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Memoryless Nonlinearities With Gaussian
Inputs: Elementary Results

By H. E. ROWE

(Manuscript received January 12, 1982)

The distortion-to-signal power ratio at the output of a memoryless
nonlinearity is determined by simple calculations. This is done by
application of Bussgang’s theorem, which may also be obtained as a
special case of Price’s theorem. Specific results are given for hard
and soft instantaneous and envelope limiters.

I. INTRODUCTION

We present elementary derivations of some useful results for mem-
oryless nonlinearities driven by Gaussian noise. The present relations
may be obtained as special cases of more general results,' but the
present methods are elementary and give physical understanding.

Let a nonlinearity have input x, output 2z, and nonlinear character-
istic h(x);

z = h(x). (1)

Let x(¢) be a stationary, Gaussian random noise. Then it is well-known
(Bussgang’s theorem) that the cross-correlation between input and
output has the same shape as the autocorrelation of the input,

(x(t + 1)z(t)) = a- (x(t + T)x(E)). (2)

This may be seen as a special case of Price’s theorem,*” or directly as
outlined in the appendix.

From (2) we can write the output z(¢) of any instantaneous nonlin-
earity with Gaussian input x(¢) as

z(t) = a-x(t) + y(), (3)
where y(¢) will be uncorrelated with x(£);
(x(t + 7)y(t)) =0. (4)
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The constant « in eq. (3) is given as follows:

2

1 R R ITTL.
= 260 h(x)d.
mj 50’ e WOhx)dx
2¢(0)hf d (5)
J2w¢(0 Lﬂe (),
where
(x(£)) =0, o¢r) = (x(t+ 7)x(t)). (6)

Il. NARROW-BAND INPUT
If x(¢) is narrow-band, it is useful to write
x(t) = R(t)cos[wct + 8(t)]

. . 1 ) ]
= % R(t)eﬁﬂ(ne—.}mct + § R(t)ejﬂ(t)ejwet’ (7)

where R(t) and 8(t), the envelope and angle, slowly varying compared
to w.t, are defined in terms of x(¢) and is Hilbert transform £(¢) in the
usual way:

R(t)ee vt = x(t) + jE(t). (8)
The output of the nonlinearity may then be written*
z(t) = ¥ An(R)cos(nwt + né), 9
n=0

where R and @ are understood to be functions of ¢. The different terms
of (9) occupy separate narrow bands, centered around their respective
midband frequencies nw.. The output envelopes A,(R) are nonlinear
functions of the input envelope R.*

We regard the first term of (3) as the undistorted, or signal, com-
ponent of the nonlinearity output, and the second term of (3) as
distortion. Thus, the signal component of (9) resides exclusively in the

= 1 term, to which we subsequently restrict our attention. We
redefine z(t) to be the response to (9) of a zonal filter centered on w.,
and drop the subscript 1 on the coefficient of the n = 1 term of (9), to
yield

2(t) = A(R)cos(w.t + 8) (10)

as the output to be investigated. In eq. (10), A(R) is given by®
2 T
A(R) = - J‘ h(R cos B)cos BdB, (11)
0

in terms of the instantaneous nonlinear characteristic A( ) of (1).
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The output [eqgs. (10) and (11)] contains both signal and distortion
components. For Gaussian input x(¢), R(¢) is Rayleigh, and « of (5) is
given in terms of envelope by

_ (1/2)(R-A(R))

#(0)
o R?
1 R -—
=— RA(R).—— e 20OdR
26(0) L B 5o °
Jr 1 J [ R 2 R —Ji]
= erfc + = 26(0) |A(R)dR, 12)
2 V26(0) J, V260  Va V28(0) (
where
erfc u = 2 J" e 'dt (13)
v l, )

The output signal power S is given by
S =a®¢(0). (14)

The constant « in eq. (14) may be calculated from either (5) or (12),
whichever is more convenient. The second line of (12) is equivalent to
the m = 1 case of eq. (9) of Ref. 1.

In eq. (10), z(¢£) contains both the signal component

a-x(t) = a-R(t)cos[w: + 8(t)] (15)

and a distortion component, of power D. To find this, we determine
the total power S + D in z(¢) of (10), and subtract S. We have

S+ D=3 (AYR)) =5fA2(R)-ie‘2%dR. (16)
2 24, ¢(0)
Since S = S + D, we must have from (12), (14), and (16)
(R-A(R))” = 2¢(0)-(A*(R)). (17)
Noting that
26(0) = (R?), (18)

(17) is simply the Schwarz inequality.

lll. HARD (INSTANTANEOUS OR ENVELOPE) LIMITER
The instantaneous nonlinear characteristic of (1) is:

1, x>0,

h(.x}=sgnx=_1, x<0.

(19)
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The corresponding envelope characteristic of (11) is:

Mm=%, R>0. (20)

The signal gain « of (3) is, by the second relation of either (5) or (12):

= 2 21
=\ 7o® @D

The output signal power S is by (14):
2

S=-. (22)
T
Finally, the total power in the first zone is given by (16):
8
S+D=—. (23)
T
Therefore,
D T
S+D 1 24)

IV. SOFT INSTANTANEOUS LIMITER
The instantaneous nonlinear characteristic of (1) is:

_x, x| = X.
RO =7 |3=x (25)
This signal gain « is from the second relation of (5):
2 X
a=—"-erf , (26)
Vo V26(0)
where
2 (¢ e
effu=— | e‘dit=1-—erfcu. (27)
v Jo
V. SOFT ENVELOPE LIMITER
The envelope nonlinear characteristic of (11) is:
R, 0=R=A.
AR)=4 ApA<R=w (28)
The signal gain « is, by the second relation of (12):
Jr A A - A
o= erfe +1—e 20, (29)

2 2p(0)  V26(0)
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By (14), the output signal power is:

7 _A
S= ¢(0)-|:—W 4 -erfc 4 +1—e %‘0’:' . (30)
2 V2000 V25(0)
This is equivalent to eq. (24a) of Ref. 1. The total power in the first
zone is by (16):

A2
S+D=¢(0)-[1—e m]. (31)
Therefore, for the soft envelope limiter (28):
D —
S+D

A? q2 A?
1—-‘/E A ete— A _41-¢ B0 1—e 20| (32)
2 V26(0)  V26(0)

Asymptotically:

A2
D 1 -2 oa A?
~—¢g 20 - . 3
S+D 2° /{245(0)}’ 20 (33)
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APPENDIX
Derivation of Eq. (2)
A special case of Price’s theorem® may be stated as follows.? Let x;

and x; be jointly Gaussian random variables with first and second
moments given as follows:

{x1) = (x2) = 0.
(xh = (x%) = Ri. (34)
(x1x2) = Ry3.
The normalized covariance is
Ry,
P12 = I_i’: (35)

Let x; and x; be passed through two different instantaneous nonlin-
earities with characteristics h; and h», yielding outputs A;(x;) and
hz(x2) with output cross-variance

Y = (hi(x1)ha(x2)). (36)
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Then

a0
N (i) hix), (37)
0p12
where
dh, dh
Ri(x) = dix) K Ri(xz) = ;f’ ] (38)

To derive Bussgang’s theorem set:

hi(x) = h(x).
ha(x) = x.
x1 = x(t).
x2 = x(t + 7). (39)
x(t) = stationary Gaussian noise.
o(r) = (x(t + 7)x(£));  plt) = z::l;
Substituting (39) into (34) to (38),
g—i = ﬁ {h’(x)) = constant. (40)
Integrating,
Y(7) = (x(t + 7)h(x)) = constant-¢ (), (41)

the result given in (2).
The following alternative derivation, without using Price’s theorem,

was given by Jack Salz. From (2)
_ Ax(t + 7)2(2))

T P TSTh 42)

Express the nonlinear characteristic of (1) as the contour integral of
its transform;*

1 .
z=h(x) = —j F(ju)e’™du. (43)
27 c
Write
1d
=___ vx 44
x S d e (44)
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Then,

(x(t + 7)z2(8)) = —l—.lim d

_ F . J(ux(t)+vx(t+r))

= ti)('r)-gj—W f F(ju)ue O 2y, (45)
C

the same result as (41). Substituting in (42),

a= —J—J' F(ju)ue *02qy, (46)
2 o

Equation (46) is readily shown to be equivalent to (5), by substituting
the transform relation (43) into (5) and interchanging the order of
integration.

REFERENCES

1. A. A. M. Saleh, “Intermeodulation Analysis of FDMA Satellite Systems Employing
Compensated and Uncompensated TWT’s,” IEEE Trans. Commun., COM-30
(May 1982), pp. 1233-42.

2. R. Price, “A Useful Theorem for Nonlinear Devices Having Gaussian Inputs,” L.R.E.

Trans. Inform. Theory, IT-4 (June 1958), pp. 69-72.

. Ralph Deutsch, “Nonlinear Transformations of Random Processes,” Englewood
Cliffs, New Jersey: Prentice-Hall, 1962; pp. 15-21.

. 8. 0. Rice, “Mathematical Analysis of Random Noise,” B.S.T.J. 23 (July 1944), pp.
282-332, and 24 (January 1945), pp. 46-156. Reprinted in “Noise and Stochastic
Processes,” N. Wax, Editor, New York: Dover Publications, Inc., 1954, Section
43,

5. N. Blachman, “Detectors, Bandpass Nonlinearities, and Their Optimization: Inver-

sion of the Chebyshev Transform,” IEEE Trans. Inform. Theory, IT-17 (July
1971), pp. 398-404.

oW

MEMORYLESS NONLINEARITIES 1525






