Copyright © 1982 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 61, No. 10, December 1982
Printed in U.S.A.

Design of Recovery Strategies for a Fault-
Tolerant No. 4 Electronic Switching System

By R. J. WILLETT
(Manuscript received April 13, 1982)

This paper focuses on the design of recovery strategies that have
been developed to give the No. 4 Electronic Switching System (ESS)
the necessary high level of fault tolerance. Reliability and availability
are the key watchwords to operational integrity in the No. 4 ESS. It
is the world’s largest toll and tandem switching system, capable of
handling 616,000 call attempts per hour, and serving up to 100,000
active terminations. With a downtime objective of less than two hours
in 40 years, the No. 4 ESS must be designed to be very fault tolerant
viewed from the caller’s perspective.

I. INTRODUCTION

The No. 4 Electronic Switching System (ESS) is a high-capacity toll
and tandem digital and switching system that is capable of handling
616,000 call attempts per hour and serving up to 100,000 active termi-
nations.

The maintenance system in the No. 4 ESS has the responsibility of
responding to error conditions reported by hardware-fault-detection
circuits, by memory mutilation detectors, or by some other system-
integrity monitor. The strategies invoked for rapid isolation of faulty
configurable entities or for correcting memory errors are based on the
type of error condition, the state of the system at the time of the
failure, and the history of previous recovery actions that may have
been attempted.

The recovery strategies employed are fundamentally two-dimen-
sional. One dimension is concerned with the present and the other
with the past. Probably the most powerful and unique property of the
No. 4 ESS fault recovery system is the latter dimension, that of

3019

considering the past, in a process called error analysis. Much more will
be said of this process later in this paper.

Although the basic mission of the maintenance recovery system in
the No. 4 ESS has remained the same throughout its evolution, the
maintenance recovery strategies developed during that evolution have
been influenced by many external factors. The availability of new
hardware technologies and the development of redesigned and cost-
reduced hardware have created the need for making changes in existing
strategies. Revisions dictated by field experience and by the introduc-
tion of new features have proved emphatically the necessity of being
adaptable to change.

This paper discusses the development of fault-tolerant strategies in
general, and the state of the art as applied to the No. 4 ESS.

Il. FAULT TOLERANCE OBJECTIVE

As we stated earlier, the No. 4 ESS is a large toll and tandem switch
capable of handling 616,000 call attempts per hour and serving up to
100,000 active terminations. With a downtime criterion of less than
two hours in 40 years, the No. 4 ESS must be, of necessity, a highly
reliable system. Recovery actions must be carried out as quickly as
possible, and with minimum disturbance to calls active in the system.
To put it succinctly, the No. 4 ESS system should be available for
processing calls at all times. Any hardware failure or memory error
should be detected immediately, before it has a chance to cause call
mishandling. From a practical standpoint, this objective cannot be
realized under all circumstances, but nonetheless, it is the guiding
principle in the design of the No. 4 ESS fault-tolerant structure.
Minimizing recovery time and service impact are paramount. Recovery
time following the detection of a hardware fault should be measured
in terms of 100 milliseconds or less, including the process of detecting,
isolating, and restarting the interrupted program. Most faults should
be resolved with only one interrupt stimulus. Transient faults (with
various manifestations such as transient, intermittent, marginal) may
require several interrupts to resolve. Also, multiple fault situations can
be experienced, and may take several interrupts for resolution. When
such multiple faults can cause limited service impairment, the recovery
system must be capable of degrading that service gracefully, i.e.,
confining the effects to the functional area directly affected.

Memory integrity failures should be corrected by reconstructing
valid data from associated information, or if that is not possible, then
by reinitializing the memory structure. The former causes less system
perturbation, but takes longer; the latter is faster, but can cause more
service impact. The choice is usually dictated by the type of structure
and by real-time considerations.

3020 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1982

lll. SYSTEM ARCHITECTURE

Fault tolerance implies system survival under fault conditions. Sur-
vival requires alternatives. The architecture employed in the No. 4
ESS is so varied, and the interconnection of components and subsys-
tems is so flexible that several strategies had to be used to achieve the
necessary fault tolerance. The design of those recovery strategies takes
into consideration system objectives, the hardware technology, system
environment, failure rates and failure modes, and the software struc-
ture of both the operational and maintenance systems.

3.1 Hardware structure

The basic communications format in the processor and in most of
the periphery uses all seems well (ASW) and/or all seems well failure
(ASWF) conventions, and single and multibit parity protection over
instruction and data transmission. Generally, unique error indicators,
such as ASW or ASWF failures, or parity errors are resolvable on one
interrupt, unless the fault is transient.

Three basic forms of hardware redundancy are used in the No. 4
ESS architecture to achieve its fault-tolerant objectives: duplication,
memory backup, and n for m sparing. Major common-control elements
and critical memory are fully duplicated: the central processor, variable
call memory, disk memory, peripheral controllers, and bus access. The
switching network is completely duplicated, including both control
elements and switching matrix. These duplicated units are operated
either in full duplex mode, with parallel operation and possibly match-
ing, or in active/standby mode, with only one unit active and the other
ready to assume the active role on demand.

Figure 1 illustrates the redundancy arrangements for the processor
subsystem. All three types of redundancy are used: duplication, with
and without matching; simplex with backup; and n for m sparing.
Instruction memory, i.e., the program store, and office data memory,
are fully backed up on disk, and only one on-line copy of each is
provided. In the event of a failure in the on-line copy of office data,
one of the duplicate call-memory stores is renamed to replace the
failing store, and its contents are pumped from disk. This is a form of
n for m sparing, where n is the number of duplicated call-memory
units in the system. For program stores, two spare memory units are
provided. These, like the office data replacements, can be renamed to
replace any program store unit that fails, and the appropriate instruc-
tion memory can be pumped from disk.

Figure 2 shows the redundancy arrangements used in the peripheral
subsystem. Here again, all types are represented: duplication, with and
without matching; simplex with backup; and n for m sparing. Units
that serve a limited number of trunks or special circuits are protected

FAULT-TOLERANT ESS 3021

‘sjustuafueLre Aouepunpal 10ssa001J—T ‘S

HITTOHLNOD LINN 3d4VL — INL

JHOLS WYHDOHd — Sd
Y3TTOHLINOD IHOLS 3714 — 384
anL p———= ONL sna @ 284 @ 054 ¥010373S LINN v1va — sna
3714 YS10 — 40
40 3IHOLS 17V — S2
TOHLINOD TYHLNID — 20
SN\ LINN Y1va SWILSAS LINN AHYITIXNY — NV
IdVL
anNv
| _ - |
/ /
I T T T D,m_
X3TdNIS X37dna 8 WIWOD X31dNa ¥ IWNOD X314Na omov
~—
[[[[1 5N8 5d — | |
§d Pr——————— Sd Sd Sd AHOWIW NOILONYLSNI 20 20
[L [— [
y \ ; 05N8 Sd —
I T
X31dNIS JHVdS 7 X374NA
S
@
_ I _ _ _
Vv1va 321440 ANV
§O p=—=— s2 56} §O == s $2 AHOWIW 11V
T T
X3 TdWIS 31v2I1dna

3022 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1982

‘sjuauwafueLre Louspunpal [ereydus—gz ‘S

I'4

XIHLYW LNIOd-SSOHD — SLdX
JONYHIHILNI LOTS 3WIL — ISL
HILIMS Q3X37dILTNW IWIL —~ SWL

dNOHD TVNINHIL — HOL

IYNINHIL — WH3L

LINJHID ONILNAYId AONY ONITYNDIS — 3dS
HOSS300Hd TYNDIS — dS
LINN ONIHONYHE SNE Nd — 88Nd

SNE LINN HdIH3d — 8Nd

LINN 30W4HILNI TVLIDIO — NId
30V4HILNI TVLIDI0 — 410

H3110HLNOD — LNOD

STOHLNOD
TYHLINID WOH4 SNE Nd
a3LvoIdna

1 N D
X T *
|
sNIa + F }
1NOD f H) 1NOD
410 410
- HYdS st
~ ONIYVJS LINN Gl HO4 L HLIM LNOD L¥DITdNQ—— 05
-4 /
| | | | L 8nd
LNOD Lo 1NOD 1NOD “
151 - ISL Sl S 8and
| 2dS |] S1dX | N
08nd
X141V 31¥217dNa LNOD 31¥IIT7dNa e
31v0I1dna
/@Ow
[| | |
1NO2 e 1NO2 oo | [wear = waas || oo
ds ds HOL | | HOL
XLV

1

XIHLYIA X37dWIS LNOD 31v2I7dNa

FAULT-TOLERANT ESS 3023

NETWORK CLOCK
|

r ___________ il
! |
H — cLock |
i CHAINO \ cLoc
LOCK
cLock
CONTROL . ! — SIGNALS TO ALL
: i DISTRIBUTION
CONTROLLER 0’
: — CLOCK —’L’/’ s
! CHAIN 1 :
I I
| IR [FI i ——— .
r-r-r———————— =
: I
I
I 1 cLock 1
! CHAIN 0 \
CLOCK
cLOCK
CONTROL———¢ | DISTRIBUTION [SIGNALS TO ALL
i I CONTROLLER 1
i —| cLocK
| CHAIN 1 !
| |
(-

Fig. 3—Network clock (NCLK) redundancy arrangement.

on a limited sparing basis. These generally have one or two spare units
that serve as backup for several other units, e.g., one spare digital
interface unit (DIU) backs up 16 active units. A spare unit can replace
any of the active units by operation of a protection switching mecha-
nism, under control of the fault recovery program system.

The synchronization clock, which is especially crucial to network
operation, is quadruplicated. Figure 3 illustrates the special redun-
dancy arrangement used in the network synchronization unit to
achieve the high level of fault tolerance required of that unit.

3.2 Software structure

The basic integrity of system memory is protected by audit programs
that are structured into mutilation detection and correction modules.
The detection modules are constantly run in the background by an
audit control program. Additional protection from mutilation is pro-
vided by widespread use of defensive checks, e.g., range checks and/or
consistency checks in the operational programs. Defensive check fail-
ures invoke isolation and corrective responses.

Program integrity assurance is the responsibility of an overseer
called the system integrity program. Job scheduling and sequencing
are monitored for both frequency and execution times. Program sanity
timers are administered. Error conditions are corrected by calling
appropriate audits, or by involving various levels of system reinitiali-
zation.

3024 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1982

IV. ARCHITECTURAL INFLUENCE ON FAULT-TOLERANT DESIGN

The distributed architecture in the peripheral system in the No. 4
ESS poses a unique and often perplexing set of recovery problems.
Many peripheral operations are performed autonomously within units
that have their own error detection logic. When a fault is autonomously
detected, its occurrence is reported to the central processor via a
clocked interrogation pulse that triggers a peripheral interrupt. The
processor-based recovery control program determines which unit ex-
perienced the fault by polling all units using broadcasted interrogation
pulses that elicit unique identifying responses from the faulted unit.
Once this unit is identified, the appropriate fault recovery actions can
be taken. Isolation of these autonomously generated interrupts can be
particularly difficult because high levels of subsystem interconnections
can cause faults or errors to propagate, and to be reported by other
than the unit in trouble. This is especially true in the switching
network, where the synchronization clock and switching elements are
highly interactive. The network architecture and the associated fault
recovery strategies designed to achieve fault tolerance are described in
Section V.

Recovery from a fault in the system hardware or from a software
error can be viewed conceptually as a three-step operation: detection,
isolation, and recovery. Detection is the recognition of the problem.
Isolation, in the context used in this paper, is the identification of the
failing unit or subsystem. Recovery is the elimination of the fault from
the operational system, for example, by reconfiguration or reinitiali-
zation. Detection is usually straightforward. Parity errors, ASW-type
failures, mismatches, time-outs, and similar triggers stimulate some
level of system response such as an immediate interrupt for critical
problems, or an interject for less urgent cases. Step two, isolation, is
the process of determining the location of the problem. This step is
highly dependent on the existence of sufficient indicators to point to
the problem area. The particular architecture has a major influence
on this isolation process. The third step, recovery, is the heart of the
survival process. Here again, architecture is an important consideration
in the development of fault-tolerant strategies because it impacts the
redundancy plan and the recovery options. Architecture is not the sole
consideration, however, because the redundancy plan afforded by the
architecture only defines the starting point of the system configuration.
The state of the system at the time of an interrupt is equally important,
because it tells something of the prior events, and determines what
remaining options are available to the recovery strategies. It is useful
to look more closely at the architectural influence on fault-tolerant
design, particularly as it affects isolation and recovery.

FAULT-TOLERANT ESS 3025

4.1 Effects of architecture on isolation

Isolation of a system problem requires an analysis of the fault
indicators used in the detection process, considered in the context of
the existing system environment. For a failure in a duplex peripheral
unit, the fault isolation program must determine whether one or both
peripheral controllers detected the fault, whether both central proc-
essors were involved, and whether both access buses were in use. The
degree of resolution depends on how much of the available redundancy
was on-line at the time of the failure, and, indeed, on the uniqueness
of the fault indication. Frequently, an architecture employing real-
time matching between duplicate control units will detect a fault
without giving a unique indication of which unit half has the fault.

Beyond the question of redundancy, a high degree of interactive
coupling exists in the No. 4 ESS, particularly in the switching network.
Such tightly coupled architecture poses a real challenge to rapid and
effective isolation, particularly if the detection logic does not provide
a unique error indication.

Failure modes can affect isolation. This is not in reference to classical
gate failures, stuck-at-faults, etc., but failure modes as they may affect
accuracy of isolation. For example, a power supply failure, wherein
there is high capacitive filtering, can give false indications to the
isolation program because of the time constant in the power supply
filter. This can occur because some logic gates fail before others as
power drops from its proper level towards zero. As another example,
an autonomous peripheral unit may trigger an interrupt in the central
processor, but then, by the nature of the fault, be unable to respond to
the interrogation pulse sent to identify the failing unit. As a further
example, there have been experiences where a control unit, whether
by timing idiosyncrasies or by the nature of the fault, entered a state
where it would not respond to any test commands until the unit was
forced into an initial state by physically cycling power on it. These are
but a few examples of how failure modes can affect isolation.

Isolation of a software problem is also affected by architecture.
Autonomous peripheral units control many operational and mainte-
nance processes, and pass data to the central processor via report
buffers. This architecture, using buffers, requires the program monitor
system to screen out invalid reports, out of sequence reports, and to
correlate the data to the structures that could be implicated. The
importance of this issue has become intensified with the addition of
peripheral microprocessors and adjunct processors, with their loosely
coupled architecture and further delayed buffering of information.

4.2 Effects of architecture on recovery
The issue of recovery, interestingly, is more difficult to resolve than

3026 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1982

that of isolation because service objectives and architecture play a
strong role in determining whether the resolution can be carried out.
Isolation is the process of determining where the fault lies, whereas
recovery is the process of removing the faulted unit, if possible. The if
possible is the key issue in recovery. If the active half of a duplicated
unit is the only available half, then removing that half would be
tantamount to degrading service. Such action may have to be taken
eventually, but service impact, accuracy of isolation, etc., must be
considered first.

V. DESIGN OF FAULT-TOLERANT STRATEGIES

The foregoing discussion of the influence of architecture on the
isolation and recovery process has only touched upon the real question
of how to design fault-tolerant strategies for the No. 4 ESS, or, for that
matter, any large real-time, high-availability system.

A basic premise of ESS maintenance is the single-fault assumption.
Under normal circumstances the mean time to failure of any part of
the hardware is much greater than the time to repair that failure;
therefore, no part of the system should experience simultaneous mul-
tiple faults that would impair service. From this it follows that fault
recovery should be a simple one-dimensional process.

Then why is it not always so? The architectural redundancy plan
came from the basic premise. Critical units, including most common
control elements, are fully duplicated. Memory is either duplicated
directly or backed up in some other medium, e.g., disk and random
access stores. Other units, particularly units that interface with trunk
circuits, are engineered with one or more switchable spares, determined
by reliability considerations and service objectives. Normally, all re-
dundant elements are configured for maximum availability. A classical
stuck-at fault occurring within such an environment will normally be
detected and uniquely isolated from a single interrupt stimulus.

5.1 Basic duplex recovery strategies

When a duplex unit causes a system interrupt, recovery is effected
by isolating and removing the faulted unit from service, and activating
the redundant half, consistent with the remaining system environment.
This same approach applies to units with backup or spare redundan-
cies. If the redundant unit is available, it will be pressed into service
when the active unit fails. The recovery action is concluded by a
request for a full diagnostic test of the faulted unit to determine the
location of a replaceable module. Once repaired, the unit will again be
diagnosed, and returned to duplexed operation, if it passes the diag-
nostic tests.

The preceding scenario describes the simple process of fault recovery

FAULT-TOLERANT ESS 3027

as it occurs most of the time. Why does it not always happen this way?
It is simply because of the vagaries of the system. The single-fault
assumption is true most of the time. But, it does not always take a
fault to put the system into a simplex mode of operation. Much of the
hardware contains maintenance logic used to detect faults. The oper-
ational logic is exercised by executing operational commands, but what
exercises the maintenance logic? Generally, much of the fault detection
logic is unchecked during execution of normal commands. To ensure
the integrity of the fault detection capabilities, most of the logic is
periodically tested during low traffic periods. During such tests, the
unit being diagnosed is usually removed from service, thus foregoing
full-duplex operation for the duration of the routine tests.

The frequency of the routine testing takes into account the length
of the test, and the residual reliability of simplex operation to the
system. Many of the units may be routinely tested on a daily basis,
some every few days to a week. While a unit is in simplex operation,
recovery from a fault in the active control half requires a different,
more subtle, strategy than the simple duplex strategy described earlier.

5.2 Basic simplex recovery strategies

When a unit half is removed from service and a diagnostic test of
that unit scheduled, the recovery program will, where possible, try to
put the suspect unit into a special out of service mode. In this mode
the recovery program’s internal memory and sequencers will track the
active unit in case the recovery operation had implicated the wrong
control unit. Such a mode is referred to as a listen-only mode (LOM).
If, before the start of the diagnostic tests, the active unit should
interrupt, the LOM control unit can be put back into service immedi-
ately, without the need for updating it, and the mate control unit can
be removed. Once the diagnostic tests have started, of course, the out
of service control unit becomes out of date and cannot be put back
into service without updating or reinitializing it.

Consider the first of these two cases just cited. If the fault recovery
program removes the wrong control unit on the first stimulus from a
mismatch error, the fault in the active unit would likely cause an
immediate second interrupt, while the out of service unit was still
LOM. The second recovery action would restore the previously re-
moved control unit, remove the active unit, and request diagnostic
tests. In the second case cited, with the out of service control unit out
of date, a fault in the active unit can have serious service repercussions.
Reinitializing the out of service control unit, particularly its memory,
will cause the loss of all calls that may be in progress within that unit.

Considering that a unit may be serving as many as 4,000 trunks, or
possibly even a quarter of the calls active in the switching network,

3028 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1982

reinitialization of a control unit demands serious deliberation. To
protect against undue service impact, the basic simplex strategy turns
to considering the impact of the present interrupt. Could this be due
to a transient fault? How long has it been since the last interrupt?
Presumably, if the rate of interrupts is sufficiently low, the system
could tolerate an occasional interrupt, and a possible mishandled call,
better than it could a major service disruption. To estimate the service
impact of the present interrupt, the fault recovery program uses a
Leaky Bucket Counter (LBC) to judge the rate at which the interrupts
are occurring. For each interrupt that is experienced, the LBC is
incremented or decremented by an amount that is determined by the
elapsed time since the last interrupt. The higher the interrupt rate,
the faster the LBC will reach a predetermined threshold, and reini-
tialization of the out of service control unit will take place. If the
interrupt rate is low, or of short bursts, the LBC may never reach
threshold, and the system will tolerate the perturbations.

When a hard or persistent fault causes the LBC to reach its thresh-
old, a reinitialization, or zero-start as it is called, will be requested on
the out of service control unit. This action will cause all calls in the
unit to be lost. Additional memory reinitialization outside the unit
may also be required, as in the case of the switching network with its
network maps, and with trunk interface units with the trunk state
memory.

The basic simplex strategies provide a high measure of fault toler-
ance for the No. 4 ESS for hard faults, and use the redundancy in the
system for maximum service availability. For software errors, tran-
sients, and several other situations that may or may not be unique to
the No. 4 ESS, these strategies are, however, found wanting or inap-
propriate. Further, there are other major considerations that affect
survivability: changing fault data, shifts in strategy, false conclusions,
etc. These, and other important dimensions, will be considered later in
this paper. First, however, the software error and transient strategies
will be discussed.

5.3 Recovery from sofiware errors

System problems can be caused by at least two types of software
errors: program anomalies (bugs), and bad data. There is a better
chance of coping with bad data than with program bugs, but there are
recovery strategies in the No. 4 ESS to deal with both.

When a call-handling program tries to address a non-existent unit
within the No. 4 ESS, an ASW interrupt will occur because there is no
unit to return the expected affirmative response. Presumably, the
program that issued the command is working with bad data. The ASW
failure triggers the fault recovery process, but in this case, the trouble

FAULT-TOLERANT ESS 3029

is not a fault but a program error. No hardware recovery action is
therefore required. The appropriate reaction is to correct the data
being used by the call-handling program, or to kill the call, or both if
necessary. The recovery strategy will call on the memory audit system
to run one or more relevant audit programs to detect and correct
memory inconsistencies that may exist. The recovery program will
avoid returning control to the program that issued the order, but
rather will return to a safer control point. Despite that precaution, it
is possible that the same program could regain control at a later time
and cause the system to take additional interrupts before the audits
can completely correct the problem. To allow the audits a chance to
correct the problem, the recovery strategy may decide to inhibit, or
prevent, further interrupts of that type. This process is called pesting
interrupts.

Not all interrupts caused by bad data occur as a result of invalid
commands to non-existent units, causing what is commonly called an
out-of-range (OOR) failure. Many interrupts that are in range, i.e.,
from valid units, can be isolated to software causes. Again, appropriate
audits are called by the recovery strategy. One difference, however, is
that local- (frame) level pesting of interrupts can be used, rather than
the system-level pesting used in the OOR case.

Running pested, or with interrupts inhibited, is risky, at best, be-
cause some fault detection capability is disabled. Such risks are justi-
fied, however, under the single fault (or error, in this case) assumption.

One can carry the software issue a step further in developing a
recovery strategy to meet all cases. There often exists a possibility that
the resolution of a software error is, in reality, not true, and that the
real problem is indeed a hardware fault. The accuracy of the resolution
is not infallible. Using the software recovery strategy described does
not take into account the possibility of a hardware fault, and therefore
would not resolve the issue if that were true. In this case, at some
point in the recovery sequence, one of the involved control units would
be removed from service and diagnosed. If neither control unit is found
faulty, the final action of pesting the frame would be invoked.

When an interrupt is caused by a program bug and not by bad data,
the previous strategies of calling audits and/or removing hardware
may not resolve the problem. The final action of pesting the system
will, at least, allow continued system operation, albeit in a possibly
degraded or more vulnerable environment. In many instances where
a program bug has caused problems, running pested has given main-
tenance personnel enough time to analyze the fault recovery data and
make operational adjustments. These adjustments could be in the
form of immediate program corrections, procedural changes, or tem-
porary program changes to pin-out or bypass the offending program.

3030 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1982

5.4 Basic transient strategies

It is generally easier to deduce that a fault is transient than it is to
isolate it. The results of retrying a failing command can usually
establish whether a given fault condition is hard or transient. The
problem is that when the fault appears to be transient, there is some
doubt that the proper suspect has been determined, or if it is the right
suspect, the diagnostic tests will find nothing wrong. This leaves the
strong possibility that the fault can plague the system for some period
of time.

There are two primary strategies for coping with transient faults in
the No. 4 ESS, one to cover the case where the isolation program is
reasonably certain of the suspect unit, and another to qualify the
decision with a measure of uncertainty. In both cases, on the first
interrupt, the primary action is to record the error and clear the error
conditions in the suspect unit. If a second interrupt occurs, the suspect
will be removed from service, provided the duplicate mate, or backup
unit, is available. The suspect will be put into the LOM state to ensure
that it will remain up to date in the event of a wrong decision. Cyclic
diagnostic tests will be scheduled on the suspect unit, expecting that
a transient fault might not be caught by a single set of tests. For
example, diagnostic tests might be repeated three times, to improve
the probability of isolating the fault.

The two transient recovery strategies diverge at the point of the
third interrupt. If subsequent interrupts still occur beyond the second
interrupt, and the isolation program indicates uncertainty, the recov-
ery strategy will change the suspect, and remove and call for a cyclic
diagnosis of the mate control unit.

Note that it is the diagnostic test results that drive the escalation of
the recovery strategy. Each time a transient fault escapes detection by
the diagnostic tests, the unit is restored to service. The strategy has a
built-in control that will limit the number of times the cyclic diagnos-
tics can be scheduled. Beyond that point a suspect unit will be removed
from service without further testing. It is left to the skill of the
maintenance personnel, using special test facilities, to trace the prob-
lem further.

The transient recovery strategies covered above are used when the
suspect and its mate are both on-line and available at the time the
interrupt occurs. If a transient fault causes an interrupt while a unit is
simplex, the basic simplex recovery strategies described earlier apply.
When redundancy is not available, the recovery strategy is insensitive
to whether the fault is hard or transient.

5.5 Special problems
Several other fault-tolerant strategies have been developed for the

FAULT-TOLERANT ESS 3031

No. 4 ESS to cover situations that are beyond the scope of the more
general strategies described above. Buffer overflow, network interface
problems, internal network failures, and many other cases require
special recovery strategies.

5.5.1 Buffer overflow

Autonomous processors operating asynchronously communicate
with the central processor via report buffers. Buffer sizes are engi-
neered to provide enough capacity to absorb spurts in activities and
occasional delays in retrieving reports from the buffers. Critical buffers
are protected by overflow detection logic that triggers an interrupt, or
more likely, a lower priority interject, and calls a fault recovery
sequence into action. Possible causes of buffer overflow could be
related to program integrity, i.e., the report handler not being sched-
uled, unusual traffic overload or congestion, or even an undetected
hardware problem.

The primary recovery strategy covers two probable causes. It sched-
ules the report dispenser program to unload the hyperactive buffer,
and also calls for an audit of the task sequencer control tables. To
prevent any further overflow triggers from firing before the recovery
action is completed, the buffer overflow detection logic in that unit is
pested, i.e., inhibited, for some short period of time. If overflow
conditions continue despite the recovery attempts cited, the hardware
becomes suspect, and appropriate actions to remove a control unit are
attempted, consistent with the strategies described earlier.

5.5.2 Network interface problems

There exists a number of units in the No. 4 ESS that are situated
between the switching network and the trunk circuits and that can be
classified generically as the network interface units (NIUs). Function-
ally, these units are responsible for separating the signaling and voice
or data information, and converting the voice/data from the incoming
or outgoing transmission format (analog or digital) to the pulse code
modulation (PCM) format switched by the No. 4 ESS network. The
NIUs interface with the switching network via coax cables, each
carrying 120 trunks time-multiplexed onto 128 time slots. Several NIUs
are protected by one spare unit that can be protection-switched into
service by the recovery program. The number of units served by each
spare varies with the type of unit in question, but it ranges from one
spare for six units to one for 16.

While the NIU recovery problems may be unique to the No. 4 ESS,
or possibly other ESS machines, the fault-tolerant strategies developed
for this purpose may have relevance for other 1/m or n/m redundancy
arrangements.

3032 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1982

A fault occurring in a NIU can be detected either by the NIU control
unit or by the switching network, depending on the location of the
fault. Regardless of how the fault is detected, the basic recovery
concepts for hard or transient faults apply. The pointed difference in
strategy comes about when the recovery decision is to remove the
faulted unit. If the spare NIU is available, it will be switched into
service, much as is the mate of a duplicated control unit. If the spare
NIU is presently serving in place of another NIU, or if the spare is out
of service, then the active NIU cannot be removed without degrading
service for the 120 trunks served by that NIU. In that event, on the
first interrupt, only clean-up action is taken. On later failures, the fault
recovery strategy tries to optimize the use of the spare NIU, and if
possible move the spare to replace the present suspect NIU. If that
cannot be done, then the suspect NIU is removed from service and the
120 trunks are correspondingly taken out of service and marked
“maintenance busy.”

An interesting extension of the recovery strategies for NIU failures
is invoked when multiple NIU errors are detected simultaneously. On
multiple errors, the recovery strategy escalates to implicate one or
even both of the NIU common control units, in place of, or in addition
to, the NIUs themselves.

5.5.3 Internal network failures

Perhaps the most sophisticated fault-tolerant strategy developed for
the No. 4 ESS involves the isolation and recovery from internal errors
in the Time Division Network (TDN). This switching network includes
a four-stage space switch with time-switch matrices as initial and final
switching stages. The PCM voice/data bit streams are time-multi-
plexed onto 128 time slots, and are protected by simple parity and a
leading-one protocol.

The components of the TDN are two units that provide time-space
and space-time switching stages, one for transmitting and one for
receiving, located on either side of a unit that provides a two-stage
space-switched matrix. The network topology is shown in Fig. 4. The
TDN architecture is a multi-dimensional, tightly coupled complex.
Both the time and space switching units are fully duplicated, including
the switching matrix, and are normally operated in a full-duplex,
matching mode. Either half of the transmitting or receiving switch
units can communicate with either half of the space-switched unit.

A special problem posed to the No. 4 ESS fault recovery system is
the problem of resolving the class of internal TDN errors called
transmit/receive parity failures (TRPFs). A TRPF is a failure in one
of the talking paths, i.e., time slots, caused by a fault somewhere in the
TDN matrix elements. On a given TRPF interrupt, six possible sus-

FAULT-TOLERANT ESS 3033

T T
— I I —

| |
—_— | | —

1 TWO- |

TIME | SPACE STAGE SPACE | TIME
SWITCH # SWITCH SPACE SWITCH | SWITCH

i SWITCH : :

| |

1 1

Fig. 4—Time division network topology.

pects exist (one space-switched and two time-space-switched units,
duplicated).

In a well-behaved, single-fault situation, i.e., a readily isolated hard
fault, the isolation program will determine which elements of the TDN
were involved in the failed talking path and set up all possible combi-
nations of links between the various duplicate matrix elements. By a
process of elimination, the isolation program can determine which
combinations experience an error and which do not. If all combinations
are available, and a single fault exists, a unique isolation can be
accomplished on one interrupt, and recovery effected by removing the
faulty control and matrix half. Again, as with previous strategies,
diagnostic tests are scheduled to facilitate repair.

Three conditions can short-circuit this network recovery strategy:
the fault is transient (more accurately, marginal), the fault is multiple,
or the TDN was not fully duplex at the time of the interrupt. Any one
of these conditions prevents unique isolation and accurate resolution
on a given interrupt. A special recovery strategy has been developed
to cope with this problem.

On each unresolved TRPF interrupt, the recovery program updates
special leaky bucket counters for the three (and possibly six) units/
matrices involved in the failed talking path. Such records are main-
tained on each unit in the TDN. The first unit to exceed a predeter-
mined leaky bucket threshold is deemed suspect, and its control unit
is removed and diagnosed. The assumption is that calls will be evenly
distributed throughout the network, and if any one unit is involved in
TRPF failures above all others, then the weight of suspicion falls on
that unit. Diagnostic tests will confirm or deny that suspicion.

5.6 Practical considerations on total fault-tolerant design

All the fault-tolerant strategies previously considered addressed
specific problems of isolation and recovery. There is a whole area of
concern in the design of a total fault-tolerant system beyond that
already discussed.

3034 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1982

5.6.1 Inconsistencies in fault resolution

Questions arise about the continuing strategy to use if the fault
signature or resolution changes as various recovery attempts are made.
How long should the failure history actively be maintained on a unit,
particularly after a fault apparently has been repaired?

In the deductive process of isolating a fault in the No. 4 ESS
peripheral system a tree-branching structure of decisions is used based
on the initial error source data and the results of tests, with the
resolution being declared a point of maximum definition (PMD).
Theoretically, the PMD data developed from these tests yields a
unique identification of the faulted unit, the class of fault (e.g., hard-
unique/non-unique, transient, software), and whether the fault was
resolved or not resolved. It then gives a recommendation of the
strategy to be followed for recovery. The recommendation is based on
the current interrupt and current circumstances, with no prior events
taken into consideration. The isolation (PMD) data and recommen-
dation are passed to an error analysis program that has access to
history records of previous interrupts and recovery actions. If the
current interrupt is the first such occurrence, the error analysis pro-
gram will allow the recommended recovery strategy to be carried out,
insofar as it is consistent with service criteria. If, however, a previous
history of interrupts exists for the suspect unit, it is important to
determine if the current recommended strategy is the same as that
followed on previous interrupts. If it is not, which strategy is it
appropriate to follow?

There are many reasons why the resolution, and consequently the
recommended recovery strategy, can change from one interrupt to the
next. The fault could be data sensitive, the error indications could be
sensitive to the state of the unit, or the problem could even be an
actual or apparent multiple fault situation. In any event, there are
cases where the previous recovery strategy should be continued, and
some where the current recommendation is more appropriate. Also,
sometimes the current PMD data could preclude a continuation of the
previous strategy because of data and/or environment incompatibili-
ties.

A common situation would be for a transient fault to later develop
into a hard fault. Different strategies for recovery are followed for each
case, as described earlier. In this instance, it is reasonable to change
from the transient strategy to a hard-fault recovery sequence because
the latter addresses a specific rather than a nonspecific causal rela-
tionship. If the reverse were true, that is, if the resolution of a particular
interrupt indicated that the fault was transient when all previous
experiences were seen to be hard, then it would probably be inappro-
priate to abandon the previous strategy. Many conditions could alter

FAULT-TOLERANT ESS 3035

this position, however. Is it the same fault in each case? Had repair
been attempted prior to the latest interrupt? How much time had
elapsed since the previous interrupt?

The point of these questions is to determine if two successive
interrupts are caused by the same fault, when the resolution in each
case might suggest otherwise. Because of these natural state transitions
(transient/hard), and for countless other causes, it is necessary to
recognize when different recovery strategies are indicated on successive
interrupts and to determine which of the two strategies to follow.

Before the process used in the No. 4 ESS for escaping between
recovery strategies is described, an explanation of the process for
recognizing the existence of prior associated events and for comparing
the past and current recovery strategies will be given.

5.6.2 Error Analysis

The isolation of a fault or other cause of an interrupt is under the
control of the Fault Recovery (FR) programs. As explained earlier, the
FR programs isolate the fault or error using a deductive process
consisting of retries or specific tests under various configurations. The
results of these tests are passed to the failure error analysis (FERA)
programs as PMD (point of maximum definition) data, detailing the
identity of the suspect unit or cause, the class of fault, and indeed,
whether the problem was resolved. The data further includes a rec-
ommendation of a recovery strategy to follow. Keep in mind this PMD
data is based strictly on the current problem. The FERA programs
represent an extension of the recovery process. As each interrupt is
processed, a record is retained of the PMD data and the final action
taken. When an FR program isolates the cause of a current interrupt,
FERA searches all active history records for data implicating the same
unit. Once found, the past and present recovery strategies are com-
pared with entries in a strategy escape table. If the strategies are the
same, or if the previous strategy is still more appropriate, escape will
be denied, and FERA will continue to follow the existing recovery
strategy. If the new strategy recommended by the FR isolation pro-
gram is appropriate to the fault class and status of the suspect, the
escape data will allow FERA to abandon the previous strategy and
start the new recovery sequence.

The question of escaping from one strategy to another is not solely
an issue of changing resolutions, but also can be an issue of changes in
the unit state. For example, an FR resolution might call for the removal
of a suspect unit, and under a duplex unit availability, FERA could
concur. Under a simplex unit configuration, however, the same rec-
ommendation, if followed, would cause service degradation. The escape
table data will cause FERA to deny the initiation, or the continuance,

3036 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1982

of a duplex strategy, when a unit is no longer configured in duplex. In
such a case, an alternative strategy is not necessarily provided in the
PMD data. FERA must make that determination from strategy selec-
tion tables provided for that purpose.

The issue of whether successive interrupts from the same unit might
be caused by the same fault is covered grossly by timing out an active
history file if the elapsed time since the last interrupt exceeds some
threshold, e.g., fifteen minutes. The premise is that most faults in the
No. 4 ESS will stimulate an interrupt within that time period, until
recovery is effected. Interrupts occurring at greater intervals have a
high probability of independence. After repair has been made, and the
unit appears fault free, the time-out interval should be sufficiently
short to permit a subsequent fault in that unit to be treated with a
new recovery sequence. When an active history file has been timed
out, it no longer influences subsequent interrupts from a given unit. A
record of the events up to that point are, however, kept in long-term
storage for manual analysis, if needed.

The mobility provided by the escape mechanism, and to a lesser
degree, by the time-out of active history files, permits the error analysis
process to cope with possible inaccuracies in resolution, changing fault
signatures, and the occurrences of apparently disassociated events.

VI. EXPERIENCE AND EVALUATION

To date, a total of 38 different recovery strategies have been devel-
oped for the No. 4 ESS peripheral maintenance system to handle a
wide range of fault conditions and software problems involving more
than a dozen types of units. Fifteen of these strategies serve the
common needs of several units, and twenty three are specialized
recovery sequences for particular units or for unique fault situations.

New recovery sequences are developed for each new unit or impor-
tant new feature added to an existing unit. Recovery sequences might
require changes as units are redesigned for cost reduction. System
exposure and field support activities provide important feedback to
the ongoing process of evaluating and improving the performance of
the recovery system.

6.1 Adaptability

A very important attribute to build into the design of a fault-tolerant
system is adaptability, i.e., the ability to change as experience and
requirements dictate. The initial design of the recovery strategies and
control programs in the No. 4 ESS did not adequately take into
account the need to switch strategies in midstream of a recovery
sequence. Alternate strategies frequently were not available or at least

FAULT-TOLERANT ESS 3037

not specified by the isolation programs; and even when available, the
escape control mechanism was distributed throughout the many re-
covery programs, and was difficult to change. Program changes were
cumbersome to make, if not with high risk. Through experience and
evolution, the No. 4 ESS peripheral fault recovery system has become
highly structured and has matured into a system that has a high
degree of adaptability. The escape data allows the error analysis
process to either escalate a previous strategy, or to discontinue the
previous and invoke a new strategy, as successive attempts are made
at recovery. This feature has given the No. 4 ESS the flexibility to
take full advantage of experience.

Strategies are developed based on a knowledge of system require-
ments and predicated on an expected system behavior under a given
fault condition. Frequently, however, one learns that when the hard-
ware and software are brought together for testing, the system behavior
is not exactly as expected. Whether the cause is the accuracy of
detection or accuracy of resolution, or a combination of both, adapta-
bility becomes essential. This is particularly important when recovery
problems are exposed in a software/hardware package deployed in
switching systems carrying live traffic. It must be possible to develop
and test program changes and deploy them in the field as quickly as
possible, with minimum risk to the quality of service and to the
integrity of the overall system. This has been a major goal in the
development of the fault-tolerant No. 4 ESS switching system.

6.2 Experience

The performance of a fault tolerant system can be measured by its
track record in encounters with hardware failures and other system
troubles.

Software deficiencies and coding errors will always exist in a large
system. It is not cost-effective and probably not possible to test a
system to the point where all problems have been found and removed.
What is important is that service-affecting incidents are kept to a
minimum, and that any such occurrences are analyzed for cause.
Program corrections or enhancements are developed thereupon, when
appropriate.

The level of fault tolerance demanded for the No. 4 ESS is to detect
a failure and isolate and recover from that failure with minimum
disturbance to call processing. A well-behaved hard fault, i.e., one that
reacts consistently under test, can generally be isolated on a single
stimulus, and recovery can be effected immediately if redundancy is
available. Transients, or other faults that cannot be uniquely resolved,
can reasonably require two or more interrupts before they are success-
fully isolated. These are reasonable levels of performance.

3038 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1982

If a fault occurs at a time when the redundant unit is not available,
i.e., when the mate unit is out of service either for routine testing or an
actual fault, the current fault represents a duplex failure situation. The
resolution may be clear, but the recovery cannot be executed without
disrupting service. Under these circumstances, an attempt is made to
tolerate the problem as long as possible. That is the purpose of the
leaky bucket strategy, which estimates how well the system can
tolerate the fault by measuring the frequency of the interrupts. A low
rate of interrupt can be tolerated longer than a high rate. The actual
attempt at recovery will occur at the point that the leaky bucket
threshold is exceeded. This action will generally have a disruptive
effect on service. The number of interrupts required to reach that
point is, of course, a function of the rate of the interrupts.

Since the introduction of the No. 4 ESS in January 1976, seven
program generics or versions have been developed and put into general
service in more than 75 offices. While the primary impetus for a generic
development has been to add new features or major cost reductions,
many improvements have been introduced in the recovery system in
each generic, in the form of corrections or design enhancements. Most
of these were stimulated through laboratory testing, and through
feedback from the field. Threshold parameters have been fine tuned in
response to field experiences. Several strategies were made more
tolerant of faults, and others were rendered more sensitive.

The principal goal of the No. 4 ESS fault-tolerant system is to
recover from any fault with minimum impact on service and with a
minimum number of interrupts. When recovery is possible, no strategy
should inadvertently cause service degradation, e.g., any unnecessary
zero-start or duplex failure actions. All service-affecting incidents are
analyzed for cause by a field support team. Of the total number of
incidents causing service outages for the period January through June
1981, less than ten percent were judged to be caused by deficiencies in
the peripheral maintenance software system being discussed herein,
whereas hardware problems and procedural errors accounted for al-
most 50 percent of the incidents.

Vil. SUMMARY

The fault-tolerant design of the No. 4 ESS has been evolving since
its introduction. Sophisticated recovery strategies have been developed
to give the system the necessary high level of fault tolerance. The
incident and recovery data printouts have been designed to assist the
support team in making analysis of a problem fast and accurate. Fault
isolation can implicate multiple units in some situations where a
unique resolution is not possible. Multiple recovery actions can be
carried out on a single stimulus.

FAULT-TOLERANT ESS 3039

At the current state of the art, the No. 4 ESS is a high-performance
switching system, with a successful record for reliability and availabil-
ity. Its fault-tolerant design has contributed significantly to that suc-
Cess.

REFERENCES

1. J.J. Kulzer, “Systems Reliability—A Case Study for No. 4 ESS,” INFOTECH State
of the Art Conference on Computer System Reliability, London, England, June
1977.

2. M. N. Meyers, W. A. Routt, and K. W. Yoder, “Maintenance Software,” B.S.T.J.,
56, No. 7 (September 1977), pp. 1139-67.

3. P. K. Giloth and H. E. Vaughan, “Early No. 4 ESS Field Experience,” Int. Switching
Symp., Kyoto, Japan, October 1976, pp. 241-4-1-7.

4. P. K. Giloth, “No. 4 ESS Reliability and Maintainability Experience,” 1980 Proc.
Ann. Reliability and Maintainability Symp., San Francisco, CA, January 22-24,
1980, pp. 388-92.

3040 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1982

