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Algorithms for finding a minimum-cost, single-commodity flow in
a capacitated network are based on variants of the simplex method
of linear programming. We describe an implementation of a primal
algorithm which is fast and can solve large problems. The major
ideas incorporated are (i) the sparsity of the network is used to reduce
the time and computer storage space requirements; (ii) basic solutions
are stored compactly as spanning trees of the network; (iii) a candi-
date stack is used to allow flexible strategies in choosing an arc to
enter the basis tree; (iv) the predecessor and thread data structures
are used to efficiently traverse the tree and to update the solution at
each iteration; (v) rules are implemented to avoid cycling or stalling
caused by degeneracy; and (vi) piecewise-linear, convex arc costs are
handled implicitly. The Primal Network Flow Convex (PNFC) code
implements this algorithm and three examples, from communication
networks, that can be solved with PNFc are discussed: (i) solving the
area transfer problem; (ii) scheduling the collection of traffic data
records; and (iii) planning the placement of pair-gain systems.

I. INTRODUCTION

This paper describes an implementation of the network simplex
method for solving the transshipment problem. The problem consists
of finding a minimum-cost, single-commodity flow in a capacitated
network satisfying supply-and-demand constraints. The familiar trans-
portation, assignment, and shortest route problems are all related to
the transshipment problem. The area of network-flow theory has been
well studied and has proven useful in many areas of applications. (See
Refs. 1 to 7.)



A number of different methods have been proposed over the years
to solve network-flow problems. These include primal, dual, primal-
dual, out-of-kilter, negative-cycle, and scaling methods. A survey of
computer codes is presented by Charnes et al.® Until recently, primal-
dual approaches were believed to be superior to the others. However,
much work has been done involving data structures to reduce the
computation time and space requirements for primal-network flow
codes. The primal approach is a specialization of the bounded-variable,
primal-simplex algorithm of linear programming which takes advan-
tage of the special structure of network problems. We describe an
implementation of a primal algorithm that is fast and can solve large
problems. The major ideas used are as follows:

(z) The sparsity of the network is used to reduce the time and
space requirements for solving network-flow problems.

(i) Basic solutions are stored compactly as spanning trees of the
network.

(itf) A candidate stack is used to allow flexible strategies in choosing
an arc to enter the tree.

(iv) The predecessor and thread data structures are used to effi-
ciently traverse the spanning tree and to update the solution at each
iteration.

(v) Rules by Cunningham®'® are implemented to avoid cycling or
stalling caused by degeneracy.

(vi) Piecewise-linear, convex arc costs (or, equivalently, multiple-
parallel arcs) are handled implicitly.

The Primal Network Flow Convex (PNFC) code is an implementation
of this algorithm and is described in more detail by Seery.''? An
overview flowchart of the PNFc code is shown in Fig. 1. We will only
discuss the INITIAL and SOLVE modules, which perform analogous
functions to Phases I and II of the simplex method of linear program-
ming.

The problem of finding a minimum-cost flow in a network with
linear costs is described in detail in Section II. The primal network
approach is then outlined in Section ITI. We describe the data struc-
tures used to implement the algorithm in Section IV. The major steps
of determining an initial solution, finding an entering arc and leaving
arc, and exchanging these arcs are detailed in Sections V, VI, VII, and
VIII, respectively. Extensions to other than linear arc costs are de-
scribed in Section IX. Finally, in Section X, we describe three problems
in communication networks that can be modeled as network-flow
problems:

(i) Solving the area transfer problem.

(i1) Scheduling the collection of traffic data records.
(iii) Planning the placements of pair-gain devices.
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Il. PROBLEM FORMULATION

We refer the reader to Harary™ for graph-theoretic concepts neces-
sary for defining the problem; however, we do define a few of these
concepts here. Consider a directed graph G = (N, A) consisting of a
set N of nodes and a set A of ordered pairs of nodes called arcs.
Associated with each node i is a value d;, representing the amount of
supply of a commodity available at the node. A negative “supply”
represents a demand for the commodity at the node. Each arc (i, j)
has a lower bound a;; and upper bound b; on the number of units of
the commodity that is allowed to flow along the arc from node i to
node j. Also, there is a shipping cost of ¢; per unit of flow along each
arc (i, j). An example network is shown in Fig. 2, with each node i
labeled by d;, and each arc (i, j) labeled by (arc no. ay, by, cy). A
feasible flow x = (x;;) assigns flow values x;; to arcs (i, /) which satisfy
the conservation-of-flow constraints eq. (2) and the capacity require-
ments eq. (3). An example of feasible flow for the network in Fig. 2 is
shown in Fig. 3, where each arc is labeled by its flow value. The

6 0 -4
(1,1,10,29) (8,2,10,11)

(6,0,10,15)

(11,0,10,11)

(4,0,2,13)

(ARC NO., LOWER BOUND, UPPER BOUND, COST)
Fig. 2—Network.

)

2

emmmmge- BASIC ARCS
=== NONBASIC ARCS

Fig. 3—Feasible flow.
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objective is to find a feasible flow that minimizes the total cost of eq.
(1). This problem corresponds to the following Primal Linear Program
(pLP): Minimize

- 2 Cij-tlj (1)
iLJ:(i,j)EA
subject to
Y x— Y xu=d; IEN (2)
JiiNEA k(kDEA
ai; < xi; < by (i, )) E A. (3)

The summations are taken only over existing arcs. This emphasizes
the fact that sparsity of the network is exploited by only storing data
for arcs that are present in the network and only performing operations
on these arcs.

We do, of course, allow multiple (or parallel) arcs between nodes i
and j. These arcs can each be given explicitly with associated costs
and bounds and would be treated as distinct arcs. In Section IX, we
describe how the implementation of this algorithm handles parallel
arcs implicitly.

It is well known that PLP can be reformulated with either all supply
values equal to zero or all lower bounds equal to zero. However, since
some problems are formulated naturally in one way and some in the
other way, we allow both the supply and lower-bound values to be
nonzero.

We assume that the network is connected. If not, the problem
decomposes into independent subproblems on the connected compo-
nents. We make this assumption merely to simplify the discussion. In
fact, the algorithm described here converts the given network into a
connected one by appending a dummy node and dummy arcs as part
of obtaining an initial feasible solution.

lil. PRIMAL NETWORK ALGORITHM

The primal-simplex algorithm of linear programming was specialized
to the transshipment problem by Dantzig®. It leads to the “stepping-
stone” approach as described by Charnes and Cooper.' This approach
was generally believed to be computationally inferior to the existing
primal-dual methods. However, recent work on primal network ap-
proaches has taken advantage of data structures to streamline the
calculations involved and reduce the storage requirement. In this
section, we outline the major facts related to the application of the
primal-simplex approach to network problems. A more complete anal-
ysis is provided by Bradley et al.™*
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3.1 Basic solutions

The primal network algorithm is a specialization of the bounded-
variable, simplex method. This allows the capacity constraints eq. (3)
to be handled implicitly in the computations. The remaining con-
straints eq. (2) can be written in matrix notation as Ax = d, where A
is the node-arc incidence matrix for the network and d is the vector of
supply values. A solution x to eq. (2) is called basic if the columns of
A associated with the variables x;;, which are strictly between their
bounds, are linearly independent. The value of the basic variables are
uniquely determined once the nonbasic variables have been specified
to be equal to their lower or upper bounds. Basic solutions correspond
to the bases of the column space of A. Also, the feasible basic solutions
are exactly the extreme points of the polyhedron described by egs. (2)
and (3). Hence, for any (linear) objective function eq. (1), some basic
solution is optimal.

Each column of A corresponds to an arc in the network. Therefore,
since the network is connected, the basic solutions correspond to
subsets of arcs that form spanning trees in the network; the remaining
arcs have flow values that are restricted to their lower or upper bound.
The darker arcs in Fig. 3 form a basis tree.

3.2 Optimality criteria

Assign dual variables (or node potentials) u; to each constraint in
eq. (2), and variables v; and w; to each lower- and upper-bound
constraint, respectively, in eq. (3). The Dual Linear Program (pLp) for
PLP is defined as follows: Maximize

EEN i + (:‘.;z'eA Ht (i.J%:!'EA birwy W

subject to
Ui — Uj + Uy — Wi =< cij iGneA (5)
vij, wii = 0 (i,)) EA. (6)

Using linear programming duality theory, the complementary slack-
ness conditions that optimal solutions to PLP and DLP must satisfy are
given by

xij(cy — ui + uj — vy + wy) =0, (7

and
vi(xy — ay) =0, (8)
wi(by — xz) = 0. 9)

By defining the reduced cost of an arc (i, j) to be
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Cy = Ccyj — Wi + uj, (10)

the optimality conditions for a pair of primal and dual solutions
become

if aj<xj;<b; then ¢;=0, (11)
if xj=a; then ¢;=0, (12)

and
if x;,=0b; then c;=0. (13)

3.3 Basis exchange

Consider a basic feasible solution x* for pLP. The node potentials
u* are determined using eq. (11) for the basic arcs; these values are
uniquely determined once any one node potential value is fixed. If egs.
(12) and (13) are satisfied, then the optimality of the solutions x* and
u* follows from their feasibility and complementary slackness. Other-
wise, an entering (nonbasic) arc and a leaving (basic) arc are identified
and exchanged to obtain a new basic solution. This process is repeated
until optimality is reached.

A nonbasic arc that violates eq. (12) or (13) is selected to enter the
basis; that is, arc (i, ) is chosen if

xj=a; and ¢;<0, or
x;=by; and ¢;>0.

The entering arc forms a unique cycle (or loop) when added to the
basis tree. By interpreting u; — u; to be the cost of sending one unit of
flow from node j to node i, using arcs only in the basis tree, ¢; <0
implies that increasing the flow along arc (i, j) and sending this flow
around the loop from j back to i will strictly decrease the cost. [This
is true also when decreasing the flow on arc (i, j) when ¢; > 0.] Since
this conserves the flow at each node, the amount of flow change on the
loop is limited only by the capacity constraints on the arcs of the loop.
One of the arcs whose flow reaches its bound first is selected to leave
the basis. For example, increasing the flow on the nonbasic arc (4, 7)
in Fig. 3 increases the flow on arc (3, 4) and decreases the flow on arcs
(3, 6) and (6, 7). Arc (3, 6) reaches its bound first. Exchanging arcs
(4, 7) and (3, 6) forms the new basis tree shown in Fig. 4.

IV. DATA STRUCTURES

The contemporary work on network algorithms has focused on using
data structures to improve the effectiveness of primal network codes.
Since network problems are typically sparse, with many node pairs
having no arcs between them, we only store the data and perform
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Table |—Data for the network of Fig. 2

Arc 1 2 3 4 5 6 7 8 9 10 11 12 13
Lower Bound 1 4 0 0 0 O 0 2 0 0 0 0 1
Upper Bound 10 10 10 2 10 10 10 10 10 1 10 10 2
Cost 29 15 14 13 17 15 10 11 20 21 11 25 18

calculations for the arcs actually present in the network. The arcs are
stored in a list, with all of the arcs pointing out of a node grouped
together. The costs and bounds are kept in similar arc-length lists.
This is illustrated in Table I for the network in Fig. 2.

The representation of a basis as a tree results in a compact format
for storing the relevant data. This format is shown in Table II for the
basis tree in Fig. 4. A basis tree is specified by identifying one node to
be the root node and indicating a predecessor NPRED(i) for each
node I, which is the next node after ¢ on the unique path from i to the
root node in the tree. The physical direction of the arc between i and
NPRED(i) is distinguished by setting NDIRECT (i) equal to 1 if the
arc points from ¢ to NPRED(i) and to —1 otherwise. The variable
DUALV(i) is the dual variable associated with each node i. The
amount of flow on the arc between i{ and NPRED(;) is given by
FLOW(i).

The loop formed by an entering nonbasic arc (i, j) and the basis tree
can be traced, in one pass, by following the predecessor paths from i
and j back towards the root until these paths meet. The depth
NDEPTH(Z) of a node i is the number of nodes on the path from i to
the root. The predecessor and depth arrays are used to proceed up

” THE THREAD
4
7
”

”
I

Fig. 4—Basis tree.
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Table lla—Data structures for the basis tree of Fig. 4—node data

Node 1 2 3 4 5 6 7 8
NPRED 0 3 1 3 3 7 4 5
NDIRECT 0 1 -1 -1 -1 1 -1 -1
DUALV 0 1 15 32 25 18 43 36
FLOW 0 3 5 2 3 1 3 1
NDEPTH 1 3 2 3 3 5 4 4
LTHRED 3 5 2 7 8 0 6 4

Table llb—Data structure for the basis tree of Fig. 4—arc data
Arc 1 2 3 4 5 6 7 8 9 10 11 12 13
KASE 0 -1 -1 1 -1 0 -1 -1 0 1 -1 -1 0

these paths, staying at the same depth on each path so that the search
ends at the node where the paths meet, thus forming a loop.

After the entering and leaving arcs have been determined, it is
necessary to update the basis tree. This involves traversing all of the
successors of a node to update their dual variable and depth values. A
useful tool for doing this is the “thread.” The thread LTHREDX(i) of
a node i labels the nodes of the tree in “preorder” according to the
following recursive rule: First label the root. Then label the nodes in
each of the subtrees belonging to the immediate successors of the root
in preorder. (The order in which these subtrees are visited is immate-
rial.) The thread is illustrated by dotted arcs in Fig. 4.

A final data structure keeps track of the status of each arc. The
array KASE(LN) is set to 0 if arc LN is currently nonbasic at its lower
bound, 1 if it is nonbasic at its upper bound, and -1 if it is basic.

These data structures are illustrated in Tables Ila and IIb for the
basic solution in Fig. 4, with node 1 as the root.

V. INITIAL SOLUTION

The primal network-flow algorithm proceeds from one basic solution
to another until an optimal solution is found. It is necessary to provide
an initial feasible solution to begin this iterative process. Several
methods are available for obtaining initial feasible solutions."* We use
the “Big-M” method of artificially creating a feasible flow by adding
a dummy node and dummy arcs. This method is easy to implement
and understand, and works well."®

The method begins by initialing the flow in all arcs to be at their
lower bounds, that is, all arcs are nonbasic at their lower bound and
the KASE array is set to zero. This induces a net supply at each node
{ with value

SPLYNT(i) = d; — 2 a; + E Q.

Jii.NEA kil DEA
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For the network in Fig. 2, the values are shown in Table III. A feasible
flow is formed by adding a dummy node as the root of the tree and
dummy arcs between the dummy node and all the other nodes. These
dummy arcs form the basis tree. The direction of the dummy arc in
the tree is towards the root if the net supply of the node is nonnegative,
and away from the root otherwise. The amount of flow is equal to the
absolute value of the net supply of the node. The cost of the dummy
arcs is set to be very large if the dummy arc points away from the root
and is set to zero otherwise. The dummy arcs have a lower bound of
zero and an upper bound of “infinity.” The dual values are calculated
by setting the dual variable for the root to zero and solving for the
others using eq. (11). The initial basis tree for the example network in
Fig. 2 is shown in Fig. 5 with basis array data in Table IV. Later stages
of the algorithm serve to remove the dummy arcs from the basis. If
the algorithm terminates with positive flow in a dummy arc, then
there is no feasible solution to the original problem.

VI. ENTERING ARC

Suitable candidates for arcs to enter the basis are nonbasic arcs
(i, 7), which are either at their lower bound with negative reduced cost,
or at their upper bound with positive reduced cost, i.e., eq. (12) or eq.
(13) is violated. Many strategies have been proposed and tested for

Table lll—Values of the net supply for the network in Fig. 2

Node 1 2 3 4 5 6 7 8
SPLYNT 1 5 1 -1 -3 0 -2 -1

ZINY

Fig. 5—Initial basis tree.

Table IV—Initial basis tree

Node 1 2 3 4 5 6 7 8 9
NPRED 9 9 9 9 9 9 9 9 0
NDIRECT 1 1 1 -1 -1 1 -1 -1 0
DUALV 0 0 0 o o 0 o o 0
FLOW 1 5 1 1 3 0 2 1 0
NDEPTH 2 2 2 2 2 2 2 2 1
LTHRED 2 3 4 5 6 7 8 0 1
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selecting an arc to enter the basis; these range from choosing the first
violating arc to choosing the most violating arc. We use a candidate
stack approach'*'® which allows flexible strategies in controlling the
choice of an incoming arc.

The usage of the candidate stack is illustrated in Fig. 6. The
candidate stack is replenished during a major iteration whenever it is
empty or when an upper bound MXITER on the number of consecu-
tive minor iterations is reached. The stack is filled from the arc list
which has all of the arcs out of a node grouped together. The reduced
costs are computed for the arcs out of a node i, and the nonbasic arc
(i, ), with the largest violation (if any) among these, is placed on the
stack. This is repeated for nodes i + 1, { + 2, etc., until either all nodes
have been processed or the stack has reached its maximum allowable
size of MXSTAK. The next major iteration begins with the node
where the last major iteration left off. This periodic examination of all
arcs helps prevent “stalling,” which is a long sequence of pivot ex-
changes that does not improve the cost of the solution."

Once the stack has been formed in a major iteration, minor iterations
are performed to choose the nonbasic arcs from the stack with the
largest violation to enter the basis. At each minor iteration, the arcs
on the stack are checked for violations. If an arc no longer has a
violation, it is removed from the stack. Once the stack becomes empty,
or MXITER consecutive minor iterations are performed, the stack is
rebuilt in a major iteration.

VIl. LEAVING ARC

A nonbasic arc to enter the basis tree is chosen because it violates
eq. (12) or (13). This implies that moving its flow value away from its
bound and updating the flow values of the arcs on the newly formed

ARC LIST

ALL ARCS OUT
OF A NODE ARE 1
GROUPED TOGETHER

CANDIDATE
STACK BASIC ARCS

/

w

N Sy
W \r/

...

_[ ]_ BUILD STACK
IN A MAJOR
ITERATION
Fig. 6—Candidate stack.

EXCHANGE ARCS IN
A MINOR ITERATION
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loop strictly decreases the cost of the current solution. The flow is
changed as much as possible until one of the arcs on the loop reaches
its bound and is chosen to leave the basic solution. This is accomplished
in one pass by tracing the loop using the predecessor and depth arrays.

To illustrate this, consider the basis tree in Fig. 4 with arc (6, 8)
chosen as the entering arc. Arc (6, 8) can have its flow increased by
one unit before reaching its upper bound. This induces a supply at
node 8 and a demand at node 6. The path on the side of the loop with
the induced supply is called the plus path, and the other side is called
the negative path. The predecessor array is used to trace the paths
from 6 and 8 towards the root, until the loop is formed where the paths
join at node 3. Along the way, the amount of change in the flow value
before an arc reaches its bounds is computed for each arc on the loop.
The depth array is used to alternatively move up each of the two paths
checking for a common node. The arcs in Fig. 4 are examined in the
order (6, 7), (5, 8), (4, 7), (3, b), and (3, 4); their maximum amount of
change in flow before reaching a bound is 1, 1, 7, 7, and 8, respectively.
Hence, arcs (6, 7), (5, 8), and the entering arc (6, 8) all reach their
bound after a flow change of one unit. Any of these arcs could be
chosen to leave the basis.

In our algorithm, the leaving arc is chosen by using Cunningham’s
rule’ which is designed to avoid “cycling” caused by degeneracy. This
approach hinges upon maintaining basis trees that are “strongly”
feasible; that is, the arcs in the basis tree directed towards the root are
required to have flow values strictly less than their upper bounds, and
arcs directed away from the root have flow values strictly greater than
their lower bounds. This assures us that a positive amount of flow can
always be pushed up the tree. We note that the initial solution
procedure always constructs a strongly feasible tree and that the tree
in Fig. 3 is strongly feasible.

In the case of a tie among several arcs as candidates to leave the
basis, the choice is made using the following priority: First, choose the
candidate arc which is closest to the root on the plus path (if any).
Next, choose the entering arc, if it is a candidate. Finally, choose the
arc on the negative path furthest from the root. In the example cited
above, arc (6, 7) would be chosen. This rule provides the only choice
which will result in the new basis tree remaining strongly feasible.

Viil. BASIS EXCHANGE

Exchanging the entering and leaving arcs requires updating the
basic solution. For example, choosing arc (1, 4) to enter the basis tree
in Fig. 4 results in the choice of arc (1, 3) to leave the basis. This forms
a new basis tree as illustrated in Fig. 7. This changes the data arrays
associated with the basic solution. Specifically, the nodes on the loop
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Fig. 7—Basis exchange. (a) Old basis tree. (b) New basis tree.

must be traced (as described before) to update the predecessor, direc-
tion, flow, and thread array (NPRED, NDIRECT, FLOW, and
LTHRED) values. In the example, nodes 1, 3, and 4 are on the loop.
In addition, the dual variable and depth array (DUALV and
NDEPTH) values must be updated for the nodes in the subtree which
is moved because of the basis exchange. In our example, the subtree
moved is rooted at node 3 and consists of nodes 2, 3, 4, 5, 6, 7, and 8.
The thread array LTHRED is used to identify the nodes in the subtree
rooted at a node i as follows:
(i) Label the root node i to indicate that it is in the subtree. Let

j = LTHRED().

(ii) If PREDY(}) is labeled, then label j, and set j = LTHRED(/), or
stop with all nodes in the subtree labeled as such.

This procedure works because the nodes in the subtree appear
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consecutively on the thread immediately after the root, and because
the predecessor of a node always appears on the thread before the
node itself does. The method used to update the basic solution values
is an enhancement of a procedure described in detail by Jacobsen.'”
The change in status of the entering and leaving arcs is reflected by
updating their values in the KASE array. The new array values for
the basic solution of Fig. 7 are shown in Table V. The optimality of
this solution may be checked by noting that the flow and dual variables
are feasible to PLP and DLP, respectively, and the complementary
slackness conditions eqs. (11), (12), and (13) hold.

IX. EXTENSION TO OTHER COSTS

We have described an algorithm for finding a minimum cost flow in
a capacitated network with linear costs. The current implementation
actually handles piecewise-linear, convex costs or, equivalently, mul-
tiple parallel arcs between two nodes. We describe how this is accom-
plished implicitly without any additional work required.

Consider the piecewise-linear, convex arc cost shown in Fig. 8. It
consists of three line segments with cost slopes equal to ¢;, ¢, and e,
respectively. The lower bound on the allowable flow is by, with three
break points of by, by, and bs. This is equivalent to having three parallel

Table V—Data structure for the new basis tree of Fig. 7

Node 1 2 3 4 5 6 7 8
NPRED 0 3 4 1 3 7 4 5
NDIRECT 0 1 1 -1 -1 1 -1 -1
DUALV 0 -2 12 9 22 15 40 33
FLOW 0 3 1 2 3 1 3 1
NDEPTH 1 4 3 2 4 4 3 5
LTHRED 4 5 2 3 8 0 6 7

Arc Data
Arc 1 2 3 4 5 6 7 8 9 10 11 12 13
KASE -1 -1 1 -1 0 -1 -1 0 1 -1 -1 0
{
(3, U,b;-bz, £‘3)

(2,0,b2-by,c3)

COST

FLOW
0 by by by (1,bq,b4,c9)

(a) (b)

Fig. 8—Piecewise-linear, convex arc cost and equivalent parallel arc formulation.
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arcs (one for each line segment) as shown in Fig. 8, with arcs labeled
by arc no., lower bound, upper bound, and cost.

This situation can be handled implicitly by expanding the definition
of the status of an arc LN as follows:

KASE(LN)

_ | k if arc LN is nonbasic with flow value b
~ | =k if arc LN is basic with flow value between bx—; and b~

For this case, convexity and separability guarantees that at most one
arc of each parallel arc group will be basic; therefore, we can now
proceed with the algorithm as if only one arc exists between the nodes.
The appropriate cost and bound values to use for this arc depend only
on the status of the arc.

This feature is also useful for problems with convex arc costs. We
can always approximate a convex cost function by a piecewise-linear,
convex cost function as shown in Fig. 9. This can be used to obtain
approximate solutions. Meyer’s alternative method'® approximates the
convex cost by a piecewise-linear, convex cost, with only two line
segments whose breakpoints vary from one iteration to the next.
Meyer’s approach is guaranteed to converge to the optimal solution.

Concave arc costs model economies of scale and are discussed by
Erickson et al.,'’® where a dynamic programming solution procedure is
proposed. An alternative method of solution is to use a branch-and-
bound approach, solving the subproblems using a linear approximation
to the concave cost. Such an approach has been applied successfully
for fixed-charge transportation problems by Barr et al.*’

X. APPLICATIONS

Numerous applications of network-flow models can be found in the
references provided. We briefly describe three applications in com-
munication systems.

!
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I |
: |
| |
| |
| |
| |
! I
' |
| |
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| |
| I
| | |
| | 1
I I I
1 L 1

by by by by by FLOW

Fig. 9—Piecewise-linear approximation of a convex cost function.
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Our first example illustrates a situation where piecewise-linear,
convex arc costs arise in a natural way. Hammer and Segal®! formu-
lated a model for handling “area transfers” in a local area. The area is
subdivided into districts j which are served by wire centers i. Currently,
w;; working lines (or wire pairs) are in use between i and j, with
additional s; spare lines unused. We let

dj=Y wy

represent the current demand at district j. Future demand for lines at
district 7 can be satisfied from wire center i by using the spare lines at
a cost of A; per line or adding additional lines beyond the available
spare at a larger cost of A; + 8;. Alternatively, an area transfer may
occur if a wire center i’s capacity b; on the number of lines it can serve
is exceeded. This involves disconnecting a line from wire center i to
district j at a cost of p; per line and reconnecting it to another wire
center. Given new demands d; + A; for lines at each district j, the
problem of assigning customers to wire centers (with possible area
transfers) at minimum total cost is a transportation problem with a
piecewise-linear, cost structure for each i, j pair as shown in Fig. 10.
The slope of the three line segments and the break points are indicated
on the figure. Denote by x;; the change in the line assignments between
wire centers i and districts j, and by c;(x;) the separable, piecewise-
linear cost functions of Fig. 10. Then, the problem is to minimize

22 cuxy) (14)
tJ
subject to

Y (wy+xy) =d;i+4; V,

i (15)

Y (wy + x5) < b Vi

7

g X;';'SU‘—I-—-;EI-?_U x-"f‘*'sij

Wij wij+5jj NUMBER OF WIRES
WORKING WORKING
WIRES +SPARE
WIRES

Fig. 10—Piecewise-linear, convex cost structure for the area transfer model.
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—wi=xy Vi, (16)

In general, this formulation fits transportation models in which convex
costs are incurred whenever one perturbs (increases or decreases) the
established pattern of the distribution (wy). A project scheduling
problem is formulated by Lawler’® as a network-flow problem with two
piecewise-linear, convex cost segments.

A second example involves scheduling the collection of call records
in private communication networks and is discussed in detail by
Monma and Segal.?? A private communication network consists of tie
trunks interconnecting various locations. Calls between two locations
overflow to the toll network when all connecting tie trunks are busy.
Each location is served by a Private Branch Exchange (PBX) which
generates a call record for each call originating at its location.

A central PBX is equipped with several ports, each capable of
simultaneously collecting records from different locations. According
to a prescribed schedule, the central PBX initiates calls and begins
transferring call records. This continues until all records stored at the
start of the polling have been collected.

We describe a network-flow model used to find a good polling
schedule by illustrating it in Fig. 11 for two offices (PBXs) and 48
polling periods in the day. Each period <J is represented by a node </ on
the right side of the figure. Each office I is represented by a collection
of 48 nodes arranged in a particular configuration as shown on the left
side of the figure. Each node J in the configuration for office I
represents the period J at the office. The arc directed horizontally into
this node o/ indicates that a known number of records are generated
during period J at office I. The arc directed from a period <J to a
following period J + 1 node signifies records in storage at the end of
period J which are carried over to the start of period  + 1. We note
that the records left in storage at the end of the last period in the day
carry over to the first period of the following day.

The arc directed from the period J node of office I to the period </
node on the right side of the figure indicates the polling of records
from office I at the start of period <J. The arc directed from the period
J node to the sink node represents all of the records polled in period
J among all offices. The arrrow out of the sink node means that all
records generated must be polled at some time during the day.

Capacities on the arcs depend on the amount of call-record storage
space available at each office and the polling capacity of the ports at
the central pBX. The cost per record for polling office I during period
oJ depends on the probability that a call from the central PBX to office
I will overflow to the toll network and the cost of such a call. This
network-flow model is used in an interactive way to produce polling
schedules (which are determined from the flows on the arcs from
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OFFICE 1

OFFICE 2

PERIOD
NODES

Fig. 11—Network-flow model for polling call records with two offices and 48 periods.

period J office I nodes to period J nodes) of minimum cost which
avoid losing call records. (Call records may be lost if a PBX generates
them faster than they are polled, thus, overflowing the storage capacity
of the PBX.)

Our final example involves a capacity-expansion problem in the local
network, which connects subscribers to the local switching office.
Elken® discusses a mathematical programming formulation of this
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Fig. 12—Network-flow models for placement of pair-gain devices.

problem. We will describe a network-flow model by way of a stylized
and simplified example. The network is composed of cable sections
which connect pairs of nodes (see Fig. 12). The nodes represent
demand points for groups of subscribers. The solid arcs represent cable
sections. Each cable section may consist of several parallel existing or
proposed cables of various sizes (and costs). The dashed arcs represent
the possible placement of pair-gain systems (in which a small number
of wire pairs are used to serve a larger number of customers by means
of multiplexing or concentration). The piecewise-linear, convex costs
arise from the multiple parallel cables in each cable section. A solution
to the problem represents a least-cost expansion of cables and place-
ment of pair-gain systems.

Finally, we mention some computational experience with the PNFC
computer code. Elken® solved several examples of the previously
described local network problem with about 50 nodes, 150 arcs, and 2
piecewise-linear sections. The average cpU time was 1.5 seconds. The
scheduling of the call-records problem was solved hundreds of times
for problems with about 500 nodes and 1000 arcs and required an
average of 3.5 seconds. The largest example tested was a 400-node
assignment problem with 40,000 arcs; this problem was solved in about
80 seconds of cpu time on the IBM Amdahl computer.
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