THE BELL SYSTEM
TECHNICAL JOURNAL

DEVOTED TO THE SCIENTIFIC AND ENGINEERING
ASPECTS OF ELECTRICAL COMMUNICATION

Volume 61 July-August 1982 Number 6, Part 1

Copyright ® 1982 American Telephone and Telegraph Company. Printed in U.S5. A.

Electromagnetic Propagation in Homogeneous
Media With Hermitian Permeability and
Permittivity

By E. E. BERGMANN

(Manuscript received November 5, 1981)

The problem of electromagnetic radiation traveling in a general
homogeneous, but anisotropic and gyrotropic, medium has been
solved. The plane wave representation is used to convert Maxwell’s
equations into a general eigenproblem, which allows for tensor
permeability and permittivity and for electric and magnetic gyro-
tropy. This formulation can be applied directly to computer evalua-
tion of wave velocities and polarizations for a given wave-normal
direction. The reflection and refraction directions and amplitudes at
an interface between two different, general anisotropic and gyrotropic
media are solved. It is outlined how, with the aid of a digital
computer, ray tracing through a general succession of anisotropic
and gyrotropic, but locally homogeneous, media can be carried out.

I. INTRODUCTION

Traditionally, the theory of light propagation in transparent, aniso-
tropic media has assumed that the permeability of the medium was
the same as that of the vacuum, or at least that it was isotropic.
Conversely, the theory of microwave propagation in ferrites and gar-
nets has assumed that the permittivity was isotropic in spite of the
permeability being anisotropic and possibly, gyrotropic. (References 1
and 2 are examples of the optics tradition and the microwave tradition,
respectively.)

Both viewpoints are incomplete, particularly, when applied to in-
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frared optics where anisotropy effects in both permeability and per-
mittivity could be important. As a case in point, Yttrium Iron Garnet
(Y16) is optically transparent at infrared wavelengths beyond 1 pm®
and at microwave frequencies; it could be used at wavelengths where
the effects of permeability and permittivity are comparable.

We develop the theory of electromagnetic wave propagation in a
homogeneous medium where both the permeability and permittivity
are anisotropic. Furthermore, by assuming that the permittivity and
permeability tensors are Hermitian, not merely real and symmetric,
we incorporate the more general effects of gyrotropy.

Il. BASIC ASSUMPTIONS

We assume the general validity of Maxwell’s equations without
“gource terms” (no charges or currents):

V x H=aD/at (1)
V x E = —3B/at @)
V.D=0 3)
V.-B=0, 4)

where E, D, B, H are complex vector fields which are functions of
space and time (r, £).

We shall restrict our considerations to plane-wave solutions where
the above four vector fields can be cast in the form

Fi(r, t) = Foexp[i(k.-r — wit)], (5)

where Fy is a complex vector constant and w is a real constant. The
vector, k, is usually considered to be real, but may be complex even in
lossless media (for “evanescent waves”).

To complete the specifications, we need to define material-depend-
ent relationships between the four vector fields of Maxwell’s equations.
We do so by means of the electromagnetic energy density:

U=%E*.-D + %*H*.B. (6)

For a plane wave, we can substitute (5) into (6) to show that U is
independent of time and position (assuming k is real):

U = %E§-Do + %Hs -Bo. (7

By assuming that U is a purely quadratic function of the components
of E§, we obtain

Do = gEo . (8)

The Hermiticity of €, the permittivity or dielectric tensor, follows from
the reality of U.
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Similarly, by assuming that U is a purely quadratic function of the
components of Hy, we conclude that

B, = [iHo, 9)

where the permeability tensor, fi, is Hermitian.
Our assumptions are consistent with magneto-optic effects where,
conventionally, a Polder tensor* is defined, e.g.,

g oipe O
pi={-ipa p 0 |]. (10)
o o0 p

Using the plane-wave representation (5) in Maxwell’s first pair of
equations, (1) and (2), we obtain

kxH=—-wD. (11)
k x E =wB. (12)

Similar substitutions into Maxwell’s last pair of equations, (3) and
(4),

k-D=0 (13)

k-B=0, (14)

which, in fact, follow from (11) and (12) when w # 0.

ill. THE WAVE VELOCITY

We rewrite the plane-wave representation (5) in a suggestive form
F = Foexp[—(Imk)-r]-exp[i|Re k| (Ai-r — v.t)], (15)

where
n = Re k/|Re k| (16)

is a unit vector that is normal to the wave fronts, and the wave velocity
vw = w/|Re K|. (17)

Thus, v, represents the rate at which the wave fronts appear to be
advancing in the 7 direction.

We usually assume that Im k = 0. However, for Im k # 0 we have
an “evanescent wave”; a wave whose intensity diminishes in the Im k
direction. It will be shown later, under the discussion of Poynting’s
vector, that Im k is perpendicular to Poynting’s vector in nondissipa-
tive media.

Let us assume now that Im k = 0 and that, consequently, 7 is
parallel to k. We can restate (25) and (26) as follows:

nxH=-v,D=—-v,¢E (18)
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ﬁ X E = va = VWIIH- (19)

If we go to a six-dimensional representation, we may combine (18)
and (19) into a single-matrix equation:

0 0 0 0 n, —n, E,
0 0 0 —-n. 0 s E,
0 0 0 ny, —Rr, 0 E,
0 -n. n, 0 0 0 H,
. 0 -n. O 0 0 H,
—R, A 0 0 0 0 H,
Exx €y €& 0 0 O x
€ &y €: 0 0 0 E,
€x €y €2 0 0 0

=V, (20)

0 0 0 Pxx  pxy fxz x
0 0 0 pu py My H,
0O 0 0 jpax p

For convenience, we shall compress (20) by defining a more compact

notation
0 -N\(E € 0\(E
& D@6 e e

av = v, fiv. (22)

Note that (22) is clearly a general eigenproblem. The tensor, B, is
determined by the permeability and permittivity of the medium. If k
is real, then @ is determined completely by n.

Both @ and B are usually Hermitian. Tensor, &, is symmetric. It is
real if k was real. We can restate (6) as

2U = »*-Bv. (23)

Away from dramatic resonances, we may assume that U is positive
definite as well as real. If so, B is not only Hermitian but positive
definite.

When B is both Hermitian and positive definite, we can find its
inverse and its square root (all of which are Hermitian and positive
definite as well). Thus, we are able to convert (8) to an ordinary
eigenproblem of a Hermitian matrix:

(B72aB V%) (BY%) = vu(BY). (24)

zy [z

or

The Hermiticity of (8 ~/2&8 ~/2) guarantees that there are six eigen-
solutions, each with a real v,.
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We can use the Hermiticity of @and £ to prove orthogonality:
vidvy = viipt-Bre = vaart-Br. (25)

Clearly, when v, does not equal v,2, the corresponding eigenvectors
satisfy the orthogonality relations:

pi-@v,=0=pf-Br. (26)

Additional orthogonality relationships can be proved if vi; # vi.
n=1,2,3...)

v B(B @) p, = 27)

Two eigensolutions can be provided automatically:

vs = (g) and ws= (2)
Vs =0 and vus=0. (28)

Thus, we have to find four more eigensolutions to this six-dimensional
eigenproblem.

The reality of 7 and the special form of 8 enable us to simplify the
problem still further. Suppose we have a solution to (21). It follows

then that
0o - E € 0 E
(v )(8) =~ 2)(8) )

Thus, for each eigensolution with wave velocity v,,, there is an analo-
gous solution that travels in the opposite direction.

In summary, of the six solutions to the eigenproblem (20) for a
specified, real 7i, two are trivial and have zero wave velocity, two are
positive and correspond to two polarized solutions propagating in the
+7 direction, and the last two are negative, and, consequently, travel
in the —# direction.

It is worthwhile noting that we have included nonreciprocal cases,
since Faraday rotation, the traditional nonreciprocal effect, is mani-
fested by complex, yet Hermitian, permittivity and/or permeability
tensors. These effects do not seem to cause the wave velocities in the
—n direction to differ from those in the +7 direction. The nonreciprocal
effects must be manifest in the differing polarizations between the
forward and the backward directions.

Polarization is specified usually by the orientation of the electro-
magnetic field components normal to the relevant velocity direction
(here 7). Thus, from egs. (13) and (14) we should concentrate upon D,
when k is real. In general, the components of D, say, are complex; then
the polarization should be considered elliptical. The special case of
D o< D* is called “linear polarization.” Since D is confined to the plane
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perpendicular to k, its description for a specified 7 can be reduced
always to two complex vector components; this two-dimensional rep-
resentation is known as the Jones vector.>®

Nonreciprocity is the inequivalence of wave velocity (or attenuation,
which we ignore here) for a given polarization for the +7i directions.
The reason that Faraday rotation is nonreciprocal is that the polari-
zation for a given magnitude of wave velocity in the +7 directions are
not the same; the Jones vector representation for the +7 directions
associate right-handed elliptical polarization to left-hand elliptical
polarization in the opposite direction. Two polarizations in the +n
directions would be considered the same if the corresponding D fields
obeyed the proportionality

D; o< D3. (30)

Thus, nonreciprocity for solutions consistent with (20) could occur
only when D* is not proportional to D; no nonreciprocity occurs for
modes that are linearly polarized. It also appears to be a consequence
of the form of (20) that no polarization-independent nonreciprocity
can be produced in homogeneous media. However, if the medium is
bianisotropic, then polarization-independent nonreciprocity is possible
(see Ref. 7).

The orthogonality relations (26) and (27) derived earlier, can be
used to show that the two polarizations associated with the two
different wave velocities in a given A-direction are “perpendicular.”
Let us call these solutions, “fast” and “slow.” By assuming that « # 0,
we can derive from the orthogonality relation

E?BBt'DBIOW + Hfm;t'Balow =0. (31)

Since Egus, —Hiast is again a solution with yet another v., we can derive
from orthogonality

Etue-Daow — Hfust - Baow = 0. (32)

Thus, we can conclude from (31) and (32) that
EfstDaow =0 (33)
Hfwse - Baow = 0. (34)

We see from (31) also that there is no interference in the energy
density between the fast and slow solutions for a given direction, 7.
Suppose at some location

P = QPiast + DVlow, (35)
then
U= %V'B’ = %Iﬂlzpﬁaﬂ'ﬁl’hﬁt + 1/Zlble’:‘lc:»w'Bl’ulow- (36)
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Usually, the literature considers the more restrictive cases,” where
either [ or € is isotropic and conclude

D?nst' Dslow = 0(?) N
which is not always true for more general cases such as are considered
here.
IV. THE POYNTING VECTOR

If we consider the time dependence of U, we derive:
dU 1dv*B 1, dﬂv_ , div
@ s a "ty '?'R"(" di ) @9
By using Maxwell’s egs. (1) and (2), we obtain further:
dU/dt = Re(E*.Vx H— H*.V X E) = V.[Re(E* X H)]. (38)

As we have identified dU/dt with the divergence of a “flux,” this flux
should be identified with Poynting’s vector. With this in mind, we
make two definitions

G=E*xXH (39)
and
S=ReG. (40)

For a plane wave of real k, G is independent of time and space.
However, it may be complex. The real part of G, namely, S, is
Poynting’s vector and is always real, obviously.

The vectors G and G* are useful because they are “dual” to k.
Consider

G x D =H(E*-D) — E*(H-D)
= H(E*-D) + v 'E*(H-k X H) = UH.
Consequently,
G x D= UH. (41)
A similar derivation shows
G* x B= -UE. (42)

These two equations are analogous to (12) and (11) and suggest a
series of steps that are usable for calculating the ray velocity.

The ray velocity vector, v,, which is parallel to the Poynting vector,
S, is defined as

v.=8S/U (43a)
vr = | v (43b)

ELECTROMAGNETIC PROPAGATION 941



The Appendix proves that the Poynting vector is indeed the ray

direction.
Unlike the theory for k, we will not be able to assume that G is real.

Nevertheless, we define

£ =G/|Re G| (44)
and
§=Reg=9/|S|. (45)
With these notational conventions, we restate (5) and (6)
g*xB=—v;'E=-v;"¢"'D (46)
£xD=vi'H=v,'i"'B. (47)
These two relations can be rewritten as an eigencondition:
0 0 o0 0 g -&; D
0 0 0 -zt 0 gk D,
0 0 0 gy —=gx¥ 0 D,
0 -4 & 0 0 0 B.
g 0 =4 0 0 0 B,
-4 & 0 0 0 0 B.
D,
D,
=v/'g™! g: (48)
B,
B.
And a terser notation, analogous to (22), could be
Pv=v'87", (49)

where I" is Hermitian; B is positive definite and Hermitian because

2U =v*-B ' (50)

in analogy to (23).

In accordance with the analogous discussion of the solutions (22),
the six real eigenvalue solutions to (49) will consist of two zero v;’,
two positive v;'; and their two negatives. Similar orthogonality rela-
tions can also be generated.

The duality® would be complete if # were equal to §. If k and B were
real, we could expect that G = S. However, we have demonstrated by
computer that a real k does not always lead to a real G.

Thus, we must conclude that to solve for v, starting with a given §,
we must find the appropriate values of Im g that produce a real k in
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a test such as
Uk = w(D* X B). (51)

We shall show now that if k is complex, then its imaginary part is
perpendicular to S. From (11) and (12), we can generate

—-E*k X H =wE*.D (52)
H*-k X E = wH*.B. (53)

Adding (52) and (53), we obtain
k:-(E* x H+ E x H*) = o(E*.D + H*.B). (54)

Using the definitions of Poynting’s vector and energy density, we can
restate (54) as

k.S =wU. (55)

Because w, U, and S are always assumed to be real, we can conclude
that

S-Imk =0. (56)

V. REFLECTION AND REFRACTION

We can find the reflection and refraction of a plane wave at a flat
interface between two different, homogeneous media of the general
type we have been considering.

Figure 1 indicates what we should expect at the interface between
two media. The k; is the propagation vector of the incident wave.
Usually, there will be two reflected waves, represented by k; and ko,
and two refracted (transmitted) waves, represented by ks and k..
Details of the four “scattered” waves are determined by boundary
conditions. .

To determine ki, ks, ks, and k4 for a particular ko, the boundary
conditions we need to consider are the equality of the w(k) associated
with all five k vectors. In addition, because the geometry possesses
two-dimensional translational symmetry in the plane of the interface,
we must match the components in the plane of the interface for all the
k vectors. These constraints are sufficient to determine the four
“scattered” k vectors for a given k.

Finding the scattered k vectors amounts to specifying the compo-
nents of y = k/w that are in the plane of the interface, y;, and solving
an eigenproblem that provides

v = w/|k 1|, (57)

We define x,, for notational convenience, as a unit vector perpendicular
to the interface and directed in the same sense as the incident radiation.
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(REFLECTION) (REFRACTION)

(INCIDENT)
- - - -
€ HMq €2 M2

INTERFACE

Fig. 1—Scattering at an interface between two anisotropic media.

From (11) and (12), we have

—y X H=¢E (58)
vx E =jH. (59)
Rearranging, we have
—v.i. XxH=¢E+yxH (60)
v.i. xE=jH-y XE. (61)
Thus, we have a general eigenproblem again:
0 0 0 0 £, =iy
0 0 0 -i. O Zix
0 0 0 X, —X.x 0 >
0 -—%. £, 0 0 0
.. O —%.. 0 0 0
_-an.y jJ.x 0 0 O 0

0 0 0 0 -y Y2
0 0 0 v 0 -%
0 0 0 -y ne 0

=y + 14
Y B 0 N Y 0 0
-y 0 Yie O 0 0
w v 0 0 0 0
=sa.r=yI'Br (62)
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This eigenproblem has a lot of similarity to (20) in that the matrices
on each side of the equation are Hermitian. Further, we expect two
extraneous solutions for which the eigenvalues yZ' = 0 and the eigen-

vectors
£, 0
Vs = (g ) and vs = (L)’ (63)

are analogous to (28). We expect two “reflected” solutions with nega-
tive

§.=4x.-5. (64)
The sign of y. is not so relevant because k and S are rarely parallel in
anisotropic media.

We expect a maximum of two “refracted” solutions when we use €;
and i, in (62) and look for solutions with positive §.. We shall have
less than the maximum number of refracted solutions when v is getting
large enough so that fi. ceases to be positive definite.

If B. is neither positive definite nor negative definite, a derivation
similar to (24) does not exist and some of the solutions for y=' may be
complex. If y. is complex, then the corresponding E and H fields
satisfy from (26):

*

v¥.ar=0. (65)

Therefore, we have an evanescent solution:
5.=0. (66)

Note that the sign of y. is not the criterion for acceptable solutions
to (62), rather the sign of 5. is the criterion.

VI. SCATTERING AMPLITUDES

The solution of (62) has provided the values of k;, ks, ks, and k; for
a given ko. Let us label the corresponding eigenvectors: »,, »2, 3, v4,
and »,. We shall assume no particular normalization for the eigenvec-
tors, but suppose for a given », there will be particular amplitudes a;»;
for each scattered wave. Naturally, the solutions for the a; are depend-
ent upon the normalizations of the »;.

From Maxwell’s eqs. (1) and (2), we must satisfy continuity of the
components of E and H in the plane of the interface. These conditions
may be restated as

tvo = . (—a1v1 — azps + aavs + a4vy). (67)

Equation (67) can be restated as four simultaneous equations by
suitable definitions. In the following, assume the index, i, takes on the
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integer values 1 through 4. Let

bi=vF-d.m (68)
cij = vl (69)
Then it follows that
b; = i:l CijQ; . (70)
i-

The form of the Hermitian, 4 X 4 matrix, (c;;), is simplified somewhat
by orthogonality relations:

Clz2 =C21 = C34 =Cy3 = 0. (71)

Thus, by solving (70), we obtain the four coupling coefficients, a:.

VIl. RAY TRACING

We envision that our results will find general applicability in prob-
lems where “ray-tracing” is to be performed through anisotropic/
gyrotropic media and where the relative attenuation of alternative
paths is to be explored. We shall indicate how to use the preceding
results to this end.

As indicated in the discussion following equation (50), there are
difficulties in working directly with the Poynting vector, S. Even so it
is the more macroscopic variable as it is the ray direction, as opposed
to k which depends upon the wavefront normal. Most of the difficulty
is resolved if we make the assumption (which does not seem too
restrictive in practice) that the initial medium of the ray is to be
isotropic (such as air, glass, index matching fluid, etc.).

For isotropic media, the k direction is identical with the ray direc-
tion. It is relatively straightforward to calculate y; at the first interface
when the initial medium is isotropic. By solving (62) and, subsequently,
calculating the corresponding S; and, if desired, the amplitudes, a:, we
can decide which of the scattered ray(s) we may wish to trace further.

After we have chosen which scattered wave to follow, we use the
Poynting vector to trace the ray to the next interface. We know the k
of this ray and are not faced with the awkward task of reconstructing
it from other information. If we are interested in exact phase relation-
ships, these are easy to obtain:

v(second interface) = exp[i(k-Ar)]r(first interface). (72)

The spatial displacement from the first to the second interface has
been designated Ar.

We can calculate the y; at the second interface and proceed to solve
(62). We calculate the new S; of the scattered waves, etc., and choose
which one we will follow to the next interface. This process can be

946 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1982



iterated as often as necessary to trace the ray of interest through an
arbitrary optical system made up of homogeneous media and inter-
faces.

Vill. SUMMARY AND CONCLUSIONS

We have developed a general formalism suitable for computation in
the analysis of optical propagation through a succession of anisotropic,
gyrotropic, homogeneous media. Such problems arise in a large variety
of optical devices that are made of materials such as vig, LiNbO;,
rutile, and calcite.
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APPENDIX

Equivalence of Ray Direction and §.

We shall develop a first-order perturbation theory of the general
eigenproblem. The result is directly applicable to the calculation of
group velocity. When the permeability and permittivity are assumed
to be frequency independent, the group velocity must be parallel to
the ray velocity.

Suppose we wish to perturb the eigenproblem:

Avi=NBvi, (73)

where Aand Bare Hermitian. In addition, Bis positive definite so that
a complete set of eigensolutions with real A; is expected.
Our perturbation assumption is that the replacement of

A—A+ed (74)

requires the corresponding substitutions:
A=A+ edi+ .- (75)
Vi Vit evi+ ... (76)

Therefore,

A+ed)vitevi+--)=N+e\+--)Bvi+evi+--2). (17

Expanding and collecting terms with common powers of €, we obtain
for € the original (73); we obtain for €

Av! + A'v; = MBv! + M Bv;. (78)
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Taking the dot product with v and cancelling terms:

v¥.A'v; = AN'v¥.Bv.. (79)
Therefore, we can calculate A; from
*. Av.
\ = YO Av: (80)
v}.Bv;

The group velocity is calculated by differentiating w(k) with respect
to the components of k."° The « dependence is determined from an
eigenproblem of the form:

0 0 0 0 k
0 0 0 =k 0
0 0 0 ky, —k
0 —k &k 0 0
k- 0 —k: 0 0
-k, ke O 0 0 0

Thus, for example, the x-component of the group velocity, vg. is
determined from (80) and (81):

k
¥ g v = wfir. (81)
0

00 00 00
00 00 01
1, 00 00 -10
Vgx—aw/akx—ﬁv 1 o0 00 00]”
00 -1 0 00
01 00 0O
=(E*H,- E*H, - H}E. + H}E,)/2U = 8,/U. (82)
Thus, we have demonstrated:
]
=—=v,. 83
Ve=p=V (83)
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