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Single server queueing models are important in the study of a wide
variety of stochastic systems. A particularly important example is the
study of task schedules for computer systems with real-time applica-
tions. In this paper, we present a class of approximations for the
waiting time distribution in single server queueing systems with
general independent (renewal) input and general (independent) ser-
vice time distributions. These approximations allow the analyst to
use as much (or as little) of the structure of the input and service
processes as destred. Moreover, they also allow him lo concentrate
on specific quantities associated with the delay distribution that may
represent the most relevant performance criteria. Examples include
probability of delay, mean delay, and tails of the delay distribution.
The methods given in this paper have been used to analyze the
performance of task schedules in a variety of processor-based systems.

I. INTRODUCTION

Single server queueing models arise quite naturally in the study of
a wide variety of stochastic server systems. A particularly important
class is single processor computer systems, such as stored program
control switching systems or nodes in a data communication network.
In many such applications, it is important to keep as much of the
structure of the interarrival and service time processes as possible in
order to obtain realistic results; that is, the simplifying assumptions
of exponential distributions cannot be made. While the resulting
GI/G/1 queue may be extremely difficult to analyze, one is often
content with reasonable approximations that incorporate the main
features of the problem. In addition, one often desires results that are
reasonably simple analytically, since the behavior of the GI/G/1
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queueing model may be the input to the analysis of a more complex
system.

Our main purpose here is to present a class of approximations for
the waiting time distribution, W(x), for such GI/G/1 systems which
allows the analyst to use as much (or little) of the structure of
the relevant input and service processes as desired. The resulting ap-
proximations can be extremely simple in form (e.g., a single exponen-
tial) or, with additional effort, more complex. In particular, we
give relatively simple expressions for constants C and a, such that
Wa(x) =1— Ce™ provides a good fit to the probability of delay,
Py = [1 — W(0)] and the mean delay, . Similar approximations are
developed which provide a good fit to the tails of the delay distribution.
Thus, these results can be used to study systems with a wide variety
of performance criteria. Qur results also lead to some new heavy traffic
approximations, as well as a simple approximation for light traffic.

While we feel that the approximations presented here are of use in
themselves, we hope that the results obtained will stimulate more
active research into the general method presented. Of particular inter-
est is the problem of obtaining more quantitative error bounds to guide
the user in the application of these techniques.

We note that the methods given here have been used to analyze
some rather complex GI/G/1 queueing systems which have arisen in
the study of a certain class of computer systems with real-time appli-
cations.'?

Some key results are summarized in the next section to give a
general idea of the nature of this work. Our basic approach is intro-
duced in Section III where several (single) exponential approximations
are derived. In Section IV, we look briefly at the implications of the
approximations for heavy traffic. In Section V, we look at some special
cases which lead to analytic statements about the accuracy of our
various approximations, and in Section VI, their accuracy is assessed
via several numerical examples. Extensions to more general functional
forms are considered in Section VII and illustrated via another nu-
merical example. Some final remarks are given in Section VIII. A
summary of our notation, key formulas, and approximations are given
in the Appendix for easy reference.

Il. SUMMARY OF SOME KEY RESULTS

The main idea of this work is to assume a functional form for an
approximation Wu(x) to the true waiting time distribution W(x) for a
GI/G/1 queue. The Lindley integral equation for W(x) is then used to
obtain the unknown coefficients. We obtain several approximations by
assuming Wix) = Wa(x) = 1 — Ce™™. A key approximation of this
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type, referred to as approximation A * has C and a determined by eqs.
(7) and (9) with a = ar (also see pages 299 and 300):

C—C* = 1 _,.K(O)
1—- K (ag)
and
c ct U+

a a* K@) - K (as)’
where K(u) is the distribution function for the difference, i} between
the service time and interarrival time and

R_(s) = j e*“dK(u)

iy = j udK(u)
0
and ag satisfies the characteristic equation

J e ®dK(u) = 1.

(The equation numbers of this section correspond to those of later
sections.) Limiting properties and special cases for this approximation,
as well as others are discussed. Several numerical examples are also
given to illustrate the accuracy of these approximations. For an ex-
ample H:/E,/1 system, the maximum relative error in the approxi-
mation to Pp given by A* is found to be 5.0 percent, while the
maximum relative error in the approximation to i given by A* is
found to be 1.5 percent. Perhaps the simplest approximation consid-
ered (using only the first two moments of &) is the one referred to as
approximation Ago, which is also of the form Wa(x) =1 — Ce™, but
where now the constants C and a are determined by

a=a3=%, (14)

i.e., the heavy traffic a, and
C = Cgo = [1 — Exf(|i|/v20u)1/[1 + Exf(|i|/V20u)],  (15)

where Erf(x) is the error function. Note that (15) has the limiting
behavior for small (&) (assuming o, tends to a finite limit)

tThe symbol - will be used to denote a random variable (see the Appendix for a
summary of notations used).
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71
Ceo ~ 1-— 2\/:_|u| ) (16)
a0 ey

(p—1)

which then results in the following limit for the approximate mean
delay, II)G,{)

- Coypo 1 2
Wgop=—— ~ — — 04 - (17)
ay -0 Ay T
(p—1)

the right-hand side of eq. (17) is, in fact, a well-known lower bound for
w (as &t — 0, e.g., see Ref. 4).

The accuracy of these approximations, as well as several others we
develop, are studied in considerably more detail in what follows. We
also show how the approach taken leads to a class of approximations
which can be made increasingly more accurate (with additional effort).

Ill. DEVELOPMENT OF THE EXPONENTIAL APPROXIMATION

We wish to obtain an approximate solution for the waiting time
distribution, W(x), for a GI/G/1 queueing system. More specifically,
we have a single server queue where the interarrival times, t, between
customers are independent and identically distributed, taken from a
general distribution, A(¢) and the service times, T, are independently
drawn from an arbitrary distribution B(r). A first in-first out discipline
is assumed. If we let & = 7 —  and denote the distribution of & by
K(u), then if an (equilibrium) waiting time distribution exists, it
satisfies the well-known Lindley integral equation®

Wix) = f Wix — y)dK(y), x=0 (1)

(Wi(x) is equal to 0 for x < 0).
In this section, we consider approximations Wy(x) to W{(x) of the
form
Walx) =1 - Ce ™. (2)

Our objective is to determine suitable values for the constants C and
a. For this purpose, we will use the relation (1).

3.1 Pointwise maiching
As is well known (see Ref. 5, pages 376 and 410), if the equation

j edK(u) =1, 3

' Throughout we assurme stability, i.e., that (1/a) =7 <t = (1/A);p = (A\/a) < 1.
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possesses a real nonzero root, ag, then

1 — W) ~ C.e ", (4)
Throughout this paper, we will tacitly assume that for all systems
considered, eq. (3) does, in fact, possess such a root. Thus, if an
exponential form is to be used, ar is a reasonable choice for the
parameter a in (2). On the other hand, substitution of (2) into (1)
yields the relation

1—-Ce™™ = K(x) — Ce"”‘f ePdK(y). (5)

Hence, we see that if we choose a = ag, (5) will be valid to order
0(e~*%)" as x tends to infinity. We can now determine C by requiring
that (5) be valid at another value of x. For x such that [1 — K(x)] >0
we can solve (5) for C to obtain

[1 - K(x)]e™

Clx) = (6)

l—J’ eVdK(y)

Now if we are interested in approximating the behavior of W(x) near
x = 0, a reasonable choice might be to solve for C from (6) with x = 0;
that is, choose
1-K@0) 1=K (0)
1-K (@ 1-K(a)’

C = Cyla) = (7)

where

0
K. (s) = f e“dK(u).

[Note that clearly 0 = Co(a) = 1.]

We will refer to the exponential approximation of W(x) obtained by
choosing a to satisfy (3) [“(5) at x = "] and C to satisfy (7) [(5) at
x = 0] as approximation Agy, i.e., Wa,, =1 — Co(ar)e “**. (The sub-
script E refers to the use of the exact dominant root—we will consider
other alternatives shortly.)

Note that if the true delay distribution were given by a simple
exponential, i.e.,, W(x) = 1 — Ce™, then the value of C(x) determined
from (6) would be identically a constant and W, (x) = W(x). Thus,
the variation of C(x) with x, as determined by (6), gives some indica-

' That is, the difference between the left-hand side and right-hand side will tend to
zero even when multiplied by Ce“**,
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tion of how exponential the waiting time delay distribution is. A more
“gophisticated” approximation might be obtained by minimizing the
variation of C(x) with respect to some suitable norm, however, we will
concentrate here mostly on simpler techniques.

Note also that C(x) as given by (6) appears in various (exponential)
bounds for W(x). For example, Kingman® and Rossberg and Siegel’
prove the following inequality for the complementary waiting time
distribution, W*(x) = 1 — W(x).

Cre™™ < We(a) < e™*F,

where ag is given by (3) and
C.= inf C(x).
x=0

[1—-K(x)]>0
Ross® gives the bound
We(x) = Cye™ "¢,
where

Cy= sup C(x).
x=0

[1-K(x)]}=0

(See also Ref. 9.) Hence, it seems quite natural to choose a specific
value for x in C(x) to obtain an exponential approximation to W(x),
with Cr. < C < Cy.

3.2 An alternate method for determining C

As we shall see shortly, Az, does provide a reasonable approximation
to Pp, but the resulting approximation for  is not as good. One might
consider choosing C from (6) with another choice of x; however, here
we consider another alternative. If we compute the mean waiting time,
0, using eq. (1) we obtain

w= J’ xdW(x) = J x[ W(0)dK(x) + J’ d.Wi(x —y)dK(y)]. (8)

0

Again, assuming the exponential form (2) for Wa(x) [and, hence,
that wa = (C/a)], (8) yields
_C Ly K'.(0)
Wy=—= = = = )
a K@) -K(a K(0)-RK(a)
where i, = [§ udK(u), Ri(s) = [5 e"dK(u) and K (s) isasin (7). If a
is chosen from (3) and C then from (9), we will refer to the resulting
approximation as Ag,, i.e., Wa, (¥) = 1 — Ci(az)e™*". As we shall see,
this will result in a good approximation for the mean delay via (9);

9)

300 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1982



however, it is not clear from this relation that the resulting C need be
less than 1. (It is clearly =0.) A correct probabilistic exponential form
for W4 (x) which incorporates both (7) (and, hence, results in a reason-
able approximation for the probability of delay) and (9) (and hence
results in a good approximation for the mean delay) can be obtained
in the following manner. First, find ag from (3), then C = C* = Cy(ag)
from (7), and then the approximate mean delay, w = C;(ag)/ar from
(9). The constant a is then chosen to be

a=a*= Colae)
Ci(ag)

ag.

We will refer to this approximation as A*. We now look at a more
organized way of obtaining such approximations.

3.3 Moment matching

Equation (9) was obtained by matching the first moment of the
Lindley integral equation, i.e., from (8). We note that if we match the
Oth moment in a similar way we are, in fact, also led to (7). That is, if
we seek a solution to (1) of the form 1 — Ce™™, and match the first two
moments (Oth and 1st) of (1) to determine both unknown constants,
we are led to egs. (7) and (9), i.e.,

11— K(©)

" 1-R_(a)
C_ i,
a K(0) - K (a)

as a pair of equations in the two unknowns C and a. These can be
combined and rewritten as

. _ KO - R(@][1 - KO)]

2.[1 - K (a)] 1o
_ 1-K(0)
1-R(a) 1

Thus, one can first determine a from (10) and then C from (11).
Clearly, if such an a exists, a € [0, =], C € [0, 1].
Denoting the right-hand side of (10) by f(a), we note that

fla) =0

_, kon-ko1_

a—seo +

fla)

and also
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—-K'(a)[1 - K(O)T?

'’ a = —

Fla) [l - K- (o)
has the properties

fla) > 0, a=0

Fo)= 2—2>1

U

fla) = 0.

Moreover,

-1 - 2 (K _ Rk a 2
"(a) = L= KOF (K(al1 — K (@)] +32(12~ @y _
U+ [1 =K (a)]

Thus, we see that (10) possesses a unique positive root, which can be
obtained via the iteration scheme

A a=0.

Ap+1 = f(an)

starting from any positive ao.
Thus, we can always determine the desired root ao, from (10) and
then the resulting C = Co, from (11). This approximation

WAG‘I(x) =1- Co,1€*aﬂ"x
is referred to as Ao, -

3.4 Light traffic
Under quite general conditions, the function R _(a) defined in (7)
and with a satisfying (3) has the limit

K (a) — 0,
p—0
e.g., fix B(r) and the “shape” of A(t) and let 1/A — oo. Hence, for p
small, (7) and (9) lead to the following intuitively appealing “light”
traffic approximations (Arr)

Cir=1-K(0) (12)
_ Crr us
W= e K(O) (13}

IV. HEAVY TRAFFIC

In the case of heavy traffic, an obvious possibility for the exponent
a is the heavy traffic limit (e.g., see Ref. 4):
-2
ay=——, (14)

u
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where &, o2 are the mean and variance, respectively, of & = 7 — ¢
(service minus interarrival time). We can use this value for a in place
of ag in the approximations of Section IIl. In particular, if we use
a = ay in (7) we will refer to the resulting approximation as Agp. Note
that the resulting C is strictly less than one unless ay = 0 (p = 1). If we
use a = ay in (9), we refer to the resulting approximation as Az,.
These two approximations (as well as those we discuss next) offer
potential improvements to the more standard heavy traffic approxi-
mation that can extend its applicability to lower load levels.

In many cases, where heavy traffic approximations are applied, the
structure of K(u) is either not known or too complex to be used in
further analysis. Standard heavy traffic approximations generally only
make use of the first two moments of K(u), i.e., & and o2. We can also
obtain results which use only &, o) by making the standard heavy
traffic assumption that K(u) is approximately Gaussian. For example,
if we not only assume that a = ag in (7), but further that K(u) is
Gaussian, we obtain the following approximation for C using (7):

1 — Erf d
(\/-Uu)
Cop=——""—"""""-. (15)

” Erf( J—ou)

We refer to this approximation as Ago. Note that (15) implies the
limiting behavior for || small

(16)

-2
T Ou 2\l
oo~ Ve, i
0 \/§| | a0 T Oy
(=1 1 + (p—1)
T Oy

Now combining (16) with (14), we obtain the following (limiting)
approximation to the mean delay for | | small

C 1 2
Weo = —22 ~ ——ou\/: an
ag -0 Ay o

(p—1)

In a similar manner, (9) yields the approximation Ag:

Cor \7—"—9_%(5) Q[I"E“(fa,,)]

P — ) (18)
H —-Uu
Erf
( \@au)

which has the limit

Wwgyr =
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Cea %  ou T 1 ou |7

Bos = —= ~ LN L N s 19
Wer = w0 2|a] 2 V2 20 an 2 V2 (19)
(p—1) {(p—1)

Now if K(u) were, indeed, Gaussian, then the resulting (heavy
traffic) mean delay, g, is known to have the limiting bounds (e.g., see

Ref. 4).
1 2 1
——ou\/:su‘;gs—. (20)
ay T (254

Compare (17), (19), and (20).

V. SOME SPECIAL CASES

In this section, we look at the general behavior of these approxi-
mations for some special cases where exact results are readily obtain-
able. We begin by looking at the GI/M/1 case where the approxima-
tions of Section III are exact. This will serve as a simple illustrative
example, as well as provide some additional insight into the behavior
of the heavy traffic approximations of Section IV.

5.1 Case: GI/M/1
For a GI/M/1 system, we can write (for u > 0)

Klu) = j [1—e ™ dA() =1 — pe ™, u=>0, (21)
0
where 1/a is the mean of the (exponential) service time and
p =j e dA(t) = A(a).
0
We, thus, have
i, = ap J’ xe dx = p/a (22)
0

K(0)=1-p. (23)
Now if a satisfies (3),

R (a) = J' edK(u) =1 — f e“dK (u).

Hence,

ap

. (24)
a—ao

R(a)=1- apJ ee ™ du=1+
0
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Using (23), (24) in (7) yields

a—a

Cola) = ) (25)
o
while (22), (23), (24) in (9) yield
Ci(a) _a—a (26)
a ao

If a is chosen to be the exact root of (3), then these both lead to the
exact waiting time distribution. (Recall, for a GI/M/1 system

ag

Wix) =1 -2 2E garx.
[44

e.g., see Ref. 10.)
If we use the heavy traffic approximation for a, i.e., (14) then (25) or
(26) can be used to obtain the following approximation for C

+2i£

o+ —5

u 2 (1-—

Cro=—2 =12 0=0), (27)
a aoy p

that is, a possible improvement to C = 1 for heavy traffic. Thus, the
resulting mean delay is found to be

WHy =——=———=—"=>——. (28)
a

Note that this correction term to 1/ax as an approximation to the
mean delay is typical. For example, for an M/G/1 system it is easy to
show that the true mean delay, w, satisfies

5.2 Case: M/G/1
For this case, we have

K(u) = j e dB(r) = ge™", u<o, (29)
0
where 1/A is the mean of the (exponential) interarrival time and
qg= f e MdB(r) = B(A).
0

We, thus, have
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™ oo 0
L, = J udK(u) = J’ udK(u) — J udK(u)
0 . e

i, =
0
_ 1 1 g
— _ Au =_-_= 1
=u—gA J’_m ue™du (a X + )\) (30)
K(0) =q (31)
and
¢ A
R_(a) = g\ L eeNdy = a‘i - (32)

Using (7), we obtain the following approximation (Agze) for the
probability of delay, Pp
1-gq
A’
arp + A

Colag) = (33)

while from (9) we obtain the following approximation (Ag,:) to the
mean delay, w

WE

_ Ci(ag) _ A—a+ qof)(ag +A)

34
ag galag (34)

(Since we know that for an M/G/1 queue, the true value of Ppis p, we
could use this fact, together with (33) to obtain a simple approximation
for ar; we discuss this possibility shortly.)

Using the known limits for the true @ = ar as p — 1, (33) readily
yields the following:

Colag) ~ p(l—pt°a®) ~ p (35)
A—=0 A—0
(p—0) (p—0)
a
Colar) ~ 1-—-2 5 1, (36)
A—a 1—qa A—a
(p—1) (p—1)

where we have used the fact that for A — 0

AN

q= J e™dB(r) ~ 1——+ . (37)
0 A—0 o 2
We similarly obtain from (34)
_ Ciax) A (LA AT? (38)
W = e a0 2(1—p) az) a0 2(1—p)
{p—D) p—
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and for A — q, clearly

C 1
ax) ~ L (39)
ag A—a AE
(p—1)
Equation (38) shows that as A — 0, we obtain the familiar P — K
(Pollecek-Khinchin) formula for @ in an M/G/1 system, while (39)

shows that with

We) =

1 1
a=a£~, wEl ~ — A~ —
p—1 AE p—1 a;,r

Now recall for the approximation A*, we take C* = Cy(ar) and

Colae)ae
Ci(ag) ~

Hence, for A*, the resulting exponent for the exponential approxima-
tion is given by

*

. gadag(l — q)
= . 40
T A —a+qaa+FA—gn (40)
From (40) we obtain
2 1
* —_—
At 1)
(p—0)
1 —
A—a a A—a

(p—1) (p—1)

where R is mean forward recurrence time of the service time distri-
bution. Note we have used the fact that
ag ~ 0.
p—1
The first of these is a very interesting relation. It is easy to show
that for an M/G/1 system, that as p — 0 the true dominant root az
satisfies

B(-a5)=j e“cdB(r) ~ oo, (43)
(1]

p—0

Hence, for example, if B(s) is rational, ag tends to the smallest (in
magnitude) pole of B(s), which is not consistent with (41). However,
it is easy to show that for an M/G/1 system, the mean delay condi-
tioned on being delayed, is just the mean forward recurrence time, B—
the dominant contribution is from the case where the arrival finds one
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customer in the system. That is, for p — 0, the dominant root really
may not be the best quantity to use for an approximation, indeed, the
limit (41) is most likely preferable. We, thus, have via A* an exponen-
tial approximation to the true delay distribution for p — 0 which can
be decidedly nonexponential but with the correct limiting probability
of delay and mean delay.

The approximation Ao, also has some very interesting properties for
the M/G/1 case. Considering (7) and (9) as defining two equations for
the two unknowns C and a, we obtain the two relations

_ CgA
@+ =ig-1 4
and
Cga)
@+ = v g (45
Combining (44) and (45) we find that
c=2_,. (46)
14

That is, for the M/G/1 case, Ao, yields an exact expression for the
probability of delay, Pp. Using (44) or (45), we obtain the following
approximation for the dominant root:

2
ap“q pa(l — g)(1—p)
a=———ap = . (47)
(p—(1—4q) p—(1—gq)
Note that
1-¢)(1-
_ a1l —qg)( p), (48)
p—l ' q
but
2
a— —
p—0 72
as with A*.

Note that since for an M/G/1 system, we know that Pp = p, we
could have used this fact directly in either of the two approximations
[(33), (34)] to obtain an approximation for the true dominant root, az.
This, of course, would result in

aEEpa(l - q)(1-p)
p—(1-gq)

’

i.e., just (47).
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For the mean delay, i, Ao, yields the approximation
_ p—(1—-gq)

Wo, = al-gl=p) (49)
which has the asymptotic properties
Woy ~ AT — (50)
| cﬁff& 2(1 -p— Amﬂ)
2
q

Wo,1 (51)

ra a(l—g)(1—0p)°
(p—1)

Comparing the asymptotic behavior of Ay, and A*, we see that while
the former has a more desirable property for the approximation to Pp,
the behavior of the approximations to @ and az are more desirable for
A* than for Ao,. This leads us to consider another approximation, one
that combines the best properties of each. The simplest method is to
define approximation A** via wa--(x) = 1 — C**e "***, where

C** — C(],]
and
a** = Co.1 _ Coag
Wg, Ck,

The use of the heavy traffic aq, of course, yields similar results to
those for Ao, Ar,, and A* as p — 1. Again, there is no simplification
for the Gaussian case.

VI. SOME NUMERICAL EXAMPLES

We consider several numerical examples of varying complexity to
illustrate the accuracy of the various approximations. Because of the
large number of possible combinations of approximations and quanti-
ties of interest, we will not cover all possibilities for every example.

6.1 Case: M/D/1
For the M/D/1 case,

1, u>T
—A(T—u) =
’

e uUu=rT

K(u)=P(tI=?—ESu)={

Hence, we can readily obtain eq. (3) for the dominant root, ax

- N .
au K = aT - .
Jm e™dK (u) Yy e 1 (52)
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Rewriting this equation as
At(e®" — 1) = a7, (53)

it is clear that in addition to @ = 0, there is always one positive real
root, az, for any finite A. Moreover,

ag — 0, ag — ©.
AT=p—1 A—0
{p—0)

The other quantities needed for the various approximations are

g=BN=e" (54)
K0)=g=¢e" (55)
L _gh _ e’A
K-{az) = ag + A N ag + A (56)
_ 1 1 g\ _ __1 f:
_ 1 1 _ 1
u_(E_X)_T_X (58)
1
03"? (59)
and, hence,
—97 20(1 —
= = pd—p) (60)
oy T

With ag from (53) and (54) to (60), we can compute the various
quantities predicted by our approximations. For simplicity, we will
assume 7 = 1 in the following so that A = p.

6.1.1 Probability of delay, Pp

Table I shows the value of Pp as predicted by the various approxi-
mations. Recall that Pp from Ao is exact for this case. We see,
however, that Azo(A*) produces a good approximation to this quantity.
The value of Pp predicted by Ag, is seen to be significantly poorer,
particularly for p small. Actually, our heavy traffic approximation Axp
does significantly better than Az, . Note that Ago provides a reasonable

Table |—Probability of Delay, Py, case M/D/1
o True  Aoi(A**) Ago(A¥) Anp Ago Ag, Arr

0.01 0.0100 0.0100 0.0100 0.0149 0.1920 0.0327 0.0100
0.1 0.1000 0.1000 0.0975 0.1406 0.2256 0.1986 0.0952
0.5 0.5000 0.5000 0.4756 0.5647 0.4462 0.6170 0.39356
0.9 0.9000 0.9000 0.8864 0.8975 0.8524 0.9276 0.5934
0.99 0.9900 0.9500 0.9884 0.9885 0.9842 0.9928 0.6284
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Table Il—Mean delay, w, case M/D/1

Agpa(A*,
p True A*Y) A, Ak An Aa, Anr Arr

0.01  0.00505 0.00505 0.00507 0.00154 0.00759 1253 50.51 0.00503
0.1 0.0556 0.0650 0.0565 0.0270 0.0832 1.589 5.556 0.0536
0.5 0.5000 0.4911 0.5415 0.3785 0.7026 1.033  2.000 0.3513
0.9 4.500 4.478 5.166 4.279 5.027 4.895 5.5566 0.8379
099 49.50 49.56 57.56 49.35 50.13 49.88 50.51 0.9829

approximation in the heavy traffic region and that A, 7 provides a good
approximation in the light traffic region.

6.1.2 Mean delays, w

Table II shows the mean delays resulting from the various approxi-
mations. We see that Ar1(A*) provides the best approximation to the
true w. The approximations Ay, and Ay, are somewhat similar, with
Ap, being better at higher loads, while Ao, appears better in the
midrange. The approximation Ag, appears quite poor for low loads
but improves with increasing load. While not comparable with Ay,
Ag, does provide some improvement over Ayr. In the light load region,
ALr is seen to provide a good approximation. It is interesting to note
that while Au,, Ac,, and Ayr all use the heavy traffic an from (60),
which has the poor behavior

apg — 0,
p—0

this only results in the anomalous behavior

Wy — @
0

for AG.l and AHT.
6.1.3 Dominant root, ag

Table III shows the exponent that would be used in the (exponential)
approximation for W(x) corresponding to each of the approximations.
Recall that for Agy and Ag, the exponent is exact, i.e., @ = az. We see
that A* is somewhat better than Ay, for heavier loads and both tend
to 2 as p — 0—the inverse of the mean forward recurrence time of the
service time. As should be expected, the heavy traffic a, ay, is quite
poor for light traffic.

Table lll—Dominant root, a, M/D/1

o True A* Ag, An
0.01 6.475 1.974 1.974 0.0198
0.1 3.615 1.775 1.770 0.1800
0.5 1.256 0.9685 - 0.9234 0.5000
0.9 0.2071 0.1979 0.1742 0.1800
0.99 0.0200 0.0199 0.0172 0.0198
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Note that the differences between Pp and w as predicted by Agy
and Ag,, particularly for light loads, indicates that the true delay
distribution is essentially nonexponential. Yet, we see that assuming
an exponential form can result in excellent approximations for Pp and
iD. Moreover, the reasonable results predicted by Ao and Ag, for light
loads where ay is far from any reasonable choice of a dominant root
indicates that these techniques are somewhat robust with respect to
the choice of the exponent, a.

6.2 Case: M/E,/1

We now look at several of the resulting approximations for the
waiting time distribution, Wa(x), and compare these with the exact
results for an M/E,/1 system. Specifically, we assume A(¢) =1 — ™
and that B(¢) is the convolution of two exponentials with unit mean.
Hence, we have for the respective Laplace Stieltes transforms

" A

Als) TA+s

Bls) =—— (61)
SARNT RSy

For this system, the exact delay distribution, W(x) can readily be
obtained via standard technique (e.g., see Ref. 10). The result is

W(x) =1— Cie " — Coe™ ™", (62)
where
2—-A)—[\4+ M2
a, =
2
(2 =A) + [A(4 +N)]2
az =
2
C, = (1-p)1—a)’
a,(az — ax)
o= —a)
ai(az — @)

From (61) and (62), we can readily compute all of the quantities we
need. We have

1 _ 1 _ 1
¢=BN =G5 T=L7% @=2p
and
1
UE=2+F,

yielding expressions analogous to (54) to (60).
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Tables IV, V, and VI show comparisons of the exact delay distribu-
tion, as well as the mean delay, with some of the approximations we
developed for p = A7 = 2A = 0.1, 0.5, and 0.9. The approximations for
the probability of delay, Pp, and mean delay, w, show similar behavior
to that for the M/D/1 case. In addition, we see that the approximation
Ag, seems to have the best tail behavior (followed closely by A**).

Thus, from these two examples, we might conclude that A** is the
best overall approximation, while Az, has slightly better tail behavior.

6.3 Case: D/D./1(D/G/1)

We briefly consider here the D/G/1 case and a simple numerical
example which illustrates some interesting properties of our approxi-
mations.

For the D/G/1 case, we have

K = {PU s u=—d

Table IV—P(Delay < x) for case M/E»/1

x True Ago Ag, Ao A* A**
0 0.9000 0.9014 0.8760 0.9000 0.9014 0.9000
0.5 0.9220 0.9323 0.9148 0.9257 0.9268 0.9261
1.0 0.9414 0.9534 0.9414 0.9448 0.9460 0.9454
5.0 0.9962 0.9977 0.9971 0.9950 0.9950 0.9951
10.0 0.9999 0.9999 0.9999 0.9997 0.9997 0.9998
w 0.1667 0.1314 0.1654 0.1680 0.1654 0.1654

Note: p = 0.1, True W(x) = 1 — 0.1667¢ """ + 0,06667¢ "2°=,

Table V—P(Delay =< x) for case M/E,/1

x True Ago Ag, Ao A Ar*
0 0.5000 0.5119 0.4666 0.5000 0.5119 0.5000
0.5 0.5644 0.5922 0.5547 0.5742 0.5859 0.6776
1.0 0.6272 0.6593 0.6277 0.6374 0.6488 0.6431
5.0 0.9084 0.9192 09117 0.8998 0.9058 0.9073
10.0 0.9848 0.9866 0.9854 0.9799 0.9818 0.9828
w 1.500 1.367 1.483 1.556 1.483 1.483

Note: p = 0.5, True W(x) = 1 — 0.5532¢ ~*%%= 4 0,05317e ~"3%=,

Table VI—P(Delay =< x) for case M/E,/1

x True Ag;‘u AE_:[ AU.] A* Au
0 0.1000 0.1067 0.0919 0.1000 0.1057 0.1000
0.5 0.1244 0.1354 0.1220 0.1278 0.1349 0.1296
1.0 0.1509 0.1641 0.1511 0.1548 0.1632 0.1582
5.0 0.3497 0.3617 0.3518 0.3426 0.3584 0.3557
10.0 0.5359 0.5446 0.5374 0.5198 0.5397 0.5388
w 13.50 13.26 13.46 14.33 13.46 13.46

Note: p = 0.9, True W(x) = 1 — 0.911e %™ + 0.01110e "4,
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where d is the constant interarrival time. Thus,

K(0) = B(d)

K_(a) = j e”dK(y) =1 — j edK(y) =1 — K.(a)

= J xdK(x) = K%(0),
0
where a satisfies

J’ e”dK(y) = R (0) + Ro(0) = 1.

This class of systems (D/G/1) is particularly important in the
analysis of a certain class of schedules for computer systems with real
time applications. For example, see Refs. 1 and 2 where the approxi-
mations given here are applied to the study of these schedules. The
service time distribution for these systems are generally discrete in
nature. Here we look at a simple special case with

A(t) =U(t - d)
B(7) = pU(r — 51) + p2U(r = s2),

where U(x) is the unit step function, p) + p: = 1 and 5; < d < sz. From
these, we readily obtain

K@) =p
R_(a) = pre®®
K+(a) =p2eﬂ(53—[ﬂ
I = K4(0) = pa(s: — d)
and ag satisfies
K (a) + Ri(a) = e(p1e™ + p2e™) = 1.

Thus, (7) and (9) readily yield

1- m
Pp = Colar) =7 PreEed (63)
_ Ci(ag) (s2 — d)
We1 = LF = p_2 ke agl—d)" (64)
ag D — e

For simplicity, we consider the special case s, = 0, s = 2d. In this
case, the exact solution satisfies the difference equation

Pi=piPis1 + p2Pi, (65)
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where P; = P(work in the system = id at an arbitrary arrival epoch),
i.e., P; = P(arrival delayed id). Taking d = 1, the solution to (65) is
readily found to be

D2

P;=P[Delay=i)=(1—-rr; r==, (66)
7
Hence,
Pp=r=2 (67)
P
o=—_=_P (68)
1=r pr—pe
and az = In(r™!).
Now (63) and (64) yield
l —
Colag) = — 2L 22 (69)
1—p:
g = ) _Br (70
ag Dy — P2

i.e., Ago gives the exact value for Pp and Ag,; gives the exact value .
In particular, this implies that the approximation Az is exact at grid
points— W, (x) is exact for x = i, an integer.

Table VII shows the resulting delay distributions for several of our
approximations. We see here that A* seems to be the best overall
approximation. Note that Ao; (and hence A**) result in somewhat
poorer approximations for this case. This may indicate that A* is
potentially more robust.

As another comparison for the mean delays predicted by our ap-
proximations, we have included on the table (denoted by w[K — L])
the results of using an approximation for the mean delay given by

Table VIl—P(Delay =< i) for case D/D,/1

i True Az;‘u A:-_'_[ A* Au_l
0 0.1818 0.1818 0.0970 0.1818 0.1282
1 0.3306 0.3306 0.2612 0.3178 0.2331
2 0.4523 0.4523 0.3955 0.4312 0.3254
3 0.5519 0.5519 0.5054 0.5258 0.4066
4 0.6334 0.6334 0.5953 0.6046 0.4780
5 0.7000 0.7000 0.6689 0.6704 0.5408
6 0.7546 0.7546 0.7291 0.7252 0.5960
7 0.7992 0.7992 0.7784 0.7709 0.6446
8 0.8357 0.8357 0.8187 0.8089 0.6874
9 0.8655 0.8655 0.8516 0.8407 0.7250
10 0.8900 0.8900 0.8786 0.8672 0.7581
w 4.50 4.08 4.50 4,50 6.80
) 9 9\" _
Note: p = 0.9, True P(Delay = i) = [1 - (ﬁ)] (ﬁ) ,w(K — L) = 6.43.
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Kramer and Largenbach-Belz."' This approximation is essentially a
heuristic extension of an approximation originally obtained by Hey-
man'? via diffusion techniques. The rather simple form of the approx-
imation @ (K — L) given below makes its use very appealing.

7pe(C2 + C))

T S A
where
21 -p)(1=CH*
=1
_ T 3(CT+C) Cr=
2

AC% + C?

and C,, C, are, respectively, the coefficients of variation of the service
time and the interarrival time. (Note that w(K — L) is exact for an
M/G/1 system.)

6.4 Case: Hy/E3/1

As a last numerical example, we consider an H,/Es3/1 system. Spe-
cifically,

2 pl)\l pz)\z
A =

() AL+ s + Ae + 8
. 1
B(s) =—.

(s) (1+ s)?

Again, the exact waiting time is relatively easy to find via standard
techniques (see Ref. 10), which yield

W(x) =1— Cie™™* — Ce™ ™" — Coe™®*,
where the a; are the roots of the equation
K(s) = A(-9)B(s) =1,

@ denotes the complex conjugate of a, and the C/’s are the correspond-
ing residues which are readily obtainable (see Ref. 10).
For the approximations of the preceding sections, we find that

K(0) = p:1q: + p2q2

5 Piq@iAi | PagaAe
K (a) = + ,
( ) A+ an Az + a1
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Table VIIl—P(Delay = x) for case H./E3/1

x True A* A** Aoy 0.1
0 0.7834 0.7897 0.7835 0.7835 0.7835
0.5 0.8121 0.8265 0.8225 0.8212 0.8080
1 0.8406 0.8569 0.8544 0.8523 0.8377
5 0.9731 0.9694 0.9702 0.9680 0.9740
10 0.9977 0.9955 0.9959 0.9953 0.9978
20 0.9999844 0.9999054 0.9999223 0.9998966 0.9999849
w 0.5536 0.5458 0.5458 0.5662 0.5523

Note: p = 0.2, True P(Delay < x) = 1.0 — 0.3260e ~"**™* 4+ ¢~2'%:[(,10944 c0s(0.3129x)
— 0.08673 sin(0.3129x)], Wy, ,(x) = 1 — 0.3161e "**"* + 0,0995¢ ~"*'"** w(K — L) = 0.5476.

Table IX—P(Delay =< x) for case H>/Es/1

x True A* A** Ao, Ap,
0 0.5728 0.5867 0.5730 0.5730 0.5727
0.5 0.6145 0.6408 0.6305 0.6280 0.6104
1 0.6578 0.6877 0.6803 0.6752 0.6550
5 0.8997 0.8982 0.8996 0.8913 0.9008
10 0.9806 0.9749 0.9764 0.9723 0.9808
20 0.9993 0.9985 0.9987 0.9982 0.9993
40 0.9999990 0.99999997  0.9999998 0.9969756 0.9999990
7] 1.497 1.475 1.475 1.561 1.494
Note: p = 0.4, True P(Delay < x) = 1.0 — 0.5176e %¥2%* 4 ¢~12%7() 09038 cos(0.3793x)
— 0.06644 sin(0.3793x)], Wa,,(x) = 1 — 0.5124e*** 4 0.0851e ", (K — L) = 1.488.

Table X—P(Delay =< x) for case H./Es/1

x True A* A** Ao, Ab,

0 0.1785 0.1906 0.1791 0.1791 0.1785

0.5 0.2041 0.2253 0.2148 0.2122 0.2024

1.0 0.2325 0.2586 0.2489 0.2440 0.2314

5.0 0.4609 0.4779 0.4738 0.4562 0.4616
10.0 0.6588 0.6632 0.6627 0.6398 0.6592
50.0 0.9912 0.9899 0.9904 0.9866 0.9912

100 0.9999093 0.9998741 0.9998874 0.9997827 0.9999094

w 9.285 9.230 9.230 9.967 9.928

Note: p = 0.8, True P(Delay < x) = 1.0 — 0.8517e *®'%* 4 ¢~'“*1[0,03026 cos(0.4548x)
— 0.02125 sin(0.4548x)], Wa, (%) ;¢ 1 — 0.8517 %' 4+ 0.0302e ™", w(K — L) = 9.266.

where
1

(A + 1)3.

Tables VIII, IX, and X compare our various approximations for this
case with p; = 0.25, A, = 2\, and p = 0.2, 0.4, and 0.8." (The approxi-
mation denoted by Ag, will be discussed shortly.) Here we see again
that A* and A** yield quite good approximations over a wide range.

Again, for comparison, we have included the approximation w(K —

Q= B(N) =

T The roots needed for the exact solution (and the approximations) were obtained by
using a program developed by A. E. Eckberg.
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L). Unlike the D/D;/1 case, we see that @w(K — L) provides a good
approximation to the mean delay for these cases.

Vil. EXTENSIONS

As we have seen, even with the assumption of only a single expo-
nential for the form of W(x), we are led to a wide variety of approxi-
mations by using the Lindley integral equation (1) to determine the
two unknown coefficients. We consider here some extensions for the
case where we wish to choose a more complicated form for W(x).

7.1 Method of moments for hyperexponentials
In many cases, W(x) admits the expansion
Wx)=1- Y ce ™, (71)
i=1

where the coefficients C:, a; are not necessarily real. In such cases, an
approximation of the form

m

Walx) =1 =Y Cie™™* (72)
i=1

seems most appropriate. In general, of course, we do not know the
form of W(x). However, if the equation

R(—s) =A(s)B(=s) = 1 (73)

can be solved more than one nonzero root, then it seems reasonable to
attempt to incorporate additional roots in an approximation of the
form (72). One can discretize (1) to obtain a set of (implicit) equations
for the needed C;; however, we show here that the method of moments
introduced in Section III can readily be extended to obtain a set of
linear equations for these quantities. For this purpose, it is convenient
to consider the equation for W¢(x) = 1 — W(x) corresponding to (1),
ie.,

LIWe)(x) = W(x) — 1 + K(x) — J’ We(x — y)dK(y) =0. (74)

We denote the Lth moment of (74) by p.:

L = f xLdL[We](x). (75)
0

Using (74) in (75) we obtain

o oo 0
2o = I dWe(x) + J dK(x) + J We(—y)dK(y)
1] ] —oo
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pL=f x*dWe(x) +J’ xtdK(x)
0 Q0

+L j xt! j Wex - y)dK(y)dx, L=>0. (76)
(1] —no
With the notation
wi = I dWe(x), u =J x"dK (x)
0 0
(76) can be written
0
to = wh + W + [ We(-y)dK(y)
pr = wi + ug
+ L ] xt! J We(x — y)dK(y)dx, L>0. (77
0 —o
[Note izo = 1 — K(0) and &, = i, of the preceding sections.]
Now using the form
Wil(x) = Z Cie™™ (78)
o = 0 leads to
Z Ci(Ki— 1) = —t, (79)
where 0
K = J e“YdK(y).
After some algebra, u;, = 0 for L > 0 yields
LK; Lap, "“JL(L-1)---(L-Fk) _ L!
5 Ci( o T -+ P al! Mok T T
=—ur. (80)
The empty sum is taken to be zero.
Thus, given a set of roots a;, i = 1, - -+, m of (73) egs. (79) and (80)

allow us to readily compute the desired coefficient C;. (Note that this
method is identical to the common techniques of “method of moments”
frequently used for other classes of integral equations [e.g., see Ref.

13).] We refer to the resulting approximation as

E
At m-1.
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Table Xl—Dominant residue for case H./E /1

p True Cko Ck. Coa Ci(Ad)
0.2 0.3260 0.2103 0.2714 0.2164 0.3161
0.4 0.5176 0.4133 0.4841 0.4270 0.5124
0.8 0.8517 0.8094 0.8444 0.8209 0.8517

7.2 Numerical example (H2/E3/1)

Note that if we apply the results of (71) to the H;/Es/1 example of
Section VI and include all three roots, a:, az, as, then the resulting
delay distribution will be exact [that is, if all roots are given, (80) is
equivalent to the standard methods of determining the appropriate
residues]. To see how we can use more structure to improve our
approximations, we will use the true dominant root a, as one of our
roots, but take as = Re(az) as another root, the resulting approxima-
tion is shown on Tables VIII, IX, and X, where it is denoted by Ao, .
We see that the inclusion of this additional term results in an approx-
imation that more closely captures the structure of the true delay
distribution. This is perhaps best illustrated by Table XI. Here we
have given the values for the dominant residue, i.e., the coefficient of
the exponential with the dominant exponent, for the various approxi-
mations. We see that of the three single exponential approximations
Ag, has a C value nearest the true value. This shows why Ag, tends
to have better tail behavior than the other single exponential approx-
imation. However, we see that Aj, resulted in an excellent approxi-
mation to the true dominant residue, even though we did not use
another exact root. Hence, the excellent agreement on Tables VIII to
X for the extreme tails of the distribution. This behavior can be very
important in studying computer systems with dedicated real-time
applications where often criteria are specified in the 10° probability
range, i.e., the probability of delay greater than T shall be less than

107°,

Vill. CONCLUSIONS

The basic idea we have exploited is to choose a functional form for
an approximation Wa(x) to a true delay distribution, say, W(x), and
use the well-known Lindley integral equation to find the undetermined
coefficients. For the case where Wa(x) is exponential—Wa(x) = 1 —
Ce**—we have used this technique to develop several approximations,
some of which make use of the explicit structure of the relevant service
and interarrival time distributions, while others require only moment
information.

Although not always the best choice, A* seems to provide the
robustness that one would require of a good approximation. The
resulting approximation for the mean delay is excellent and the result-
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ing probability of delay quite good, although A** provides a better
value for the latter. For predicting tails of distributions, we see that
Ak, is the best of the simple exponential approximations. We have
also seen that increasing the complexity of the forms of the waiting
time distribution assumed in the approximation, e.g., using more than
one exponential, can result in extremely accurate predictions of the
tails of the delay distribution.
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APPENDIX

Summary of Notations and Formulas
f = interarrival time
A(t) = interarrival time distribution
L.S.T. = Laplace-Stieltes Transform
A(s) = LS.T. of A(t)
E = Expected value
t=E({) =1/A
T = service time
B(1) = service time distribution
B(s) = L.S.T. of B(r)

F=E(F) =1/a
p=Aa
G=F—f

Ig (u#) = distribution functipn of 12
K(s) = LS.T. of K(u) = A(—s)B(s)
u=E@ =1/a—1/\

o2 = variance of u

0
K (s) = f e*dK(u)

K.(s) = J e*“dK (u)
R(s) = R_(—s) + K.(—s)

ag = positive real root of J’ e™'dK(u) =1
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a; = ordered roots of characteristic equation,
R(—a) = A(s)B(—s) = l{a: = ax)

7 f xdK(x) = K%(0)
1]

Uy =
K(0) = K-(0)
ap = ':21’1/05':
p=A(a)
qg=BQ)

W(x) = waiting time distribution
P, = true probability delay greater than zero

iz = true mean delay
WE€(x) = 1 — W(x) = complimentary waiting time distribution

L[W€](x) = Lindley integral equation (complimentary)

LIWC](x) = WE(x) = 1+ K(x) — J W x — y)dK(y)

PL=J. x dL[ W] (x)

K= R\L(ai )
Approximate waiting time distribution (single exponential)

Walx) =1— Ce™
C = approximate probability of delay

w4 = C/a = approximate mean delay.

Approximate Ago:

a = ag
1-KO0 _ 1-K(0)

C=Colag) =—m—D _ 2720
@) =T ) 1= R (ap)

Approximation Ag:

a = ag
Ci(ag) _ iz K. (0)

II)EJ = = = =-= = -
ac  K(0) - K-(ap) K-(0) - K (az)

Approximation Ao,:
a = ao, solution of

_L&(© - R (@)1 - KO)] _[K(0) - R(a)][1 = R-(0)]
z.[1 - R (a)] R0 - R-(a)]
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1-K0) _ 1-K(0)
1- R—(ao.l) 1-— R—(aﬂ‘l) '

Approximation A*:

C=0Cy =

C = C* = Colar) (from Ag,)

c* C
w*=—= (@) (from AEg,)
a ar
determines a* = g‘:::i; ag .

Approximation A**:

C=C**= CO.I (fl'Ol'n Ao.l)
_ Cc** _ Ci(ak)

w** = (from Ag;)
a ag
Co,
determines a** = — ag .
Cilag)
Approximation A
=2u

a=aﬂ=?
1-K0) _ 1-K(0)

C=Cno=C - =—> :
H0 oarr) 1 = K_(a.q) 1— Kf(ay)

Approximation Az ;:
a=ap
_ Cu, _ Ci(an) _ u, 4 (0)

Wy =

Approximation Axr:

= aH
_ Cur 1
Whr = — = —
ag ay
Approximation Ag,o:
a=ay
—u
1- Erf( )
V2o,
Cop=———F7——+
—i
1 + Exf|
(%)
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Approximation Ag1:

a=danx
Ou e_;(%), + E [1 - Erf(}u )}
doy = C01 _ N2 2 20
We1 = an = —a .
Erf(
\/50.,)

Approximation Apr:
Cor=1-K(0)=1-K(0)
P /7 B €1
T arr K(O) K_(0)

Approximate waiting time distribution (multiple exponentials):

Walx) =1— % Cie™®*.

i=1
Approximation Af,... m:
a; roots of K(—a) =1
al = ai, i=1.-.,m

C; determined from

m L‘Kl LEIL_] L—1 L(L - 1) DR (L f— k) _ L! B
i'g] Cf ( a{A + a + kgl ﬂf“-l Ur-1-k —‘»ajl = —ur,

where the empty sum is taken to be zero.
Approximation Ao,

a; roots of K(—s) = As)B(-s) =1
al=a = ag

ab = Re(az)

C; determined from
(1-K)Ci+(1-K)C:=ua=1— K(0)
[K(0) — Ki] C+ [K(0) T K,]

al a:z

Cz=ﬁ1=l,-£+.
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