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On the Distribution Function and Moments of
Power Sums With Log-Normal Components

By S. C. SCHWARTZ* and Y. S. YEH
(Manuscript received July 20, 1981)

An approximate technique is presented for the evaluation of the
mean and variance of the power sums with log-normal components.
Exact expressions for the moments with two components are devel-
oped and then used in a nested fashion to obtain the moments of the
desired sum. The results indicate more accurate estimates of these
quantities over a wider range of individual component variances
than any previously reported procedure. Coupling our estimates with
the Gaussian assumption for the power sum provides a characteri-
zation of the cumulative distribution function which agrees remark-
ably well with a Monte Carlo simulation in the 1 to 99 percent range
of the variate. Simple polynomial expressions obtained for the mo-
ments lead to an effective analytical tool for various system perform-
ance studies. They allow quick and accurate calculation of quantities
such as cochannel interference caused by shadowing in mobile te-
lephony.

. INTRODUCTION
The power sum with K independent components

K
Px =10 10g10|:k2 IOX*'”D:| (1)
=1

is a random variable which appears in many areas of communications.
With X, Gaussian, the quantity

Ly = 10"/ (2)

is called a log-normal variate. The characterization of the sum of L; is

* Professor Schwartz is currently with the Department of Electrical Engineering and
Computer Science, Princeton University.
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of importance in multihop scatter systems,' log-normal shadowing
environments,”? target detection in clutter,*” and the general problem
of propagation through a turbulent medium.* Thus, the distribution
and moments of Pk are quantities of considerable importance. Unfor-
tunately, these quantities do not appear to be expressible in simple
analytical formulae and, as a consequence, approximate procedures
have been investigated for some time. Of particular interest is the
Wilkinson approach which uses a normal approximation for the distri-
bution of Px. The problem of characterizing the distribution function
then reduces to finding the first two moments of the power sum.

The Wilkinson approach is consistent with an accumulated body of
evidence indicating that, for the values of K that are of interest, the
distribution of the sum of a finite number of log-normal random
variables is well-approximated, at least to first-order, by another log-
normal distribution."®'*' The central question, then, is how to estimate
the mean and variance of the approximately Gaussian variate Pk, i.e.,
the power sum. Knowledge of the mean, m., and standard deviation,
o, of the Gaussian random variable X} leads to a complete specification
of the log-normal variate L,, assuming, of course, no location param-
eter for the log-normal. Yet, the procedure for then estimating the
moments of the power sum variable

Px =10 logm(L) =10 lOg’m(Ll + Lo+ --- + Lg) 3

based on the individual moments m., o., is by no means straightfor-
ward. As discussed in the next section, the Wilkinson approach leads
to useful results only for a limited range of small values of the dB
spread o,. Unfortunately, this is not the o, range of most practical
interest.

The purpose of this paper is to outline a procedure that appears to
be more accurate and to have a wider range of applicability than
previously reported approximations. The new technique can be easily
summarized: Analytical formulae are developed to compute the exact
mean and variance for the power sum with two components,

Py =10 log(L; + Ls). (4)

We then suppose P; is Gaussian, i.e., it is assumed that L, + L, =
10"2v is log-normal. We then consider

Ps; = 10log(L, + L2 + L3) = 10 log(107 + L3) (5)

and compute the mean and variance using the derived formulae. In
this manner, we iterate until the required moments of Pk are obtained.

* Many more applications, including the field of economics and the estimation of
crude oil reserves, are noted in Refs. 6, 7, and 8.
t We also confirm this observation here by means of Monte Carlo simulations.
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We have compared the results of a Monte Carlo study to the
estimates of moments obtained from the new method just described,
and permuted versions of it. Qur procedure leads to remarkably
accurate estimates for the mean of Pk, over a wide range of component
variances. The estimate of the standard deviation of P is accurate for
a somewhat more limited range but, nevertheless, a much wider range
than for previously reported approximations.

The rest of this paper is organized as follows. In the next section, we
establish additional notation and discuss, in more detail, previous work
relating to power sums. The analytical development is presented in
Section III, with the details reserved for the Appendix. The develop-
ment of both accurate and simple expressions for the mean and
variance of P: is of considerable importance for system performance
studies in areas such as shadowing in mobile radio and log-normal
fading in microwave radio. In Section III, we also present such an
expression in the form of simple polynomials. Simulation results,
validating both the Gaussian approximation for Px and the new
estimation technique, are presented in Section IV. Concluding com-
ments are given in Section V.

1l. PRELIMINARIES

The power sum, as defined in (1), is measured in decibels. However,
rather than use the definition for L, given in (2), it is more convenient
to use the natural logarithm:

Ly=e™. (6)
The relationship between the two associated normal variates is simply
Y. = AX,, (7)

where
A = %o log.10 = 0.23026. (8)

When the mean and variance of X, are specified as, say, m. and oy, in
order to use the representation (6), we have the obvious scaling

my=Am., o;=>MNd} (9)
Similarly, we define the quantities
L =10"m = ¢?, (10)
and the corresponding moments are related by
m. = A\mp,, o’ = Ao},. (11)

The rth moment of a log-normal variate L is given in terms of the
moment-generating function of Y:
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E(L,i} — E(erY1) = erm,ﬁl/?{r"‘ﬂ_f,)_ (12)

Note that the moments grow exponentially with the order r2. This
rapid growth of moments may be one of the reasons for the limited
range of applicability of the classical Wilkinson approximation (see
Ref. 11); dealing with diffferences of large numbers can lead to numer-
ical instability in trying to evaluate the approximate log-normal density
of the sum.

Marlow'® has shown that under quite general conditions, as K —
o, Pk is asymptotically normally distributed.* For fixed, finite K, and
with the Xk independent, identically distributed normal random vari-
ables (with mean m, and standard deviation ox), Marlow also derived
a small variance normal approximation. As o, — 0, a scaled version
of Pk approaches the distribution function of a unit normal.

In terms of log-normal variates, if we write

Px =10 logw(L) = 10 logio(L1 + Lo+ --- + Lkg), (13)

Marlow’s second result says that, in the finite-component, small-vari-
ance case, the sum of log-normal variates is also approximately log-
normal. This result forms the analytical basis for the classical Wil-
kinson approximation, which is the usual normal approximation for
the distribution of the power sum.

The Wilkinson approximation proceeds as follows: With

L=¢ (14)

now taken to be log-normal, Z is the associated Gaussian random
variable with parameters m. and a.. To find these quantities, one uses
(12) and equates the first two moments of both sides of (14). For
example, with K = 2, and Y;, and Y, identically distributed with mean
m, and variance a3,

E(L) = pm:+1/20i = Qpmit1/20
E(L?) = e2nvi = getmesael 4 2(gmet1/26)2, (15)

Taking logarithms gives a set of linear equations for the two unknowns,
m. and o>

Figure 3, which will be discussed in detail later, presents the results
of a Monte Carlo simulation and the Wilkinson approximation, em-
ploying eq. (15). As indicated, the Wilkinson approach tends to break
down for o, = oy/A greater than 4 dB. This is consistent with the
above-quoted result from Marlow.

*For the infinite component case, Marlow also points out that there is asymptotic
normality both on the power scale, as well as on the dB scale. That is, both Px and L are
asymptotically normal.
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If one is interested in small o, but larger values of the random
variable, i.e., the tails of the power sum distribution, Fenton' suggests
a better approximation to the equivalent log-normal distribution by
utilizing higher-order moments. In this case, eq. (15) is replaced with
equality of, say, third and fourth moments. This procedure of using
different values of r in different regions results in an approximating
distribution which would be a series of connected straight lines when
plotted on log-probability graph paper.

At the other end of the o, component range, Farley® has derived a
large variance approximation. With independent, identically distrib-
uted variables, as 0; — ®

PrLl (Px — ma) < a] = [®()]%, (16)
where ®(a) is the unit normal distribution function. (Clearly, this is a
decidedly non-Gaussian result.) Farley’s simulations indicate that the
large variance approximation gives better results than Wilkinson’s
approach for about o, > 10 dB and K fixed.

In this study, we also take K finite, but focus on the midrange, 4 <
o, < 12 dB, where neither Marlow’s nor Farley’s results are applicable.
This midrange is of particular interest for the shadowing phenomena
in mobile telephony, microwave radio fading, and airborne radar
clutter.

Nl. ANALYTICAL RESULTS

We assume that

K K
L=EL:;=2€Y”=€Z 17
k= P}

1
for finite K is log-normal. The associated Gaussian variate is Z, and
the goal is to determine the quantities

m.= E(ln L)
o = E[(In L — m.)?] (18)

in terms of the mean and standard deviation of the component variates
Y.

Below, we give exact expressions for m. and o. when there are two
components. The procedure for K greater than two combines the log-
normal variates in a nested fashion two-by-two, using the exact for-
mulas developed. To illustrate the procedure, suppose we have three
log-normal variates: L = L, + L, + L3. The exact first and second
moments of In(L, + Ls) are computed. We then take

Zz = IH(L] + Lz) (19)
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as a normal random variable and write*
Z =1In(L) = In(e® + Ls) = In(e” + ™). (20)

We then compute the moments of In(L ), again using the exact expres-
sions developed for two components. This procedure has been tested
in a variety of situations and groupings of variates. The results are
very encouraging and will be discussed in the next section. Here, we
outline the development of the analytical formulae, with the details in
the Appendix.

Naus'® has derived the moment-generating function, and computed
the first two moments of the power sum with two independent,
identically distributed normal components. (Hamdan' generalized
Naus’ result for correlated variables with unequal variances.) Here, we
extend Naus’ general approach to the case of two independent vari-
ables with unequal means and variances.

For the two components, we have

=L=L+L=e"+e" (21)

or
= In(e"" + e¥?).

Define the Gaussian random variable

w= Yz -Y, (22)
M =W =My, — My, (23)
0w = 0, + &, (24)

Taking the expectation of Z, we have
E{Z} = E[ln(e”" + "]
= E{In[e"(1 + "]}
= E(Y1) + E[In(1 + €“)]. (25)

The second term is

E[In(1 + €)] = f [In(1 + &) JAw)dw, (26)

where f(w) denotes the normal density with the above-indicated mean
and variance. The logarithmic term is now expanded in a power series.
To ensure convergence of both the power series and the series resulting
from the subsequent integration, the integral is broken up into the
appropriate ranges. Thus,

* Equivalently, L; + L; is assumed to be log-normal.
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f In(1 + e")f(w)dw = j In(1 + “)f(w)dw

+ J [In(1 + ™) + w]flw)dw. (27)
[H]

The expansion

® ) (_1)j+1
In(l+x)=Y Cx’,C;= 7 (28)

J=1

valid for |x| < 1, can now be used for each of the above integrals. The
result (details are given in the Appendix) for the first moment is

m. = E[In(L, + L»)]

Ow ... M
=m,, — e ™% + m, CIJ( ")

Vor O

+ % Cet'er I:ek"’“’tll(—_mw_ k"ﬁ’)
k=1 w

)
Ow

= my, + Gi(0w, Mu), (29)

Oy

where ®(x) is the Gaussian probability distribution function as defined
in the Appendix, eq. (39), and G, is defined implicitly. It is not difficult
to show that the series in (29) converges. Qur computer experience
indicates that about 40 terms are required for the 4th significant digit.

As might be expected, the formula for the second moment is more
complicated and is given by eq. (72) in the Appendix. The basic idea
however, remains the same: When expansions of logarithmic functions
are used, the expectation is broken up into integration ranges which
provide convergent series.

Although the formulae as developed involve infinite series and are
complicated, their application is relatively simple. We can write [see
egs. (49) and (73) in the Appendix]:

m. = my, + Gi(ow, mu)
o} = 0}, — Gi(0w, mu) — 20°Gs(0w, M) + Galow, mu),  (30)
where the Gi(a,, m.) are defined in the Appendix and
p = —0y/0u. (31)

Observe that the G; functions, i = 1, 2, 3, depend only on the two
parameters m.,, o.. Consequently, we can evaluate Gi(ow, m.) as a
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Table la—Coefficients of the approximating polynomials—Region |

[-20<m,<0,0<0,<15]

Functions
Coefficients G1 G2 G3
A00 —0.1153239E 00 0.4012876E-01 —0.3958699E 01
A01 —0.6667912E 01 —0.4483259E 01 —0.64564983E 01
A02 0.1151279E 02 0.7391760E 01 0.1139280E 02
A03 —0.7162489E 01 —0.3772190E 01 =0.7116366E 01
A04 0.1312986E 01 0.5262268E 00 0.1315218E 01
A10 —0.1611385E 00 —0.1579114E 01 0.6839918E 01
All 0.2084215E 02 0.1637249E 02 0.19625629E 02
Al2 —0.4499768E 02 —0.2994901E 02 —0.4314091E 02
Al3 0.2756210E 02 0.1337812E 02 0.2647795E 02
Al4 —0.56109783E 01 —0.1747459E 01 —0.4940592E 01
A20 0.1345124E 00 0.2174588E 01 —0.4717296E 01
A21 —0.2670183E 02 —0.2114152E 02 —0.2486802E 02
A22 0.5919191E 02 0.3976749E 02 0.5618572E 02
A23 —0.3695334E 02 —0.1776890E 02 —0.3501815E 02
A24 0.6912766E 01 0.2195322E 01 0.6560938E 01
A30 0.8057054E-01 —0.7525302E 00 0.1819360E 01
A3l 0.1429709E 02 0.1147157E 02 0.1323538E 02
A32 —0.3225969E 02 —0.2189501E 02 —0.3050022E 02
A33 0.2055628E 02 0.1006767E 02 0.1937757E 02
A34 —0.3888684E 01 —0.1224983E 01 —0.3658379E 01
A40 —0.3145306E-01 0.8447987E-01 —0.2817493E 00
A4l -0.2730047E 01 —0.2222839E 01 —0.2518272E 01
A42 0.6244253E 01 0.4289557E 01 0.5893337E 01
Ad43 —0.4048245E 01 —0.2035757E 01 —0.3809492E 01
Ad4 0.7746786E 00 0.2499568E 00 0.7260144E 00

function of these two parameters and store the results in three lookup
tables. An alternative is suggested by Fig. 5, which gives the three G/’s
‘as a function of o, with m, as a parameter. Since the curves are
smooth, we can fit low-order polynomials to them and use the resulting
expressions in (30) for the evaluation of the moments m. and o.. The
advantage of utilizing these analytical expressions in system perform-
ance studies is clear and, indeed, is what we have implemented.
A least-squares fit was performed to determine the polynomial
coefficients. After some experimentation, we chose the polynomial

J K
10g10Gi(0w, mu) = ¥ ¥ Au(i)oil® |mu|*?,
j=0 k=0
with J = K = 4. The coefficients A;:(i) were obtained for two regions
of the parameter space. The results for Region I (-20 =m, = 0,0 =<
0w =< 15) and Region II (=40 = m, = =20, 0 < o, < 15) are presented
in Tables Ia and Ib. Over these regions of interest, the maximum error
produced by using the polynomial approximations was found to be
about 1 percent as compared to the exact calculations based on egs.
(49) and (73).
Before discussing the results of the simulation study, we digress to
note how the analytical results can be extended. First, the development

t=1,2,3 (32
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Table Ib—Coefficients of the approximating polynomials—Region |l

[-40<m, <—-20,0 <o, < 15]

Functions
Coefficients G1 G2 G3
A00 —0.3354792E 03 0.8942737E 02 —0.3596955E 03
A01 0.5281230E 03 —0.1521976E 03 0.5576596E 03
A02 —0.3085414E 03 0.9734654E 02 —0.3242909E 03
A03 0.7895054E 02 —0.2744724E 02 0.8271772E 02
A04 —0.7518427E 01 0.2756644E 01 —0.7863267E 01
A10 0.1354559E 04 —0.3688427E 03 0.1443269E 04
All —0.2133838E 04 0.6287175E 03 —0.2250748E 04
Al12 0.1245491E 04 —0.4077784E 03 0.1307118E 04
A13 —0.3191052E 03 0.1148104E 03 —0.3336339E 03
Al4 0.3036738E 02 —0.1161187E 02 0.3167827E 02
A20 —0.1865732E 04 0.4966108E 03 —0.1986007E 04
A21 0.2941369E 04 —0.8514775E 03 0.3106047E 04
A22 —0.1718295E 04 0.5574036E 03 —0.1804377E 04
A23 0.4403198E 03 —0.1588548E 03 0.4603419E 03
A24 —0.4188256E 02 0.1624075E 02 —0.4366067E 02
A30 0.1059090E 04 —0.2684747E 03 0.1128759E 04
A3l —0.1671264E 04 0.4638312E 03 —0.1768423E 04
A32 0.9776851E 03 —0.3061915E 03 0.1028409E 04
A33 —0.2507169E 03 0.8842364E 02 —0.2624284E 03
A34 0.2384698E 02 —0.9152624E 01 0.2487490E 02
A40 —0.2121206E 03 0.5077676E 02 —0.2264791E 03
Adl 0.3350888E 03 —0.8833020E 02 0.3553536E 03
A42 —0.1963238E 03 0.5876009E 02 —0.2069294E 03
A43 0.5040234E 02 —0.1717538E 02 0.5284466E 02
Ad4 —0.4795980E 01 0.1799387E 01 —0.5008795E 01

is valid when the random variables Y, and Y- are correlated as well as
having different means and variances. With a simple modification in
eq. (24) to account for the correlation [and another in (52)],

o= o_;‘.z__, + 0_3] — P120y,0y,, (33)

the results remain unchanged. Furthermore, in principle, the under-
lying component variables do not have to be Gaussian. The proviso, of
course, is that the integration with the non-Gaussian f(w) be tractable,
and it must fall off fast enough so that the resulting series is convergent.
(Clearly, the components are no longer log-normal.)

Finally, we observe that the results can be extended in yet another
direction. By generalizing the procedure outlined above, exact formulae
for moments of more than two components can be obtained. However,
the resulting expressions are very complicated and, given the high
accuracy of our new method, the added complexity does not appear to
be warranted.

IV. SIMULATION RESULTS
We use the definitions introduced earlier:

Ly = 10710 (34)
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K
Px =10 logw(L) = 10 logm[ ¥ L.,:l. (35)
k=1

In the following discussion, by m, and o, we shall mean the first
moment and standard deviation of the random variable Px. The value
of K should be clear from the context. We focused our Monte Carlo
study on three issues:

(i) How good is the assumption that L = L, + Ly + -+ + Lk is
approximately log-normal or, equivalently, how well is the cumulative
distribution function (cdf) of Px = logio(L) described by a Gaussian
cdf ? Furthermore, how closely does the Gaussian cdf (based on the
calculated m, and o,) match the true cdf of the power sum?

(i) How accurate is the new analytical method in estimating the
resultant mean m,, and standard deviation g, and for what range of dB
spread o, and component number K is the technique accurate?

(iii) Is the nested procedure we have described numerically robust,
or are the estimates of m, and o, sensitive to the order in which we
combine the log-normal components?

The results of our Monte Carlo simulation confirmed the observation
of a number of other investigators, that the cdf of Py is well approxi-
mated by the Gaussian cdf, particularly in the range of practical
interest.* Shown in Fig. 1 is the cdf of the sum of two log-normal
variates with o, = 6, 10, and 14 dB. We note that the Monte Carlo
simulation agrees quite closely with the assumed Gaussian cdf (based
on the calculated m, and g;) in the range of 0.1 to 99 percent. Outside
this range, the simulation values start to deviate slightly. The cdf of
the sum of a large number of log-normal variates, discussed below in
Examples 1 to 3, together with a fourth case (the sum of six equal
components with m, = 0 dB and o, = 10 dB), are presented in Fig. 2.
Here we observe excellent agreement between the calculated (as-
sumed) and simulated cdf in the range 1 to 99 percent.

Having confirmed the Gaussian approximation for Px and the fact
that the calculated cdf closely represents the true cdf, we turn our
attention to the second issue, estimating the moments m, and o, from
the moments of the individual log-normal components. In Figs. 3a to
3c, the number of identically distributed components, K, is held fixed
and the component variance (dB spread) o7 is varied. In all cases, the
component mean m, is 0. Figure 3a illustrates the results for two
components and serves to verify the Monte Carlo program. Our
computed results coincide (as they should) with the simulation. In
contrast, the Wilkinson approximation begins to give inaccurate results

_ *The simulations typically had 10,000 sample points for each value quoted or
indicated on the figures. :
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Fig. 1—Cumulative distribution function of sum of two log-normal variates with zero

means and variances equal to 6, 10, and 14 dB.
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1. THREE VARIATES: m=0, 0 =6,7,9.5.

2. SIX EQUAL COMPONENTS: m =0, o =10.

3. NINE COMPONENTS IN THREE GROUPS: GROUP 1, m = -10, 0= 6; GROUP 2, m = -18,
0=10; GROUP 3, m = -38,0=12.

4. EIGHTEEN COMPONENTS IN THREE GROUPS: GROUP 1, m = 10, 0= 10; GROUP 2, m = -2,
o =10; GROUP 3, m = -8, 0= 10.

Fig. 2—Cumulative distribution function of the sum of a large number of log-normal

variates corresponding to Examples 1 to 3 in Section IV plus an additional case.
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at about o, = 4 dB and becomes increasingly worse with increasing
Ox.

Figure 3b illustrates six components, and Fig. 3c illustrates ten. The
dB spread ranges from 2 to 14 dB. Our technique gives remarkably
accurate estimates of m,, while the estimate of o, is quite close for
0. < 8 dB and then tends to underestimate the true standard deviation.
By way of contrast, for these ranges and number of components, the
Wilkinson approach gives gross inaccuracies and cannot be used.

In Figs. 4a and 4b, we vary the number of components, set m. = 0,
and hold the dB spread fixed. Again, our procedure gives very accurate
estimates of the mean and, as the number of components increases,
the variance is underestimated only slightly for o, = 6 dB (F'ig. 4a) and
somewhat more so when o, = 10 dB (Fig. 4b). For these cases, the
error in the estimate of the variance as a function of the number of
components is as shown in Table II. (There are negligible errors in
estimates of the mean.) As indicated in the figures, the errors in the
Wilkinson approach are substantial, ranging up to 74 percent when
o, = 10 dB.

It should be observed that the situation with equal mean components
and large dB spread is probably a worst-case situation. Indeed, from
the above table we see for K = 16, o, = 10 dB, that the estimate of o,
is off by 12.8 percent. In contrast, in Example 3 below, we deal with
K = 18 components, and the same dB spread. There, the error in the
estimate is less—about 6 percent. The only substantial difference in
the two situations is the unequal mean values. These comments
notwithstanding, further study is warranted for this boundary of
parameter values, i.e., where the number of equal mean components
is high (K = 16) and the dB spread is identical and large (0. = 10 dB).

Our technique was also tested on a number of examples with unequal
components. We report on three that were chosen to illustrate the
general applicability of the new method.

Example 1—Three components, equal means, different variances:
m,=0dB, i=12,3; 0;, =6, 0,=7 o0r=095dB.

The Monte Carlo simulation gave m, = 8.08, g, = 5.356. Our procedure
provided the estimates m, = 8.05, o, = 5.273, for a 0.03-dB error in the
mean and 1.5 percent error in the variance.

Example 2—Nine components, taken in homogeneous groups of three:
m., = —38 dB; o, =12dB, i=1,2,3
m., = —18 dB; o,=10dB, i=4,5,6
m,,=-10dB; o,=6dB, :=78,9.
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Fig. 4—Mean and standard deviation of power sum with varying number of identically
distributed components. (a) Component mean, m. = 0 and standard deviation, o, = 6
dB. (b) Component standard deviation o: = 10 dB.

Monte Carlo results gave m, = —0.61, 0, = 3.90, while our technique
yielded m, = —0.6, g, = 3.79. This gives an error of 0.01 dB in m, and
2.8 percent in aj.

We now address the third issue raised at the beginning of this
section. To show that the way in which we combine the variables has
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Table ll—Error in estimate of variance
No. of Components (K)

Percent Error 2 4 8 16 32
o, = 10dB 0.13 1.4 5.4 12.8 214
o, =6dB 0.43 2.0 3.3 8.2 115

little effect, we permuted the order in combining the nine components.
The resultant mean estimate varied between —0.59 and —0.64 dB,
while the standard deviation varied between 3.66 and 3.89 dB. This
example—and a number of others studied—illustrates the desired
numerical robustness of the procedure.

Example 3—Eighteen components: This example would correspond to
two tiers of interferers in a cellular mobile radio scheme.

Components 1 to 6: m.=10dB, o.=10dB.
Components 7 to 12: m.=—-2dB, g, =10dB.
Components 13 to 18: m,=—-8dB, o.=10dB.

The Monte Carlo results are: m, = 27.07, o, = 4.54, and our technique
gave m, = 27.04, 0, = 4.26. The error is 0.03 dB in the mean estimate
and 6.2 percent for op.

V. CONCLUSIONS

In this study, we have verified once again, as others have, that the
sum of a moderate number of log-normal random variables is well
approximated by another log-normal variate, especially in the cdf
range of 1 to 99 percent. Perhaps more important, we have been able
to relate the mean and variance of the resultant (Gaussian) power sum
to the first two moments of the individual underlying Gaussian com-
ponents. Our method is highly accurate in the range of parameter
values of most practical interest.

Based on our preliminary simulations, we may conclude that the
analytical method presented in this paper is extremely accurate in
evaluating the mean of the power sum for the complete range of
parameter values investigated. This range was a dB spread of 2 =
o < 14 dB and up to K = 30 components. It is also accurate in
estimating the standard deviation with up to eight equal log-normal
variates when o, is less than 10 dB. Outside this range, the approxi-
mation is slightly less accurate.

APPENDIX

Derivation of First and Second Moments

Our purpose is to provide enough detail so that an interested reader
can rederive the formulae for the first and second moments, as given
below by eqgs. (48) and (73).
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The expansions we use are

@ (_1)k+l
Inl+x)= Y Cux*, |x|]<1 and Ci= 7
=

(1 + %) = 3 bart*,

k=1
2(_1)k+1 k
R+1 5

—1

III(I and by =

(36)

@7

The density function of a normal random variable with arbitrary mean

and variance is defined by

@ (x; m, 0) = e~ —m)*/20%

1
v2mo

(38)

The distribution function is a simple parameter function and is given

by

x—m : 1 [ —2/2
L] = o' (t; m, o)dt = m—f e /°dt.
( o ) J’ '\a'2‘?f —

The function ®(x) is related to the error function by

erf(x) =% f e dt
1]

®(x) = Y% + % erf(x/V2).
Three integrals which occur often in the development are

+co
E{e™} = j €70 (x; m, o)dx = &m0

° -m — or
f e (x; m, o)dx = [ 2]@(7)

j e (x; m, o)dx = [ 2]¢(m ~ o2r)‘
0

a
We repeat the definitions introduced in Section III:
eZ=L=L1+L2=eY1+eY2
Z =In(e™ + "),

with the Y; Gaussian random variables. Let

(39)

(40)

(41)

(42)

(43)
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w=Y2—Y1
m, = w = E(w) =m,, — m,,

os = E(w — w)* = o5, + 05 (44)
For convenience, we shall let f(w) denote the particular Gaussian

density function
flw) = @' (w; mw, ou); (45)

Z is rewritten as
Z =In(e"" + e™) = In[e"'(1 + )]. (46)

Taking the required expectations
E{Z}) =m.=m, + EIn(1 + &)

=m, + J In(1 + e*)f(w)dw. (47)

As discussed earlier, the integral is broken up into the intervals
(—o0, 0) and (0, =). Upon application of the series (36) and the
averaging (42) and (43), we obtain the result

M Ow o
m, = my, + qu)(———) — e mi/2ai

o/ om
@ _ B2
+ 3 ckek‘nm[ekmw(-i:—ﬂ) (48)
k=1 w

ST |
Ow

All the terms, except m,, are lumped together and denoted by
Gl (Uw; mw):

m. = my, + Gi(ow, mw). (49)

The function G, is shown graphically in Fig. 5.
The second moment is decomposed as

E(Z’) = E{[Y: + In(1 + ¢)]?}
=02 + m? + E[2Y, In(1 + €*)] + E[In*(1 + €*)].  (50)
First, consider the cross term
A = E[2Y,In(1 + )], (51)

where Y; and w = Y. — Y, are jointly Gaussian with correlation
coefficient
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—-—5, !

@, IN DECIBELS

Fig. 5—The plots of G/'s as a function of o, with m,, as a parameter.

. E[(Yl - my)(w — mw)]

Oy,0w
=%

Ow
= —oyl/wlcr;ﬁ + ofz . (562)

We utilize the conditional expectation property of jointly Gaussian
random variables (see Ref. 17, Section 7-5):

E[(Y1 — my) | (w — mw)] = % (W — mu) (53)
or
E[(Yi|w)] = my, — p*(w — mu).
Then, (51) becomes

1458 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1982



A = E[2Y, In(1 + ¢¥)]
= 2E.{In(1 + €")Ey,|w(Y1)]

= 2E,{In(1 + €“)[m,, — p*(w — m.)]}.

(54)

For convenience, we denote the first and second terms by A, and A,

respectively:
A=A - A,
Since
A, = 2m, E[In(1 + )]
= 2m,,(m. — m,,)
from (47), we need only consider the second term A,
Az = 20°E[(w — my) In(1 + €¥)].
Integrate A; by parts:

Ay = 2p2j (w — mw) In(1 + e*)f(w)dw

= 2p% j T i p flw)dw.

For negative w, we use the expansion

w

e o
Y _ kgo (__l)kelk+l)w

to obtain

ew

1+e€*

0
Aj = 2p’0; j flw)dw

o
= 2p%00 ¥ (—1)*emuwtk+D+k1oi2

k=0
q)[—mm — ik + 1)] .
Ow
For the other part of (58), we have
N o 2.2 - ew d
Aj 2pan; 1_‘_‘gwf(w) w

Tl
= 2p203, J ﬁ"e_—wf(W)dw
0
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— 20%2 f S (—1)e ™ (f(w)dw
o k=0

=2p20u2, E (_l)ke—kmuﬁk’aﬂ,ﬂ
k=0

q)[mw - 03,"}' 1)
Ow
Collecting the results for the cross term,
A=A —-A,=A, — (A2 + AY)
= A, — 20°G3(0w, M)
= 2my, G1(0w, mw) — 29 G3(0w, Muw).

(62)

The remaining term in E(Z?) to evaluate is the last expression in (50).
We denote it by Gz(0w, m.).

G2(0w, my) = E[In*(1 + €)]

Q0 o
- f In%(1 + €*)f(w)dw + J’ In%(1 + e“)f(w)dw
- 0

= B] + Bg. (63)

For the integration over the negative real line, we can use the expansion
given by (37):

o 0
B1 = E bkf e(k+l]wf(w)dw

k=1

s
=y brelle+Dmurt(k+1)al/2]
k=1

q)[—mw -2k + 1)]'

(64)
Ow
The expression B; is rewritten as:
B; = f {In[e“(1 + e ) 1}*flw)dw

V]

= f [n*(1 + e™) + 2w In(1 + ™) + w?|f(w)dw
0

= Bs + By + Bs. (65)

The expressions for B; and Bs are relatively straightforward:
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B; = j wi(w)dw
0

i)

+ V2/7 muoLe ™2

+d1-@ —m"’)}:f'ﬂ —m?/20% 66
[ ( Gam ¢ (©6)

B; = j In%(1 + &™) f(w)dw
0
= f In?(1 + &*)f(—w)dw

0 oo
= j kz bke(k+l)wf(_w)dw
o k=1

= 2 bke—tk+1]mw+(k+1)"ﬂ.'f/2
k=1

— a2
(p[mw ow(k+1)]_ €

Ow

The final term to consider is

B, = f 2w In(1 + e™)f(w)dw
0

k=1

=-27 C,,J we*f(—w)dw. (68)

Complete the square for the expression e*’f(—w) and integrate to
obtain

B;=-27% Cke(rnwk+k"'o.?/2)|:mkq)(_mk) - o_\/“’_ e—mf/Zaﬁi|, (69)

k=1 Ow 2@
where
my = —m, + koy. (70)
Collecting the terms that make up G:(ow, m.) in (63), we have
G2(0w, muw) = B1 + B> = B1 + (Bs + By + Bs) (71)
as given by eqs. (64), (66), (69), and (67).

To summarize, the second moment is given by the expression
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E(Z? = &, + m2 + 2 my G0, my)
— 20°G3(0w, Mw) + Go(0w, my), (72)
and, finally, the variance is
o2 = E(Z% — m?
= &2, — G}(0w, M) — 20°Gal0w, mu) + Galow, my).  (73)
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