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We analyze a traffic overflow system that consists of two groups of
trunks, with waiting spaces for each group, and some overflow ca-
pability from the primary to the secondary group. We consider the
case in which the number of waiting spaces in the primary queue is
large compared to the corresponding number in the secondary queue
and to the number of trunks in the secondary group. The case of an
infinite number of waiting spaces in the primary queue is also
allowed. We contrast the approach presented with some previous
approaches that are suitable when the number of waiting spaces in
the primary queue is not comparatively large. As with previous
approaches, the aim is to reduce the dimensions of the system of
equations to be solved in order to calculate various steady-state
quantities of interest. Our results include expressions for the loss
probabilities, the probability of overflow from the primary to the
secondary group, and the average waiting times in the queues. We
also obtain the stability condition under which the results are valid
when the number of waiting spaces in the primary queue is infinite.

. INTRODUCTION

In this paper, a particular traffic overflow system with queueing is
analyzed. The same system has been investigated previously where
techniques were developed for reducing the dimensions of the system
of equations to be solved in order to calculate various steady-state
quantities of interest."” This analysis is a considerable improvement
over the earlier study for the case when the number of waiting spaces
in the primary queue is large compared to the corresponding number

* The work of this author was performed during the summer of 1981, while he was a
Summer Research Associate at Bell Laboratories, Murray Hill, New Jersey.
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in the secondary queue and to the number of secondary trunks." A
suitable analysis has already been made for the case when the number
of waiting spaces in the secondary queue is large compared to the
corresponding number in the primary queue and to the number of
trunks in the two groups.”

In cases of interest, the sparse system of linear equations for deter-
mining the steady-state probabilities of the number of demands in the
two groups may have very large dimensions. The reduced system of
equations then has considerably fewer dimensions, but the system will
be dense. Numerical results based on the solution of the original sparse
system of equations by successive over-relaxation techniques, and on
the solution of the reduced system of equations obtained earlier by
Morrison,' were presented by Kaufman, Seery, and Morrison.” The
numerical values of the various steady-state quantities of interest
obtained by the two procedures agree to many significant figures.
Other procedures for solving the original system of equations are
discussed in Refs. 1 and 4.

The dimensions of the reduced system of equations obtained in this
paper are independent of the number of waiting spaces in the primary
queue. On the other hand, the dimensions of the reduced system of
equations derived in Ref. 1 continue to increase as the number of
waiting spaces in the primary queue increases. This is even more
drastically the case for the original sparse system of equations. Con-
sequently, the reduced system of equations that we derive is advan-
tageous when the number of waiting spaces in the primary queue is
large, and even more so when the number is infinite.

The traffic overflow system considered consists of two groups, a
primary and a secondary, with n; > 0 servers and ¢, waiting spaces,
which receive demands from independent Poisson sources S; with
arrival rates Az > 0, & = 1 and 2, respectively, as shown in Fig. 1. The
service times of the demands are independent and exponentially dis-
tributed with mean service rate p > 0. If all n, servers in the secondary
group are busy when a demand from S; arrives, the demand is queued
if one of the g. waiting spaces is available; otherwise it is lost, that is,
blocked and cleared from the system. Demands waiting in the second-
ary queue enter service, in some prescribed order, as servers in the
secondary group become free.

If all n, servers in the primary group are busy when a demand from
S, arrives, and there is a free server in the secondary group and no
demands waiting in the secondary queue, the demand is served in the
secondary. If there are no free servers, then the demand is queued in
the primary queue, if one of the g, waiting spaces is available; otherwise
it is lost. Previously, two different cases were considered for the
treatment of demands waiting in the primary queue.” In case I, a
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Fig. 1—Mean flow rates for an overflow system with queueing.

demand waiting in the primary queue may enter service either in the
primary group, when a server becomes free, or in the secondary group,
if a server becomes free and there are no demands waiting in the
secondary queue. In case II, no overflow is permitted from the primary
queue, so that a demand in the primary queue must wait for a server
in the primary group to become free.

We consider only case I and use a different approach to analyze the
overflow system. The new approach is preferable to the earlier ap-
proach' when g, is large compared to g: and ns, or even infinite. The
alternate earlier approach® is preferable when g is large compared to
¢1, n1, and n2, or even infinite.

Let p;; denote the steady-state probability that there are i demands
in the primary group and j demands in the secondary group, either in
service or waiting. These probabilities satisfy a set of generalized birth-
and-death equations, which take the form of partial difference equa-
tions connecting nearest neighboring states. The basic technique is to
separate variables in regions away from certain boundaries of the state
space, the elements of which are (i, j). These regions are shown in Fig.
2a. The analogous regions corresponding to the earlier analyses'? are
shown in Figs. 2b and 2¢. The separation of variables leads to two sets
of eigenvalue problems for the separation constant. The eigenvalues
are roots of polynomial equations. The probabilities p;; are then
represented in terms of the corresponding eigenfunctions.
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The constant coefficients in these representations are determined
from the boundary conditions and the normalization condition that
the sum of the probabilities is unity. There are two sets of constants,
corresponding to the representations of the probabilities p;; in the two
shaded regions in Fig. 2a. In general, these constants have to be
evaluated numerically. However, we do show that the set of constants
corresponding to the representation in the primary queueing region
may be expressed explicitly in terms of the other set of constants. This
further reduction leads to a problem of fewer dimensions than the one
obtained in the first analysis,' regardless of the size of g, > 0.

Various steady-state quantities of interest may be expressed in terms
of the probabilities p;;. Among these are the loss (or blocking) proba-
bilities, the probability of overflow from the primary to the secondary
group, the probabilities that a demand is queued, and the average
waiting times in the queues. These quantities may be expressed directly
in terms of the constant coefficients occurring in the representations
of the probabilities p;;, averting the need to calculate the p;;. This is a
key advantage of the reduction in the dimensions of the problem.

The solution is built up in stages. In Section II, we consider solutions
to the birth-and-death equations in the region0<i=n; - 1,0<j =
n; + g, of state space. This corresponds to the case ¢, = 0, and was
analyzed earlier as a special case.' Its inclusion here is for the sake of
completeness. In Section III, we examine the solution in the region of
state space corresponding to queueing in the primary, and give a
heuristic derivation of the stability condition when g; = . Section IV
discusses the boundary and normalization conditions, while Section V
is devoted to the calculation of various steady-state quantities of
interest. In Section VI, we show how to achieve a further reduction in
the dimensions of the problem by the introduction of a generating
function. This reduction is obtained in another way in Section VII.
Properties of the eigenfunctions that occur in the representations of
the probabilities p;; are given in Appendix A, the eigenvalues corre-
sponding to the primary queueing region are discussed in Appendix B,
and results pertaining to the generating function are derived in Appen-
dix C.

Il. REPRESENTATION OUTSIDE THE PRIMARY QUEUEING REGION

For convenience, we define
ki=ni+ q, k= n; + q.. (1)

Let pij (0 =i < k1, 0 =j < k;) denote the steady-state probability that
there are i demands in the primary, and j demands in the secondary.
Define also the traffic intensities

a=MA/p,  ax=A/p (2)
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As usual, we let 8;; denote the Kronecker delta, ie.,

L =]
% {o, oy @
Finally, we introduce the function
_[1, 1=0,
x“‘{o, 1<o. “)

The probabilities p;; satisfy a set of generalized birth-and-death
equations. For case I, it may be shown' that

[a1(1 = 8ig, X j—ny) + @2(1 = 8jx,) + min(i, n1) + min(Jj, n2)1pyi
= (1 = Xi—n,~1Xny—-0[@1(1 = Si0)Pi-1,;
+ (1 = 8, )min(j + 1, n2)pij+1] (5)

+ (1 = 8j0)[@18in, Xn,— + A2(1 — Xi-n,—1Xny—) ] Pij1
+ (1 = 8 )[(1 = Xizn, Xny——1)min(i + 1, 1) + n2Xi—n,8jn, 1 Pit1.j
for 0 < i < k1, 0 < j < ko. These equations were constructed to imply
that

pi=0m+1=i<k, 0=j=n—-1, (6)
since there can be no queued demands in the primary when there is a

free secondary server.
The normalization condition is

ny kg ky ko
Y Ipi+ X X pi=Ll (M
i=0 j=0 i=n,+1 j=ny

For 0 <i<n; — 1and 0 <j < ks, the variables in (5) may be
separated,' and there are solutions of the form a;f8;, where

(al +i+ p)ai = al(]. - 6,‘0)“;41 + (l + 1)ai+1, (8)
for0<i<n —1,and
[az(1 = 8x,) + min(j, n2) — p]B;
= az(1 — 8jo)Bji-1 + (1 — 8p,)min(j + 1, n2)Bj+1,  (9)

for 0 < j < ks, and p is a separation constant. The solution of (8)
may be expressed in terms of Poisson-Charlier polynomials.>® We
denote here the solution of (8) for which ap = 1 by si(p, @1). The prop-
erties of si(\, @) which we will need in the analysis are contained in
Appendix A.

For 0 =j < n2 — 1, (9) becomes

(a2 +j — p)Bi = az(1 = §jo)Bj—1 + (J + DBj+, (10)
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and we see that there are solutions f8; proportional to s;,(—p, az) for
0 <j=<ns. For n; =j < k,, we find that

[@2(1 = 8ix,) + n2 — p]B; = @2Bi-1 + N2l — 8e,)Bjs1. (11)
To find a representation for solutions to (11), we define'
12
n. a+n: —p
- oz
e a ! 2vazns
and
$i(p) = ¥i,-i(p) — ¥r,-j1(p), (13)

where Uj(x) denotes the /th Chebyshev polynomial of the second
kind.” The properties of these functions are discussed in Appendix A.
However, we note here that Us(x) = 1, U_;(x) = 0, and hence
én,(p) = 1. From (11), and (134), it follows that §; is proportional to
oip)forn, —1=<j=k,.

Thus, as a basic solution to (9), we take

_ 1 si(=p, a2)én,(p), 0=j=n,,
A= {Snz(—P, ax)di(p), n2—1=j=k,, (14)

where
Sny—1(—p, @2)Pn,(p) = Sn,(—p, A2)Pr,—1(p). (15)

With the help of (13), (128), (129), and (133), (15) may be expressed in
the form,

plsn,(1 = p, a2)¥y,(p) = sn,-1(1 = p, @2)¥g,1(p)] = 0. (16)

The expression in the square brackets is a polynomial in p of degree
k. It was shown' that its zeros are positive and distinct, and we denote
them by p,,, m =1, 2, ... | ks. We adopt also the convention py = 0.
The calculation of the {p.} for m > 0 is related to an eigenvalue
problem for a symmetric tridiagonal matrix.’

For the moment, we consider g, =0, so that k, = n,. This corresponds
to the case of queueing in the secondary only, which has been analyzed
as a special case.! In terms of the separated solutions to (5) for
0 <i=n; -1, arepresentation of the solutionfor0<=i=<n,,0=j=<k:
is

kg
Y dmsi(pm, @1))Si(—pm, @2)pn,(Pm), O0=<j=<n,,

m=0

Dij = (17

ky
2 dnSi(pm, @1)8n,(—pm, A2)$;(pm), ne<j=<ks.

m=0
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The constants {dn} are determined only to within a multiplicative
factor by the boundary conditions at i = n;, 0 < j < ks, since the
boundary condition at j = n, may be shown to be redundant.! The
multiplicative factor is determined by the normalization condition (7).
In general, the constants {d»} have to be calculated numerically.

For g > 0, the representation (17) may still be used for 0 < i < n,,
0 < < ks, but a different representation must be found for n, + 1 =
i < ki, no <j < ka. The earlier approach' was to find separated
solutions to (5) in the region n, + 1 =i < ki, n2 + 1 =j < ks, i.e,, away
from the boundary at j = n.. This led to a representation of p; for
ni < i< ki, np <j < ks. Solutions were found that match those in (17)
for i = n., n2 <j < k3, and an additional ¢ solutions were found that
vanish at i = n,. By the superposition of a suitable linear combination
of these ¢, solutions, the boundary conditions at j = nz, ny + 1 < i<
k. could be satisfied, without disturbing the matching of the represen-
tations at i = n., n2 =Jj < k2. The constants {dn} are still available to
satisfy the boundary conditions at i = ni, 0 < j < ks, and again the
condition at j = n, is redundant.

Since the number of additional constants to be determined in the
above approach is g1, this procedure is not suitable if g, is large. In the
next section, we investigate an alternate approach that is suitable if
is large or even infinite.

Ill. REPRESENTATION IN THE PRIMARY QUEUEING REGION

We now assume that g, = 2 and g2 = 1, although these restrictions
may be relaxed. For n; + 1 <i <k — 1 and nz <j < ks, the variables
in (5) may be separated and there are solutions to the partial difference
equations of the form

o Mf, m=i=k, na<j=ks,

where

[(n1 - %)(1 - 0) + ax(1 — &) + na(1 — 8jn,0) ]f,-

= as(l — Bjnq)fj—-l + nq(1 — Sjke)f,-ﬂ, ne<j=<ks, (18)

and o is a separation constant. Since a; # 0, and we are interested in
nontrivial solutions, o # 0. In particular, for n; + 1 <j =< k3, we have

[a2(1 — &jx,) + n2 — wlfi = asfi-1 + n2(l — Sjkz)ff+lg (19)
where

o = (9—‘ - nl)(l — o). (20)
ag

1494 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1982



We see from (134) that a solution which satisfies the boundary condi-
tion at j = ky 1s

fi=fedilw), na=sj=k, (21)

with ¢; defined as in (13).
It remains to satisfy the boundary condition at j = ny, namely,

[a2 + na(l — 0) — wlf, = Nafiusa. (22)
With the help of (21) and (13), we obtain
na(l = 0)dn,(w) + (a2 — w)[¥g,(w) — ¥g,1(w)]
— na[¥g, 1(w) — g 2(w)] =0. (23)
This reduces with the help of (20) and (133) to
(1 - 0)H(a) =0, (24)

where
H(o) = (m - %)‘I’qz(w) + nagn,(w), (25)

with w defined as in (20). Hence, 0 = 1 or H(o) = 0.

Now ¥(w) is a polynomial of degree [ in w. Hence, ¢?"'H(o) is a
polynomial of degree 2g; + 1 in ¢, so that H(o) = 0 has 2g: + 1 roots.
In Appendix B, we show that these roots are positive and distinct, and
that at least g» of them lie between 0 and 1, and at least g of them are
greater than 1. More precisely, define

(26)

Al =n + ﬂ.z[l -_— ‘I’qz_l(O)] .

\I"V?.(O)

Then, if @; < A, g2 + 1 roots lie between 0 and 1, and g2 roots exceed
1. If a; > A,, then g; roots lie between 0 and 1, and g2 + 1 roots exceed
1. Further, if a; = A, then H(1) = 0. We denote the roots of H(c) =0
bye,,r=1,---,2¢:+ 1, with0 < ¢, < - - - < 02,41 . For convenience,
we define oo = 1. Then o,, < 1 and 04,42 > 1, and gg,41 < 1 if @) < A4,,
and og,+1 > 1 if @, > A,. Note that ¢,, r =0, --+, 2g2 + 1 are distinct
if a1 # A,. On the other hand, oo = 04,4+ if @1 = A..

For ¢ < o, we assume for simplicity that a, # A;. We then have
29, + 2 distinct roots, and it follows that we may represent the
probabilities in the form

2g9+1

pi= Y eodiMeiw), m=i=<k, na<j=<ky, (27

r=0
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where

wr (—a—l - nl)(l - o)
Or
and the constants {e;} are to be determined. Consistency of the
representations (27) and (17) at i = n, requires that
2g5+1 ky
2‘,0 erdi(wr) = 2 AmSn,(Pm, @1)8n,(—pm, A2)Pi(Pm), (28)
for no = j = ke.

For ¢, = ®, we assume that a; < A,; the reason for this will be
apparent shortly. We use the representation (27), but the normalization
condition (7) implies that ec =0 and e, =0,r=¢q2+ 2, ---,2¢2 + 1
gsinceogo=1lando,>1,r=qg:+2, .-+, 2q: + 1. We thus have g2 + 1
conditions to replace the g + 1 boundary conditions lost on removal
of the boundary at i = k. If a1 > A;, then g,,+1 > 1, and we would
have to take eg,+1 = 0 also. However, this would leave only g. constants
e, r=1 ..., g to satisfy the g2 + 1 conditions (28), which is
insufficient.

The stability condition a, < A,, for ¢, = c, may be derived heurist-
jcally as follows. Consider the situation when there are demands
waiting in the primary queue. It follows that all n; servers in the
secondary are busy. As the point of instability is reached, the primary
queue will never be empty, and hence acts as an infinite source for the
secondary servers. Demands from this source enter the secondary only
when a server becomes available and there are no demands waiting in
the secondary queue. Since the secondary system is a loss system, it is
ergodic.

Let P;,j = na, - + - , k2, be the steady-state probability that there are
j demands in the secondary. Then the rate at which demands in the
primary queue are served in the secondary is nouP,,, and the rate at
which they are served in the primary is nip. Since A, = ay, it follows
that the stability condition is

a1 < ny + noPn,. (29)
But, as for the system without the infinite source,’
as J—ng )
Pi= - P, n=j=k. (30)
2

With the infinite source present, P; =0,/ =0, .-+, nz — 1, and Py, is
determined by

ky
Y P=1 (31)

J=ng
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From (30), (31), and (136), we obtain

[, ¥e(0)
P, = [1 ¥,.0) ] (32)

From (26), (29), and (32), it follows that the stability condition for
g = ® I.S a) < A[.

IV. BOUNDARY CONDITIONS

The constants {d.} and {e.} introduced in (17) and (27) must be
chosen so as to satisfy the boundary conditions at i = n, and i = k.
The boundary conditions at { = %, imply that

[az(1 = 8jx,) + n1 + n2) ps,.;
= a\pr,-1.j + a2l = 8n)pr,.jo1 + na(l — §n)p,.j1 (33)
for n <j < k2. At i = n,, we have
(ar + az + ny + J)pn,;
= @1 Pn,-1,; + (@1 + @2)(1 = Gjo)pn,,j-1 + (J + 1)Pn,js1  (34)
for0=j=n.—-1,
(a1 + a2 + n1 + n2)pn,n,
= @1Pn-1n, + (@1 + @2)Pnny-1 + NoPriger + (A1 + ND)Pnisrn,,  (35)
and
[a: + a2(1 — 8jx,) + n1 + n2]pa,;
= @1Pn,—1.; + @2Pn, j-1 + N1Pn 41+ RoAl = 8ja)Pn, . j+1,  (36)

forno+ 1<j=<k,.
If we substitute (17) in (34), we find, on reduction with the help of
(125), (128), and (129), that

ky
E dm¢n2(Pm)[Pm3n1(l + pm, al)sj(_Pm: az)
m=0

+ alsnl(.om, ﬂ])Sj(—‘l = Pm, aﬂ)] = 0: (37)

for 0 =< j < n, — 1. Similarly, if we substitute from (17) and (27), (36)
implies, after reduction, that

k2

E dmpmsm(l + pm, ﬂl)sng("'Prm az)p;(pm)

m=1
2q5+1
- Y edmo, — a)glw) =0, (38)

r=0
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for nz + 1 <j < ks, and (33) implies, with the help of the fact that f; =
¢j(w,) satisfies (18) for 0 =r =2¢2 + 1, that

2gy+1
Y eo?[(n1 + nedjn)or — ailéw,) =0, (39)
r=0
for n2 < j < k,. Finally, (17), (27), (15), (125), (128), and (129) in (35)
imply that

kg
Y dotny(pm)[PmSn, (1 + Pmy @1)Sny(—pm, @2)
m=0
+ @15n,(Pm, @1)Sn,(—1 = pm, @2)]

2ga+1
- (nl + n2) 2 erar¢n2(wr) = 0. (40)
r=0
We will now show that the boundary condition at i = n,, j = n is
redundant and may hence be dropped. Summing (39) from j = n2 to
ks, we find that

2go+1

Y eo?[(nior — a))¥g,(w,) + naorpn,(w,)] = 0. (41)
r=0
Forr=1,2, ---, 2q> + 1, it is true that
a
H(a,) = (.‘m - ;l)qu(w,) + notn,(w,) =0, (42)
and g0 = 1 and wo = 0, so that (41) and (26) imply that
eld1 —a1) =0,
that is,
e =0, (43)

since a, # A, by assumption. The redundancy of the boundary condi-
tion (40) may then be verified by summing (37) from j = 0 to n2 — 1,
(38) from j = n2 + 1 to k3, and (28) from j = n» to kz, and by using the
facts that p,, satisfies (16) form =0, 1,2, - -, k2, and eo = 0, together
with the recurrence relations found in Appendix A.

Consider (39) for j = n,. We note that ¢n,(w,) is nonzero; otherwise
(22) with f; = ¢,(w,) would imply that ¢n,+1(w,) = 0, and consequently
that ¢;(w,) = 0, in contradiction to the fact that ¢s,(w;) = 1. Further,
since the roots of H(o) are distinct, it follows that not all of the square-
bracketed terms are zero. Hence, the equation is nonvacuous. Since
summation of (39) from j = n» to ks implies eo = 0, if we set e = 0 in
(38) and (39), then (39) for j = n; is redundant and accordingly may be
dropped. We remark that even for a; = A, we are still free to take
eo = 0 since g,,+1 = 1 in that case. As before, the boundary conditions
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at j = n» ({ = n; and { = k,) are redundant. Therefore, it follows that
the constants {d.} and {e,} are determined by the boundary conditions
ati=n for0 =j=<n»—1and n: + 1 <j < ks, the consistency
relationships at { = n;, n. = j < k», the boundary conditions at i = k&,
n; + 1 =<j =< ks if q, is finite, and the normalization condition (7).

We summarize the results of the last three sections as follows:

k2
Y Ansi(pm, @1)8{(—pm, Q2)pny(pm), O0=j=ny,
pi={"" (44)
Y dusi(pm, @1)8n,(—pm, @2)i(pm), NM2=j=lks,
m=0
for 0 = i = n, and,

2g9+1 .
pi= % eor"¢iw), nasj=<ks, (45)

r=1
for ni <1 < ki, (q1 < »), where
pm[snz(l = Pm, a2)‘I’q2(Pm) - Sn2—1(1 = Pm, a2)‘Pq2—1(PM)] =0, (46)

form=0,1,2, -.., k2 and
H(o,) =0, r=1,23,..+,2¢:+1 (47)

ar
The k: + 2g. + 2 constants {d..} and {e;} are determined, with e, = 0,
by (28) and (37) to (39) only to within a multiplicative constant, which
is determined by the normalization condition. From (44), (46), (13),
(130), it follows that

with w, = (ﬂ — | =a).

ko
E Pi= dosi(0, al)[snz(]-, 32)\1'1;2(0) - Sng—l(ls a2)‘Pq2—l(O)]s (48)

j=0

for 0 < i =< n,, so that (7), (13), (45), and (130) imply that

dosn, (1, @1)[8n,(1, @2)¥g,(0) — 8n,1(1, @2)¥g,1(0)]

2q2+1
+ X eL'g(0)¥,,(w) =1, (49)

r=1
where

N e[t -0 -8, E#1,
Tl = X £ {q’ fol (50)

We point out that the special case g, = 1, g2 = 0 has previously been
analyzed.' In the primary queue region, solutions of the form

i—ny
a .
i, = . m=i=skh, 51
Piny (n1+n2) Pry.ny 1 1 (51)
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where
kg
Pnyng = Eo dmsnl(pm, al)sng('_Pm, a2)¢n,(pm); (52)

were found. We note that since k2 = nz for gz = 0, ¢n,(p) = dn,(p) = 1,
above. For ¢; = x, the stability condition was found to be a; <n. + n.
It is readily verified that the representations (44) and (45), and the
stability condition a; < A, produce the same result.

For q = w and g2 = 1, we must set e, =0forr=¢g2 + 2, ---,
2g: + 1, as well as e, = 0, as discussed in Section III. The remaining
ko + g2 + 2 constants {dn} and {e;} are then determined by (28), (37),
and (38) to within a multiplicative constant, which is determined by
the normalization condition. But, from (50),

= li __&
I‘m(s) = q]I-llili qu(g) - (1 _ s))

Hence, for q; = », the normalization condition (49) is
dosn, (1, @1)[Sn,(1, @2)¥g,(0) — sn,a(1, az)¥g,-1(0)]

0=¢(<l (53)

+ 3 T gy =1 (54)

r=0 (1 - Gl')
V. SOME STEADY-STATE QUANTITIES

We now proceed with the calculation of various steady-state quan-
tities of interest. These quantities are shown in Fig. 1, which depicts
mean flow rates. The loss probabilities are, for the primary and

secondary, respectively,
Ry

k2
Li= 3 puir  L2= X Piry (55)

J=ny

while the probabilities that a demand from the primary, or secondary,
source is queued on arrival are

k=1 ky Ry kg1
Q=3 I pil@=z1), Q=3 ¥ pilg=1). (56
i=n, j=ny i=0 j=n,

The probability that a demand arriving from the primary source

overflows immediately is
ng—1

Lo= Y Pn,.j- (57)
j=0

Since the mean service rate is p for each server, the mean departure
rate from the primary queue to the primary servers is

& ky
Ru=np Y % pi» (=), (58)
i=n;+1 j=ny
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while the mean departure rate from the secondary queue is

ky ko
Re=npy ¥ py (g2=1). (59)
i1=0 j=ny,+1

The mean rate at which queued demands in the primary overflow to
the secondary servers is
*
Ria=nsp Y Ppin, (g1 =1). (60)

i=n,+1
The average queue populations are, for the primary and secondary,
respectively,
Bk

Vi= ¥ ¥ (i— n)py, (g1=1), (61)

i=n+1 j=n,

and
Ry Ry

Va=% ¥ (J—napy (g2=1). (62)

i=0 j=ny+1

Also, the average number of demands in service in the two groups are

ny kg ky
Xl = 2 2 "pU’+ nl(l 910) 2 2 p‘h (63)
i=0 j=0 i=n,+1 j=n,
and
ny np—1 Ry ky
Xo=3% ¥ jpi+n: Y ¥ py- (64)
i=0 j=0 =0 j=n,

An application of Little's theorem® to the primary and secondary
queues shows that the average waiting times of the queued demands
in the primary and secondary are given by

= —, =1), Wy=— =
wh NG (r=1) 2= Q » (g2= 1), (65)
respectively, independently of the service order within each queue.
Also, if we apply Little’s theorem to the primary and secondary groups
of servers, we obtain

A1 = Ly — ©Ip) — Rz = pXy, A2(l — Lo) + AiJiz + Riz = pXs, (66)

since the mean service rate is p.

The steady-state quantities of interest may be expressed directly in
terms of the constants {d.} and {e,}, with the help of the representa-
tions (44) and (45). From (55), with the help of (13), we find that

2gg+1

Y eoi ¥, (w), (67)

r=1
.

TRAFFIC OVERFLOW 1501



and with the help of (130) and the fact that ¢kz(P) = 1 we find that
2 dmSn,(1 + pm, @1)Sn,(—Ppm, @2) + E e, (o), (68)

m=0
where T',(£) is as defined in (50). Similarly, it follows from (57) and
(130) that

ky
Ip = 2 dmsn,(Pmy al)snz—l(l = Pm, a2)¢n2(Pm)- (69)

m=0

Next, we find from (56), (50), and (13) that

ot (g

@= 3 (;) Ty, (0:) ¥, (). (70)
Also, (58), (50), and (13) imply that

Ru = nup zqgl ' 6T (000w, (71)
while from (60) and (50) it follows that

Rz = nap 2):? ' 6T (0)bmales). (72)

It may be shown directly from (5) that
Ru+ Riz =A@, (73)
and, using (42), it is readily verified that this is consistent with the
representations (70) to (72).
At this point, we define
ky
ri=Ypjy, n=<j<k. (74)
i=0
If we sum on  in (5), we obtain
[02(1 - Sjkz) + nz]rj = Qzrj-1 + nz(l — Sjkz)rjﬂ, (75)
for n: + 1 <j < ks. It follows that
nerj = Qsrj-1, ne+1=<j=ks. (76)
Hence, since L; = ry,, from (55) and (74), we find that

ko—j
r= (.'E) Lz, ns S]S ko. (77)

az

Then, it follows from (50) and (59) that

Ry = M}(%)Lz. (78)
2
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Also, from (56) and (77), we deduce that
Q.= I‘02(£2')L2' (79)
az

These representations satisfy Rz = A26.. We remark that this latter
result, as well as (73), hold since, in the steady state, the average
arrival and departure rates are equal, for both the primary and sec-
ondary queues.

From (61) and (13), we find that

2g9+1
Vi= Y edg(0)¥g,(w), (80)
where
& [H1- @+ DE @A - 9, £

We note in passing that
Ta(§) = g8 + (1 — §)Aq(9), (82)
a formula that may be numerically useful. From (62), (74), (77), and

(81), it follows that
qz
Vo= (E) qu(ﬂ)LZ. (83)
az na

Finally, from (63), with the help of (7), (48), and (131), we find that
Xi = ny — dosn,—1(2, @1)[n,(1, @2)¥g,(0) — sn,-1(1, @2)¥g,1(0)], (84)
and, from (64), with the help of (7), (17), (130), and (131),

ky
XZ =nz — z dmsn|(]- + pm, al)sngkl(z = Pm, az)¢n2(pm)- (85)
m=0
We remark that in view of (67) to (69), (72), (84), and (85), the relations
presented in (66) provide a useful numerical check.

We point out that the results of this section up to this point are
valid for g, < . We recall that for g, = o, e, =0forr=¢qg, + 2, ---,
2q: + 1, since o, > 1 for these values of r. In addition, the stability
condition a; < A;, with A, defined in (26), is necessary. Under these
assumptions, since0 <o, <1forr=1, ---, g; + 1, we find, analogously
to (67), that

Ll |q.—m = 0, (86)

as expected. Also, with the help of (53), we obtain, analogously to (68)
and (70) to (72),
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kg g2+l

eror
L2|f11'°= = m§0 dmsnl(]. + Pm, al)Sni(_pm, a2) + rgl (T_._a: (87)
and
go+l er \It
Q1| g=x = r§1 =0 a,(wr), (88)
qz+1 er0r
Rulq,-m = mu r}_:,l (T——or). ‘I’q,(wr), (89)
and
ga+l eor
Riz|g=w = n2p z.l (_lja‘#ng(wr)- (90)
Similarly, from (81), we have
. £
Ao(f) = lim A =———) O0<é<l. 91
(&) = lim Ay = g ¢ (1)
Hence, corresponding to (80), we obtain
qatl e-o, v
Vl |q,-m = ,-2—:1 (:l__Tr)'Q q,(wr)- (92)

The expressions for Iz, Rz, @, V2, X, and X», given by (69), (78),
(79), and (83) to (85), still hold. Of course, the constants {dm} and
{en)}, which occur in these expressions, (87) to (90) and (92), are those
pertaining to g1 = «, and are determined in the manner discussed at
the end of Section IV.

VI. ELIMINATION OF ONE SET OF CONSTANTS

We will now show how to determine the constants {e;} in the
representation (27) of the probabilities p; for m =i = ki,n<j=<k,
in terms of the constants {d.} in the representation (17) of the
probabilities p;; for 0 = i=<n;, 0<j=<k,. Form =i< kyn<j<k
we have, from (5),

[a: + az(1 — 8,) + 01 + nz] pij
= a1 pi1; + [(@1 + @2)8in,8jn, + @2(l — 8jn))1Pij1
+ (n1 + n28jn,) Pis1,j + na(l — 8ia,) Pijer.  (93)

We consider this equation for n, < i < », and introduce the generating
function

Giz)= X piz™™. (94)
i=n,
The series will be convergent for sufficiently small |z|.
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We consider z # 0 and define
{=(1- z)(% - al). (95)
Then, from (93) to (95), it follows that
[02(1 — Ojn,) + nz(l = % Bfﬂe) - §]Gj(z)
= az(1 = 8jn,) Gj-1(2) = na(1 = 8a,) Gja(2)
= @1 Pn,-1j + (@1 + @2)8jn, Py, j-1 = é (ny + n2bdjn) Py, (96)

for ny < j < ks. We now define G\"(2) for n, < I < k; as the solutions
of the equations

[az(l . 5,},) + n2(1 - % sjng) _ f]G}”(Z)
1
= aa(l = 8) G 2) — ma(l = ) G(a) = = 2 8, (9)
for ny < j < k;. Then, from (96) and (97), we have

"
Gj(z) = :Z (M1 Dyt — @12Dn,—12) G (2)
=ny

+ [N2Dn,ny = (@1 + A2)2Dnyny-1]1G?(2).  (98)
We define

az

J—ng
Tj(2) = (;2) [‘I',--na(f) - En:; ‘I'j—nﬂ(f)], (99)

where ¥(p) is as defined in (12). It is shown in Appendix C that the
solution of (97) is

n=sj=I

™ aO(2)
a: (1-2)H(1/2)’
G(2) = . (100
ng\ " Ti(2)¢5(8)
as (1-2)H(1/2)’

for ny = I < k2, where ¢;(p) and H(o) are as defined in (13) and (25),
respectively, with w as defined in (20). We know that H(s;) =0, r =
1, -++,2g2:+ 1, with 0 < 01 < : -+ < 02g,4+1. As discussed in Section III,
04, < 1, 0442 > 1, and 04,11 < 1 if @1 < A,, and gg,1 > 1if a1 > Ay,
where A, is given by (26). We assume that a, # A, so that gg,+1 # 1.
Now, from (12), (13), (20), (25), (95), and (99), 2%2H(1/2), 2" 7¢; ()
and z/7™T;(z) are polynomials in z of degrees 2g; + 1, 2(k; — j) and
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2(j — nz), respectively. It follows from (100) that zG}”(z) —0asz—
o, for na < j < ks, n2 < I < k,. Hence, from (98), we have G;(z) — 0 as
2 — o, for ny <j < ks. It follows that we may expand Gj(2) in partial
fractions in the form

el g .
Gj(z) = rz_:o G=1/0) n:<j=<ks, (101)
where gy = 1, and
gir= z_li.lllfl.,, [(z = 1/0,)G;(2)]. (102)

From (93 , for ny < i < ki, (94), and (101), we deduce that

2gp+1
pi=— Y o' Mg, m<i=<kh, ne<j<ks, (103)

r=0
We proceed with the explicit calculation of g;-. Let
gl = lim [(z - 1/0,)G}"(2)]. (104)

z—1/or

Then, from (98), (102), and (104), we obtain

ky
0r&ir = ’Z (nlarpnl,l - a]pn]—l,l)g}:‘)

=ny

+ [n20 Payn, — (@1 + Q2) Prynyi1]gyr?.  (105)

As we noted in Section IV, ¢n,(w,) # 0. It is shown in Appendix C
that
¢j(mr)
¢n2(wr),

with «, given by (47). Hence, from (100), (104), and (106), since go = 1,
we obtain

Tj(l/d,-) = nz S-j < ks, (106)

I—n
o__ (N * ¢r(0)9;(0) - $;(0)
£ ( ) o OHD)  HQ) (107)

az
from (137). We note that H(1) # 0, since we have assumed that a; #
A;. We also obtain

l=ny
o _ ﬁ ¢l(wr)¢j(mr) = Vs
gir = (az) O'r(]. — Ur)H'(O'r)dan(wr), r 1, , 2¢I2 + 1, (108)

where the prime denotes derivative.
From (27), (103), (105), and (107), since g = 1, it follows that

k2
H(l)eo= Y (miPn,i— @1Pn,-11) + RaPnn, — (@1 + @2) Prynp-1. (109)

l=n,
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If we substitute for p, ; and pn -1, n2 < I < ky, and pn, a1 from (17),
and sum on /, and use (13) and (128), we obtain

ky
H(].)eo = Z dm[pmsnl—l(l + Pm, al)snz(—Pm, a2)q'q2(9m)

m=0
+ n28n,(Pm, @1)Sn,(—pm, A2)Pn,(Pm)
= (a1 + @2)8n,(Pm, @1)Sny-1(—Pm, @2)Pn,(pm)]. (110)

After reduction with the help of (46) and some recurrence relations,
we deduce from (110) that

kg
H(eo = — Y, dubn,(0m)[pmSn,(1 + pm, @1)8n,-1(1 = pm, @2)
m=0
+ @185, (pm, @1)Sn,-1(—pm, @2)].  (111)

But, summation of (37) from j = 0 to n, — 1 shows that the term on
the right-hand side of (111) is zero, so that

H(1)eo = 0. (112)

Since H(1) # 0 for a; # A,, it follows that e, = 0, as was shown in
Section IV,
Next, from (27), (103), (105), and (108), we deduce that

o1 — Ur)H’(ar)(pnz(wr)er

ko n I=ng
=y (alpnl—l.l_nlgrpn,.l)(ag) dulwr)

I=n,

+ [(al + a )pnl.nrl - nzﬂrpnl,n.z]tf)n.z(wr), (113)

for r =1, ---, 2g. + 1. If we substitute for p,, ;and pn,—14, n2 = 1
< k3, and pn,,n,1 from (17), we obtain

ks
Ur(]. - Ur)H'(O})er = Z dm[alsn]—l(pm: al) - n]ﬂrSr:](pmv al)]
m=0

ko I=nq kg
'Sn_z(_pm, a2) 2 (22') ¢!(pm)¢l((o\’r)/¢n?(wr) + Z denl(pm, (11)
m=0

l=n, 2
[(ar + a2)sn,—1(—pm, @z) — n20:8p,(—pm, @2)]bn,(om), (114)

forr=1,...,2g, + 1. The sums on [ are given explicitly by (144), or
by (145) if pm = w,.

If we set o = 1 in the right-hand side of (114), so that w, = 0 from
(47), it is found after reduction that the expression reduces to —H(1)e,,
as given by (111), and hence is zero, from (112). It follows that
(1 — o) may be factored from both sides of (114). Consequently, we

TRAFFIC OVERFLOW 1507



may consider the limiting case a1 — A,, and obtain a finite expression
for eg,+1, even though og,+1 — 1 as a1 — A,.

Now that we have determined the constants {e,} in terms of the
constants {dn}, it remains to determine the latter. These are deter-
mined from (37) for 0 <j < ny — 1, (39) for n; + 1 =j =< k; and (49).
The redundancy of (39) for j = n, was discussed in Section IV, and
follows from the fact that H(1)eo = 0. Thus, the constants {d.} are
determined from the boundary conditions at i = n;, 0 <j < nz — 1 and
at i = ki, ny + 1 <j < kg, and from the normalization condition, the
boundary condition at i = ki, j = n; being redundant. The constants
{d=) have to be calculated numerically.

VIl. AN ALTERNATE DERIVATION

In this final section, we will give another derivation of the expressions
for e; and e,, r = 1, +++, 2g2 + 1, given in (109) and (113). This
derivation is more direct, but somewhat obscure, and was not evident
until the results had been established with the help of the generating
function approach.

We make use of the representation (27) for the probabilities pi;,
which holds for ni < i < k and n; < j < k2, and the boundary
conditions at i = n1, n; <Jj < k2, as given by (35) and (36). In particular,
from (27) we have

2g9+1
Pni= % edjlw), n2=<j=ka. (115)
r=0
Next, from (27) and (36), with the help of (47) and (134), we obtain
2q9+1
pu,—l.j = 2 E: ¢J(wr): n2 + 1 Sj = k2- (116)
r=0 Or

Also, from (27) and (35), with the help of (47) and (140), we find that
2q2+1 o

a1 Pn,—1,n, + (a1 + a2)pnl.ng—1 =a E ;r ¢n,("-’r)- (117)
r=0 Ur

From (115) to (117), it follows that

ko na J—ny
2 (alpnl—l.j - nlampnl.j) _) ¢j("’m)
j=ny az

+ [(@1 + @2) Pnyny—1 = N20m Pryny JPny(wm)

2g9+1 ky J—n2
= 0m E erl:(o:;m_nl) E ('EE) ¢j(wM)¢j(wr)

r=0 J=ngy

- n2¢ﬁ=(“’!ﬂ)¢n;(”r)]- (118)
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Now, from (47),

rOm

(wr - wm) = (ﬂm - Ur)( o - nl). (119)

But, for a; # A;, we know that o, # o» for r # m. Hence, if we set
p = wy in (143), and make use of (119) and (142), we obtain

@ ko na Jj=ng
(U_rO'n: - nl) j-znz (;2) ¢f(wm)¢f(wr)

= n2¢n2(wm)¢ng(wr): r# m, r,m= On ttty 292 + 1. (120)

This implies that all the terms on the right-hand side of equation
(118), except the ones corresponding to r = m, are zero.
Next, from (13), (20), (25), and (133), it follows that

(1 = 0)H(0) = az¢n,-1(w) — n20¢n,(w), (121)

and
d
o [(1 — 0)H(0)]
= (m - %)[azdai.,-l(w) — nz0¢n,(w)] — nadn(w). (122)

Hence, from (145) we obtain
ay M n2 /o 2 2
——-—m) Y |— [ (wr)]* — nzlgn,(w/)]
L1 az

r j"")
= ‘#ug(wr){% [(x- o)H(a)]} ,  r=0,.+.,2¢2+1. (123)
But, 0o =1and wp =0, and H(o,) =0,r=1, ..+, 2g2 + 1, so that
d _ J—=H(), r=0

{E"[(l - G)H(U)]}a-ar = {(1 _ Ur)H’(O'r), r=1,.-- ’2q2 +1. (124)
The expressions in (109) and (113) for e and e,, r =1, :++, 2q2 + 1,
respectively, follow directly from (118), if we set m = 0 and m =
1, -++, 2g2 + 1, respectively, and make use of (120), (123), (124), and
(137).
APPENDIX A

Properties of the Eigenfunctions
We define s;(A, @) by the recurrence relation

(a+ i+ Nsi(A a)
= a(l — 8i)sici(A, @) + (@ + 1)sia(A, a); so(A, a) =1, (125)
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fori =0, 1, ---. Thus, s.(A, a) is a polynomial of degree n in both A
and a, and it may be related to a Poisson-Charlier polynomial.>®
However, we will give here the properties of s.(}, a) that we will need.

An explicit formula is'
i (A)r a i—r

siA,a) = X

ori@—nl (126)

where
Mo =1, A=AA+1) -+ A+r-—-1), r=12 -... (127)
It was also shown' that

(i + )sia(A, @) = asi(A, a) + Asi(A + 1, a), (128)
and
sih, @) = siA + 1, @) — (1 — io)sici(A + 1, a). (129)
From (129), it follows that
Y s\, @) = s:A + 1, @), (130)
i=0

and, from (128) and (130), we deduce that

i (n —i)si(A, @) = (1 = 8n0)8n1(A + 2, ). (131)

=0

We now turn our attention to the Chebyshev polynomials of the
second kind,” U;(x). They may be defined by the recurrence relation

2xU(x) = Upa(x) + Upa(x); U_ilx) =0, Uslx) =1, (132)
for!/=0,1, -...From (12) and (132), it follows that

(a2 + n2 — p)¥i(p) = a2¥11(p) + n2¥ia(p);
Y_.i(p) =0, Wolp) =1 (133)
From (13) and (133), we deduce that
[@z(1 = &jx,) + na2 — ploi(p) = azdj-1(p) + n2(l — &ja,) djsalp), (134)

for j < k. Since’

U [l(g +l)] _ 3 g (135)
: 2 g r=0 ’
it follows that
o\ (as+n Lo\
¥0 =(=) U 2) = (—2) 6
o-() vli22)-1@) o
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Hence, from (13}, we have

ko=
,(0) = (Ef) . (137)

a:
If we set p = w, in (134), and also use (134) as it stands, we obtain
(wr — P (p)dj(wr) = azdj-1(p)ey(wr) — di(p)epj-1(w))]
— na(1 = 8 [ di(p)pini(wr) = @jsi(p)pi(ws) ] (138)
If we now multiply (138) by (n:/az)’ ", and sum on j, we deduce that

ka na J—nz
(wr=p) X (a_z) & (p) i (wr)

Jj=ny
= Qo Pn,-1(P) P, (@) — G, (p)Dn,1(w/)].  (139)
But, from (21) and (22),
[a: + na(1 — 0r) — wrldn,(wr) = Nopn,+1(wy), (140)
forr=0, ..+, 2g:+ 1. Also, from (134), since g2 = 1,
(az + n2 — W) dn,(w)) = @2, —1(wr) + N2tpn,+1(w)). (141)
From (140) and (141), it follows that
Aon, 1 (wr) = N20Pn,(w,), r=0,..-,2¢g2+ 1. (142)

Hence, from (139) and (142), we have

ks na J—n2
(@, — p) ; (a—z) &; (p)dj(wr)

= qsuz(wr)[a?(ﬁng—l(p) - n20r¢n._.(.0)], r= O| Ty 2¢h + 1 (143)

If we set p = pn in (143) and make use of the fact that p,, m =
0, - - -, k2, are the roots of equation (15), we deduce that

ks ns Jj—n3
(Wr = Pm )Sng(_pm, Cl,z) E (_) ¢j (plra)¢1'(wr)

J=n, 2

= ¢n3(pnx)¢n.ﬁ(wr)[a25rr:* l{_pm, a'l) - n'.!orsn._.(—pm; a‘.l)]- (144)

Also, if we divide (143) by (w, — p) and let p — w,, and use (142) and
L'Hospital’s rule, we find that

ks s J—ny
) (—) [ ()]
J=ny 2

= ¢n,(wr)[n20:00,(wr) — @27, 1(w,)], r=0,---,2q.+1, (145)
where the prime denotes derivative.
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APPENDIX B
Eigenvalues Corresponding to the Primary Queueing Region

We consider here the zeros of
H(o) = (m - %—l)‘l{'qz(w) + nogn,(w), (146)

where

w= (E _ nl)(l — a). (147)
(1}

As may be seen from (12) and (13), ¥, (w) and ¢n,(w) are both
polynomials in w of degree g.. It follows that ¢%**' H(e) is a polynomial
in o of degree 2g2 + 1, so that H(o) = 0 has 2g» + 1 roots. Now’

sin(l + 1)@

Ui(cos 8) = . (148)
sin 8
We define
mar
am = dz + N2 — 2Vazns cos(———), m=1,--.,q, (149)
q: + 1

and we note that 0 < a; < - -+ < ag,. From (12), it follows that

¥, (am) =0, m=1,-.-,q. (150)
Next, we consider

Pn,(w) = Vo, (w) — Vg, 1(w), (151)

and we note from (137) that ¢,,(0) > 0. If g2 = 1, then ¢n(a)) = -1,
and the unique zero B, of ¢n,(w) satisfies 0 < ) < a;. For g2 = 2, we
define

to= a2+n2—2\/¢ﬁcos(';—:), s=1,+:++,q2—1, (152)
and we note that
O<ai< {1 <ove <ogy1< $g,1 < ag,. (153)
From (12) and (148), it follows that
¥g,-1({s) =0, §=1,---,q2— 1 (154)
Then, from (150), (151), (153), and (154), we deduce that
¢n,(c1) = —¥g,~1(a1) <O, Pn,($1) = ¥, (§1) <O,
On,(a2) = =g, 1(az) >0, « . (155)
We let
Gny(Bm) =0, m=1,...,qs (156)
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with 8; < 8: < - .- < f,,. Then, it follows that

O<fi<ai<ii<Be<ar<: < {g1<Bq<ag. (1587)

Now, from (147), it is seen that w decreases from +o to 0 as o
increases from 0+ to min(1, a:/n,), and w increases from 0 to +o as o
increases from max(1, a;/n) to +o. Hence y, and 8, m =1, -+, g,
are determined uniquely by the relations

(ﬂ - n[)(l - 'Ym} = 0m, 0< Ym < min(l, 'a_l)!

'Ym n

(:_’ - nl)(l —8n) =Bmy, 0<8,< min(l, t—:i) (158)

It follows from (157) that
0<yy, <8<+ <y <8 <min(l, ai/n). (159)
Now, from (146) and (147), since ¢,,(0) > 0, we have H(ai/n)) > 0.
But, from (150) and (156) to (158),
H(&) = (nl - %)‘qu(ﬁx) <0, H(y)) = nagn,(a1) < 0. (160)
1

Also, for g = 2,
- al
82

and so on. Finally, consideration of the sign of ¥,,(w) for w — 4+
leads to

H(8:) = (m )‘I’qz(ﬁ2) >0, H(yz) = nz2¢n,(az) >0, (161)

—oo, if g2 is even,

+w,  if gsis odd, (162)

H(0+) = {
From the above results, it follows that there are roots of H(s) = 0 in
the intervals (0, vq,), (84, Yg,-1), -+, (82, y1) and (8, a;/n,). Since
8; < 1, there are at least g» roots in the interval (0, 1).
Next, from (159), we have
a, a a a

a
max| ], — | < —<—< ... < < .
n, nié,  my nid,, Niyy,

(163)

Also, from (146), (147), (150), and (156) to (158), we obtain

H(-—-{%)=n](1—6])‘l}qz(ﬁl) >O, H(i) =n2¢n2(a1)<0, (164)

n;0, ny1

and, for g, = 2,

H( & )=n.(1—62)\1',,1(32)<0, H( & )=n2¢n2(a2)>0, (165)

n,0; nyysa

-
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and so on. Hence there are g roots of H(o) = 0 in the intervals

a a a, a
nlsl,nl}’l ’ ’ nl‘sq;nl‘/% '

These g» roots are greater than 1, and we have seen that at least g2 of
the remaining gz + 1 roots lie in the interval (0, 1). It is evident that
the 2g; + 1 roots of H(o) = 0 are positive and distinct.

It remains to consider the root that lies in the interval (8;, ai/ni).
But, from (146) and (147), with the help of (13), we obtain

H(1) = ¥,,(0(A: — @), (166)

where A, is as defined in (26). Also, we have shown that H(d;) <0 and
H(ai/n,) > 0. Hence, if @, < A, this root lies in the interval (4, 1), and
there are g2 + 1 roots in the interval (0, 1), and g: roots greater than
1. If ay > A,, then a;/n; > 1 and the root lies in the interval (1, a:/m),
and there are g roots in the interval (0, 1), and g2 + 1 roots greater
than 1. If a; = A,, then one root is unity, and there are g roots in the
interval (0, 1), and g2 roots greater than 1.

APPENDIX C
Results Pertaining to the Generating Function

We derive here the solutions of (97), and we first consider I = n,.
Then,

[aa(1 = 8x,) + n2 — $1G™(2)
= a:G{")(2) + na(1 — 8,) G\ (2), (167)
for ny + 1 < j < k. It follows from (134) that
G"(2) = G (2)9;(§), me=j=h, (168)

since ¢x,({) = 1. If we set j = nz in (97), and substitute from (168), we
obtain

1
{[ﬂz + ne(l - ;) - §]¢n2(§) - n2¢n2+1(§)}G.(E:2)(z) =— % (169)
With the help of (13), (95), and (133), we deduce that

[az + nz(l - 2) - §]¢n3(§) — Nadn,+1(§)

. (1 - %)[(n. — a12)¥,,(§) + nan,($)] = (1 - é)H(l/Z), (170)

from (20) and (25). Hence,
(1-2)H(1/2)Gy?(2) = 1. (171)
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Since T,,(z) = 1, from (99), we have established (100) for I = n..
Next, we consider [ = k;. Then, from (97)

[02 + n2(1 - 6;,.2) - (:lG}k”'(z)

= (1 - 8,,,)G(2) + maGY(z), (172)

for n; < j < k; — 1. But, it may be verified from (95), (99), and (133),
that

[82 + Ilz( - BITHZ) - ;]TJ(Z)

= az(1 — 8n,)Tj-1(2) + naTjn(2), (173)

for j = no. It follows that
G(2) = Gi2(2)(2), me<j<h, (174)

since T,,(2) = 1. If we set j = k; in (97), and substitute from (174), we
obtain

[(n2 = $)Ta(2) = asTh,+(2)]G%(2) = — é (175)

With the help of (13), (95), (99), and (133), this may be written in the
form

q2
(:—:) (1 = 2)[(n1 — @:2) ¥4, () + nagpn ($)]GE(2) = 1. (176)
It follows from (170) that
q2
2

Since ¢,({) = 1, we have established (100) for [ = k.
Finally, we consider n: < [ < k,. Then, from (97),

[az + Hz(l - -ai;—q) - K:IG}“(Z)

= a1 = 8,,)G"1(2) + naGii(2),  (178)
forn.=j=<1[!-1,and
[@z(1 = 8s,) + n2 — {1G"(2) = a2G"1(2) + na(1 — 8x,)GiN(2),  (179)
for I + 1 =j < k. It follows from (134) and (173) that

GY(z) = {GE;(Z)T"(‘”’ n=j<l,

G/ (2)9;(3), I<j<h, (180)
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since Ty,,(z) = 1 and ¢s,({) = 1. The consistency of the representations
for j = [ requires that

G (2)Ti(2) = G (@) du(§). (181)
Also, if we set j = 1 in (97), and substitute from (180), we obtain
(a2 + n2 — DGV (2 i(8) — @G (2)Ti-1(2)
- G (2 (}) = — % (182)

It remains to solve (181) and (182) for G\, (z) and Gy (2).
Now, since [ < ko, it follows from (134) and (182) that

@G Do) = GLET @] = <. (183)

If we eliminate G:,’._,’(Z) with the help of (181), we find that
a:2GY ([ T(2) ¢ 1(8) — olITa(2)] = =Tulz).  (184)

But, from (134) and (173), for ns <j < ks,

(az + n2 = $)¢i(§) = awy1({) + n2gyjn(§), (185)
and

(az + n2 — {)Ti(2) = a:T-1(2) + naTjn(2). (186)
Hence,

as[Ti(2)1(§) — ()T, 1(2)]
= na[Tjn(2)e (§) — ¢ (§)T(2)],  (187)

for ny < j < k». Since n» < I < ky, it follows that

T(2)di-1(§) — di(§)Ti-1(2)

1-n,—1
= (E) [Tn!-v—l(z)(f)ng({} - ¢r12+1(§)Tn2(Z)]. (188)

n
But, from (99) and (133),
n2[Tn3+](z)¢ni(§) - ¢"-J+l(§)Tn2(z}]

= [(12 + ng(l - '1) - §]¢n3(§) - n2¢-"2+1(§)‘ (189)

4

Hence, from (170), (188), and (189), we obtain

= 1\ /1
W21 () — () Tr(2)] = (E) (1 _ -—)H(;). (190)

na2 2
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It follows from (184) that

I-ny
(E) (1- z)H(l) W(2) = Tul2). (191)
na z
In view of (180), (181), and (191), we have established (100) for
ns < l < kz.

We will now establish the relationship (106). From (21) and (22), it
follows that

[a2 + n?(l - Ur) - wr]¢n2(wr) = n2¢n2+l(wr)- (192)
Hence, from (47), (95), and (189), since T.,(z) = 1, we have
Tn._,+l(1/0r)¢n._,(wr) = #’n._,+1(wr). (193)

As we noted in Section IV, ¢,,(w,) # 0. Since T, (1/0,) = 1, we see that
(106) holds for both j = n» and j = n» + 1. But, from (47), (95), (185),
and (186), ¢,(w,) and T;(1/0,) are both solutions of

(az + ns — w)hy = ashj—y) + nohjs, ny <j<ks. (194)
It follows that (106) holds for n, < j < k..
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