Copyright © 1982 American Telephone and Telegraph Company
THE BELL SysTEM TECHNICAL JOURNAL
Vol. 61, No. 7, September 1982
Printed in U.S.A.

Stored Program Controlled Network:

Data Base Administration System—
Architecture and Data Base Design

By S. F. SAMPSON and D. W. TIETZ
(Manuscript received July 6, 1981)

The Data Base Administration System (DBAS) maintains a data
base of up to 12 million entries, and supports an update rate on these
entries of up to 7,000 per hour using magnetic tape, direct data link,
or clerk terminal entry. The DBAS software architecture and data
base design to support these requirements are described in this paper.
The architecture was developed using real-time functional process
modeling techniques. Software process concurrency and modular
separation of the major software functions optimize throughput and
permit quick clerk terminal response.

|. INTRODUCTION

The No. 2 Data Base Administration System (DBAS) administers
data bases stored in Automatic Intercept Systems (aiss), Traffic
Service Position Systems (TsPss) and Billing Validation Applications
(Bvas). This administration consists of providing an initial load of
data, ongoing updates, audits, and various reports. In general, the No.
2 DBAS serves as the telephone company’s (Bell operating and, possibly,
independent telephone companies) interface to data stored in these
aforementioned systems.

1.1 Transition from No. 1 DBAS to No. 2 DBAS

The No. 2 pBAS supersedes the No. 1 DBAS (previously known as
the File Access Subsystem, FAs) and subsumes the responsibilities of
the No. 1 pBAs for administering data in the a1s. This is accomplished
by retaining the application software used on the No. 1 pDBAS, and

1779

running it on the No. 2 DBAS processor in timeshare with new software
that was written to administer Tsps and BVA data bases.

Retaining the original software to perform the Als administration
was less costly than writing a totally new set of programs for this
purpose, even though modifications to the existing software were
required.

1.2 Basic software architecture

The software architecture for the No. 2 DBAs is shown in Fig. 1. For
the purposes of this paper, software architecture will be defined as the
division of the application software into processes, plus the design of
the interprocess communication. A process, in the UNIX* operating
system sense, is a running instance of a program.! Several processes
may share one program text, and are distinguishable only by the data
on which they are working.

In Fig. 1, the software processes retained from the No. 1 DBAS are
shown above the horizontal line. They will be referred to as the A1s
Update System. The new software processes used for BVA and TsPs
updating are shown below the line. They will be called the Bva Update
System. The architecture is described in detail in Sections II and III.

1.3 The DBAS data base

When administering als data bases, the No. 1 DBAS was strictly a
transaction-oriented system. Updates sent to the No. 1 DBAS by the
telephone company’s Service Order System (s0s) were passed directly
to the AIS as soon as possible, after passing appropriate consistency
checks. Although a copy of the total contents of the A1s data base was
kept on tape at the File Administration Unit (FAU), which operated
the No. 1 DBAS, no on-line accessible copy of the Als data base was
kept in DBAS. This meant that checking the exact current contents of
the AIs data base required querying the A1s itself. Similarly, adminis-
trative reports based on the contents of the AIs data base were limited
by the ability of the Als to supply the required information.

For the large Bva data bases to be administered by the No. 2 DBAS,
this type of administration would not be practical. Therefore, an on-
line accessible data base was established on disk as part of the No. 2
pBas. Further, this data base was designed to be the master copy of all
data kept in the BvA. (No on-line copy of the ais data base is
maintained and the TSPS data base is an interim subset of the Bva
data base.) Thus, all telephone company needs for information about

* UNIX is a trademark of Bell Laboratories.

1780 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1982

AlS UPDATE SYSTEM

AlS

AIS FORMAT JOURNAL
MAGNETIC TAPE
TAPE
Q—. AlS INPUT AlS JOURNAL THAN?I\I*!SISSION l¢—p AlSs
PROCESSES ¥ PROCESS | pROCESSES
X ¥
siscom?t T
DATA LINK
SESSION FILE BUFFERS
|DISK DIRECTORIES) Al TSPS TRANSMISSION FILE BUFFER
CLERK CRT CONVERTER| {DISK DIRECTORY)
PROCESSES -
CLERK
INPUT Als =¥ TRANS. | TSPSs
PRO- — SESSIONS MISSION >
CESSES PROCESS
MAGNETIC BVA TRANSMISSION FILE BUFFERS
TAPE {DISK DIRECTORIES)
MAGNETIC NON-AIS ¥
T.:l:JET - SESSIONS UPDATE
IN ORDER
PROCESS PROCESSOR - BVA BV As
PROCESSES TRANS-
BVA Mission [
UPDATES PROCESSES
DATA
LINK
_x— ¥ nput JOUR. i
PROCESS
BX.25 NALLED DATA BASE
DATA LINK SESSIONS PROCESSES
JOURNAL
TAPE

| JOURNAL
PROCESSES

BVA UPDATE SYSTEM

CONTROL PROCESSES
THE REAL-TIME UNI/X™ OPERATING SYSTEM

tBUSINESS INFORMATION SYSTEMS—COMMUNICATIONS SYSTEM
*UNIX 1S A TRADEMARK OF BELL LABORATORIES

Fig. 1—pBAS software architecture.

data existing in the BvA data bases can be met by querying the DBAS.
Therefore, the No. 2 DBAS was designed primarily as a data base
system. Adequate throughput and integrity in data handling were
required to be certain that the subset data bases kept in the BvAs were
appropriate copies of the DBAS master data base.

The details of the pBAS data base are described in Section III.

DATA BASE DESIGN 1781

Il. THE DBAS SOFTWARE ARCHITECTURE
2.1 Throughput requirements
The DBAS is capable of handling the following throughput:
Y% DI + MI + % AU + BU > 7000/hour,

where
DI = number of data link inputs per hour
MI = number of clerk CRT (manual) inputs per hour
AU = number of AIS updates per hour
BU = number of Bva updates per hour.

For clerk and data link, an “input” is counted each time a line number
is presented to DBAS. One “input” can result in several changes to data
kept on a line. However, an “input” is still counted even if no change
to line data results. Change data applied in special format to a “block”
of lines is considered one input per line in the block. Inputs from
magnetic tape are not considered in the formula as it is assumed that
magnetic tapes can be read in during off-hours.

An AIS update is counted for each message sent by DBAS to an AIs.
Here, blocks of line numbers count as only one update. A BVA update
is counted if any change is sent to a BvaA, or if the DBas data base is
accessed, even if no change is sent to a Bva. Blocks of lines again count
as multiple updates if the DBAs data base changes.

In normal operation, most DBAS inputs will be mechanized (either
data link or magnetic tape). Further, most transmissions to the Bva
will be made during hours of light traffic at the BvA. However, the
actual transmission to the BvA uses a small fraction of the total central
processing unit (cPU) and disk time required per update.

2.2 Additional requirements

In addition to throughput requirements, the pBAS must meet several
other design constraints:

() The aIs update latency must be low. When an a1s input has
been completely received by DBAS, it is desirable for the update to be
ready for transmission to the appropriate A1s within 10 minutes.

(i1) BVA update latency must be low. When a BvaA “immediate”
(high-priority) input has been completely entered into the DBAS, it is
desirable for the update to be ready for transmission to the appropriate
BVA within 10 minutes.

(iif) Clerk terminal response must be good. When clerk terminals
are being used to enter data, they must be given priority over other
processing tasks. This is because clerk terminals will generally be used
only to enter high-priority input or to perform troubleshooting.

1782 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1982

2.3 BVA Update System software architecture

As shown in Fig. 1, DBAs input can be received via either clerk entry,
magnetic tape, or data link. A software process is associated with each
input medium. For clerk input, a software process is associated with
each physical crRT. These clerk input processes are separated, but share
program text to minimize their memory utilization.

The role of each input process is first to deal with the specifics of
each input medium. For example, the magnetic tape input process
checks tape headers and trailers; the clerk input process interprets
keystrokes and interacts with the clerk. All processes then perform
basic syntax and consistency checks on the input they receive. These
checks are the same for any input medium.

For each input process, a group of inputs is collected to form a
“gession.” A session may contain up to 256 separate inputs. When all
input for a session is complete, the entire session is written into a disk
file under the UNIX operating system file system. This disk file may
be linked into several directories for access by the appropriate proc-
esses. Inputs within a session are thereafter processed as a group,
improving processing efficiency.

For example, every session file containing any error-free input is
linked to a directory where it can be accessed by an Update Order
Processor (UOP) process. The UOP reads the session file, and for each
line number, retrieves the existing data (if any) for that line from the
pBAS data base. The existing data are compared with the proposed
changes to be sure the changes are reasonable. If so, the changes are
made to the pBAs data base. If subsequent changes also need to be
made to a BVA data base, the UOP creates a session file in a different
directory accessible by the BvA transmission process.

With this architecture, significant buffering can be utilized at several
points to load-balance and improve the total throughput possible on a
daily basis. For example, consider a case where a substantial amount
of clerk input was required in a particular hour. Work by the uops and
data base on routine updates could effectively be suspended, and most
of the cpu and disk resources could be available to clerk input proc-
esses. In practice, this is done by giving processes with terminal 1/0
work a higher priority in accessing the cPu. In this example, good clerk
response time would be maintained. Sessions would be buffered in the
directories between the clerk input processes and vops. Later, when
the clerk input load was lower, the UOPs and data base software would
begin processing the buffered routine updates. In general, this proc-
essing of buffered change data could continue for several hours past
the conclusion of clerk data entry, if a peak in update volume was seen
on a given day. This processing of buffered data would be completed

DATA BASE DESIGN 1783

before the scheduled time of data transmission to the BvAs, which
occurs in the middle of the night.

2.4 Integrated input

Early in the design of the No. 2 DBAs, it was recognized that if
changes affecting services provided by a BvA were requested on a line,
changes would usually also be applied to an A1s. Therefore, an input
to the Bva Update System would have to be duplicated as an input to
the a1s Update System, if these two software systems were kept fully
independent. This would be a very inefficient “double entry.”

Therefore, a process called the Automatic Intercept Center (AIc)
Converter was included in the software architecture. This process is
shown crossing the center line on Fig. 1. If an input process in the Bva
Update System finds input requiring an A1s update, it links the session
file to a directory whose contents are scanned by the aic Converter
process. The aic Converter reads the session file and extracts update
information for the A1ss. This information is converted from the data
formats used in the Bva Update System to the format used in the A1s
Update System. The update is then inserted into the Ais Update
System’s processing stream.

2.5 Performance-guided development

From the start of development of the No. 2 DBAS, it was recognized
that the throughput requirements would use a substantial fraction of
the available resources of a PDP 11/70 running the real-time UNIX
operating system. Therefore, it was decided that the development of
No. 2 pBas would be guided by the need to meet the performance
requirements. A first step in this direction was to develop a simulation
of the No. 2 pBas. This simulation was to prove whether or not the
requirements could be met, and possibly suggest improvements in the
software architecture.

Several different types of simulation were considered. These in-
cluded analytic models, General-Purpose Simulation System (GPss)
simulations, etc. The method finally chosen was a functional process
simulation, wherein some of the developers write model processes for
all processes in the proposed architecture. These simulated processes
then incorporate dummy processing loops, make disk reads and writes,
and perform interprocess communication in an attempt to utilize
system cPU and disk resources in the same way as the eventual
software system.

A functional process simulation has several advantages. There is no
need to simulate the hardware or operating system, as the “real thing”
is being used. This eliminates considerable effort and removes sub-
stantial uncertainty from the simulation. The simulation can be

1784 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1982

evolved into the final product, recovering some of the effort required
to produce the simulation. Since the simulation is written by devel-
opers of the final system, it gives them substantial exposure to the
language, operating system, and project software architecture. This
exposure can be especially valuable if the average level of experience
of the designers is low. Finally, estimates of the amount of code and
effort required for the final product can be improved by observing the
development of the simulation.

For No. 2 pBas, a functional process simulation of the proposed
DBAS architecture was developed. As compared with Fig. 1, the initial
architecture had the equivalent of a single UOP, accepting sessions
from one session file buffer. No simulation was provided for the data
link input capability, and no attempt was made to interface with actual
AIS or BVA hardware.

Initial results of the simulation are shown in Table 1. The simulation
indicated that the proposed architecture, running on a PDP 11/70
under the real-time UNIX operating system, could meet the DBAS
throughput requirements. However, when measurements were taken
of cpu and disk utilization for the case of magnetic tape input (line 1
of Table I), both were substantially less than 100 percent. This meant
further improvement could still be obtained.

Analysis revealed that a single UoP interacting with the data base
tended to serialize the utilization of cPU and disk. For example, the
voP and data base processes would simultaneously block waiting for
disk 1/0, and the cpu utilization would drop during this interval.
Therefore, more concurrency was required. The simulation was mod-
ified to include the equivalent of three UOPs operating on the same
input session directory, each handling approximately every third ses-
sion file. The throughput now became as shown in line 5 of Table 1.
Using this as a guide, the No. 2 pBas BvA Update System software
architecture was modified to the final version shown in Figs. 1 and 2.
This architecture will be discussed in more detail in Section III.

In addition, analysis of results of the simulation contributed to
selection of the clerk terminal, and helped in the human factors design

Table |—Data Base Administration System performance
simulation—typical results with continuous magnetic tape input

Simulated BvA Updates alc Updates

Test Run Clerk Inputs Per Hour per Hour per I?Iour Total
1 (Tape only) 9391 1356 10,747
2 681 9388 1632 11,020
3 1406 8795 1535 10,330
4 2071 7020 1479 8499
5 (Tape only) improved archi- 13,299 1555 14,854

tecture

DATA BASE DESIGN 1785

SYAS8
WOY4/0L

¥ SNYHLVAE

1

)

g ——

€ SNVHLVAS

\AIL\AII.

C SNYHLVAS

l—Z a—

L SNVHLVAE

_‘I
-

$355300Hd
SNVY1VAS

‘arngoagryore Sussaooxd ayepdn—z “Sig

|

£-9
T

)

¢-8
-l

T e Y

[

)

}

(HOLvE=8)
(3LvIaINNI= 1)
$3180103410
1NdNI
SNYHLVAE

O

dow

dojy

dod

Mo|1 don

mo|p don

paw don

ybiy don

\

SHOSS300Hd
H3IaHO

S

lon
advLl

L
Mo

JNIT Yiva

WNIa3w

L
HOIH

\\\l‘l"./
S3140103d1a

ERIF]
NOISS3S
LNdNI

>

IVYNIWGIL

|—y

adVLl

NI viva

AYIT0

{1 "914 33%)

$3583204d
LNdNI

1786 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1982

of the clerk interface. The original software written for the simulation
proved to be of continuing value during development, in addition to
being the basis for the final product. For example, during the design of
the interprocess communication (see Section 2.6), a question arose as
to the utilization of the real-time UNIX operating system message
buffers. The simulation was run under heavy load with special message
buffer instrumentation in the operating system, and was used to
determine the utilization level.

As a result of this performance-guided development approach, the
initial release of the No. 2 DBAs successfully met its performance
objectives.

2.6 Process control and interprocess communication

When programs are run in the typical UNIX operating system time-
share environment, they are usually associated with the cRT (or
teletypewriter TTY) of a single user. Users and processes are very
effectively prevented from interfering with each other, and each user
and the user’s programs see an entire “virtual” computer system.

However, for applications such as No. 2 DBAs, some degree of
efficient process interaction is desirable, and it is also necessary to be
able to control a group of processes as a software system. Both of these
required additional development specific to DBAS.

In general, No. 2 DBAS processes are independent and modular. For
example, it is possible to run a clerk input process from a UNIX
operating system terminal like any other UNIX program. Session files
can be created, and would be processed normally, if the rest of the
DBAS software were subsequently run. However, there are important
exceptions to this independence. For example, most administrative
report programs can be run from UNIX terminals like the clerk input
program. But, they cannot produce a report on the DBAS data base
unless the data base processes have previously been properly started.
These interdependencies between processes could be confusing to the
DBAS user. To establish the complete Bva Update System, more than
a dozen separate processes would have to be started. During operation,
most of these processes produce brief reports on their progress, which
would result in scrambled printouts if all were directed arbitrarily to
a common terminal.

To solve this, a set of processes was designed, collectively called
CONTROL. The pBas user starts CONTROL from an arbitrarily
designated control terminal, specifying one of several modes of oper-
ation. Based on this mode, CONTROL creates and runs all the
processes that the user requires. For example, in the “update” mode,
all programs needed for BvA updating are started. In the “data base”
mode, only the data base processes are started. The user can then run

DATA BASE DESIGN 1787

various administrative programs successfully, and can change critical
per-site data with the knowledge that no updates (which might depend
on the changing data) are in progress.

CONTROL also handles the orderly demise of processes it has
started. If ordered by the user to perform a “graceful shutdown,”
CONTROL requests each process it has started to exit at the next
convenient stopping point (e.g., completion of processing the current
session file). If the user requests an “immediate shutdown,” CON-
TROL requires each process it has started to quit immediately. This
request is only made under rare circumstances.

All processes running under CONTROL have access (through CON-
TROL) to the terminal at which CONTROL is running. They can
print messages to the user, or request user input. Therefore, this single
(control) terminal can communicate with any desired process, and
messages output by any process under CONTROL are printed in an
orderly, meaningful manner, where the process requesting the printout
is clearly identified. This communication capability is provided by a
standard interprocess communication package based upon the real-
time UNIX operating system “message” feature.

CONTROL can also start processes at a scheduled time of day. For
example, if transmission of routine updates to a BVA has been sched-
uled for 11:00 p.m. daily, CONTROL will automatically start the
appropriate processes at that time. Several such events can be sched-
uled by the DBAS users via administrative programs.

ll. THE DBAS DATA BASE MANAGEMENT SYSTEM, ORDER
PROCESSING, AND BVA TRANSMISSION PROGRAMS
The pBas Data Base Management System (DBMS), Order Process-
ing, and BVA transmission programs form a group of interrelated
programs that were designed to provide three specific functions:
() The initial load of the DBAS and the BvA Data Bases.
(ii) The ongoing daily update capabilities of DBAS and BVAs.
(iii) Data base house cleaning, backup, and restoration functions.
Each of these functions is described in detail below with an accom-
panying explanation of the contribution of their components.

3.1 Initial load function

An initial load starts with tape input of billing number data. The
DBAS stores these data in its data base (DB) and then immediately
sends a copy to its associated Bvas. If run continuously, the initial load
of even the largest DBAS DB and its BvAs could be completed in about
one week. However, the initial load might have to be interrupted to
process normal updates for connected A1ss or TsPss. For example, the
DBAS might be used for initial loading on the weekend, but during the

1788 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1982

week, it would be used to process normal updates. In this case,
subsequent weekends are necessary to initially load the DBAs and BVA
data bases until both data bases contain all of the line numbers
assigned to that DBAS.

The important point here is that initial loading is done at a different
time and quite separately from regular daily updating. This method of
operation arises from the need to process updates at considerably
different speeds in each case.

The initial loading rate per update must be much faster than the
daily update rate because the DBAs data base may contain from 1 to
12 million records (average approximately 4 million records) that have
to be initially loaded, but only about 1 percent of the total records are
modified per day. Thus, the normal update rate of DBAS can be much
slower than the initial load rate. The normal update rate capability of
DBAS is about 7,000 updates per hour as mentioned in Section 2.1. In
contrast, an initial load rate of over 100,000 updates per hour was
achieved. This required the following special developments:

(i) An initial load tape format was specified requiring all billing
numbers in a billing number group (BNG) to be sequentially ordered
on the input tape to DBAs. This avoids a sorting operation normally
performed during routine updating.

(i) An Initial Load Order Processor (ILOP) was developed which
ensures the sequentiality and uniqueness of each set of updates in a
billing number group. It also generates files for the DBAs data base and
BVA transmission programs.

(iii) An Initial Load Data Base Management System (ILDBMS) was
developed to store complete BNG files on contiguous strips of DBAS
disks.

The 1LoP and 1LDBMS are shown in Fig. 3, along with the other
programs involved in initial load processing. The READTAPE and BVA-
TRANS programs are also used for normal daily updating. The common
use of these programs was a design goal aimed at minimizing the
number of different DBAS programs that had to be developed, tested,
and maintained. As a result, the unique capabilities needed for initial
loading were implemented entirely in the 1LOP and the ILDBMS.

The 1LoP and 1ILDBMS were designed to work very closely together.
The set of all updates in each BNG is in order of line number. The
resultant file is then passed to ILDBMS via a “store-all” command used
only for initial load. The 1LDBMS reads each update, assigns them to
buckets (disk pages) and writes the subsequent complete set of buckets
into contiguous disk blocks belonging to the pBms. This marriage of
functions and strip loading of DB disk space basically underlies DBAS’s
relatively fast initial load rate.

The BVA transmission program (BVATRANS) gets its input files from

DATA BASE DESIGN 1789

SESSIONS INITIAL
LOAD
ORDER

READTAPE PROCESSOR BVATRANS p———Z—
(ILOP)

D I I I} DN

LOW-PRIORITY ILDBMS BVA
INPUT IMMEDIATE
SESSION TRANSMISSION
FILES FILES

| =] |

!

DB |
DUMP

Fig. 3—Initial load architecture.

the m.op and transmits the file immediately to the Bva. Since this file
is sequentially ordered by line numbers (directly from the input) the
data can be packed compactly into the packets that DBAS uses to
communicate with its Bvas. The BX.25 protocol is used for this
communication. Each packet contains billing number records for only
one billing number group. Up to 126 billing number records may be
sent in a packet. Since there are potentially several thousand billing
number records in every billing number group in the initial load stage,
the packets are usually filled to capacity and the resultant transmission
between DBAS and the BVA is very efficient.

Procedures for accomplishing the initial load were distributed to the
telephone companies. These specified how various initial load situa-
tions should be handled. In particular, the situations of concern were
the conversion of early DBAS generics to 2DB3, which is the latest
generic. For example, if a company was using a 2DB2 generic, its DBAS
would contain a data base consisting of any data used to load certain
TSPs data. It was necessary to develop the program called DBDUMP
shown in Fig. 3 by which the 2DB2 data base was dumped on a tape
in a format that was compatible with inputting to a 2DB3 system.
Since the 2DB2 data bases are generally small (less than 100,000
records) the time to reinsert the 2DB2 records was not of concern.

It was necessary to retain the 2DB2 data during and sometime after
the 2DB3 initial load because telephone companies may have to
continue updating Tsps data bases until the BvA(s) are activated.
Other potential generic conversion situations were explored and doc-

1790 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1982

umented for the use of initial load coordinators in each telephone
company.

3.2 Daily update processes

After the initial load for each BNG is completed, updates to these
BNGs are entered using clerk, data link, and/or tape input medium.
Each corresponding input program groups these updates into Input
Session Files (1sFs). The input process then links the 1sFs that are
formed to one of three types of directories: high, medium, or low
priority. Priority has the following significance:

(i) High-priority sessions contain updates that must be transmitted
to the Bvas immediately (i.e., within 10 minutes). Any type of update
can be input at high priority.

(i) Medium and low priorities are intended for IsFs containing
updates that do not have to be transmitted to Bvas until a specified
time of day, usually in the evening. Most updates will be of this type.
For example, only a few hundred high-priority updates per day would
usually be entered as compared to about 30,000 medium- or low-
priority updates.

As in the initial load architecture, order processors read 15Fs, format
and enter changes to the DBMS, and generate files for transmission to
BVAs; the DBMS stores records; and BVATRANS sends the updates to the
BvA. However, in contrast to the initial load situation, ISFs in the
update mode are generated by three types of input media, and the
update data will generally be randomly ordered (as opposed to sequen-
tially ordered in the initial load mode). This required setting up a more
complex order processor architecture as shown in Fig. 2. An Update
Order Processor (UoP) is associated with each type of input directory.
The input session files generated by each of the input processes are
very similar, so that a single program was designed to process all the
various types of 1sFs as described below.

All vops are started by CONTROL and normally run all day. When
created, each UOP is passed a parameter indicating its source of ISFs.
This parameter also sets up each UoP to modify its operation as
follows: The voP which processes high-priority 1sFs links its output to
immediate BVATRANS input directories (e.g., to I-1, I-2, etc.); the UoPs
processing lower priority 1sFs link their output to the batch input
directories of the BVATRANS processes (e.g., to B-1, B-2, etc.). Other-
wise, all uops handle 1sFs in the same manner—when first started, the
UOP creates a BvA update file for each Bva in its own data directories.
Then, whenever a UOP completes processing an ISF, it determines
which Bva update files have been used and sends them to the appro-
priate BVATRANS. That is, it closes the file, links it to the BVATRANS
data directory, and creates a new BVA update file so that it can

DATA BASE DESIGN 1791

continue processing. Each vopP performs various checks on every
update in the 1sF to ensure that the new data are consistent with the
data already in the DBAS DB prior to finally updating the pBas data
base, the Bvas, and the Tspss. Checks that fail result in exception
reports describing the reason for the report and the input and data
base records in question. For example, an 1SF update specifying a
Personal Identification Number (PIN) for a public telephone record in
the pB would be rejected with an appropriate message.

The Pending Order Processor (poP) does not run continuously like
the vops. Instead, it runs briefly once a day to process the pending
orders in the data base whose effective dates become current. A
pending order is any update whose effective date is tomorrow or up to
6 months further in the future. The pPopr obtains a list of pending
updates from the DB, modifies the DBAS DB, and then produces a single
BvA update file for each BvaA linking those files to the appropriate
BVATRANS batch data directories.

The Move Order Processor (MOP) is started by the pBAs adminis-
trator when it is necessary to move the data stored for a set of BNGs
from one BvA to another. This process obtains a file from the pBmMs for
an entire BNG which has been specified as a parameter in the DBAS
move command, reformats the file, and links it to the target BVATRANS
batch directory. If more than one BNG is required, the program repeats
the above for each.

Figure 2 also shows that multiple instances of BVATRANS are used to
communicate with a corresponding number of Bvas. A parameter is
passed by CONTROL when it creates each BVATRANS process. This
parameter tells each BVATRANS process which input directories to use
for its corresponding BvA. It should be noted that several BVATRANS
processes might be invoked in the same manner for initial loading
several BVAs simultaneously.

3.2.1 Handling mixed priority and multiple updates

The DBAs is required to process and output multiple updates for
billing numbers (BNs) in the same sequence as they were entered in
any given day from a given source (tape, clerk, or data link). Further-
more, a high-priority update for a particular BN must override any
previous lower priority update for that BN which may have been
processed the same day. For example, a high-priority service denial
update should block any lower priority change order which may have
been on that day’s tape and processed earlier. These requirements
were implemented in the following manner.

When any medium- or low-priority UOP reads an update from its
ISF, the corresponding DB record is also retrieved. The date when the
DB record was last changed is compared to the current date (which it

1792 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1982

gets from the 1SF name). If the two are the same, and the DB record
was last changed by a high-priority order, then the new update is
rejected with an appropriate exception report. If the DB record was
last changed by a low-priority order, the UOP time stamps each update
passed to BVATRANS. The new update and the time stamp are passed
along to the appropriate BVATRANS. In its batching mode, BVATRANS
sorts updates by line number and then by time stamp to properly
order multiple line number entries. A high-priority update for a BN
that was preceded by a lower priority update that same day is
“marked” by the uop. This mark permits BVATRANS to block the latter
updates by an in-core filter routine.

3.2.2 The DBAS data base management system (DBAS DBMS)

The major challenges in the DBAS DBMS design were its size and its
high update volume: up to 12 million records with up to 100,000
updates per day. To meet these needs, the most interesting features
are briefly described below.

(i) File structure and file access—The data base comprises a set
of UNIX operating system special files accessed by raw 1/0, each being
a DEC RPO06 disk pack (176 Mb). A two-stage extendible hashing
algorithm is used to access the record of a given ten-digit billing
number.? The number of records in the data base can grow and shrink
dynamically. The record size (10 to 50 bytes) is variable. The average
number of disk accesses per update is four to six.

(i) Concurrency control—An Application Program (AP) is either
an order processor or an administrative process outside the DBMS.
Multiple Aps can access the data base at the same time to make the
system easier to use. Multiple copies of the lower level DB access
modules can be run at the same time to achieve a high data rate
between core memory and secondary storage devices. This is achieved
through the implementation of a two-level hierarchical locking scheme.
An AP can either lock the whole data base or a portion of the data
base. Only exclusive locks are available for simplicity. Deadlock is
avoided by the restriction that each AP can request and hold at most
one lock at a time.

(iif) Data independence—Data base conceptual schema and views
are provided at the lower access level, and the Aps, for example the
vops, have direct access to these lower access modules. User process
security is enforced by the restriction that each AP sees only the data
it needs through a predefined view.

(iv) Buffer management—A large number of buffers can reduce the
number of data base disk accesses. The UNIX operating system on
the PDP 11/70 restricts the size of a particular process’s virtual address
space to 128 kb. Compared with a 2-Mb physical core memory, this

DATA BASE DESIGN 1793

small virtual address space presents a problem in buffer management
design. The problem was solved by sharing a set of buffers between
the virtual address space of the lower level access module and physical
main memory. When a data base replacement request follows an
earlier retrieval request, no additional disk accesses are required to
reference the same data base record in core memory.

(v) Secondary storage management—Contiguous disk blocks are
freed and allocated dynamically. The disk write module writes one or
more contiguous disk blocks from contiguous buffer space in a single
real-time [UNIX operating system 1/0 request. When contiguous disk
space is available, these features reduce the number of disk 1/0 calls.

(vi) Secondary key retrieval—A restricted form of secondary key
retrieval is provided to handle the pending service order feature, which
permits inputting service orders to be processed at a future date. A file
of record keys (each representing a record with a pending order for a
given date) is output by the lower level access modules using the date
as the secondary key.

3.2.3 Internal operation of the Data Base Management System
(DBMS)

A process view of the DBMS is shown in Fig. 4. This shows that the
system comprises two main processes: the Data Base Manager (DBM)
and the Access Task Process (ATP). Features described above in
Section 3.2.2 are implemented in these two processes which operate as
follows: Application Programs initially interact with the data base via
“opendb” or “begin session” commands. The DBM assigns the ATP to
the process, keeps track of views in use, and provides for recovery as
described in the next section. Upon receiving an acknowledgment from
the DBM to its initial command, the AP accesses the data base through
another set of commands now directed to the ATP, such as “retrieve,”
“replace,” “delete,” or “store” data.

The set of all commands that are available for APs to access the data
base is called the Data Manipulation Language (bML). The commands
were incorporated as subroutine calls in each AP, and the subroutines
actually interact with either the DBM or ATP. The subroutines also
convert the data for the pBms. For example, line numbers are con-
verted to long integers. Hence, the DBAS DBMS is a special-purpose
DBMS in that only special values of some data fields are allowed. In
this manner, data are stored quite compactly in DBMs disk pages (over
a hundred records per page).

3.3 The DBAS backup and recovery

The DBAS data base is backed up by periodic disk-to-disk copying of
the data base disks. Following certain severe system failures it may

1794 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1982

APPLICATION PROGRAMS
1
S T B

DATA MANIPULATION LANGUAGE ROUTINES

OPEN DB
CLOSE DB
BEGIN SESSION
END SESSION

RETRIEVE
REPLACE
DELETE
STORE

DATA
BASE
MANAGER

ACCESS TASK
PROCESS

DATA BASE

Fig. 4—Data Base Management System.

become necessary to recreate the DBAS data base, starting from these
backup copies and integrating updates received between the date that
the backup copies were made and the time that the failure occurred.
During normal updating operations, a special DBMs “checkpoint”
mechanism is employed to protect the integrity and consistency of the
DB in the event of system crashes or other system stoppages. The
explanation of this vital feature is as follows: The data base disks are
separated into read-only disks and writable disks. The primary data
structure of the.data base is a tree of disk blocks. The blocks of the
first two levels, the root and its children blocks, reside in core memory
to minimize the number of disk accesses per data base record access.
Whenever a block on a read-only disk (a write-protected disk drive) is
to be modified, writable disk blocks are allocated on a separate writable
disk known as the “working volume.” One or more of the newly
allocated blocks are then written with the modified data, as well as
with its ancestor blocks (except the first two levels) so that the contents
of read-only blocks are not touched. Disk blocks on the writable disk
belonging to the most recent consistent data base copy are temporarily
assigned read-only status until a new consistent copy becomes avail-
able. At the end of each day, the writable disks and the read-only disks
are merged to produce a new set of read-only disks for the next day.

DATA BASE DESIGN 1795

For this purpose, a Merge DBMs was designed whose only functions
are merging and some daily DB housecleaning. Also, at regular time
intervals during the day, root blocks are written to save a consistent
copy of the data base on disk. This is called the data base checkpoint.
Before the checkpoint is taken, the system synchronizes itself, through
blocking, so that no updates are in progress to ensure that data are
consistent.

In case of accidental machine failure, only the work done since the
previous checkpoint needs to be repeated, thus permitting easier and
faster recovery. Following a successful merge, the old working volume
is saved, along with the most recent backup copy of the data base
disks. They may be reused at the same time as the associated data
base backup disks, usually in two weeks. To facilitate system recovery,
the DBMS maintains a session trace file for the sessions that UOPs have
processed. For each session, all uopPs send Session-Begin (sB) and
Session-End (SE) messages immediately before and after processing
data in their session files. The DBM keeps the time of these messages
and the session identification in the trace file. When a checkpoint is to
be taken, the DBM stops replying to SB messages, thereby halting the
voPs when they reach an sB. Programs other than UOPs are allowed to
finish their processing, but no new ones may start while the checkpoint
is pending. When all writing has been stopped, the DBM does its
checkpoint routines. It then resumes replies to SB messages so that all
application programs can continue.

A necessary condition in restarting after a machine failure is for the
APs and DBM to have a consistent view of the data base. Upon a crash
or other ungraceful system stoppages, a special program is invoked to
examine the session trace file so as to identify successfully completed
sessions. Damaged or missing sessions need to be reinput from the
original input medium or from the journal tape. As mentioned in a
previous article, a journal tape is maintained by the DBAs journal
program that can keep a record of all service order inputs. The DBAC
(Data Base Administration Center) operator must notify those respon-
sible for inputting data, if some sessions have to be repeated. It should
be noted that specially tailored checkpoint capabilities are provided in
both the Initial Load and Merge DBMss. Hence, these systems can
recover from certain common system stoppages without having to
reprocess much data just like the regular DBMS.

IV. SUMMARY

A performance-guided analysis of required features and operating
environment led to an early choice of the DBAS’s architecture. The
resultant design has the following capabilities: a wide range of admin-
istrative, control, order processing, data base, and BvaA interaction

1796 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1982

functions; initial load rates of 100,000 updates per hour; ongoing update
rates of 7,000 updates per hour; a special-purpose, yet flexible, Data
Base Management System; and an innovative backup and recovery
scheme that permits the use of a simplex processor and simplex

periphery.

V. ACKNOWLEDGMENTS

Many designers and testers contributed to the success of DBAs. For
the development described in this paper, the authors especially want
to acknowledge the members of Bell Laboratories Operational Soft-
ware Design Department.

REFERENCES

1. “UNIX Time Sharing System,” Bell System Technical Journal, 57, No. 6, Part 2
(July-August, 1978).

2. R. Fagin, et al., “Extendible Hashing—A Fast Access Method for Dynamic Files,”
ACM Transactions Data Base System, 4 (1979), pp. 315-44.

DATA BASE DESIGN 1797

