
Technical
Journal

{ Volume 1 Issue 2 May 1979

ICL Technical
Journal

Contents Volume 1 Issue 2

Computers in support of agriculture in developing countries
G.P. Tottle 99

Software and algorithms for the Distributed-Array Processor
R.W. Gostick 116

Hardware monitoring on the 2900 range
A.J. Boswell and M. W. Brogan 136

Network models of system performance
C. M. Berners-Lee 147

Advanced technology in printing: the laser printer
A.J. Keen 172

The new frontier: three essays on job control
D . W. Barron 180

Notes for authors 191

ICL TECHNICAL JOURNAL MAY 1979 97

ICL Technical
Journal

The ICL Technical Journal is published twice a year by Peter Peregrinus limited
on behalf of International Computers Limited

Editor
J Howie tt
ICL House, Putney, London SW15 1SW, England

Editorial Board
J. Howlett (Editor) D.W. Kilby
DJ*. Jenkins K.H. Macdonald
(Royal Signals & Radar Establishment) B.M. Murphy
M.V. Wilkes FRS J.M. Pinkerton
(University of Cambridge) E.C J \ Portman
C.H. Devonald

All correspondence and papers to be considered for publication should be addressed
to the Editor

Annual subscription rate: £5 (Details from: The Technical Journal Office, ICL
House, Putney, London, SW15 1SW)

The views expressed in the papers are those of the authors and do not necessarily
represent ICL policy

Publisher
Peter Peregrinus Limited
PO Box 8, Southgate House, Stevenage, Herts SGI 1HQ, England

This publication is copyright under the Berne Convention and the International Copyright
Convention. All rights reserved. Apart from any copying under the UK Copyright Act 1956,
part 1, section 7, whereby a single copy of an article may be supplied, under certain conditions,
for the purposes of research or private study, by a library of a class prescribed by the UK Board
of Trade Regulations (Statutory Instruments 1957, No. 868), no part of this publication may
be reproduced, stored in a retrieval system or transmitted in any form or by any means
without the prior permission of the copyright owners. Permission is however, not required to
copy abstracts of papers or articles on condition that a full reference to the source is shown.
Multiple copying of the contents of the publication without permission is always illegal.

© 1979 International Computers Ltd
Printed by A. McLay & Co. Ltd., London and Cardiff ISSN 0142—1557

98 ICL TECHNICAL JOURNAL MAY 1979

Com puters in support
of agriculture in

develop ing countries
G.P. Tottle

ICL Product Development Group, Technology Division, Manchester

Abstract

This paper describes the facilities of a generalised system, SCAPA (system
for computer-aided agricultural planning and action) which explores how
far small computer systems can support the planning and production
activities of large numbers of small farmers in developing countries. The
facilities are discussed in relation to the real requirements, which were
encountered in joint field studies during 1978, for coffee farmers with the
Kenyan Ministry of Agriculture, and for rubber farmers with the Rubber
Industry Smallholders Development Authority in Malaysia.

1 Introduction

‘Give a man a fish and he‘11 eat for a day; teach him to fish and he’ll thrive for a
lifetime.’ The proverb has become a part of the conventional wisdom of develop­
ment economics—how can the relevant results of research, which have immense
potential to increase for example agricultural production, be selected and communi­
cated to small fanners in developing countries? And once the technology has been
communicated and accepted, how can the small farmers’ activities be supported, in
terms of agricultural inputs, credit, advisory services and marketing?

The agricultural output that is possible, and the pitfalls towards its realisation, can
be illustrated from a joint ICL study with the Rubber Industry Smallholders
Development Authority (RISDA) in Malaysia. For a quarter of its 25-year life cycle
the main crop, rubber, underexploits its environment-commonly one sees young
trees at 4m intervals lined up on bare, moist, sun-baked earth which seems to
pulsate with productive potential. There is an obvious opportunity for intercropp­
ing with other plants, but technology, environment, crops, markets and logistical
support all have to be evaluated and established before this potential can be rea­
lised. In one carefully planned and monitored scheme in Pokok Sena, 20 acres
(8 ha) of such immature rubber on poor soil were being intercropped to maximise
output. This involved heavy use of fertilisers, production credit, a complicated crop
rotation and assured market outlets, and, the primary requirement, the enthusiasm,
commitment and understanding of the individual smallholders who ran it. The
result was three to four varied crops per year, with a net return to farmers of
roughly £800 per year per acre (£2000 per year per hectare), from land which would
otherwise have lain fallow.

ICL TECHNICAL JOURNAL MAY 1979 99

This scheme illustrates at its best the spectrum of opportunities, the range of choice
and challenge open to smallholders; if it can be repeated elsewhere, as RISDA in
its group replanting schemes is attempting, and if further opportunities for propa­
gating allied processes in rural areas can be created, the wealth and attractiveness of
farming can be increased and the drift of the younger farmers to the towns may be
reversed. However, if this illustrates the potential, the problems in achieving it for
large numbers of smallholdings—100,000 coffee farmers in Kenya, or 150,000
rubber farmers in Sri Lanka for instance—are formidable. Farmers are at the centre
of networks of interdependent activities, and problems in any one of the dependen­
cies at Pokok Sena, for instance, could seriously set back the introduction of new
techniques. The setback here would however, be less serious than in the less
resilient but more straightforward monocropping pattern—a pattern that is
commonly followed in agricultural-development projects because it is more easily
managed.

This illustrates the main requirements, to meet which the SCAPA system was
framed: to explore how far computer facilities might assist in this situation, where
on the one hand the complexity of choice and agricultural system interactions,
and the large volume of transactions make computer use a natural conclusion, while
on the other hand computer technology may seem unintelligible, costly, and
inappropriate. The opportunity cost of one 2903 in terms o f ‘borehole equivalents’
for example is clearly very high; this cost is unacceptable if the end result is to give
an illiterate farmer a sheaf of PERT output, or worse to override the farmer’s well
informed judgement by a set of instructions that are less effective, or inappropriate
to his needs.

This paper outlines, against this background, the facilities of the SCAPA system
(system for computer-aided agricultural planning and action) in the light of feasibi­
lity studies carried out during 1978 in Kenya with the Ministry of Agriculture and
in Malaysia with the Rubber Industry Smallholders’ Development Authority. ICL
designed the basic system in collaboration with Professor Black and members of the
Department of Computation at the University of Manchester Institute of Science &
Technology, with great benefit from discussions with overseas development groups
at the universities of Nottingham, Reading and East Anglia, and with the essential
participation in particular of Dr. C.L.A. Leakey and Major TJF. Ellis. Their practical
experience, and the views and ideas from field staff in Kenya and Malaysia, were
indispensable. The basic concepts, specification and potential of the system have
been established, and the next stage, a pilot implementation under the Ministry of
Overseas Development, is currently being planned.

2 Field background to feasibility studies

Two 1-month studies were carried out. The first took place in two coffee growing
districts in Kenya: Murang’a, where a highly successful small farm production
system is well established; and Kisii, an area of high potential where, however, less
than one-third of the productivity is being achieved. In these areas about one-third
of the cultivated land is assigned to arabica coffee, a crop which produces high
returns but demands careful attention and costly agricultural inputs at critical time

100 ICL TECHNICAL JOURNAL MAY 1979

intervals. The Ministry of Agriculture provides a specialist advisory service, and pro­
duction and marketing are organised by small growers co-operatives, each covering
up to three factories. Factories are normally less than 3 km from the farms. They
tend to serve about 100 growers with plots of 1 to 6 acres (0*4-2*4 ha) in size,
providing agricultural supplies and facilities for processing and marketing the
produce and accounting for farm output. Our study involved visits to a small but
reasonably representative number of farms to discuss production and problems,
and a follow-up through the infrastructure to assess how far SCAPA facilities
might assist in solving problems or exploiting opportunities.

The second study, in Malaysia, concentrated on the state of Kedah, a designated
poverty area. RISDA, The Rubber Industry Smallholders Development Authority,
has a very wide remit to promote and support the interests of the ‘man or woman
behind the rubber tree’-280,000 smallholder families with holdings averaging
5*5 acres (2*2 ha). Thus, in addition to supporting the mainstream technical
activity of replanting, new planting, production and processing, the Authority
runs a variety of projects with farmers, locally controlled, to explore opportunities
for new crops, livestock, new markets, rural industries or trade, and tries to pull
some of the industrialised activities back from the towns to the villages. This
involves an imaginative, project-oriented approach, with RISDA’s extension officers
(advisers) acting as catalysts in a less integrated system than in Kenya—marketing,
for example, is organised by RISDA in fortnightly auctions of unsmoked rubber
sheet, transacted directly between growers and buyers, with RISDA staff stepping
in to bid and purchase only if the price offered seems unreasonably low.

The following Sections summarise the SCAPA facilities, and the conclusions
reached during the field studies, under the following heads:

(a) farm profile recording and analysis
(b) plan development
(c) progress recording and monitoring
(d) advisory/extension services
(e) agricultural input supply
(f) credit assessment and control
(g) marketing
(h) management and project monitoring.

These functions are modular with the intention that users can select, and tailor if
needed, those functions appropriate to their needs. Before embarking on the
detailed section a brief study of Table 1, and Figs. 1 and 2 showing the system aims
and the overall application phases and structure may be useful.

3 Farm profile recording and analysis

The system provides for a profile of the capability of each individual farm to be
built up gradually, extending from basic identification information to more de­
tailed data defining the farm’s production capability, the labour availability, soil
type and depth, gradient, aspect, exposure etc. Once captured, this data can be
analysed and matched with a variety of possible cropping plans to indicate their

ICL TECHNICAL JOURNAL MAY 1979 101

relative merits and eventually to vet the farmer’s proposed plan and report any
potential problems.

Table 1 AimsofSCAPA

The system’s prime target is to support individual growers and extension staff. To do so, it
provides a back-up system to:

match farm potential to production plans
ensure key activities are recorded in plans
monitor and support their achievement
raise problems for solution
free experts to concentrate on opportunities
provide credit relative to farmers’ achievements
schedule and check the provision of inputs
support and record marketing of produce
summmarise progress for management

Capturing this data in sufficient detail for valid technical conclusions to be drawn is
expensive—a similar system in Bulgaria,1 for instance, records 17 data items on soil
capability—taking about 3 man days per farm. On the other hand it provides a
semipermanent record against which the continuing stream of technical possibili­
ties can be evaluated in the future.

In Kenya, profile recording and analysis offered considerable potential for explora­
tion. Excellent research recommendations from the Coffee Research Foundation,
for instance, identified, among others, optimum phosphate fertilisers for 12
possible combinations of calcium, phosphorus and acidity Digesting and applying
this recommendation to a particular situation involved a complicated set of condi­
tional decisions-a competent extension officer might take 40 minutes study to
come up with the right answer for a particular farm. In the field, however, basic
soil data, even for acidity levels, and even on an area basis was not yet available, and
in its absence there was a single standard field recommendation that all farms apply
two fertilisers, CAN and ASN, in fixed quantities, in alternate years. If one bears
in mind that input costs for coffee are high—roughly 40% of total production
costs—and that a high return, over £500 per acre (£1250 per hectare), is common,
the process of data trapping and analysis seems attractive. In place of the above
standard field recommendation, a precise recommendation as to quantity and type
of fertiliser can be made for each farm, using the computer system. As an extension,
the effects of cropping, run-off etc. on soil quality might be monitored dynamically
to maintain a continuing awareness of residual fertility levels. In Malaysia, profile
data for the farms was already being recorded, under IDMS on a 2903 computer,
though the depth of coverage needed to be extended for valid technical conclusions
on soil capability to be drawn. Since rubber is less demanding in its input require­
ments and offers a lower return, the benefits of detailed recording of soil data are
debatable unless intercropping young rubber with high-value cash crops is envisaged.

4 Plan development

The system requires time-barred ‘action lists’ as the plan for each farm, showing
each major activity, its expected completion date, its dependencies, and its phased

102 ICL TECHNICAL JOURNAL MAY 1979

V extension research

Fig. 1 SCAPA planning phase

resource requirements in man days or quantities of inputs, services or credit. These
are drawn up by agricultural advisers—extension staff—as a set of models for equally
sized plots to cater for a wide range of farm capability and farmer intentions: a
young ‘emergent commercial’ farmer is likely to set different goals and different
crop mixes and to accept different levels of risk from a traditional farmer who is
seeking primarily varied subsistence crops for a large family, but with some cash
crops as a side line.

The end result of the planning activity is a variety of action lists, which are dis­
cussed in detail with each farmer, who then selects that which meets his own re­
quirements or drafts a special list if needed. Table 2 gives part of a schematic
84-stage action list for rubber and tapioca over 5 years. In contrast to the glossies

ICL TECHNICAL JOURNAL MAY 1979 103

Fig. 2 SCAPA production phase

and pamphlets often distributed, these lists are precise as regards timescale and the
inputs and returns for each individual farm—it is expected that farmers will keep
them pinned up for ready reference to the current window of activities, much as
dairy farmers do currently in the UK for cattle feeding and milk recording.

Research and extension advisers are responsible for the action lists, for evaluating
costs, labour requirements, returns, markets etc. This is a tough assignment but it is
one that provides a useful discipline, particularly in view of the common discrepan­
cies which intervene between the results of experimental research undertakings and
real field practice. As their familiarity with the computer system develops, they can
exploit linear programming and simulation packages, a large range of which are
available; initially however all this will probably be done ‘by hand’ relative to local

104 ICL TECHNICAL JOURNAL MAY 1979

conditions—road networks, weather patterns, markets, transport costs etc. Tables 3
and 4, and Fig. 3 show the range of choice open typically to farmers, and the
calculations that are desirable in developing appropriate action lists. As indicated
later, the aggregation of resource requirements and outputs from the action lists is a
vital base for production, extension services, credit and marketing.

Farm planning with this level of precision was the rare exception during our field
studies, confined generally to one or two outstanding ‘progressive farmers’ in
Kenya, or to the best run ‘group replanting schemes’ in Malaysia. Farm planning
teams in the districts worked very hard but necessarily covered a very small fraction
of the population, commonly those who were making large loan applications.
Some extensionists might argue that the farmers nevertheless had a comparable
programme of work ‘in their heads’, but even so the cost benefits were not calcu­
lated-some farmers chose between tea and coffee as cash crops according to which
was pleasanter to tend; tea plucking is more congenial than the tedious process of
selecting and picking ripe coffee cherry. More importantly, if the farmer’s plan,
however good, is ‘in his head’, the possibility of reconciling it with input require­
ments and market opportunities is limited. This applied particularly where develop­
ing technology demands close adherence to a complex chain of activities. High-
yield varieties of wheat, maize and rice, for instance, developed during the seventies,
have achieved a threefold increase and more in output, but only if critical require­
ments as to planting dates and fertiliser applications are met.

5 Progress recording and monitoring

The output per hectare currently achieved by small farmers is often more than
twice that of large farms (in Brazil a factor of eight, in Colombia a factor of 14).3
The potential return per unit of land (but not labour) is even higher, provided that
the relevant results of research can be communicated, and their field implementa­
tion can be supported and monitored. The SCAPA facilities aim at the following
approach.

At the completion of the planning phase, the intention is that each farmer has his
own agreed, committed plan. Thereafter, at monthly intervals he receives a
‘monthly review’, a printed ‘window’ of his action list which:

(a) records the report he made last month
(b) reminds him of his planned activities over the coming two months
(c) requires him to report his success in carrying out his production plan for

this month
(d) requests order confirmation of any planned input deliveries for the next

month
(e) gives the delivery details (time, place, quantity, cost) for inputs this month.

At the year end this is supplemented by a summary of income and expenditure.
The farmer receives his monthly review form and completes and returns the tear-
off, OMR readable, report section, which is in due course read by a document
reader, the reports being aggregated and analysed for management action.

ICL TECHNICAL JOURNAL MAY 1979 105

106
ICL TEC

H
N

IC
A

L JO
U

R
N

A
L M

A
Y

 1979

Table 2 Action list (in addition to normal tapping) for a replanting programme for 3 years before and 7 years after actual planting

Year
Year 1 month Description

Action
Number

Must be
preceded
by

Labour
man days

Latest
completion
date

Credit
action

Value of grant or credit
and value of goods or
sources in kind

Budget
cash flow

End March Fell and cut and load contractors lorries
with wood 19 18 + $1100 (less transport

cost at $0*5 per tonne
km (say $900)

April Poison tree stumps as felled
Apply for contractor ploughing and make

20 11 2

contract 21 -

Apr/May Collect and burn small wood in tree rows 22 2
Apply for hole inspection for end of May
Contractor carries out 2 discings + harrow

23 "
rotovate in the interrow spaces 24 20 - 15th May *

Contractor prepares holes (by postholer)
between standing tree stumps, at
least 60 cm diam. by 45 cm deep 25 *

-$120*Receive CIRP and GML (10 bags) 26 16 - 1st May $80 (grant) (in fertiliser)

Apply CIRP and GML broadcast in interrow
before rotovation 27 26 8

Receive tapioca sticks and cut to 23 cm
lengths 28 14

Plant tapioca 5 rows between rubber rows
using 23 cm cuttings 29 28 8

May Inspection of clearance and rubber holes 30 25 - 31 st May $20 (Credit) (in planting
materials) $180 (Grant) +$180
balance* (in cash)

Receive fertilizer for tapioca (8 @ 40 kg bags
CCM44, 10 bags @ 40kg bags
CCM77)

31 15 • $786 (Credit) (in fertiliser)

Mid May Apply fertilizer to tapioca 8 bags CCM44
week after planting in 15-23 cm
rings around plants 32 31 i

End May Weed tapioca 33 - 5

*NB: Some of the $ 180 may be paid out by RISDA to contractors for action 24 and 25. If so then cash balance will be reduced accordingly to $60

TEC
H

N
IC

A
L JO

U
R

N
A

L M
A

Y
 1979

107

Table 3 Rubber wood and nonrubber enterprises: labour and returns net of labour
Direct Net return,

Labour, man costs Quantity Gross returns, $/ha
CROP days/ha Maturity t/ha harvested Unit value $/ha without labour

Rubber wood 20 (with $10/ton less 1200- 1100-
chain saw) 30 years 100 120-150 t t’port at 50c

per tonne Km
1500 1400

Tapioca 68 12 months 307 18-22 t $70/ton less 1260- 953-
t’port at 50c
per tonne km

1540 1233

800- 230-
Soyabeans ~ 9 0 100-101 days 570 800-2000 kg $l-0/kg 2000 1430

Groundnuts ~105 110-120 days 1330 ca 3000 kg $0*67 2010 680
(in shell) (in shell)

Maize 68 65-100 days 840 ca 3100 kg $0*4 1240 400

Chillies
Fresh

70+ 5 months 1201 up to 13 t/ha l*6-2*0$/kg 20,800-
26,000

more than
10,000- 8000

Dry up to 2*5 t/ha 4-6S kg. 15,000

Sweet potato 38 100 days 200 100-140 pik $7 per pik 700-980 500-780

7480- 5885-

Ginger 58 7-8 months 1585 6800-8500 kg $1100 per tonne 9350 7765

Cabbages 101 80 days 1059-
1440

150-(300)
-520 pik

$35-42 per pik 5250-
21, 840

3816-
20,781

Chickens (broilers) ~ 1 0 60 days feed
$2310-2400 500 broilers $4*50-5*20 2400-2600 $0-290

110
ICL TEC

H
N

IC
A

L JO
U

R
N

A
L M

A
Y

 1979

Table 4 Outline suitability of possible intercrops according to soil and conditions

Crop Slope Drainage Flooding
Soil
depth*

Soil
texture

Depth of
surface peat

Acid sulphate
layer

Soil
workability Acidityf

bananas 0-15° not can stand > 6 0 cm avoid very
critical temporary light soils unimportant avoid < 30% stoney 5*5

flooding
tapioca 0-6°t not > 6 0 cm not sands or < 5 0 cm not less < 25% stoney 5 -0-7-0

critical none heavy clays than 70 cm
soyabeans 0-6° good none > 5 0 cm not critical < 5 0 cm good <5% stoney (5-0)

5-5+
groundnuts 0-6° moderate none > 5 0 cm not heavy < 5 0 cm not less good <5% stoney 5-5-7-0

-good clays than 75 cm
maize 0-6° t good none > 5 0 cm loams to < 5 0 cm < 25% stoney (5-5)

light clays 6-0-7-0
hill padi 0-6° less the can stand > 5 0 cm silts (heavy) unimportant unimportant < 25% stoney 5-5-6-5

better flooding - clays
chillies (fresh) 0-6°$ not none > 5 0 cm loams to <50cm not less <25% stoney 5-0-6-0

& dry) critical light clays than 75 cm
Sweet potato 0-6° good none > 6 0 cm sandy loam - < 5 0 cm not less <10% stoney 5-5-6-5

clay loam (not than 75 cm
heavy clay)

Ginger 0-6° $ good none ridges good crumb
30 cm High peats - clays ridging avoid structure and 6-0-6-5

friability
Cabbages 0-6° good none on beds river alluvium avoid very good 5-4-5-9

with drains
betweem clay loam

Tobacco 0-6° moderate none > 5 0 cm avoid very < 5 0 cm avoid < 25% stoney 5-5-6-5
- good light soils and

heavy clays
Pineapple 0-6 t can stand > 2 5 cm all except deep peat > 5 0 cm no problem 5-0-6-0

good temporary coarse sands suitable if
flooding and heavy well humified

clays and drained
*Soil depth required can be obtained by ridging if natural soil depth is less than stated. $Up to 12° with conservation
tLime can be used to bring soil into required range if necessary.

promotion to headquarters. In fact the field officers we talked to usually enjoyed
the challenge and contact in their jobs, but nevertheless felt isolated and faced
with a nearly impossible task in trying to communicate to upwards of 1000 farmers,
particularly when routine administration — crop returns, various reports, or the
paperwork surrounding the 18 stages of each replanting grant for rubber — often
took 50% of their time.

The SCAPA facilities are intended to have three main effects. First to structure
extensionists’ work so that some less demanding functions — random inspection to
ensure that progress is being correctly recorded, or that disease control is carried
out — can be delegated to less trained staff (the scarcity of trained staff is an
endemic problem). For budgetary reasons, the numbers of such untrained staff
were sometimes being reduced drastically, even though, as men with practical
farming experience, they were often very good at their jobs. If the effectiveness of
their participation were to be demonstrable in tangible terms — e.g. by farmers’
action lists correctly being followed, or rising crop returns — this phasing out of a
potentially valuable service could be re-evaluated. Secondly, the exception reports
extracted from the farmers’ monthly review forms could point the extensionists
at problem areas — this was generally welcomed. Studies by the Institute of Develop­
ment Studies in Nairobi for instance have shown that over 50% of the wealthy
progressive farmers are visited and advised, against 3% of the poorer smallholders,
the men with the problems who needed assistance. A similar pattern sometimes
occurred in Malaysia. Again understandably, because the extensionist found closer
rapport and interest among the progressive farmers. However, the progressives
tend to be individualists, whose example is frequently rejected by the average
smallholder for a variety of socio-economic reasons. Thus the effectiveness of
extension visits in improving average standards was greatly diminished.

Thirdly, the administrative workload should be reduced, since farmers and the
computer system that analyses their returns can take on some of the routine
reporting functions. This was attractive — both in Kenya and Malaysia successful
extension is increasingly engulfed in necessary paperwork, to the extent that
RISDA in Malaysia required one clerical worker per extensionist even at local
levels.

7 Agricultural input supplies and services

Returns in developing countries from the use of agricultural inputs tend to be
much higher than from the use of equivalent quantities on the relatively jaded
soils of developed countries, soils which are, for example, usually further up the
slope of diminishing returns per unit of fertiliser. However, the logistics of input
supply — forecasting, distribution and payment - are extremely difficult for
large numbers of small farms.5

The relevant SCAPA facilities provide for:

(a) long-term forecasts, based on the aggregation of the precise require­
ments embedded in the action lists for each farm

ICL TECHNICAL JOURNAL MAY 1979 111

(b) short-term confirmation by the farmers that the embedded orders still
apply

(c) scheduling (from manually input vehicle schedules) of delivery arrange­
ments

(d) recording and accounting for receipt.

In Kenya and Malaysia, satisfaction of farmers’ input requirements was given
high priority and was closely monitored. Nevertheless, problems occurred. Most
notably, arabica coffee requires spraying at 3-weekly intervals during the rains
with a very costly fungicide, benlate, to prevent coffee-berry disease. Over 50% of
farmers had been unable, through shortages, to apply the full series of sprays,
usually achieving less than half the cycle. The resultant disease cost was, for a
single district, a loss of at least £1 million in potential production. The problem
stems from the original forecasts, which are derived from subjective judgements
for each factory (factories store and supply inputs to the farmers) of the area
under cultivation, and the historical pattern of demand by the farmers in the
area.

The key variables — the farmers’ intentions for the future — were necessarily
unknown, while the historical demand pattern was suspect, since in previous years
local rumours of shortage had caused spurts in buying and hoarding and hence
artificial shortages. It seemed therefore that the precise knowledge of each farmer’s
intention as recorded in his action list, and monitoring its satisfaction, could be
highly effective. So also could the normal procedures of computerised stock control
— monitoring stock-outs and controlling re-order levels and quantities. These last
need to be varied by season and area; here the manual system, which prescribed
standard levels, fell down and was not used.

8 Credit assessment and control

Developing agricultural technology frequently demands credit for seeds, fertilisers,
equipment and buildings, but the cost of administering large numbers of small loans
to the small farm sector is high, defaults are often excessive, and it has been esti­
mated that less than 50% of the funds provided are spent on the purpose intended.6.7

The SCAPA proposals involve assessment of a farmer’s creditworthiness and require­
ments by reference to his farm profile; the credit is subsequently meted out in
relation to his completion (reported and inspected) of specific production activities
in his action list.

In Kenya, the general problems described above had led to a tight and effective
system, whereby farmers could acquire credit for input purchases up to two-
thirds of their output, averaged over the preceding three years. There was in fact no
bar to credit for the successful farmers, but equally no route in for the poor farmer
who wanted to enter production, but had no previous record of production achieve­
ment to justify credit. SCAPA proposals would assist in the latter case, because the
door could be opened to poorer farmers with reduced risk to the lender, since
expenditure and achievement are monitored.

112 ICL TECHNICAL JOURNAL MAY 1979

RISDA in Malaysia is funded from a levy on rubber sales, and allocates part of this
levy as credit for replanting or new-planting grants. A farmer receives his grant in
stage payments, each stage in the planting cycle being inspected. Here we concluded
that the SCAPA procedures could be used in place of the existing effective but
lengthy manual procedures—in another country, a backlog of two to three years is
common—and also to control other loans, where formal control is less well defined.
This summary sounds somewhat clinical; the problem of credit release and control
is central to development, as is the release of funds, which can be penned up behind
barriers of information and decision.

9 Marketing

SCAPA facilities provide for each farm the recording on OMR forms and subse­
quent accounting for produce sales in terms of quantity and quality.

Manual procedures were followed in Kenya. Complicated calculations were required
to deduct credits, apportion a variety of charges and quality bonuses averaged for
each factory, for large numbers of transactions—reflecting the activities of 40,000
growers over three months. Carried out manually, the system imposed a clerical
nightmare similar to a prolonged year-end bank audit, with teams of clerks, drawn
in from the factories, computing and checking alternately, working unpaid overtime
when reconciliations failed, or when mechanical hand calculators went wrong. (The
chief accountant strongly advocated computerisation). The best organised districts
achieved this reconciliation and disbursement to farmers in about a fortnight, a
remarkable achievement, but in other cases the delay in payment reached three
months or more. Significantly, all the data needed to produce farm accounts,
enabling a valuable analysis of profitability for each farm, are recorded. However,
under a manual system, restructuring this data to provide such analyses (a key to
effective farm management)® is in effect impossible because of the volume involved.
The relevance of such analyses in feedback to management, research, extension and
market forecasting for processing, storage and transport planning has already been
mentioned.

In Malaysia marketing is not under the integrated control which is essential in
Kenya for coffee, but most sales of rubber occur at RISDA’s group processing
centres, and are recorded on an individual-farm basis, so that similar analyses and
feedback are feasible. The broader planning aspects of marketing, as opposed to
straight sales recording, were also relevant because RISDA places great emphasis on
mixed cropping and diversification, which can only succeed if production output
and market demand are in reasonable balance. Regular feedback on production
activities during the growing season can help to achieve such a balance. Without
such reports the market-development staff were in a very exposed situation.

Imaginative attempts to introduce new and potentially valuable crops could be
hamstrung because either shortfalls or surpluses could deflate confidence among
both producers and buyers.

ICL TECHNICAL JOURNAL MAY 1979 113

10 Project management

‘The way ahead will also depend on bold innovative projects which will depend on
creating and quickly responding to suitable opportunities as and when they
appear’.lO Local initiatives on these lines are in particular a strong feature of
RISDA’s policy, to exploit the potential challenge and attrractiveness of rural life.

A wide range of group projects cover, for example, crop diversification, animal
husbandry, fish farming, irrigation, land development, local shops, rural industries
and community welfare. There is, however, an inevitable risk that well meant but
inadequately researched or managed local schemes could cause severe hardship.
SCAPA facilities might provide a framework under which such schemes are evalua­
ted, supported and monitored.

11 Computing aspects

The main requirements are for high-volume/low-cost throughput, ease of operation,
a straightforward and easily understood user image, capacity to handle different
natural languages, and data protection to ensure privacy for sensitive personal data.
In addition, database management, a variety of applications software, mathematical
and statistical packages and high-level language compilers are needed—for example,
to support the planning activity, where a certain amount of simulation and model­
ling are involved. Remote job entry is an immediate requirement, with full commu­
nications use as an extension. The target machine is a 2903, operating primarily in
batch mode, located at District or State headquarters.

Details of the procedures and field implementation costs are given in the project
working papers. The cost-benefit ratio is about 1:7, based on assumptions which
seem typical but require evaluation in the light of particular proposed applications.

12 Management aspects and conclusion

Computational facilities have been widely exploited for agricultural planning for
developing countries^ covering systems simulation, mathematical modelling and
econometric models. However, the facilities have only been invoked in a partial,
piecemeal fashion in the areas of production, supply, marketing and management.
This is probably partly because computers are not seen as ‘intermediate’ techno­
logy, but as tools of affluence, and are therefore held to be inappropriate. Much as
tractors are often disfavoured because each tractor may supplant 40 labourers,
computers are feared to displace clerical staff. However, if the very convincing
argument is accepted that the small-farm sector holds the key to increased world
agricultural production—an incremental rate of 5% per year is quite feasible3—
then the logistical and management support of the small farmer involves, as indica­
ted earlier, an information-handling requirement which clerical methods cannot
meet. Viable advice has to be propagated and timely supplies assured, and, in
particular, feedback on performance and problems is needed on a large scale.
Managing these activities on a large farm or estate basis is difficult, but doing so for
a large population of independent smallholders is far more complex.

114 ICL TECHNICAL JOURNAL MAY 1979

The SCAPA facilities provide some answers in a variety of contexts. Specific areas
like the planning and supply of inputs, the control of credit and sales recording and
analysis clearly present an immediate requirement. These are areas where current
manual procedures are a constraint. Over a million transactions for instance are
already recorded manually for one district, Murang’a, per year; if held on computer
files this data could be readily abstracted and analysed to give control and feedback
from farm level upwards. In other areas the system facilities have greater potential
benefit, notably in the communication and acceptance of new techniques and in
monitoring their use, involving direct interaction between farmers and the systems.
These facilities require evaluation for acceptability and cost benefit in pilot studies
during the next phase of implementation.

References
1 GARBOUCHEV, I J , and SADOVSKI, N.: ‘An application of a soil information system’.

Poushkarov Institute of Soil Science, Sofia, 1975
2 GATITH, G.M. KABAARA, A.M., and MICHORI, K.P.: ‘Standard recommendations for

coffee fertilisers, 1976. Coffee Research Foundation, Ruiru, Kenya
3 LEAN, G.: ‘Rich world poor world’ (Allen & Unwin, 1978), p. 43
4 CHAMBERS, R., and BELLSHAW, D.: ‘Managing rural development’. IDS Discussion

Paper 15, Section 3.13, University of Sussex, 1973
5 ELLIS, T.F.: ‘Report for western region coffee sector, 1972’. Ministry of Agriculture,

Uganda.
6 BESSELL, J.E., and ILES, I.M.: ‘Farmer operating efficiency and credit worthiness’.

Nottingham University, 1976
7 HUNT, D.M.: "Credit for agricultural development’ (Third World Publications, 1974)

p. 135
8 UPTON, M.: ‘Farm management in Africa’ (Oxford University Press, 1973), p.8
9 BIGGS, S.D., SWONG CHONG YUAN and LANGHAM, M.R.: ‘Agricultural sector

analysis’ (Singapore University Press, 1977)
10 MINISTRY OF OVERSEAS DEVELOPMENT:‘More help for the poorest’, Cmnd. 6270,

HMSO, p.20
11 MOHAMMED NOR and CHONG KWONG YUAN: ‘Proceedings of RR1M Planters

Conference 1973’. RISDA, Kuala Lumpur, p. 377
12 BENOR, D. and HARRISON, J.Q.: ‘Agricultural extension’. World Bank, 1977
13 UMA LELE:‘Design for rural development’ (John’s Hopkins University Press. 1977),

pp. 70 and 102

ICL TECHNICAL JOURNAL MAY 1979 115

Software and algorithms forthe
Distributed-Array Processors

R.W. Gostick
Senior Consultant, DAP Marketing Unit, ICL, London

Abstract

The ICL distributed-array processor, (DAP) is a radical departure from
conventional serial computer architectures, providing new opportunites
for system and language design. This paper describes briefly the inter­
action of the DAP with a standard 2900 series computer, and indicates
the ways in which Fortran has been enhanced to cater for parallel-pro­
cessing capabilities. Examples of algorithms using the new system in
widely differing applications are given.

1 Introduction

The technology that has made the microprocessor and pocket calculator possible
also makes it feasible to consider building powerful computers out of many identical
elementary processors. The distributed-array processor!^ (DAP) is made by
embedding a matrix of elementary processing elements within the store of a standard
computer and is the most advanced of these new computer systems. As a direct
result of their nature processor arrays have the capability of simultaneously pro­
ducing many identical results and sometimes, when compared with single processor
systems, require different techniques for their exploitation. A new generation of
programming tools needs to be developed to allow processor arrays to be pro­
grammed and this paper discusses DAP-Fortran, the language proposed for scientific
and technical programming for the DAP.3>4 The paper deals with only a few of the
novel features of DAP-Fortran. Its aim is to give the general flavour of the language,
and an indication of methods of ‘parallel thinking’.

There are many high-level languages and equally many fiercely held opinions as
to their relative merits. It is only a very brave and foolhardy worker who dares to
suggest a new language and the suggestion will only survive if it contains multiple
benefits for the end users. Languages like Fortran and Algol were invented in the
days when computers were only capable of obeying a single stream of elementary
operations (arithmetic, boolean or control) and so not surprisingly contain very
few defined operations of greater complexity than these simple operations.

As processor arrays by their very nature perform many repetitions of the same
operations it is desirable that a programming language for processor arrays con­
tain facilities for specifying easily such automatic repetitions. The fundamental
question is whether to try to specify a completely new language or try to modify

116 ICL TECHNICAL JOURNAL MAY 1979

and extend an existing language. A quick investigation of the potential users of
processor arrays shows that the community is 99*9% of the opinion that ‘Fortran
is the only natural language for programming computers’. It should be emphasised
that this is the view of those workers who actually use computers for very large
scale computing. The view of the language theoreticians — who apparently never
seem to do very large computations — is 99*9% ‘Fortan is awful, language X is
much better’. Unfortunately, there is no agreement as to X, the actual name chang­
ing about as rapidly as the fashionable height of a hem line.

Putting the users’ opinions first, a dialect of Fortran has been proposed which it is
believed contains sufficient new facilities to allow greater ease of programming
while leaving freedom for the compiler writer to alter the implementation to suit
the characteristics of processor arrays.

2 Basic concepts

2.1 Hardware structure

Although the DAP shares the name ‘array processor’ with many other current
computers, there are many uses of the term. In the general sense an array pro­
cessor may be considered simply as a machine that processes arrays. In this sense,
of course, any modem computer such as the 2980 may be considered to be an
array-processing machine. A more widely accepted definition is that the machine
should have special hardware facilities for array processing, such as a vector instruc­
tion set or vector registers. Indeed the terms vector and array are freely inter­
changed. The DAP is in many ways a ‘true’ array processor, since not only does
it process arrays but it is actually a physical array of processors.

The basic hardware of the DAP consists of an array of identical processors, known
as processing elements (PEs). A pilot machine with 32 x 32 (ie. 1024) processors
has been operating in ICL’s Research and Advanced Development Centre since
1976. The first production model with 64 x 64 (4096) processors will be delivered
to Queen Mary College, London University, during 1979. Larger arrays, particularly
128 x 128 (16384 processors), are already being considered. In this paper N refers
to the basic dimension of an N x N DAP. Each processing element is in fact much
simpler than either the chip in a pocket calculator or a typical modem micro­
processor. As with most microprocessors, the PE has a store (a single 4kbit store
chip) and a processing unit, but the processing unit has very few hardware facilities.
It may be considered as having merely three registers and a set of simple instruct­
ions which operate on the three registers and the store. (Fig. 1) Of particular
importance is the A-register, known as the Activity register. Certain instructions
may be made conditional on the setting of this register in each processor, hence
providing a measure of local autonomy to the processors in the array. By using
this facility, through the use of the DAP-Fortran language, most of the conditional
operations common in many physical processes may be handled naturally and
efficiently, with no expensive tests and jumps within the code. There is no equiva­
lent to the normal functions of instruction fetching and decoding, address cal­
culations, interrupt handling etc. All these are handled by a central unit called
the master control unit (MCU).

ICL TECHNICAL JOURNAL MAY 1979 117

Fig. 1 Simplified processing element

The master control unit has two significant roles, one as a co-ordinator and one as
a processor performing certain centralised functions. In its primary role as a co­
ordinator, the MCU has the tasks of instruction fetch, decoding and modifying
via MCU registers. In this respect it acts much like a normal central processor, but
in one sense the similarity ends there, since most of the instructions decoded by
the MCU are not in fact ‘obeyed’ by the MCU itself. The MCU simply sends, or
broadcasts, the decoded instructions to the array of processors which then obey
the instruction simultaneously, acting on their locally held data. Thus the DAP
may be regarded as a single-instruction-stream multiple-data-stream machine

118 ICL TECHNICAL JOURNAL MAY 1979

(SIMD), since one instruction is obeyed in parallel by many independant pro­
cessors.

The secondary, but also very important, function of the MCU is as a true centralised
processor. While the array of processors works efficiently on large sets of data in
arrays, there are still some simple functions that may only be performed in a scalar
fashion. These functions, such as the control of DO loop variables in Fortran,
are performed within the MCU itself. The MCU also has powerful facilities for
global actions on the data held in the PE store, such as finding a maximum value.

The term ‘distributed’ in distributed-array processor refers to the unique way in
which the DAP interfaces to a supporting, or host, 2900 computer. Most fast-
array or vector processors are attached to a host machine as a back-end processor
As such they are connected to the host by a channel, in a similar way to a disc
unit. The DAP is built into a system by distributing its processing elements within
a store module of the 2900, allocating one processor to each semiconductor
store chip in the module. This means that once the data has been loaded into
the store, using all the conventional 2900 facilities, it may be processed either
by the 2900 or by the DAP. There is no overhead associated with ‘loading’ the
DAP as there is with a back-end processor. Fig. 2a shows the DAP as part of a
typical 2900 configuration.

d i s t r i b u t e d a r r a y p ro c e ss o r

con tro l le rs

Fig. 2a DAP as part of an ICL 2900 'host' computer

2.2 Software structure

Since the operating system can regard the DAP as normal main store, any applica­
tion which runs on the 2900, using any standard facilities, will run on the 2900/DAP
configuration. Such an application would not, however, notice the existence of the
DAP and hence would not benefit. To make use of the DAP suitable parts of the

ICL TECHNICAL JOURNAL MAY 1979 119

selection in that dimension. Thus A(3 „2) selects the third row of the second matrix
of the set, and A(,3,2) selects the third column, while A(„2) selects the entire
second matrix. Note that a subscript of the form B(,3) is syntactically correct
either to select a column from a matrix or a vector from a vector set—a very
desirable consequence, since both items are logically the same in the programmer’s
view. The previous examples were, of course, simple cases where each array element
only interacted with other array elements at the same position (ie. with the same
Fortran subscript). There are many cases where this simple relationship will not be
true, and DAP-Fortran has new indexing techniques to handle them.

Consider, for example, a simple physics problem, which is to solve Laplace’s equa­
tion on an N x N element grid. One standard technique uses an iterative procedure,
where at each iteration the value at any grid point is replaced by the average of the
four neighbouring values. This could be expressed in Fortran by:

DO 1 I= 1 ,N
DO 1 J = 1JN

1 X(I J) = (Y(I + 1, J) + Y(I - 1 J) + Y (U + 1) + Y(I,J - 1))/4-0

Note, however, that this would fail when I or J became 1 or N, at the edges of the
array, since the index calculations would try to access over the edges. The user has
to be careful about the range of the index variables in this situation, and will
normally have to write special code to handle the edge effects.

In DAP-Fortran the problem is expressed using a concise notation where the
explicit index variables are omitted giving:

X = (Y(+,) + Y (-,) + Y(,+) + Y(,-))/4=0

The form Y(+,) is termed shift indexing and is used to access the neighbours of each
point in the array. Longer shifts, corresponding to the Fortran expressions of the
form Y(I + 4, J + 3), are performed by explicit functions which are considered
below.

As with the Fortran solution the DAP-Fortran code for the mesh problem has
accessed the complete array, but unlike the Fortran case the conditions at the
edges are defined explicitly by the programmer. The programmer is able to tell the
DAP, by means of a GEOMETRY statement, how he wishes the edges to be
handled. In the most usual circumstances one of two edge conditions will hold. The
first condition, known as plane boundaries, assumes that outside the bounds of the
array is a world of zero values, so that accesses outside the array produce zero
results. The second condition, known as cyclic boundaries, assumes that an edge of
the array is connected directly to the opposite edge. By combining these two
geometries in the north-south and east-west directions the DAP can be made to
resemble a plane, a cylinder in either of two orientations, or a torus (doughnut).
Other boundary conditions, such as continuity of the first derivative or reflective
boundaries can be handled using some of the masking techniques shown below.

The longer-distance shifts are handled by function calls, with a simple naming

122 ICL TECHNICAL JOURNAL MAY 1979

convention. As an example, the function SHWC performs a SHift to the West with
Cyclic geometry. For shifting in two dimensions the functions may be combined,
and so, in plane geometry,

Ml = SHNP(SHEP(M,3),4)

performs first a shift of array M by three positions east followed by four positions
north, with zero fill-in at the edges. This is the equivalent of the Fortran code:

DO 1 I = 1 ,N -4
DO 1 J = 4, N

1 M l(U) = M(I + 4 , J - 3)

Note that the Fortran equivalent would be more complex if a cyclic shift were
required.

Many common algorithms, such as the fast Fourier transform, make considerable
use of these shift routines, although it is usually found that only a small proportion
of the overall time is actually taken performing the shifts on the DAP.

3.3 Conditional operations: masks, logical arrays

All the examples above have assumed that the same activity is being carried out at
every point in the array. For many practical applications this will not be the case,
and Fortran users have to make use of the ubiquitous IF statement. Consider again
the quadratic equation given previously,

ax2 + bx + c = 0

which has to be solved for a set of values of the coefficients a, b and c. If only the
largest real root, if any, is required at each set of coefficients, the programmer
first has to test whether the discriminant b2 - 4ac is positive before performing the
square root operation. This will typically be written in Fortran as:

DO 11= 1,N
DO 1 J = 1
X(I,J) = -999
DISC = B(I,J)**2 - 4-0*A(I,J)*C(I,J)
IF(DISC.GE.0.0)X(I,J) = (-B (U) + SQRT(DISC»/2-0*A(I,J))
1 CONTINUE

The line X(I,J) = -999 serves as an indicator for unset, or imaginary, results.
Although this is a simple piece of code it will work only slowly on a conventional
or vector computer, since each time the IF statement is reached the computer has
to test and branch to alternate sets of code. This is particularly inefficient on a
pipelined machine, which works best when there are no tests in the code.

On the DAP the hardware works in parallel on all elements of the array, except
where it is turned off by the programmer effectively setting the activity register,
thus permitting simple implementation of conditional problems using a technique

ICL TECHNICAL JOURNAL MAY 1979 123

X = -999
DISC = B**2 - 4*0*A*C
X(DISC.GE.O.O) = (- B + SQRT(DISC))/(2-0*A)

where all variables are real matrices.

The expression DISC.GE.0.0. is a logical or boolean expression which returns a
matrix of values which are TRUE only where the corresponding value of the
discriminant is nonnegative. This matrix of boolean values is then used as a mask
in the subsequent assignment, so that only those values of X where the appropriate
value it TRUE will be changed. This provides a very natural way of writing complex
conditional programs while using the parallel nature of the DAP.

One extension of the use of the masking technique is the ability to create and
manipulate the logical masks. On the DAP logical variables may be stored as one bit
per variable, which is of course the minimum possible storage for a logical item. We
can therefore create and store logical arrays using a small percentage of the DAP
store. The DAP hardware can also manipulate logical items efficiently, for instance
a logical AND of two logical N x N matrices can be performed in a time of the
order of 1 us.

In the above example we can store the positions of the real roots by declaring a
logical matrix REALROOTS and using the basic Fortran type logical expressions,
giving:

REALROOTS = DISC.GE.0.0
X(REALROOTS) =(-B + SQRT(DISC))/(2-0*A)

The use of logical variables is further extended by many of the basic functions
provided in DAP-Fortran. As well as the standard mathematical functions such as
SQRT, which have been extended to use array arguments, DAP-Fortran provides a
wide range of functions for creating arrays from scalars, extracting scalars from
arrays and performing global tests on arrays.

The MAXV function finds the maximum value from a vector or matrix, using an
efficient parallel algorithm which will be shown later. This function may take
either one array argument, containing the values to be compared, or a second argu­
ment which may be used as a mask. Thus to find the maximum root of the earlier
equation, we can simply write:

MAXIMUMROOT = MAXV(X,REALROOTS)

Another function which is used with logical variables is the ANY function. This
produces a single TRUE value if and only if at least one of the values of its array
argument is TRUE, corresponding to the logical OR of all the values. This could
be used in the example to avoid performing the square root calculation if there are
in fact no real roots. We can write:

IF (AN Y(REALROOTS)) X(REALROOTS) = (-B + SQRT(DISC))/(2-0*A)

known as mask indexing. We can write the above problem in DAP-Fortran as:

124 ICL TECHNICAL JOURNAL MAY 1979

Note that this IF statement is used on a global basis, whereas in the Fortran case it
is used element-by-element.

The standard functions may also be used to set up logical arrays. The functions
ROWS and COLS return logical matrices with a set of rows or columns set TRUE,
Thus to declare a matrix indicating just the interior of a N x N array we can write:

INTERIOR = ROWS(2,N-l). AND . COLS(2,N-l)

This type of construction is used in many processes where different conditions
apply inside and outside the boundary of a region. Such a problem can be expressed
as:

X(INTERIOR) = interior function
X(.NOT.INTERIOR) = exterior function

This has naturally been only a brief overview of DAP-Fortran, since as with any
language the full power can only be appreciated by actual use. In the final section
of this paper we shall consider some actual examples of DAP-Fortran, but before
that there is one important aspect to be considered, that of diagnostics.

3.4 Diagnostics

The 2900 series uses a language-independant diagnostic system known as the object
program error handler (OPEH),5 which provides diagnostic reports using the names
and formats actually used by the programmer in his high-level language program. A
typical report is shown in Fig. 3, where the user has asked for local scalar values to
be printed out for each active routine in the calling sequence. Various options exist
for the level of information provided and the types of errors giving rise to reports.
The important point for the user is that there is no run time overhead when there
are no errors, since the diagnostic information merely resides in the virtual store
until needed. It is a relatively simple task to interface DAP-Fortran to this system,
requiring only that the compiler produces diagnostic records along v ith the DAP
code.

With an array processor, such as the DAP, new diagnostic facilities are often
required to allow for errors occurring in several array elements at one time, or
indeed in array elements where the results would not be required, for instance in
conditional expressions. In DAP-Fortran the programmer may allocate two vectors
and two matrices for use in diagnostic control. One array of each mode controls
the reporting of errors, while the other is used to indicate where errors have
occurred. By using these arrays in conjunction with error-classification specifica­
tions the user can either control all diagnosis and recovery within the program or
leave the total control to the system. A typical case where the user might require
total control is where the nature of his problem is such that at some stage overflow
will occur. When this happens the values in the problem are rescaled before con­
tinuing. Using the system, the user may check for overflow at any stage by a
statement of the form,

IF(ANY(OVERFLOW))CALL RESCALE

where the logical matrix OVERFLOW will have been set if errors have occurred in
any array element.

ICL TECHNICAL JOURNAL MAY 1979 125

OPEH REPORT IDENTIFY 1

OPEH MK 203 ON 1 9 7 7 / 1 0 / 2 0 AT 2 3 : 3 4 : 5 5

INTERRUPT ERROR: - 5 0 0
DESCRIPTION: ZERO DIVIDE

PROGRAM AT LINE: 533 (OFFSET: 4 1 6)
IN PROCEDURE:FOURTL
OF MODULE:FOURTL

SUMMARY OF ROUTE LEADING TO THE ERROR (REVERSE ORDER)

FORTRAN SUBPROGRAM FOURTL(MODULE FOURTL) AT LINE 533
FORTRAN SUBPROGRAM FOR12S(MODULE FOR12S) AT LINE 421
FORTRAN MAIN PROGRAM FFT(MODULE FFT) AT LINE 45

END OF ROUTE SUMMARY

REPORT OF CURRENT STATE OF PROGRAM

SUBPROGRAM FOURTL(MODULE FOURTL) AT LINE 533
= ° IDIM - 1
= t ISYM = 0
= “ NCURR = 0

“ NFCNT = 0
“ NREM = 1

FORTRAN SUBPROGRAM FOR12S(MODULE FOR12S) AT LINE 421
I = 1 ISGN IK * 0 N = 32NSTRNS * 1 NTYPE = 0
FORTRAN MAIN PROGRAM FFT(MODULE FFT) AT LINE 45
A = 0 . 0 AA 3 . 5 3 5 5 3 4

I FORM 0
JDIM = 1
NDIM = 1
NFSYM = 0
NTOT 0

J = 1
NCLBT = 0
N1 = 33

CN = oooo

Fig. 3 Typical 2900 high level diagnostic report

4 Programming Examples

FORTRAN
ICENT
ISIGN
N
NFACT
NPREV
NWORK

The four examples below show differing aspects of the DAP in use: a typical
arithmetic operation, a ‘low-level’ operation, a nonumeric application and an
algorithm for sorting. The Appendix gives the methods used in the algorithms for
computing standard numerical functions such as square root and logarithm.

4.1 Matrix multiplication

This is an important and time-consuming routine in many applications.

To multiply two N x N matrices, most programmers use a simple translation of the
mathematical formula,

Cjj = ^ ik ®kj

126 ICL TECHNICAL JOURNAL MAY 1979

which becomes in Fortran:

DO 1 I = 1 ,N
DO 1 J = 1,N
DO 1 K = 1 ,N

1 C(I,J) = C (U) + A(I,K)*B(K,J)

This gives the standard ‘inner-product’ technique, where at each step a row of A
and a column of B are multiplied together element by element and summed into
the appropriate element of C. We could perform this process in DAP-Fortran by
using the SUM function, giving:

DO 1 1 = 1 ,N
DO 1 J = 1,N

1 C (U)= SUM(A(I,)*B(J»

This is still not a highly parallel solution, using at most an N element vector multi­
plication. A small amount of lateral thinking is required. If we look at the original
Fortran code we can see that it will work with the DO loops in any order. Let us
move the inside K loop to the outside. Now we have:

DO 1 K = 1 ,N
DO 1 1 = 1 ,N
DO 1 J = 1 ,N

1 (C(I,J) = C(I,J) + A(I,K)*B(K,J)

We can see that in the inner loops we are keeping K constant for all I and J. Consi­
der the term A(I,K)*B(K,J) for all I and J. A(I,K) for all I gives the Kth column of
A, and similarly B(KJ) gives the Kth row of B. We are then multiplying every
element in a column of A by every element in a row of B. This is not a simple
vector multiplication, since we are not just multiplying corresponding elements, as
we did for the original matrix multiplication. It is, in fact, an outer product of two
vectors, and is identical to an element-by-element multiplication of two matrices
formed from the row and column, respectively. In DAP-Fortran such matrices can
be formed using the standard MATR and MATC functions. The complete problem
can now be coded as:

C = 0-0 /
DO 1 K = 1N /

1 C = C + MATC(A(,K))*MATR(B(K,»

which uses the full N x N parallelism of the DAP.

4.2 Finding the maximum element o f an array

As noted earlier, logical variables in DAP-Fortran are one bit in length, and thus
provide a powerful technique for bit manipulation of numbers. This ability is used
here when finding maximum elements of vectors and matrices. This is of particular
importance in matrix algebra for determining pivot elements of matrices.

ICL TECHNICAL JOURNAL MAY 1979 127

The traditional way to find the maximum number in a list is to take the first value,
compare it to successive elements in the list until a larger element is found. A
simple analogy for the DAP algorithm is that of wanting to find out who in a room
full of people has the most money in his pocket. Assume two limitations - we can
only ask simple yes/no questions, and nobody has as much as say £20. We could
start by asking all those people with more than £10 to indicate. If one or more
people do indicate, tell the rest to leave the room. Now ask who has more than £15,
and repeat the process. If at any stage nobody has more than the currently asked
value, say £15, ignore that value and proceed to the next lower level, ie. £12.50.
Using this ‘binary-chop’ method we shall eventually end up with the largest value
(held by one or more people).

In computers we are dealing with binary words typically of 32 bits, and an equiva­
lent of the binary-chop procedure is simply to move down the bits of a word from
the most significant bit.

In DAP-Fortran we can equivalence a set of 32 logical matrices onto successive bits
of a matrix of 32-bit real or integer words (see Section 3.2). For both real and
integer formats the first bit is effectively the sign bit, with successive bits in
descending order of significance. The DAP-Fortran code for finding the maximum
is shown below. For simplicity only the case where some or all of the numbers are
positive is considered. SIGNS, MAXP and MAXIMUM POSITION are all logical
matrices; BITS is a set of 32 logical matrices; NUMBERS is a real or integer matrix;
all other variables are scalars.

EQUIVALENCE (NUMBERS, BITS (,,1))

C Successive logical matrices o f the set BITS map onto successive bits o f the
C word array NUMBERS

IF (ALL(SIGNS)) ERROR 100

C Only deal with one or more positive numbers, ie. not all negative numbers

MAXP = :TRUE.

C MAXP will hold the position o f the current maximum value candidates

DO 11 = 2,32

C A t each stage only alter MAXP i f one o f the current candidates has the next
C significant bit set

1 IF (ANY(BITS(„I).AND.MAXP))MAXP = MAXP. AND.BITS(„I)

C Extract the maximum value (there may be more than one identical value)

MAXIMUM POSITION = MAXP
MAXIMUM VALUE = NUMBERS(FRST(MAXP))

128 ICL TECHNICAL JOURNAL MAY 1979

The ERROR statement is used by the programmer to signal error codes to the high-
level diagnostic system or to a specially written diagnostic routine.

The code can be used within a function to return either the maximum value, which
is a scalar, or the maximum element position which is a logical matrix. Note that
this code is given by way of illustration only; DAP-Fortran provides this facility in
an intrinsic function.

4.3 Route-finding algorithm

In such tasks as network analysis, traffic planning and even the travelling-salesman
problem, one prime requirement is to find the shortest route, if any, between two
points in a network. Consider the network shown in Fig. 4. Conventionally this
may be represented by giving lists showing each node that may be reached directly
from a given node. On the DAP such a network may be represented more simply
and directly using a logical matrix. This has the advantages on the DAP both of
compact storage and rapid manipulation. Fig. 5a shows one comer of the connecti­
vity matrix representing the network of Fig. 4, where a 1 indicates that a connec­
tion is possible between the nodes in the row and column. The algorithm to trace
through the network is basically very simple. At each step we will be at a certain
node in the network. The nodes that may be reached on the next step are found
in the column of the matrix for the current node. This new set of nodes may be
used to repeat the cycle by taking all columns representing each new node. Since
there will in general be several such columns, the algorithm considers merely the
resultant nodes by combining all columns (a logical OR function). This results in
one new column, and the cycle is repeated.

At each stage there are three further administrative tasks. First, of course, the nodes
already encountered must be eliminated to avoid looping. Secondly, we must store
the nodes that have been reached. Finally we must check whether we have indeed
reached our destination.

The algorithm is coded very simply in DAP Fortran for a network of up to N nodes;
for more than N the network must be partitioned.

ICL TECHNICAL JOURNAL MAY 1979 129

The logical matrix NETWORK contains the logical connectivity matrix at the start
of the test. STEP is a logical vector which contains the nodes reached at the next
step. STORE is a set of logical vectors which is used to save the path currently
traced. STARTNODE and ENDNODE are integers which specify the starting and
ending nodes.

l

1

2 1

3 1

4 l

2 3

1 1

1

4 5 6

1 1

1

5 1

6 1

Fig. 5a Section of matrix representation of Fig. 4

The DAP-Fortran code is thus:

1 = 1
NETWORK(STARTNODE,) = .FALSE.
STEP = NETWORK(, STARTNODE)

C Extract the nodes that can be reached from the starting node

1 IF(STEP(ENDNODE)) GO TO 10

C Check whether we have reached the end

NETWORK = NETWORK ,AND..NOT.MATC(STEP)

C Eliminate all nodes that have been selected by switching o f f in those rows
C corresponding to nodes already reached.
C MA TC forms a matrix with equal columns

STORE(X) = STEP

C Store current step

1 = 1 + 1
STEP = ORCOLS(NETWORKAND.MATR(STEP))

C Create a set o f nodes that can be reached in the next step by combining the
C vector o f current nodes with the network and then combine the resulting
C columns with the logical OR function

130 ICL TECHNICAL JOURNAL MAY 1979

GO TO 1

C Continue on next step

10 CONTINUE

Although this sounds complex, an example based on the network of Fig. 4 indicates
the working of the algorithm. Fig. 5b shows the values of the logical vector STEP
at each iteration, from node 11 to node 23. At each iteration STEP contains all
those nodes that can be reached from any of the currently reached nodes. Thus the
first contains all nodes that can be reached directly from the start (ie. 3, 4 ,7 ,12 ,
13, 14), the second contains all nodes not already reached which can be reached
from any of the nodes in the first vector etc. The fifth vector has the end node
(23) set, and the process ends.

It is obvious that the tree constructed in Fig. 5b has not provided a unique route.
If the process is repeated in the opposite direction, a similar tree will be produced.
These two trees are then intersected (a logical AND process) to eliminate all nodes
not on a route. If more than one node exists in any row, a further sweep through
selecting the first node in a row will produce a unique route.

Element Number
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 . . . 32

Step 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1

3 1 1 1

4 1 1

5 1 1 1

Fig. 5b STEP vector showing possible nodes along route

Notice that this algorithm uses no arithmetic and no indirect addressing. The
majority of the operations are simple logical expressions, which are handled effi­
ciently by the low-level DAP hardware.

One further point of interest is that during the operation on a typical network the
majority of file processing elements will be inactive. This should not, however, be
taken to mean that the DAP is consequently working inefficiently, since it is the
execution time that is of prime importance, not absolute hardware utilisation.

4.4 Sorting

Sorting on DAP may be performed by many techniques, and the one shown below
is one of the simplest, based on a Bubble sort technique. As with a Bubble sort on
a conventional computer, the technique relies on comparing neighbouring values in
an array. For n items, where n is less than N2 on an N x N DAP this technique will
take at most n steps, compared with n2 steps on a conventional machine. The

ICL TECHNICAL JOURNAL MAY 1979 131

algorithm treats the DAP as a linear string of N2 items, using the appropriate DAP
geometry, rather than an N x N array. Faster algorithms, based for instance on the
Batcher sort,6 may easily be implemented, making use of the 2-dimensional
connectivity of the DAP.

It should be realised that, for many applications on DAP, sorting is unnecessary or
inappropriate, since the associative nature of the DAP permits rapid selection of
particular items in a data set.

The program is as follows:

LOGICAL MASK(,) , CHANGE(,)
REAL TEMP (,) , VALUE(,)

MASK= ALTC(1).LNEQ.ALTR(1)

MASK = ALTR(1)

C Set up mask for alternate odd-even pairs o f values
C ALTR produces alternate rows TRUE

1 CHANGE = VALUE .LT.VALUE(+)

C Start main iteration. Compare each number with its neighbour in descending
order

IF(.NOT.ANY(CHANGE)) RETURN

C Terminate i f no further interchanges required

CHANGE = CHANGE.AND .MASK
CHANGE = CHANGE.OR.CHANGE(-)

C Only swap on successive odd-even pairs on alternate steps

VALUE(CHANGE) = MERGE(VALUE(+), VALUE(-), MASK)

C Merge original with swapped pairs as defined by CHANGE, using high-level
C MERGE function to perform the swapping

MASK = .NOT .MASK
GO TO 1

C Start next iteration

5 Conclusion

The DAP, initially conceived as a machine for weather forecasting, provides power­
ful processing capability for a much wider range of applications than the traditional
fast floating-point (vector) processors. The content addressable nature of the

132 ICL TECHNICAL JOURNAL MAY 1979

processors allows the full performance of the DAP to be achieved using the high-
level DAP-Fortran language, without recourse to expensive assembly 4anguage pro­
gramming. Integration of the processors into the store of an advanced general-purpose
computer reduces the required design effort and production costs while providing
full user facilities.

Acknowledgments

I should like to thank Dr Dennis Parkinson for his valuable help during the produc­
tion of this paper. The design and development of the DAP-Fortran language is
largely the work of Peter Flanders of RADC, who also provided invaluable help
during the testing of the algorithms. David Hunt of RADC provided the informa­
tion on the numerical algorithms given in the Appendix.

References

1 PARKINSON, D.: ‘An Introduction to Array Processors’ S y s tJ n t., 1977
2 SCARROTT, G.G.: ‘Wind of Change’, /C i Tech.]., 1978,1, pp. 35-49
3 FLANDERS, P.M.: ‘DAP-Fortran Language’. CM 39, RADC, ICL, 1976
4 GOSTICK, R.W.: ‘Introduction to DAP-Fortran’. AP 20, ICL, 1978
5 GOSTICK, R.W.: ‘High Level User Diagnostics with the ICL DAP’. LASL Workshop

on Vector and Array Processors, September 1978
6 STONE, H.S.: ‘Parallel processing with the perfect shuffle’, IE E E Trans. 1971, C-20,

pp. 153-161

Appendix
DAP Algorithms for standard numerical functions

1 Introduction
Any system which may have to deal with even the most modest amount of scienti­
fic computation must provide standard functions such as square root, logarithm,
exponential and sine. Many algorithms are available for these based either on
orthogonal polynomials or on iterative processes such as Newton-Raphson; these
can be very powerful and efficient on a serial machine but are not ideal on the
DAP as a consequence of the extreme simplicity and bit-level operation of the PEs.
The algorithms which we have used, far from being penalised by these properties,
actually take advantage of them; and as they produce their results one bit at a time
they have the additional advantage of allowing one to specify and control the
precision of the calculation easily and exactly. The methods are well known in the
sense that accounts of them have been published in various places; useful references
are Chenl and Egbert2. The following notes give brief descriptions of those used on
the DAP for square root, logarithm and sine/cosine; they are intended simply to
show the principles of the algorithms and give neither programming details nor
indications of refinements which are included in the actual programs to improve the
efficiency. A full acount will be written later.

2 Square Root
Given a number N we want to find x such that x 2 = N to the precision to which we
have decided to work. Suppose we have found the first n bits of x , giving us an
n-bit number x n which approximates x to this number of bits and satisfied x 2n < N.
We want to find the next approximation x n + l , which will have the same first n bits

ICL TECHNICAL JOURNAL MAY 1979 133

and the («+l)th bit bn+1 such that (xn + bn+1)2 < N . If rn is the error at stage n
then

rn =N - xfj

so rn+i ~ N ~ (½ +bn+i) ~ rn ~ (2½ + ^n+i) ^n+i

Then bn+1 = 1 if this gives rn+1 > 0 , otherwise bn+l = 0.

Thus we can start with a first approximation x 0 = 0 and build up the root digit by
digit. If at any stage we find rn = 0 the corresponding xn is the exact root and we
terminate there.

No arithmetic is needed in forming the error terms. 2xn is xn shifted one place to
the left, producing a 0 at the right; addition of bn+l is then done by putting a 1 at
the right of this zero and the final multiplication by bn+l is a shift of «+l places
to the right. When the program is worked out in detail it is found that the number
of operations required is about half that for a division to the same number of bits.

3 Logarithm
Given x we want to find In x to some stated number of bits, where as usual In
means the logarithm to base e. If we can find a set of constants alt a2 , ■ ■ ■ -Oj,. . . ,
such that

x ax a2 an = 1 to the stated precision, then
ln x = - l n u 1 - l n a 2 " . . . - I n an

We can achieve this by taking a/ = 1 + 2 _l and storing a table of In aj. Multiplication
by any a,- then requires only a shift and an add. Suppose we have got to the nth
stage, the last aj used being an . To go to the next stage we multiply the current
product by an+1 and add - In an+l (looked up in the stored table) to the current
sum if and only if the new product remains less than 1; otherwise we ignore an+l
and continue with an+2.

As all the ajs are greater than 1 we must first scale x if necessary to bring it below
1; the standard arrangement is to scale (by shifting) so that we start the process
with a value between ½ and 1. The final stages can be truncated: if at stage n we
have

xax a2 an = 1 - 6 where 5 is small enough for 62 to be neglected to the
precision to which we are working; then since In (1 - 6) = -5 ~'M 2 . . . we have

ln x = - l n a 1 - l n a 2 - . . . - In an -5

Exp (x) is found by an analogous process in which numbers from the sequence
aj = ln (l + 2~l) are added to produce x.

4 Trigonometric Functions
We have to compute both sine and cosine and for this we use the standard addition
formulae written as

sin (A ± B) = cos B [sin A ± cos A tan B\
cos {A ± B) = cos B [cos A + sin A tan

134 ICL TECHNICAL JOURNAL MAY 1979

together with a precomputed table of numbers 8n for which

tan 8n = 2 ~” (0< < ½ ir), h = 0 , 1, 2 ___

To find the sine or cosine of a given jc we first reduce x to the first quadrant
(0 < x < Vi ir) and then, starting with sin 0 = 0 , cos 0 = 1, add or subtract the
successive members of the sequence (6n) until we have built up x. Thus if we have
used 0o, 81, 62, . . . 0n giving us an approximation x n , then the next approxima­
tion is

x n+1 = xn ± d n+1 according asxn ^ x

The corresponding approximations t0 sin x and cos x are
sin xn+1 = cos 8n+1 (sin x n ± cos tan 8n+1)

= cos 8n+1 (sin xn ± 2~” ~* cos xn)
cos x n+1 = cos Qn+i (cos Xn + 2~n-1 sju Xn)

and the evaluation of the terms in the brackets involves only shifting and adding. If
we write the relation in matrix form

we see that the cos Bj terms enter into the final result only as the product cos 60
cos cos 8n ; this can be precomputed for n = 0 , 1, 2 and stored, and
the required product looked up and applied at the end of the process.

5 Execution times
Codes have been written for these algorithms and have been run on the 3 2 x 3 2 pilot
machine in the Stevenage laboratory. More highly optimised versions are being
developed on the 64 x 64 machine now at Bracknell but as this development is still
going on it is not appropriate to quote actual times at this moment. However,
reasonably firm values relative to the basic multiplication time can be given and
these are as follows. All refer to 32-bit floating-point numbers with 24-bit mantissae.

square root 0*65 multiplication times
logarithm (base e) 1*15
sine or cosine 2*5
sine and cosine 3

References

1 CHEN T.C.: ‘Automatic computation of exponentials, logarithms, ratios and square roots’,
IB M J. Res. & Dev., 1972, pp. 380-388

2 EGBERT W.E. ‘Personal calculator algorithms IV: logarithmic functions’, Hewlett-Packard J .,
1978,29, (8), pp. 29-32

(

and for comparison

add or subtract 0*7

ICL TECHNICAL JOURNAL MAY 1979 135

Hardware monitoring
on the 2900 range

A.J. Boswell and M.W. Brogan
ICL Product Development Group, Systems Control Division, Bracknell

Abstract

The main purpose and practice of hardware monitoring as carried out in
ICL are outlined. After a brief summary of the relevant features of the
2900 architecture the monitoring equipment is described, followed by an
account of some of the measurement techniques that have been developed
and of the ways in which these can be applied to machines of the 2900
range. There are comments on the possibilities of statistical and other
errors in the measurements and indications of how these can be dealt with.

1 Objectives

The work described was carried out in the Product Development Group of ICL. We
have a small team which is devoted to performance measurement. The work we do
has two main objectives: to quantify the performance, and then determine the
product enhancements that are necessary to improve performance.

First we need to find out how well our systems perform. We do that in two ways.
We run benchmarks as standard tests of system performance, and measure through­
put. We also measure low-level critical functions in the system, I/O pathlengths for
example. In this way we can control performance and monitor the progress of our
systems towards their performance goals. We also use the detailed measurements as
input for sizing guides which are then used to size customer benchmarks.

The other aspect of our work is investigating problems that have been thrown up
either by our own work or by problems that other users have experienced. The
objective is to identify the software or hardware enhancement required to get us
out of the problem and back on the path towards the most effective performance
of the system.

2 2900 Architecture

The structure of 2900 systems is based on the concept of virtual-machine environ­
ment (VME), which means that each batch job or terminal session runs in its own
virtual machine containing both the user application program and the supervisor.
Each virtual machine holds its instructions and data in a virtual store which is
logically split into two halves: the local virtual store which contains data private to
the particular virtual machine, and the public virtual store which is common to all
virtual machines and contains the supervisor.

The format of a virtual address is shown in Fig. 1. The virtual store is organised into

136 ICL TECHNICAL JOURNAL MAY 1979

segments of variable size, each made up of a set of 1 kbyte pages. Each segment has
a set of segment properties associated with it, including the read and write access
keys which are used in conjunction with the access control register (ACR) to
protect the data, and the execute permission bit which prevents data being execu­
ted as code by mistake owing to program error.

0 1 13 H 21 22 31 bi t number

Fig. 1 Format of a virtual address

Each virtual machine has one specified segment used as a last-in first-out stack.
Each procedure has a local name space’ on the stack, and the instruction set and
hardware design are optimised for stack access.

Fig. 2 shows some of the most important CPU registers. There is one general-purpose
arithmetic register called ACC, which can be set to the required size for 32,64 or
128 bit working. Data can be accessed via the descriptor register, which describes
the type and length of data as well as its virtual address. The descriptor can be
modified by the B register. Alternatively, data can also be accessed relative to base
registers such as local name base (LNB) and extra name base (XNB).

CPU REGISTERS

* a cc
* DESCRIPTOR
* B-REGISTER
* LNB
* XNB
* ACR
* PC
Fig. 2 CPU registers

accumulator

modifier
local name base
extra name base
access control register
program counter (instruction address)

ICL TECHNICAL JOURNAL MAY 1979 137

The most important register from the point of view of hardware monitoring is the
ACR, which is used in conjunction with the read and write access keys to limit the
amount of data accessible to a program. Whenever a data access is attempted, the
hardware checks the current value of the ACR against the access keys of the
segment containing the data. On VME/B, user programs run with ACR 10-15 and
ACR levels between two and nine are allocated to the various supervisor levels.

If a segment has a read access key set to a value of eight, then, if a user program
running at ACR10 attempts to read from it, a program error will result. Access is
only allowed if the ACR is not greater than the access key.

The values of ACR allocated on VME/B are as follows:
ACR 10-15 user program
ACR 8 , 9 , 10 system control language (SCL) interpretation
ACR 7 record access
ACR 5 loader and catalog handler
ACR 4 block access
ACR 2 kernel
ACR 1 idle

By attaching a hardware monitor to the four ACR bits, we can determine which of
the above levels of software is active at any point in time. In fact, the idle loop was
put at ACR 1 just so that the hardware monitor could pick it up easily.

3 Hardware monitor*

3.1 Description

The hardware monitor* used by the Performance Monitoring Team at Bracknell is
shown in Fig. 3. The monitor is attached to the computer system being monitored,
usually referred to as the host computer, by up to 144 probes, each of which is
capable of detecting changes in voltage at the host and transmitting the resulting
signal to the hardware monitor. Within the monitor, each signal is routed through a
patch panel to one or more of eight registers known as collectors. The patch panel
contains a number of logic elements such as AND gates, OR gates and flip-flops
through which the signals can be routed before entering the collectors. This enables
two or more signals to be combined together. For example, if it was necessary to
count the number of input/output (I/O) transfers that occurred when the CPU was
busy then this could be achieved by combining the signals ‘I/O transfer’ and ‘CPU
busy’ through an AND gate and then counting the result.

The collectors are general purpose registers which, according to the mode of use,
can be configured to perform a number of different functions on the incoming
signals. After being processed by the collectors, data is transferred by the
controller module into buffers in the minicomputer memory and from there to
files on floppy disc or magnetic tape. Subsequent to a measurement session, these
files can be analysed by standard analysis packages on the minicomputer system.

♦The hardware monitor described here is the TESDATA 1187. However, most types of hard­
ware monitor employ similar techniques.

138 ICL TECHNICAL JOURNAL MAY 1979

mini c o m p u t e r

Fig. 3 Hardware monitor

3.2 Modes o f operation

Each collector can be configured to perform in one of three different modes:

(a) count/time mode
(b) map mode
(c) store mode.

(a) Count/ time mode: In this mode of operation, each collector operates as
four separate modules, each of which can either count the number of times a
signal changes from FALSE to TRUE or count the number of microseconds
that a signal is found to be in a TRUE state. The contents of these counters are
then written to tape or floppy disc at predefined intervals.

(b) Map mode: Map mode is illustrated by Fig. 4. Up to 11 signals are
connected into data inputs on the collector. In addition, a futher signal is
connected to the strobe input. The collector functions as follows. The first time
the strobe signal goes from a FALSE to a TRUE state, the values of the data
inputs are stored in the catching register. At a prespecified rate, known as the
ORATE, the contents of the catching register are read by the controller and
used as an address to a buffer in memory. The memory location thus addressed
is then incremented by one. More data is then gated into the catching register
the next time the strobe signal goes TRUE, and at the next ORATE it is read
and the appropriate memory location incremented by one,and so on. Eventually

ICL TECHNICAL JOURNAL MAY 1979 139

a profile or map of data input values is built up in the memory buffer and
periodically, the buffer is written away to backing store.

Fig. 4 Map mode

(c) Store mode: In this case up to 16 data signals can be connected to the
collector together with a strobe signal. The collector functions in exactly the
same way as when it operates in map mode; however, instead of using the values
read from the catching register as an address the 16 bits are simply stored in the
next free location in the memory buffer. The next 16 bits of data that are read
at the next ORATE are stored in the next location and so on. When the buffer is
full it is written away to backing store. When this data is subsequently analysed,
either counts or maps can be generated by analysis software.

140 ICL TECHNICAL JOURNAL MAY 1979

4 Measurement Techniques

4.1 ACR-level monitoring

Measurements of ACR levels made during runs of standard benchmark tests can be
used to identify the contribution of each major software component. The following
are normally measured:

(a) CPU time used at each ACR level
(b) number of instructions executed at each ACR level
(c) instruction execution rate (MIPS) at each ACR level.

The instruction count is used to check sizing techniques based on pathlengths; the
variations in MIPS allow the interactions between the software and hardware to be
studied.

Fig. 5 ACR-level monitoring technique

Fig. 5 illustrates the hardware-monitoring technique used to achieve this. Two
collectors are used, each producing a map of the four ACR bits. Collector A
measures CPU time by ACR. The four ACR bits are strobed periodically, say every
1 ms; thus for every millisecond of CPU time a sample is obtained at the current
ACR level. When the maps are subsequently analysed each element contains a count
of milliseconds of CPU time at the corresponding ACR level. Collector B measures
the instruction count by ACR level. In this case the ACR bits are strobed every
1000th instruction, the strobe signal being formed by merely dividing the instruc­

ICL TECHNICAL JOURNAL MAY 1979 141

tion count signal by 1000 on the monitor patch panel. Thus for every 1000th
instruction a sample is obtained at the current ACR level. When the maps are
analysed each element will contain a count of the number of thousands of instruc­
tions executed at the corresponding ACR level. To obtain the instruction rate, each
element of map B (thousands of instructions) is divided by the corresponding
element o f map A (milliseconds), giving MIPS by ACR level.

4.2 Address mapping

ACR-level monitoring gives a fairly coarse measure of the contribution to overall
performance by the various system components. It is often necessary to identify
the contributions of different software modules within one particular ACR level.
This can be achieved by mapping the segment number of the virtual address or in
some cases, where even finer resolution is required, mapping addresses within
certain segments.

(a) Segments mapping: The technique used here is the same as for ACR
mapping, using two collectors, one strobed periodically every millisecond and
the other strobed every 1000th instruction; but in this case the segment bits of
the virtual address register are used as data. One problem arises here. The hard­
ware monitor has a maximum map length of 2048 elements, which corresponds
to 11 bits of data. The segment field of the virtual address is, however, 14 bits.
Usually this causes no difficulty because segments in VME/B are seldom so big;
this means that the segment address can be reduced to 11 bits for mapping.

(b) Addresses within segments: To enable addresses within selected segments
to be mapped, patchboard logic is used on the segment bits of the virtual address
to construct a signal that is true whenever the virtual address is within the seg­
ment of interest. This indicator is then wired into the most significant bit of the
collector and the page and byte address bits wired into the rest of the collector.
To obtain the maximum resolution, store mode is used and the maps assembled
later by analysis software as described in Section 3. Thus for one segment it is
possible to map 15 bits of the page and byte addresses, which gives a resolution
of 8 bytes. If it is required to map addresses within more than one segment, then
a number of indicator bits may be constructed using patchboard logic and wired
into the collector with a corresponding reduction in the resolution to which the
addresses within those segments can be mapped. The technique to obtain distri­
butions of instructions and CPU time at different addresses within specified
segments is the same as that used for ACRs or segment numbers. Two collectors
are used in store mode, in this case one being strobed every 10 ms and the other
strobed every 10000th instruction.

(c) Mapping the complete address: A technique has been developed by the
Performance Monitoring Team which enables up to 30 bits of the address to
be monitored. Special analysis software has been written to enable this to be
done. The monitor setup is shown in Fig.6 . Two collectors are used — one for
each half of the address — with the same strobe. To detect any errors when the
two collectors get out of step, part of one collector is copied into the other
(Fig. 6) and a consistency check done by the analysis software. This reduces the

142 ICL TECHNICAL JOURNAL MAY 1979

number of bits that can be monitored from 32 to 30, but since it is rarely
necessary to monitor down to single-byte resolution this is acceptable.

vi r tua l a dd r es s bi ts

0 1 2 3 4 5 6 7 8 9 10 II 12 13 28 29

Fig. 6 30 bit address mapping

4.3 Instruction and CPU time distributions using a single collector

It is often found that the number of parameters to be measured exceeds the capacity
of the monitor. In earlier sections it was described how the number of instructions
and the amount of CPU time used at each ACR level or each address could be
monitored. This technique required the use of two collectors, one for instructions
and the other for CPU time. It is possible, however, to map both instructions and
CPU time with a single collector.

I p s s i n g l e
s h o t p

o
o

O

0ACR b i t s ----------

s t r ob ec l o c k

i n s t r u c t i o n
+ 10

c o u n t

Fig. 7 Instruction and CPU time distributions using a single collector

Fig.7 illustrates this technique as used on a 2980 for ACR mapping; it applies
equally well to virtual-address mapping. The instruction count signal is first con­

ICL TECHNICAL JOURNAL MAY 1979 143

verted to a signal that is TRUE for an amount of time proportional to the number
of times that it (the instruction count) goes TRUE. This is done by dividing the sig­
nal by ten on the monitor patchboard and then single-shotting the result to 1 ps,
which results in a 1 ps pulse every ten instructions. This signal is then wired into
the collector as shown in Fig.7.

The collector is then used in the same way as the collector that mapped CPU time
in Section 4.1, i.e. it is strobed with a 1 ms clock pulse. The result of this is a map
with 32 elements from which the amount of CPU time and the number of instruc­
tions executed at any given ACR can be derived. The actual relations are, for ACR
level n, where « < 1 5 ,

CPU time (ms) = element n + element (« + 16)
Number of instructions = element (w + 16)

(units of 10,000)

4.4 Starting and stopping the monitor

One problem that often arises when using hardware monitors is that of being able
to identify the periods over which results are to be collected. It is possible to do
this by specifying the required periods to the analysis software; but since the
hardware monitor and mainframe clocks are set manually they are not necessarily
in step.

To resolve this difficulty, a method has been devised by which the mainframe can
signal to the hardware monitor when it is required to start or stop monitoring. This
has been done by writing a user program which executes an IDLE instruction at the
user level ACR (ACR 10) immediately after reading the real time clock. An IDLE
instruction executed on VME/B is a unique event, since VME/B idles on an instruc­
tion loop so it is possible to set the hardware monitor to switch on all its collectors
when an IDLE is seen at ACR10 and switch them off again when the next one is
seen.

4.5 Accuracy o f results

(a) Sampling error: Suppose it is required to monitor the execution of a
program, and the total number of instructions executed is N and it is required
to know what proportion p of these instructions was executed at a particular
ACR level, say ACR = 2.

Because the hardware monitor is not fast enough to record the ACR level of
every instruction executed, it is necessary to resort to sampling, and look at the
ACR level of only n of the instructions executed.

The use of sampling techniques introduces the possibility of sampling errors. If
the experiment were repeated a number of times it would be found that the
number of instructions at ACR = 2 would be slightly different each time; we
need to make some estimate of the spread we should expect, and therefore of
the confidence we can place in whatever conclusions we draw from the experi­
ment.

144 ICL TECHNICAL JOURNAL MAY 1979

(bj Statistical treatment: Suppose our experiment has recorded a instructions
at ACR = 2, giving a proportion/ = a/n in the sample. We want to know how
good an approximation this is to the proportion p in the complete program of N
instructions.

Standard statistical theory can be applied here. We are sampling from a large
population of instructions, each of which is either at ACR=2 or is not, with
probabilities p and q, respectively, where q = 1 - p. The possible numbers at
ACR=2 recorded in a sample of n are given by the binomial distribution, that is
the successive terms in the expansion of (p + q f 1. The mean number will be np
and the standard deviation \Jnpq. However, because we are taking a large sample,
with n typically of the order of several thousands, this binomial distribution will
approximate very closely to a normal distribution with the same mean and
standard deviation; and therefore we can say that there is a 95% probability
that any experiment will give a result within two standard deviations of the
mean: i.e. that any sample of size n will with 95% probability give a result a in
the range

np ± 2\J[np(\-p)]

and that therefore, if we divide by n, the proportion observed in a sample of n
will with 95% probability lie in the range

P V [P(! -P>]

We do not know the value of p —this is what we are trying to find-but we can
again draw on standard theory, which tells us that for a large sample the ob­
served proportion / = a/n is an unbiassed estimator for p to an accuracy of the
order of 1 fy/n\ and that, if we say that the proportion p in the complete pro­
gram lies in the range

we shall be right in 95% o f cases.

Example: If a program executes 100 million instructions altogether and 10,000
are sampled and it is found that 2000 of this sample are at ACR=2, then, for this
case, the sample proportion is / = 0*2 and the formula gives p = 0-2 ± 0°008. We
can therefore be confident that the total number executed at ACR=2 is in the
range 20 million ± 0*8 million, which is equivalent to saying that the estimate of
20 million derived from the sample is correct to within 4%.

The formula can obviously be applied to other situations. For example, instead
of ACR = 2 it could be the execution of code at a particular virtual address; or it
could be sampling events other than instruction executions, such as virtual-store
interrupts or units of mill time.

(c) Other sources o f error: The above has dealt with the error introduced by
random sampling; the possibility of errors from other sources needs to be

ICL TECHNICAL JOURNAL MAY 1979 145

considered. For example, most computer systems have some periodic functions
and if these get into synchronisation with the sampling frequency then distorted
results will be obtained. It is useful when setting up a measurement to measure
the same thing in different ways to check this. Thus the ACR = 10 signal can be
timed and then compared with the ACR 10 element of the ACR map.

Section 4.4. described the method that has been devised for eliminating errors
which could arise from the setting of the clocks. These could bemuch more serious
than the potential errors just discussed. For example, suppose a program which
takes 100 s to run is being monitored and written to the monitor file every 10 s.
The recording resolution means that the monitor cannot measure precisely the
period during which the program is running, so the result is only accurate to
within 10 s, which is a large uncertainty. The possibility of the mainframe and
monitor clocks not being accurately in step could also lead to errors of this
order. This was the reason for developing that particular piece of technique.

5 Validation

This paper has described a few of the hardware monitoring techniques that have
been used in product development. Extremely valuable measurements have been
obtained by developing new techniques but when these are implemented it is essen­
tial to validate the correctness and accuracy of the results. This can be done by
monitoring programs for which the values of the measured quantities are already
known (e.g. executing exactly one million instructions at ACR 10). A new tech­
nique should only be used in earnest when sufficient confidence in it has been
established by validation. Even when this has been done, it is still advisable to run
validation tests periodically to check for malfunctions in the hardware monitor
or its connections to the host machine.

146 ICL TECHNICAL JOURNAL MAY 1979

Network models of
system performance

C.M. Berners-Lee*
ICL Product Development Group, Bracknell, Berkshire

Abstract
The paper describes the derivation and validation of the FAST model of
system performance. A general theory of a wider class of such models is
described. The FAST model and closed multiclass models are then derived
as particular cases. An Appendix gives a short report on a meeting at the
University of Maryland at which models of this type were discussed. The
author attended and took part in this meeting shortly after completing the
main paper.

1 Introduction

Since 1972 ICL has made extensive use of models using networks of queues to
represent the behaviour of batch-processing and multiple-access-computing (MAC)
workloads on ICL and other systems. These models have been used to predict the
effect of changes of system resources on the throughput of work. The model used
has been known in ICL as FAST — football analogy of system throughput. The
analogy is that of a group of players kicking several footballs around between them.
The success of the model for use by systems staff in the field has been due in no
small measure to the fact that the theory can be thus simply explained.

The analogy represents the components of a real system by players in the game and
the programs or processes operating concurrently by the footballs. If, for example,
a program in the central processing unit (CPU) initiates a peripheral transfer, the
initiative may pass from the CPU to a disc controller and thence to the disc drive,
finally returning to the CPU on completion of the transfer. This is represented by
the ball being kicked along the route CPU — controller - disc - CPU. When the
multiprocessing level is increased from 1 to some number N there will be an
increase in throughput by some factor depending on N , say f(N). The model enables
this factor to be calculated, given the usages of the different system components
(CPU, controllers, discs, tapes, slow peripherals, communications controllers etc.)
measured in appropriate time units. For the CPU the usage is the total mill time and
for other devices it is the number of device services multiplied by the service time.

FAST was first used in 1972 to study the effects of alternative means of improving
the effectiveness of the 1900 disc controllers. It had been derived by generalising
the Konigsberg model1 o f a cyclic queueing system, such as arises with a set of
buses travelling around a circular route. This generalisation was first noted by J.R.
Jackson^ in 1963 and has been applied to computer systems by Buzen3 and others

♦Now with Corporate Communication Division, Putney

ICL TECHNICAL JOURNAL MAY 1979 147

in the United States. Since then the basic theory has been extended in the USA to
include less restrictive assumptions and the resulting literature is substantial. The
purpose of this paper is to present the core of the thinking as simply as possible.

In ICL, FAST was used extensively for pricing studies for the 2900 series. The
requirement here was for a systematic method of assessing the economic value to
the user of particular system components in terms of their effect on the throughput
of ‘typical’ user work. The technique has also been used within the Product
Development Group for a number of purposes, including the evaluation of dual­
processor systems and of alternative strategies for DME systems, and for the study
of pipeline performance. Another topic is the evaluation of different store
hierarchies using different technologies. All this product-evaluation work has
depended on establishing profiles of typical or average customer workloads in
terms that are applicable to the model. Such profiles comprise the mill utilisations
together with the utilisations of the peripheral devices.

In its original form the FAST model made very crude assumptions about the
statistical behaviour of the processes. It was assumed that each system component
behaves as a server whose service time is a random negative-exponentially distri­
buted variable, serving processes which move around the system in a random
manner. The actual situation is that the CPU service times in a large system are
fairly close to negative exponential but that the peripheral service times are very
different in shape—for example, line-printer times are cyclic. However, these
peripherals are seldom heavily loaded and the effect of the shape is only felt at the
higher loadings: it may be neglected to a first approximation. The assumptions
with regard to randomness provide, in theory, a much more difficult problem.
However, in practice, it is well known that quite small injections of random
behaviour are sufficient to make a system behave in an effectively random manner.
Some light has been thrown on this point by Buzen and D enning4 , who point out
that theories of this type only require that the average service rates at given queue
lengths should have the same values as they would have had had the assumptions
regarding randomness been strictly fulfilled. Nevertheless there are cases where
nonrandom behaviour is significant, notably in small systems operating at a low
level of multiprogramming, where the system may be locked in repetitive cycles of
operations for an appreciable time.

Another respect in which real systems differ from the theoretical models is that it
sometimes happens that the processes are not conserved in the way implied by the
football model. For example, a process may continue to execute in the CPU after
having initiated a peripheral transfer. In this case an additional process is in effect
in operation until the CPU execution of the original process ceases. Thus double
buffering may result in an effective increase in the value of the multiprogramming
level N.

In practice these departures of the model from reality can be regarded as pertur­
bations of the effective value of N. Thus if we run a workload or benchmark on a
real system and use the resulting component usages to calculate the value of N
that would explain a given throughput, this value will give an effective concurrency
which may be used to predict the effects of changes in system resources. This was

148 ICL TECHNICAL JOURNAL MAY 1979

the method used in the Trondheim validation of the model, which will be referred
to in Section 2.

In the years since 1972 previously started and parallel developments in the USA
have led to a considerable proliferation of models of the same general class as FAST.
These enable more complex situations to be treated, in particular the processes,
instead of being assumed to be statistically identical, may have different statistical
characteristics, provided that certain mathematically tractable assumptions can be
made about die way these different processes are scheduled for service by the
system components. These later developments enable the effects of the simple
assumptions of the original FAST model to be evaluated, to see if further elabora­
tion of the model would provide worthwhile improvements in accuracy. So far
our conclusion has been that this more recent work reinforces the case for using
FAST in its original form for throughput calculations. For response times, however,
the more detailed analysis is sometimes valuable.

In the literature generally, network queueing models are classified as either open
or closed. An open model is typified by a single server serving an infinite stream
of processes as in simple queueing theory. An open network replaces the single
server by a network of servers and the number of processes (customers) in the
network will vary with time. In the closed case there is no infinite stream and the
number of footballs in the game is conserved, remaining constant at a given value
N. The open game can be regarded as the limiting case of the closed game, in which
N tends to infinity and the most heavily loaded server becomes the source and sink
for the infinite stream. Only the closed game, in which the number of balls N is
conserved, is considered in this paper.

The paper as a whole develops the theory of closed models using the football
analogy in its most general form: here the transition rates are general functions
of the midflight queue state, i.e. the state of the queues of balls at the feet of the
players when the ball is in flight from one player to another and not at the feet of
any player and therefore not part of any queue. The treatment is then progressively
specialised until the particular form known in ICL as FAST is reached, which is
characterised by the kicking rates being constant. The paper concludes with an
introduction to the American theory of multiclass models, deriving these from the
general theory by means of a different mapping of players and footballs on to the
system to be represented.

To be a little more specific, after a consideration of validation of the model in
Section 2 a top-down approach to the development of the general theory is given
in Sections 3—5, in which the taxonomy of the models is shown. Sections 6 and 7
discuss the particular case of FAST in more detail. Sections 8 and 9 give an intro­
duction to the theory of multiclass models and Section 10 deals with the use of
such models for calculating queue lengths. Section 11 discusses the problem of
implementation in the light of the queueing results.

2 The Trondheim validation

It was realised from the outset that model validation must go hand in hand with

ICL TECHNICAL JOURNAL MAY 1979 149

construction and use. The process was greatly aided by two developments, both of
which sprang from the conference on system performance held at the University of
Surrey in 1972 at which FAST was first described.5 Another paper6 at this con­
ference gave a description of a technique devised by the Royal Radar Establishment
for displaying system-monitoring information, which clearly pointed the way to a
means of obtaining a detailed minute-by-minute validation of model predictions of
throughput at different multiprogramming levels over a period of time.

The conference was attended also by Hughes and Moe of the University of
Trondheim, who went away and undertook a quite independent validation study,
unknown to us at the time. This was published later as an AFIPS paper7 and
showed excellent agreement between measurements and predictions of changes in
CPU and device utilisations resulting from major changes made to the system, such
as increasing the core store and relocating files on peripheral devices. Confidence in
the general validity of the approach was increased by the knowledge that the
installation was from a different manufacturer, Univac in this case.

Similar studies have been repeated wherever possible, using benchmark data or
measurements of normal work and obtained with the aid of either hardware or
software monitoring.

The technique of using FAST was documented by the ICL Systems and Technical
Support organisation and was introduced into the Beaumont training school where
it proved valuable in providing insight into system behaviour. It is now used regular­
ly as one of a number of aids to sizing.

The model enables predictions to be made about the proportions of time for which
channels are jointly busy and also about the lengths of disc queues. For jointly busy
channels, time comparisons were available from hardware-monitoring studies and
were found to be satisfactory5. For disc queues, there was very satisfactory agree­
ment with measurements made by the Road Research Laboratory, which indicated
that the model was significantly more accurate than a simple queueing formula. We
can say in fact that such validation studies as we have been able to make have
proved satisfactory.

3 State-change models

The models we are concerned with work by considering the number of times a
system changes state, equating the number of times it enters a given state to the
number of times it leaves that state. Markov models are a class of such state-change
models. In general, suppose we have a system which can be in any one of a number
L of possible states and that the average rate at which it changes from a state Q to a
state R is F(Q, R) changes per second. Then, if we equate the total number of
changes from the state Q into all other possible states R , to the total number of
changes from other states into Q, we have

(1)
R R

where the summation is over all possible states R .

150 ICL TECHNICAL JOURNAL MAY 1979

Suppose now that the system spends a fraction P(Q) of its time in state Q; if we
denote by A(Q,R) the average rate of change from Q to R per unit o f time spent in
Q then

A(Q,R) = m ^ m o) if K Q) t o
= 0 A 0) = o

and hence =

R R

(2)

(3)

If we have some information from which we can deduce the values of the rates A ,
we can solve these equations for the proportions of time spent in the different
states; for example, we may be able to determine the idle time for a system compo­
nent. Eqns. 1 and hence their equivalent eqns. 3 are not all independent, for if they
are summed for all Q an identity results; the further relation necessary to compen­
sate for this is that the proportions P(Q) for all Q must sum to unity.

However, there are two practical difficulties: the first is that we cannot estimate the
rates A without some further assumptions about the state changes and the second is
that the number of equations in any realistic case is unmanageably, indeed astrono­
mically, large. Fortunately, however, eqns. 3—known as the global balance
equations-can in practice be given a special structure which enable them to be
solved in a trivially easy way. We shall use the term football models to refer to
systems that exhibit this structure in a way to be described. The problem of the
assumptions made about the relationship between the values of A and the observ­
ables in the real world will be considered after the football model in its most
general form has been described and analysed.

As mentioned earlier, the model was originally thought of as one representing
computer-system components and processes by players and footballs, respectively.
However, in view of the later American developments, it will be convenient to
develop a general football model which can be identified with real systems by
means of different mappings of model entities on to system entities. The approach
in what follows is to begin with a very general form of model which is gradually
specialised until we eventually arrive at those used in practice, such as FAST and
the American multiclass models.

One of the ways in which a state-change model can arise is by means of a
continuous-time Markov process. This involves much more specific assumptions
about the fine structure of the behaviour of the system over time. Specifically, it
is assumed that the average transition rates A(Q,R) arise from constant probabilities
proportional to A (Q Ji) d t that a transition will occur in the next interval dt. Thus
the probability that a transition from Q to some other state will occur in d t is
equal to

^ A { Q , R) d t

R
and the probability that it will be to a given state R is

ICL TECHNICAL JOURNAL MAY 1979 151

R

The Markov assumption implies that the successive transitions are statistically inde­
pendent, and the consequence is that the durations in state Q have a negative-
exponential distribution with mean value

In other words, there is a direct relationship between the average transition rates
and the average durations of states. Further, the theory of Markov models leads to
the result that, provided there exists between any pair of states a path through
some chain of intermediate states along which the transition probabilities are all
nonzero, then the frequencies with which the system occupies states Q will
converge in a statistical sense to stable proportions of time P(Q).

In what follows, care will be taken to indicate the precise point at which a continu­
ous Markov system is assumed.

4 Football models

Suppose we have a game in which M players are kicking N footballs around. The
state of the game will be regarded as being defined by the state of the queues of
balls waiting to be kicked by the players; we denote by Qt the length of the queue
(number of balls at the feet of the /th player) the sum of these numbers being
constant and equal to N . We regard the Qj as components of a vector Q which
defines the state of the system, and which plays the role of the state identifier Q
of the previous section. Any vector Q that has nonnegative components summing
to N is said to be a feasible vector.

If now the ith player kicks the first ball in his queue-i.e. the first to have arrived-
to the /th player, the state of the game changes from

Let us denote by / the unit vector for which the /th component is 1 and all the
others are zero;and similarly for J. ThenR = Q - 1 +J.

As in Section 3 we denote the mean rate of occurrence of changes from Q to R by
the flow function F(QJl). We see that in the football game this can be nonzero
only if Q and R are identical in all but two components and that these must differ
by unity. Such a pair of feasible vectors are said to be neighbours. The relationship

R

to
Q - (G i, Q i , • • • Qi, • • • Qy ■ ■ • Qm)

R = (Qi , Q i , ...fir1* .--2/+1, ■■■Qm)

152 ICL TECHNICAL JOURNAL MAY 1979

between neighbours is thus symmetrical, and, if a kick from Q to R is possible, one
is possible also from R to Q by player j kicking to player /. This changes the state
from R into R - J + I = (Q - I + J) - J + I = Q. In either direction, during the kick
itself the game passes through what may be called the midflight state in which the
remaining balls form a set of queues described by the vector Q - / , which is the
same as R - J.

For Q - / + / to be a neighbour of Q it must be feasible, so no component may be
negative; since its /th component is Qt- l this means that QjX), which is obvious,
since the player cannot kick if his queue is empty. Thus the neighbours of Q are
those vectors Q - I + / for all / for which Q/X) and for allj. Hence eqns. 1 become

E E E F(Q-I+J,Q) (4)

/)

where indicated summation over all values of / for which Q{>0.

i
These are the global balance equations.

The simplicity of structure already referred to results when the equality of the two
sides holds for each value of /; i.e. when for all i for which QjX)

(5)

i i

These are called the local balance equations. If they are satisfied, then by summa­
tion over / it follows that eqns. 4 are also satisfied.

Local balance models come in families. If we define a vector function S(Q,R) to
be equal to the midflight vector Q - l - R - J if QJl are neighbours and zero other­
wise, then S(Q,R) = S(R,Q). If now h(S) is any scalar function of the vector S , it
follows that h [5(Q^?)] = h [S(/t,Q)] and each is h(Q - 1) = h(R - f) . Then if we
define a new flow function F '(Q Jl) as F{Q,R). h [5(0,1¾)] we see, by multiplying
both sides of eqn. 5 by h, that this also satisfies the local balance equations.

We can use this result to derive a very general class of football models. Consider
the simple case of a constant flow function

F (Q ,Q -I+ J)= A U) (6)

which means that the rate of flow between neighbouring states depends only on the
pair of players involved. This will satisfy the local balance eqns. 5 if, for each /,
eqns. 5 if, for each /,

2 ^ = 2 m (7)
j i

ICL TECHNICAL JOURNAL MAY 1979 153

Hence a set of general flow functions satisfying local and therefore global balance is
given by multiplying eqn. 7 by h(S) = h(Q - /):

F{Q, Q - I + f)= A ti) . h (Q - f) (8)

If now we divide the flow by the proportion of time spent in the state we get, from
eqn .2 ,

A(Q, 0 - / + /) = /(/,/). h(Q - t) i m) (9)

This relationship gives the average kicking rate A , which would explain the exis­
tence of a given probability distribution of the states Q.

The transformation just described gives us considerable scope for fitting models of
this type to real systems, because the function h is now at our disposal.

5 Team games

Suppose we have a scalar function X(Q) of the vector Q which is positive for all
Q whose components are nonnegative, and suppose that G is the sum of X(Q)
taken over all feasible Q — i.e. over all Q with nonegative components summing to
N. We can define a game by equating both P(Q) and h(Q) to X(Q)/G. With this, the
kicking rates from eqn. 9 are

A (Q , Q - I + f) = /(/,/). Jm ~ 1)1 X(Q) (10

Now suppose that the players are divided into a number T of sets which we call
teams; and that X(Q) has the form

X(Q)a X 1(Q)X2(Q)X jiQ) (11)

where X t(Q) is a function of the lengths of the queues of balls at the feet of the
players from team t only. For example, if team 1 was made up of players 1,2,3, we
should have X 1 (Q) = X 1 (Qlt Q2, £ 3)-

If player i belongs to team t then from eqns 10 and 11 we find

A(Q, Q - / + /)= /(/,;•) X t (Q - T)!Xt(Q) (12)

since all the other X-factors cancel.

Thus we have a model in which the kicking rates are functions of the queue lengths
of the team to which the kicking player belongs and no others. If we carry this to
the extreme where each team has only a single member we have a model in which
the kicking rates depend only on the length of queue at the feet of the kicker. The
equation is now

A (Q , Q - I + J) =f (i J) X i ((2 / - 1) / ^ 2 /)
with

P(Q) = X , (Q1) X 2 (g 2)X j^ Q m) IG

(13)

(14)

154 ICL TECHNICAL JOURNAL MAY 1979

This is the Jackson model, in which the probability of being in a given state is
expressed as the product of functions of the queue lengths.

A particularly interesting case arises if the ratio of the Xs in eqn. 13 is constant.
This will happen if XfQ-) has the form x f t i , where the x,-s are as yet undefined. We
have now a model with constant kicking rates for which

A(Q, Q - / + J) = a m / X f = k (ij) say (15)
and

W) = (16)
where

r V Gl GjG = ^ / j x t x 2
q m

2 ___ x ^ summed over all Qj>0

such that 2 j Qi = N

A model of this last type arises if we have a Markov football game in which there
is a constant probability k(ij) d t that if the player i has the ball—that is, G,->0 —he
will kick it to player / in the next interval dt. Since from eqn. 1 5 /(//) = k(i it
follows from eqn. 8 that

W J) x i = *0 .0 Xj (17)

i /

If we consider a game in which there is only one ball in play (only one process in
the system) thenN = 1 and eqns. 3 reduce to

k (/ j) ^ /) = y j k(j,i)P(J)

j i

from which it is evident that the quantities Xj are proportional to the times the
ball spends with players /, i.e. to P(I).

6 Throughput and component utilisations

We are usually interested in the throughput of a batch-processing/MAC system or
subsystem and for the purpose of analysing the behaviour of such a system it is
almost always sufficient to use a simple Jackson model with constant kicking rates.
This has the great advantage that the model parameters x{- bear a simple relationship
to the utilisations of the components of the real system. We therefore assume a
Markov system with negative-exponential distributions of service times and random
movement of processes around a system of M components (players) at a multipro­
cessing level of N (number of balls in play). The results (eqns. 15-17) are now
available.

The total throughput of processes from player / to player j is given by summing

ICL TECHNICAL JOURNAL MAY 1979 155

eqn. 8 over all feasible Q such that Q,X); with h(Q) - X(Q)/G this gives for the
throughput 0(/,/) f

6 («/>=2 l ^ 0 ' q ~ I + J) =/(lV) S x ^ Q ~ r) I G (18)
Each value of Q - I such that <2,- > 0 is a member of the set of vectors with
nonnegative components summing to N - 1. In general we denote the sume of values
of X(Q) over all Q with nonnegative components adding to n asg(«), so that

__/

G = g(A 0and2 jX (< 2-/)= g (W - 0 (19)

Hence the throughput 0(ij) from i to / is

6 (U) = f (U) g (N - l M N) (20)

Using eqn. 15 and summing over all y we get for the total throughput from i to all
other players

9(iJ)= S k(U) Xi (21)
/ /

This total throughput occurs at times when the system component i is busy. If its
utilisation—the fraction of time for which it is busy—is Uf then there will be Uf
seconds in every elapsed second when kicks from it could occur at a rate k(ij).
Hence this throughput can be written also as

Ut ^ k(ij)

i

and we have from eqn. 21

U t - X i g f N - l M N) (22)

Thus the xs are proportional to the utilisations of the system components. Eqn. 22
shows also that the values of the Us as given by this relationship are unaffected by
the absolute values of the xs and depend only on their relative sizes. Forg(n) is a
homogeneous polynomial in the xs of degree n and therefore the right side of
eqn. 22 is the quotient of two homogeneous polynomials of degree N and is un­
affected if the same scaling factor is applied to every x. Thus we can choose the
scale for the xs as we wish.

We can measure the work done by a system component during any period by the
length of time during which it is busy in that period; the utilisation, as has been
said, is the ratio of these two times. Thus if the utilisation is Uj we are getting Uf
units of work from the component in every clock second. If we sum the Uf over all
i, that is over all the components of the system, we get a measure of the total

156 ICL TECHNICAL JOURNAL MAY 1979

amount of work done by the complete system per second of clock or elapsed time.
If this is greater than 1, as we hope it will be in a multiprocessing system, we have
gained by overlapping activities and it is reasonable to use this sum as defining the
overlap factor; as it will depend on.the number of processes N that are available for
overlapping, we can denote it by f{N). Thus from eqn. 22 we have for the overlap
factor

m =
g (N - 1)

m (23)

Suppose now that we have a system running a given workload involving a number
of actions for each component, and—for example in a sizing study—measurements
of the numbers of actions and the service times for each. We can then calculate the
total busy times for each component, to which the utilisations and therefore the
xs will be proportional. Because of the independence of scale we can take these
times as the actual values of the xs. The sum of these times will give what the total
elapsed time would be if there were no overlapping and therefore the elapsed time
corresponding to multiprocessing at level N will be this divided by the overlap
factor f(N). Thus from eqn. 23 we have, if Tpj is the elapsed time for a given
workload when the multiprogramming level is N , so that 7\ is the time when there
is no overlapping of actions,

TjTN = ^ U i = m =

i
and therefore

g (N - l)/G(AoJ = Ti

i

TN = m i g (N - 1) (24)

This important relationship enables us to calculate elapsed times from a knowledge
of the relative loadings of the system components. Since g(n) is a homogeneous
polynomial of degree n in the xs, 7jy is of degree 1 in these variables and therefore
if the xs, which meausre the loadings, are given in units of time, say seconds, then
T ft will be in these same units. The possibility of actually performing such a calcu­
lation depends on the possibility of evaluating the polynomials g(n), which at first
sight would seem to be a considerable task for all but small systems. A
technique can however be developed which leads to a quite manageable process
and this is described in Section 7, where an example is given.

Given that the polynomials g(n) can be evaluated without unreasonable labour,
standard tables or graphs can be provided giving the overlap factor flN) as a func­
tion for a range o f sets of relative loadings, that is, of the xs. Fig. 1 gives a set of
curves corresponding to different loadings on 10 components. The method of using
curves or tables such as these is as follows. From monitoring information we have,
for a given system running a given workload, values of the elapsed time and for the
utilisations or busy times for all the components; thus we can calculate the elapsed
time Tx corresponding to no multiprocessing (simply the sum of the separate busy
times) and the overlap factor fiN) as Tx divided by the observed elapsed

ICL TECHNICAL JOURNAL MAY 1979 157

time, and finally from the curves, because we know the relative loadings, the actual
level of multiprocessing N. We can then estimate the change in throughput that
would result from altering a component service time or the CPU utilisation, using
this value of N and appropriately adjusted jcs; or the effect of a change in N result­
ing from an increase in main store, which increases the space available for programs.

Fig. 1 Overlap factors f(N) giving increases in throughput for different loading patterns
(xj, x2........xjq) (e.g. pattern H corresponds to X! = x2 = x3 = 3, x4 = 1, xs = x6 = . . . =
xio = 0
A - (3, 1, 1, 1, 1 ,1 ,1 , 1)
B — (3, 2 ,1 ,1 ,1 ,1 ,1)
0 - (3 ,2 ,2 ,1 ,1 ,1)
D - (3 ,2 ,2 ,2 ,1)

e — (3,3, i , i , i , 1)
F — (3, 3 ,2 ,2)
G - (3 ,3 ,2 ,2)
H - (3 ,3 ,3 ,1)

158 ICL TECHNICAL JOURNAL MAY 1979

This method of using the Jackson model appears to give very accurate extrapola­
tions in practice, in spite of the inevitable inaccuracies there will be in the data, as
for example in the assumptions about disc seek times. It seeks likely that the conse­
quential error in the value estimated for N just about compensates for the effects
of these inaccuracies. The method has the great advantage of giving a very high
ratio of Enlightenment to Complexity. Curves such as Fig. 1 are simple to use and
give a good idea of the range of variation of the overlap factor f(N) for different
mixes of loadings on the system components. If more accuracy is required this can
be obtained by using a small BASIC program which has been written, or a pro­
grammable hand calculator such as the TI 59; or hand calculation of a simple
recurrence relationship as will be described in Section 7.

7 Computational technique and network synthesis

The sums involved in g(N - 1) andg(A) are unmanageable in general but with team
games the team principle can be exploited to overcome this difficulty. The key
concept is that of the generating function. If Q ranges over all vectors with
nonnegative components without restriction and if the sum of these components for
any given Q is N(Q) then we define the generating function for the game to be

OO

y (z) = ' ^ p j X (Q) z N(®= ^ g(n) zn (25)

Q n= o

The sum on the left is taken over all Q with nonnegative components and that on
the right is obtained by grouping together all the terms for which N(Q) = n for
successive values of n.

We now define a team generating function y t(z) for each team t; consider the
notation introduced in Section 5: if for example team 1 consists of players 1,2,3
then its generating function is

0 , + 0 , + O,
7 t z) = X 1 (Qi ,Q 2 ,Q 3) z

Then the generating function for the game as a whole is the product of the genera­
ting functions for the several teams.

With the Jackson model there is only one player in each team and therefore there is
one generating function for each player; hence for player / (representing component
i in the system) the function is

OO

7 , - 0 0 = 2 X i { n y l (26)

n - o

ICL TECHNICAL JOURNAL MAY 1979 159

and when the kicking rates are constant as in eqns. 15 and 16 this reduces to
OO

yi (z) =2 ** = (1 " x i z)_1 (27)
n=o

The procedure in practice is to build up the power series for the complete system
by successive multiplication of the separate series for each component; in this
particular case, where the kicking rates are constant, the process can be carried out
very conveniently with the aid of a simple recurrence relation, as follows.

From eqn. 27 the generating function y{z) for the complete system is the product

M
7 (2) = 11(1- ^) - 1 (27a)

/=i

If we denote by ym (z) the product of the first m terms (i.e. for the first m compo­
nents) then

so
y m (z> = Vm -, (z> + x mz ym (z> (28)

Thus if gim, n) is the coefficient of zn in the series for ym (z)

g(m, n)= g (m - \ ,n) +xm g(m, n-1) (29)

We can start the recurrence with the known values g (l, ri) = X i n and g{m, 0) = 1,
and proceed stepwise until we reach g(M, ri), which is the value g(n) we require.
The following example shows the process applied to a very simple case.

Example: Consider a system with three components: CPU, controller and disc.
We wish to find the elapsed time for a workload made up of 3 units mill time, 1
unit controller time and 2 units disc time, allowing multiprocessing levels up to
five. The actual size of the time units is irrelevant so long as it is the same for all
components. We take the values 3, 1, 2 of the component usages as the values of
* i, *2< *3 > respectively, and use the recurrence relationship to calculate successive
values of g(m, n) for m = 1 to 3 and n = 1 to 5. Here g(N) is g(3 , N) and the elapsed
time corresponding to N = 5 is g(5)lg(4).

The starting values are g (l, ri) = x t n = 3” , g(m, 0) = 1 for all m. These give the
first column and row, respectively, in Table 1, from which the table can be com­
pleted either by rows or by columns using the recurrence relationship given by
eqn. 29: each new entry is obtained by multiplying the entry above it by the
appropriate value x m and adding the entry on the left.

160 ICL TECHNICAL JOURNAL MAY 1979

Table 1

m =1
Xi=3

m =2
x2=l

m =3
x 3 =2 Tn m

«=0 1 1 1
1 3 4 6 6 1
2 9 13 25 4.167 1.440
3 27 40 90 3.600 1.667
4 82 121 301 3.344 1.794
5 243 364 966 3.209 1.870

The column Tn = g(n)lg(n - 1) is the elapsed time at a multiprocessing level n, and
/(«) = /Tn is the overlap factor. 7 \ , the elapsed time with no multiprocessing, is
the sum of the separate component times, Six in this case.

It is worth noting that the radius of convergence of the power series in eqn. 25 is
the limit ofthe ratio g(n - 1)lg(n) as «•*•«>, which ratio is, from eqn. 24, the recipro­
cal of the throughput time T when the xs aTe the busy times for the separate
components. However, since the series is the expansion of the product (eqn. 27a)
this must be the value of z corresponding to the singularity of the product nearest
to the origin, which is the reciprocal of the largest of the xs. This means that as the
level of multiprocessing increases the elapsed time is increasingly dominated by the
most heavily loaded component. For this reason the result has been known in ICL
as the bottleneck theorem. The football analogy is that as the number of balls in
the game is increased, the total activity is increasingly dominated by the slowest
player.

The power-series or generating-function technique applies equally to the analysis
of networks, such as communication networks. The basic principle, as here, is that
if two or more networks are joined the behaviour of the network formed by
their join is represented by the power series formed by multiplying together the
series representing the separate networks.

8 Multiclass models: an introduction

The model described in Section 7 has treated all processes as statistically identical.
This is clearly a vulnerable assumption and it would be useful to be able to investi­
gate the extent to which the results are invalidated if the assumption is wrong.
Multiclass models provide a way of doing this. Such models also allow the effect
of giving different priorities to processes to be estimated in some cases.

It is possible however to go some way in this direction by means of a very simple
argument. Consider a football game, such as in previous Section 7, in which there
are N 2 black footballs and N 2 white. Suppose that the players always give absolute
priority to the black balls over the white; then if we consider the black balls alone
it is evident that they are quite unaffected by the white. Hence as before there will
be an overlap factor A N X) and the throughput will be increased by this factor
compared with what it would be with only one ball in play. Suppose we now
consider the whole game with both black and white balls treated equally. Since

ICL TECHNICAL JOURNAL MAY 1979 161

all processes are now identical it clearly makes no difference in which order the
players kick the balls, so far as throughput is concerned. Hence the throughput of
the Ni + N 2 balls taken together is increased by the overlap factor f (N 1 + N 2)
over tiie singleball game and therefore the factor for the white balls alone is
ftN i + N 2) - f(N i) . Thus from graphs such as those in Fig. 1 we can easily see to
what extent such universal overriding priority will have. For batch-processing
systems generally, there will be differences in the priorities enjoyed by different
processes on different components of the system.

Apart from the question of priorities in a first-come-first-served queue there is also
the question of the service time distribution for real system components, which will
not in general be negative exponential. Both these problems are dealt with in a
multiclass model by using an idealised mathematical scheduling process to repre­
sent the way the server schedules the service of the customers. The simplest of
these processes is the so-called process sharing (PS) algorithm. This assumes that the
server allocates a slice of time to each customer in turn in a fixed sequence, but
with different sized slices to customers in different priority classes, such as black
and white in the previous Section. The sizes of the slices are then made to tend to
zero while their relative sizes are kept constant. Thus a slice spc is given to each
customer in class c where Pc ~ an<J then s is made to tend to zero. Such an
algorithm has the remarkable property that if it is used to schedule an infinite
random stream of requests arriving for service, with an arbitrary distribution of
service times, then the emerging stream of processes is statistically identical to that
which would have arisen from a negative-exponential distribution of service times.
Thus the effect of slicing up the time by means of this limiting form of round-
robin scheduler is to make an arbitrary distribution of service times appear negative-
exponential.^

The sorts of algorithm used in practice by real CPU schedulers are only very roughly
approximated by this idealised scheduler. Nevertheless it is of considerable interest
that the idealised process produces perfect negative-exponential distributions. It
argues that it is very likely that real schedulers have the effect of making effective
service time distributions more nearly negative-exponential than they were before;
and as CPU service times are known to be quite near to negative-exponential
already this adds to our confidence in the reasonableness of the assumption with
regard to the CPU.

Suppose now that there are two classes of customer corresponding to c = 1 and 2,
with Qc members in class c, and a server whose total service rate k is apportioned
by the PS algorithm between the two classes in amounts kc, where k x + k2 = k. The
probability that the next slice of time will be for class c will be Qcj(Qi + Q2) and
that service is given in the next interval dt is kc dt. Hence the service rate for
a member of class c is

k c Qc K Q , + Q 2) (30)

We can represent this situation by a football model in which the server is repre­
sented by a team of two players corresponding to the two queues for the single
PS server. These two players share their kicking power between them. We give

162 ICL TECHNICAL JOURNAL MAY 1979

them a team function as follows. If the team is numbered t then, again with the
notation of Section 5 , we have the form

(Q i , Q i) =
(6 1 + 62)*

6 1 * 6 2 *

Qi
*1

e2
*2 (31)

from which we see that eqn. 12 gives for the kicking rate for class c

{ Ac, D lxc } Qcl(Qi + 6 2) (32)

as follows for c = 1 for example by putting X t (Q - 1) = X t (Qx - 1, Q2).

Thus if we identify f(c, f)/xc with kc we have a model with the required service
rates as functions of queue lengths.

In general, for more than two classes of customer we shall have a team function
that is a multinomial in the xs instead of the binomial in eqn. 31. Such an arrange­
ment will suffice to represent a server serving several classes of customer, each of
which requires service to an extent which is statistically distributed with a distribu­
tion depending on the class.

A model may contain two types of servers: multiclass PS servers as above with
general service-time distributions, and servers serving a single class of customer
for which the service-time distribution is negative-exponential but to which a
different, so far unspecified, queue discipline applies. For example, consider a
batch/MAC system comprising a CPU which handles both batch and MAC pro­
cesses, a peripheral A which handles only batch and a peripheral B which handles
only MAC. Assume that the CPU is PS-scheduled with arbitrary service-time distri­
butions for batch and MAC, and that both peripherals have negative-exponential
service times and first-in-first-out (FIFO) queue disciplines.

Suppose further that it is possible for a process to move from any valid combina­
tion of server and class to any other through some chain of such combinations. This
is possible if batch processes leaving the CPU can occasionally be brought online
as MAC jobs and correspondingly if MAC jobs can be put in the background. Thus
processes can change class at the CPU provided that they go to the peripheral
appropriate to the new class and similarly processes arriving at the CPU can change
class before being scheduled. This proviso is necessary to ensure that there is always
a path from any state Q of the system to any other through intermediate states
joined by nonzero flows. The complications that result if this condition is not ful­
filled are discussed in Section 9.

Given all these conditions, the system can be mapped on to a football game as
follows:

CPU team (2 players) player 1 PS-scheduled batch processes
player 2 PS-scheduled MAC processes

ICL TECHNICAL JOURNAL MAY 1979 163

Peripheral A team player 3 batch processes, negative exponential
first-in-first-out

Peripheral B team player 4 MAC processes, negative exponential
first-in-first-out

Then eqn. 11 takes the form

X(Ql t Q2, Q 3,Q<) =
(Q i + &) !

e , ! e 2 !

Qi Qi Qz Qa
x, x2 x 3 x 4 (33)

As with the single-class model of the previous Section the xs can be taken as being
equal to the work done by the players. Thus x x can be taken as the CPU utilisa­
tion time for batch processes and x2 as that for MAC.

Eqn. 33 enables the probability distributions of queue lengths to be determined,
along lines similar to those to be given in Section 10 below. The relevant genera­
ting function, as in Section 6, is

7 (Z) " S X(Ql ’ Ql’ Qs’ Qa) z Qi +Q2+Q3+Qa

= jl - (X! + x 2)z} -1 (1 - X 3 z) -1 (i - x4z)_1 (34)

This generating function is exactly that which would be obtained with a single­
class model as described in Section 7, with loadings x 1 + x 2, x 3, x4 for the three
components. The analysis shows therefore that it is possible to derive the same
generating function, and hence the same throughput, with the rather different
assumptions of the multiclass model.

The analysis extends straightforwardly to systems with any number of compo­
nents and any number of classes at the PS scheduled components. There is however
the proviso mentioned earlier, that there must be a route between any allowable
combination of class and component and any other; thus we could not apply this
model as it stands to a case where MAC processes must remain forever MAC and
batch remain forever batch. An extended version is required for this which is
discussed in the next Section.

9 Multi-class models: the degenerate case

We deal here with the situation known as the degenerate case, in which it can no
longer be assumed that there is a path between any pair of states of the system
without restriction. Only the general lines of the analysis are given, and the
algebraic detail omitted in the interests of brevity.

Consider first the Jackson model (Section 5, eqn. 14) with constant kicking rates;
the time spent by a single ball at the feet of the players is given by the solution of
eqns. 17:

/) xi = y]| *(/'> o xj
i i

164 ICL TECHNICAL JOURNAL MAY 1979

Suppose now that the game comprises two groups of players who never kick to
each other, so that if there is only one ball in play it will remain always in one
group or the other. In this case the equations will have two linearly independent
solutions.

Next suppose that we give these two groups, which we shall call subgames, N x and
N 2 balls. Then a particular state of the queues is feasible only if the sums of the
lengths of the queues in the two subgames are and N 2, respectively.

With this revised definition of feasibility the analysis of Sections 4 and 5 remains
valid. The normalising factor G is now calculated by summing X(Q) over all feasible
Q in the new sense; and the concurrency of the system is described by the pair
(iVt , N 2) which can be conveniently denoted as a vector N.

As in Section 6, throughput can be calculated with the aid of a generating function.
Now however we need a bivariate function of the form

, , V 1 ^ l (0 > ^ (Q)
7 (Z l . Z 2 > = 2_J Z 2

= 2 2 | z22 (35)

«i=o n2-o

When we come to calculate the throughput we find that X(Q - I) in eqn. 19 is
equal either to g(Nx - 1,7V2) or to g(N1, N 2 - 1) according to whether player i is a
member of subgame 1 or 2. We then find that in place of the single overlap factor
g(N - l)/g(N) we have two such factors - 1, N 2)/g(N) and g(Nx, N 2 - l)/g(N)
which give the throughputs in the two subgames compared with what these would
be if there were only one ball in play in each.

For example, if for the system described on p. 163 there was no possibility of
processes changing class at the CPU we should have a system with concurrencies
constrained as follows:

Batch concurrency in sub-game 1 Qx + Q3 = N X
MAC concurrency in sub-game 2 Q2 + Q4 = N 2

The generating function is obtained by summing the eqn. 35, using eqn. 33 to give
X. The result is

t (z i , z 2) = I t (x xz x + x2z2) - 1 (1 -X j Zj) - 1 (1 - X 4 Z 2) - 1 (36)

which may be compared with eqn. 34.

In general, a degenerate multiclass model has a generating function in as many
variables as there are subgames. Such functions can be built up as described in
Section 6 by multiplying together the appropriate multivariate power series. This
principle of summarising all the relevant information about a system or network of

ICL TECHNICAL JOURNAL MAY 1979 165

N2= MAC processes:
4 3 2 1 0

Fig. 2 Throughputs of MAC and batch processing (relative to throughput when run single­
processing in isolation) when a total concurrency of 4 is variously split between batch and
MAC
Assumed loadings (time units)
Batch xj = CPU = 0°7, x3 = peripheral 'A' = 0*3
MAC x3 = CPU = 0°5, X4 = peripheral 'B' = 0=5

Degenerate multicalss model as in eqn. 36

components in the form of a power series or array of coefficients is often referred
to in the literature as Norton’s collapse, by analogy with the process of reducing an
electrical network to an equivalent circuit using Norton’s theorem.9

As an illustration of the use of this form of the model, Fig. 2 shows the results of
the calculation of the relative throughputs of batch and MAC work for the system
whose generating function is given by eqn. 36. It is assumed that if the batch load is
run on its own on a single-programming basis the CPU utilisation is 70%, so that on
average it is busy for 0*7 s of every second of elapsed time; and the peripheral A is
busy for 0*3 s. Thus x t = 0*7, x 3 = 0*3. Similarly if for the MAC load we assume

166 ICL TECHNICAL JOURNAL MAY 1979

50% loading of the CPU when this load is run on its own with single programming,
x 2 = x 4 = 0«5.

Given these values we can calculate the relative throughput factors

m - andm m
for any pair N lt N 2 . Fig. 2 shows the results for a total multiprogramming level
N , +N2 = 4.

It will be noticed that the curves are very nearly straight lines, and that therefore
we should not have been seriously in error had we calculated the results by simple
linear interpolation between extremes of pure batch and pure MAC. This is a
valuable conclusion because the throughputs for these extremes can be calculated
using the simpler single-class model.

For a fuller treatment of the theory the key papers are those listed in References
9 and 10.

10 Queue lengths

So far all results have concerned throughput; but there are many situations in which
we are interested in response times and therefore in queue lengths. The models that
have been described involve representing the behaviour of system components by
power series which are multiplied together to give a representation (generating
function) of the complete system. It turns out that the mean queue lengths can be
obtained quite simply from these same power series.

With the Jackson model the probability of the system being in a state Q is given by
eqn. 16. The mean length of queue for the z'th player in the game is the sum of
Qi K Q) over feasible Q, and it will be seen from eqn. 16 that this is the result of
applying the operator x ft/d x j to the right side of the equation and summing over Q.
We therefore get the result we are seeking by applying the operator

*i 9
G dxj

to the generating function

700 = n (1 - *;• z) 1
i

and finding the coefficient of zN.

Similarly, for the degenerate multiclass model described in Section 9 we find that
the mean queue length in subgame 1 is the coefficient of

Nr N 2Z! Z2
in the expansion of

(Zr 3/x,) t (z i , z 2)/g (N u N 2)

ICL TECHNICAL JOURNAL MAY 1979 167

11 Implementation and conclusions

The practical application of the models described involves a simple algebraic tech­
nique, the multiplication of power series. This can be done with the aid of a com­
puter program which is not at all difficult to provide, and which comprises a small
package of Algol procedures for addition, multiplication, division and scaling of
power series. The extensions required in going from single-class to multiclass models
are simply the replacement of single DO loops by multiple loops to match the
number of subgames involved.

For throughput calculations, single-class models are generally quite adequate and
very many such calculations have been carried out routinely in ICL for sizing
purposes. Moreover, this type of model gives a great deal of insight into system
behaviour for very modest complexity.

For the analysis of response time with multiple classes of work, a multiclass model
may be used, but the increase in complexity is not a negligible factor. A very
considerable benefit from such multiclass models, however, is the light they throw
on the limitations of simpler models. The techniques have been used in the USA to
examine the effects of giving different resource priorities to different classes of
message; and for this purpose some very extensive software systems have been
created for synthesising and analysing large networks. It could well be that, with
Viewdata services for example, such tools will prove to be needed for analysis of
response-time problems when the service eventually runs out of resources and it
becomes necessary to study the consequences of different possible methods for
resource allocation.

Acknowledgments

The author wishes to acknowledge the help and encouragement of Dr. J.M.M.
Pinkerton and Mr. D.H. Carpenter of ICL in the work reported in this paper, and
also helpful discussions with Mr. T. Giammo of the US Health, Education &
Welfare Department, Baltimore.

References

1 KONIGSBERG, E.: Oper. Res., 1958,9, (1)
2 JACKSON, J.R.: Manage. Sci., 1963,1
3 BUZEN, J.P.: ‘Computational algorithms for closed queuing networks with exponential

servers’, Commun. A C M , 1973,16, pp. 527—531
4 DENNING, P J., and BUZEN, J.P.: ‘Operational analysis of queuing networks. Modelling

and performance evaluation of computer systems’. Proceedings of the 3rd International
Symposium, IR1A—Laboria IFIP Working Group 7.3. North-Holland

5 BERNERS-LEE, C.M.: British Computer Society Conference on Performance Evaluation,
University of Surrey, 1972

6 SENNET, C.: British Computer Society Conference on Performance Evaluation, University
of Surrey, 1972

7 HUGHES, P.H., and MOE, G.: 1973 National Computer Conference AFIPS Proceedings,
42, p. 109

8 KLEINROCK: Queuing systems, Vol. 2, Chap. 4

168 ICL TECHNICAL JOURNAL MAY 1979

9 CHEUDY, K.M., HERZOG, U., and WOO, L.: ‘Parametric analysis of queuing network
models’, IB M J. Res. & D ev., 1975,19, (1)

10 BASKETT, F„ CHEUDY, K.M., MUNTZ, R.R., and PALACIOS, F.G.: ‘Open, closed and
mixed networks of queues with different classes of customer’, J. Assoc. Comput. Mach.
1975,22,(2)

Appendix
ACM Sigmetrics Workshop on the Theory and Application of Analytic Models to
ADP System Performance Prediction
University of Maryland, 12-13 March 1979

This 2-day meeting was a sequel to one held two years ago under the auspices of
the US Federal Computer Performance Evaluation and Simulation Center
(FEDSIM). It was a small meeting intended for specialists, with an attendance of
about 150. The highlights were an overview by Professor James Browne of the
University of Texas, a debate on the validity of a fresh approach to queuing theory
known as operational analysis, a very good paper on the application of what we
know as FAST to a large Univac system at Bell Labs and an excellent paper by one
of the implementers of IBM’s packages for the solution of queuing problems in
networks.

1 Theory overview

Browne’s group at Texas has been closely connected with the development of
queuing-network models from the start. The group also had close links with a simi­
lar group at IBM Yorktown Heights. In the period 1965-1972 the performance
models in use were comparatively primitive, being restricted to central server
models with exponential service times and a single job class. During the period
1972-1976 extensions to include queuing networks and multiple job classes took
place. Hierarchical methods were introduced, as were methods for dealing with
state-dependent routings, extended servers and mixed networks. Since then, how­
ever, progress has been slow. In particular, the vexed problem of blocked
networks — where the customer cannot move on to the next server because there
is no room — has proved much more difficult than had been expected. Approxi­
mate methods are, however, making progress, as are hybrid analytic-simulation
methods.

An important new area of work is in the optimisation of networks: the problem
here is not how to evaluate the network but how to establish that the performance
surface is convex with a unique optimum.

All the American work reflects the prevalence of large communication networks
and is rather less concerned than we are with system performance.

2 Operational analysis

This is an ingenious but controversial idea for simplifying the derivation of queuing
network theory, due to Denning and Buzen (Buzen was using FAST — type models
before 1972: see References 3 and 4 in the main paper). The idea may be explained

ICL TECHNICAL JOURNAL MAY 1979 169

as follows. Consider a simple negative-exponential server serving a stream of custo­
mers — the simplest queuing situation. The usual way of treating this is to assume
negative-exponential service times and random arrivals, from which it can be
deduced that the average rate of service when the queue length is n, i.e.

number of customers served when queue length is n
time during which queue length is n

is constant, independent of n; and the usual results for the probability distribution
of queue lengths follow. The snag is in the assumption of exponential service times,
which do not always happen.

Buzen gets around the difficulty by assuming directly that this service rate is
constant, in which case the rate is said to be homogeneous. It is theoretically
possible to have a situation in which service rates are homogeneous even though the
distribution is not negative-exponential. For example, if we take a negative-
exponential system and distort the time scale in some arbitrary manner, the result­
ing distortion will upset the negative-exponential form but not necessarily the
homogeneity. The assumption of homogeneity makes it possible to explain the
derivation of queue-length distribution very simply; but the snag here is that there
is no more evidence for homogeneity than there is for the negative-exponential form,
although in principle it would be easier to gather such evidence. There is also
another objection, raised by Professor Sevcik of Toronto, that, although homo-
geniety is sufficient for the derivation of the throughput of a system, it is not
sufficient for the derivation of the response times, for which a service-time distri­
bution must be assumed.

It should be stressed that in practice the operational analysis approach yields the
same results as the older Markov approach in all cases for which it is appropriate.
Section 3 of the main paper refers to this.

3 Bell Laboratories

There were two papers from Bell of which the second, by Sheldon Becker, gave a
convincing account of the benefits of using a simple FAST model for predicting the
performance of a very large real-time inventory system running on a Univac system.
As others have found, much the most difficult part of the job is getting the model
data right. Becker concluded that ‘if we give the models the right input we do
extremely well’.

They also used event simulation but found that the run times (15 min) were too
long to permit an adequate exploration of the performance space.

4 Queuing-network solution packages

Both IBM and the University of Texas have implemented large packages for execu­
ting the algorithms for single-class and multiclass models. Rudi Downs of IBM had
helped Martin Reiser (whose name appears in the literature in connection with
computational methods) to implement the QNET4 and RESQ packages. These

170 ICL TECHNICAL JOURNAL MAY 1979

provide an interactive means of setting up the data in a user-orientated language.
Furthermore, RESQ provides the means for including results of simulation of
particular components or subsystems in the analytical model.

An interesting feature of the numerous applications illustrated was the occurrence
of studies of queuing for access to code in software systems. Similar studies have
been carried out in ICL in relation to queuing for semaphore-protected code in
software.

5 Hand-held calculators

Interest was expressed in the ICL TI 59 programs for hand calculators which offer
an alternative to the use of a large package. This alternative is quite suitable in
many cases.

ICL TECHNICAL JOURNAL MAY 1979 171

Advanced technology in
printing: the laser printer

A.J. Keen
ICL Product Development Group, Northern Development Division,

Kidsgrove, Staffs.

Abstract

The electrophotographic process used by some recently produced high-
performance printers is described. The basis of the process is the use of the
modulated beam from a laser to write the information that is to be printed
as a pattern of discharged areas on the charged photoconductive surface of
a drum; the visible record is then produced by using this pattern to control
the attraction of a coloured powder (toner) to the paper. Very high quality
of printing and an unlimited range of character fonts can be achieved, with
speeds of over 10,000 lines per minute. Some technical and other details
given in the paper relate to the ICL LPS-14 laser printing system which
uses this process.

1 Nonimpact printers

For many years now the familiar impact printer, in which the impression is formed
by causing a hammer to strike a metal relief of the appropriate character, has met
the needs for printing of computer output, offering reliability, good quality of print
and adequate speed. However, demands already being made, and certain to arise
more frequently in the future, exceed the capabilities of impact printers in speed,
quality of print and versatility of character repertoire. Nonimpact printers, often
referred to as NIPs, are freed from the restrictions inherent in mechanical printers
and can meet these demands at an economic cost.

As the name implies, nonimpact printers do not use precast type to form the
impression on the paper; several technologies are available of which the one to be
described here is the electrophotographic process. One of its advantages is that it
allows the use of standard fanfold computer paper, whether preprinted or plain;
this compatibility with conventional printers makes it easy for the user to change
from one type to another. As with all nonimpact printers, only single-part paper
can be used, but the very high speed makes it practical to run off as many copies
of any document as are required, with the extra advantage that all are equally
legible; the elimination of multipart paper is itself an advantage. The process
also makes it simple to produce any design of standard form by printing directly
on to the plain paper and thus to reduce the need to hold stocks of pre-printed
stationery. How this is done will be described below, as will the means by which
high resolution (on which the quality of the print depends) and the great flexi­
bility of character repertoire are achieved.

172 ICL TECHNICAL JOURNAL MAY 1979

Several printers using the electrophotographic process are now available, including
the Siemens 2500, the IBM 3800 and the Xerox 9700. ICL has introduced an off­
line system LPS-14, which prints from magnetic tape at speeds up to 21,000 lines
per minute. All use lasers in the process and offer similar performance and facilities.

2 The electrophotographic process

The essence of the process is shown in Fig. 1, which describes the LPS-14 system.
The functions of the various components will be explained as we go through the
process. In summary the process is as follows.

The surface of the drum is coated with a photoconducting material and is charged
to a potential of several hundred volts. The beam from the laser passes through the
transparent modulator to the surface of the rotating mirror from where it is re­
flected to strike the drum surface. The mirror is multifaceted and as it rotates the
beam sweeps across the drum and returns to its starting point for the next sweep;
the photoconductive property of the drum surface is that charge leaks away where
light falls on to it, so if the beam intensity were steady during the sweep a line
would be ‘written’ across the drum in the form of an area of discharge, and a series
of parallel lines as the drum rotates. The modulator effectively switches the beam
on and off; it is a block of high-refractive-index glass with an acoustic transducer on
one face; high-frequency pulses sent to the transducer generate acoustic waves in
the glass which change the refractive index as they travel and thus deflect the
beam. It is arranged that only the deflected beam, not the undeflected, strikes the
drum, so a sequence of pulses fed into the modulator is reproduced as a pattern of
discharged spots along a line on the drum surface. Finally for this part, information
to be printed is read into the printer’s buffer — either directly from the computer or

ICL TECHNICAL JOURNAL MAY 1979 173

from tape or disc — and from there controls the modulator; and so produces a
representation of itself as a pattern of discharged spots written along lines on the
charged surface of the drum.

The remaining stage is the printing from this electrostatic image, and, in principle,
this is done by using it to cause what is called toner powder to adhere to the paper;
the toner is a thermoplastic material with a carbon-black pigment and might be
called a dry ink. It is attracted to the discharged areas of the drum surface, thus
making visible the electrostatic pattern, and as the drum rotates it comes into
contact with the paper, to which it is transferred. The paper then goes through
heated rollers to make the impression permanent, any remaining toner on the drum
is removed by the cleaner brush shown in the diagram, the electrostatic pattern
removed, and the process repeated for the next piece of information in the buffer.

The process is continuous and is of constant velocity: i.e. printing continues with­
out interruption so long as there is information in the buffer and the time to print
a page is independent of what is printed. A typical rate of paper feed is 145 ft/min
(45 m/min). With a line spacing of 6 per inch this gives a printing speed a little
over 10,000 lines per minute, and over 20,000 lines per minute at 12 lines per inch
spacing. Maximum efficiency is obviously attained by putting as much information
on a single page as possible and it is perhaps better to regard the device as a page
printer rather than as a line printer.

It would be reasonable to ask, why use a laser rather than any other light source?
The answer is that the properties of laser light allow very high precision to be
attained in the optics of the system and high energy input at the drum surface;
and that both these are needed to get quality and performance required.

3 Some details

3.1 Photoconductive process

The photoconductive material used in the drum coating is selenium (Se). In its
pure amorphous (i.e. noncrystalline) form it will retain an electrostatic charge for
a considerable time in darkness and when it is exposed to light the charge is con­
ducted away at a rate depending on the light intensity. Both purity of the material
and the amorphous form are essential to the electrophotographic process, because
otherwise there will be irregularities in the surface charge and losses by conduction
which will degrade the photoconductive function.

Crystallisation of amorphous selenium commences at temperatures above 50° C and
with photon energies above 2*2 eV. Peak photosensitivity is near to 0*4 pm wave­
length, but here photon energies are above 2*2 eV. Addition of arsenic (As) extends
the photosensitivity towards the orange—red band, where photon energies are
below the crystallisation threshold, and also raises the temperature threshold above
the 50 C. Arsenic also increases the hardness of the photoconductive layer and its
resistance to the abrasion that is inherent in the complete process. The general
practice is to use arsenic selenide (As2 Se3) and a helium-neon laser, which gives
light of wavelength 0-633 pm for illumination. The selenide is deposited in vacuum

174 ICL TECHNICAL JOURNAL MAY 1979

to a thickness of 50 jum under controlled conditions on the surface of an aluminium
cylinder on which a film of aluminium oxide has previously been deposited to act
as an electron barrier.

Further difficulties arise because of the semiconducting properties of selenium. In
the printer the initial charge on the drum will decay even in darkness because of
injection of electrons from the base conductor, despite the electron barrier; and
after a rapid charge-discharge cycle this decay will increase, owing to the release of
conduction carriers previously trapped at impurity sites during discharge. This
latter effect also prevents the complete discharge of the desired areas during ex­
posure. Consequently a high charging voltage is necessary, to ensure that with
these limitations a great enough difference in potential between charged and dis­
charged areas may be obtained. It is found that the initial charge must be to at
least 700 V. This allows a difference of at least 300 V between the two areas,
which provides adequately strong fields for the attraction of the toner particles.
It is found that a 50 pm selenium layer can be positively charged to about 1000 V
before rapid breakdown in its resistivity occurs, and this sets the limit in the practi­
cal case.

Charging and discharging: The charge mechanism makes use of the corona emission
from a thin taut platinum wire running axially through an approximately cylindrical
hollow conductor with a high voltage (over 4 kV) applied between the wire and the
conductor. As indicated in Fig. 1 the actual arrangement is that a longitudinal strip
along the drum surface forms part of the conducting shell, and charge is deposited
on this as it passes under the wire. A first approximation to the rate of charge
deposition, and hence to the potential reached, can be calculated by treating the
shell as a cylinder, which is good enough to guide the design of the device. With a
drum surface speed of 75 cm/s* a 12 mm section will pass under the wire in approxi­
mately 16 ms and will reach a potential of around 100 V. Thus, in order to reach
the 700 V or over that is required the charging device has to have a number of
parallel wires and cover a wider section of the drum.

Again as a first approximation, the rate o f discharge of an area of the drum surface
exposed to light can be taken as proportional to the energy intensity of the incident
light. This is not however a good approximation and is considerably modified by
effects due to the semiconductor properties of the selenium; a full treatment is
given in Reference 3. With the values already quoted it is found that the incident
light energy must be around 4 *5 W/cm2.

3.2 Optical system

The optical system is shown in Fig. 2. As was explained in Section 2 the beam
path can be deflected as the beam goes through the modulator and the geometry
is arranged so that only the deflected beam strikes the drum. The light emerging

* This corresponds to the paper speed of 145 ft/min given above. The mixture of metric and
imperial units is regrettable but difficult to avoid, because, while the design of the machine is
based on metric dimensions, printing standards such as line and character spacing are defined in
imperial units, such as lines per inch.

ICL TECHNICAL JOURNAL MAY 1979 175

from the laser is polarised and the beam is about 1 mm in diameter and is closely
collimated. For efficient operation of the modulator the beam diameter must be
reduced, which is the reason for the ‘beam converger’ in Fig. 2, and the system
must be set up so that the beam has a defined angle of incidence and a defined
direction of the plane of polarisation. With proper setting an efficiency of 80% can
be achieved. The transducer generates acoustic waves in the modulator of 50 MHz,
which deflect the beam by about 6 mrad, which gives a linear deflection of about
0*15 in at the drum surface. After passing through the modulator the beam is
expanded before being re-focussed at the drum surface to give the required size of
dot.

The mirror will typically have 12 facets; in this case it must rotate at approxi­
mately 22,000 rev/min to give the required scanning rate.

la se r

Fig. 2 Detailed structure of image written on drum

The detailed structure of the image written on the drum is shown in Fig. 3. Each
switching of the laser beam writes a dot, as a discharged area, on the charged
surface. The dot diameter is 0*010 in and the spacing along the swept line is
0*0055 in; thus adjacent dots overlap and give the effect of continuous line. The
spacing between successive lines is 0*00694 in, again giving overlap. These dimen­

176 ICL TECHNICAL JOURNAL MAY 1979

sions are equivalent to resolutions of 180 per inch horizontally and 144 per inch
vertically, which give excellent character definition meeting the requirements of the
ECMA-11 standard.4 The scanning rate is determined by the line spacing and the
speed of rotation of the drum; here it is approximately 4,200 scans per second.

de ta il of sweep

Fig. 3 Optical system

The modulator, which is controlled by the information held in the printer’s buffer,
can be turned on every 80 ns, which is therefore the rate at which the dots can be
written on the drum. If we allow for the rise and fall times in the modulator switch­
ing, each dot is exposed to the full intensity of the beam for about 35 ns. The
incident light energy necessary for effective writing was given in Section 3.1 as
about 4*5 W/cm2, which, for a dot of diameter 04)10 in (0*0254 cm) implies a
total input over the dot area of about 2*5 mW; this has to be increased to about
4*0 mW to allow for losses in the optical system. Thus the laser beam has to be of
at least 4 mW.

3.3. The printing process

As was explained in Section 2 the visible image is produced by causing particles of

ICL TECHNICAL JOURNAL MAY 1979 177

a coloured powder, the toner, to adhere to the discharged areas of the drum. There
is an electrostatic field between these relatively negative areas and the unexposed
areas, which still carry the full positive charge. The field is confined effectively to
within a very short distance (about 30 jum) of the surface. This implies that the
toner particles must be brought into intimate contact with the drum surface and
also that to be attracted by the field they must carry a positive charge.

In the development chamber (Fig. 1) the toner is mixed with carrier material
which consists of resin-coated magnetic beads of about 300 Aim in diameter. The
mixing action causes a charge transfer between the toner and the carrier beads, the
toner becoming positively charged and being held to the carriers by mutual attract­
ion. The mixture is conveyed to the drum by rollers rotating in a stationary mag­
netic field and on which the carriers, acted on by this field, assume a brush-fibre
stance and are wiped against the drum. Toner particles will be transferred to the
drum provided that the field force attracting them exceeds that holding them to the
carriers. The latter depends on the proportion of toner in the mix, which is there­
fore a critical parameter and is controlled automatically by a monitoring process
which is described later in this Section.

The next stage is that the drum surface, now carrying toner powder held to the
discharged areas, comes into contact with the paper on which the information is
to be printed. Transfer of the toner from the drum to the paper is brought about by
applying a negative charge to the paper, sufficient to overcome the attraction to the
drum. This is done by using a single-wire corotron operated so as to give peak
corona current. The toner is only loosely held to the paper at this stage and the
image is made permanent with the application of heat and pressure to the paper, by
passing it over a heated platen and then through heated rollers. The fusing tempera­
ture of the thermoplastic material of the toner is around 130°C. To ensure proper
fusing in the short times available at the speeds of printing being achieved, the
rollers are heated to about 195°C and have a coating of a polymer which deforms
under pressure, thus increasing the area and consequentially the time of contact
with the paper.

For the monitoring referred to above, a small all-black square is printed at the edge
of each sheet and its density measured. If this falls outside preset limits the com­
parison is used to adjust the proportion of toner in the toner-carrier. The carriers
are returned to the developing chamber after each printing and reused; in time they
become permanently coated with fine particles of toner and lose their effective­
ness, when they have to be replaced; this occurs after about a million sheets have
been printed. It will be clear from the description given in the preceding paragraphs
that the complete system works to very tight tolerances, and that therefore a com­
prehensive range of testing and diagnostic facilities must be provided.

Forms-design printing: This term refers to ‘overlay printing’ of a standard form
onto each plain sheet on which the information is printed; an invoice form is an
example. There are two ways of doing this. One is to use a subsidiary drum around
which a transparency is wrapped and from which an image of the form is cast on
the photoconductive drum just before the region where the laser beam is to write
the data. This is shown in Fig. 1 as the ‘forms design’ component. The other is to

178 ICL TECHNICAL JOURNAL MAY 1979

code the description of the form and to read this into the printer’s buffer so that it
is written on to the drum along with the relevant data. The second method has the
advantages of not requiring any manual intervention and of allowing many different
designs to be stored and selected as required.

4 Summary and Conclusion

The electrophotographic process has been developed around photoconductive
materials previously proven in document copiers. A multiwire corona charging
device is used to charge the photoconductor uniformly to a sufficiently high
voltage such that laser exposure of computer-generated information in dot-matrix
patterns will create consistent electrostatic images on the photoconductor. These
images are developed by magnetic-brush application of toner powder. After transfer
to paper the toner images are made permanent by hot-roll fixing.

The combined techniques used in the process enable print images to be generated
at over 20,000 lines per minute and transferred to standard computer paper. The
formation of characters in dot-matrix patterns allows multiple sets of character
shapes to be stored and selected for use. It also enables character modification by
which user-designated characters may be printed. Online forms generation using
either transparency projection or laser imaging of forms-design data can replace the
need for preprinted stationery.

To the user the nonimpact printer introduces new standards of speed, quality and
flexibility in computer printing.

References

1 DESSAUER, J.H., and CLARK, H.E. (Eds.) Xerography and related processes (Focal
Press, 1965)

2 SCHAFFERT, R.M .: Electro-photography (Focal Press, 1965)
3 LI, H.T., and REGENSBURGER, P .J .: J. A p p l Phys., 1963,34, p.1730
4 ECMA (European Computer Manufacturers Association). Standard 11 for the alpha­

numeric character set OCR-B for optical character recognition. 1965

ICL TECHNICAL JOURNAL MAY 1979 179

The new frontier:
three essays on job control

D.W. Barron
Professor of Computer Studies, Faculty of Mathematical Studies,

University of Southampton

‘Man is bom free but is everywhere in chains ’, said Rousseau. A recent candidate in
a computer-science degree examination put it more succinctly: ‘The function o f the
software is to prevent people using the hardware ’. On anything bigger than a micro­
computer the user interacts not with the hardware but with the operating system,
and the operating system interface that most concerns him is the job-control
language. The horrors o f job-control language have been extensively documented,
and there is no doubt that this is the least satisfactory aspect o f operating-system
technology. In these essays we look at some current developments in this field and
make some suggestions as to how the situation can be alleviated. We first explore
the topic o f standardisation.

1 Is a common job-control language both possible and desirable?

In many ways the current situation in job control resembles the state of program­
ming before the advent of high-level languages. Just as each computer had its own
assembly language, making program transfer very difficult, so each operating
system has its own job-control language (JCL). Like the assembly languages, these
are incompatible; like the assembly languages they have, in general, a minimal
structure and an impoverished syntax, and they are, if that is possible, even more
obscure and error prone than assembly language ever was. (The consequences of
inserting a single blank in a line of JCL for IBM’s operating system are truly awful
to contemplate.)

In the programming field great advances have been made by the introduction of
machine-independent (on the whole) standardised (more-or-less) high-level lan­
guages, and it is tempting to suppose that similar benefits might accrue in the field
of job control. Many national and international organisations are pursuing this fine:
an incomplete list includes the British Computer Society, the Dutch JCL Commit­
tee, IFIP (. . . and now, from the people who brought you Algol 68 . . .) , ANSI
(first FORTRAN 77, now . . .) , and CODASYL. (This last organisation claims that
it plans to do for JCL what COBOL did for programming languages: a terrifying
prospect.)

The problems confronting anyone attempting to design a machine-independent
job-control language are formidable. It is not the syntax that causes the trouble, it
is the semantics. It is a cardinal principle of language design that you should decide
what you want to say before you think about how you are going to say it, and

180 ICL TECHNICAL JOURNAL MAY 1979

in job control it is not entirely clear (and certainly not universally agreed) what is
the fundamental universe of discourse. Apart from the superficial differences of
external form, JCLs for existing operating systems show clearly that they are
predicated on very different models of the process of using a computer. To give but
one example, ICL systems recognise clearly the concept of a ‘user’, who has
proprietorial rights over certain resources that have been allocated to him, and can in
consequence own files, initiate jobs etc. There is no analagous concept in IBM
operating systems. In so far as the concept appears at all, the user is the person who
pays the rental for the computer system—the idea of a community of users sharing
the machine is not really there at all. It is therefore difficult to conceive of a
nontrivial job-control language that could be common to ICL and IBM machines.

If this argument is taken to its logical conclusion it would appear that a universal
job-control language implies a common operating system. Despite the confident
prediction by Gene Amdahl that IBM’s MVS will become the de facto standard
operating system for the industry, we may reasonably doubt the emergence of a
common operating system at the present time. The technology of operating systems
is nowhere near mature enough to justify standardisation at present, and we may be
sure that companies who have invested millions o f pounds in the development of
an operating system will not readily abandon that investment.

It thus appears that a common job-control language is not possible. Yet there is an
evident need for it. Or is there? When one reaches a dead end in an argument it
is always worthwhile reassessing the premises on which the argument is based. The
need for a common JCLis by now a proposition in the ‘motherhood and apple-pie’
category, and, like many such propositions, it does not stand up to close scrutiny.
Computer users, like the jobs they submit, come in all sorts of shapes and sizes, and
it is no more reasonable to assume that a single JCL can be devised to suit them all
than it is to assume that a single programming language is suitable for all classes
of jobs from sorting to simulation. Even within a single machine range the range-
standard JCL is found to be overcomplicated, and subsystems are developed for
certain well defined and common tasks, e.g. running a simple Fortran program.
It is reasonable to argue that the user should not be concerned with any aspects of
machine organisation that are not self-evidently part of his job. Such relegation of
irrelevant detail is very difficult in a general-purpose language, by virtue of its
very generality. However, once we stop trying to be all things to all men, and
tailor a subsystem to a particular class of users and/or jobs, the situation is very
different.

It is at this level of subsystems that we require commonality. Given that Fortran
is (or should be) the same on all machines, the user could reasonably expect that
the protocol for using Fortran, including such things as linking external files to
input/output channels, specifying libraries, choosing peripheral devices, should be
similarly standardised. Indeed, the specification of a Fortran subsystem could
reasonably form part of the international Fortran standard, and other languages
should be treated similarly.

I f such standard subsystems were available, much o f the demand for a ‘universal
JCL’ would vanish. Each machine range would still have its job-control language

ICL TECHNICAL JOURNAL MAY 1979 181

(system-control language) for the benefit o f the specialised systems programmer:
it is reasonable that these should differ between machines, since they reflect the
underlying operating-system structure in the same way that assembly languages
reflect the machine architecture. These subsystems can, with some grief and pain,
be grafted on to existing operating systems. A prime requirement in the design o f
future operating systems must be to facilitate the construction o f subsystems. The
third essay in this group explores some o f the implications for operating system
design, but first we look at a typical subsystem from the user’s point o f view.

2 Simple interfaces for simple users

In the preceding essay we have argued the case for subsystems designed for simple,
well defined classes of job. This essay explores the design of such a subsystem. I
have chosen to describe a system for running Pascal programs, because that is the
aspect of current operating systems with which 1 most frequently come into
contact. However, the subsystem here described would apply with only trivial
modifications to Fortran, Algol or any other language.

The fundamental principle underlying the design of the interface is that the user
should never be required to specify things that are not directly relevant to his job
as he sees it. Thus, while it is reasonable for the user to say where his source
program is, and what is to be done with the results, it is not reasonable for him to
be expected to specify the work files to be used by the compiler.

For a simple job, this can be achieved if the job-control system allows macros
(procedures). Thus, with a suitably designed macro a simple Pascal job using default
input-output is very easy to run on VME/B:

JOB(username, etc.)
PASCAL

<program>
+ + + +

<data>
+ + + +
ENDJOB
* * * *

However, as soon as we introduce any variation from this very simple basic job,
complication sets in. For example, suppose I want to edit the contents of a file
and then compile the edited program, also saving the source; I need something like
the following

JOB (username, etc.)
NEWFILE (NAME = NEWPROG)
EDIT (OLDFILE = PROG, NEWFILE = NEWPROG)

<editing commands>
+ + + +

182 ICL TECHNICAL JOURNAL MAY 1979

PASCAL (NEWPROG)

<data>
+ + + +
SAVEFILE (NEWPROG)
ENDJOB
* * * *

If I want to pass the edited file through a preprocessor (written in Pascal) I am
likely to finish up with something like the following sequence.

JOB (username, etc.)
NEWFILE (NAME = NEWPROG)
EDIT (OLDFILE = PROG, NEWFILE = NEWPROG)

<editing commands>
+ + + +
ASSIGNFILE (NAME = NEWPROG, LNAME = ICL9CE3)
NEWFILE (NAME = MODPROG)
ASSIGNFILE (NAME = MODPROG, LNAME = ICL9CE4)
PREPROCESS

<commands to preprocessor
+ + + +
PASCAL (MODPROG)

<data>
+ + + +
SAVE (NEWPROG)
ENDJOB
* * * *

This cannot be regarded as a simple or ‘friendly’ interface. In part this is due to the
jargon, but even more so it is due to the stilted form of communication: each line
consists of an imperative verb followed by some parameters. It is surprising how
even a flavour of natural language improves the situation.

The sequence given above resembles a sequence of commands to a robot (as indeed
it is). If we compare it with a piece of English Prose we notice one particular differ­
ence: it contains none of the common prepositions, demonstratives and connectives
like fit’, ‘this’, ‘with’ etc. The clue to a friendly interface is the use of these
neglected parts of speech. Compare the following version of our job:

JOB (Username etc.)
EDIT (PROG) WITH THIS
:<editing command&>:
CALL IT NEWPROG
PREPROCESS IT WITH THIS
:<preprocessing commands>:

ICL TECHNICAL JOURNAL MAY 1979 183

COMPILE IT
RUN IT WITH THIS
:<data>:
ENDJOB
* * * *

We have immediately obtained a much more ‘friendly’ interface, by removing
extraneous material such as invented names for temporary files.

We achieve this new interface in a very simple way. Each processor (editor,
compiler, preprocessor) is regarded as a file-transforming device which takes a file
and produces another file. It may also require steering information. The file created
by the most recent such process is referred to as IT; steering information is intro­
duced by WITH; and THIS introduces an immediate data stream (‘alien data’ in
ICL terminology, a ‘here’ document in the sense of Barron and Jacksonl).

The idea can be readily extended, e.g. concatenation is denoted by ‘AND’, thus:

COMPILE PROG 1 AND PROG 2

Input of a named file is, naturally, achieved by

READ THIS
:<data>:
CALL IT filename

A typical subsystem might be defined as follows.

(a) A command consists of an imperative verb followed by a principal file
designator and optionally by a subsidiary file designator. Unless otherwise
noted, a command produces as its result an anonymous file called the
current file, and may also send output to a system-output device.

(b) A file designator may take the following forms
<filename> meaning the named file
IT meaning the current file
THIS meaning the data that immediately follows in the

command stream, suitably delimited
<file designator> AND <file designator> indicating concatenation of the

specified files

(c) The subsidiary file designator takes the form
WITH file designator

(d) Commands are
READ
PRINT (has no result)
EDIT
COMPILE
RUN

184 ICL TECHNICAL JOURNAL MAY 1979

It is important that completely general composition of these simple concepts be
allowed, so as to permit combinations like

RUN IT WITH fileA AND file B
EDIT fileA AND fileB WITH fileC AND file D
COMPILE fileA AND THIS
:<immediate data>:
WITH THIS
:<immediate data>:
etc.

We thus see that a simple concept o f commands as file transformers (which owes
much to the UNIX concept o f ‘filters coupled with some simple linguistic devices
allows us to have subsystems that combine a friendly informality o f interface with a
rigorous definition.

Finally, we look at the operating system structure needed to support a sane
approach to job control. I t turns out to have a strong resemblance to MUSS, and to
be not unlike what VME/B might have been (and might still y e t become).

3 Sketches of an operating system

An operating system can usefully be regarded as divided into a kemal and a super­
structure. The kernel is responsible for process management, providing an environ­
ment in which concurrent processes can exist; it will administer virtual memory,
communication between processes, and the lowest level of peripheral control. The
superstructure comprises data management and job-management functions, and it is
this latter area that we concentrate on in this essay.

3.1 Job-management functions

It is a cardinal principle of software engineering design to keep the architecture and
the implementation clearly separated. We therefore consider first the user interface
of the operating system as far as job control is concerned. We consider a job that
consists of an arbitrary number of job steps (including one step as a semitrivial case).
Then we can distinguish two job-control functions immediately:

(a) sequencing of job steps, the actual sequencing depending on the success or
otherwise of individual job steps

(b) creating an environment for a job step-providing work files, binding
symbolic names to actual files, peripherals etc.

A further function, really an extension of sequencing is:
(c) dealing with error situations.

Finally, there is one more major activity:
(d) budgeting and accounting.

In conventional systems these activities are all contained within the operating
system, and are therefore immutable so far as the user is concerned. Conceptually
we can imagine that there resides within the operating system a job-control program

ICL TECHNICAL JOURNAL MAY 1979 185

which accepts the job, notes its requirements and initiates the job steps; whenever a
job step terminates (in the normal way or prematurely) control goes back to the
job-control program, which may initiate another job step or terminate the job as
appropriate. This structure is shown in Fig. 1. Of course, most systems do not
exhibit this clear division in actual fact: job-control functions are accomplished by
code scattered throughout the system. However, if we define the actions of a
(hypothetical) job-control program as equivalent to the actions specified by the
JCL we have a useful model. (We note in passing that a scientific model does not
have to be a simplified version of the real thing: it is a mechanism that would pro­
duce the same observed results as the real thing. When he developed his electro­
magnetic theory, Maxwell used a model that envisaged space as being filled with
intermeshing rollers: the unreality of his model did not prevent him making a major
advance in physics.)

Fig. 1 Model of job control function

A scientific model is useful if the results obtained by studying the model lead to a
better understanding of phenomena in the real world. (Maxwell’s electromagnetic
equations were one of the major factors in the discovery of the possibilities of radio
transmission.) On this basis, our model of the job-control function is a useful one.
We first observe that it clearly separates application programs and utilities
(compilers, editors etc.) from that which is conventionally regarded as firmly rooted
in the operating system (Fig. 2). We next remark that the sequencing of job steps
requires communication between the job steps and the sequencing mechanism (e.g.
to report success or failure). In actual systems this may be done by placing values in
registers according to some convention, or by providing a shared communication
area. In terms of our model we can abstract the communication between job steps
and describe it in terms of a set of variables belonging to the job-control program,
and hence global to the job steps.

o p e r a t in g

s y s t e m

app lica t ion

prog ram s

Fig. 2 Conventional division of responsibility in job control

186 ICL TECHNICAL JOURNAL MAY 1979

Using this model we can distinguish various categories of systems. We have already
observed that two important functions of the job-control program are setting up an
environment for a job step sequencing between job steps. If the setup for each job
step immediately precedes initiation of that job step, we have an OS/360-like
system (Fig. 3). At the other extreme, if all the initialisation is done at the start
we have an Atlas-type job description, i.e. a static description of the environment
(Fig. 4).

Fig. 3 Model of OS/360 job control
Note the possibility of optional omission of a job step, shown by the broken line

Fig. 4 Model of Atlas job control
Note that this does not permit optional execution of job steps

We have so far omitted the budgeting and accounting role of the job-control system,
so to complete our model we must prefix an authorisation check to the job-control
program, and add at the end an accounts updating procedure as in Fig. 5 .

Fig. 5 Elaboration of job-control program

ICL TECHNICAL JOURNAL MAY 1979 187

3.2 Extension o f the model

We now postulate a specific operating-system structure. We suppose that the
primitive-level job-control interface consists of a large body of procedures each of
which, when called, performs an elementary job-control function. The job-control
program will now reduce to a (possibly large) number of calls on these primitive
procedures. If this is the case we can make life imitate art by making the actual
system more like our model, by having an operating-system architecture that
isolates the job-control program as a clearly defined unit. Now we have in principle
a very flexible system. There exists in programming a body of knowledge and
technique whereby sequences of procedure calls can be composed into calls of
higher level procedures, and we can therefore provide job-control interfaces at
various levels of abstraction from the basic interface.

o p e r a t i n g
s y s t e m

Fig. 6

a p p l i c a t i o n

p r o g r a m s

Hypothetical job-control system outside the operating system

Since the job-control program now consists of a sequence of calls of primitive
procedures, it is tempting to argue that it can be expressed in any language that can
be compiled into, or interpreted in terms of, the basic primitives. In other words,
the job-control program comes below the operating-system line (Fig. 6). A
moment’s thought shows that this cannot be entirely so. Validation of a user,
checking budgets and setting limits etc. must be done within the operating system
in a protected manner, and we are therefore led to a ‘3-tier’ model (Fig. 7). Now
the top layer is clearly operating system, the bottom layer is ‘applications’, and the
question remaining is how do we program the middle layer.

Fig. 7 Three-layer model of job control

188 ICL TECHNICAL JOURNAL MAY 1979

3.3 Job-control programs

The first important point to note is that once the job-control program has come
*below the line’, it is no longer a sacred cow, and does not have to be the same for
all users. There are three broad possibilities for the job-control program in such a
context:

(a) use a specialised language—a job-control language
(b) provide ‘end-user’ subsystems for well defined classes of job
(c) use a ‘conventional’ high-level language.

(Note that this may or may not be the same high-level language that is
used for any or all of the job steps.)

Possibility (a) is appropriate to professional programmers who wish to exploit the
more esoteric facilities of the system; we do not consider it further in this essay.
Possibility (b) is appropriate when there is a community of users whose jobs
conform broadly to a standard (and simple) pattern: students in an educational
institution are an obvious example. We have outlined a typical subsystem in the
preceding essay. Possibility (c) is likely to commend itself to writers of packages,
since it enables them to conceal much of the job control from the user. It is impor­
tant that the system design should not make these options mutually exclusive. A
combination of (b) and (c) in which much of the job control is absorbed into the
program, while what remains is dealt with in a simple user-oriented language, has
great promise as an attractive and ‘friendly’ interface. Thus, for example, the transi­
tion from compiler to link editor (collector) to running the object module can
conveniently be subsumed into the compiling system.

The MUSS operating system3 employs the approach of making all job-control
functions available as procedures. The designers o f VME/B started well by providing
a procedural interface, but took a reactionary step by concealing this procedural
interface from the ordinary user (and, indeed from the compiler writer.) It would
not be too late to change, but one cannot be sanguine about the chances. Perhaps
the real moral to be drawn from the sorry history of job control is that operating-
system designers should limit their efforts to providing the tools for job manage­
ment. They should not build into the operating system a preconceived idea of how
it is going to be used, least of all if (as is most common) they have never been users
themselves.

References

1 BARRON, D.W., and JACKSON, I.R.: The Evolution of Job Control Languages’,
Softw are bract. & E xper. , 1972,2, pp. 143-164.

2 KERNIGHAN, B.W., and PLAUGER, P J., Softw are tools (Addison Wesley, 1976)
3 FRANK, G.R., and THEAKER, C J. ‘MUSS - the user interface’ Softw are Pract. & Exper.,

1979 (in press)

ICL TECHNICAL JOURNAL MAY 1979 189

ICL Worldwide

The head office of International Computers limited is at
ICL House, Putney, London SW15 1SW, England

Issue 1 of the ICL Technical Journal gave a list of the principal address of ICL
subsidiary companies, branches, dealers and agents. Since that list was published a
new subsidiary has been established:

MALAWI ICL Malawi Ltd
Henderson Street, Blantyre,
PO Box 5070, Iimbe

190 ICL TECHNICAL JOURNAL MAY 1979

Notes for authors
1 Content

The ICL Technical Journal publishes papers of a high technical standard intended
for those with a keen interest in and a good working knowledge of computers and
computing, but who nevertheless may not be informed on the aspect covered by a
given paper.

The content will have some relevance to ICL’s business and will be aimed at the
technical community and ICL’s users and customers. It follows that to be accept­
able, papers on more specialised aspects of designs or applications must include
some suitable introductory material or references.

The Journal will usually not reprint papers already published, though this does
not necessarily exclude papers presented at conferences. It is not necessary for the
material to be completely new or original (but see 10,12 and 13'below). Papers will
not reveal matter related to unannounced ICL Products.

2 Authors
Anyone may submit a paper whether employed by ICL or not. The Editor will
judge papers on their merits irrespective of origin.

3 Length
Full papers may be of up to 10 000 words, but shorter papers are likely to be more
readily accepted. Letters to the Editor and reviews may also be published.

4 Typescript
Papers submitted should be typed in double spacing on one side of A4 paper with
full left-hand margin. Mathematical expressions are best written in by hand. Care
should be taken to form Greek letters or other unusual symbols clearly. Equations
referred to in the text should be numbered. Detailed mathematical treatments
should be placed in an Appendix, the results being referred to in the text.

At least two copies should be submitted, both carrying the author’s name, title
and date of submission.

5 Diagrams and tables
Line diagrams supplied will if necessary be redrawn before publication. Be
especially careful to label both axes of any graphs, and mark off the axes with
values of the variables where relevant.

All diagrams should be numbered and supplied with a caption. The captions
should be typed on a separate sheet forming part of the manuscript. Since diagrams
may have to be separated from their manuscript every diagram should have its
number, author’s name and brief title on the back.

All diagrams and Tables should be referred to in and explained by the text.
Tables as well as diagrams should be numbered and appear in the typed MS at the
approximate place, at which they are intended to be printed. Captions for Tables
are optional. Be careful to ensure the headings of all columns in Tables are clearly
labelled and that the units are quoted explicitly in all cases.

6 Abstract
All papers should have an abstract of not more than 200 words. This ought to be
suitable for the various abstracting journals to use without alterations.

ICL TECHNICAL JOURNAL MAY 1979 191

7 Submission

Before submission authors are strongly urged to have their MSS proof read carefully
by a colleague, to detect minor errors or omissions; experience shows that these can
be very hard for an author to detect. Two copies of the MS should be sent to the
Editor.

8 Referees
The Editor may refer papers to independent referees for comment. If the referee
recommends revisions to the draft, the author will be called upon to make those
revisions. Minor editorial corrections, e.g. to conform to a house style of spelling
or notation, will be made by the Editor. Referees are anonymous.

9 Proofs
Authors will receive printed proofs for correction before publication date.

10 References
Prior work on the subject of any paper should be acknowledged, quoting selected
early references. It is an author’s reponsibility to ensure references are quoted; it
will be unusual for a paper to be complete without any references at all.

11 Style
Papers are often seen written in poor or obscure English. The following guidelines
may be of help in avoiding the commoner difficulties.

• Be brief.
• Short sentences are better than long ones but on the other hand do not

write telegrams.
• Avoid nested relative clauses; preferably start new sentences.
• Define the meaning of ordinary words used in special senses. Define acronyms

or sets of initials by quoting the full meaning the first time the initials are
mentioned.

• Include a glossary of terms if necessary.
• Avoid words in brackets as much as possible.
• Avoid the frequent use of the type of construction known as a ‘buzzword’.

This often takes the form of a noun followed by a present or past participle
followed by another noun e.g. ‘system controlling parameters’.

• Take care in using the word ‘it’ that the reader will easily understand what
‘it’ refers to. An unambiguous rule, that cannot always be applied, is that
‘it’ refers to the nearest preceding noun in the singular.

• Several ‘its’ in one sentence each used in a different sense can cause consider­
able confusion. Similar remarks apply to ‘this’, ‘that’ and other prepositions.

12 Copyright
Copyright in papers published by the ICL Technical Journal rests with ICL unless
specifically agreed otherwise before publication. Publications may be reproduced
with permission and with due acknowledgement.

13 Acknowledgements
It is customary to acknowledge the help or advice of others at the end of papers
when this is appropriate. If the work described is not that of the author alone it will
usually be appropriate to mention this also.

192 ICL TECHNICAL JOURNAL MAY 1979

