Copyright © 1982 American Telephone and Telegraph Company
THE BELL SYsTEM TECHNICAL JOURNAL
Vol. 61, No. 6, July-August 1982
Printed in U.S.A.

Automated Repair Service Bureau:

The Context-Sensitive Switch of the Loop
Maintenance Operations System

By J. P. HOLTMAN

(Manuscript received June 5, 1981)

In a distributed system where the data base is partitioned, e.g., on
a geographical basis, incoming transactions must be routed to the
correct computer based on information in the data. In some instances,
this is performed manually by the attendant entering the data, but as
the switching criteria becomes more complex and the transaction
load increases, a mechanized system which could examine the data
and route automatically would decrease the time required for an
attendant to handle an individual input and, thereby, increase the
productivity of the attendant. This paper describes the design and
implementation of a “context-sensitive” switch that is used to route
transactions in the Loop Maintenance Operations System.

I. INTRODUCTION

The Loop Maintenance Operations System (LMos)' is a hierarchical
network composed of a host computer’ which is a large data base
machine, and a number of transaction processing front-end (FE) com-
puters.’ The entire data base is contained on the host computer, but
this data is distributed to each of the FE computers based on the
geography of the system. The geographical boundaries that are defined
by an FE are those areas served by a Repair Service Bureau (RSB).

Since an RSB typically is associated with several wire centers, the
customer lines that are served by that bureau correspond to the
geographical area served by those wire centers. These lines are typi-
cally grouped into what are referred to as NNXs. An NNX is the first
three digits of a telephone number, commonly referred to as an

1197

exchange. When LMos was first designed, all trouble reports for a given
geographical area were routed to the appropriate RSB automatically
by the telephone switching equipment. There, the attendant would
input the trouble report to the FE that served that RsSB. In this case,
everything worked fine as long as the calls were routed to the correct
RSBS.

As the Bell operating companies (Bocs) consolidated work centers
to give better service, and reduced the size of the staff necessary to do
that function, they created the Centralized Repair Service Attendant
Bureau (crsaB). This is the central site that handles all the trouble
report calls for a very large area; this area now spans many FEs. Since
the calls are answered in the CRSAB on a random basis, there is no
longer the guarantee that the calls will be directed to an attendant
who has a terminal that is directly attached to the proper FE. There-
fore, the attendant has to have the capability of dynamic switching
his/her terminal between any of the FEs to input the trouble reports.

In an existing BOC, there were six FEs servicing the entire metropol-
itan area. When the cRSAB was created in this Boc, it necessitated the
capability for each answering position in the CRSAB to be able to access
any one of the six FEs. This implied that the attendant, upon taking
the trouble report, had to determine which of those six FEs contained
the telephone number referred to in the trouble report. Therefore, the
attendant had to be able to determine for a given NNX (one out of 600
in this area) which FE contained that NNX (one out of six).

This was exactly the manual solution that the Boc was forced to
take. At each of the answering positions in the crRsAB, there was
located a six-position switch. This allowed the attendant to select one
of the six FEs in which to input the trouble. The appropriate FE was
selected on the basis of the telephone number for which the trouble
was being reported. A table was provided giving the FE associated with
an NNX and the attendant would consult this to determine the FE.

If the NNX was not in the table, the attendant would try to enter
the transaction on each of the FEs until the transaction was accepted
or negative responses were obtained from all the systems. If all the
responses were negative, the attendant would change the transaction
name to route this trouble for special handling. This manual switching
arrangement was expensive and complex. It was also dependent upon
a specific type of terminal and, therefore, was not usable by other
BOCS.

To provide a system that was usable by all the Bocs and to provide
for future extensions to the LMos system, the design of the Cross Front
End (xFE) was undertaken. The main function of the XFE is to
automatically determine the FE that contains a particular phone
number. When this determination is made, it routes the input trans-

1198 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1982

FE1 —_— —— - CRSA1

N Ve
N /
. | S— b — .
. XFE .
. pu—— . .
4 AN
/ \
FEn et “~=—= CRSAn

Fig. 1—Cross front end in the LMOS network.

action to that FE, and when the response to that transaction is
obtained, it routes the response back to the appropriate terminal. The
XFE is situated in the network in such a way that all the terminals in
the CrRsAB are connected to the XFE, and the XFE, in turn, is connected
to all the FEs. Therefore, the XFE appears in the same location as the
manual switch did in the previous discussion and serves the same
purpose, except now the function is being done automatically.

1l. BASIC DESIGN OF THE CROSS FRONT END

The basic design for the XFE was relatively simple. Its function was
to be a “context-sensitive” switch. That is, it would look at the phone
number on a transaction, look that phone number up in an internal
table which gave the mapping between phone number and FE, and
then route the transaction to the FE indicated. When the response to
that transaction was obtained from the FE, its function was then to
route that response back to the terminal that originated the transac-
tion.

Since a Boc could optionally install an XFE as part of an LMOS
system, it was designed so that it did not affect the operation of the FE
software. That is, it had to be completely transparent to any existing
software in the Lmos system. Therefore, the XFE was designed to
appear as a terminal controller to the FE, making it transparent to the
FE, whether there was a real terminal controller at the other end of
the line, or an XFE simulating the terminal controller. (See Fig. 1.)

The hardware configuration for the XFE consisted of a PDP* 11/34
computer with 256 kilobytes of memory, a cache memory to increase
the speed of the processor, a maximum of 32-line controllers, and a
floppy disk for loading the system software and for recording system
dumps on abnormal terminations. For reliability reasons, the XFE was
configured in either a duplex or a triplex configuration. A duplex
consisted of a live XFE and a backup XFE. A triplex configuration
consisted of two live XFEs and a backup which could be configured as

* Registered trademark of Digital Equipment Corporation.

CONTEXT-SENSITIVE SWITCH 1199

either one of the other xFEs. Switching between a live and the backup
was accomplished with a manual switch and the entire operation was
initiated by the operators in the computer center.

Il. STRUCTURE OF THE XFE SOFTWARE

The XFE software consisted of three major components:
() The operating system
(it) The communications management software

(iif) The application code.

The operating system used for the XFE was the Bell Operating
System (B0s11); it is the same one that was used on the FE computers.
The Bos11 was field proven, reliable, and very few changes were made
in it except to include the new device drivers for the communication
lines.

The Communications Manager on the XFE was completely rewritten
from the Communications Manager that existed on the FEs. The
reason for this is that the Communications Manager on the FEs was
not general enough to handle the capabilities required in the XFE.

The Application Code (APL) is the software that implements the
functions of the XxFE. When a transaction is input, APL uses information
contained within the input data to switch that transaction to the
appropriate FE. The APL divided into three modules.

(i) A module to handle the interactions with a terminal
() A module to handle the interactions with a FE.

(iti) A module to handle the interactions with the XFE console
terminal.

The rest of this section will discuss the design of the XFE in more
detail.

3.1 System configuration

An XFE can handle a maximum of 150 terminals, while an FE has the
capacity for 512 terminals. If the XFE were configured in the simplest
fashion, then each terminal on the XFE would have an appearance on
an FE. This would allocate 150 of the 512 terminals on an FE to the
lines serving the XFE. But, at any one time, only a small fraction of the
terminals on the XFE would be in communication with a specific FE.
Also, since the customer contact time (120 s) is long compared to the
response time (10 s) of a transaction, the XFE was designed to dynam-
ically couple a terminal to an FE only for the duration of the transac-
tion. A transaction is defined as the input from a terminal and the
output response returned to that specific terminal. Therefore, after the
output has been sent back to the specific terminal, the XFE can free up
that coupling for use by another terminal. This allowed for the optimal
use of the resources both by the XFE and the FEs.

1200 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1982

When the XFE was put into the network, there were two physical
communication lines from each FE to the XFE. These cornmunication
lines were duplexed for reliability. A single communication line was
capable of handling the necessary transaction load between the FE and
the XFE. On each of these communication lines, there was the appear-
ance of 16 pseudo terminals (PTERM). When the XFE receives an input
transaction from a real terminal, it dynamically allocates an available
PTERM on the FE to which the transaction is to be routed. The XFE
then transmits the transaction so that it appears, to the FE, as if it
were entered from the PTERM. When the response is received at the
XFE from this PTERM, it is routed back to the original input terminal
and the PTERM is deallocated, freeing it for another conversation
between the XFE and the FE.

3.2 Routing definition tables

The routing tables provide the XFE with the information necessary
to determine how to route the transactions to the appropriate FEs.
These routing tables consist of two basic sets of tables. The first set of
tables contains the transaction name and the location of the field that
the XFE is to use to obtain its routing information. The other set of
routing tables contains the routing criteria; i.e., a list of NNXs versus
FEs that contain those NNXs.

The information for these routing tables is obtained from two
sources. The table that contains the information on the transactions
is prepared manually by the operations personnel at the Boc from
information provided by the Western Electric Company. The infor-
mation contained in the routing criteria tables is created automatically
from information on the FE computers. An off-line program is run on
each of the FE computers in an LMOs installation that reads the data
base on the FE computers to determine which NNXs are loaded on
that data base. The results of this program are recorded on a tape, and
the tapes from all the FEs are merged on to one single disk from which
this table is generated. Once these tables have been generated, they
are loaded on the XFE floppy disk and automatically loaded into
memory when the XFE system is booted.

3.3 Network definition tables

Each XFE installation has its own unique requirements in the way
that the physical communication lines are configured. As the system
grows, an XFE may initially be connected to two FEs and finally to six
FEs. At each stage, the XFE must know the actual communication
network configuration attached to it. To do this, a facility is provided
so the personnel in the computer center can describe the configuration
to the XFE.

CONTEXT-SENSITIVE SWITCH 1201

The description of the network configuration is prepared on a card
deck that is read by an off-line utility program which stores the
resultant tables on a floppy disk file that the XFE can read when the
system is initialized.

3.4 Processing special service numbers

So far, it has been assumed that the XFE uses the telephone number
that was input to determine its routing criteria. This routing was done
by looking up the first three digits of this phone number to determine
to which FE to route transaction. For most poTs (“plain old telephone
service”) numbers, this assumption is true. And since POTS numbers
make up a large percentage of the subscriber lines on which troubles
are reported, then this represents normal processing required on the
XFE.

But, customer circuits, called Special Service Circuits, exist that do
not have the normal seven-digit phone number that is typically asso-
ciated with a telephone. For example, if a customer has a dedicated
data line connecting two computers in different locations, this line may
be designated with a phone number that would look like “96PL1234A.”
If one tried to use the first three digits of this phone number, “96L,”
to determine the routing criteria, the XFE would determine that this
NNX does not exist in any of its tables.

If this were the manual system, the attendant would first try to
input this transaction to FE number one, get the response, and if the
response said that this number did not exist on FE number one, the
attendant would switch to FE number two and repeat this scenario
until either the FE was located that contained this number, or all the
FEs had been tried to no avail. Therefore, it was required that the xFEs
somehow implement this same capability.

To handle Special Service numbers, an “inquiry” transaction was
built into the XFE. In the case where the XFE could not determine the
routing criteria by doing a table look-up on the data, the XFE would
initiate an “inquiry” transaction simultaneously to each FE to which it
was attached. This inquiry transaction consisted of the phone number
for which the XFE was trying to determine the routing. On the FE, the
inquiry transaction would attempt to access the data base with this
phone number. If the data did exist on the FE, the transaction re-
sponded with a positive acknowledgment. If the data did not exist on
that FE, the FE responded with a negative acknowledgment.

When a positive acknowledgment is received, the XFE would route
the transaction to that FE. If no positive acknowledgments were
received from any of the FEs, the transaction would be routed to the
last FE to respond. This was done so that the XFE did not have to
generate any error message on its own. It would route the transaction

1202 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1982

to an FE and the application program on the FE would be written such
that if it did not find the data it needed, it responded with a known
error message with which attendants were familiar.

One by-product of this capability of making inquiries took care of
the case where a Boc did not update the XFE routing tables when a
new RSB was added, or when a new set of phone numbers were added
to an FE. Since this information would not have been contained in the
XFE routing tables, when one of these new phone numbers was entered
on a transaction, the XFE would automatically generate an inquiry
transaction and the FE containing that phone number would send a
positive acknowledgment.

3.5 Operator control

The XFE was designed as a standalone system; i.e., it did not require
any operator interaction. If a system failure occurred, a dump was
taken automatically to the floppy disk, and the system rebooted itself
and started up again. Because of the limited resources on the XFE
(memory and off-line storage), the console terminal was used both as
an interface to the operator and as a logging device. The information
logged on the console terminal consisted of the number of transactions
entered, average response time for those transactions, and other mis-
cellaneous data that could be used both to determine the performance
of the system, and to analyze any strange behavior of the system.

At the console terminal, the operator could control which lines were
active, which terminals were active, and change some of the system
parameters to tune the response of the system. The XFE also allowed
any operator command to be input from the system control terminal
on the FE. The operator would input a special transaction on the FE
and the application program that was executed as the result of this
transaction would output the data (command) on the communication
line between the FE and the XFE. When the input was received at the
XFE, it was interpreted as if it came from the console terminal.
Responses to that command appeared both at the XFE console terminal
and as a response sent back from the XFE to the FE so that it appeared
at the user’s terminal. This allowed the operators to control and
monitor the XFE performance without having to use the terminal at
the XFE.

IV. PUTTING THE SYSTEM INTO THE FIELD

There were adequate test facilities in the laboratory for both the
development and for the testing of the software. But the real test came
in trying to put this software into an actual installation in the field. It
must be remembered that CRSAB is a very critical work center in the
LMOS system; it takes the initial trouble report and initiates all the

CONTEXT-SENSITIVE SWITCH 1203

basic functions that LMos performs. Therefore, if service is discontin-
ued for any reason to the CRsSAB, there is a severe impact on the LMOs
system.

As was previously mentioned, the Boc where the XFE field trial was
conducted had a manual system for switching the terminals between
the various FE computers. It turned out that the manual switch that
was used at each of the operator positions actually was an eight-
position switch. When the field trial started, the XFE was attached to
one of these extra two positions on the switch. Therefore, the operator
could manually select one of the six FEs as they originally did, or for
the field trial, select the XFE. This allowed for parallel operations
during the field trial.

Initially, 16 CRSAB positions were attached to the XFE so that system
response could be gauged to a small number of users (the XFE was
designed to handle 150 terminals). Since the attendants could switch
back to the manual system at any time, this provided feedback on the
system performance by monitoring how often these positions had to
resort to manual operations because of response time problems.

4.1 Handling slow responses from a front-end

The normal response time at a terminal not connected to the XFE
was 3 to 5 seconds, and it was anticipated that the XFE would add a
second to this response, bringing the expected response with the XFE
to the 4- to 6-s range. Early results in the field trial indicated that
response time for terminals connected to the XFE was in the 10- to 13-
s range. These results were not satisfactory and, therefore, an effort
was undertaken to determine the bottlenecks in the system.

At this point, statistics built into the code came in very handy. By
analyzing the output and displaying some internal tables on the console
terminal, the problems causing this slow response time were identified.

One of the major problems causing slow response time had not been
anticipated in the design phase. This had to do with detecting when
one of the FEs connected to the XFE was “down”; i.e., the FE was
unable to accept the transactions that the XFE was attempting to send
it. The reasons for this could be either

(i) The FE was physically down because of some hardware or
software problem, or

(if) The FE was heavily loaded and responding very slowly to
transactions that were sent to it.

Whatever the reason for this slow response, it caused a longer
holding time for the system buffers on the XFE. In the initial design
phase of the XFE, it was anticipated that a buffer would be held for a
relatively short period of time—2 to 4 seconds. This was the time it
took to send the transaction over to the FE and get a positive acknowl-

1204 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1982

edgment that the transaction was received. When an FE goes down, it
is not sending back this positive acknowledgment and therefore is
tying up the system buffer on the XFE.

Now the XFE had a time-out such that after approximately 30 s it
would release this buffer and send a message back to the user’s
terminal indicating that the transaction could not be completed. But,
if a large number of transactions had been input which were destined
to this FE, then a large number of buffers would be tied up for a long
period of time. Since buffers are one of the scarce resources on the XFE
end, this would lead to a bottleneck in the system, preventing the
transactions going to other FEs.

To overcome this problem, a system parameter was defined which
specified the maximum percentage of the available buffer space that
would be allocated for transactions that were destined for a specific
FE. By default, this value was set at 30 percent, so if an FE was slow in
responding, only 30 percent of the available buffer space would be
allocated for use by that FE. If a subsequent transaction were entered
that was to be routed to that FE an error message would be returned
to the user indicating that no buffers were available and that the user
should wait a few seconds and then reenter the transaction.

If it was determined that an FE was physically unavailable, then the
percentage of available buffer space that it was allowed would be
dynamically changed to zero, preventing any transactions that would
be routed to that FE from being entered into the system. When the FE
came on-line again, its percentage would be changed back to the
system default. With these changes, the desired response of 4 to 6
seconds was achieved.

4.2 Buffer management

The scarcest resource on the XFE is the memory space available for
buffers. The XFE places a large demand on this resource because of the
number of conversations that the XFE can have in progress at any one
time, and because of the requirements of the bisynchronous protocol.
The limited address space on the PDP-11 (a program can have a total
of 64 kilobytes of text and data under Bos11) required that the buffers
be kept in a separate address space from the programs using them.
System calls were provided to allocate/free the buffers, but because of
the heavy usage of this resource, 10 percent of the cPU was used to
service these requests.

To improve the performance of the system, a “cache” of buffers
(actually the address descriptors of the buffers in the separate address
space) was maintained in the application program. Therefore, if the
application program required a buffer, it would first look in this cache
to see if there was an available buffer descriptor. If there was, this

CONTEXT-SENSITIVE SWITCH 1205

buffer descriptor was used, saving a system call. When a buffer was
freed, the application program would look for an empty slot in the
cache, and if there was an empty slot, place this buffer descriptor in it.

If there was no available buffer descriptor in this cache when the
application code requested one, a system call was made to allocate this
buffer. But instead of allocating a single buffer, the system would
allocate five buffers. One was returned to the application program and
the other four were used to populate the cache. This was done in
anticipation of future calls requesting the allocation of buffers. This
cache algorithm allowed over 80 percent of the requests to be satisfied
without requiring a system call.

The bisynchronous protocol required that a “large” buffer (3000
bytes) be allocated any time data was expected from an FE. Since there
was a limited number of these “large buffers,” and because the average
size of the response from an FE was on the order of 200 to 300 bytes,
a function was added to the system to “shrink” the data from a “large”
buffer into a “small” buffer of the correct size; thus, freeing up this
large buffer for subsequent input.

Detailed statistics were maintained on the buffer utilization and
these statistics were printed out periodically on the console terminal.
This allowed the developers to monitor the buffer usage of the system,
and it also gave information necessary to track down any anomalies
that may have occurred.

4.3 The communications manager

The communications network managed by the XFE is referred to as
a “multipoint bisynch”; i.e., the lines in this network must be polled to
see if a terminal on a line has data for input. To give reasonable
response time to the terminal, the line must be polled approximately
once every half second. On a typical XFE, there are 10 to 18 bisynchro-
nous lines.

Each poll requires two 1/0 operations, and a system call is required
to initiate an 1/0 operations. This system call requires approximately
5 ms. Calculating the time required to handle 18 synchronous lines,
there are:

18 lines * 2 1/0s/poll * 2 polls/second * 5 ms/1/0.

This equals 360 ms/s or approximately 36 percent of the cpu just to
support the communication lines with no other activity in the system.
Under load with all the other functions in the XFE must handle this
overhead is intolerable.

When an analysis was done of what happens during the polling, it
was determined that 60 to 80 percent were “idle” polls; i.e., there was
no data input from the line. Therefore, a method had to be found to
reduce the overhead of these nonproductive polls.

1206 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1982

One way of doing this was to put the polling capability at the lowest
level in the system; ie., at the device driver level in the operating
system. Also, the driver can determine if it was an “idle” poll and if so,
just initiate the next poll 0.5 s later. By putting this “auto-poll”
capability in the device driver, the overhead associated with the poll
was reduced from 10 ms (two 1/0s times 5 ms) to 1 ms. This was a
substantial reduction in the overhead required for the communications
manager.

A similar capability was also required on the lines connecting the FE
and the XFE. Because the XFE appears as a terminal controller to the
FE, the FE polls the XFE to determine if there are any data to be
transmitted. If the XFE does not have any data ready for transmission
to the FE, it must respond with an “eot” and set-up to receive the next
poll. If this 1/0 is being done from the user program, this would require
two 1/0s (or a total of 10 ms) to answer each of these polls. By moving
this function down into the device driver again, the overhead is
significantly reduced to 1 ms to answer a poll from the FE. This
capability is referred to as the “auto-answer” capability.

V. PERFORMANCE

The XFE is designed to handle a maximum of thirty-two 9.6-kilobaud
communication lines. In its maximum configuration, the lines would
be allocated as follows:

Lines Function
2 LMos host computer
20 Two lines each to a maximum of 10 FEs
10 Terminal controllers (typically 16 terminals)

There are currently over 30 XFE systems deployed (and more being
added) with each XFE switching a maximum of 5000 transactions per
hour.

VI. CONCLUSION

The XFE was initially developed to handle the switching of transac-
tions in a crsaB. It was thought that only a few of the Bocs would
select this optional capability because many of the smaller Bocs could
probably get by with a manual switch. But as LMOs evolved and the
XFE proved to be a reliable system in the field, there was a need for
this switching function in other work centers besides the CRSAB.

As the Bocs desired more monitoring capabilities, some of the
operations staff terminals were attached to an XFE. Also, since the XFE
acts as a terminal concentrator, and in many Bocs there is a shortage
of lines on the FEs, the XFE can be used to increase the available

CONTEXT-SENSITIVE SWITCH 1207

number of ports to the LMos system. This is especially true when the
Boc wishes to add some low usage terminals that do not require fast
access to the system.

Vil. ACKNOWLEDGMENTS

I would like to thank the people who are responsible for the software
in the xFE. B. B. Bittner and W. F. Hoyt designed the application code
that implemented the switching functions of the XFE. J. P. Haggerty,
S. Myer, and R. W. Underwood developed the communications man-
agement software that allowed the XFE to “talk” to the outside world.
J. Cloutier made the changes in the Bosll to support the XFE and
helped to tune the system. Without their help, and the long hours
spent in the development and field trial phases, this paper would not
have been written.

REFERENCES

1. R. L. Martin, “Automated Repair Service Bureau: System Architecture,” B.S.T.J.,
this issue.

2. C. M. Franklin and J. F. Vogler, “Automated Repair Service Bureau: Data Base

_ System,” B.S.T.J., this issue.

3. S. G. Chappell, F. H. Henig, and D. S. Watson, “Automated Repair Service Bureau:
The Front-End System,” B.S.T.J., this issue.

4. “IBM 3270 Information Display System Component Description,” IBM Publications
GA27-2749-9, August 1979.

1208 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1982

