RADC. Each of these three 
systems is analogous to the three components of the diagnostic skill (see Fig. 1) and 
they will combine to form a commercially viable ‘expert’ diagnostic system.

A

Fig. 1 Components of the diagnostic skill

2 ‘Expert’ systems*

(Developed outside ICL.)

2.1 DENDRAL

One of the first practical systems built called DENDRAL utilised a ‘production 
system’. This is a rule-based system where the rules are given as an unordered list of:

IF pattern THEN action.

The work on DENDRAL started in 1965 at Stanford and its task was to enumerate 
plausible structures (atom-bond graphs) for organic molecules, given two kinds of 
information:

* The section is an edited extract from Addis3.
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(fl) analytic instrument data from a mass spectrometer and a nuclear magnetic 
resonance spectrometer; 
and

(ft) user-supplied constraints on the answers from any other source of know­
ledge available to the user.

The empirical theory of mass spectrometry is represented by a set of rules of the 
general form:

IF [Particular atomic configuration (subgraph) with probability,
P, of occurring]

THEN [Fragmentation of the particular configuration (breaking links)].

Rules of this form are natural and expressive to mass spectrometrists.

DENDRAL also has an inference procedure dependent upon the Plan-Generate- 
Test method. The generate program called CONGEN generates plausible structures 
using a combinatorial algorithm that can produce all the topologically legal candi­
date structures. Constraints are supplied by the user and/or the ‘plan’ process. ‘Test’ 
discards less worthy candidate structures and rank orders the remainder. ‘Plan’ 
produces direct inference about likely substructures in the molecule from patterns 
in the data that are indicative of the presence of the substructure. Patterns in the 
data trigger the left-hand sides of the substructure’s rules. ‘Plan’ sets up the search 
space so as to be relevant to the input data. ‘Generate’ is the inference tactician and 
‘Test’ prunes the results.

DENDRAL’s performance rivals expert human performance for a small number of 
molecular families for which the program has been given specialist knowledge. 
DENDRAL’s performance is usually not only much faster but also more accurate 
than expert human performance and is used every day by Stanford chemists and 
collaborators. A program METADENDRAL was produced as an expert system for 
deriving rules of fragmentation of molecules in a mass spectrometer for possible 
use by DENDRAL.

2.2 MYCIN

There have since been many other expert systems as natural offspring of 
DENDRAL. The most important development was perhaps MYCIN, also produced 
at Stanford, whose task is to diagnose blcod and meningitis infections and then 
recommend drug treatment. MYCIN conducts a consultation in medical English 
with a physician-user about a patient’s case, constructing lines of reasoning leading 
to the diagnosis and treatment. Knowledge is acquired by confronting the user with 
a diagnosis with which he does not agree and then leading him back through this 
line of reasoning to the point at which he indicates that the analysis went wrong. 
The offending rule is modified or new rules added until the expert agrees with the 
solution.

EMYCIN (Empty MYCIN, again from Stanford) was developed to capture the 
framework of a general expert system. It just requires the addition of knowledge
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such as the production rules. Many different systems have been created from this 
essential expert. An example is the signal understander (SU/X) which forms and 
continually updates, over long periods of time, hypotheses about identity, location 
and velocity of objects from spectral lines of acoustic signals. Another is PUFF 
which is linked directly to an instrument into which a patient inhales and exhales. 
From the measured flow-volume loop of the patient’s lungs and the patient’s 
records PUFF diagnoses pulmonary function disorders. There is now work going on 
to produce PUFF on a chip.

EMYCIN has also been used to interface an excellent but complex mechanical 
structure analysis package to an engineer. The engineer interacts with the expert 
system (SACON) to describe his problem in general terms and this generates 
strategy recommendations for the software package. This in turn calculates and 
displays the physical behaviour of the structure. Other EMYCIN derivatives are 
GUIDON, an expert to teach the expertise captured by the systems and AGE, an 
expert to guide in the construction of expert systems.

2.3 PROSPECTOR

The PROSPECTOR system is intended to emulate the reasoning process of an 
experienced exploration geologist in assessing a given prospect site or region for 
its likelihood of containing an ore deposit. The system holds the current knowledge 
and information about classes of ore deposits. The user begins by providing a list 
of rocks and minerals observed plus other observations expressed in simple English. 
The program matches this data against a knowledge base and requests additional 
information of potential value for arriving at a more definite conclusion and 
provides a summary of the findings. The user can ask at any time for elaboration 
of the intent of a question, or for the geological rationale of including a question or 
for a trace of the effect of his answers on PROSPECTOR’S conclusions. The inten­
tion is to provide the user with many of the services that could be provided by a 
telephone conversation with a panel of senior economic geologists, each an 
authority on a particular class of ore deposits. Currently, PROSPECTOR comprises 
seven such specialist knowledge bases.

The drilling site selection expertise for porphyry copper deposits derives its input 
from digitised maps of geological characteristics and produces an output of colour- 
coded graphical display of the favourability of each cell on a grid corresponding to 
the input map. The success of PROSPECTOR depends upon the combination of 
clausal statements with a strong inference engine and plausible statements framed as 
a production system using statistical techniques (i.e. Bayes’ Rule).

2.4 Comments

The advent of expert systems is perhaps the most significant event to happen in 
Artificial Intelligence (AI) mainly because of the huge number of potential practical 
applications. There is tremendous pressure from industry and the military in the 
USA for such systems, but there are just too few experts on knowledge engineering 
to provide them4 . Oil companies are pouring large sums of money into extending 
programs like PROSPECTOR and variants of EMYCIN are being used for many 
applications by U.S.A. Government organisations.
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Expert systems of the kind described in this section are required within the 
computer industry to interface users to complex systems and help engineers or soft­
ware specialists to find their way through involved mechanisms. In particular, they 
can be used as diagnostic aids o f considerable utility.

3 Diagnostic aid systems

3.1 Diagnostic process

Production systems (see section 2.1) can be used to describe human problem-solving 
behaviour. Production systems simulate a wide range of tasks from those that are 
stimulus-driven, like driving a car, to those that are stimulus-independent, such as 
mental arithmetic. Production systems can illustrate the manner in which skills 
are accumulated by the growth of the related production rules and the generalisa­
tion of techniques to other tasks.

In particular, the openness of the production system enables it to capture the flexi­
bility of control that is so typical of human behaviour and so hard to capture in a 
non-data-driven computer program. The diagnostic skill of engineers could con­
ceivably be represented in this form. John Fox at Sheffield University5 has recog­
nised three distinct components of a doctor’s skill (see Fig. 1).

A doctor’s actions are often made on a pattern-recognition-like basis, in which a 
specific question to ask (or tentative diagnosis) is suggested by a particular con­
figuration of symptoms (A). The doctor starts the diagnostic process, however, by 
asking a fixed sequence of questions in order to look for an emerging pattern (B). 
At some point in the sequence the information is sufficient to trigger one of the 
rules in the pattern-driven module, perhaps leading to the asking of a contingent 
question, the answer to which may well trigger another of the pattern-driven rules. 
If this chain of rule firing does not lead anywhere the initiative reverts back to the 
fixed sequence of questions. If such a system fails and the doctor reaches the end 
of his fixed list of questions then he adopts a problem-solving strategy inter­
acting with the pattern-driven questions and diagnosis (C).

3.2 The CRIB System*

(A diagnostic aid developed by Brunei University in conjunction with ICL.)

3.2.1 Description: The CRIB system (Computer Retrieval Incidence Bank) was 
initially conceived as an aid to diagnosis for the engineer by providing him with an 
accumulation of symptom patterns gleaned from many sources, including his peers 
(this approach can be equated with A in Fig. 1). The important aspect of this 
collection of symptom patterns is that it is used to generate further questions, 
according to certain rules (heuristics), so that the engineer can quickly be guided 
to the fault indicated by the symptoms. It is this feedback, above all, which differ­
entiates this kind of diagnostic aid from an information retrieval system. Thus, the 
engineer gives the system a description of his observations and these descriptions 
are compared with the database. Groups of symptoms which match the incoming 
description are processed to produce a list of the best possible tests for the engin­
eer to make next.

♦This section is an edited extract from Addis and Hartley.1
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The central feature of the CRIB database is where the action is designed to elicit 
symptoms from the machine via the engineer. Thus the action coded as A1036 and 
meaning ‘run store test program X’ results in the symptom  ‘store works’ or its 
inverse ‘store faulty’. The symptoms can be expressed either in code (e.g. S I036 or 
the inverse N1036) or in jargon English as above.

The action-symptom pairs (symptoms for short) are organised in groups which can 
be of three types:

(a) Total group. The accumulated group of symptoms observed to occur during 
many investigations of a single fault (T-group).

(b) Key group. A subset of symptoms of a total group all of which are necessary 
to indicate the location of a fault (K-group).

(c) Subgroup. A subset of symptoms of a key group which, by virtue of being 
an incomplete key group, can only indicate the fault location to a degree 
less than certain.

The contents of symptom groups reflect the experience of actual investigations and 
a group only exists if it has proved its usefulness in actual fault investigations. In 
particular, there is a floating population of subgroups which are compared for 
usefulness by a simple success ratio (the fraction of times the symptoms in the 
group have occurred in successful investigations relative to the total number of 
investigations in which the subgroup occurred). The more successful subgroups are 
considered as active, whilst the less successful ones are kept in reserve.

When a group of symptoms occur together (i.e. as observed by the engineer) during 
a sequence of actions or tests, then this group is associated with that part of the 
hardware in which the fault lies. The machine is modelled as a simple hierarchy of 
subunits (as in a parts explosion). A simple example of the first few levels is 
pictured in Fig. 2.

Fig. 2 A simple hierarchy of subunits of the patient computer

The point of the model is not to provide a ‘true’ picture of the organisation of the 
machine, but to provide some structure to the database so that a search can be
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done in an ordered fashion. The searching of the tree is done in a depth-first 
fashion, where a decision to drop a level is only made on the basis of matching a 
complete group (total, key or sub in that order) from amongst the set ot symptoms 
observed by the engineer. With only 50-100 nodes on the tree (subunits in the 
hierarchy) this is manageable.

By successively matching larger and larger symptom groups the CRIB system will 
eventually arrive at a terminal subunit which will be either repairable or replaceable. 
With the trend towards increased modularity, most fault investigations are eventually 
an exercise in board swapping. If a terminal subunit is reached and the fault is not 
cured this can mean one of four things:

(a) a path taken based upon a chosen subgroup did not lead to the fault;
(b) a key group is incomplete (more symptoms are necessary to be certain of

success);
(c) multiple, transitory or ‘soft’ faults — these are difficulties in any diagnostic 

system, manual ones included;
(d) the hierarchy is incapable of reflecting the fault location precisely enough.

The system then backtracks automatically to the last decision point and tries to 
find another match. Since the search is depth-first the whole hierarchy can be 
covered if necessary, i.e. every symptom group in the database will eventually be 
examined. If this happens and the fault is still present then it is a fault which the 
system has not seen before.

When the system fails to find a match with even a subgroup at any level of the 
hierarchy, it asks for fresh information rather than backtracking immediately. This 
is not done in a blind fashion, but via a list of suggested actions put to the engineer, 
chosen on a heuristic basis using information about the diagnostic context current 
at that time. Several heuristics have been tried but all are aimed at attempting to 
complete incomplete subgroups thus enabling a drop in level, i.e. a more precise 
location of the fault. From the partially matched subgroups at that level, symptoms 
are compared for their usefulness according to four criteria:

(a) the time taken for the associated action to be carried out;
(b) the average amount of time the investigation is likely to take after this step 

has been taken;
(c) the number of incomplete subgroups in which this symptom occurs;
(d) whether the symptom is the last one in a subgroup.

These factors are combined in a heuristic procedure to order the relevant actions 
which have been extracted. The best five are suggested to the engineer.

The engineer is not obliged to carry out any or all of these actions, but having 
carried out one or more actions and having reported the symptoms he observes to 
the system, the search cycle is then repeated. Fig. 3 shows the diagnostic process 
without the backtracking.
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3.2.2 Modifications to CRIB, use o f  CAPS: The CRIB system was constructed as 
described in the previous section but its testing was hampered by the lack of an 
efficient data-retrieval system. It was for this reason that the experimental CAFS 
MK I1,6 was used which led to some interesting changes in method as well as 
performance.

Fig. 3 Flow diagram of the CRIB diagnostic process

The early system operated as a depth-first search procedure where a match was 
sought only at the level below the current subunit, amongst its associated groups. 
Thus for all the symptom groups in the database, only those relating to the imme­
diate subunits were examined. In this way the required search was contained.

CAFS, however, is capable of searching large databases globally, without any extra 
programming effort. Using this facility, the CRIB system can now look for a match 
with all symptom groups at all levels. The notion of a depth-first search then 
disappears. It is now possible for a fault to be located within any appropriate
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subunit in one step, as against the original step-by-step, level-by-level procedure. 
Since this is the case, the notion of backtracking out of unhelpful situations 
becomes unnecessary. Because of this major change in thinking, the organisation of 
the program had to be altered. In particular, group matching and action retrieval 
techniques had to be revised.

In the original CRIB system there were four files organised according to the 
required major search tasks. Speed of access was limited by the need to scan these 
files repeatedly. On the other hand, the CAFS MK I system depends upon all the 
data existing in one large file where each CAFS record contains one example of 
each kind of data item. This means that each symptom of a particular symptom 
group is contained in a separate record and all the symptoms of this group are 
scattered throughout the file6’12. Each record also contains a series of flags (known 
as tags) which indicate its membership of one or more of 12 virtual files. Each of 
these virtual files also represents the natural join of each of their implied files
thus providing a considerable amount of 
virtual files are shown as relations where 
an item are to the left of the colon; the 
unique identification.

ACTION [A:TTP,NA,LOT,DES]

SYMPTOMS [S:A]

TOTAL-GROUP [T:SU,CTS]

TOTAUGROUP-SYMPTOMS [T,S:] 

KEY-GROUP [K-.T.CKS]

KEY-GROUP-SYMPTOMS [K,S:]

processing precompiled . Eight of these
the attributes that can uniquely identify
attributes to the right do not suffice for

- is the list of all possible tests an engineer 
can perform. This contains information 
on how long each action takes (TTP), 
number of times used (NA) and level of 
training required to perform the task 
(LOT). DES is a character string describ­
ing the action.

- forms a list of all the symptoms and 
observations made by engineers in per­
forming a particular test.

- this represents the sets of groups of 
symptoms associated with each subunit 
and are called Total groups. CTS is an 
attribute showing the total number of 
symptoms associated with each Total 
group.

- this shows what symptoms belong to 
which total groups.

- is the set of necessary and sufficient 
symptoms within the total groups that 
can isolate a replaceable unit. These are 
called key groups. CKS is an attribute 
showing the total number of symptoms 
associated with each key group.

- as for TOTAL-GROUP-SYMPTOMS but 
for key groups.
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SUBGROUP [G:K,SUCC,NG,SIT,CGS] - is the set of necessary but not sufficient
symptoms within the key groups. These 
are called subgroups. This also indicates 
the success of a particular subgroup in 
tracing the correct replaceable unit 
(SUCC), number of times used (NG) 
and investigation time (SIT). CGS is an 
attribute showing the total number of 
symptoms associated with each 
subgroup.

SUBGROUP-SYMPTOMS [G,S:] - as for TOTAL-GROUP-SYMPTOMS but
for subgroups.

The CAFS MK I hardware cannot, in itself, discover whether there exists a key or 
subgroup which is a subgroup of the observed symptom set (more than one symp­
tom). However, it can be done by software simulation of bit maps7 and count 
maps1. For purposes of effective use of the maps, the target identifier values (in this 
case the group identifier) must be transformed into a map pointer (each bit or 
count word in the map corresponds to one value).

All codes in CRIB such as symptom and group identification are four digit 
numerals which can be used as relative addressing to a word in store. Let KI and GI 
refer to the four digit numeric and subgroup identifiers, respectively. CKS, CGS are 
the group counts, i.e. the number of symptoms in the groups. Sx refers to a mem­
ber of the observed symptom set (i.e. one of the symptoms observed by the engin­
eer translated into the four digit code).

The CAFS tasks*

(1) LIST KI, CKS FOR (S=Sx) IN KEYGROUP-SYMPTOMS

(2) UST GI, CGS FOR (S=Sx) IN SUBGROUP-SYMPTOMS

are performed for each number of the observed symptoms Sx. The retrieval group 
identifiers KI and GI each point to a word in their respective count maps and add 
in one to the count word associated with each group found (see Fig. 4).

These numbers in the count maps, after all the symptoms have been dealt with, 
represent the number of symptoms observed by the engineer that are found in each 
group and for comparison the maximum number of symptoms possible in each 
group (CKS and CGS) are also retrieved (the fact that in some cases it is retrieved 
several times does not matter). A match is found if the number in the count map is 
greater than zero.

♦The terms used are intended to be reasonably self-explanatory, but Addis and Hartley1, 
Mailer6 and Babb7 and Addis17 may be found helpful.
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If a match is found, the remaining details of subunit (and keygroup in the case of a 
subgroup match) are needed. There are two more tasks:

(3) UST SU FOR (KI = Kx or Ky or . . . )  IN KEY-GROUP

(4) LIST SU, K FOR (GI = Gx or Gy or . . .  ) IN SUBGROUP

Here Kx, Ky . . .  and Gx, Gy . . .  refer to those groups which have been success­
fully matched. It is conceivable that more than one subunit will be found, although 
such ambiguities are not desirable since the whole idea of a keygroup is to uniquely 
identify a particular subunit.

keygroup  co u n t m a p  s u b g ro u p  coun t m a p
c o u n t CKS coun t CGS

K 1036 0 G I036 0 -

K1037 1 5 G I0 3 7 1 3

K 1038 4 5 — ----------- « - G l 0 3 8 3 4

K 1 0 3 9 2 6 G I 0 3 9 2 6

K 1 0 4 0 0 - G 1040 0 -

K 1 041 3 7 G I041 1 3

Fig. 4 Examples of count maps

To minimise the search those subgroups which are partially matched but which 
contain at least one symptom which is the inverse of an observed symptom, can be 
eliminated from further consideration. The task to do this is:

(5) UST G FOR (S = N1 or N2 . . .  ) IN SUBGROUP-SYMPTOMS

where N l, N2, etc., are the inverse symptoms of the observed symptom set.

The action details for unmatched symptoms in partially matched subgroups are 
required for assessment. The count map used in (2) gives the partially matched 
subgroups (see Fig. 4); i.e. those with a count greater than zero and not equal to 
CGS. For each of these groups Gx, a task is needed:

(6) UST A, TTP, DES FOR G = Gx & (S #  (SI or S2 or . . .  )) IN 
SUBGROUP SYMPTOMS

again SI, S2 . . .  are the set of observed symptoms.
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3.2.3 An example o f  the use o f  CRIB: Given that the CRIB system is ready for 
use the engineer will identify himself and then report the initial observed symptoms. 
This can be done either by a set of cryptic English statements or by an internal 
code. To illustrate the protocol consider an actual example of an engineer using the 
system to find a fault. The user’s responses are underlined and comments are in 
brackets.

<- LOG IN FRED. HERE
INVESTIGATION STARTED AT 10.35 ON 12.11.78

<- PROGRAM LOAD FROM DISC NOT OK
SYMPTOM ACCEPTED AS N0022. ANY MORE SYMPTOMS?

<- PROGRAM LOADED FROM CR NOT OK
SYMPTOM ACCEPTED AS N0026. ANY MORE SYMPTOMS?

<- ALTER AND DISPLAY ONES OK
SYMPTOM ACCEPTED AS S0402. ANY MORE SYMPTOMS?

<- NO (Having accepted three symptoms, the program starts its search and makes 
the following responses.)

SUBGROUP MATCH FOUND IN CPU.
(Action assessment starts.)
42 SUBGROUPS EXAMINED.

9 SUBGROUPS ELIMINATED.
59 ACTIONS ASSESSED.

SUGGESTED ACTIONS:

* CHECK FOR A PARITY ERROR - A0008
* LOAD MPD WITH 2 LOG MOVES - A0415
* CHECK HAND SWITCHES INDIRECT - A0418
* RUN WAMS - A0389
* CHECK RUN LIGHT-A0413

(Here five actions have been selected as being the most effective ones from the 59 
which were considered; terms like MPD, WAMS are codes which the engineer would 
understand.)

•*- SO N0008, N0415, S0413 (This illustrates the short form of reporting observed 
symptoms where the ‘A’ of the action code given is replaced by S or N depending 
upon the result of the test.)

ANY MORE SYMPTOMS?

•*- NO (The second cycle begins.)

SUBGROUP MATCH FOUND IN CPU.

68 SUBGROUPS EXAMINED (Note that there is still insufficient information for 
CRIB to isolate the fault any further although the search has been widened.)
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39 SUBGROUPS ELIMINATED.
58 ACTIONS ASSESSED

SUGGESTED ACTIONS:

* CHANGE BOARD 9714 - A0405
* CHECK HAND SWITCHES INDIRECT -A0418
* CHANGE BOARD 9716-A0421
* CHANGE BOARD 9710-A0422
* CHECK STEPS OF DISC IPL ROM-A0406

LOG OUT OK

(In this case the first suggested action cleared the fault. The engineer was satisfied 
the diagnosis was complete and terminated the run as OK.)

INVESTIGATION FINISHED AT 10.40 ON 12.11.78 
DURATION OF INVESTIGATION 4.5 MIN.

3.2.4 Assessment o f  CRIB: There were several difficulties which arose out of the 
use of CRIB. The first problem was perhaps the tendency of the CRIB system to 
spread its considerations over more and more groups every time a symptom was 
added. This had the double effect of, first, slowing the response because of the 
greater number of tasks to be generated and second, the insertion of apparently 
irrelevant actions into the suggested list because of it making contact with distant 
groups. This problem really reflects the method used in the CAFS search and could 
have been contained by using the hierarchical model (see Fig 2) to constrain the 
search to the relevant part of the machine under consideration.

A second problem was the uncertainty of how to answer some actions to select the 
desired symptom. This problem falls into two distinct parts.

The first is the problem of the jargon English interpreter which, though perfectly 
adequate when dealing with a handful of contextually dependent sentences, was 
found to be incapable of handling a large range of open-ended descriptions. The 
engineer could never be sure either how to phrase a sentence so that it would be 
accepted or if it was accepted whether it had been identified correctly. However, 
users of the system quickly learnt a few starting sentences and then employed the 
returned action code with the appropriate prefix to continue. The second part of this 
problem was that some answers to an action were ambiguous. If a symptom was 
observed there could be uncertainty as to whether a positive or negative response to 
the suggested action was expected.

Another (third) problem, which is really a consequence of the second, was that 
there was no way in which a set of symptoms in a new group (indicating a freshly 
discovered fault) could be checked to see if they already existed. Trial and error, or 
scanning down all the existing symptoms or using some kind of selector mechanism 
based upon the concatenation of words in a sentence (keywords) might help, but 
they are all uncertain methods of checking. There was also the related update
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problem in that no guarantee could be given that there existed a distinguishing 
symptom in each group that would ensure isolation of a fault. This last problem 
could be overcome by employing the diagnostic techniques during update.

Despite these difficulties (most of which have solutions) the system proved to be 
successful and in particular the suggested actions helped the engineer to consider 
areas of investigation which he would otherwise have overlooked. This had the 
useful result in that even if the fault being investigated was not to be found within 
the CRIB system it could still help the engineer isolate this new fault by suggesting 
avenues of enquiry.

3.3 A Simplified CRIB

3.3.1 Description: Shortly after the CRIB (CAFS MKI) system was implemented 
there was the suggestion that it could be used for system software investigations. In 
particular it could be used for VME/K and DME known faults by acting as the 
initial pre-scan before technical specialists were involved. With a considerable 
amount of help from those technical specialists and after several variants of CRIB 
and its database had been tested a simplified version of the CRIB system was 
constructed.

The concept of subgroups was abandoned, leaving just total and key groups. Each 
action was given a priority ranking instead of ‘time to perform’ (TTP) and marked 
either P (for patch) or Q (for question). Each key group (now called Trace) was 
given a ‘likelihood’ which acted as a priority modifier for all the actions within the 
key group. This priority was used as one of the factors in ordering the suggested list 
of actions returned to the user. The user then had the choice of the following: 
either having the returned suggested actions ordered according to the number of 
hits and (for those with the same number of hits) ordered according to the priority 
modified by ‘likelihood’ or having the suggested actions ordered according to the 
modified priority only.

The user also had the choice of listing out any number of the ordered actions he 
wished instead of just the first five. ‘Likelihood’ was intended to indicate the 
probability of a symptom group occurring so that as the database is updated so this 
parameter would be adjusted for each group.

The problem of restraining the CRIB system from contacting distant groups was 
left in the hands of the user by providing him with two distinct selection mecha­
nisms. The first mechanism used the count maps in three ways:

(a) If the user has reported m  symptoms then he can select from the count map 
only those groups which have a count greater or equal to (m -  n) where n is 
an integer of his choice. If n is zero then this is equivalent to insisting that 
all the symptoms given are contained in the groups retained for considera­
tion.

(b) Irrespective of how many symptoms the user has reported the system can 
scan the count map looking for the maximum number of hits and only
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reporting on those groups with this maximum number. A simple extension 
of this idea is to allow (Max -  n) as the selection mechanism.

(c) Count map selection can also be done relative to the total number of 
expected symptoms in a group (CKS in Fig. 4). The selection in this case is 
done by subtracting n from each group number (CKS) and if the count is 
greater than or equal to this then it is returned. Another way of describing 
this method is that it selects those groups which have at least a specified 
number of symptoms in total. Smaller groups than this number behave as 
(a), but the smaller the group the more symptoms are ignored. The number 
of symptoms given by the user + n = maximum total in groups.

The second mechanism employs a modification of the unit-subunit hierarchical 
structure used in CRIB (Fig. 2). In this case the hierarchical structure represented 
an organised approach to diagnosis constructed from the experience of the experts, 
where each level in the hierarchy represented sets of questions concerned with 
details of the level above. A five-figure code was constructed so that each character 
position represented a level and the character chosen gave the branch at that level. 
Fig. 5 shows part of this structure where the code at each level is given in brackets 
and each level is associated with a priority number (the lower the number the 
higher the priority). The user is then able to confine his search to any subsection of 
this hierarchy by typing in for example SU 32B** or SU **B*D where ""represents 
a ‘don’t care’ character.

I
14102

(2 * * * * )

I
14103

(3 * * * * )
1

--------------- r ~
14104 

(4 * * x x )

-  q u e s tio n  ty p e

WHAT VERSION AND 
MODIFICATION LEVEL ?

I
ex ec  d u m p

1
F P  d u m p

1
p ro b le m

(* 1 # * * ) (* 2 * * « ) (* 3 » * x ) WHAT TYPE
OF DUMP ?

I
b a tc h

1
BDS

1
E F P

1 ‘
ERL

(* 2 A * * ) (* 2 B * » ) (*2 D * x ) (x 2 E x x ) lb  THIS FH  A .

Fig. 5 Part of the VME/K faults database structure

The problem of ambiguous answers to actions (questions) was solved by simply 
allowing only one answer to be accepted - namely ‘YES’. Thus the question ‘is 
operating system version 14?’ would either be answered ‘YES’ or not answered 
at all. This decision to have only one answer leads to other problems, but these 
other problems are easier to cope with for this application than ambiguity.

3.3.2 Assessment o f  simplified CRIB: The simplified CRIB is more of a tool in the 
hands of experts than the original since many of the strategies of pattern matching 
are decided by the user. The speed of response was considerably improved and the
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probability of success greatly enhanced with most of the original problems by­
passed. The only outstanding problem was that of ensuring that symptoms were not 
repeated in another form when updating occurred.

This problem was partially overcome by classifying symptoms. Each class then con­
sisted of a sufficiently small number of symptoms to be scanned by eye. It was in­
tended to make an extended trial of this modified system but conflicting demands 
made it necessary to curtail this; however enough was done to show the importance 
of involving, at quite a detailed level, the experts and the end users in the develop­
ment of such a tool. The final system required less than five minutes explanation 
to an end user for him to be using it efficiently. The importance o f  such a tool as 
this is that it represents a medium by which an expert can express and record his 
expertise in a way that is self maintaining. This is why it requires the specialist to 
create the database.

3.4 The RAFFLES system

(A fault-finding system currently being developed at Stevenage for use by Customer 
Services.)

3.4.1 Description: The CRIB systems were designed for a single user and 
depended upon fast data retrieval and processing, giving maximum control to the 
user. The objectives of RAFFLES, on the other hand, were to make a diagnostic 
aid available to a large number of people simultaneously without the need for 
expensive processing. As has been suggested in Section 3.1, and from observations 
of users of CRIB, the diagnostic sequences tend to be highly constrained. This 
results in much of the online working of CRIB being continually repeated at a time 
when minimum processing is required. Other problems of CRIB have been inter­
preting the symptoms (expressed in jargon English) and the control of symptom 
updates (see Section 3.2.4).

These problems can be overcome by the proposed Rapid Action Fault Finding 
Library Enquiry Service (RAFFLES) which can be considered as a compiled version 
of CRIB but with a test selection scheme based on information theory rather than 
heuristic methods. Since all the decision making is done offline this means a very 
simple online program. This scheme is designed to draw together the mass of diffe­
rent test procedures used and discovered by many engineers into a unified approach 
to fault finding. The system comprises principally two programs: Generate Tree and 
Display Tree as shown in Fig. 6. Generate Tree generates the optimum fault loca­
tion procedure in the form of a multibranching decision tree. Each node of the 
decision tree is a test and each branch a result of that test. The decision tree is 
interpreted by displaying the tests at the top of the tree and according to the result 
provided by the engineer steers him down to a terminating node which represents 
the unit to be replaced. RAFFLES employs a technique which was successfully 
used for pattern recognition.

The RAFFLES system should have the advantage of being extremely fast; requiring 
minimum computer power, since all the hard work of selection and scanning is
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done offline by Generate Tree. The selection of test criteria is based upon the well 
understood and tried techniques of information theory which provide the fastest 
test sequences for fault location (which can also be issued in book form using 
program Print Tree), expose the existence of any equivalent or fallacious tests and 
avoid sequences of similar tests. The need for jargon English input becomes de- 
emphasised but is still capable of being supported when available, and the inter­
active protocol provides an ideal system for using speech as a means of communica­
tion. However, as with CRIB, the effectiveness of the RAFFLES system in locating 
faults depends entirely upon the quality of the data digested by the Generate Tree 
program. This will accrue over a period of time from actual results in the field as 
the file accumulates via program UPDATE (see Fig. 6).

Fig. 6 The RAFFLES system

3.4.2 Theory o f  the Generate Tree Program: The objective of the Generate Tree 
program is to sift through examples of successful fault location traces (e.g. groups 
of symptoms that lead to a fault) associated with each replaceable unit and 
generate an optimum fault location guide in the form of a multibranching tree. The 
first node of the tree represents the best test which divides the classes into as near 
to equal-sized and stable groups as possible.

The second set of tests in the next level down the tree repeats this requirement for 
each divided group and so on until the final test in a branch isolates a replaceable 
unit. The measure of ‘best’ for a test requires that the test is both reliable and 
provides an equal division between the classes. In information terms, this represents 
the test that brings about the greatest reduction in relative entropy at each level in 
the hierarchy and in this case, where tests can take varying lengths of time, the 
greatest reduction in relative entropy per unit time.

The faults associated with each replaceable unit (or fault report in the case of 
software) can be considered as a series of independent symptoms that identify that 
unit. A trace is an actual example of a fault identification. Each symptom repre­
sents the result of an action where each action (usually a test in the form of a ques­
tion) can have one or more possible outcomes (answers). The effect of dividing the 
database of traces (symptom groups identifying a fault) according to the result of 
any particular test is to reduce the entropy of the whole system with respect to the
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faults. That is, the faults become partially ordered. The best test will be the one 
that reduces the entropy by the greatest amount in the shortest possible time.

Fig. 7 Test / with n  associated symptoms

The determination of such a test can be achieved by considering the statistics of 
each test when used without any constraints, such as in the CRIB system. Let the 
range of tests be K i< T ,  the range of possible outcomes of test i be l < K n  and 
the range of possible faults, or of replaceable units in the case of hardware, be 
K k < K .

We define the following probabilities:

p(kjb , i) = probability that fault k  is present (or unit k  is faulty) given that test i 
has outcome b.

p(k , bji) = probability that test i will have outcome b and that fault k  is present 

p(b/i) = probability that test i will have outcome b

p{kji) = probability that test i will give the conclusion that fault k  is present.

It can be shown that given any outcome b for test i the entropy with respect to the 
set of K  possible faults (or replaceable units) is

K

Hb,i = " X P(k/b, i) log2 p(k/b , i).
fc=  l

Then the expected entropy E(H0 {) of the outcome, given the test i, is
n

E(H0J)=  I
6 = i

p(b/i)H  bJ.

This becomes after suitable manipulation
n k n

E(.Ho,t) = -  I
b= 1

X  p(K  b/i) log2 p(k, bji) + X  p(bli) log2 pibji). 
k = 1 6=1

96 ICL TECHNICAL JOURNAL MAY 1980



The input entropy (i.e. before the results of any test are known) is
k

Hi, f = - T  P(k/i) log2 p  (k/i).
k= 1

The expected decrease in entropy E{LHi) resulting from applying test i is 
Hj i -  E(H0 1) and from the above equations this is

» K n
E(AHi) = -  X  p (b /i)lo g 2 p (b /i)  + £  p (k /i)  £  p (b lk ,i)\o g 2 p (b /k ,i)  

&=i k = l 6=1

If the test i takes tt seconds to perform, then E(AHj)ltj is the entropic decrement 
per unit time.

Test i is chosen such that is maximum for the set of traces under test.
This having been chosen, the next set of tests is calculated independently for each 
of the resulting divisions of these traces caused by applying test i.

A full description of these calculations is given by Addis2.

3.4.3 Using decision trees: The process of creating the decision tree is now simple. 
A database of actual test sequences that led to the location of a fault is analysed 
according to the above formula. This will provide every test with a measure of 
excellence in the form of the entropic decrement per unit time E(AHi)/ti. These 
can then be ordered according to this measure of excellence and this ordered list of 
tests is now equivalent to the initial ordered list of actions that can be printed by 
CRIB. However, the Generate Tree program forces the issue by taking the test with 
the highest value (the test at the top of the list) and proceeds to use that test to 
divide the database of traces into n possible groups, n being the number of possible 
outcomes of the test. Fig. 8 illustrates this process.

Fig. 8 The Growing Tree
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There are three useful byproducts of this technique which resolve a problem with 
the CRIB system. The first is that symptoms which carry the same or similar 
information irrespective of how they are expressed will have their measure of 
excellence reduced in sympathy with the chosen test. Suppose test z  is chosen as 
the next test along a certain branch of the tree instead of say tests x  or y .  After the 
database has been divided according to that test, and if it is found that test x  which 
had formerly a high entropic decrement value is now low, then it is reasonable to 
conclude that x  and z are equivalent tests and should thus be combined. The second 
useful byproduct is that if a branch of a tree is reached where there are no more 
possible tests to distinguish between faults then this will be discovered and an 
appropriate request can be made to the overseeing expert for a distinguishing test.

The third byproduct is that tests which carry little or no information can be dis­
covered and discarded.

The method of selection of tests in creating the tree does not take into account any 
other factors which might influence the choice of test. Certain tests may be too 
difficult for the user to perform, or too trivial to be worth considering because the 
general fault location is obvious, or just not possible because they depend upon 
certain equipment. Further, the engineer may just have additional knowledge of 
this particular environment which would guide his choice.

Some of these problems can be overcome by creating different kinds of trees for 
different purposes and by providing a mechanism for using the trees effectively 
with inadequate information. The existence of a test at any point in the tree is 
totally dependent upon the sequence of answers to the tests that led to it through 
the tree. A test out of context has little or no meaning to the system. However, 
there are at least three possible strategies which can resolve this problem.

(a) It is possible to assign each test to a classification representing the skill 
required to perform that test. Different trees can be created according to 
the level of skill of the users by selecting only those tests that are within 
an ability range.

(b) The ‘patient’ mechanism can be considered to be constructed in some 
hierarchical fashion as for CRIB (see Fig. 2). If this is done then a tree can 
be grown which calculates the entropic decrement with respect to a level 
in this hierarchy instead of the final replaceable units (or fault document).

Fig. 9 illustrates a simple tree that decides the general area of the fault down to the 
first level. Once the general area has been selected another tree can be grown which 
calculates the entropic decrement with respect to the next level in the hierarchy. 
This is continued until a set of trees is formed that isolates all the faults (the lowest 
level in the hierarchy).

The advantage of such a system is that any expert user can jump directly to the 
appropriate level in the hierarchy thus bypassing the intermediate stage of answer­
ing the often tedious set of questions that would get him there. Each tree is con­
structed with the assumption that the user has correctly classified the general area
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of the fault. The method by which this classification has occurred is irrelevant so 
that any tree grown from that point has tests dependent only upon this correct 
classification. The disadvantage is the extra work required by the Generate Tree 
program to produce these different trees and also that the total number of tests to 
find a fault is likely to be more if a user were to start from the top level. However, 
this second point can be avoided by providing trees at all levels that home in on 
faults directly.

Fig. 9 A top and second-level tree

(c) When a question, given to a user from the RAFFLES system, is answered 
by ‘Don’t know’ a problem arises in that the RAFFLES system then has to 
simultaneously progress through every possible answer for a given tree. If 
other questions are subsequently answered by ‘Don’t know’ then this will 
create a very large number of simultaneous paths to be traversed. The 
management of such a multitude of traversals becomes extremely difficult.

A solution is not to traverse the paths simultaneously but consecutively 
choosing the most-likely-to-succeed path first. If a solution is found before 
all the paths have been traversed then the process can halt. This process 
requires that every answer to a question at a particular node has an order 
of precedence indicating which answer will lead to the most likely con­
clusion.

This order is directly related to the entropy associated with each branch Hbi (see 
Section3.4.2). The greater the change in entropy of a branch the higher the ranking. 
The highest ranking answer which has not been tried before is automatically tried 
and marked. It is interesting to note that this gives a similar result to the CRIB 
heuristic methods in that any branch (symptom) that leads to the isolation of a 
fault (or level) will always give the greatest change in entropy. This is because the 
entropy will fall to zero. Consequently, as for CRIB, the last symptom in a group 
will always be suggested for testing before other routes are tried.

TA p o w er in te rfa c e  
su p p lie s
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The user can then be given the option to continue until the final node of a particular 
path or backtrack to the last (last-1, last-2 etc.) marked node or both. The user can 
be given control to re-enter a path that was abandoned before the final node was 
reached with the option to continue (with perhaps a summary) from where the 
path was previously abandoned.

Rather than keep the user completely in the dark the next group of tests beyond 
the one under consideration can be presented in an ordered list according to the 
reduction in entropy taken to reach them (see Fig. 10).

AH b ans e ( A h ) / e Next test

(10) a (12) T2
(5) c (3) T4
(3) b (9) T3

Fig. 10 A look ahead table for the end user

So far the assumption has been that every test provides a few distinct outcomes 
which can be represented as a branch in a tree. In principle any test can be broken 
down into a sequence of primitive tests with a binary outcome. If this is done then 
the problem of answering such sequences can be achieved by running these primi­
tive tests as a program. For example, if a computer store address is required and the 
system is aware of a set of possible computer addresses then it would not be 
reasonable to expect the user to answer all the ‘is the address = x ’ for every value of 
x. The principle of the Generate Tree program can still be applied to this sub-task 
so that the questions can be asked in the most efficient order with the user supply­
ing only the address value (see Fig. 11).

Some results of tests can be potentially infinite but the range is limited. Such tests 
are the measurement of some voltage, current or length. In these cases the entropy of 
the system becomes a function of the result (see Fig. 12). The choice of tests to 
follow may depend upon threshold values of the function.
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WHAT IS THE ADDRESS ?

Fig. 11 A single complex test as a set of primitive tests

- e n t r o p y

Fig. 12 A continuous function of entropy

It is important to note that any expert providing a sequence of tests for isolating a 
new fault for the RAFFLES (or even CRIB) system should choose tests which are 
going to provide a hierarchical division of the problem.

If most of the tests are too general or specific, then the Generate Tree program will 
generate a deep and imbalanced tree. Experts updating the diagnostic system should 
be made aware of both what is required and how their particular additions are 
assimilated.

3.4.4 Combining RAFFLES and CRIB: There are two problems with the
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RAFFLES system which are not found in CRIB. The first problem is that the user 
is driven and constrained by the tree. This means that any extra knowledge about 
the problem the user may have cannot be fully utilised by the fixed diagnostic 
procedure. The advantage of this fixed procedure is that it sidesteps the difficulties 
of ‘natural’ language interpretation (see Section 3.2.4). The second problem is that 
towards the terminating tests in the tree, the statistics upon which the entropy 
measure is calculated start becoming unreliable because of the fewer number of 
examples upon which they are based. However, CRIB does not suffer from either 
of these difficulties because any errors due to statistical anomalies are adjusted by 
the common sense of the user. On the other hand, CRIB requires a considerable 
amount of processing power to provide this flexibility.

The solutions to these problems are not incompatible and it is possible to achieve a 
balanced solution by combining the advantages of both systems and reducing the 
disadvantages. Most of the CRIB processing is due to the quantity of data that has 
to be sifted and compared. One of the properties of a RAFFLES tree is to divide a 
very large database into many small databases at each level. So if a RAFFLES tree 
is constructed up to the point where the statistics become unreliable then this will 
provide many small databases each of which can be scanned with much reduced 
processing by the CRIB system. This combined system is illustrated in Fig. 13.

3.4.5 Comment: In practical terms RAFFLES provides a predigested faults data­
base accessed by disc. However, unlike any normal retrieval system it provides tests 
for the user to perform which have a high probability of success; the database is 
self maintaining and the online interactive program (Display Tree program) is 
simple.
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3.5 New faults problem

RAFFLES and CRIB are concerned only with those faults that have been en­
countered previously. It is estimated that 30% to 50% of faults investigated in soft­
ware and hardware are previously unencountered faults. It would be desirable to 
complete the diagnostic system by providing an aid for isolating these new faults. 
The difficulties, when anybody is faced with determining why a mechanism is not 
working, are what tests should be performed and what current observations are 
relevant. Previously, for encountered faults, this was simply repeating what had 
proved successful in the past. It now becomes necessary to generate new tests and 
make fresh observations in the light of what is already known.

For a system to generate tests on a mechanism (or to test the ‘correctness’ of 
current observations) requires that there is some representation (model) of the 
component parts of the mechanism; how these component parts interact and what 
happens when a component part fails in a particular way. Progress is being made 
on representing the medium to large range of machines down to gate level in order 
to generate diagnostic test programs8. This kind of precision, although leaving 
nothing to chance, can be much too detailed for a general fault finding guide. 
(However, this kind of detail is required for the automatic generation of test 
programs.) A more promising approach is a hierarchical description of the mechanism 
at the appropriate levels of coarseness. This description should be biased towards 
the task of fault finding rather than machine emulation.

A method for describing and running mechanisms in the abstract is currently being 
researched (known internally as the Broadside Programming project). This method 
is based upon principles developed by those involved in ‘natural’ language under­
standing by machine9 and is currently in the feasibility study stage; whilst in this 
state of examination no details will be given in this paper. Machine understanding 
means that interpretation of any sentence, paragraph or story does not depend 
entirely upon grammatical constructs, but relies upon a working representation of 
what is being said in the light of previous accumulated knowledge. The difficulty of 
developing such representations depends upon choosing the correct elementary 
building blocks and primitive processes that can cope with a wide range of des­
criptions. Language analysis has shown that such elementary units exist but these 
units have to be modified quite extensively to fit our particular requirements of 
modelling mechanisms.

There are two provisional conclusions that can be drawn from this work. The first 
is that the concept of high and low-level languages vanishes. The objects manipulated 
by a high-level language are just different from those of a low-level language. Level, 
in fact, lies outside the language domain altogether since it describes the relation­
ship between two sets of objects via an intermediary. The second is that there is no 
definable entity called ‘natural’ language. What comes to be called ‘natural’ 
language actually represents a pot-pourri of many different languages each of which 
is a highly honed tool for a particular task. The reason for the confusion is that 
there is a strong family resemblance between these languages since they were born 
out of the way man perceives reality.
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This work, although only just begun, can expect to resolve the last of the problems 
experienced with the diagnostic system. It should now become possible to define a 
diagnostic language which will have some features of ‘natural’ language. This 
language would be used not only to describe the mechanism, but also to report 
symptoms. The products of the system (supporting such a language) will be useful 
views of the mechanism given by expert fault finders, which would be used for both 
generating suggested tests and checking the consequences of current observations.

4 Conclusions

This paper has described the ‘potential’ evolution towards an ‘expert’ diagnostic 
system. It is ‘potential’ because it has not yet been fulfilled. The CRIB system has 
been implemented and forms the basis of the pattern-driven-question-and-diagnostic 
component of the diagnosis skill (see Fig. 1 Section 3.1). The RAFFLES system is 
under construction and represents the fixed-sequence-of-questions component of 
this skill giving the most efficient fault finding guide. The NEW-FAULTS system 
is being researched and provides the problem-solving aspect still missing.

Independently, each of these three systems provides unique benefits to the user 
but they also have defects that are cancelled out by the existence of the other two 
systems. The defects with CRIB were essentially the need for describing symptoms 
so that they could be uniquely identified and the large processing requirements 
necessary for determining the next step. RAFFLES, on the other hand, cancels 
out all these problems by side-stepping the user symptom descriptions by printing 
out questions to be answered, identifies similarity of symptom descriptions on the 
database by their entropy behaviour and avoids doing the processing during 
diagnostic time. However, it loses the flexibility of CRIB that allows the experience 
of the user to be used to good effect. By judicially combining CRIB and RAFFLES, 
flexibility is to some extent restored without an excess of processing. The NEW- 
FAULTS system will probably also need a considerable amount of computation 
but it should only be required part of the time for NEW-FAULT resolution. The 
additional gain of the NEW-FAULT system is that it will provide a technique for 
describing symptoms uniquely and give lines of reasoning for any particular 
diagnosis*. The combined systems of CRIB, RAFFLES and NEW-FAULTS should 
interact to form a complete ‘expert’ diagnostic system.

The important difference between an ‘expert’ diagnostic system and that of a 
database retrieval system is that it provides guidance to the user, it has a database 
that is self-maintaining and it provides a medium through which expertise can be 
expressed. Without the ‘expert’ there can be no ‘expert’ system.

* It is interesting to note that such a complete system would not always be able to ‘explain’ 
why a certain sequence of tests will produce the desired result because the source of such 
information would come from the accumulated knowledge obtained from experts’ experience. 
This is equivalent to any expert’s ‘rule of thumb’; knowing that a certain sequence works 
without knowing why.
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Using Open System 
Interconnection standards

John Brenner
Consultant, ICL Product Development Group, Technology Division, Manchester

Abstract

Open System Interconnection standardisation has important implications 
for ICL and its users. The paper assesses these, and discusses use of the ISO 
Reference Model and how it affects network architecture.

1 What is OSI?

Open System Interconnection (OSI) is the concept that any data-processing system 
should be able to communicate readily with any other, by use of ‘Open System 
Interconnection’ standards.

Interconnection is only directly possible among parties using the same inter­
connection rules, that is the same set of data-communication protocol and interface 
standards. Universal interconnectability implies universally used international 
standards. For acceptability and accountability reasons, the standards should be 
non-partisan and in the public domain. Therefore, the goal of universal and truly 
‘open’ interconnection is only achievable by formal international standardisation 
activities.

The scope of OSI standardisation is necessarily very wide: 

data-communication 

data-processing support 

applications.

Data-communications standardisation (e.g., network, data link, communications 
equipment and terminal standards) is only a small but vital component of the 
whole. The greater part is standardisation for DP support services so that meaningful 
interworking is possible, e.g. dialogue structuring, recovery, device-independence, 
data independence, file transfer, remote file access, file management, database, 
remote job entry, load sharing, application and system management, distributed 
system support, accounting, statistics, diagnostics. The scope of application 
standardisation for OSI ranges from general purpose application services such as 
text processing, message services, electronic mail and facsimile, to specific appli­
cations which may be openly accessible, such as electronic funds transfer or airline 
reservations.
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For a few of these there are existing standards, some of which are unsatisfactory or 
mutually incompatible. Most of the work is new, and much of it is very urgent. 
Therefore, OSI is a very large, prolonged and challenging undertaking for those who 
devise and implement standards.

2 Why OSI?

One might equally ask “why not OSI?’.

It is intuitively obvious that the world would be a better place without the 
incompatibilities which currently make interconnection so difficult. Conversely, it 
is equally obvious that such incompatibilities are inevitable at this early stage of 
data communications. A more meaningful question is *why OSI riowV.

There are two main sets of reasons why the time is considered ripe for OSI. First, 
data communications is now sufficiently mature for the need for OSI to be properly 
understood, and for it to be technically and economically possible to satisfy. 
Secondly, for somewhat related reasons, there is likely to be an explosive growth of 
the quantity and variety of things to be interconnected, of the degree of their 
interconnectedness, and of the variety, complexity and intensity of activity via this 
interconnection. Therefore, standards are needed more than ever before, and if they 
do not come sufficiently quickly, there might be perpetual babel, with proliferating 
and ever more deeply entrenched incompatibilities. This has generated a real sense 
of urgency.

A review of the different motivations of the main parties involved indicates that 
there are very powerful interests working for successful OSI. They are:

users
manufacturers
PTTs
governments.

The main potential advantages of OSI to users are:

New applications: the readily available connectivity of OSI should make many 
new and extended applications feasible, with consequent business benefits.

Savings: Systems should be easier and cheaper to develop, install, maintain and 
use. Skills savings are particularly important.

Multivendor systems: OSI should allow to users a greater choice of suppliers 
and products; and more competitive procurement.

Although representation of user interests is somewhat fragmented, user needs can 
be seen as the most important factor in determining the outcome.

Vendors, such as ICL, have exactly parallel reasons of their own for wanting OSI:

New applications: OSI is a vital element of the large new markets needed to 
sustain the high growth rate of the industry

Savings: OSI promises less variety of interconnection methods than otherwise,
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and a consequent drastic reduction of product development and maintenance 
difficulties.

Multivendor systems: for each vendor, open-interconnection opens up the 
prospect of additional markets, which are otherwise closed to him and are 
usually much larger than his existing fraction of the total market.

This, of course, evokes the traditional counter argument that vendors do not want 
such standardisation because it opens their own supposedly captive customer bases 
to competition. This implied complacency and uncompetitiveness is not really 
viable in an era of increasingly fierce competition.

The PTTs have the clearest motivation for wanting worldwide open interconnection. 
The concept of open interconnection is fundamental to their traditional telecom­
munications business. It is basic to their new Public Data Networks and to their 
new services such as teletex, videotext and facsimile. The PTTs have an excellent 
track record of prompt and effective standardisation via their CCITT organisation. 
They have the power and the common interest to develop and enforce at least those 
aspects of OSI standardisation which are most directly concerned with telecom­
munications. They are visibly doing this with great urgency.

Governments have two sets of motivations strongly favouring OSI. First, OSI is 
potentially a means of regulating competition, monopoly power and international 
trade; but these are somewhat conflicting aims. Second, governments are among the 
largest and most powerful DP users. The benefits of OSI are therefore particularly 
attractive to them, especially at a time of economic stringency; and they have a 
means of enforcement via their procurement policies. Awareness of this is 
conspicuously visible in the US Federal Government.

We therefore have a potent conjunction of otherwise somewhat disparate interests, 
which points to some kind of OSI happening quite soon.

3 What kind of OSI?

The most important issue then is what kind of OSI standardisation will emerge. 
How good is the outcome likely to be; to what degree are the hoped-for benefits 
actually likely to be achievable?

In a previous issue of the ICL Technical Journal, Jack Houldsworth1 has explained 
some of the technical complexities of this international standardisation and its 
many different committee structures. It is clearly apparent that the idealistic out­
come of everybody worldwide converging quickly onto one unified set of OSI 
standards is highly improbable. Different aspects will be standardised by different 
bodies at different times, and there will be a long transitional period. We will all 
have to face high conversion costs. Proprietary ‘own brand’ communications will 
remain an important factor. Predictably, there will be some competing and 
incompatible standards from different sources, and certainly some lasting incom­
patibilities.
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Here are some of the things which might go badly wrong:

proliferation and exclusive enforcement of different standards in different parts 
of the world or in different markets. This will impede more general connectivity 
and impose upon vendors, who now typically implement only ‘own brand’ 
protocols, the burden of supporting an excessive variety of different ‘open’ 
standards in order to trade in the various markets. This contradicts the antici­
pated variety-reduction benefits for users and vendors;

fuzzy standards which fail to achieve real compatibility. A common failing is 
compromise-by-superset; i.e. to include so many different options in a standard 
at the request of unreconcilably conflicting interests, such that incompatibility 
is almost certain in practice, either randomly or systematically by different 
subsetting;

unfair standards, which favour one party at the expense of others, sometimes 
aggressively. On the other hand, a less compromising standard is typically 
better and more timely.

Despite such concerns, it is generally believed that the outcome will on balance be 
highly beneficial. The half dozen or so most important standards are expected to 
emerge within a couple of years.

The best hope for compatible and effective OSI standardisation is that all the 
standards from whatever source should all genuinely conform to one agreed and 
viable architectural framework. That is the intended role of the International 
Standards Organisation (ISO) ‘Reference Model of Open System Interconnection’ 
which is why the initial standardising activities have concentrated upon developing 
the Model.

4 Reference Model

This is a brief introduction to the ISO Reference Model, and a summary of its main 
strengths and weaknesses.

After more than two years of intense debate, the Reference Model is essentially 
stable, and is generally accepted worldwide, although there are still important 
disputed issues. ISO and CCITT have both developed models using the same 
layering technique, and convergence between the two is now almost complete. 
ISO hopes to finalise the Model within about a year, and then to process it as a 
standard.

Fig. 1 is derived from the ISO document.2 It illustrates the structuring of OSI 
functions into seven layers, each with a distinctive role, and the corresponding 
seven layers of protocol by which systems communicate with one another. The 
common architectural principle of layering and the sevenfold modularity are inten­
ded to provide a consistent and orderly basis for the technical and organisational 
subdivision of the standardisation work. The technical content is discussed in more 
detail later.
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There is a curious paradox that the main weakness of the Model is at the same time 
its greatest strength. The weakness is that it contains many unresolved issues, even 
as fundamental as different views on what it is trying to model and to which 
purpose. The text is sufficiently large and varied for supporters of conflicting 
views to make their own different interpretations to their own satisfaction. On the 
other hand, this does serve to keep the negotiations going along the same track (or 
at worst on parallel ones), and allows much wider support. It must be recognised 
that different interests, such as different kinds of users, PTTs, and different kinds 
of manufacturers, genuinely have different needs. Also different technical experts 
have different perceptions of what they consider to be architectural truths. The 
great strength of the Model is that it allows all to see their different views positioned 
in a common framework, albeit somewhat imperfectly.

layers : endpoint protocols endpoint

Fig. 1 . ISO seven-layered Reference Model.

Another difficulty is that the document is now rather large (180 pages) and is 
difficult for even the experts to understand in its entirety, let alone for the 
intelligent lay user. But this complexity is to a degree unavoidable, and different 
presentations are obviously needed for different kinds of readers.

The consensus view among ICL experts working in this field is that the latest 
version of the Reference Model, although still requiring further development, can 
now provide a stable basis for OSI standardisation. Therefore, it should be frozen as 
soon as possible. Our main interest has now moved to participation in the develop­
ment of the more urgently needed international standards, mostly via ECMA (the 
European Computer Manufacturers Association).

These are:

Transport Protocol Standard;
Session Protocol Standard;
Virtual Device Protocol Standard;
File Transfer Protocol Standard;

When completed, it is hoped that these will be successful candidates for ISO 
standardisation, as has usually happened in the past with other ECMA work.
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S Using the Reference Model

Given that the Reference Model is as yet somewhat imperfect, how is it to be used 
immediately to develop a consistent set of OSI standards? The approach described 
here has evolved in discussions with ICL colleagues, and with ECMA colleagues 
from other manufacturers; but it is not necessarily definitive. What one does is:

(a) start by defining precisely the particular use to which the Reference Model 
is to be put on the occasion in question;

(b) then extract from the Reference Model the (small) sub-set which is relevant 
to this immediate and restricted purpose.

A consistent view can then be obtained fairly readily, as we shall see.

We define the immediate interest of computer manufacturers to be: to understand 
how to use the Reference Model as a framework for developing internationally 
standardised protocols to interconnect their various systems and products.

This deliberately restricted viewpoint allows many extraneous issues to be weeded 
out:

one is not looking at the Reference Model as a ‘systems architecture’, i.e. as 
an alternative architecture requiring existing systems architectures to be 
replaced;

one is not seeking a structure for distributed applications, but only a standard 
data-path between the application sources/sinks;

one is not seeking the solution to the new technical problems posed by distrib­
uted systems, or the definitive ‘distributed systems architecture’ of the future.

one is not seeking resolution via the Reference Model of the controversial 
business issue of which services should be P IT  provided and which PTT-user 
provided;

one is not seeking to position exactly in the seven layers such services as 
teletex, facsimile, file transfer and remote job entry. These issues can be left 
open without prejudice to their final outcome or to the immediate purpose;

one is not using the Reference Model to develop new theories or for research 
experiments;

one is not using the Reference Model to define standard programatic interfaces 
for purposes of software portability;

one is explicitly considering data-transmission via telecommunications; not 
within-machine communication or media exchange.

These excluded items are all in varying degrees legitimate aims reflected :n the 
Reference Model text mostly as disputed issues which it leaves unresolved. Tlds is a
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measure of the diversity of views which it seeks to reconcile and of the difficulties 
involved. For the specialised immediate purpose defined here, these other aims are 
ignored; but they are not forgotten, and some at least are likely to be the objects 
of other OSI standardisation.

Nobody is at present standardising the application layer so this can be excluded 
from detailed discussion. Standards for the lower three layers either already exist, 
or are in an advanced state. Therefore, primary interest centres upon only three of 
the layers: Transport layer, Session layer, and Presentation layer. The combined 
effect of this temporary narrowing of objectives is a drastic reduction of complexity 
and uncertainty in using the ISO Model.

6 Subset description

This is a brief description of the features of the ISO Reference Model which are 
relevant to the immediate purpose defined above.

The visible manifestation is layers of protocol, which will each be subject to 
standardisation. For modularity, each layer of protocol is kept as far as possible 
separate from and independent of the others. The principal means of layer inde­
pendence is that each higher layer of protocol is encoded as data of the adjacent 
lower layer. Since each layer of protocol handles data transparently on behalf of 
the higher layer using it, there is a strong decoupling. Another means of decoupling 
between layers is for each higher layer of protocol to depend only upon the simplest 
possible set of services from its adjacent lower layer.

Different systems, typically with different ‘own brand’ native modes of communi­
cation, will then use these standard layers of protocol to achieve open interconnection 
among themselves.

6.1 Application layer protocols

Application layer protocols are the data-processing protocols entailed in the actual 
work on behalf of the end-user: his transaction processing, his system administration, 
etc. They are many and varied, reflecting the diversity of users and their applications. 
But they have one particular architectural characteristic in common: they should all 
be High Level Protocols (HLPs), independent of machine characteristics and the 
detailed mechanics of data transmission.

All the lower layers of protocol exist for the sole purpose of providing the support 
necessary to achieve these HLP characteristics in an open-interconnection 
environment.

6.2 Presentation layer protocol

Presentation layer protocol provides two specific functions: device independence 
and data independence. The aim is compatibility, by assisting HLPs and their 
associated software to be independent of functionally equivalent variations of 
device characteristics, data encoding and data format.
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The device independence is provided by virtual device protocol (VDP). This defines 
a selected variety of standard device behaviours and associated standard protocol, 
onto which most real devices in common use can be mapped. This overcomes their 
detailed incompatibilities. Where this is not required, the device would be accessed 
in its native mode.

Several virtual device classes are needed to provide sufficient coverage. The most 
urgent being considered in ECMA are:

interactive basic class character imaging device; 
interactive forms class character imaging device; 
bulk text device.

The basic class and forms class cover most interactive text communication devices, 
e.g. videos and keyboards. The bulk class covers printers, card readers, etc. Much of 
the protocol structure is common to the different classes.

There is a wide spectrum of requirements for HLP data independence: from simple 
code conversion and data compression, through to comprehensive Virtual Filestore 
Service (VFS) and DBMS-like provisions. The initial protocol standards will be 
for the more simple and well agreed functions.

6.3 Session layer protocol

Session layer protocol provides functions to support HLP dialogue on the transfer 
mechanism provided by the underlying transport layer. The main functions are:

dialogue controls for conducting two-way alternative dialogue on the transport 
connection, plus use of its expedited flow; also controls for initialisation, reset 
and orderly termination of dialogue. Two-way simultaneous HLP dialogue is not 
supported (unnecessary complexity), but the two-way simultaneity of the 
underlying transport connection is needed for the various session layer control 
functions;

delimiters which delimit H IP data units; those which delimit transfer units to 
enable efficient use of the transport service; and those which delimit error- 
control units and support their associated selective recovery and resynchronisa­
tion;

segmenting and blocking to map the ‘infinitely’ variable sizes of HLP data units 
onto the actual transport service data units, whose size may be constrained by 
performance considerations, etc.;

security by way of protocol to authenticate the HLP user identity, and by 
protocol encryption to preserve the secrecy and authenticity of HLP information 
content;

a data unit typing service, which identifies the context in which the information 
content of a data unit is to be processed. This is what is sometimes called
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‘context switching’, which is a very powerful and general tool for structuring 
HLPs;

parameter negotiation and selection;

transfer of the addresses which are used at session establishment to select the 
partners which will use the session;

flow control is not a separate function, it is provided by the dialogue structure 
and by use of the underlying transport service functions.

The session layer is designed to keep this set of functions modularly separate from 
functions which actually transfer data and are involved in telecommunications. 
These are in the adjacent lower layer.

6.4 Transport layer protocol

Transport layer protocol provides the standard means of data transcription between 
two separate systems. It uses the underlying network layer to provide the actual 
routing and transmission. This separateness from the network layer is a deliberate 
choice, with the aim of allowing the full variety of underlying network types and 
connections to be used, but without commitment to any particular one. This 
achieves flexibility, independence and resilience, and allows system performance 
optimisations and telecommunications cost savings by use of appropriate multi­
plexing and flow-control techniques, etc.

The alternative approach of integrating the transport service into the network layer, 
which has wide support, particularly among PTTs, would require endpoint systems 
to implement it in different ways specific to each network type. That would impose 
unnecessary implementation diversity and cost upon DP system manufacturers and 
users, and some sacrifice of user independence and total system functionality.

The main functions of the transport layer are:

to provide the standard transport service, with complete data transparency. Each 
transport connection has a two-way simultaneous normal flow, plus an expedited 
flow of restricted capacity to bypass transport normal flow control;

to provide this standard service efficiently and to an agreed quality, using 
whatever is the variety of underlying network characteristics. The higher layers 
of protocol need then not be aware of such details;

to provide flow control and delivery acknowledgement end-to-end between the 
source and destination systems, plus associated error management, connection, 
reset and disconnection functions;

to provide multiplexing onto network connections. Upwards multiplexing allows
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multiple transport connections between the same places to share the same 
network connection. Downwards multiplexing allows transport connections to 
use multiple separate or alternative network connections to increase bandwidth 
or resilience; either continuously, or dynamically in response to load fluctuations 
or network failures.

to provide a means of using whatever transport addresses identify endpoint 
systems independently from their telecommunications addressing; and provide 
run-time connection identifiers which are independent of all addressing schemes.

The ECMA transport protocol covers all these requirements. It has four classes:

Class 1: basic class;
Class 2: flow control class;
Class 3 : error recovery class;
Class 4: full error recovery class.

The user of the transport service (i.e. session layer on behalf of the HLP user) 
specifies a quality of service suited to his needs and the transport mechanism then 
uses whichever protocol class is appropriate to the circumstances and the under­
lying network behaviour. This selectivity minimises the complexity and overheads 
of providing a suitable range of transport layer capability. Furthermore, transport 
connections using different classes can be multiplexed onto the same network 
connection.

The ECMA protocol uses a restricted set of network-layer services, chosen as being 
general to all types of network-layer connection. The purpose, once again, is to 
maximise the network independence of the transport protocol and its implemen­
tation in each computer, and to allow use of the widest possible choice of network 
types.

6.5 Network layer protocol

Network layer protocol provides two sets of functions: routing and data-transfer. 
First some clarification of the word ‘network’ is necessary. It is used here solely 
with the connotation of being that which provides the specific routing and data- 
transfer services. The mechanism is not necessarily a mesh of connections, nor a 
‘Public Data Network’ (as in, say, PSS X25). The mechanism might equally be some 
set of dedicated star connections, or use of a single-dial-up line, or an X21 connec­
tion; i.e. any practicable routing mechanism.

The routing function makes a connection (or equivalently sends a datagram) to a 
destination system, which is specified by means of a network address of whatever 
kind is appropriate to the network. This routing includes intermediate gateway or 
relay functions if there are subnetworks in series between the endpoint systems. 
The connection is required to be two-way simultaneous (or functionally equivalent). 
Preferably there should also be a suitable expedited flow which bypasses network 
congestion. If not, the transport layer-of-protocol will construct its expedited flow 
on the network normal flow. There is also a network-layer disconnect function. The 
network connection is required to have complete data transparency.
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The data-transfer function transfers data out of the source system into the network 
connection, and thereby to the destination system. No delivery acknowledgement is 
required, nor any end-to-end flow control. The responsibility of any network-layer 
acknowledgement or flow control is essentially to minimise congestion of the 
telecommunications medium and to control use of its interface. The delivery 
reliability requirements are simply that data in any flow is either delivered in 
sequence, or that it is dependably destroyed if not delivered within some known, 
time-out period. Given either of these assumptions, the transport layer above 
makes appropriate provisions. A connection reset (or ‘purge’) function is also 
required.

6.6 Data-link layer pro tocol

Data-link layer protocol provides a digital data link with an acceptable error rate, 
and characteristics which are independent of the actual physical medium and its 
analogue signalling. A typical example is HDLC.

6.7 Physical layer protocol

Physical layer protocol is concerned with provision of the electrical and mechanical 
characteristics of the accessible transmission medium. A typical example is V24.

7 Summary

We have argued the case that Open System Interconnection standardisation is of 
urgent and vital importance to all who are concerned in the provision and use of 
data communications, and that it is potentially highly beneficial. Despite some 
hazards, the prognosis is favourable for successful OSI standardisation in the not 
too distant future.

There are clear indications that computer systems manufacturers recognise a need to 
align their future business strategies and products with forthcoming Open System 
Interconnection standards. ICL certainly does. The relevant technical characteristics 
of the ISO Reference Model have been described in outline.
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