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Com puters in support 
of agriculture in 

develop ing  countries
G.P. Tottle

ICL Product Development Group, Technology Division, Manchester 

Abstract

This paper describes the facilities of a generalised system, SCAPA (system 
for computer-aided agricultural planning and action) which explores how 
far small computer systems can support the planning and production 
activities of large numbers of small farmers in developing countries. The 
facilities are discussed in relation to the real requirements, which were 
encountered in joint field studies during 1978, for coffee farmers with the 
Kenyan Ministry of Agriculture, and for rubber farmers with the Rubber 
Industry Smallholders Development Authority in Malaysia.

1 Introduction

‘Give a man a fish and he‘11 eat for a day; teach him to fish and he’ll thrive for a 
lifetime.’ The proverb has become a part of the conventional wisdom of develop­
ment economics—how can the relevant results of research, which have immense 
potential to increase for example agricultural production, be selected and communi­
cated to small fanners in developing countries? And once the technology has been 
communicated and accepted, how can the small farmers’ activities be supported, in 
terms of agricultural inputs, credit, advisory services and marketing?

The agricultural output that is possible, and the pitfalls towards its realisation, can 
be illustrated from a joint ICL study with the Rubber Industry Smallholders 
Development Authority (RISDA) in Malaysia. For a quarter of its 25-year life cycle 
the main crop, rubber, underexploits its environment-commonly one sees young 
trees at 4m intervals lined up on bare, moist, sun-baked earth which seems to 
pulsate with productive potential. There is an obvious opportunity for intercropp­
ing with other plants, but technology, environment, crops, markets and logistical 
support all have to be evaluated and established before this potential can be rea­
lised. In one carefully planned and monitored scheme in Pokok Sena, 20 acres 
(8 ha) of such immature rubber on poor soil were being intercropped to maximise 
output. This involved heavy use of fertilisers, production credit, a complicated crop 
rotation and assured market outlets, and, the primary requirement, the enthusiasm, 
commitment and understanding of the individual smallholders who ran it. The 
result was three to four varied crops per year, with a net return to farmers of 
roughly £800 per year per acre (£2000 per year per hectare), from land which would 
otherwise have lain fallow.

ICL TECHNICAL JOURNAL MAY 1979 99



This scheme illustrates at its best the spectrum of opportunities, the range of choice 
and challenge open to smallholders; if it can be repeated elsewhere, as RISDA in 
its group replanting schemes is attempting, and if further opportunities for propa­
gating allied processes in rural areas can be created, the wealth and attractiveness of 
farming can be increased and the drift of the younger farmers to the towns may be 
reversed. However, if this illustrates the potential, the problems in achieving it for 
large numbers of smallholdings—100,000 coffee farmers in Kenya, or 150,000 
rubber farmers in Sri Lanka for instance—are formidable. Farmers are at the centre 
of networks of interdependent activities, and problems in any one of the dependen­
cies at Pokok Sena, for instance, could seriously set back the introduction of new 
techniques. The setback here would however, be less serious than in the less 
resilient but more straightforward monocropping pattern—a pattern that is 
commonly followed in agricultural-development projects because it is more easily 
managed.

This illustrates the main requirements, to meet which the SCAPA system was 
framed: to explore how far computer facilities might assist in this situation, where 
on the one hand the complexity of choice and agricultural system interactions, 
and the large volume of transactions make computer use a natural conclusion, while 
on the other hand computer technology may seem unintelligible, costly, and 
inappropriate. The opportunity cost of one 2903 in terms o f ‘borehole equivalents’ 
for example is clearly very high; this cost is unacceptable if the end result is to give 
an illiterate farmer a sheaf of PERT output, or worse to override the farmer’s well 
informed judgement by a set of instructions that are less effective, or inappropriate 
to his needs.

This paper outlines, against this background, the facilities of the SCAPA system 
(system for computer-aided agricultural planning and action) in the light of feasibi­
lity studies carried out during 1978 in Kenya with the Ministry of Agriculture and 
in Malaysia with the Rubber Industry Smallholders’ Development Authority. ICL 
designed the basic system in collaboration with Professor Black and members of the 
Department of Computation at the University of Manchester Institute of Science & 
Technology, with great benefit from discussions with overseas development groups 
at the universities of Nottingham, Reading and East Anglia, and with the essential 
participation in particular of Dr. C.L.A. Leakey and Major TJF. Ellis. Their practical 
experience, and the views and ideas from field staff in Kenya and Malaysia, were 
indispensable. The basic concepts, specification and potential of the system have 
been established, and the next stage, a pilot implementation under the Ministry of 
Overseas Development, is currently being planned.

2 Field background to feasibility studies

Two 1-month studies were carried out. The first took place in two coffee growing 
districts in Kenya: Murang’a, where a highly successful small farm production 
system is well established; and Kisii, an area of high potential where, however, less 
than one-third of the productivity is being achieved. In these areas about one-third 
of the cultivated land is assigned to arabica coffee, a crop which produces high 
returns but demands careful attention and costly agricultural inputs at critical time
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intervals. The Ministry of Agriculture provides a specialist advisory service, and pro­
duction and marketing are organised by small growers co-operatives, each covering 
up to three factories. Factories are normally less than 3 km from the farms. They 
tend to serve about 100 growers with plots of 1 to 6 acres (0*4-2*4 ha) in size, 
providing agricultural supplies and facilities for processing and marketing the 
produce and accounting for farm output. Our study involved visits to a small but 
reasonably representative number of farms to discuss production and problems, 
and a follow-up through the infrastructure to assess how far SCAPA facilities 
might assist in solving problems or exploiting opportunities.

The second study, in Malaysia, concentrated on the state of Kedah, a designated 
poverty area. RISDA, The Rubber Industry Smallholders Development Authority, 
has a very wide remit to promote and support the interests of the ‘man or woman 
behind the rubber tree’-280,000 smallholder families with holdings averaging 
5*5 acres (2*2 ha). Thus, in addition to supporting the mainstream technical 
activity of replanting, new planting, production and processing, the Authority 
runs a variety of projects with farmers, locally controlled, to explore opportunities 
for new crops, livestock, new markets, rural industries or trade, and tries to pull 
some of the industrialised activities back from the towns to the villages. This 
involves an imaginative, project-oriented approach, with RISDA’s extension officers 
(advisers) acting as catalysts in a less integrated system than in Kenya—marketing, 
for example, is organised by RISDA in fortnightly auctions of unsmoked rubber 
sheet, transacted directly between growers and buyers, with RISDA staff stepping 
in to bid and purchase only if the price offered seems unreasonably low.

The following Sections summarise the SCAPA facilities, and the conclusions 
reached during the field studies, under the following heads:

(a) farm profile recording and analysis
(b) plan development
(c) progress recording and monitoring
(d) advisory/extension services
(e) agricultural input supply
(f)  credit assessment and control
(g) marketing
(h) management and project monitoring.

These functions are modular with the intention that users can select, and tailor if 
needed, those functions appropriate to their needs. Before embarking on the 
detailed section a brief study of Table 1, and Figs. 1 and 2 showing the system aims 
and the overall application phases and structure may be useful.

3 Farm profile recording and analysis

The system provides for a profile of the capability of each individual farm to be 
built up gradually, extending from basic identification information to more de­
tailed data defining the farm’s production capability, the labour availability, soil 
type and depth, gradient, aspect, exposure etc. Once captured, this data can be 
analysed and matched with a variety of possible cropping plans to indicate their
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relative merits and eventually to vet the farmer’s proposed plan and report any 
potential problems.

Table 1 AimsofSCAPA

The system’s prime target is to support individual growers and extension staff. To do so, it 
provides a back-up system to:

match farm potential to production plans 
ensure key activities are recorded in plans 
monitor and support their achievement 
raise problems for solution 
free experts to concentrate on opportunities 
provide credit relative to farmers’ achievements 
schedule and check the provision of inputs 
support and record marketing of produce 
summmarise progress for management

Capturing this data in sufficient detail for valid technical conclusions to be drawn is 
expensive—a similar system in Bulgaria,1 for instance, records 17 data items on soil 
capability—taking about 3 man days per farm. On the other hand it provides a 
semipermanent record against which the continuing stream of technical possibili­
ties can be evaluated in the future.

In Kenya, profile recording and analysis offered considerable potential for explora­
tion. Excellent research recommendations from the Coffee Research Foundation, 
for instance, identified, among others, optimum phosphate fertilisers for 12 
possible combinations of calcium, phosphorus and acidity Digesting and applying 
this recommendation to a particular situation involved a complicated set of condi­
tional decisions-a competent extension officer might take 40 minutes study to 
come up with the right answer for a particular farm. In the field, however, basic 
soil data, even for acidity levels, and even on an area basis was not yet available, and 
in its absence there was a single standard field recommendation that all farms apply 
two fertilisers, CAN and ASN, in fixed quantities, in alternate years. If one bears 
in mind that input costs for coffee are high—roughly 40% of total production 
costs—and that a high return, over £500 per acre (£1250 per hectare), is common, 
the process of data trapping and analysis seems attractive. In place of the above 
standard field recommendation, a precise recommendation as to quantity and type 
of fertiliser can be made for each farm, using the computer system. As an extension, 
the effects of cropping, run-off etc. on soil quality might be monitored dynamically 
to maintain a continuing awareness of residual fertility levels. In Malaysia, profile 
data for the farms was already being recorded, under IDMS on a 2903 computer, 
though the depth of coverage needed to be extended for valid technical conclusions 
on soil capability to be drawn. Since rubber is less demanding in its input require­
ments and offers a lower return, the benefits of detailed recording of soil data are 
debatable unless intercropping young rubber with high-value cash crops is envisaged.

4 Plan development

The system requires time-barred ‘action lists’ as the plan for each farm, showing 
each major activity, its expected completion date, its dependencies, and its phased
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V extension research

Fig. 1 SCAPA planning phase

resource requirements in man days or quantities of inputs, services or credit. These 
are drawn up by agricultural advisers—extension staff—as a set of models for equally 
sized plots to cater for a wide range of farm capability and farmer intentions: a 
young ‘emergent commercial’ farmer is likely to set different goals and different 
crop mixes and to accept different levels of risk from a traditional farmer who is 
seeking primarily varied subsistence crops for a large family, but with some cash 
crops as a side line.

The end result of the planning activity is a variety of action lists, which are dis­
cussed in detail with each farmer, who then selects that which meets his own re­
quirements or drafts a special list if needed. Table 2 gives part of a schematic 
84-stage action list for rubber and tapioca over 5 years. In contrast to the glossies
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Fig. 2 SCAPA production phase

and pamphlets often distributed, these lists are precise as regards timescale and the 
inputs and returns for each individual farm—it is expected that farmers will keep 
them pinned up for ready reference to the current window of activities, much as 
dairy farmers do currently in the UK for cattle feeding and milk recording.

Research and extension advisers are responsible for the action lists, for evaluating 
costs, labour requirements, returns, markets etc. This is a tough assignment but it is 
one that provides a useful discipline, particularly in view of the common discrepan­
cies which intervene between the results of experimental research undertakings and 
real field practice. As their familiarity with the computer system develops, they can 
exploit linear programming and simulation packages, a large range of which are 
available; initially however all this will probably be done ‘by hand’ relative to local
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conditions—road networks, weather patterns, markets, transport costs etc. Tables 3 
and 4, and Fig. 3 show the range of choice open typically to farmers, and the 
calculations that are desirable in developing appropriate action lists. As indicated 
later, the aggregation of resource requirements and outputs from the action lists is a 
vital base for production, extension services, credit and marketing.

Farm planning with this level of precision was the rare exception during our field 
studies, confined generally to one or two outstanding ‘progressive farmers’ in 
Kenya, or to the best run ‘group replanting schemes’ in Malaysia. Farm planning 
teams in the districts worked very hard but necessarily covered a very small fraction 
of the population, commonly those who were making large loan applications. 
Some extensionists might argue that the farmers nevertheless had a comparable 
programme of work ‘in their heads’, but even so the cost benefits were not calcu­
lated-some farmers chose between tea and coffee as cash crops according to which 
was pleasanter to tend; tea plucking is more congenial than the tedious process of 
selecting and picking ripe coffee cherry. More importantly, if the farmer’s plan, 
however good, is ‘in his head’, the possibility of reconciling it with input require­
ments and market opportunities is limited. This applied particularly where develop­
ing technology demands close adherence to a complex chain of activities. High- 
yield varieties of wheat, maize and rice, for instance, developed during the seventies, 
have achieved a threefold increase and more in output, but only if critical require­
ments as to planting dates and fertiliser applications are met.

5 Progress recording and monitoring

The output per hectare currently achieved by small farmers is often more than 
twice that of large farms (in Brazil a factor of eight, in Colombia a factor of 14).3 
The potential return per unit of land (but not labour) is even higher, provided that 
the relevant results of research can be communicated, and their field implementa­
tion can be supported and monitored. The SCAPA facilities aim at the following 
approach.

At the completion of the planning phase, the intention is that each farmer has his 
own agreed, committed plan. Thereafter, at monthly intervals he receives a 
‘monthly review’, a printed ‘window’ of his action list which:

(a) records the report he made last month
(b) reminds him of his planned activities over the coming two months
(c) requires him to report his success in carrying out his production plan for 

this month
(d) requests order confirmation of any planned input deliveries for the next 

month
(e) gives the delivery details (time, place, quantity, cost) for inputs this month.

At the year end this is supplemented by a summary of income and expenditure. 
The farmer receives his monthly review form and completes and returns the tear- 
off, OMR readable, report section, which is in due course read by a document 
reader, the reports being aggregated and analysed for management action.
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Table 2 Action list (in addition to normal tapping) for a replanting programme for 3 years before and 7 years after actual planting

Year
Year 1 month Description

Action
Number

Must be 
preceded
by

Labour 
man days

Latest
completion
date

Credit
action

Value of grant or credit 
and value of goods or 
sources in kind

Budget 
cash flow

End March Fell and cut and load contractors lorries 
with wood 19 18 + $1100 (less transport

cost at $0*5 per tonne 
km (say $900)

April Poison tree stumps as felled
Apply for contractor ploughing and make

20 11 2

contract 21 -

Apr/May Collect and burn small wood in tree rows 22 2
Apply for hole inspection for end of May 
Contractor carries out 2 discings + harrow

23 "
rotovate in the interrow spaces 24 20 - 15th May *

Contractor prepares holes (by postholer)
between standing tree stumps, at 
least 60 cm diam. by 45 cm deep 25 *

-$120*Receive CIRP and GML (10 bags) 26 16 - 1st May $80 (grant) (in fertiliser)

Apply CIRP and GML broadcast in interrow
before rotovation 27 26 8

Receive tapioca sticks and cut to 23 cm
lengths 28 14

Plant tapioca 5 rows between rubber rows
using 23 cm cuttings 29 28 8

May Inspection of clearance and rubber holes 30 25 - 31 st May $20 (Credit) (in planting 
materials) $180 (Grant) +$180
balance* (in cash)

Receive fertilizer for tapioca (8 @ 40 kg bags
CCM44, 10 bags @ 40kg bags 
CCM77)

31 15 • $786 (Credit) (in fertiliser)

Mid May Apply fertilizer to tapioca 8 bags CCM44
week after planting in 15-23 cm 
rings around plants 32 31 i

End May Weed tapioca 33 - 5

*NB: Some of the $ 180 may be paid out by RISDA to contractors for action 24 and 25. If so then cash balance will be reduced accordingly to $60
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Table 3 Rubber wood and nonrubber enterprises: labour and returns net of labour
Direct Net return,

Labour, man costs Quantity Gross returns, $/ha
CROP days/ha Maturity t/ha harvested Unit value $/ha without labour

Rubber wood 20 (with $10/ton less 1200- 1100-
chain saw) 30 years 100 120-150 t t’port at 50c 

per tonne Km
1500 1400

Tapioca 68 12 months 307 18-22 t $70/ton less 1260- 953-
t’port at 50c 
per tonne km

1540 1233

800- 230-
Soyabeans ~ 9 0 100-101 days 570 800-2000 kg $l-0/kg 2000 1430

Groundnuts ~105 110-120 days 1330 ca 3000 kg $0*67 2010 680
(in shell) (in shell)

Maize 68 65-100 days 840 ca 3100 kg $0*4 1240 400

Chillies
Fresh

70+ 5 months 1201 up to 13 t/ha l*6-2*0$/kg 20,800-
26,000

more than
10,000- 8000

Dry up to 2*5 t/ha 4-6S kg. 15,000

Sweet potato 38 100 days 200 100-140 pik $7 per pik 700-980 500-780

7480- 5885-

Ginger 58 7-8 months 1585 6800-8500 kg $1100 per tonne 9350 7765

Cabbages 101 80 days 1059-
1440

150-(300) 
-520 pik

$35-42 per pik 5250- 
21, 840

3816-
20,781

Chickens (broilers) ~ 1 0 60 days feed
$2310-2400 500 broilers $4*50-5*20 2400-2600 $0-290
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Table 4 Outline suitability of possible intercrops according to soil and conditions

Crop Slope Drainage Flooding
Soil
depth*

Soil
texture

Depth of 
surface peat

Acid sulphate 
layer

Soil
workability Acidityf

bananas 0-15° not can stand > 6 0  cm avoid very
critical temporary light soils unimportant avoid <  30% stoney 5*5

flooding
tapioca 0-6°t not > 6 0  cm not sands or < 5 0  cm not less <  25% stoney 5 -0-7-0

critical none heavy clays than 70 cm
soyabeans 0-6° good none > 5 0  cm not critical < 5 0  cm good <5%  stoney (5-0)

5-5+
groundnuts 0-6° moderate none > 5 0  cm not heavy < 5 0  cm not less good <5%  stoney 5-5-7-0

-good clays than 75 cm
maize 0-6° t good none > 5 0  cm loams to < 5 0  cm <  25% stoney (5-5)

light clays 6-0-7-0
hill padi 0-6° less the can stand > 5 0  cm silts (heavy) unimportant unimportant <  25% stoney 5-5-6-5

better flooding - clays
chillies (fresh) 0-6°$ not none > 5 0  cm loams to <50cm not less <25%  stoney 5-0-6-0

& dry) critical light clays than 75 cm
Sweet potato 0-6° good none > 6 0  cm sandy loam - < 5 0  cm not less <10%  stoney 5-5-6-5

clay loam (not than 75 cm
heavy clay)

Ginger 0-6° $ good none ridges good crumb
30 cm High peats - clays ridging avoid structure and 6-0-6-5

friability
Cabbages 0-6° good none on beds river alluvium avoid very good 5-4-5-9

with drains
betweem clay loam

Tobacco 0-6° moderate none > 5 0  cm avoid very < 5 0  cm avoid <  25% stoney 5-5-6-5
- good light soils and

heavy clays
Pineapple 0-6 t can stand > 2 5  cm all except deep peat > 5 0  cm no problem 5-0-6-0

good temporary coarse sands suitable if
flooding and heavy well humified

clays and drained
*Soil depth required can be obtained by ridging if natural soil depth is less than stated. $Up to 12° with conservation
tLime can be used to bring soil into required range if necessary.



promotion to headquarters. In fact the field officers we talked to usually enjoyed 
the challenge and contact in their jobs, but nevertheless felt isolated and faced 
with a nearly impossible task in trying to communicate to upwards of 1000 farmers, 
particularly when routine administration — crop returns, various reports, or the 
paperwork surrounding the 18 stages of each replanting grant for rubber — often 
took 50% of their time.

The SCAPA facilities are intended to have three main effects. First to structure 
extensionists’ work so that some less demanding functions — random inspection to 
ensure that progress is being correctly recorded, or that disease control is carried 
out — can be delegated to less trained staff (the scarcity of trained staff is an 
endemic problem). For budgetary reasons, the numbers of such untrained staff 
were sometimes being reduced drastically, even though, as men with practical 
farming experience, they were often very good at their jobs. If the effectiveness of 
their participation were to be demonstrable in tangible terms — e.g. by farmers’ 
action lists correctly being followed, or rising crop returns — this phasing out of a 
potentially valuable service could be re-evaluated. Secondly, the exception reports 
extracted from the farmers’ monthly review forms could point the extensionists 
at problem areas — this was generally welcomed. Studies by the Institute of Develop­
ment Studies in Nairobi for instance have shown that over 50% of the wealthy 
progressive farmers are visited and advised, against 3% of the poorer smallholders, 
the men with the problems who needed assistance. A similar pattern sometimes 
occurred in Malaysia. Again understandably, because the extensionist found closer 
rapport and interest among the progressive farmers. However, the progressives 
tend to be individualists, whose example is frequently rejected by the average 
smallholder for a variety of socio-economic reasons. Thus the effectiveness of 
extension visits in improving average standards was greatly diminished.

Thirdly, the administrative workload should be reduced, since farmers and the 
computer system that analyses their returns can take on some of the routine 
reporting functions. This was attractive — both in Kenya and Malaysia successful 
extension is increasingly engulfed in necessary paperwork, to the extent that 
RISDA in Malaysia required one clerical worker per extensionist even at local 
levels.

7 Agricultural input supplies and services

Returns in developing countries from the use of agricultural inputs tend to be 
much higher than from the use of equivalent quantities on the relatively jaded 
soils of developed countries, soils which are, for example, usually further up the 
slope of diminishing returns per unit of fertiliser. However, the logistics of input 
supply — forecasting, distribution and payment -  are extremely difficult for 
large numbers of small farms.5

The relevant SCAPA facilities provide for:

(a) long-term forecasts, based on the aggregation of the precise require­
ments embedded in the action lists for each farm
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(b) short-term confirmation by the farmers that the embedded orders still 
apply

(c) scheduling (from manually input vehicle schedules) of delivery arrange­
ments

(d) recording and accounting for receipt.

In Kenya and Malaysia, satisfaction of farmers’ input requirements was given 
high priority and was closely monitored. Nevertheless, problems occurred. Most 
notably, arabica coffee requires spraying at 3-weekly intervals during the rains 
with a very costly fungicide, benlate, to prevent coffee-berry disease. Over 50% of 
farmers had been unable, through shortages, to apply the full series of sprays, 
usually achieving less than half the cycle. The resultant disease cost was, for a 
single district, a loss of at least £1 million in potential production. The problem 
stems from the original forecasts, which are derived from subjective judgements 
for each factory (factories store and supply inputs to the farmers) of the area 
under cultivation, and the historical pattern of demand by the farmers in the 
area.

The key variables — the farmers’ intentions for the future — were necessarily 
unknown, while the historical demand pattern was suspect, since in previous years 
local rumours of shortage had caused spurts in buying and hoarding and hence 
artificial shortages. It seemed therefore that the precise knowledge of each farmer’s 
intention as recorded in his action list, and monitoring its satisfaction, could be 
highly effective. So also could the normal procedures of computerised stock control 
— monitoring stock-outs and controlling re-order levels and quantities. These last 
need to be varied by season and area; here the manual system, which prescribed 
standard levels, fell down and was not used.

8 Credit assessment and control

Developing agricultural technology frequently demands credit for seeds, fertilisers, 
equipment and buildings, but the cost of administering large numbers of small loans 
to the small farm sector is high, defaults are often excessive, and it has been esti­
mated that less than 50% of the funds provided are spent on the purpose intended.6.7

The SCAPA proposals involve assessment of a farmer’s creditworthiness and require­
ments by reference to his farm profile; the credit is subsequently meted out in 
relation to his completion (reported and inspected) of specific production activities 
in his action list.

In Kenya, the general problems described above had led to a tight and effective 
system, whereby farmers could acquire credit for input purchases up to two- 
thirds of their output, averaged over the preceding three years. There was in fact no 
bar to credit for the successful farmers, but equally no route in for the poor farmer 
who wanted to enter production, but had no previous record of production achieve­
ment to justify credit. SCAPA proposals would assist in the latter case, because the 
door could be opened to poorer farmers with reduced risk to the lender, since 
expenditure and achievement are monitored.
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RISDA in Malaysia is funded from a levy on rubber sales, and allocates part of this 
levy as credit for replanting or new-planting grants. A farmer receives his grant in 
stage payments, each stage in the planting cycle being inspected. Here we concluded 
that the SCAPA procedures could be used in place of the existing effective but 
lengthy manual procedures—in another country, a backlog of two to three years is 
common—and also to control other loans, where formal control is less well defined. 
This summary sounds somewhat clinical; the problem of credit release and control 
is central to development, as is the release of funds, which can be penned up behind 
barriers of information and decision.

9 Marketing

SCAPA facilities provide for each farm the recording on OMR forms and subse­
quent accounting for produce sales in terms of quantity and quality.

Manual procedures were followed in Kenya. Complicated calculations were required 
to deduct credits, apportion a variety of charges and quality bonuses averaged for 
each factory, for large numbers of transactions—reflecting the activities of 40,000 
growers over three months. Carried out manually, the system imposed a clerical 
nightmare similar to a prolonged year-end bank audit, with teams of clerks, drawn 
in from the factories, computing and checking alternately, working unpaid overtime 
when reconciliations failed, or when mechanical hand calculators went wrong. (The 
chief accountant strongly advocated computerisation). The best organised districts 
achieved this reconciliation and disbursement to farmers in about a fortnight, a 
remarkable achievement, but in other cases the delay in payment reached three 
months or more. Significantly, all the data needed to produce farm accounts, 
enabling a valuable analysis of profitability for each farm, are recorded. However, 
under a manual system, restructuring this data to provide such analyses (a key to 
effective farm management)® is in effect impossible because of the volume involved. 
The relevance of such analyses in feedback to management, research, extension and 
market forecasting for processing, storage and transport planning has already been 
mentioned.

In Malaysia marketing is not under the integrated control which is essential in 
Kenya for coffee, but most sales of rubber occur at RISDA’s group processing 
centres, and are recorded on an individual-farm basis, so that similar analyses and 
feedback are feasible. The broader planning aspects of marketing, as opposed to 
straight sales recording, were also relevant because RISDA places great emphasis on 
mixed cropping and diversification, which can only succeed if production output 
and market demand are in reasonable balance. Regular feedback on production 
activities during the growing season can help to achieve such a balance. Without 
such reports the market-development staff were in a very exposed situation.

Imaginative attempts to introduce new and potentially valuable crops could be 
hamstrung because either shortfalls or surpluses could deflate confidence among 
both producers and buyers.
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10 Project management

‘The way ahead will also depend on bold innovative projects which will depend on 
creating and quickly responding to suitable opportunities as and when they 
appear’.lO Local initiatives on these lines are in particular a strong feature of 
RISDA’s policy, to exploit the potential challenge and attrractiveness of rural life.

A wide range of group projects cover, for example, crop diversification, animal 
husbandry, fish farming, irrigation, land development, local shops, rural industries 
and community welfare. There is, however, an inevitable risk that well meant but 
inadequately researched or managed local schemes could cause severe hardship. 
SCAPA facilities might provide a framework under which such schemes are evalua­
ted, supported and monitored.

11 Computing aspects

The main requirements are for high-volume/low-cost throughput, ease of operation, 
a straightforward and easily understood user image, capacity to handle different 
natural languages, and data protection to ensure privacy for sensitive personal data. 
In addition, database management, a variety of applications software, mathematical 
and statistical packages and high-level language compilers are needed—for example, 
to support the planning activity, where a certain amount of simulation and model­
ling are involved. Remote job entry is an immediate requirement, with full commu­
nications use as an extension. The target machine is a 2903, operating primarily in 
batch mode, located at District or State headquarters.

Details of the procedures and field implementation costs are given in the project 
working papers. The cost-benefit ratio is about 1:7, based on assumptions which 
seem typical but require evaluation in the light of particular proposed applications.

12 Management aspects and conclusion

Computational facilities have been widely exploited for agricultural planning for 
developing countries^ covering systems simulation, mathematical modelling and 
econometric models. However, the facilities have only been invoked in a partial, 
piecemeal fashion in the areas of production, supply, marketing and management. 
This is probably partly because computers are not seen as ‘intermediate’ techno­
logy, but as tools of affluence, and are therefore held to be inappropriate. Much as 
tractors are often disfavoured because each tractor may supplant 40 labourers, 
computers are feared to displace clerical staff. However, if the very convincing 
argument is accepted that the small-farm sector holds the key to increased world 
agricultural production—an incremental rate of 5% per year is quite feasible3— 
then the logistical and management support of the small farmer involves, as indica­
ted earlier, an information-handling requirement which clerical methods cannot 
meet. Viable advice has to be propagated and timely supplies assured, and, in 
particular, feedback on performance and problems is needed on a large scale. 
Managing these activities on a large farm or estate basis is difficult, but doing so for 
a large population of independent smallholders is far more complex.
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The SCAPA facilities provide some answers in a variety of contexts. Specific areas 
like the planning and supply of inputs, the control of credit and sales recording and 
analysis clearly present an immediate requirement. These are areas where current 
manual procedures are a constraint. Over a million transactions for instance are 
already recorded manually for one district, Murang’a, per year; if held on computer 
files this data could be readily abstracted and analysed to  give control and feedback 
from farm level upwards. In other areas the system facilities have greater potential 
benefit, notably in the communication and acceptance of new techniques and in 
monitoring their use, involving direct interaction between farmers and the systems. 
These facilities require evaluation for acceptability and cost benefit in pilot studies 
during the next phase of implementation.

References
1 GARBOUCHEV, I J  , and SADOVSKI, N.: ‘An application of a soil information system’. 

Poushkarov Institute of Soil Science, Sofia, 1975
2 GATITH, G.M. KABAARA, A.M., and MICHORI, K.P.: ‘Standard recommendations for 

coffee fertilisers, 1976. Coffee Research Foundation, Ruiru, Kenya
3 LEAN, G.: ‘Rich world poor world’ (Allen & Unwin, 1978), p. 43
4 CHAMBERS, R., and BELLSHAW, D.: ‘Managing rural development’. IDS Discussion 

Paper 15, Section 3.13, University of Sussex, 1973
5 ELLIS, T.F.: ‘Report for western region coffee sector, 1972’. Ministry of Agriculture, 

Uganda.
6 BESSELL, J.E., and ILES, I.M.: ‘Farmer operating efficiency and credit worthiness’. 

Nottingham University, 1976
7 HUNT, D.M.: "Credit for agricultural development’ (Third World Publications, 1974) 

p. 135
8 UPTON, M.: ‘Farm management in Africa’ (Oxford University Press, 1973), p.8
9 BIGGS, S.D., SWONG CHONG YUAN and LANGHAM, M.R.: ‘Agricultural sector 

analysis’ (Singapore University Press, 1977)
10 MINISTRY OF OVERSEAS DEVELOPMENT:‘More help for the poorest’, Cmnd. 6270, 

HMSO, p.20
11 MOHAMMED NOR and CHONG KWONG YUAN: ‘Proceedings of RR1M Planters 

Conference 1973’. RISDA, Kuala Lumpur, p. 377
12 BENOR, D. and HARRISON, J.Q.: ‘Agricultural extension’. World Bank, 1977
13 UMA LELE:‘Design for rural development’ (John’s Hopkins University Press. 1977), 

pp. 70 and 102

ICL TECHNICAL JOURNAL MAY 1979 115



Software and algorithms forthe 
Distributed-Array Processors

R.W. Gostick
Senior Consultant, DAP Marketing Unit, ICL, London 

Abstract

The ICL distributed-array processor, (DAP) is a radical departure from 
conventional serial computer architectures, providing new opportunites 
for system and language design. This paper describes briefly the inter­
action of the DAP with a standard 2900 series computer, and indicates 
the ways in which Fortran has been enhanced to cater for parallel-pro­
cessing capabilities. Examples of algorithms using the new system in 
widely differing applications are given.

1 Introduction

The technology that has made the microprocessor and pocket calculator possible 
also makes it feasible to consider building powerful computers out of many identical 
elementary processors. The distributed-array processor!^ (DAP) is made by 
embedding a matrix of elementary processing elements within the store of a standard 
computer and is the most advanced of these new computer systems. As a direct 
result of their nature processor arrays have the capability of simultaneously pro­
ducing many identical results and sometimes, when compared with single processor 
systems, require different techniques for their exploitation. A new generation of 
programming tools needs to be developed to allow processor arrays to be pro­
grammed and this paper discusses DAP-Fortran, the language proposed for scientific 
and technical programming for the DAP.3>4 The paper deals with only a few of the 
novel features of DAP-Fortran. Its aim is to give the general flavour of the language, 
and an indication of methods of ‘parallel thinking’.

There are many high-level languages and equally many fiercely held opinions as 
to their relative merits. It is only a very brave and foolhardy worker who dares to 
suggest a new language and the suggestion will only survive if it contains multiple 
benefits for the end users. Languages like Fortran and Algol were invented in the 
days when computers were only capable of obeying a single stream of elementary 
operations (arithmetic, boolean or control) and so not surprisingly contain very 
few defined operations of greater complexity than these simple operations.

As processor arrays by their very nature perform many repetitions of the same 
operations it is desirable that a programming language for processor arrays con­
tain facilities for specifying easily such automatic repetitions. The fundamental 
question is whether to try to specify a completely new language or try to modify
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and extend an existing language. A quick investigation of the potential users of 
processor arrays shows that the community is 99*9% of the opinion that ‘Fortran 
is the only natural language for programming computers’. It should be emphasised 
that this is the view of those workers who actually use computers for very large 
scale computing. The view of the language theoreticians — who apparently never 
seem to do very large computations — is 99*9% ‘Fortan is awful, language X is 
much better’. Unfortunately, there is no agreement as to X, the actual name chang­
ing about as rapidly as the fashionable height of a hem line.

Putting the users’ opinions first, a dialect of Fortran has been proposed which it is 
believed contains sufficient new facilities to allow greater ease of programming 
while leaving freedom for the compiler writer to alter the implementation to suit 
the characteristics of processor arrays.

2 Basic concepts

2.1 Hardware structure

Although the DAP shares the name ‘array processor’ with many other current 
computers, there are many uses of the term. In the general sense an array pro­
cessor may be considered simply as a machine that processes arrays. In this sense, 
of course, any modem computer such as the 2980 may be considered to be an 
array-processing machine. A more widely accepted definition is that the machine 
should have special hardware facilities for array processing, such as a vector instruc­
tion set or vector registers. Indeed the terms vector and array are freely inter­
changed. The DAP is in many ways a ‘true’ array processor, since not only does 
it process arrays but it is actually a physical array of processors.

The basic hardware of the DAP consists of an array of identical processors, known 
as processing elements (PEs). A pilot machine with 32 x 32 (ie. 1024) processors 
has been operating in ICL’s Research and Advanced Development Centre since 
1976. The first production model with 64 x 64 (4096) processors will be delivered 
to Queen Mary College, London University, during 1979. Larger arrays, particularly 
128 x 128 (16384 processors), are already being considered. In this paper N refers 
to the basic dimension of an N x N DAP. Each processing element is in fact much 
simpler than either the chip in a pocket calculator or a typical modem micro­
processor. As with most microprocessors, the PE has a store (a single 4kbit store 
chip) and a processing unit, but the processing unit has very few hardware facilities. 
It may be considered as having merely three registers and a set of simple instruct­
ions which operate on the three registers and the store. (Fig. 1) Of particular 
importance is the A-register, known as the Activity register. Certain instructions 
may be made conditional on the setting of this register in each processor, hence 
providing a measure of local autonomy to the processors in the array. By using 
this facility, through the use of the DAP-Fortran language, most of the conditional 
operations common in many physical processes may be handled naturally and 
efficiently, with no expensive tests and jumps within the code. There is no equiva­
lent to the normal functions of instruction fetching and decoding, address cal­
culations, interrupt handling etc. All these are handled by a central unit called 
the master control unit (MCU).
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Fig. 1 Simplified processing element

The master control unit has two significant roles, one as a co-ordinator and one as 
a processor performing certain centralised functions. In its primary role as a co­
ordinator, the MCU has the tasks of instruction fetch, decoding and modifying 
via MCU registers. In this respect it acts much like a normal central processor, but 
in one sense the similarity ends there, since most of the instructions decoded by 
the MCU are not in fact ‘obeyed’ by the MCU itself. The MCU simply sends, or 
broadcasts, the decoded instructions to the array of processors which then obey 
the instruction simultaneously, acting on their locally held data. Thus the DAP 
may be regarded as a single-instruction-stream multiple-data-stream machine
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(SIMD), since one instruction is obeyed in parallel by many independant pro­
cessors.

The secondary, but also very important, function of the MCU is as a true centralised 
processor. While the array of processors works efficiently on large sets of data in 
arrays, there are still some simple functions that may only be performed in a scalar 
fashion. These functions, such as the control of DO loop variables in Fortran, 
are performed within the MCU itself. The MCU also has powerful facilities for 
global actions on the data held in the PE store, such as finding a maximum value.

The term ‘distributed’ in distributed-array processor refers to the unique way in 
which the DAP interfaces to a supporting, or host, 2900 computer. Most fast- 
array or vector processors are attached to a host machine as a back-end processor 
As such they are connected to the host by a channel, in a similar way to a disc 
unit. The DAP is built into a system by distributing its processing elements within 
a store module of the 2900, allocating one processor to each semiconductor 
store chip in the module. This means that once the data has been loaded into 
the store, using all the conventional 2900 facilities, it may be processed either 
by the 2900 or by the DAP. There is no overhead associated with ‘loading’ the 
DAP as there is with a back-end processor. Fig. 2a shows the DAP as part of a 
typical 2900 configuration.

d i s t r i b u t e d  a r r a y  p ro c e ss o r

con tro l le rs

Fig. 2a DAP as part of an ICL 2900 'host' computer

2.2 Software structure

Since the operating system can regard the DAP as normal main store, any applica­
tion which runs on the 2900, using any standard facilities, will run on the 2900/DAP 
configuration. Such an application would not, however, notice the existence of the 
DAP and hence would not benefit. To make use of the DAP suitable parts of the
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selection in that dimension. Thus A(3 „2) selects the third row of the second matrix 
of the set, and A(,3,2) selects the third column, while A(„2) selects the entire 
second matrix. Note that a subscript of the form B(,3) is syntactically correct 
either to select a column from a matrix or a vector from a vector set—a very 
desirable consequence, since both items are logically the same in the programmer’s 
view. The previous examples were, of course, simple cases where each array element 
only interacted with other array elements at the same position (ie. with the same 
Fortran subscript). There are many cases where this simple relationship will not be 
true, and DAP-Fortran has new indexing techniques to handle them.

Consider, for example, a simple physics problem, which is to solve Laplace’s equa­
tion on an N x N element grid. One standard technique uses an iterative procedure, 
where at each iteration the value at any grid point is replaced by the average of the 
four neighbouring values. This could be expressed in Fortran by:

DO 1 I= 1 ,N  
DO 1 J = 1JN

1 X(I J )  = (Y(I + 1, J) + Y(I -  1 J) + Y (U  + 1) + Y(I,J - 1))/4-0

Note, however, that this would fail when I or J  became 1 or N, at the edges of the 
array, since the index calculations would try to access over the edges. The user has 
to be careful about the range of the index variables in this situation, and will 
normally have to write special code to handle the edge effects.

In DAP-Fortran the problem is expressed using a concise notation where the 
explicit index variables are omitted giving:

X = (Y(+,) + Y (-,) + Y(,+) + Y(,-))/4=0

The form Y(+,) is termed shift indexing and is used to access the neighbours of each 
point in the array. Longer shifts, corresponding to the Fortran expressions of the 
form Y(I + 4, J + 3), are performed by explicit functions which are considered 
below.

As with the Fortran solution the DAP-Fortran code for the mesh problem has 
accessed the complete array, but unlike the Fortran case the conditions at the 
edges are defined explicitly by the programmer. The programmer is able to tell the 
DAP, by means of a GEOMETRY statement, how he wishes the edges to be 
handled. In the most usual circumstances one of two edge conditions will hold. The 
first condition, known as plane boundaries, assumes that outside the bounds of the 
array is a world of zero values, so that accesses outside the array produce zero 
results. The second condition, known as cyclic boundaries, assumes that an edge of 
the array is connected directly to the opposite edge. By combining these two 
geometries in the north-south and east-west directions the DAP can be made to 
resemble a plane, a cylinder in either of two orientations, or a torus (doughnut). 
Other boundary conditions, such as continuity of the first derivative or reflective 
boundaries can be handled using some of the masking techniques shown below.

The longer-distance shifts are handled by function calls, with a simple naming
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convention. As an example, the function SHWC performs a SHift to the West with 
Cyclic geometry. For shifting in two dimensions the functions may be combined, 
and so, in plane geometry,

Ml = SHNP(SHEP(M,3),4)

performs first a shift of array M by three positions east followed by four positions 
north, with zero fill-in at the edges. This is the equivalent of the Fortran code:

DO 1 I = 1 ,N -4  
DO 1 J = 4, N 

1 M l(U ) = M(I + 4 , J - 3 )

Note that the Fortran equivalent would be more complex if a cyclic shift were 
required.

Many common algorithms, such as the fast Fourier transform, make considerable 
use of these shift routines, although it is usually found that only a small proportion 
of the overall time is actually taken performing the shifts on the DAP.

3.3 Conditional operations: masks, logical arrays

All the examples above have assumed that the same activity is being carried out at 
every point in the array. For many practical applications this will not be the case, 
and Fortran users have to make use of the ubiquitous IF statement. Consider again 
the quadratic equation given previously,

ax2 + bx + c = 0

which has to be solved for a set of values of the coefficients a, b and c. If only the 
largest real root, if any, is required at each set of coefficients, the programmer 
first has to test whether the discriminant b2 -  4ac is positive before performing the 
square root operation. This will typically be written in Fortran as:

DO 11=  1,N 
DO 1 J = 1 
X(I,J) = -999
DISC = B(I,J)**2 -  4-0*A(I,J)*C(I,J)
IF(DISC.GE.0.0)X(I,J) = (-B (U ) + SQRT(DISC»/2-0*A(I,J))
1 CONTINUE

The line X(I,J) = -999  serves as an indicator for unset, or imaginary, results. 
Although this is a simple piece of code it will work only slowly on a conventional 
or vector computer, since each time the IF statement is reached the computer has 
to test and branch to alternate sets of code. This is particularly inefficient on a 
pipelined machine, which works best when there are no tests in the code.

On the DAP the hardware works in parallel on all elements of the array, except 
where it is turned off by the programmer effectively setting the activity register, 
thus permitting simple implementation of conditional problems using a technique
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X = -999
DISC = B**2 -  4*0*A*C
X(DISC.GE.O.O) = ( - B + SQRT(DISC))/(2-0*A)

where all variables are real matrices.

The expression DISC.GE.0.0. is a logical or boolean expression which returns a 
matrix of values which are TRUE only where the corresponding value of the 
discriminant is nonnegative. This matrix of boolean values is then used as a mask 
in the subsequent assignment, so that only those values of X where the appropriate 
value it TRUE will be changed. This provides a very natural way of writing complex 
conditional programs while using the parallel nature of the DAP.

One extension of the use of the masking technique is the ability to create and 
manipulate the logical masks. On the DAP logical variables may be stored as one bit 
per variable, which is of course the minimum possible storage for a logical item. We 
can therefore create and store logical arrays using a small percentage of the DAP 
store. The DAP hardware can also manipulate logical items efficiently, for instance 
a logical AND of two logical N x N matrices can be performed in a time of the 
order of 1 us.

In the above example we can store the positions of the real roots by declaring a 
logical matrix REALROOTS and using the basic Fortran type logical expressions, 
giving:

REALROOTS = DISC.GE.0.0 
X(REALROOTS) =(-B + SQRT(DISC))/(2-0*A)

The use of logical variables is further extended by many of the basic functions 
provided in DAP-Fortran. As well as the standard mathematical functions such as 
SQRT, which have been extended to use array arguments, DAP-Fortran provides a 
wide range of functions for creating arrays from scalars, extracting scalars from 
arrays and performing global tests on arrays.

The MAXV function finds the maximum value from a vector or matrix, using an 
efficient parallel algorithm which will be shown later. This function may take 
either one array argument, containing the values to be compared, or a second argu­
ment which may be used as a mask. Thus to find the maximum root of the earlier 
equation, we can simply write:

MAXIMUMROOT = MAXV(X,REALROOTS)

Another function which is used with logical variables is the ANY function. This 
produces a single TRUE value if and only if at least one of the values of its array 
argument is TRUE, corresponding to the logical OR of all the values. This could 
be used in the example to avoid performing the square root calculation if there are 
in fact no real roots. We can write:

IF (AN Y(REALROOTS)) X(REALROOTS) = (-B + SQRT(DISC))/(2-0*A)

known as mask indexing. We can write the above problem in DAP-Fortran as:
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Note that this IF statement is used on a global basis, whereas in the Fortran case it 
is used element-by-element.

The standard functions may also be used to set up logical arrays. The functions 
ROWS and COLS return logical matrices with a set of rows or columns set TRUE, 
Thus to declare a matrix indicating just the interior of a N x N array we can write:

INTERIOR = ROWS(2,N-l). AND . COLS(2,N-l)

This type of construction is used in many processes where different conditions 
apply inside and outside the boundary of a region. Such a problem can be expressed 
as:

X(INTERIOR) = interior function 
X(.NOT.INTERIOR) = exterior function

This has naturally been only a brief overview of DAP-Fortran, since as with any 
language the full power can only be appreciated by actual use. In the final section 
of this paper we shall consider some actual examples of DAP-Fortran, but before 
that there is one important aspect to be considered, that of diagnostics.

3.4 Diagnostics

The 2900 series uses a language-independant diagnostic system known as the object 
program error handler (OPEH),5 which provides diagnostic reports using the names 
and formats actually used by the programmer in his high-level language program. A 
typical report is shown in Fig. 3, where the user has asked for local scalar values to 
be printed out for each active routine in the calling sequence. Various options exist 
for the level of information provided and the types of errors giving rise to reports. 
The important point for the user is that there is no run time overhead when there 
are no errors, since the diagnostic information merely resides in the virtual store 
until needed. It is a relatively simple task to interface DAP-Fortran to  this system, 
requiring only that the compiler produces diagnostic records along v ith the DAP 
code.

With an array processor, such as the DAP, new diagnostic facilities are often 
required to allow for errors occurring in several array elements at one time, or 
indeed in array elements where the results would not be required, for instance in 
conditional expressions. In DAP-Fortran the programmer may allocate two vectors 
and two matrices for use in diagnostic control. One array of each mode controls 
the reporting of errors, while the other is used to indicate where errors have 
occurred. By using these arrays in conjunction with error-classification specifica­
tions the user can either control all diagnosis and recovery within the program or 
leave the total control to the system. A typical case where the user might require 
total control is where the nature of his problem is such that at some stage overflow 
will occur. When this happens the values in the problem are rescaled before con­
tinuing. Using the system, the user may check for overflow at any stage by a 
statement of the form,

IF(ANY(OVERFLOW))CALL RESCALE

where the logical matrix OVERFLOW will have been set if errors have occurred in 
any array element.
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OPEH REPORT IDENTIFY 1

OPEH MK 203 ON 1 9 7 7 / 1 0 / 2 0  AT 2 3 : 3 4 : 5 5

INTERRUPT ERROR: - 5 0 0  
DESCRIPTION: ZERO DIVIDE

PROGRAM AT LINE: 533 (OFFSET: 4 1 6 )
IN PROCEDURE:FOURTL 
OF MODULE:FOURTL

SUMMARY OF ROUTE LEADING TO THE ERROR (REVERSE ORDER)

FORTRAN SUBPROGRAM FOURTL(MODULE FOURTL) AT LINE 533
FORTRAN SUBPROGRAM FOR12S(MODULE FOR12S) AT LINE 421
FORTRAN MAIN PROGRAM FFT(MODULE FFT) AT LINE 45

END OF ROUTE SUMMARY

REPORT OF CURRENT STATE OF PROGRAM

SUBPROGRAM FOURTL(MODULE FOURTL) AT LINE 533 
= ° IDIM -  1
= t  ISYM = 0
= “ NCURR = 0

“ NFCNT = 0
“ NREM = 1

FORTRAN SUBPROGRAM FOR12S(MODULE FOR12S) AT LINE 421
I = 1 ISGN IK * 0 N = 32NSTRNS * 1 NTYPE = 0
FORTRAN MAIN PROGRAM FFT(MODULE FFT) AT LINE 45
A = 0 . 0 AA 3 . 5 3 5 5 3 4

I FORM 0
JDIM = 1
NDIM = 1
NFSYM = 0
NTOT 0

J = 1
NCLBT = 0
N1 = 33

CN = oooo

Fig. 3 Typical 2900 high level diagnostic report

4 Programming Examples

FORTRAN
ICENT
ISIGN
N
NFACT
NPREV
NWORK

The four examples below show differing aspects of the DAP in use: a typical 
arithmetic operation, a ‘low-level’ operation, a nonumeric application and an 
algorithm for sorting. The Appendix gives the methods used in the algorithms for 
computing standard numerical functions such as square root and logarithm.

4.1 Matrix multiplication

This is an important and time-consuming routine in many applications.

To multiply two N x N matrices, most programmers use a simple translation of the 
mathematical formula,

Cjj = ^ ik  ®kj
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which becomes in Fortran:

DO 1 I = 1 ,N 
DO 1 J =  1,N 
DO 1 K = 1 ,N

1 C(I,J) = C (U ) + A(I,K)*B(K,J)

This gives the standard ‘inner-product’ technique, where at each step a row of A 
and a column of B are multiplied together element by element and summed into 
the appropriate element of C. We could perform this process in DAP-Fortran by 
using the SUM function, giving:

DO 1 1 = 1 ,N 
DO 1 J = 1,N

1 C (U )=  SUM(A(I,)*B(J»

This is still not a highly parallel solution, using at most an N element vector multi­
plication. A small amount of lateral thinking is required. If we look at the original 
Fortran code we can see that it will work with the DO loops in any order. Let us 
move the inside K loop to  the outside. Now we have:

DO 1 K = 1 ,N 
DO 1 1 = 1 ,N 
DO 1 J = 1 ,N

1 (C(I,J) = C(I,J) + A(I,K)*B(K,J)

We can see that in the inner loops we are keeping K constant for all I and J. Consi­
der the term A(I,K)*B(K,J) for all I and J. A(I,K) for all I gives the Kth column of 
A, and similarly B(KJ) gives the Kth row of B. We are then multiplying every 
element in a column of A by every element in a row of B. This is not a simple 
vector multiplication, since we are not just multiplying corresponding elements, as 
we did for the original matrix multiplication. It is, in fact, an outer product of two 
vectors, and is identical to an element-by-element multiplication of two matrices 
formed from the row and column, respectively. In DAP-Fortran such matrices can 
be formed using the standard MATR and MATC functions. The complete problem 
can now be coded as:

C = 0-0 /
DO 1 K = 1N /

1 C = C + MATC(A(,K))*MATR(B(K,» 

which uses the full N x N parallelism of the DAP.

4.2 Finding the maximum element o f  an array

As noted earlier, logical variables in DAP-Fortran are one bit in length, and thus 
provide a powerful technique for bit manipulation of numbers. This ability is used 
here when finding maximum elements of vectors and matrices. This is of particular 
importance in matrix algebra for determining pivot elements of matrices.
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The traditional way to find the maximum number in a list is to take the first value, 
compare it to successive elements in the list until a larger element is found. A 
simple analogy for the DAP algorithm is that of wanting to find out who in a room 
full of people has the most money in his pocket. Assume two limitations - we can 
only ask simple yes/no questions, and nobody has as much as say £20. We could 
start by asking all those people with more than £10 to indicate. If one or more 
people do indicate, tell the rest to leave the room. Now ask who has more than £15, 
and repeat the process. If at any stage nobody has more than the currently asked 
value, say £15, ignore that value and proceed to the next lower level, ie. £12.50. 
Using this ‘binary-chop’ method we shall eventually end up with the largest value 
(held by one or more people).

In computers we are dealing with binary words typically of 32 bits, and an equiva­
lent of the binary-chop procedure is simply to move down the bits of a word from 
the most significant bit.

In DAP-Fortran we can equivalence a set of 32 logical matrices onto successive bits 
of a matrix of 32-bit real or integer words (see Section 3.2). For both real and 
integer formats the first bit is effectively the sign bit, with successive bits in 
descending order of significance. The DAP-Fortran code for finding the maximum 
is shown below. For simplicity only the case where some or all of the numbers are 
positive is considered. SIGNS, MAXP and MAXIMUM POSITION are all logical 
matrices; BITS is a set of 32 logical matrices; NUMBERS is a real or integer matrix; 
all other variables are scalars.

EQUIVALENCE (NUMBERS, BITS (,,1))

C Successive logical matrices o f  the set BITS map onto successive bits o f  the 
C word array NUMBERS

IF (ALL(SIGNS)) ERROR 100

C Only deal with one or more positive numbers, ie. not all negative numbers

MAXP = :TRUE.

C MAXP will hold the position o f  the current maximum value candidates 

DO 11 = 2,32

C A t each stage only alter MAXP i f  one o f  the current candidates has the next 
C significant bit set

1 IF (ANY(BITS(„I).AND.MAXP))MAXP = MAXP. AND.BITS(„I)

C Extract the maximum value ( there may be more than one identical value)

MAXIMUM POSITION = MAXP
MAXIMUM VALUE = NUMBERS(FRST(MAXP))
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The ERROR statement is used by the programmer to signal error codes to the high- 
level diagnostic system or to a specially written diagnostic routine.

The code can be used within a function to return either the maximum value, which 
is a scalar, or the maximum element position which is a logical matrix. Note that 
this code is given by way of illustration only; DAP-Fortran provides this facility in 
an intrinsic function.

4.3 Route-finding algorithm

In such tasks as network analysis, traffic planning and even the travelling-salesman 
problem, one prime requirement is to find the shortest route, if any, between two 
points in a network. Consider the network shown in Fig. 4. Conventionally this 
may be represented by giving lists showing each node that may be reached directly 
from a given node. On the DAP such a network may be represented more simply 
and directly using a logical matrix. This has the advantages on the DAP both of 
compact storage and rapid manipulation. Fig. 5a shows one comer of the connecti­
vity matrix representing the network of Fig. 4, where a 1 indicates that a connec­
tion is possible between the nodes in the row and column. The algorithm to trace 
through the network is basically very simple. At each step we will be at a certain 
node in the network. The nodes that may be reached on the next step are found 
in the column of the matrix for the current node. This new set of nodes may be 
used to repeat the cycle by taking all columns representing each new node. Since 
there will in general be several such columns, the algorithm considers merely the 
resultant nodes by combining all columns (a logical OR function). This results in 
one new column, and the cycle is repeated.

At each stage there are three further administrative tasks. First, of course, the nodes 
already encountered must be eliminated to avoid looping. Secondly, we must store 
the nodes that have been reached. Finally we must check whether we have indeed 
reached our destination.

The algorithm is coded very simply in DAP Fortran for a network of up to N nodes; 
for more than N the network must be partitioned.
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The logical matrix NETWORK contains the logical connectivity matrix at the start 
of the test. STEP is a logical vector which contains the nodes reached at the next 
step. STORE is a set of logical vectors which is used to save the path currently 
traced. STARTNODE and ENDNODE are integers which specify the starting and 
ending nodes.

l

1

2 1

3 1

4 l

2 3

1 1

1

4 5 6

1 1

1

5 1

6 1

Fig. 5a Section of matrix representation of Fig. 4

The DAP-Fortran code is thus:

1 =  1
NETWORK(STARTNODE,) = .FALSE.
STEP = NETWORK( , STARTNODE)

C Extract the nodes that can be reached from the starting node

1 IF(STEP(ENDNODE)) GO TO 10

C Check whether we have reached the end

NETWORK = NETWORK ,AND..NOT.MATC(STEP)

C Eliminate all nodes that have been selected by switching o f f  in those rows 
C corresponding to nodes already reached.
C MA TC forms a matrix with equal columns

STORE( X) = STEP

C Store current step

1 =  1 +  1
STEP = ORCOLS(NETWORKAND.MATR(STEP))

C Create a set o f  nodes that can be reached in the next step by combining the 
C vector o f  current nodes with the network and then combine the resulting 
C columns with the logical OR function
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GO TO 1

C Continue on next step 

10 CONTINUE

Although this sounds complex, an example based on the network of Fig. 4 indicates 
the working of the algorithm. Fig. 5b shows the values of the logical vector STEP 
at each iteration, from node 11 to node 23. At each iteration STEP contains all 
those nodes that can be reached from any of the currently reached nodes. Thus the 
first contains all nodes that can be reached directly from the start (ie. 3, 4 ,7 ,12 ,  
13, 14), the second contains all nodes not already reached which can be reached 
from any of the nodes in the first vector etc. The fifth vector has the end node 
(23) set, and the process ends.

It is obvious that the tree constructed in Fig. 5b has not provided a unique route. 
If the process is repeated in the opposite direction, a similar tree will be produced. 
These two trees are then intersected (a logical AND process) to eliminate all nodes 
not on a route. If more than one node exists in any row, a further sweep through 
selecting the first node in a row will produce a unique route.

Element Number
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 . . .  32 

Step 1 1 1 1  1 1 1

2 1 1  1 1 1 1  1 1 1

3 1 1 1

4 1 1

5 1 1 1

Fig. 5b STEP vector showing possible nodes along route

Notice that this algorithm uses no arithmetic and no indirect addressing. The 
majority of the operations are simple logical expressions, which are handled effi­
ciently by the low-level DAP hardware.

One further point of interest is that during the operation on a typical network the 
majority of file processing elements will be inactive. This should not, however, be 
taken to  mean that the DAP is consequently working inefficiently, since it is the 
execution time that is of prime importance, not absolute hardware utilisation.

4.4 Sorting

Sorting on DAP may be performed by many techniques, and the one shown below 
is one of the simplest, based on a Bubble sort technique. As with a Bubble sort on 
a conventional computer, the technique relies on comparing neighbouring values in 
an array. For n items, where n is less than N2 on an N x N DAP this technique will 
take at most n steps, compared with n2 steps on a conventional machine. The
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algorithm treats the DAP as a linear string of N2 items, using the appropriate DAP 
geometry, rather than an N x N array. Faster algorithms, based for instance on the 
Batcher sort,6 may easily be implemented, making use of the 2-dimensional 
connectivity of the DAP.

It should be realised that, for many applications on DAP, sorting is unnecessary or 
inappropriate, since the associative nature of the DAP permits rapid selection of 
particular items in a data set.

The program is as follows:

LOGICAL MASK( ,) ,  CHANGE( , )
REAL TEMP ( ,) , VALUE( , )

MASK= ALTC(1).LNEQ.ALTR(1)

MASK = ALTR(1)

C Set up mask for alternate odd-even pairs o f  values 
C ALTR produces alternate rows TRUE

1 CHANGE = VALUE .LT.VALUE(+)

C Start main iteration. Compare each number with its neighbour in descending 
order

IF(.NOT.ANY(CHANGE)) RETURN

C Terminate i f  no further interchanges required

CHANGE = CHANGE.AND .MASK 
CHANGE = CHANGE.OR.CHANGE(-)

C Only swap on successive odd-even pairs on alternate steps

VALUE(CHANGE) = MERGE(VALUE(+), VALUE(-), MASK)

C Merge original with swapped pairs as defined by CHANGE, using high-level 
C MERGE function to perform the swapping

MASK = .NOT .MASK 
GO TO 1

C Start next iteration

5 Conclusion

The DAP, initially conceived as a machine for weather forecasting, provides power­
ful processing capability for a much wider range of applications than the traditional 
fast floating-point (vector) processors. The content addressable nature of the
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processors allows the full performance of the DAP to be achieved using the high- 
level DAP-Fortran language, without recourse to expensive assembly 4anguage pro­
gramming. Integration of the processors into the store of an advanced general-purpose 
computer reduces the required design effort and production costs while providing 
full user facilities.
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Appendix
DAP Algorithms for standard numerical functions

1 Introduction
Any system which may have to deal with even the most modest amount of scienti­
fic computation must provide standard functions such as square root, logarithm, 
exponential and sine. Many algorithms are available for these based either on 
orthogonal polynomials or on iterative processes such as Newton-Raphson; these 
can be very powerful and efficient on a serial machine but are not ideal on the 
DAP as a consequence of the extreme simplicity and bit-level operation of the PEs. 
The algorithms which we have used, far from being penalised by these properties, 
actually take advantage of them; and as they produce their results one bit at a time 
they have the additional advantage of allowing one to specify and control the 
precision of the calculation easily and exactly. The methods are well known in the 
sense that accounts of them have been published in various places; useful references 
are Chenl and Egbert2. The following notes give brief descriptions of those used on 
the DAP for square root, logarithm and sine/cosine; they are intended simply to 
show the principles of the algorithms and give neither programming details nor 
indications of refinements which are included in the actual programs to improve the 
efficiency. A full acount will be written later.

2 Square Root
Given a number N  we want to find x  such that x 2 = N  to the precision to which we 
have decided to work. Suppose we have found the first n bits of x , giving us an 
n-bit number x n which approximates x  to this number of bits and satisfied x 2n < N. 
We want to find the next approximation x n + l , which will have the same first n bits
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and the («+l)th bit bn+1 such that (xn + bn+1 )2 < N . If rn is the error at stage n 
then

rn =N -  xfj

so rn+i ~ N ~  (½  +bn+i) ~ rn ~ (2½  + ^n+i) ^n+i 

Then bn+1 = 1 if this gives rn+1 > 0 ,  otherwise bn+l = 0.

Thus we can start with a first approximation x 0 = 0 and build up the root digit by 
digit. If at any stage we find rn = 0 the corresponding xn is the exact root and we 
terminate there.

No arithmetic is needed in forming the error terms. 2xn is xn shifted one place to 
the left, producing a 0 at the right; addition of bn+l is then done by putting a 1 at 
the right of this zero and the final multiplication by bn+l is a shift of «+l places 
to the right. When the program is worked out in detail it is found that the number 
of operations required is about half that for a division to the same number of bits.

3 Logarithm
Given x  we want to find In x  to some stated number of bits, where as usual In 
means the logarithm to base e. If we can find a set of constants alt a2 , ■ ■ ■ -Oj,. . . ,  
such that

x ax a2 . . . .  an = 1 to the stated precision, then 
ln x  = - l n u 1 - l n a 2 " . . . - I n  an

We can achieve this by taking a/ = 1 + 2 _l and storing a table of In  aj. Multiplication 
by any a,- then requires only a shift and an add. Suppose we have got to the nth 
stage, the last aj used being an . To go to the next stage we multiply the current 
product by an+1 and add -  In an+l (looked up in the stored table) to the current 
sum if and only if the new product remains less than 1; otherwise we ignore an+l 
and continue with an+2.

As all the ajs are greater than 1 we must first scale x  if necessary to bring it below 
1; the standard arrangement is to scale (by shifting) so that we start the process 
with a value between ½ and 1. The final stages can be truncated: if at stage n we 
have

xax a2 . . . .  an = 1 -  6 where 5 is small enough for 62 to be neglected to the
precision to which we are working; then since In (1 -  6) = -5  ~'M 2 . . .  we have

ln x  = - l n a 1 - l n a 2 -  . . . -  In an -5

Exp (x) is found by an analogous process in which numbers from the sequence 
aj = ln (l + 2~l) are added to produce x.

4 Trigonometric Functions
We have to compute both sine and cosine and for this we use the standard addition 
formulae written as

sin (A ± B ) = cos B [sin A ± cos A  tan B\ 
cos {A ± B ) = cos B [cos A + sin A  tan
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together with a precomputed table of numbers 8n for which

tan 8n = 2 ~” (0<  <  ½ ir), h = 0 , 1, 2 ___

To find the sine or cosine of a given jc we first reduce x  to the first quadrant 
(0 <  x  < Vi ir) and then, starting with sin 0 = 0 , cos 0 = 1, add or subtract the 
successive members of the sequence (6n) until we have built up x. Thus if we have 
used 0o, 81, 62, . . .  0n giving us an approximation x n , then the next approxima­
tion is

x n+1 = xn ± d n+1 according asxn ^ x

The corresponding approximations t0 sin x  and cos x  are 
sin xn+1 = cos 8n+1 (sin x n ± cos tan 8n+1)

= cos 8n+1 (sin xn ± 2~” ~* cos xn) 
cos x n+1 = cos Qn+i (cos Xn + 2~n-1 sju Xn)

and the evaluation of the terms in the brackets involves only shifting and adding. If 
we write the relation in matrix form

we see that the cos Bj terms enter into the final result only as the product cos 60
cos . . . .  cos 8n ; this can be precomputed for n = 0 , 1, 2 .......... and stored, and
the required product looked up and applied at the end of the process.

5 Execution times
Codes have been written for these algorithms and have been run on the 3 2 x 3 2  pilot 
machine in the Stevenage laboratory. More highly optimised versions are being 
developed on the 64 x 64 machine now at Bracknell but as this development is still 
going on it is not appropriate to quote actual times at this moment. However, 
reasonably firm values relative to the basic multiplication time can be given and 
these are as follows. All refer to  32-bit floating-point numbers with 24-bit mantissae.

square root 0*65 multiplication times
logarithm (base e) 1*15
sine or cosine 2*5
sine and cosine 3
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and for comparison 

add or subtract 0*7
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Hardware monitoring 
on the 2900 range

A.J. Boswell and M.W. Brogan
ICL Product Development Group, Systems Control Division, Bracknell

Abstract

The main purpose and practice of hardware monitoring as carried out in 
ICL are outlined. After a brief summary of the relevant features of the 
2900 architecture the monitoring equipment is described, followed by an 
account of some of the measurement techniques that have been developed 
and of the ways in which these can be applied to machines of the 2900 
range. There are comments on the possibilities of statistical and other 
errors in the measurements and indications of how these can be dealt with.

1 Objectives

The work described was carried out in the Product Development Group of ICL. We 
have a small team which is devoted to performance measurement. The work we do 
has two main objectives: to quantify the performance, and then determine the 
product enhancements that are necessary to improve performance.

First we need to find out how well our systems perform. We do that in two ways. 
We run benchmarks as standard tests of system performance, and measure through­
put. We also measure low-level critical functions in the system, I/O pathlengths for 
example. In this way we can control performance and monitor the progress of our 
systems towards their performance goals. We also use the detailed measurements as 
input for sizing guides which are then used to size customer benchmarks.

The other aspect of our work is investigating problems that have been thrown up 
either by our own work or by problems that other users have experienced. The 
objective is to identify the software or hardware enhancement required to get us 
out of the problem and back on the path towards the most effective performance 
of the system.

2 2900 Architecture

The structure of 2900 systems is based on the concept of virtual-machine environ­
ment (VME), which means that each batch job or terminal session runs in its own 
virtual machine containing both the user application program and the supervisor. 
Each virtual machine holds its instructions and data in a virtual store which is 
logically split into two halves: the local virtual store which contains data private to 
the particular virtual machine, and the public virtual store which is common to all 
virtual machines and contains the supervisor.

The format of a virtual address is shown in Fig. 1. The virtual store is organised into
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segments of variable size, each made up of a set of 1 kbyte pages. Each segment has 
a set of segment properties associated with it, including the read and write access 
keys which are used in conjunction with the access control register (ACR) to 
protect the data, and the execute permission bit which prevents data being execu­
ted as code by mistake owing to program error.

0 1 13 H  21 22 31 bi t  number

Fig. 1 Format of a virtual address

Each virtual machine has one specified segment used as a last-in first-out stack. 
Each procedure has a local name space’ on the stack, and the instruction set and 
hardware design are optimised for stack access.

Fig. 2 shows some of the most important CPU registers. There is one general-purpose 
arithmetic register called ACC, which can be set to the required size for 32,64 or 
128 bit working. Data can be accessed via the descriptor register, which describes 
the type and length of data as well as its virtual address. The descriptor can be 
modified by the B register. Alternatively, data can also be accessed relative to base 
registers such as local name base (LNB) and extra name base (XNB).

CPU REGISTERS

* a cc
* DESCRIPTOR
* B-REGISTER
* LNB
* XNB
* ACR
* PC
Fig. 2 CPU registers

accumulator

modifier
local name base
extra name base
access control register
program counter (instruction address)
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The most important register from the point of view of hardware monitoring is the 
ACR, which is used in conjunction with the read and write access keys to limit the 
amount of data accessible to a program. Whenever a data access is attempted, the 
hardware checks the current value of the ACR against the access keys of the 
segment containing the data. On VME/B, user programs run with ACR 10-15 and 
ACR levels between two and nine are allocated to the various supervisor levels.

If a segment has a read access key set to a value of eight, then, if a user program 
running at ACR10 attempts to read from it, a program error will result. Access is 
only allowed if the ACR is not greater than the access key.

The values of ACR allocated on VME/B are as follows:
ACR 10-15 user program
ACR 8 , 9 , 10  system control language (SCL) interpretation
ACR 7 record access
ACR 5 loader and catalog handler
ACR 4 block access
ACR 2 kernel
ACR 1 idle

By attaching a hardware monitor to the four ACR bits, we can determine which of 
the above levels of software is active at any point in time. In fact, the idle loop was 
put at ACR 1 just so that the hardware monitor could pick it up easily.

3 Hardware monitor*

3.1 Description

The hardware monitor* used by the Performance Monitoring Team at Bracknell is 
shown in Fig. 3. The monitor is attached to the computer system being monitored, 
usually referred to as the host computer, by up to 144 probes, each of which is 
capable of detecting changes in voltage at the host and transmitting the resulting 
signal to the hardware monitor. Within the monitor, each signal is routed through a 
patch panel to one or more of eight registers known as collectors. The patch panel 
contains a number of logic elements such as AND gates, OR gates and flip-flops 
through which the signals can be routed before entering the collectors. This enables 
two or more signals to be combined together. For example, if it was necessary to 
count the number of input/output (I/O) transfers that occurred when the CPU was 
busy then this could be achieved by combining the signals ‘I/O transfer’ and ‘CPU 
busy’ through an AND gate and then counting the result.

The collectors are general purpose registers which, according to the mode of use, 
can be configured to perform a number of different functions on the incoming 
signals. After being processed by the collectors, data is transferred by the 
controller module into buffers in the minicomputer memory and from there to 
files on floppy disc or magnetic tape. Subsequent to a measurement session, these 
files can be analysed by standard analysis packages on the minicomputer system.

♦The hardware monitor described here is the TESDATA 1187. However, most types of hard­
ware monitor employ similar techniques.
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mini  c o m p u t e r

Fig. 3 Hardware monitor

3.2 Modes o f  operation

Each collector can be configured to perform in one of three different modes:

(a) count/time mode
(b) map mode
(c) store mode.

(a) Count/ time mode: In this mode of operation, each collector operates as 
four separate modules, each of which can either count the number of times a 
signal changes from FALSE to TRUE or count the number of microseconds 
that a signal is found to be in a TRUE state. The contents of these counters are 
then written to  tape or floppy disc at predefined intervals.

(b) Map mode: Map mode is illustrated by Fig. 4. Up to 11 signals are 
connected into data inputs on the collector. In addition, a futher signal is 
connected to the strobe input. The collector functions as follows. The first time 
the strobe signal goes from a FALSE to a TRUE state, the values of the data 
inputs are stored in the catching register. At a prespecified rate, known as the 
ORATE, the contents of the catching register are read by the controller and 
used as an address to a buffer in memory. The memory location thus addressed 
is then incremented by one. More data is then gated into the catching register 
the next time the strobe signal goes TRUE, and at the next ORATE it is read 
and the appropriate memory location incremented by one,and so on. Eventually
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a profile or map of data input values is built up in the memory buffer and 
periodically, the buffer is written away to backing store.

Fig. 4 Map mode

(c) Store mode: In this case up to 16 data signals can be connected to the 
collector together with a strobe signal. The collector functions in exactly the 
same way as when it operates in map mode; however, instead of using the values 
read from the catching register as an address the 16 bits are simply stored in the 
next free location in the memory buffer. The next 16 bits of data that are read 
at the next ORATE are stored in the next location and so on. When the buffer is 
full it is written away to backing store. When this data is subsequently analysed, 
either counts or maps can be generated by analysis software.
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4 Measurement Techniques

4.1 ACR-level monitoring

Measurements of ACR levels made during runs of standard benchmark tests can be 
used to identify the contribution of each major software component. The following 
are normally measured:

(a) CPU time used at each ACR level
(b) number of instructions executed at each ACR level
(c) instruction execution rate (MIPS) at each ACR level.

The instruction count is used to check sizing techniques based on pathlengths; the 
variations in MIPS allow the interactions between the software and hardware to be 
studied.

Fig. 5 ACR-level monitoring technique

Fig. 5 illustrates the hardware-monitoring technique used to achieve this. Two 
collectors are used, each producing a map of the four ACR bits. Collector A 
measures CPU time by ACR. The four ACR bits are strobed periodically, say every 
1 ms; thus for every millisecond of CPU time a sample is obtained at the current 
ACR level. When the maps are subsequently analysed each element contains a count 
of milliseconds of CPU time at the corresponding ACR level. Collector B measures 
the instruction count by ACR level. In this case the ACR bits are strobed every 
1000th instruction, the strobe signal being formed by merely dividing the instruc­
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tion count signal by 1000 on the monitor patch panel. Thus for every 1000th 
instruction a sample is obtained at the current ACR level. When the maps are 
analysed each element will contain a count of the number of thousands of instruc­
tions executed at the corresponding ACR level. To obtain the instruction rate, each 
element of map B (thousands of instructions) is divided by the corresponding 
element o f map A (milliseconds), giving MIPS by ACR level.

4.2 Address mapping

ACR-level monitoring gives a fairly coarse measure of the contribution to overall 
performance by the various system components. It is often necessary to identify 
the contributions of different software modules within one particular ACR level. 
This can be achieved by mapping the segment number of the virtual address or in 
some cases, where even finer resolution is required, mapping addresses within 
certain segments.

(a) Segments mapping: The technique used here is the same as for ACR 
mapping, using two collectors, one strobed periodically every millisecond and 
the other strobed every 1000th instruction; but in this case the segment bits of 
the virtual address register are used as data. One problem arises here. The hard­
ware monitor has a maximum map length of 2048 elements, which corresponds 
to 11 bits of data. The segment field of the virtual address is, however, 14 bits. 
Usually this causes no difficulty because segments in VME/B are seldom so big; 
this means that the segment address can be reduced to 11 bits for mapping.

(b) Addresses within segments: To enable addresses within selected segments 
to be mapped, patchboard logic is used on the segment bits of the virtual address 
to construct a signal that is true whenever the virtual address is within the seg­
ment of interest. This indicator is then wired into the most significant bit of the 
collector and the page and byte address bits wired into the rest of the collector. 
To obtain the maximum resolution, store mode is used and the maps assembled 
later by analysis software as described in Section 3. Thus for one segment it is 
possible to  map 15 bits of the page and byte addresses, which gives a resolution 
of 8 bytes. If it is required to map addresses within more than one segment, then 
a number of indicator bits may be constructed using patchboard logic and wired 
into the collector with a corresponding reduction in the resolution to which the 
addresses within those segments can be mapped. The technique to obtain distri­
butions of instructions and CPU time at different addresses within specified 
segments is the same as that used for ACRs or segment numbers. Two collectors 
are used in store mode, in this case one being strobed every 10 ms and the other 
strobed every 10000th instruction.

(c) Mapping the complete address: A  technique has been developed by the 
Performance Monitoring Team which enables up to 30 bits of the address to 
be monitored. Special analysis software has been written to enable this to be 
done. The monitor setup is shown in Fig.6 . Two collectors are used — one for 
each half of the address — with the same strobe. To detect any errors when the 
two collectors get out of step, part of one collector is copied into the other 
(Fig. 6) and a consistency check done by the analysis software. This reduces the
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number of bits that can be monitored from 32 to 30, but since it is rarely 
necessary to  monitor down to single-byte resolution this is acceptable.

vi r tua l  a dd r es s  bi ts

0 1 2 3 4 5 6 7 8 9 10 II 12 13 28 29

Fig. 6 30 bit address mapping

4.3 Instruction and CPU time distributions using a single collector

It is often found that the number of parameters to  be measured exceeds the capacity 
of the monitor. In earlier sections it was described how the number of instructions 
and the amount of CPU time used at each ACR level or each address could be 
monitored. This technique required the use of two collectors, one for instructions 
and the other for CPU time. It is possible, however, to  map both instructions and 
CPU time with a single collector.

I p s  s i n g l e  
s h o t p

o
o

 

O
 

0ACR b i t s  ----------

s t r ob ec l o c k

i n s t r u c t i o n
+ 10

c o u n t

Fig. 7 Instruction and CPU time distributions using a single collector

Fig.7 illustrates this technique as used on a 2980 for ACR mapping; it applies 
equally well to virtual-address mapping. The instruction count signal is first con­
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verted to a signal that is TRUE for an amount of time proportional to the number 
of times that it (the instruction count) goes TRUE. This is done by dividing the sig­
nal by ten on the monitor patchboard and then single-shotting the result to 1 ps, 
which results in a 1 ps pulse every ten instructions. This signal is then wired into 
the collector as shown in Fig.7.

The collector is then used in the same way as the collector that mapped CPU time 
in Section 4.1, i.e. it is strobed with a 1 ms clock pulse. The result of this is a map 
with 32 elements from which the amount of CPU time and the number of instruc­
tions executed at any given ACR can be derived. The actual relations are, for ACR 
level n, where « < 1 5 ,

CPU time (ms) = element n + element (« + 16)
Number of instructions = element (w + 16)

(units of 10,000)

4.4 Starting and stopping the monitor

One problem that often arises when using hardware monitors is that of being able 
to identify the periods over which results are to be collected. It is possible to do 
this by specifying the required periods to the analysis software; but since the 
hardware monitor and mainframe clocks are set manually they are not necessarily 
in step.

To resolve this difficulty, a method has been devised by which the mainframe can 
signal to the hardware monitor when it is required to start or stop monitoring. This 
has been done by writing a user program which executes an IDLE instruction at the 
user level ACR (ACR 10) immediately after reading the real time clock. An IDLE 
instruction executed on VME/B is a unique event, since VME/B idles on an instruc­
tion loop so it is possible to set the hardware monitor to switch on all its collectors 
when an IDLE is seen at ACR10 and switch them off again when the next one is 
seen.

4.5 Accuracy o f  results

(a) Sampling error: Suppose it is required to monitor the execution of a 
program, and the total number of instructions executed is N  and it is required 
to know what proportion p  of these instructions was executed at a particular 
ACR level, say ACR = 2.

Because the hardware monitor is not fast enough to record the ACR level of 
every instruction executed, it is necessary to resort to sampling, and look at the 
ACR level of only n of the instructions executed.

The use of sampling techniques introduces the possibility of sampling errors. If 
the experiment were repeated a number of times it would be found that the 
number of instructions at ACR = 2 would be slightly different each time; we 
need to make some estimate of the spread we should expect, and therefore of 
the confidence we can place in whatever conclusions we draw from the experi­
ment.

144 ICL TECHNICAL JOURNAL MAY 1979



(bj Statistical treatment: Suppose our experiment has recorded a instructions 
at ACR = 2, giving a proportion/ =  a/n in the sample. We want to know how 
good an approximation this is to the proportion p  in the complete program of N  
instructions.

Standard statistical theory can be applied here. We are sampling from a large 
population of instructions, each of which is either at ACR=2 or is not, with 
probabilities p and q, respectively, where q = 1 -  p. The possible numbers at 
ACR=2 recorded in a sample of n are given by the binomial distribution, that is 
the successive terms in the expansion of (p + q f 1. The mean number will be np 
and the standard deviation \Jnpq. However, because we are taking a large sample, 
with n typically of the order of several thousands, this binomial distribution will 
approximate very closely to a normal distribution with the same mean and 
standard deviation; and therefore we can say that there is a 95% probability 
that any experiment will give a result within two standard deviations of the 
mean: i.e. that any sample of size n will with 95% probability give a result a in 
the range

np ± 2\J[np(\-p )]

and that therefore, if we divide by n, the proportion observed in a sample of n 
will with 95% probability lie in the range

P V  [P(! -P>]

We do not know the value of p —this is what we are trying to find-but we can 
again draw on standard theory, which tells us that for a large sample the ob­
served proportion /  = a/n is an unbiassed estimator for p  to an accuracy of the 
order of 1 fy/n\ and that, if  we say that the proportion p in the complete pro­
gram lies in the range

we shall be right in 95% o f cases.

Example: If a program executes 100 million instructions altogether and 10,000 
are sampled and it is found that 2000 of this sample are at ACR=2, then, for this 
case, the sample proportion is / =  0*2 and the formula gives p  = 0-2 ± 0°008. We 
can therefore be confident that the total number executed at ACR=2 is in the 
range 20 million ± 0*8 million, which is equivalent to saying that the estimate of 
20 million derived from the sample is correct to  within 4%.

The formula can obviously be applied to  other situations. For example, instead 
of ACR = 2 it could be the execution of code at a particular virtual address; or it 
could be sampling events other than instruction executions, such as virtual-store 
interrupts or units of mill time.

(c) Other sources o f  error: The above has dealt with the error introduced by 
random sampling; the possibility of errors from other sources needs to be

ICL TECHNICAL JOURNAL MAY 1979 145



considered. For example, most computer systems have some periodic functions 
and if these get into synchronisation with the sampling frequency then distorted 
results will be obtained. It is useful when setting up a measurement to measure 
the same thing in different ways to check this. Thus the ACR = 10 signal can be 
timed and then compared with the ACR 10 element of the ACR map.

Section 4.4. described the method that has been devised for eliminating errors 
which could arise from the setting of the clocks. These could bemuch more serious 
than the potential errors just discussed. For example, suppose a program which 
takes 100 s to run is being monitored and written to the monitor file every 10 s. 
The recording resolution means that the monitor cannot measure precisely the 
period during which the program is running, so the result is only accurate to 
within 10 s, which is a large uncertainty. The possibility of the mainframe and 
monitor clocks not being accurately in step could also lead to errors of this 
order. This was the reason for developing that particular piece of technique.

5 Validation

This paper has described a few of the hardware monitoring techniques that have 
been used in product development. Extremely valuable measurements have been 
obtained by developing new techniques but when these are implemented it is essen­
tial to validate the correctness and accuracy of the results. This can be done by 
monitoring programs for which the values of the measured quantities are already 
known (e.g. executing exactly one million instructions at ACR 10). A new tech­
nique should only be used in earnest when sufficient confidence in it has been 
established by validation. Even when this has been done, it is still advisable to  run 
validation tests periodically to check for malfunctions in the hardware monitor 
or its connections to the host machine.
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Network models of 
system performance

C.M. Berners-Lee*
ICL Product Development Group, Bracknell, Berkshire 

Abstract
The paper describes the derivation and validation of the FAST model of 
system performance. A general theory of a wider class of such models is 
described. The FAST model and closed multiclass models are then derived 
as particular cases. An Appendix gives a short report on a meeting at the 
University of Maryland at which models of this type were discussed. The 
author attended and took part in this meeting shortly after completing the 
main paper.

1 Introduction

Since 1972 ICL has made extensive use of models using networks of queues to 
represent the behaviour of batch-processing and multiple-access-computing (MAC) 
workloads on ICL and other systems. These models have been used to predict the 
effect of changes of system resources on the throughput of work. The model used 
has been known in ICL as FAST — football analogy of system throughput. The 
analogy is that of a group of players kicking several footballs around between them. 
The success of the model for use by systems staff in the field has been due in no 
small measure to  the fact that the theory can be thus simply explained.

The analogy represents the components of a real system by players in the game and 
the programs or processes operating concurrently by the footballs. If, for example, 
a program in the central processing unit (CPU) initiates a peripheral transfer, the 
initiative may pass from the CPU to a disc controller and thence to the disc drive, 
finally returning to the CPU on completion of the transfer. This is represented by 
the ball being kicked along the route CPU — controller -  disc -  CPU. When the 
multiprocessing level is increased from 1 to some number N  there will be an 
increase in throughput by some factor depending on N , say f(N). The model enables 
this factor to be calculated, given the usages of the different system components 
(CPU, controllers, discs, tapes, slow peripherals, communications controllers etc.) 
measured in appropriate time units. For the CPU the usage is the total mill time and 
for other devices it is the number of device services multiplied by the service time.

FAST was first used in 1972 to  study the effects of alternative means of improving 
the effectiveness of the 1900 disc controllers. It had been derived by generalising 
the Konigsberg model1 o f a cyclic queueing system, such as arises with a set of 
buses travelling around a circular route. This generalisation was first noted by J.R. 
Jackson^ in 1963 and has been applied to computer systems by Buzen3 and others

♦Now with Corporate Communication Division, Putney
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in the United States. Since then the basic theory has been extended in the USA to 
include less restrictive assumptions and the resulting literature is substantial. The 
purpose of this paper is to present the core of the thinking as simply as possible.

In ICL, FAST was used extensively for pricing studies for the 2900 series. The 
requirement here was for a systematic method of assessing the economic value to 
the user of particular system components in terms of their effect on the throughput 
of ‘typical’ user work. The technique has also been used within the Product 
Development Group for a number of purposes, including the evaluation of dual­
processor systems and of alternative strategies for DME systems, and for the study 
of pipeline performance. Another topic is the evaluation of different store 
hierarchies using different technologies. All this product-evaluation work has 
depended on establishing profiles of typical or average customer workloads in 
terms that are applicable to the model. Such profiles comprise the mill utilisations 
together with the utilisations of the peripheral devices.

In its original form the FAST model made very crude assumptions about the 
statistical behaviour of the processes. It was assumed that each system component 
behaves as a server whose service time is a random negative-exponentially distri­
buted variable, serving processes which move around the system in a random 
manner. The actual situation is that the CPU service times in a large system are 
fairly close to negative exponential but that the peripheral service times are very 
different in shape—for example, line-printer times are cyclic. However, these 
peripherals are seldom heavily loaded and the effect of the shape is only felt at the 
higher loadings: it may be neglected to a first approximation. The assumptions 
with regard to randomness provide, in theory, a much more difficult problem. 
However, in practice, it is well known that quite small injections of random 
behaviour are sufficient to make a system behave in an effectively random manner. 
Some light has been thrown on this point by Buzen and D enning4 , who point out 
that theories of this type only require that the average service rates at given queue 
lengths should have the same values as they would have had had the assumptions 
regarding randomness been strictly fulfilled. Nevertheless there are cases where 
nonrandom behaviour is significant, notably in small systems operating at a low 
level of multiprogramming, where the system may be locked in repetitive cycles of 
operations for an appreciable time.

Another respect in which real systems differ from the theoretical models is that it 
sometimes happens that the processes are not conserved in the way implied by the 
football model. For example, a process may continue to execute in the CPU after 
having initiated a peripheral transfer. In this case an additional process is in effect 
in operation until the CPU execution of the original process ceases. Thus double 
buffering may result in an effective increase in the value of the multiprogramming 
level N.

In practice these departures of the model from reality can be regarded as pertur­
bations of the effective value of N. Thus if we run a workload or benchmark on a 
real system and use the resulting component usages to calculate the value of N  
that would explain a given throughput, this value will give an effective concurrency 
which may be used to  predict the effects of changes in system resources. This was
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the method used in the Trondheim validation of the model, which will be referred 
to in Section 2.

In the years since 1972 previously started and parallel developments in the USA 
have led to  a considerable proliferation of models of the same general class as FAST. 
These enable more complex situations to be treated, in particular the processes, 
instead of being assumed to be statistically identical, may have different statistical 
characteristics, provided that certain mathematically tractable assumptions can be 
made about die way these different processes are scheduled for service by the 
system components. These later developments enable the effects of the simple 
assumptions of the original FAST model to be evaluated, to see if further elabora­
tion of the model would provide worthwhile improvements in accuracy. So far 
our conclusion has been that this more recent work reinforces the case for using 
FAST in its original form for throughput calculations. For response times, however, 
the more detailed analysis is sometimes valuable.

In the literature generally, network queueing models are classified as either open 
or closed. An open model is typified by a single server serving an infinite stream 
of processes as in simple queueing theory. An open network replaces the single 
server by a network of servers and the number of processes (customers) in the 
network will vary with time. In the closed case there is no infinite stream and the 
number of footballs in the game is conserved, remaining constant at a given value 
N. The open game can be regarded as the limiting case of the closed game, in which 
N  tends to infinity and the most heavily loaded server becomes the source and sink 
for the infinite stream. Only the closed game, in which the number of balls N  is 
conserved, is considered in this paper.

The paper as a whole develops the theory of closed models using the football 
analogy in its most general form: here the transition rates are general functions 
of the midflight queue state, i.e. the state of the queues of balls at the feet of the 
players when the ball is in flight from one player to another and not at the feet of 
any player and therefore not part of any queue. The treatment is then progressively 
specialised until the particular form known in ICL as FAST is reached, which is 
characterised by the kicking rates being constant. The paper concludes with an 
introduction to the American theory of multiclass models, deriving these from the 
general theory by means of a different mapping of players and footballs on to  the 
system to be represented.

To be a little more specific, after a consideration of validation of the model in 
Section 2 a top-down approach to the development of the general theory is given 
in Sections 3—5, in which the taxonomy of the models is shown. Sections 6 and 7 
discuss the particular case of FAST in more detail. Sections 8 and 9 give an intro­
duction to the theory of multiclass models and Section 10 deals with the use of 
such models for calculating queue lengths. Section 11 discusses the problem of 
implementation in the light of the queueing results.

2 The Trondheim validation

It was realised from the outset that model validation must go hand in hand with
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construction and use. The process was greatly aided by two developments, both of 
which sprang from the conference on system performance held at the University of 
Surrey in 1972 at which FAST was first described.5 Another paper6 at this con­
ference gave a description of a technique devised by the Royal Radar Establishment 
for displaying system-monitoring information, which clearly pointed the way to a 
means of obtaining a detailed minute-by-minute validation of model predictions of 
throughput at different multiprogramming levels over a period of time.

The conference was attended also by Hughes and Moe of the University of 
Trondheim, who went away and undertook a quite independent validation study, 
unknown to us at the time. This was published later as an AFIPS paper7 and 
showed excellent agreement between measurements and predictions of changes in 
CPU and device utilisations resulting from major changes made to the system, such 
as increasing the core store and relocating files on peripheral devices. Confidence in 
the general validity of the approach was increased by the knowledge that the 
installation was from a different manufacturer, Univac in this case.

Similar studies have been repeated wherever possible, using benchmark data or 
measurements of normal work and obtained with the aid of either hardware or 
software monitoring.

The technique of using FAST was documented by the ICL Systems and Technical 
Support organisation and was introduced into the Beaumont training school where 
it proved valuable in providing insight into system behaviour. It is now used regular­
ly as one of a number of aids to sizing.

The model enables predictions to be made about the proportions of time for which 
channels are jointly busy and also about the lengths of disc queues. For jointly busy 
channels, time comparisons were available from hardware-monitoring studies and 
were found to be satisfactory5. For disc queues, there was very satisfactory agree­
ment with measurements made by the Road Research Laboratory, which indicated 
that the model was significantly more accurate than a simple queueing formula. We 
can say in fact that such validation studies as we have been able to make have 
proved satisfactory.

3 State-change models

The models we are concerned with work by considering the number of times a 
system changes state, equating the number of times it enters a given state to the 
number of times it leaves that state. Markov models are a class of such state-change 
models. In general, suppose we have a system which can be in any one of a number 
L  of possible states and that the average rate at which it changes from a state Q to  a 
state R  is F(Q, R )  changes per second. Then, if we equate the total number of 
changes from the state Q into all other possible states R , to the total number of 
changes from other states into Q, we have

( 1)
R R

where the summation is over all possible states R .
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Suppose now that the system spends a fraction P(Q) of its time in state Q; if we 
denote by A(Q,R) the average rate of change from Q to  R  per unit o f  time spent in 
Q then

A(Q,R) = m ^ m o )  if K Q ) t  o 
= 0  A 0 ) = o

and hence =

R R

(2)

(3)

If we have some information from which we can deduce the values of the rates A , 
we can solve these equations for the proportions of time spent in the different 
states; for example, we may be able to  determine the idle time for a system compo­
nent. Eqns. 1 and hence their equivalent eqns. 3 are not all independent, for if they 
are summed for all Q an identity results; the further relation necessary to compen­
sate for this is that the proportions P(Q) for all Q must sum to unity.

However, there are two practical difficulties: the first is that we cannot estimate the 
rates A  without some further assumptions about the state changes and the second is 
that the number of equations in any realistic case is unmanageably, indeed astrono­
mically, large. Fortunately, however, eqns. 3—known as the global balance 
equations-can in practice be given a special structure which enable them to be 
solved in a trivially easy way. We shall use the term football models to refer to 
systems that exhibit this structure in a way to  be described. The problem of the 
assumptions made about the relationship between the values of A  and the observ­
ables in the real world will be considered after the football model in its most 
general form has been described and analysed.

As mentioned earlier, the model was originally thought of as one representing 
computer-system components and processes by players and footballs, respectively. 
However, in view of the later American developments, it will be convenient to 
develop a general football model which can be identified with real systems by 
means of different mappings of model entities on to  system entities. The approach 
in what follows is to begin with a very general form of model which is gradually 
specialised until we eventually arrive at those used in practice, such as FAST and 
the American multiclass models.

One of the ways in which a state-change model can arise is by means of a 
continuous-time Markov process. This involves much more specific assumptions 
about the fine structure of the behaviour of the system over time. Specifically, it 
is assumed that the average transition rates A(Q,R) arise from constant probabilities 
proportional to A (Q Ji) d t that a transition will occur in the next interval dt. Thus 
the probability that a transition from Q to some other state will occur in d t is 
equal to

^ A { Q , R ) d t

R
and the probability that it will be to  a given state R  is
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R

The Markov assumption implies that the successive transitions are statistically inde­
pendent, and the consequence is that the durations in state Q have a negative- 
exponential distribution with mean value

In other words, there is a direct relationship between the average transition rates 
and the average durations of states. Further, the theory of Markov models leads to 
the result that, provided there exists between any pair of states a path through 
some chain of intermediate states along which the transition probabilities are all 
nonzero, then the frequencies with which the system occupies states Q will 
converge in a statistical sense to stable proportions of time P(Q).

In what follows, care will be taken to indicate the precise point at which a continu­
ous Markov system is assumed.

4 Football models

Suppose we have a game in which M  players are kicking N  footballs around. The 
state of the game will be regarded as being defined by the state of the queues of 
balls waiting to be kicked by the players; we denote by Qt the length of the queue 
(number of balls at the feet of the /th player) the sum of these numbers being 
constant and equal to N . We regard the Qj as components of a vector Q which 
defines the state of the system, and which plays the role of the state identifier Q 
of the previous section. Any vector Q that has nonnegative components summing 
to  N  is said to  be a feasible vector.

If now the ith player kicks the first ball in his queue-i.e. the first to have arrived- 
to the /th  player, the state of the game changes from

Let us denote by /  the unit vector for which the /th component is 1 and all the 
others are zero;and similarly for J. ThenR = Q - 1 +J.

As in Section 3 we denote the mean rate of occurrence of changes from Q to R by 
the flow function F(QJl). We see that in the football game this can be nonzero 
only if Q and R  are identical in all but two components and that these must differ 
by unity. Such a pair of feasible vectors are said to be neighbours. The relationship

R

to
Q -  (G i, Q i , • • • Qi, • • • Qy ■ ■ • Qm )

R = (Qi , Q i , ...fir1* .--2/+1, ■■■Qm )
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between neighbours is thus symmetrical, and, if a kick from Q to R  is possible, one 
is possible also from R  to Q by player j  kicking to  player /. This changes the state 
from R  into R - J  + I = ( Q - I  + J ) - J  + I  = Q. In either direction, during the kick 
itself the game passes through what may be called the midflight state in which the 
remaining balls form a set of queues described by the vector Q -  / ,  which is the 
same as R -  J.

For Q -  /  + /  to be a neighbour of Q it must be feasible, so no component may be 
negative; since its /th component is Qt- l  this means that QjX), which is obvious, 
since the player cannot kick if his queue is empty. Thus the neighbours of Q are 
those vectors Q -  I + /  for all / for which Q/X) and for allj. Hence eqns. 1 become

E E E F(Q-I+J,Q) (4)

/ )

where indicated summation over all values of / for which Q{>0.

i
These are the global balance equations.

The simplicity of structure already referred to results when the equality of the two 
sides holds for each value of /; i.e. when for all i for which QjX)

(5)

i  i

These are called the local balance equations. If they are satisfied, then by summa­
tion over / it follows that eqns. 4 are also satisfied.

Local balance models come in families. If we define a vector function S(Q,R) to 
be equal to the midflight vector Q -  l - R -  J  if QJl are neighbours and zero other­
wise, then S(Q,R) = S(R,Q). If now h(S) is any scalar function of the vector S , it 
follows that h [5(Q^?)] = h [S(/t,Q)] and each is h(Q - 1 )  = h(R -  f ) .  Then if we 
define a new flow function F '(Q Jl) as F{Q,R). h [5(0,1¾)] we see, by multiplying 
both sides of eqn. 5 by h, that this also satisfies the local balance equations.

We can use this result to derive a very general class of football models. Consider 
the simple case of a constant flow function

F (Q ,Q -I+ J )= A U ) (6)

which means that the rate of flow between neighbouring states depends only on the 
pair of players involved. This will satisfy the local balance eqns. 5 if, for each /, 
eqns. 5 if, for each /,

2 ^ = 2  m  (7)
j  i
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Hence a set of general flow functions satisfying local and therefore global balance is 
given by multiplying eqn. 7 by h(S) = h(Q -  /):

F{Q, Q -  I  + f )= A ti) .  h ( Q - f )  (8)

If now we divide the flow by the proportion of time spent in the state we get, from 
eqn .2 ,

A(Q, 0 - /  + / ) =  /(/,/). h(Q -  t ) i m ) (9)

This relationship gives the average kicking rate A ,  which would explain the exis­
tence of a given probability distribution of the states Q.

The transformation just described gives us considerable scope for fitting models of 
this type to real systems, because the function h is now at our disposal.

5 Team games

Suppose we have a scalar function X(Q) of the vector Q which is positive for all 
Q whose components are nonnegative, and suppose that G is the sum of X(Q) 
taken over all feasible Q — i.e. over all Q with nonegative components summing to 
N. We can define a game by equating both P(Q) and h(Q) to X(Q)/G. With this, the 
kicking rates from eqn. 9 are

A ( Q , Q - I + f ) =  /(/,/). Jm ~  1)1 X(Q) (10

Now suppose that the players are divided into a number T  of sets which we call 
teams; and that X(Q) has the form

X(Q )a X 1(Q )X2(Q) .........X jiQ )  (11)

where X t(Q) is a function of the lengths of the queues of balls at the feet of the 
players from team t only. For example, if team 1 was made up of players 1,2,3, we 
should have X 1 (Q) = X 1 (Qlt Q2, £ 3)-

If player i belongs to team t then from eqns 10 and 11 we find

A(Q, Q -  /  + /)= /(/,;•)  X t (Q -  T)!Xt(Q) (12)

since all the other X-factors cancel.

Thus we have a model in which the kicking rates are functions of the queue lengths 
of the team to which the kicking player belongs and no others. If we carry this to 
the extreme where each team has only a single member we have a model in which 
the kicking rates depend only on the length of queue at the feet of the kicker. The 
equation is now

A ( Q , Q - I + J ) =f ( i J ) X i  ( ( 2 / - 1 ) / ^ 2 / )
with

P(Q) = X , (Q1) X 2 (g 2) . . .  .X j^ Q m ) IG

(13)

(14)
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This is the Jackson model, in which the probability of being in a given state is 
expressed as the product of functions of the queue lengths.

A particularly interesting case arises if the ratio of the Xs in eqn. 13 is constant. 
This will happen if  XfQ-)  has the form x f t i ,  where the x,-s are as yet undefined. We 
have now a model with constant kicking rates for which

A(Q, Q -  / + J) = a m / X f  = k ( ij) say (15)
and

W )  = . . . . (16)
where

r V  Gl GjG = ^ / j  x t x 2
q m

2 ___  x ^  summed over all Qj>0

such that 2 j Qi = N

A model of this last type arises if we have a Markov football game in which there 
is a constant probability k(ij) d t  that if the player i has the ball—that is, G,->0 —he 
will kick it to player /  in the next interval dt. Since from eqn. 1 5 /(//)  = k(i it 
follows from eqn. 8 that

W J ) x i = *0 .0  Xj (17)

i  /

If we consider a game in which there is only one ball in play (only one process in 
the system) thenN  = 1 and eqns. 3 reduce to

k ( / j ) ^ / )  = y j  k(j,i)P(J)

j  i

from which it is evident that the quantities Xj are proportional to the times the 
ball spends with players /, i.e. to  P(I).

6 Throughput and component utilisations

We are usually interested in the throughput of a batch-processing/MAC system or 
subsystem and for the purpose of analysing the behaviour of such a system it is 
almost always sufficient to use a simple Jackson model with constant kicking rates. 
This has the great advantage that the model parameters x{- bear a simple relationship 
to the utilisations of the components of the real system. We therefore assume a 
Markov system with negative-exponential distributions of service times and random 
movement of processes around a system of M  components (players) at a multipro­
cessing level of N  (number of balls in play). The results (eqns. 15-17) are now 
available.

The total throughput of processes from player / to player j  is given by summing
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eqn. 8 over all feasible Q such that Q,X); with h(Q) -  X(Q)/G this gives for the 
throughput 0(/,/) f

6  («/>=2 l ^ 0 ' q ~ I + J )  =/(lV) S  x ^ Q ~ r ) I G  (18)
Each value of Q -  I  such that <2,- > 0  is a member of the set of vectors with 
nonnegative components summing to N - 1. In general we denote the sume of values
of X(Q) over all Q with nonnegative components adding to n asg(«), so that 

__/

G = g(A 0and2 jX (< 2-/)= g (W - 0  (19)

Hence the throughput 0(ij) from i to  /  is

6 ( U ) = f ( U ) g ( N - l M N )  (20)

Using eqn. 15 and summing over all y we get for the total throughput from i to all 
other players

9(iJ)= S  k(U) Xi (21)
/  /

This total throughput occurs at times when the system component i is busy. If its 
utilisation—the fraction of time for which it is busy—is Uf then there will be Uf 
seconds in every elapsed second when kicks from it could occur at a rate k(ij). 
Hence this throughput can be written also as

Ut ^  k(ij)

i

and we have from eqn. 21

U t - X i g f N - l M N )  (22)

Thus the xs are proportional to the utilisations of the system components. Eqn. 22 
shows also that the values of the Us as given by this relationship are unaffected by 
the absolute values of the xs  and depend only on their relative sizes. Forg(n) is a 
homogeneous polynomial in the xs  of degree n and therefore the right side of 
eqn. 22 is the quotient of two homogeneous polynomials of degree N  and is un­
affected if the same scaling factor is applied to every x.  Thus we can choose the 
scale for the xs  as we wish.

We can measure the work done by a system component during any period by the 
length of time during which it is busy in that period; the utilisation, as has been 
said, is the ratio of these two times. Thus if the utilisation is Uj we are getting Uf 
units of work from the component in every clock second. If we sum the Uf over all 
i, that is over all the components of the system, we get a measure of the total
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amount of work done by the complete system per second of clock or elapsed time. 
If this is greater than 1, as we hope it will be in a multiprocessing system, we have 
gained by overlapping activities and it is reasonable to  use this sum as defining the 
overlap factor; as it will depend on.the number of processes N  that are available for 
overlapping, we can denote it by f{N). Thus from eqn. 22 we have for the overlap 
factor

m =
g (N -  1)

m (23)

Suppose now that we have a system running a given workload involving a number 
of actions for each component, and—for example in a sizing study—measurements 
of the numbers of actions and the service times for each. We can then calculate the 
total busy times for each component, to which the utilisations and therefore the 
xs will be proportional. Because of the independence of scale we can take these 
times as the actual values of the xs. The sum of these times will give what the total 
elapsed time would be if there were no overlapping and therefore the elapsed time 
corresponding to multiprocessing at level N  will be this divided by the overlap 
factor f(N). Thus from eqn. 23 we have, if Tpj is the elapsed time for a given 
workload when the multiprogramming level is N , so that 7\ is the time when there 
is no overlapping of actions,

TjTN = ^ U i  = m  = 

i
and therefore

g (N -  l)/G(AoJ = Ti

i

TN  = m i g ( N -  1) (24)

This important relationship enables us to calculate elapsed times from a knowledge 
of the relative loadings of the system components. Since g(n) is a homogeneous 
polynomial of degree n in the xs, 7jy is of degree 1 in these variables and therefore 
if the xs, which meausre the loadings, are given in units of time, say seconds, then 
T ft will be in these same units. The possibility of actually performing such a calcu­
lation depends on the possibility of evaluating the polynomials g(n), which at first 
sight would seem to be a considerable task for all but small systems. A 
technique can however be developed which leads to  a quite manageable process 
and this is described in Section 7, where an example is given.

Given that the polynomials g(n) can be evaluated without unreasonable labour, 
standard tables or graphs can be provided giving the overlap factor flN )  as a func­
tion for a range o f sets of relative loadings, that is, of the xs. Fig. 1 gives a set of 
curves corresponding to different loadings on 10 components. The method of using 
curves or tables such as these is as follows. From monitoring information we have, 
for a given system running a given workload, values of the elapsed time and for the 
utilisations or busy times for all the components; thus we can calculate the elapsed 
time Tx corresponding to no multiprocessing (simply the sum of the separate busy 
times) and the overlap factor fiN )  as Tx divided by the observed elapsed
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time, and finally from the curves, because we know the relative loadings, the actual 
level of multiprocessing N. We can then estimate the change in throughput that 
would result from altering a component service time or the CPU utilisation, using 
this value of N  and appropriately adjusted jcs; or the effect of a change in N  result­
ing from an increase in main store, which increases the space available for programs.

Fig. 1 Overlap factors f(N) giving increases in throughput for different loading patterns
(xj, x2........xjq) (e.g. pattern H corresponds to X! = x2 = x3 = 3, x4 = 1, xs = x6 = . . . =
xio = 0
A -  (3, 1, 1, 1, 1 ,1 ,1 , 1) 
B — (3, 2 ,1 ,1 ,1 ,1 ,1 )  
0 - ( 3 ,2 ,2 ,1 ,1 ,1 )
D -  ( 3 ,2 ,2 ,2 ,1)

e — (3,3, i ,  i ,  i ,  1) 
F — (3, 3 ,2 ,2 )
G -  (3 ,3 ,2 ,2 )
H -  (3 ,3 ,3 ,1 )
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This method of using the Jackson model appears to give very accurate extrapola­
tions in practice, in spite of the inevitable inaccuracies there will be in the data, as 
for example in the assumptions about disc seek times. It seeks likely that the conse­
quential error in the value estimated for N  just about compensates for the effects 
of these inaccuracies. The method has the great advantage of giving a very high 
ratio of Enlightenment to Complexity. Curves such as Fig. 1 are simple to use and 
give a good idea of the range of variation of the overlap factor f(N)  for different 
mixes of loadings on the system components. If more accuracy is required this can 
be obtained by using a small BASIC program which has been written, or a pro­
grammable hand calculator such as the TI 59; or hand calculation of a simple 
recurrence relationship as will be described in Section 7.

7 Computational technique and network synthesis

The sums involved in g(N  -  1) andg(A) are unmanageable in general but with team 
games the team principle can be exploited to overcome this difficulty. The key 
concept is that of the generating function. If Q ranges over all vectors with 
nonnegative components without restriction and if the sum of these components for 
any given Q is N(Q) then we define the generating function for the game to be

OO

y ( z ) = ' ^ p j X ( Q ) z N(®=  ^  g(n) zn (25)

Q n= o

The sum on the left is taken over all Q with nonnegative components and that on 
the right is obtained by grouping together all the terms for which N(Q) = n for 
successive values of n.

We now define a team generating function y t(z) for each team t; consider the 
notation introduced in Section 5: if for example team 1 consists of players 1,2,3 
then its generating function is

0 , + 0 , +  O,
7 t z )  = X 1 (Qi ,Q 2 ,Q 3) z

Then the generating function for the game as a whole is the product of the genera­
ting functions for the several teams.

With the Jackson model there is only one player in each team and therefore there is 
one generating function for each player; hence for player / (representing component 
i in the system) the function is

OO

7 , - 0 0 = 2  X i { n y l  (26)

n -  o
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and when the kicking rates are constant as in eqns. 15 and 16 this reduces to
OO

yi (z) =2  ** = (1 " x i z)_1 (27)
n=o

The procedure in practice is to build up the power series for the complete system 
by successive multiplication of the separate series for each component; in this 
particular case, where the kicking rates are constant, the process can be carried out 
very conveniently with the aid of a simple recurrence relation, as follows.

From eqn. 27 the generating function y{z) for the complete system is the product

M
7 (2) = 11(1- ^ ) - 1 (27a)

/=i

If we denote by ym (z) the product of the first m  terms (i.e. for the first m compo­
nents) then

so
y m (z> = Vm -, (z> + x mz ym (z> (28)

Thus if gim, n) is the coefficient of zn in the series for ym (z)

g(m, n)= g (m - \ ,n )  +xm g(m, n-1)  (29)

We can start the recurrence with the known values g (l, ri) = X i n and g{m, 0) = 1, 
and proceed stepwise until we reach g(M, ri), which is the value g(n) we require. 
The following example shows the process applied to a very simple case.

Example: Consider a system with three components: CPU, controller and disc. 
We wish to find the elapsed time for a workload made up of 3 units mill time, 1 
unit controller time and 2 units disc time, allowing multiprocessing levels up to 
five. The actual size of the time units is irrelevant so long as it is the same for all 
components. We take the values 3, 1, 2 of the component usages as the values of 
* i, *2< *3 > respectively, and use the recurrence relationship to calculate successive 
values of g(m, n) for m = 1 to 3 and n = 1 to 5. Here g(N) is g(3 , N) and the elapsed 
time corresponding to N  = 5 is g(5)lg(4).

The starting values are g (l, ri) = x t n = 3” , g(m, 0) = 1 for all m. These give the 
first column and row, respectively, in Table 1, from which the table can be com­
pleted either by rows or by columns using the recurrence relationship given by 
eqn. 29: each new entry is obtained by multiplying the entry above it by the 
appropriate value x m and adding the entry on the left.
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Table 1

m  =1 
Xi=3

m  =2 
x2=l

m  =3 
x 3 =2 Tn m

«=0 1 1 1
1 3 4 6 6 1
2 9 13 25 4.167 1.440
3 27 40 90 3.600 1.667
4 82 121 301 3.344 1.794
5 243 364 966 3.209 1.870

The column Tn = g(n)lg(n -  1) is the elapsed time at a multiprocessing level n, and 
/(«) = /Tn is the overlap factor. 7 \ , the elapsed time with no multiprocessing, is 
the sum of the separate component times, Six in this case.

It is worth noting that the radius of convergence of the power series in eqn. 25 is 
the limit ofthe ratio g(n -  1 )lg(n) as «•*•«>, which ratio is, from eqn. 24, the recipro­
cal of the throughput time T  when the xs aTe the busy times for the separate 
components. However, since the series is the expansion of the product (eqn. 27a) 
this must be the value of z corresponding to the singularity of the product nearest 
to the origin, which is the reciprocal of the largest of the xs. This means that as the 
level of multiprocessing increases the elapsed time is increasingly dominated by the 
most heavily loaded component. For this reason the result has been known in ICL 
as the bottleneck theorem. The football analogy is that as the number of balls in 
the game is increased, the total activity is increasingly dominated by the slowest 
player.

The power-series or generating-function technique applies equally to the analysis 
of networks, such as communication networks. The basic principle, as here, is that 
if two or more networks are joined the behaviour of the network formed by 
their join is represented by the power series formed by multiplying together the 
series representing the separate networks.

8 Multiclass models: an introduction

The model described in Section 7 has treated all processes as statistically identical. 
This is clearly a vulnerable assumption and it would be useful to be able to investi­
gate the extent to which the results are invalidated if the assumption is wrong. 
Multiclass models provide a way of doing this. Such models also allow the effect 
of giving different priorities to processes to be estimated in some cases.

It is possible however to go some way in this direction by means of a very simple 
argument. Consider a football game, such as in previous Section 7, in which there 
are N 2 black footballs and N 2 white. Suppose that the players always give absolute 
priority to  the black balls over the white; then if we consider the black balls alone 
it is evident that they are quite unaffected by the white. Hence as before there will 
be an overlap factor A N X) and the throughput will be increased by this factor 
compared with what it would be with only one ball in play. Suppose we now 
consider the whole game with both black and white balls treated equally. Since
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all processes are now identical it clearly makes no difference in which order the 
players kick the balls, so far as throughput is concerned. Hence the throughput of 
the Ni  + N 2 balls taken together is increased by the overlap factor f (N 1 + N 2) 
over tiie singleball game and therefore the factor for the white balls alone is 
ftN i + N 2) -  f(N i) . Thus from graphs such as those in Fig. 1 we can easily see to 
what extent such universal overriding priority will have. For batch-processing 
systems generally, there will be differences in the priorities enjoyed by different 
processes on different components of the system.

Apart from the question of priorities in a first-come-first-served queue there is also 
the question of the service time distribution for real system components, which will 
not in general be negative exponential. Both these problems are dealt with in a 
multiclass model by using an idealised mathematical scheduling process to repre­
sent the way the server schedules the service of the customers. The simplest of 
these processes is the so-called process sharing (PS) algorithm. This assumes that the 
server allocates a slice of time to each customer in turn in a fixed sequence, but 
with different sized slices to customers in different priority classes, such as black 
and white in the previous Section. The sizes of the slices are then made to tend to 
zero while their relative sizes are kept constant. Thus a slice spc is given to each 
customer in class c where Pc ~ an<J then s is made to tend to zero. Such an 
algorithm has the remarkable property that if it is used to schedule an infinite 
random stream of requests arriving for service, with an arbitrary distribution of 
service times, then the emerging stream of processes is statistically identical to that 
which would have arisen from a negative-exponential distribution of service times. 
Thus the effect of slicing up the time by means of this limiting form of round- 
robin scheduler is to make an arbitrary distribution of service times appear negative- 
exponential.^

The sorts of algorithm used in practice by real CPU schedulers are only very roughly 
approximated by this idealised scheduler. Nevertheless it is of considerable interest 
that the idealised process produces perfect negative-exponential distributions. It 
argues that it is very likely that real schedulers have the effect of making effective 
service time distributions more nearly negative-exponential than they were before; 
and as CPU service times are known to be quite near to negative-exponential 
already this adds to our confidence in the reasonableness of the assumption with 
regard to the CPU.

Suppose now that there are two classes of customer corresponding to c = 1 and 2, 
with Qc members in class c, and a server whose total service rate k  is apportioned 
by the PS algorithm between the two classes in amounts kc, where k x + k2 = k. The 
probability that the next slice of time will be for class c will be Qcj(Qi + Q2) and 
that service is given in the next interval dt  is kc dt. Hence the service rate for 
a member of class c is

k c Qc K Q , + Q 2) (30)

We can represent this situation by a football model in which the server is repre­
sented by a team of two players corresponding to the two queues for the single 
PS server. These two players share their kicking power between them. We give
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them a team function as follows. If  the team is numbered t  then, again with the 
notation of Section 5 , we have the form

(Q i , Q i )  =
(6 1 + 62 )*

6 1 * 6 2 *

Qi
*1

e2
*2 (31)

from which we see that eqn. 12 gives for the kicking rate for class c

{ Ac, D lxc } Qcl(Qi + 6 2 ) (32)

as follows for c = 1 for example by putting X t (Q - 1) = X t (Qx - 1, Q2 ).

Thus if we identify f(c, f)/xc with kc we have a model with the required service 
rates as functions of queue lengths.

In general, for more than two classes of customer we shall have a team function 
that is a multinomial in the xs instead of the binomial in eqn. 31. Such an arrange­
ment will suffice to represent a server serving several classes of customer, each of 
which requires service to an extent which is statistically distributed with a distribu­
tion depending on the class.

A model may contain two types of servers: multiclass PS servers as above with 
general service-time distributions, and servers serving a single class of customer 
for which the service-time distribution is negative-exponential but to which a 
different, so far unspecified, queue discipline applies. For example, consider a 
batch/MAC system comprising a CPU which handles both batch and MAC pro­
cesses, a peripheral A which handles only batch and a peripheral B which handles 
only MAC. Assume that the CPU is PS-scheduled with arbitrary service-time distri­
butions for batch and MAC, and that both peripherals have negative-exponential 
service times and first-in-first-out (FIFO) queue disciplines.

Suppose further that it is possible for a process to  move from any valid combina­
tion of server and class to  any other through some chain of such combinations. This 
is possible if batch processes leaving the CPU can occasionally be brought online 
as MAC jobs and correspondingly if MAC jobs can be put in the background. Thus 
processes can change class at the CPU provided that they go to the peripheral 
appropriate to  the new class and similarly processes arriving at the CPU can change 
class before being scheduled. This proviso is necessary to  ensure that there is always 
a path from any state Q of the system to any other through intermediate states 
joined by nonzero flows. The complications that result if this condition is not ful­
filled are discussed in Section 9.

Given all these conditions, the system can be mapped on to a football game as 
follows:

CPU team (2 players) player 1 PS-scheduled batch processes 
player 2 PS-scheduled MAC processes
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Peripheral A team player 3 batch processes, negative exponential
first-in-first-out

Peripheral B team player 4 MAC processes, negative exponential
first-in-first-out

Then eqn. 11 takes the form

X(Ql t Q2, Q 3,Q<) =
( Q i  + & ) !

e , !  e 2 !

Qi Qi Qz Qa
x, x2 x 3 x 4 (33)

As with the single-class model of the previous Section the xs can be taken as being 
equal to the work done by the players. Thus x x can be taken as the CPU utilisa­
tion time for batch processes and x2 as that for MAC.

Eqn. 33 enables the probability distributions of queue lengths to be determined, 
along lines similar to those to be given in Section 10 below. The relevant genera­
ting function, as in Section 6, is

7 (Z) " S  X(Ql ’ Ql’ Qs’ Qa) z Qi +Q2+Q3+Qa

= jl -  (X! + x 2)z}  -1 (1 - X 3 z ) -1 ( i  -  x4z)_1 (34)

This generating function is exactly that which would be obtained with a single­
class model as described in Section 7, with loadings x 1 + x 2, x 3, x4 for the three 
components. The analysis shows therefore that it is possible to derive the same 
generating function, and hence the same throughput, with the rather different 
assumptions of the multiclass model.

The analysis extends straightforwardly to systems with any number of compo­
nents and any number of classes at the PS scheduled components. There is however 
the proviso mentioned earlier, that there must be a route between any allowable 
combination of class and component and any other; thus we could not apply this 
model as it stands to a case where MAC processes must remain forever MAC and 
batch remain forever batch. An extended version is required for this which is 
discussed in the next Section.

9 Multi-class models: the degenerate case

We deal here with the situation known as the degenerate case, in which it can no 
longer be assumed that there is a path between any pair of states of the system 
without restriction. Only the general lines of the analysis are given, and the 
algebraic detail omitted in the interests of brevity.

Consider first the Jackson model (Section 5, eqn. 14) with constant kicking rates; 
the time spent by a single ball at the feet of the players is given by the solution of 
eqns. 17:

/) xi = y]| *(/'> o  xj
i  i
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Suppose now that the game comprises two groups of players who never kick to 
each other, so that if there is only one ball in play it will remain always in one 
group or the other. In this case the equations will have two linearly independent 
solutions.

Next suppose that we give these two groups, which we shall call subgames, N x and 
N 2 balls. Then a particular state of the queues is feasible only if the sums of the 
lengths of the queues in the two subgames are and N 2, respectively.

With this revised definition of feasibility the analysis of Sections 4 and 5 remains 
valid. The normalising factor G is now calculated by summing X(Q) over all feasible 
Q in the new sense; and the concurrency of the system is described by the pair 
(iVt , N 2) which can be conveniently denoted as a vector N.

As in Section 6, throughput can be calculated with the aid of a generating function. 
Now however we need a bivariate function of the form

,  ,  V 1 ^ l ( 0 > ^ ( Q )
7 ( Z l . Z 2 > =  2_J Z 2

= 2  2 |  z22 (35)

«i=o n2-o

When we come to calculate the throughput we find that X(Q -  I) in eqn. 19 is 
equal either to g(Nx -  1,7V2) or to g(N1, N 2 - 1) according to whether player i is a 
member of subgame 1 or 2. We then find that in place of the single overlap factor 
g(N -  l)/g(N) we have two such factors -  1, N 2 )/g(N) and g(Nx, N 2 -  l)/g(N) 
which give the throughputs in the two subgames compared with what these would 
be if there were only one ball in play in each.

For example, if for the system described on p. 163 there was no possibility of 
processes changing class at the CPU we should have a system with concurrencies 
constrained as follows:

Batch concurrency in sub-game 1 Qx + Q3 = N X 
MAC concurrency in sub-game 2 Q2 + Q4 = N 2

The generating function is obtained by summing the eqn. 35, using eqn. 33 to give 
X. The result is

t ( z i , z 2 ) =  I t  (x xz x + x2z2) - 1 (1 -X j Zj ) - 1 ( 1 - X 4 Z 2 ) - 1 (36)

which may be compared with eqn. 34.

In general, a degenerate multiclass model has a generating function in as many 
variables as there are subgames. Such functions can be built up as described in 
Section 6 by multiplying together the appropriate multivariate power series. This 
principle of summarising all the relevant information about a system or network of
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N2= MAC processes:
4 3 2 1 0

Fig. 2 Throughputs of MAC and batch processing (relative to throughput when run single­
processing in isolation) when a total concurrency of 4 is variously split between batch and 
MAC
Assumed loadings (time units)
Batch xj = CPU = 0°7, x3 = peripheral 'A' = 0*3 
MAC x3 = CPU = 0°5, X4 = peripheral 'B' = 0=5

Degenerate multicalss model as in eqn. 36

components in the form of a power series or array of coefficients is often referred 
to in the literature as Norton’s collapse, by analogy with the process of reducing an 
electrical network to an equivalent circuit using Norton’s theorem.9

As an illustration of the use of this form of the model, Fig. 2 shows the results of 
the calculation of the relative throughputs of batch and MAC work for the system 
whose generating function is given by eqn. 36. It is assumed that if the batch load is 
run on its own on a single-programming basis the CPU utilisation is 70%, so that on 
average it is busy for 0*7 s of every second of elapsed time; and the peripheral A is 
busy for 0*3 s. Thus x t = 0*7, x 3 = 0*3. Similarly if for the MAC load we assume
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50% loading of the CPU when this load is run on its own with single programming, 
x 2 = x 4 = 0«5.

Given these values we can calculate the relative throughput factors

m  -  andm  m
for any pair N lt N 2 . Fig. 2 shows the results for a total multiprogramming level 
N , +N2 = 4.

It will be noticed that the curves are very nearly straight lines, and that therefore 
we should not have been seriously in error had we calculated the results by simple 
linear interpolation between extremes of pure batch and pure MAC. This is a 
valuable conclusion because the throughputs for these extremes can be calculated 
using the simpler single-class model.

For a fuller treatment of the theory the key papers are those listed in References 
9 and 10.

10 Queue lengths

So far all results have concerned throughput; but there are many situations in which 
we are interested in response times and therefore in queue lengths. The models that 
have been described involve representing the behaviour of system components by 
power series which are multiplied together to give a representation (generating 
function) of the complete system. It turns out that the mean queue lengths can be 
obtained quite simply from these same power series.

With the Jackson model the probability of the system being in a state Q is given by 
eqn. 16. The mean length of queue for the z'th player in the game is the sum of 
Qi K Q )  over feasible Q, and it will be seen from eqn. 16 that this is the result of 
applying the operator x ft/d x j to the right side of the equation and summing over Q. 
We therefore get the result we are seeking by applying the operator

*i 9 
G dxj

to the generating function

700 = n  (1 -  *;• z ) 1
i

and finding the coefficient of zN.

Similarly, for the degenerate multiclass model described in Section 9 we find that 
the mean queue length in subgame 1 is the coefficient of 

Nr N 2Z! Z2
in the expansion of

(Zr 3/x, ) t ( z i , z 2)/g (N u N 2)
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11 Implementation and conclusions

The practical application of the models described involves a simple algebraic tech­
nique, the multiplication of power series. This can be done with the aid of a com­
puter program which is not at all difficult to provide, and which comprises a small 
package of Algol procedures for addition, multiplication, division and scaling of 
power series. The extensions required in going from single-class to multiclass models 
are simply the replacement of single DO loops by multiple loops to match the 
number of subgames involved.

For throughput calculations, single-class models are generally quite adequate and 
very many such calculations have been carried out routinely in ICL for sizing 
purposes. Moreover, this type of model gives a great deal of insight into system 
behaviour for very modest complexity.

For the analysis of response time with multiple classes of work, a multiclass model 
may be used, but the increase in complexity is not a negligible factor. A very 
considerable benefit from such multiclass models, however, is the light they throw 
on the limitations of simpler models. The techniques have been used in the USA to 
examine the effects of giving different resource priorities to different classes of 
message; and for this purpose some very extensive software systems have been 
created for synthesising and analysing large networks. It could well be that, with 
Viewdata services for example, such tools will prove to be needed for analysis of 
response-time problems when the service eventually runs out of resources and it 
becomes necessary to study the consequences of different possible methods for 
resource allocation.
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Appendix
ACM Sigmetrics Workshop on the Theory and Application of Analytic Models to 
ADP System Performance Prediction 
University of Maryland, 12-13 March 1979

This 2-day meeting was a sequel to one held two years ago under the auspices of 
the US Federal Computer Performance Evaluation and Simulation Center 
(FEDSIM). It was a small meeting intended for specialists, with an attendance of 
about 150. The highlights were an overview by Professor James Browne of the 
University of Texas, a debate on the validity of a fresh approach to queuing theory 
known as operational analysis, a very good paper on the application of what we 
know as FAST to a large Univac system at Bell Labs and an excellent paper by one 
of the implementers of IBM’s packages for the solution of queuing problems in 
networks.

1 Theory overview

Browne’s group at Texas has been closely connected with the development of 
queuing-network models from the start. The group also had close links with a simi­
lar group at IBM Yorktown Heights. In the period 1965-1972 the performance 
models in use were comparatively primitive, being restricted to central server 
models with exponential service times and a single job class. During the period 
1972-1976 extensions to include queuing networks and multiple job classes took 
place. Hierarchical methods were introduced, as were methods for dealing with 
state-dependent routings, extended servers and mixed networks. Since then, how­
ever, progress has been slow. In particular, the vexed problem of blocked 
networks — where the customer cannot move on to the next server because there 
is no room — has proved much more difficult than had been expected. Approxi­
mate methods are, however, making progress, as are hybrid analytic-simulation 
methods.

An important new area of work is in the optimisation of networks: the problem 
here is not how to evaluate the network but how to establish that the performance 
surface is convex with a unique optimum.

All the American work reflects the prevalence of large communication networks 
and is rather less concerned than we are with system performance.

2 Operational analysis

This is an ingenious but controversial idea for simplifying the derivation of queuing 
network theory, due to Denning and Buzen (Buzen was using FAST — type models 
before 1972: see References 3 and 4 in the main paper). The idea may be explained

ICL TECHNICAL JOURNAL MAY 1979 169



as follows. Consider a simple negative-exponential server serving a stream of custo­
mers — the simplest queuing situation. The usual way of treating this is to assume 
negative-exponential service times and random arrivals, from which it can be 
deduced that the average rate of service when the queue length is n, i.e.

number of customers served when queue length is n 
time during which queue length is n

is constant, independent of n; and the usual results for the probability distribution 
of queue lengths follow. The snag is in the assumption of exponential service times, 
which do not always happen.

Buzen gets around the difficulty by assuming directly that this service rate is 
constant, in which case the rate is said to be homogeneous. It is theoretically 
possible to have a situation in which service rates are homogeneous even though the 
distribution is not negative-exponential. For example, if we take a negative- 
exponential system and distort the time scale in some arbitrary manner, the result­
ing distortion will upset the negative-exponential form but not necessarily the 
homogeneity. The assumption of homogeneity makes it possible to explain the 
derivation of queue-length distribution very simply; but the snag here is that there 
is no more evidence for homogeneity than there is for the negative-exponential form, 
although in principle it would be easier to gather such evidence. There is also 
another objection, raised by Professor Sevcik of Toronto, that, although homo- 
geniety is sufficient for the derivation of the throughput of a system, it is not 
sufficient for the derivation of the response times, for which a service-time distri­
bution must be assumed.

It should be stressed that in practice the operational analysis approach yields the 
same results as the older Markov approach in all cases for which it is appropriate. 
Section 3 of the main paper refers to this.

3 Bell Laboratories

There were two papers from Bell of which the second, by Sheldon Becker, gave a 
convincing account of the benefits of using a simple FAST model for predicting the 
performance of a very large real-time inventory system running on a Univac system. 
As others have found, much the most difficult part of the job is getting the model 
data right. Becker concluded that ‘if we give the models the right input we do 
extremely well’.

They also used event simulation but found that the run times (15 min) were too 
long to permit an adequate exploration of the performance space.

4 Queuing-network solution packages

Both IBM and the University of Texas have implemented large packages for execu­
ting the algorithms for single-class and multiclass models. Rudi Downs of IBM had 
helped Martin Reiser (whose name appears in the literature in connection with 
computational methods) to implement the QNET4 and RESQ packages. These
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provide an interactive means of setting up the data in a user-orientated language. 
Furthermore, RESQ provides the means for including results of simulation of 
particular components or subsystems in the analytical model.

An interesting feature of the numerous applications illustrated was the occurrence 
of studies of queuing for access to code in software systems. Similar studies have 
been carried out in ICL in relation to queuing for semaphore-protected code in 
software.

5 Hand-held calculators

Interest was expressed in the ICL TI 59 programs for hand calculators which offer 
an alternative to the use of a large package. This alternative is quite suitable in 
many cases.
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Advanced technology in 
printing: the laser printer

A.J. Keen
ICL Product Development Group, Northern Development Division, 

Kidsgrove, Staffs.

Abstract

The electrophotographic process used by some recently produced high- 
performance printers is described. The basis of the process is the use of the 
modulated beam from a laser to write the information that is to be printed 
as a pattern of discharged areas on the charged photoconductive surface of 
a drum; the visible record is then produced by using this pattern to control 
the attraction of a coloured powder (toner) to the paper. Very high quality 
of printing and an unlimited range of character fonts can be achieved, with 
speeds of over 10,000 lines per minute. Some technical and other details 
given in the paper relate to the ICL LPS-14 laser printing system which 
uses this process.

1 Nonimpact printers

For many years now the familiar impact printer, in which the impression is formed 
by causing a hammer to strike a metal relief of the appropriate character, has met 
the needs for printing of computer output, offering reliability, good quality of print 
and adequate speed. However, demands already being made, and certain to arise 
more frequently in the future, exceed the capabilities of impact printers in speed, 
quality of print and versatility of character repertoire. Nonimpact printers, often 
referred to as NIPs, are freed from the restrictions inherent in mechanical printers 
and can meet these demands at an economic cost.

As the name implies, nonimpact printers do not use precast type to form the 
impression on the paper; several technologies are available of which the one to be 
described here is the electrophotographic process. One of its advantages is that it 
allows the use of standard fanfold computer paper, whether preprinted or plain; 
this compatibility with conventional printers makes it easy for the user to change 
from one type to another. As with all nonimpact printers, only single-part paper 
can be used, but the very high speed makes it practical to run off as many copies 
of any document as are required, with the extra advantage that all are equally 
legible; the elimination of multipart paper is itself an advantage. The process 
also makes it simple to produce any design of standard form by printing directly 
on to the plain paper and thus to reduce the need to hold stocks of pre-printed 
stationery. How this is done will be described below, as will the means by which 
high resolution (on which the quality of the print depends) and the great flexi­
bility of character repertoire are achieved.

172 ICL TECHNICAL JOURNAL MAY 1979



Several printers using the electrophotographic process are now available, including 
the Siemens 2500, the IBM 3800 and the Xerox 9700. ICL has introduced an off­
line system LPS-14, which prints from magnetic tape at speeds up to 21,000 lines 
per minute. All use lasers in the process and offer similar performance and facilities.

2 The electrophotographic process

The essence of the process is shown in Fig. 1, which describes the LPS-14 system. 
The functions of the various components will be explained as we go through the 
process. In summary the process is as follows.

The surface of the drum is coated with a photoconducting material and is charged 
to a potential of several hundred volts. The beam from the laser passes through the 
transparent modulator to the surface of the rotating mirror from where it is re­
flected to strike the drum surface. The mirror is multifaceted and as it rotates the 
beam sweeps across the drum and returns to its starting point for the next sweep; 
the photoconductive property of the drum surface is that charge leaks away where 
light falls on to it, so if the beam intensity were steady during the sweep a line 
would be ‘written’ across the drum in the form of an area of discharge, and a series 
of parallel lines as the drum rotates. The modulator effectively switches the beam 
on and off; it is a block of high-refractive-index glass with an acoustic transducer on 
one face; high-frequency pulses sent to the transducer generate acoustic waves in 
the glass which change the refractive index as they travel and thus deflect the 
beam. It is arranged that only the deflected beam, not the undeflected, strikes the 
drum, so a sequence of pulses fed into the modulator is reproduced as a pattern of 
discharged spots along a line on the drum surface. Finally for this part, information 
to be printed is read into the printer’s buffer — either directly from the computer or
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from tape or disc — and from there controls the modulator; and so produces a 
representation of itself as a pattern of discharged spots written along lines on the 
charged surface of the drum.

The remaining stage is the printing from this electrostatic image, and, in principle, 
this is done by using it to cause what is called toner powder to adhere to the paper; 
the toner is a thermoplastic material with a carbon-black pigment and might be 
called a dry ink. It is attracted to the discharged areas of the drum surface, thus 
making visible the electrostatic pattern, and as the drum rotates it comes into 
contact with the paper, to which it is transferred. The paper then goes through 
heated rollers to make the impression permanent, any remaining toner on the drum 
is removed by the cleaner brush shown in the diagram, the electrostatic pattern 
removed, and the process repeated for the next piece of information in the buffer.

The process is continuous and is of constant velocity: i.e. printing continues with­
out interruption so long as there is information in the buffer and the time to print 
a page is independent of what is printed. A typical rate of paper feed is 145 ft/min 
(45 m/min). With a line spacing of 6 per inch this gives a printing speed a little 
over 10,000 lines per minute, and over 20,000 lines per minute at 12 lines per inch 
spacing. Maximum efficiency is obviously attained by putting as much information 
on a single page as possible and it is perhaps better to regard the device as a page 
printer rather than as a line printer.

It would be reasonable to ask, why use a laser rather than any other light source? 
The answer is that the properties of laser light allow very high precision to be 
attained in the optics of the system and high energy input at the drum surface; 
and that both these are needed to get quality and performance required.

3 Some details

3.1 Photoconductive process

The photoconductive material used in the drum coating is selenium (Se). In its 
pure amorphous (i.e. noncrystalline) form it will retain an electrostatic charge for 
a considerable time in darkness and when it is exposed to light the charge is con­
ducted away at a rate depending on the light intensity. Both purity of the material 
and the amorphous form are essential to the electrophotographic process, because 
otherwise there will be irregularities in the surface charge and losses by conduction 
which will degrade the photoconductive function.

Crystallisation of amorphous selenium commences at temperatures above 50° C and 
with photon energies above 2*2 eV. Peak photosensitivity is near to 0*4 pm wave­
length, but here photon energies are above 2*2 eV. Addition of arsenic (As) extends 
the photosensitivity towards the orange—red band, where photon energies are 
below the crystallisation threshold, and also raises the temperature threshold above 
the 50 C. Arsenic also increases the hardness of the photoconductive layer and its 
resistance to the abrasion that is inherent in the complete process. The general 
practice is to use arsenic selenide (As2 Se3) and a helium-neon laser, which gives 
light of wavelength 0-633 pm for illumination. The selenide is deposited in vacuum
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to a thickness of 50 jum under controlled conditions on the surface of an aluminium 
cylinder on which a film of aluminium oxide has previously been deposited to  act 
as an electron barrier.

Further difficulties arise because of the semiconducting properties of selenium. In 
the printer the initial charge on the drum will decay even in darkness because of 
injection of electrons from the base conductor, despite the electron barrier; and 
after a rapid charge-discharge cycle this decay will increase, owing to the release of 
conduction carriers previously trapped at impurity sites during discharge. This 
latter effect also prevents the complete discharge of the desired areas during ex­
posure. Consequently a high charging voltage is necessary, to ensure that with 
these limitations a great enough difference in potential between charged and dis­
charged areas may be obtained. It is found that the initial charge must be to at 
least 700 V. This allows a difference of at least 300 V between the two areas, 
which provides adequately strong fields for the attraction of the toner particles. 
It is found that a 50 pm  selenium layer can be positively charged to about 1000 V 
before rapid breakdown in its resistivity occurs, and this sets the limit in the practi­
cal case.

Charging and discharging: The charge mechanism makes use of the corona emission 
from a thin taut platinum wire running axially through an approximately cylindrical 
hollow conductor with a high voltage (over 4 kV) applied between the wire and the 
conductor. As indicated in Fig. 1 the actual arrangement is that a longitudinal strip 
along the drum surface forms part of the conducting shell, and charge is deposited 
on this as it passes under the wire. A first approximation to the rate of charge 
deposition, and hence to the potential reached, can be calculated by treating the 
shell as a cylinder, which is good enough to  guide the design of the device. With a 
drum surface speed of 75 cm/s* a 12 mm section will pass under the wire in approxi­
mately 16 ms and will reach a potential of around 100 V. Thus, in order to reach 
the 700 V or over that is required the charging device has to have a number of 
parallel wires and cover a wider section of the drum.

Again as a first approximation, the rate o f discharge of an area of the drum surface 
exposed to light can be taken as proportional to  the energy intensity of the incident 
light. This is not however a good approximation and is considerably modified by 
effects due to the semiconductor properties of the selenium; a full treatment is 
given in Reference 3. With the values already quoted it is found that the incident 
light energy must be around 4 *5 W/cm2.

3.2 Optical system

The optical system is shown in Fig. 2. As was explained in Section 2 the beam 
path can be deflected as the beam goes through the modulator and the geometry 
is arranged so that only the deflected beam strikes the drum. The light emerging

* This corresponds to the paper speed of 145 ft/min given above. The mixture of metric and 
imperial units is regrettable but difficult to avoid, because, while the design of the machine is 
based on metric dimensions, printing standards such as line and character spacing are defined in 
imperial units, such as lines per inch.
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from the laser is polarised and the beam is about 1 mm in diameter and is closely 
collimated. For efficient operation of the modulator the beam diameter must be 
reduced, which is the reason for the ‘beam converger’ in Fig. 2, and the system 
must be set up so that the beam has a defined angle of incidence and a defined 
direction of the plane of polarisation. With proper setting an efficiency of 80% can 
be achieved. The transducer generates acoustic waves in the modulator of 50 MHz, 
which deflect the beam by about 6 mrad, which gives a linear deflection of about 
0*15 in at the drum surface. After passing through the modulator the beam is 
expanded before being re-focussed at the drum surface to give the required size of 
dot.

The mirror will typically have 12 facets; in this case it must rotate at approxi­
mately 22,000 rev/min to give the required scanning rate.

la se r

Fig. 2 Detailed structure of image written on drum

The detailed structure of the image written on the drum is shown in Fig. 3. Each 
switching of the laser beam writes a dot, as a discharged area, on the charged 
surface. The dot diameter is 0*010 in and the spacing along the swept line is 
0*0055 in; thus adjacent dots overlap and give the effect of continuous line. The 
spacing between successive lines is 0*00694 in, again giving overlap. These dimen­
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sions are equivalent to resolutions of 180 per inch horizontally and 144 per inch 
vertically, which give excellent character definition meeting the requirements of the 
ECMA-11 standard.4 The scanning rate is determined by the line spacing and the 
speed of rotation of the drum; here it is approximately 4,200 scans per second.

de ta il of sweep

Fig. 3 Optical system

The modulator, which is controlled by the information held in the printer’s buffer, 
can be turned on every 80 ns, which is therefore the rate at which the dots can be 
written on the drum. If we allow for the rise and fall times in the modulator switch­
ing, each dot is exposed to the full intensity of the beam for about 35 ns. The 
incident light energy necessary for effective writing was given in Section 3.1 as 
about 4*5 W/cm2, which, for a dot of diameter 04)10 in (0*0254 cm) implies a 
total input over the dot area of about 2*5 mW; this has to be increased to about 
4*0 mW to allow for losses in the optical system. Thus the laser beam has to be of 
at least 4 mW.

3.3. The printing process

As was explained in Section 2 the visible image is produced by causing particles of
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a coloured powder, the toner, to adhere to the discharged areas of the drum. There 
is an electrostatic field between these relatively negative areas and the unexposed 
areas, which still carry the full positive charge. The field is confined effectively to 
within a very short distance (about 30 jum) of the surface. This implies that the 
toner particles must be brought into intimate contact with the drum surface and 
also that to be attracted by the field they must carry a positive charge.

In the development chamber (Fig. 1) the toner is mixed with carrier material 
which consists of resin-coated magnetic beads of about 300 Aim in diameter. The 
mixing action causes a charge transfer between the toner and the carrier beads, the 
toner becoming positively charged and being held to the carriers by mutual attract­
ion. The mixture is conveyed to the drum by rollers rotating in a stationary mag­
netic field and on which the carriers, acted on by this field, assume a brush-fibre 
stance and are wiped against the drum. Toner particles will be transferred to  the 
drum provided that the field force attracting them exceeds that holding them to the 
carriers. The latter depends on the proportion of toner in the mix, which is there­
fore a critical parameter and is controlled automatically by a monitoring process 
which is described later in this Section.

The next stage is that the drum surface, now carrying toner powder held to the 
discharged areas, comes into contact with the paper on which the information is 
to be printed. Transfer of the toner from the drum to the paper is brought about by 
applying a negative charge to the paper, sufficient to overcome the attraction to the 
drum. This is done by using a single-wire corotron operated so as to give peak 
corona current. The toner is only loosely held to the paper at this stage and the 
image is made permanent with the application of heat and pressure to the paper, by 
passing it over a heated platen and then through heated rollers. The fusing tempera­
ture of the thermoplastic material of the toner is around 130°C. To ensure proper 
fusing in the short times available at the speeds of printing being achieved, the 
rollers are heated to about 195°C and have a coating of a polymer which deforms 
under pressure, thus increasing the area and consequentially the time of contact 
with the paper.

For the monitoring referred to above, a small all-black square is printed at the edge 
of each sheet and its density measured. If this falls outside preset limits the com­
parison is used to adjust the proportion of toner in the toner-carrier. The carriers 
are returned to the developing chamber after each printing and reused; in time they 
become permanently coated with fine particles of toner and lose their effective­
ness, when they have to be replaced; this occurs after about a million sheets have 
been printed. It will be clear from the description given in the preceding paragraphs 
that the complete system works to very tight tolerances, and that therefore a com­
prehensive range of testing and diagnostic facilities must be provided.

Forms-design printing: This term refers to ‘overlay printing’ of a standard form 
onto each plain sheet on which the information is printed; an invoice form is an 
example. There are two ways of doing this. One is to use a subsidiary drum around 
which a transparency is wrapped and from which an image of the form is cast on 
the photoconductive drum just before the region where the laser beam is to write 
the data. This is shown in Fig. 1 as the ‘forms design’ component. The other is to
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code the description of the form and to read this into the printer’s buffer so that it 
is written on to the drum along with the relevant data. The second method has the 
advantages of not requiring any manual intervention and of allowing many different 
designs to  be stored and selected as required.

4 Summary and Conclusion

The electrophotographic process has been developed around photoconductive 
materials previously proven in document copiers. A multiwire corona charging 
device is used to charge the photoconductor uniformly to a sufficiently high 
voltage such that laser exposure of computer-generated information in dot-matrix 
patterns will create consistent electrostatic images on the photoconductor. These 
images are developed by magnetic-brush application of toner powder. After transfer 
to paper the toner images are made permanent by hot-roll fixing.

The combined techniques used in the process enable print images to be generated 
at over 20,000 lines per minute and transferred to standard computer paper. The 
formation of characters in dot-matrix patterns allows multiple sets of character 
shapes to be stored and selected for use. It also enables character modification by 
which user-designated characters may be printed. Online forms generation using 
either transparency projection or laser imaging of forms-design data can replace the 
need for preprinted stationery.

To the user the nonimpact printer introduces new standards of speed, quality and 
flexibility in computer printing.
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The new frontier: 
three essays on job control

D.W. Barron
Professor of Computer Studies, Faculty of Mathematical Studies, 
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‘Man is bom free but is everywhere in chains ’, said Rousseau. A recent candidate in 
a computer-science degree examination put it more succinctly: ‘The function o f  the 
software is to prevent people using the hardware ’. On anything bigger than a micro­
computer the user interacts not with the hardware but with the operating system, 
and the operating system interface that most concerns him is the job-control 
language. The horrors o f  job-control language have been extensively documented, 
and there is no doubt that this is the least satisfactory aspect o f  operating-system 
technology. In these essays we look at some current developments in this field and 
make some suggestions as to how the situation can be alleviated. We first explore 
the topic o f  standardisation.

1 Is a common job-control language both possible and desirable?

In many ways the current situation in job control resembles the state of program­
ming before the advent of high-level languages. Just as each computer had its own 
assembly language, making program transfer very difficult, so each operating 
system has its own job-control language (JCL). Like the assembly languages, these 
are incompatible; like the assembly languages they have, in general, a minimal 
structure and an impoverished syntax, and they are, if that is possible, even more 
obscure and error prone than assembly language ever was. (The consequences of 
inserting a single blank in a line of JCL for IBM’s operating system are truly awful 
to contemplate.)

In the programming field great advances have been made by the introduction of 
machine-independent (on the whole) standardised (more-or-less) high-level lan­
guages, and it is tempting to suppose that similar benefits might accrue in the field 
of job control. Many national and international organisations are pursuing this fine: 
an incomplete list includes the British Computer Society, the Dutch JCL Commit­
tee, IFIP ( . . .  and now, from the people who brought you Algol 68 . . . ) ,  ANSI 
(first FORTRAN 77, now . . . ) ,  and CODASYL. (This last organisation claims that 
it plans to do for JCL what COBOL did for programming languages: a terrifying 
prospect.)

The problems confronting anyone attempting to design a machine-independent 
job-control language are formidable. It is not the syntax that causes the trouble, it 
is the semantics. It is a cardinal principle of language design that you should decide 
what you want to say before you think about how you are going to say it, and

180 ICL TECHNICAL JOURNAL MAY 1979



in job control it is not entirely clear (and certainly not universally agreed) what is 
the fundamental universe of discourse. Apart from the superficial differences of 
external form, JCLs for existing operating systems show clearly that they are 
predicated on very different models of the process of using a computer. To give but 
one example, ICL systems recognise clearly the concept of a ‘user’, who has 
proprietorial rights over certain resources that have been allocated to  him, and can in 
consequence own files, initiate jobs etc. There is no analagous concept in IBM 
operating systems. In so far as the concept appears at all, the user is the person who 
pays the rental for the computer system—the idea of a community of users sharing 
the machine is not really there at all. It is therefore difficult to conceive of a 
nontrivial job-control language that could be common to ICL and IBM machines.

If this argument is taken to its logical conclusion it would appear that a universal 
job-control language implies a common operating system. Despite the confident 
prediction by Gene Amdahl that IBM’s MVS will become the de facto standard 
operating system for the industry, we may reasonably doubt the emergence of a 
common operating system at the present time. The technology of operating systems 
is nowhere near mature enough to justify standardisation at present, and we may be 
sure that companies who have invested millions o f pounds in the development of 
an operating system will not readily abandon that investment.

It thus appears that a common job-control language is not possible. Yet there is an 
evident need for it. Or is there? When one reaches a dead end in an argument it 
is always worthwhile reassessing the premises on which the argument is based. The 
need for a common JCLis by now a proposition in the ‘motherhood and apple-pie’ 
category, and, like many such propositions, it does not stand up to close scrutiny. 
Computer users, like the jobs they submit, come in all sorts of shapes and sizes, and 
it is no more reasonable to assume that a single JCL can be devised to suit them all 
than it is to assume that a single programming language is suitable for all classes 
of jobs from sorting to simulation. Even within a single machine range the range- 
standard JCL is found to be overcomplicated, and subsystems are developed for 
certain well defined and common tasks, e.g. running a simple Fortran program. 
It is reasonable to argue that the user should not be concerned with any aspects of 
machine organisation that are not self-evidently part of his job. Such relegation of 
irrelevant detail is very difficult in a general-purpose language, by virtue of its 
very generality. However, once we stop trying to be all things to all men, and 
tailor a subsystem to a particular class of users and/or jobs, the situation is very 
different.

It is at this level of subsystems that we require commonality. Given that Fortran 
is (or should be) the same on all machines, the user could reasonably expect that 
the protocol for using Fortran, including such things as linking external files to 
input/output channels, specifying libraries, choosing peripheral devices, should be 
similarly standardised. Indeed, the specification of a Fortran subsystem could 
reasonably form part of the international Fortran standard, and other languages 
should be treated similarly.

I f  such standard subsystems were available, much o f  the demand for a ‘universal 
JCL’ would vanish. Each machine range would still have its job-control language
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(system-control language) for the benefit o f  the specialised systems programmer: 
it is reasonable that these should differ between machines, since they reflect the 
underlying operating-system structure in the same way that assembly languages 
reflect the machine architecture. These subsystems can, with some grief and pain, 
be grafted on to existing operating systems. A prime requirement in the design o f  
future operating systems must be to facilitate the construction o f  subsystems. The 
third essay in this group explores some o f  the implications for operating system 
design, but first we look at a typical subsystem from the user’s point o f  view.

2 Simple interfaces for simple users

In the preceding essay we have argued the case for subsystems designed for simple, 
well defined classes of job. This essay explores the design of such a subsystem. I 
have chosen to describe a system for running Pascal programs, because that is the 
aspect of current operating systems with which 1 most frequently come into 
contact. However, the subsystem here described would apply with only trivial 
modifications to Fortran, Algol or any other language.

The fundamental principle underlying the design of the interface is that the user 
should never be required to specify things that are not directly relevant to his job 
as he sees it. Thus, while it is reasonable for the user to say where his source 
program is, and what is to be done with the results, it is not reasonable for him to 
be expected to  specify the work files to be used by the compiler.

For a simple job, this can be achieved if the job-control system allows macros 
(procedures). Thus, with a suitably designed macro a simple Pascal job using default 
input-output is very easy to run on VME/B:

JOB(username, etc.)
PASCAL

<program>
+ + + +

<data>
+ + + +
ENDJOB 
* * * *

However, as soon as we introduce any variation from this very simple basic job, 
complication sets in. For example, suppose I want to edit the contents of a file 
and then compile the edited program, also saving the source; I need something like 
the following

JOB (username, etc.)
NEWFILE (NAME = NEWPROG)
EDIT (OLDFILE = PROG, NEWFILE = NEWPROG)

<editing commands>
+ + + +
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PASCAL (NEWPROG)

<data>
+ + + +
SAVEFILE (NEWPROG)
ENDJOB 
* * * *

If I want to pass the edited file through a preprocessor (written in Pascal) I am 
likely to finish up with something like the following sequence.

JOB (username, etc.)
NEWFILE (NAME = NEWPROG)
EDIT (OLDFILE = PROG, NEWFILE = NEWPROG)

<editing commands>
+ + + +
ASSIGNFILE (NAME = NEWPROG, LNAME = ICL9CE3)
NEWFILE (NAME = MODPROG)
ASSIGNFILE (NAME = MODPROG, LNAME = ICL9CE4)
PREPROCESS

<commands to preprocessor 
+ + + +
PASCAL (MODPROG)

<data>
+ + + +
SAVE (NEWPROG)
ENDJOB 
* * * *

This cannot be regarded as a simple or ‘friendly’ interface. In part this is due to the 
jargon, but even more so it is due to the stilted form of communication: each line 
consists of an imperative verb followed by some parameters. It is surprising how 
even a flavour of natural language improves the situation.

The sequence given above resembles a sequence of commands to a robot (as indeed 
it is). If we compare it with a piece of English Prose we notice one particular differ­
ence: it contains none of the common prepositions, demonstratives and connectives 
like fit’, ‘this’, ‘with’ etc. The clue to a friendly interface is the use of these 
neglected parts of speech. Compare the following version of our job:

JOB (Username etc.)
EDIT (PROG) WITH THIS 
:<editing command&>:
CALL IT NEWPROG 
PREPROCESS IT WITH THIS 
:<preprocessing commands>:
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COMPILE IT 
RUN IT WITH THIS
:<data>:
ENDJOB 
* * * *

We have immediately obtained a much more ‘friendly’ interface, by removing 
extraneous material such as invented names for temporary files.

We achieve this new interface in a very simple way. Each processor (editor, 
compiler, preprocessor) is regarded as a file-transforming device which takes a file 
and produces another file. It may also require steering information. The file created 
by the most recent such process is referred to as IT; steering information is intro­
duced by WITH; and THIS introduces an immediate data stream (‘alien data’ in 
ICL terminology, a ‘here’ document in the sense of Barron and Jacksonl).

The idea can be readily extended, e.g. concatenation is denoted by ‘AND’, thus:

COMPILE PROG 1 AND PROG 2

Input of a named file is, naturally, achieved by

READ THIS
:<data>:
CALL IT filename

A typical subsystem might be defined as follows.

(a) A command consists of an imperative verb followed by a principal file 
designator and optionally by a subsidiary file designator. Unless otherwise 
noted, a command produces as its result an anonymous file called the 
current file, and may also send output to  a system-output device.

(b) A file designator may take the following forms
<filename> meaning the named file
IT meaning the current file
THIS meaning the data that immediately follows in the

command stream, suitably delimited
<file designator> AND <file designator> indicating concatenation of the 

specified files

(c) The subsidiary file designator takes the form
WITH file designator

(d) Commands are 
READ
PRINT (has no result)
EDIT
COMPILE
RUN
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It is important that completely general composition of these simple concepts be 
allowed, so as to permit combinations like

RUN IT WITH fileA AND file B
EDIT fileA AND fileB WITH fileC AND file D
COMPILE fileA AND THIS
:<immediate data>:
WITH THIS 
:<immediate data>: 
etc.

We thus see that a simple concept o f  commands as file transformers (which owes 
much to the UNIX concept o f  ‘filters coupled with some simple linguistic devices 
allows us to have subsystems that combine a friendly informality o f  interface with a 
rigorous definition.

Finally, we look at the operating system structure needed to support a sane 
approach to job control. I t turns out to have a strong resemblance to MUSS, and to 
be not unlike what VME/B might have been (and might still y e t become).

3 Sketches of an operating system

An operating system can usefully be regarded as divided into a kemal and a super­
structure. The kernel is responsible for process management, providing an environ­
ment in which concurrent processes can exist; it will administer virtual memory, 
communication between processes, and the lowest level of peripheral control. The 
superstructure comprises data management and job-management functions, and it is 
this latter area that we concentrate on in this essay.

3.1 Job-management functions

It is a cardinal principle of software engineering design to keep the architecture and 
the implementation clearly separated. We therefore consider first the user interface 
of the operating system as far as job control is concerned. We consider a job that 
consists of an arbitrary number of job steps (including one step as a semitrivial case). 
Then we can distinguish two job-control functions immediately:

(a) sequencing of job steps, the actual sequencing depending on the success or 
otherwise of individual job steps

(b) creating an environment for a job step-providing work files, binding 
symbolic names to actual files, peripherals etc.

A further function, really an extension of sequencing is:
(c) dealing with error situations.

Finally, there is one more major activity:
(d) budgeting and accounting.

In conventional systems these activities are all contained within the operating 
system, and are therefore immutable so far as the user is concerned. Conceptually 
we can imagine that there resides within the operating system a job-control program
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which accepts the job, notes its requirements and initiates the job steps; whenever a 
job step terminates (in the normal way or prematurely) control goes back to the 
job-control program, which may initiate another job step or terminate the job as 
appropriate. This structure is shown in Fig. 1. Of course, most systems do not 
exhibit this clear division in actual fact: job-control functions are accomplished by 
code scattered throughout the system. However, if we define the actions of a 
(hypothetical) job-control program as equivalent to the actions specified by the 
JCL we have a useful model. (We note in passing that a scientific model does not 
have to be a simplified version of the real thing: it is a mechanism that would pro­
duce the same observed results as the real thing. When he developed his electro­
magnetic theory, Maxwell used a model that envisaged space as being filled with 
intermeshing rollers: the unreality of his model did not prevent him making a major 
advance in physics.)

Fig. 1 Model of job control function

A scientific model is useful if the results obtained by studying the model lead to a 
better understanding of phenomena in the real world. (Maxwell’s electromagnetic 
equations were one of the major factors in the discovery of the possibilities of radio 
transmission.) On this basis, our model of the job-control function is a useful one. 
We first observe that it clearly separates application programs and utilities 
(compilers, editors etc.) from that which is conventionally regarded as firmly rooted 
in the operating system (Fig. 2). We next remark that the sequencing of job steps 
requires communication between the job steps and the sequencing mechanism (e.g. 
to report success or failure). In actual systems this may be done by placing values in 
registers according to some convention, or by providing a shared communication 
area. In terms of our model we can abstract the communication between job steps 
and describe it in terms of a set of variables belonging to the job-control program, 
and hence global to the job steps.

o p e r a t in g

s y s t e m

app lica t ion

prog ram s

Fig. 2 Conventional division of responsibility in job control
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Using this model we can distinguish various categories of systems. We have already 
observed that two important functions of the job-control program are setting up an 
environment for a job step sequencing between job steps. If the setup for each job 
step immediately precedes initiation of that job step, we have an OS/360-like 
system (Fig. 3). At the other extreme, if all the initialisation is done at the start 
we have an Atlas-type job description, i.e. a static description of the environment 
(Fig. 4).

Fig. 3 Model of OS/360 job control
Note the possibility of optional omission of a job step, shown by the broken line

Fig. 4 Model of Atlas job control
Note that this does not permit optional execution of job steps

We have so far omitted the budgeting and accounting role of the job-control system, 
so to  complete our model we must prefix an authorisation check to the job-control 
program, and add at the end an accounts updating procedure as in Fig. 5 .

Fig. 5 Elaboration of job-control program
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3.2 Extension o f  the model

We now postulate a specific operating-system structure. We suppose that the 
primitive-level job-control interface consists of a large body of procedures each of 
which, when called, performs an elementary job-control function. The job-control 
program will now reduce to a (possibly large) number of calls on these primitive 
procedures. If this is the case we can make life imitate art by making the actual 
system more like our model, by having an operating-system architecture that 
isolates the job-control program as a clearly defined unit. Now we have in principle 
a very flexible system. There exists in programming a body of knowledge and 
technique whereby sequences of procedure calls can be composed into calls of 
higher level procedures, and we can therefore provide job-control interfaces at 
various levels of abstraction from the basic interface.

o p e r a t i n g
s y s t e m

Fig. 6

a p p l i c a t i o n

p r o g r a m s

Hypothetical job-control system outside the operating system

Since the job-control program now consists of a sequence of calls of primitive 
procedures, it is tempting to argue that it can be expressed in any language that can 
be compiled into, or interpreted in terms of, the basic primitives. In other words, 
the job-control program comes below the operating-system line (Fig. 6). A 
moment’s thought shows that this cannot be entirely so. Validation of a user, 
checking budgets and setting limits etc. must be done within the operating system 
in a protected manner, and we are therefore led to a ‘3-tier’ model (Fig. 7). Now 
the top layer is clearly operating system, the bottom layer is ‘applications’, and the 
question remaining is how do we program the middle layer.

Fig. 7 Three-layer model of job control
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3.3 Job-control programs

The first important point to note is that once the job-control program has come 
*below the line’, it is no longer a sacred cow, and does not have to be the same for 
all users. There are three broad possibilities for the job-control program in such a 
context:

(a) use a specialised language—a job-control language
(b) provide ‘end-user’ subsystems for well defined classes of job
(c) use a ‘conventional’ high-level language.

(Note that this may or may not be the same high-level language that is 
used for any or all of the job steps.)

Possibility (a) is appropriate to professional programmers who wish to exploit the 
more esoteric facilities of the system; we do not consider it further in this essay. 
Possibility (b) is appropriate when there is a community of users whose jobs 
conform broadly to a standard (and simple) pattern: students in an educational 
institution are an obvious example. We have outlined a typical subsystem in the 
preceding essay. Possibility (c) is likely to  commend itself to writers of packages, 
since it enables them to conceal much of the job control from the user. It is impor­
tant that the system design should not make these options mutually exclusive. A 
combination of (b) and (c) in which much of the job control is absorbed into the 
program, while what remains is dealt with in a simple user-oriented language, has 
great promise as an attractive and ‘friendly’ interface. Thus, for example, the transi­
tion from compiler to link editor (collector) to running the object module can 
conveniently be subsumed into the compiling system.

The MUSS operating system3 employs the approach of making all job-control 
functions available as procedures. The designers o f VME/B started well by providing 
a procedural interface, but took a reactionary step by concealing this procedural 
interface from the ordinary user (and, indeed from the compiler writer.) It would 
not be too late to change, but one cannot be sanguine about the chances. Perhaps 
the real moral to be drawn from the sorry history of job control is that operating- 
system designers should limit their efforts to providing the tools for job manage­
ment. They should not build into the operating system a preconceived idea of how 
it is going to be used, least of all if (as is most common) they have never been users 
themselves.
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number, author’s name and brief title on the back.

All diagrams and Tables should be referred to in and explained by the text. 
Tables as well as diagrams should be numbered and appear in the typed MS at the 
approximate place, at which they are intended to be printed. Captions for Tables 
are optional. Be careful to ensure the headings of all columns in Tables are clearly 
labelled and that the units are quoted explicitly in all cases.
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All papers should have an abstract of not more than 200 words. This ought to be 
suitable for the various abstracting journals to use without alterations.
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7 Submission
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by a colleague, to detect minor errors or omissions; experience shows that these can 
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8 Referees
The Editor may refer papers to independent referees for comment. If the referee 
recommends revisions to the draft, the author will be called upon to make those 
revisions. Minor editorial corrections, e.g. to conform to a house style of spelling 
or notation, will be made by the Editor. Referees are anonymous.

9 Proofs
Authors will receive printed proofs for correction before publication date.

10 References
Prior work on the subject of any paper should be acknowledged, quoting selected 
early references. It is an author’s reponsibility to ensure references are quoted; it 
will be unusual for a paper to be complete without any references at all.

11 Style
Papers are often seen written in poor or obscure English. The following guidelines 
may be of help in avoiding the commoner difficulties.

•  Be brief.
•  Short sentences are better than long ones but on the other hand do not 
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‘it’ refers to the nearest preceding noun in the singular.
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