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Recognition of isolated words by encoding speech into linear pre-
dictive coefficients (LPC) is well known and widely accepted as one
of the better methods for speech recognition. One of the drawbacks in
relying entirely on LPC measures for recognition, however, is that
the energy information in the speech is removed during the LPC
analysis. Consequently, attempts have been made to include energy
pattern information along with the LPC pattern information to
achieve greater recognition accuracy. This paper discusses problems
involved in combining energy pattern information with the LPC
pattern information and presents results of recognition experiments
with one method. The energy information and LPC information are
combined linearly in a (speech) frame-by-frame manner utilizing the
dynamic time warping (DT'W) method time alignment. The LPC log
likelihood ratio distance function, which determines the spectral
difference between two frames of speech, does not lend itself to direct
statistical analysis in multiple dimensions. The method for obtaining
the weighting for the linear combination involves an iterative min-
imization of a probability of error function. The combined energy and
LPC distance function was tested using a 129-word “airline” vocab-
ulary, which is designed for speaker-independent, isolated word
recognition. The inclusion of energy information in the recognition
feature space reduces recognition error rates by an average of about
25 percent as compared with LPC alone.

I. INTRODUCTION

In the last few years it has become common to use LPC coding
techniques for speech recognition."” The speech to be represented is
modeled by a linear digital filter with coefficients chosen so that the
transfer function of the filter approximates the spectrum of the speech
over some short interval of time. Typically, a speech recognition
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system performs its task by comparing the unknown utterance or test
with a number of previously stored reference patterns. Both the test
and reference are characterized by a set of linear predictive coefficients.
This is accomplished by digitizing the speech at some suitable rate
and breaking the utterance into time windowed regions or “frames”
upon which LPC analysis is performed. The frames of speech generally
overlap and are typically spaced 10 to 20 ms apart in time. Thus, a
typical 0.6-second utterance is represented by about 40 frames of linear
predictive coefficients.

It is well known in the area of speech recognition that optimal time
alignment of reference patterns to test patterns substantlally reduces
recognition errors for a vocabulary with polysyllabic words.! The most
commonly used time alignment procedures, for the speech recognition
problem, are the class of algorithms referred to as dynamlc program-
ming (DP) or dynamic time warping (DTW) methods.*

Let us assume that we are given a characterization of an isolated
word that consists of a set of N vectors of LPC coefficients. The test
pattern, T, is represented as:

T=(T1),T®),---, T(N)}, (1)

where the vector T'(i) is a spectral (LPC) representation of the ith
frame of the test word. In our system a set of nine autocorrelations
constitutes the vector from which an 8th order LPC model is derived.
The duration of the test utterance is N frames, where each frame
represents 45 ms of speech, and adjacent frames are spaced 15 ms

apart.
For a given vocabulary of V words, the reference R., is represented

as:
R, = {R.(1), Ru(2), - -+, Ry(M.)}, (2)

where each vector, R,(i), is again a spectral representation of the
corresponding frame within the reference pattern, and M, is the
number of frames in the vth reference.

To optimally align the time scale of the reference pattern (the
dependent m index) to the test pattern (the independent n index), we
must solve for a warping path function of the form:

m = w(n) (3)
and thereby seek to minimize the total distance

N
= Y d{(T(n), Rw(n)]} (4)
n=1

over all possible paths, w(n), where d[T'(n), R.(m)] is the local distance
between test frame n and reference frame m = w(n). This operation
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must be performed for each reference R, in the vocabulary. The test
pattern is classified as belonging to the class (i.e., the reference word)
for which the smallest accumulated DTW distance, D,, is obtained. In
addition to the standard DT'W algorithm, time normalization has been
used on both the test and reference patterns, thereby allowing the
widest range of time alignment paths to be considered. This procedure,
called the normalize-and-warp method,” linearly normalizes the test
and reference utterances to a fixed length (typically the average
duration of all words in the vocabulary) before the DTW is performed.
Experimental results have shown this method to be valid on several
recognition vocabularies, including the one used in this study.’

Comparison of a test frame to a reference frame requires a measure
of closeness (distance). Several distance measures have been investi-
gated and used for utterance comparison purposes.® Virtually all of
these distance measures are spectral in nature and generally do not
explicitly consider the energy pattern of the speech. The LPC-based
distance measure developed by Itakura® has been found to yield high
recognition accuracy and cost relatively little in computation. This
distance function, often referred to as the log likelihood ratio (LLR)
yields numerical values that are indicative of the spectral energy
difference between the two frames of speech. The form of the function
is as follows:

d(T, R) = log[(ar Vrar)/(arVra¥t)], (5)

where T refers to a test frame and R refers to a reference frame, a is
a vector consisting of the (p + 1) LPC coefficients of a pth order LPC
model of the speech, and Vris the (p + 1 X p + 1) autocorrelation
matrix of the test frame. [Itakura® has shown how the computation of
eq. (5) can be performed with ( p + 1) multiplication and additions and
one logarithm.] The LPC coefficients do not contain any energy
information since they are derived from a normalized spectrum. The
V matrix enters into both the numerator and denominator of the
distance function (which is the ratio of two scalars), and thus contrib-
utes no energy information. Hence, d(T, R) contains no energy infor-
mation.

A few further observations about the LLR distance are in order. The
distance function, d(T, R), does not satisfy commutative or triangle
inequality rules, (i.e., the function is not symmetric). The log likelihood
ratio distance is related to the coefficient sensitivities of the LPC filter
model of the test utterance. If the test filter model is very similar to
the reference filter model, then it is reasonable to estimate the differ-
ence between the two filter models based on the test filter coefficient
sensitivities. However, if the two models differ greatly, then the coef-
ficient sensitivities of the reference model will be much different from
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those of the test model and comparison of the two models yields
inconsistent results. Thus, d(7, R) is not monotonic when it exceeds
certain values (usually about 0.6 per frame); however, it is quite useful
in measuring spectral closeness (as opposed to spectral separation),
and in this application serves very well for recognition purposes.

Since the log likelihood ratio distance measure normalizes energy
out of the measurement, it is desirable to consider including this
additional information in the distance calculation. In many pattern
recognition disciplines, the addition of dimensions to a feature space
is all that is normally required to add information to the distance
measurement. Ordinarily, if the individual components of the distance
measurement are available, an optimal weighting of features (LPC and
energy) can be obtained by an analysis of feature covariance.”"” How-
ever, in speech recognition, there are complications that make simple
addition of a dimension to the feature space difficult. One of these
complications arises from the nature of the log likelihood ratio com-
putation, which does not allow separation of the individual components
of distance, i.e., d(T, R) is a ratio of scalars and becomes meaningless
if only one dimension of the LPC space is considered. DTW methods
further complicate the addition of energy information to the feature
space since the DTW path will be altered by the distances calculated
during the DTW optimization. Thus, the addition of another dimension
(frame energy) to the feature space is not trivial.

In the next section of this paper we will describe a new discriminant
function that contains both spectral and energy information. A method
for determining the weighting of the two components based on prob-
ability of recognition error will be derived. In Section III we discuss
experimental results using this procedure on a vocabulary of 129 words
of the “airlines” vocabulary described in Ref. 6.

Il. ADDITION OF FEATURES TO THE LPC SPACE

To add the speech energy pattern information to the LPC feature
space, the LPC part must be handled as a single dimension because of
the log likelihood ratio distance function. Thus, if the total feature
vector is otherwise treated as a linear combination of vectors, the total
feature vector is of the form:

F=[LPC, EY, (6)

where the feature vector, F, consists of a vector of autocorrelation
coefficients (treated as scalar), and a value for peak normalized log
energy.

The distance function chosen for comparing the test frame energy
pattern with the reference frame energy pattern, referred to as peak
normalized log energy ratio, is of the form
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e(T, R) = |log[E(T)Emax(R)/E(R)Emax(T)]|, (7)

where E (T) is the energy of a test frame and E (R) is the energy of a
reference frame, E...x(T') is the peak energy of the test utterance over
framesi=1,2, ..., N, and En.«(R) is the peak energy of the reference
utterance over frames j = 1, 2, ..., M. This is equivalent to a peak
normalized log energy difference, i.e.,

e(T,R) = |[NE(T) - NE(R)|, (8)
where NE (T) is normalized energy and
NE(T) = log[E(T)] — log[Ewmax(T)]. (9)
Then for the optimal linear classifier, distance is given by
d(T, R) = D(T, RYW D(T, R), (10)
where (lower case indicates a scalar quantity)
D(T, R)=F(T) — F(R) (11)
and
W= [‘; i’] (12)

where a, b, and ¢ are chosen to minimize the probability of recognition
error, P(E). Applying ordinary Bayesian techniques would result in
the well-known Mahalonobis distance where the matrix W is the
inverse covariance matrix of the feature space.®'’ Because of the nature
of the log likelihood ratio distance function, the LPC distance to the
origin of the LPC space is generally too large to be within the 0.6 value
required for monotonicity. Furthermore, no other point in the LPC
space can easily be found that will allow this requirement to be
satisfied for all possible samples in the space. Hence, the mean and, in
turn, variance (and, hence, covariance) of the LPC component cannot
be determined directly.

An alternate method of combining the energy measure with LPC
has been developed which, although not able to determine the cross-
product coefficients, will determine a weighting of the two measures
based on probability of error. Let the distance function assume the
form:

d(T, R) = [LLR(T, R)] + «[LER(T, R)], (13)

where LLR(T, R) is the log likelihood distance between a test frame
T and a reference frame R, and LER(T, R) is the peak normalized log
energy difference between test frame T and reference frame R, and «
is a weighting coefficient. Equation (13) must be employed in (4) to
determine the DTW function (3) and choose the closest reference to

LPC-BASED WORD RECOGNITION 2975



a given test utterance. Consequently, the LLR distance is a function of
the LER distance and vice versa, since the DTW path is a function of

both distances.

Let D(i, j) indicate the accumulated DTW distance between a test
utterance (corresponding to word i) and reference pattern (correspond-
ing to word j). A classification error will occur when D(i, i) > D(i, j)
for any j not equal to i. That is, if the distance between a test class (i)
and a reference of the same class (Z) is greater than the distance from
class (i) to a different class (), then a recognition error will occur. An
alternate form of (13) and (14) is the discriminant function:

QG j)=D(, j) — D, 1). (14)

For this form a recognition error occurs only if @ (z, j) is less than zero
for any j not equal to i.
For notational convenience, let

L(i, j) = LLR(, j) — LLR(, ©) (15)
and
E(i, j) = LER(, j) — LER(, 1), (16)

where LLR(i, j) and LER(;, j) are the accumulated log likelihood
ratio and log energy ratio on the DTW path, respectively. Then

QG, j) =L, j) +aE(, j). (17)

There are four kinds of classification errors for which @(i, j) is less
than zero and a test word will be misclassified, namely:

(A) an LLR error for which L@, j) < 0 for any j # i and
E(i, j)>0forall j#1i
(AB) an LLR error or an LER error but not both, i.e.,
(@) LG, j)<0and E(i, j) > 0forany j#1i
() L(i, k) >0and E(i, k) <Oforany k # i, j
(B) an LER error for which L(i, j} > 0 for all i % j and E(i, j) <
Oforany j#1i
(C) both errors for which L(i, ) < 0 and E (i, j) < 0 for any
JFL
The test word is correctly recognized when condition (A) exists if
Q (i, j) > 0 for all j # i, which implies:

a>|L(i, j)/E(, j)| forall j#i. (18)
Likewise, the test word is correctly recognized when condition (B)
exists if:

a<|L(, j)/E(, j)| forall j#i. (19)

Condition (C) is not recoverable [i.e., @ (i, j) < 0] for any value of a.
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In this case the test word will always be misrecognized since both the
LLR and LER distances have made an error.

Condition (AB) is a special case where an LPC-type error [L(i, j)
<< 0] occurs for a comparison of the test (z) with one reference () and
an LER-type error [E(i, k) < 0] occurs for a comparison with a
different reference (k). In order for this test word to be properly
recognized the following relation must be satisfied for all 7, &2 # i:

|L(&, ))/E(, j)| < a < |L(, k)/E(, k). (20)

Equation (20) may or may not be satisfiable for a given test word (z).
The probability of recognition error can be written with the further
definition of the random variable:

x=|L(J)/EG )| (21)

Define the probability density function of x conditioned on error type
(A) as p(x|A) and the probability density function of x conditioned on
error type (B) as p(x|B). Then the probability of error, P(E, a), is
given by:

P(E, a) = P(A) f p(x|A)dx + P(B) J plx|B)dx + P(C)

+ P(AB) f p(x|AB, a)dx + P(AB) J p(x|AB, b)dx, (22)

where p(x|AB, a) is the probability density function conditioned on
the existence of error type (AB) of the first kind [L(z, j) < 0 and
E(i,j) > 0] and p(x|AB, b) is the density function conditioned on error
type (AB) of the second kind (L(z, £) > 0 and E(i, k) < 0). Optimizing
(22) with respect to «a yields the relation:
P(A)p(x = a*|A) + P(AB)p(x = a*|AB, a)

= P(B)p(x = a*|B) + P(AB)p(x = «*|AB, b), (23)
where a* is the optimal value of «. Inspection of (22), (23), and the
error conditions (A), (AB, a), (B), and (AB, b) reveals that they are
mutually exclusive events and that they can be combined. Thus, by

relaxing the requirements “for all j # i of condition (A) and (B) to
“for any j # i” eq. (23) may be rewritten

P(A)p(x|A) = P(B)p(x|B), (24)
keeping in mind the new properties of (4) and (B):
(A) L(i,j) <0 and E(i,j)>0 forany j#1i
(B) L(1,j) >0 and E(i,j)<0 forany Jj# i
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Fig. 1—Conditions for minimum-recognition error rate.

Several observations concerning (18) through (24) are worth noting.
First, (22) indicates that the best performance that can be expected
for any choice of a is

P(E, a*) = P(C), (25)

where o* is the value of a for which P(E, «) is minimized. This
condition occurs only if a can be chosen so that the distribution
P(A)p(x|A) lies entirely below a and P(B)p(x|B) lies entirely above
a, as shown in Fig. 1. If a recognizer is implemented with only the LLR
distance function, the probability of error will be

P(E|LLR only) = P(A) + P(C) (26)

since error conditions (A) and (C) are mutually exclusive LLR-type
errors. Hence, if P(A) > 0, then

P(C) < P(E|LLR only), 27
indicating with (25) that
P(E, a*) < P(E|LLR only) if P(A)>0 (28)

and therefore recognition performance better than that obtained with
LPC alone can be achieved by using distance function (13). Note also
by (21) that random variable x = 0. The lower limits of the second and
fourth integrals in (22) can be made 0 without effect on P(E, a). Then,
under the worst-case condition that P(A) = 0, the optimal value for a
is a* = 0. Inspection of (13) indicates that, for a* = 0, D(i, j) is identical
to the LPC component of the distance function, LLR(i, j). Thus, the
worst performance that can be expected is the LPC error rate.

Under good conditions, |L(i, j) | will be small for condition (A) and
|E(, j)| will be small for condition (B). Thus, the mean of the
distribution P(A)p(x|A) will be low, while the mean of the distribution
P(B)p(x|B) will be large, as shown in Fig. 2. The probability of
recognition error, which consists of P(C) plus the shaded area shown
in Fig. 2, is minimized by the value of a* shown. If we assume that
P(A)p(x|A) and P(B)p(x|B) are normally distributed as in Fig. 2,
then the shaded area will be less than the area of P(A)p(x|A), i.e.,
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P(E, a*) < P(A) + P(C), (29)
which by (26) yields
P(E, o*) < P(E|LLR only). (30)

Thus, not only can we guarantee that performance will be no worse
than LPC recognition performance, but, if the conditions of Fig. 2 can
be established, we can guarantee better performance by properly
choosing a.

Differing DTW paths owing to the interaction of the LLR and LER
components of d(T, R) will cause the distributions P(A)p(x|A) and
P(B)p(x|B) to vary with different values for coefficient a. Conse-
quently, the determination of coefficient « may require several itera-
tions of selecting « and redefining (13) until a stable value for « is
obtained. Under adverse conditions P(A)p(x|A) and P(B)p(x|B) may
overlap considerably and the number of recoverable errors may be
small.

lll. EXPERIMENTAL RESULTS

Experiments were conducted on speech collected from several talk-
ers speaking an “airlines” vocabulary.® This vocabulary consisted of
129 words that would commonly be used to obtain information from
airline scheduling service. The range of words is broad enough to be
considered a good cross section of English speech. The reference words
were generated by clustering the speech of several male and female
talkers to form speaker-independent templates.” Six clustered tem-
plates for each of the 129 words were generated resulting in a reference
file of 774 templates. The average duration of all words was 42 frames
and this was the duration used for word length normalization.

Test sets were studied for two male and two female talkers (not of
the reference set) in order to choose an approximate value for the
weighting coefficient a. The LLR and LER distance functions were
not linked together for these experiments. Thus, two different DTW
paths were generated, one for LLR distances and one for LER dis-

P(Blplx|8)

PlAp(x14)

X
* / S
a - ~ UNRECOVERED ERRORS

Fig. 2—Conditions for low-recognition error rate.
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Table |—Statistics on LLR and LER distance measures
for the four data sets

Data Set (Talker Sex) 1 (M) 2 (M) 3 (F) 4 (F)

LLR Recognition First Choice 93%  124% 225% 2L.7%
Error First Two Choices 39%  54% 108%  124%
LER Recognition First Choice 77.5% 721%  76.2% 73.6%
Error First Two Choices  66.7%  60.5%  63.6%  58.9%
Correlation Correct Words 0.093 0.183 0.205 0.227
LLR vs. LER Incorrect Words 0206 0.175 0143  0.144

tances. The accumulated LER distance was also determined along the
DTW path generated by the LLR distances to evaluate the effects of
the warp path on the accumulated LER distance. (It was found, early
in the investigation, that the LLR distance would be the dominant
force in directing the DTW path.) Statistics were gathered on the
number of recognition errors for both distance measures, the distri-
butions for LLR distances and LER distances were calculated, and the
distributions P(A)p(x|A) and P(B)p(x|B) were determined. In addi-
tion, correlation matrices were calculated for LLR, LER, and LER
along the LLR path. The results are shown in Table I and Fig. 3. The

DATA SET 1
101 CORRECT WORD HISTOGRAMS 8081 — INCORRECT WORD HISTOGRAMS
- (a) — (b)
i]’ A | | L1 11 (1] | 11 | |
0 LLR DISTANCE (Dlc) 25 0 LLR DISTANCE (D /) 25
140 9067 —
- -
- -
- 0 1 o | 1 1 0 1 | | 1 1 1
Z 0 LER DISTANCE (Dlc) 025 0 LER DISTANCE (D17 0.25
o}
S 108 6350
(e) (f)

| — b |1 |

ITTTTTTT

P N W |

(=]

LER DISTANCE ON LLR PATH (Dle) 0.25

(=]

|
LER DISTANCE ON LLR PATH (DI/)

0

.25

TTTTTTTT

A AN

L1 1

(g)

TTTTTTTTT

1

(h)

L1 11 A 11

=l
o

In [x]

10 -

=

in [x]

Fig. 3—DTW statistics for unlinked LLR and LER distances.
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captions in Fig. 3 are read as follows. D|c is distance to correct
reference, D|i is distance to incorrect reference, and LER(LLR) is the
LER distance along the LLR-controlled DTW path.

The plots of P(A)p(x|A) and P(B)p(x|B) of Fig. 3 indicate that an
initial value of « should be between 1.0 and 5.0. The correlations of
LLR and LER (Table I) indicate that there is little redundancy and,
hence, useful information may be obtainable by combining the LLR
and LER distance measures. The plots of P(A)p(x|A), as shown in the
figure, are quite jagged due to the low number of samples obtained,;
however, the optimal value of « was actually determined by inspection
of the samples of the two distributions. Although this is a somewhat
tedious process, it ensures that the best value for « is obtained from
the available information. The graphical display of P(4)p(x|A) and
P(B)p(x|B) gives good indication that the requirements for (29) and
(30) are being met.

Table I indicates that the recognition error rate for LER distance
measures alone is very high. Even among the top two candidates, the
correct word is found less than half of the time. Obviously, LER alone
is not a good discriminating feature. The average LER distance [eq.
(7)] from the test to a correct reference (i.e., from the same class as
the test) is low in comparison to the LER distance to an incorrect class
(about 1:1.75). This would normally indicate a good discriminating
feature; however, the LER distances to both correct and incorrect
references are very widely distributed and the amount of overlap of
the two distributions is considerable (see Fig. 3). The LER distances
along the DTW path of the LLR measure are less widely distributed
but the overlap is still large. For comparison, the ratio of test to correct
reference LLR distance with respect to incorrect reference LLR dis-
tance averages about 1:1.97, and the amount of overlap of the distri-
butions is relatively small.

Tests were next conducted on the same speech data with the LLR
and LER distances linked for DTW path determination. An initial
value of « = 1.0 was used as a starting point for each test set. Statistics
were gathered as previously, except that the combined LLR and LER
distance, LLR component, and LER component were items of interest.
The distributions of P(4)p(x|4) and P(B)p(x|B) were again calcu-
lated.

Several iterations of testing and evaluating were performed to obtain
a good estimate for the coefficient «*. For speech data set 1 the value
obtained for a* was 1.8. The statistical results are shown in Fig. 4 and
Table II. A plot of the number of recognition errors predicted by the
distributions of P(A)p(x|A) and P(B)p(x|B) as a function of x is
shown in Fig. 5a for « = 3.0. The same test was run on the second set
of speech data (at a = 3.0), and the plot shown in Figure 5b was
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Fig. 4—DTW statistics for linked LLR and LER distances.

obtained. Iterative application of the evaluation procedure yielded a
final value of & = 5.0 for test set 2. Obviously, the selection of « is very
sensitive to the speech data. In all cases, a value for a* could be found
to improve the recognition accuracy over that for LPC-based recog-
nition alone (indeed, for @ = 3.0 the recognition error rate was lower
for both data sets 1 and 2) but the optimal values predicted by error
rate plots like those of Fig. 5 were considerably different.

Further testing indicated that a single value for « could be chosen so
that an improvement in recognition performance would be obtained
for all of the testing sets. The values of @ = 2.0 and «a = 3.0, as indicated
in Table II, show significant improvement for all four test sets. The
average reduction in error rate is 23.9 percent for a« = 2.0 and 29.8
percent for a = 3.0. Thus, a speaker-independent recognizer can make
use of the improvement in performance available by the inclusion of
energy information using this technique.

3.1 Analysis of the recognition errors

It is interesting to examine the specific errors that were connected
by using the combined energy plus LPC feature set. A list of all such
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Table Il—Word error rates as a function of « for the four data sets

Data Set (Talker Sex) 1(M) (%) 2(M) (%) 3 ((F) (%) 4(F) (%)
First Choice 9.3 12.4 225 21.7
a = 0.0*
First Two 3.9 5.4 10.8 124
First Choice 6.2 10.8 17.8 20.9
a=10
First Two 3.1 54 8.5 8.5
First Choice 3.1 10.1
a=18
First Two 23 7.0 e .
First Choice 39 10.8 20.2 18.6
a=20
First Two 2.3 7.0 9.3 9.3
First Choice . . . 18.6
a=22
First Two 9.3
First Choice . s 18.6
a=28
First Two 7.7
First Choice 3.9 10.1 178 17.0
a=30
First Two 2.3 7.0 7.7 10.8
First Choice . . 17.0
a=234
First Two 9.3
First Choice - . - 18.6
a=37
First Two L. e - 10.8
First Choice .. 9.3
a =50
First Two .- 54
First Choice e 10.1
a=5>5
First Two e 5.4

* Equivalent to LLR only.

errors is given in Table I11. This table gives the correct word, the word
recognized using LPC alone (a* = 0), the test set in which the error
occurred, and a classification as to the type of error initially made.
The classification code describes the phonetic nature of the correct
and misrecognized words as one of the following:
(i) MS—Simple monosyllabic word

(ii) MS + A—monosyllabic word plus affix (final stop or fricative
consonant)

(iit) PS—polysyllabic word.
An examination of the 34 words in Table III shows that 11 of the
corrections involved a polysyllabic word (as either the correct word or
the word recognized using LPC alone), nine of the corrections involved
monosyllabic words with affixes, and the remaining 14 corrections
involved monosyllabic words.

LPC-BASED WORD RECOGNITION 2983



20
(a)

10+

DATA SET 1
a=3.0

™~ PREDICTED a*-2.25
0 1 1 1 |

(b)

25

NUMBER OF ERRORS

20

DATA SET 2
a=3.0

—— PREDICTED a* =4.6

5 | ] | |
0 2 4 6 B 10

X

Fig. 5—Prediction of a from statistics on x.

A similar list of the words that were incorrectly recognized using the
combined distance metric is given in Table IV. The format for this
table is similar to that of Table III except that the classification code
refers to the correct word and the word originally recognized using the
LPC distance alone. It can be seen that eight new errors are introduced
by the combined metric that were not present using LPC alone. Hence,
a total net improvement of 26 words was obtained using the combined
distance metric.

Of the 53 errors given in Table IV, 16 involve a polysyllabic word
(either the correct or the LPC misrecognized word), 23 involve only
monosyllabic words, and 13 involve polysyllabic words with affixes,

The data of Tables III and IV indicate that the inclusion of energy
into the distance metric leads to a fairly uniform improvement in
accuracy across all three types of word classifications. The results also
indicate that, for the most part, the remaining errors involve acousti-
cally similar words, whereas the corrections generally come from errors
involving acoustically different sounding words.
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Table Ill—List of words misrecognized using LPC alone but correctly
recognized using energy combined with LPC
Word Recognized

Correct Word From LPC Alone Test Set Classification Code
Boston Washington 3 (PS, PS)

Card I 3 (MS+A, MS)
Depart July 4 (PS, PS)
Detroit Information 1 (PS, PS)

Does Five 3 (MS, MS)

Eight Seat 1 (MS+A, MS+A)

First Express 3 (MS+A, PS)

First Express 4 (MS+A, PS)

I Lockheed 3 (MS, PS)

Like Flight 4 (MS+A, MS+A)
Many May 3 (MS, MS)

May Change 2 (MS, MS)
Morning Miami 4 (PS, PS)

My By 2 (MS, MS)
Number November 4 (PS, PS)

Oh of 4 (MS, MS)
On Arrival 4 (MS, PS)

One What 3 (MS, MS+A)

Pay A 2 (MS, MS)
Phone Five 2 (MS, MS)
Please Seat 1 (MS, MS+A)

Seats Seat 1 (MS+A, MS+A)

Seats Seat 3 (MS+A, MS+A)
Some From 3 (MS, MS)

Some From 4 (MS, MS)

Ten Afternoon 4 (MS, PS)

There Fare 3 (MS, MS)
Three Detroit 2 (MS, PS)

Time Card 3 (MS, MS+A)
Times Five 1 (MS+A, MS)

To Do 3 (MS, MS)
Twelve Five 4 (MS, MS)

Uh How 3 (MS, MS)
When Would 1 (MS, MS)

IV. CONCLUSIONS

The addition of energy information to the LPC distance improves
recognition performance significantly. It is likely that the energy
information would significantly improve the error rate on certain kinds
of anomalies in the speech, such as partially voiced words and lip pops.
These anomalies sometimes cause a test word to match reference
words that have similar spectral patterns but significantly different
energy patterns. Unfortunately, data bases of speech containing these
kinds of erroneous sounds are not yet readily available and testing of
this hypothesis must be deferred until such data are generated.

The selection of the weighting coefficient, a, is quite sensitive to the
speech data. For that reason, the value of a* will usually be different

LPC-BASED WORD RECOGNITION 2985



Table IV—Word incorrectly recognized using the combined distance

metric
Word Recog-
Correct Word Recognized nized From LPC  Test
Word From LPC Alone + Energy Set Classification Code

A May Pay 2 (MS, MS)

A A Pay 3 (MS, MS)
Boston Boston What 2 (PS, MS+A)

By I I 2 (MS, MS)

By | I 3 (MS, MS)

By Like I 4 (MS, MS+A)

Change Change Stops 4 (MS, MS+A)
Code Card Card 3 (MS+A, MS+A)
Code Card Card 4 (MS+A, MS+A)
Code Coach Coach 2 (MS+A, MS)

DC BAC BAC 4 (PS, PS)
Do will Code 4 (MS, MS)
Eight Eight Take 3 (MS+A, MS+A)
Flight Flight Flights 4 (MS+A, MS+A)
Flights Flight Flight 3 (MS+A, MS+A)
Flights Flight Flight 4 (MS+A, MS+A)
For Five Five 4 (MS, MS)
Four Five Five 4 (MS, MS)
From From Eleven 4 (MS, PS)

Go Twelve Club 3 (MS, MS)
Home How How 4 (MS, MS)

I By By 1 (MS, MS)

In In AM 3 (MS, PS)

Is In In 4 (MS, MS)
Leave Please Please 3 (MS, MS)
Many Pay Pay 1 (PS, MS)

March Much Much 4 (MS, MS)

Much March March 3 (MS, MS)
My I By 3 (MS, MS)
Nine Washington Morning 4 (MS, PS)

October September September 1 (PS, PS)

Oh How How 2 (MS, MS)
Oh How How 3 (MS, MS)
On Five Five 2 (MS, MS)
One When When 4 (MS, MS)
PM Seattle Seattle 4 (PS, PS)

Pay Friday Friday 3 (MS, PS)

Phone From From 4 (MS, MS)
Please April Thee 4 (MS, PS)

Prefer There Fare 3 (PS, MS)

Seat Seats Seats 3 (MS+A, MS+A)

Sunday Saturday Saturday 3 (PS, PS)

en AM PM 2 (MS, PS)

The Five Five 3 (MS, MS)

Thee DC DC 1 (MS, PS)

Thee Make Three 2 (MS, MS+A)
There Fare Fare 2 (MS, MS)
Times Office Five 3 (MS, PS)

Two Do Do 4 (MS, MS)

Want What What 4 (MS+A, MS+A)
What Want Want 2 (MS+A, MS+A)
When When Morning 4 (MS, PS)
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for each talker in the testing set. Consequently, this method is likely
to be more effective for speaker-trained recognition than for speaker-
independent recognition systems. However, a value of a = 2 or a = 3
has been found to work well for the test sets used in this study and will
probably work for most test sets.
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