THE BELL SYSTEM
TECHNICAL JOURNAL

DEVOTED TO THE SCIENTIFIC AND ENGINEERING
ASPECTS OF ELECTRICAL COMMUNICATION

Volume 61 December 1982 Number 10

Copyright © 1982 American Telephone and Telegraph Company. Printed in U.S. A.

An Overview of PANACEA, a Software
Package for Analyzing Markovian
Queueing Networks

By K. G. RAMAKRISHNAN and D. MITRA
(Manuscript received April 19, 1982)

PANACEA is a software package that significantly extends the
range of Markovian queueing networks that are computationally
tractable. It solves multi-class closed, open, and mixed queueing
networks. Based on an underlying theory of integral representations
and asymptotic expansions, PANACEA solves queueing networks
that are orders of magnitude larger than can be solved by other
established algorithms. The package is finding widespread use in
Bell Laboratories. It also has important software innovations. A
flexible programming-language-like interface facilitates compact
representation of large queueing networks. An out-of-core implemen-
tal strategy enables PANACEA to be ported to processors with
modest memory. The modular structure of this software package,
along with the automatic machine-generated parser, makes it easily
extendable. This paper provides an overview of two basic versions of
PANACEA, versions 1.0 and 1.1, which solve “closed” networks only.
A description of its model language is given from the point of view of
its capability to describe queueing networks in a compact, natural
manner. The paper discusses the algorithms, together with their time
and storage requirements, that are used in the implementation.
Several numerical examples are given.

. INTRODUCTION

Closed Markovian queueing networks are acknowledged to be val-

2849

uable tools for analyzing computer systems, computer communication
systems, on-line computer networks, and other real-time computer-
based systems (Refs. 1 through 12 document many real-life examples).
Despite this large collection of problems modeled by closed queueing
networks, until recently, only a small number of these models were
computationally tractable using established algorithms.'*"” The tract-
able models have small numbers of customer classes and a small
population in each customer class. PANACEA (Package for Analysis
of Networks of Asynchronous Computers with Extended Asymptotics)
extends the class of computationally tractable, closed queueing net-
works by several orders of magnitude.

The solution of “large” queueing networks by PANACEA is made
possible by an underlying theory of integral representations and
asymptotic expansions of relevant performance measures.'*” PANA-
CEA obtains solutions to queueing networks with p customer classes
and ¢ processing centers, in O(gp") operations and about 20q kilobytes
of storage. Here “t” denotes the number of terms in the asymptotic
expansions of the first and second moments of quantities of interest
(utilizations, queue lengths, etc.). Extensive computational experi-
ments demonstrate that four terms (¢ = 4) are usually more than
adequate to produce highly accurate results. Most importantly, the
number of operations and the amount of storage are both independent
of the population sizes of customer classes. In contrast, both the
convolutional algorithm and mean value analysis'®"" require opera-
tions and storage proportional to

p
p(1+2q) [[K;,
Jj=1

where K is the population size of customer class ;.

Thus, PANACEA is distinguished by its ability to solve exponen-
tially growing problems in polynomial time. There are additional
important features to PANACEA:

(i) PANACEA incorporates a special-purpose queueing network
language designed to describe queueing networks.

(ii) PANACEA computes second moments of queue lengths. We
know of no other package that provides this information.

(iii) All computed measures of network performance are typically
accompanied by upper and lower bounds.

(iv) A complete complexity count enables PANACEA to guarantee
a response time for a problem solution by automatically selecting the
maximum number of terms to use in the asymptotic expansions. This,
in conjunction with (iii) above, is often useful in the early stages of
system design.

PANACEA runs interactively on computer systems with a C-lan-

2850 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1982

guage compiler and LEX,” the automated generator of lexical analyzer.
This paper describes two basic versions, 1.0 and 1.1, of the package.
Other versions have subsequently been implemented and these will be
described elsewhere. Version 1.0 solves closed queueing networks in
which customers are not allowed to change classes while circulating in
the network (no class hopping). This version is implemented com-
pletely in-core. Version 1.1 provides for the “class-hopping” feature of
queueing networks. An analysis of class-hopping queueing networks
shows very large storage requirements even for networks of moderate
size. Hence, in Version 1.1 an out-of-core strategy is employed.

Versions 1.0 and 1.1 each consist of about 6000 lines of portable C
code, and currently run on VAX 11/780 hardware. Queueing network
problems are solved in a guaranteed response time of at most one
minute on a nominally utilized VAX 11/780. Many experiments con-
ducted on PANACEA indicate that it is robust and numerically stable.
We should mention that PANACEA is being used currently in several
projects within Bell Laboratories. The experiences of the users are
guiding the enhancements to PANACEA.

The interface to both versions of PANACEA has been designed to
allow the user to describe large queueing networks compactly and in
a natural manner. Many of the features of general-purpose program-
ming languages have been incorporated into PANACEA Model Lan-
guage (referred to as PML, henceforth), thus making it a special-
purpose queueing network language. Features of PML, such as the
preprocessor variable usage, free use of comments, etc., have been
freely borrowed from programming languages.

PANACEA is envisioned to run on hardwares ranging from micro-
processors to large mainframes. The expressions derived for time and
storage requirements in Section IV enable the user to “package”
PANACEA to suit the availability of computing resources such as
central processing unit (CPU) cycles and memory. For example, in
Motorola 68000 with a 0.2 million instruction per second and 256K
physical user memory, the user can solve network problems as large as
one in which there are 12 processing centers and 10 job classes, in a
guaranteed response time of at most one minute. [See eqs. (15) and
(16).]

We mention some of the main limitations of PANACEA in its
present form. The queueing networks are required to belong to the
class of “product form” networks."* In addition, “normal usage” must
be operative in these networks. Normal usage is defined in Section 3.1.
In practice this translates to the requirement that no processing center
in the queueing network is utilized more than about 85 percent. Finally,
load-dependent service rates are not allowed in the existing versions of
PANACEA.

PANACEA 2851

Our discussion of PANACEA is organized into six sections. Section
II describes the global properties of PML and the overall software
structure of PANACEA. Section III details the internals of the com-
putational phase, together with an overview of the theory of asymp-
totic expansions. Section IV, “Computational Complexity,” counts
operations and storage required, and also gives experimental results
for validation. Several numerical examples illustrating different fea-
tures of PANACEA are given in Section V. Section VI presents
conclusions and proposed future enhancements to PANACEA.

Il. FEATURES OF PML

This section presents an overview of PML. Rigorous syntax and
semantic definitions of PML statements have been developed.* Prop-
erties of PML statements are illustrated by considering a prototypical
queueing network shown in Fig. 1. This queueing network represents
a service point of a large packet-switched communications network.
This service point consists of three front-end processors (terminal
concentrators) that act as gateways for the terminals connected to the
service point. The front-end processors (FEPs) are connected to three
central processing units (CPUs). These processors, when in need of
data base access, communicate with a data base processor. The labels
within the processors are symbols used in the PML program describing
the queueing network. These labels are arbitrary and can be chosen
by the user in any manner. The node labeled TERMINAL represents
the terminal population connected to the service point. This terminal
population is divided into nine customer classes. After obtaining ser-
vice at any of the CPUs, customer classes 1 through 4 return to the
TERMINAL to generate the next command, whereas customer classes
5 to 9 transit to DBP, since they require data base access. Figure 2
gives the PML program that describes the queueing network shown in
Fig. 1. The lines in the program are numbered for easy reference to
statements. They are not part of the PML program. The following
discussion of PML should be read in conjunction with Fig. 2.

2.1 Overview

PML is a free-format language. Line boundaries, tabs, and white
spaces in the statements are completely ignored. Users are permitted
the flexibility of segmenting statements across multiple lines, indenting
portions of their statements, specifying multiple statements on a line,
or using a combination of the above. A statement in PML describes
some aspect of the queueing network being solved. For example, the
statement on line number 6 in Fig. 2 specifies the routing probabilities
between TERMINAL and the FEPs. PML also provides the flexibility
of symbolic representation of any entity of the queueing network,

2852 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1982

S |

]
1
1
1
|
|
[l
|
1
1
|
[}
1
1
1
1
L

TERMINAL

Fig. 1—Model example.

using symbols of arbitrary length. A symbol table manager in the
parser module of PANACEA manages these symbols specified by the
PML program. Symbols of the PML program become contextually
defined as to their data type when they appear in the program. No
statements are needed in PML to declare data types for symbols. For
example, the symbols “total-classes” and “call-classes” in lines 3 and
4 of Fig. 2 become contextually defined as preprocessor variables of
type “integer.” Similarly, the symbols “TERMINAL,” “FEP1,”
“FEP2,” and “FEP3”—appearing in line 6 of Fig. 2—acquire the data
type “string.” PML allows arbitrarily complex arithmetic expressions
to be specified in the statements. The arithmetic operators in these
expressions have the standard precedence and associativity. PML
programs can be made readable and self-documenting by making use
of the facility for comments embedded in the program. With this
general introduction to PML, we will now attempt to describe some of
its global properties.

PANACEA 2853

1 /*ILLUSTRATIVE EXAMPLE*/
2 /*PREPROCESSOR DEFINITIONS*/

3 total_classes = 9;

4 call_classes = 4;

5 /*ROUTING DESCRIPTIONS*/

6 TERMINAL :FEP1L,FEP2,FEP3 1.0/3.0;

7 FEP1,FEP2,FEP3 :CPU1,CPU2,CPU3 1.0/3.0;
8 CPU1,CPU2,CPU3:TERMINAL

9 {{1 to call_classes) 1.0};
10 CPU1,CPU2,CPU3:DBP

11 {{call_classes + 1

12 to

13 total_classes) 1.0};

14 DBP :TERMINAL

16 {(call_classes + 1 to

16 total_classes) 1.0};

17 /*RATE DESCRIPTIONS*/
18 CPU1,CPU2,CPU3 {12.5,20,12.5,20,2.5,3.3,2.5,3.3,8.33);
19 ‘FEP.* 10.0;

20 DBP ((call_classes+1).73611,.73611,.3833,.3823,3.33};
21 TERMINAL {.00333,.00444,0008333,.01555,

22 .0008333,.0008335,.000076,.000079,.0083} ;
23 /*DISCIPLINE DEFINITIONS*/

94 CPU1,CPU2,CPU3 PS;TERMINAL IS;DBP PS;

95 FEP1,FEP2,FEP3 FCFS;

26 DEGREE ({1 to 4) 75,150,150,5,5,180};

97 OUTPUT DBP UTIL + QLENGTH + Q2LENGTH;
28 END;

Fig. 2—PML program.

2.2 Global properties

PML is characterized by the global properties of compactness,
extendability and self-documentation, as discussed below.*

2.2.1 Compactness

A programming language is considered compact if the user can
specify “aggregate” entities using a single “atomic” entity descriptor.
PML enables the user to specify large networks compactly. Many
features of the language aid in this compactness.

2.2.1.1 Multiple edge and node descriptors. All entities in the network
that have similar characteristics are described together in a single
statement. For example, the statement in line 7 of Fig. 2 states that
the transition probability for all edges emanating from the front-end
processors and terminating in the node processors is 1/3. Thus, 81
edges are described in a single statement, as explained below.

The node symbols separated by commas and delimited by “:” denote
the set of originating nodes. The comma-separated node symbols
specified after the “:” denote the set of destination nodes. Thus, in

2854 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1982

Fig. 2, every origin-destination pair specifies nine edges (one for each
customer class). As a universal rule in PML, aggregate names (node
names separated by commas) can be given wherever a single node
name is expected. The operand specification is associated with every
node in the aggregate name. For instance, the service rate descriptor
in line 18 of Fig. 2 specifies all the service rates of the CPUs in a single
statement.

2.2.1.2 Implicit class propagation. When many customer classes have
identical characteristics, the user specifies the characteristics exactly
once. All customer classes implicitly obtain those characteristics, thus
resulting in compactness. If we refer back to line 7 in Fig. 2 again, we
can see that the transition probability 1/3 specified in the operand
propagates to all nine customer classes. If the customer classes differ
in their characteristics, then a separate value can be specified for each
class, as line 18 shows. The point to note here is the implicit class
indexing agreed upon between the parser and the PML programmer.
Another feature of PML allows the user to group some classes that
have identical characteristics by prefixing the operand value by a
group range, as we see in lines 9, 15, and 16. In line 9, the expression
enclosed in angle brackets “(” and “})” specifies the class range to be
1 to 4 (recall that call-classes = 4), and a value of 1.0 is assigned to the
probability of transition for these classes. The class indices outside the
range are unaffected. Thus, the user has the flexibility of enumerating
each class, grouping classes, or omitting the specification for the classes
altogether.

2.2.1.3 MACROS, INCLUDE FILES. and regular expressions. PML pro-
vides many language tools to condense frequently occurring sequences
of statements. MACROS and INCLUDE FILES enable PML pro-
grams to be compact. PML MACROS and INCLUDE FILES follow
standard conventions of MACRO and INCLUDE FILE specification
of programming languages. Another tool that promotes compactness
is regular expressions. Any collection of symbols having common
subsymbols can be specified by a single regular expression. For in-
stance, the regular expression ‘FEP.*’ in line 19 of Fig. 2 is a regular
expression that specifies the three nodes FEP1, FEP2, and FEP3.

2.2.2 Extendability

The PML parser and lexical analyzer have been machine generated.
Once PML grammar rules and lexical tokens are specified, the parser
and the lexical analyzer can be generated by existing automated tools
(Yacc® and Lex®'). This implies that it is trivial to extend or modify
the language by simply respecifying the grammar rules and/or the
lexical tokens. PANACEA is designed to be an integrated queueing
network package with the ability to handle most classes of queueing

PANACEA 2855

networks. The extendability feature of PML is crucial in enhancing
the descriptive nature of PML, to describe, for instance, open networks,
priority networks, etc. :

2.2.3 Self-documentation

PML aids in self-documenting the model, by the use of comments
anywhere in the model, preprocessor variables, and indentation and
structuring of the model. We have deliberately omitted details of each
statement in the PML program of Fig. 2, in the hope that the self-
documenting feature of PML will obviate this necessity.

2.3 Structure of PANACEA

Figure 3 depicts the structure of PANACEA software. The input
phase of PANACEA consists of the lexical analyzer and the parser.
These two modules work in lockstep, parsing statements of the user
program (written in PML), validating the statements, and gleaning the
essential information from these statements. The object module that
is created is then consumed by the control module, which is table
driven. The asymptotic series for each quantity of interest (utilization,
mean queue length, second moments on queue length, etc.) is encoded
in a table. The table contains information on how to compute the
elements of the series in terms of the moment partition functions of
the pseudo-networks (see Section III). These pseudo-networks are
solved by the pseudo-network modules using recursive techniques.
Finally, all relevant quantities of interest requested by the user are
displayed as output by the output module. PANACEA has been
modularly structured in this fashion, so that advanced users can bypass
one or more of the three phases of PANACEA (see Fig. 3), thus making
the execution faster. For example, an object module that has been
previously created can be directly passed on to the computation phase,
bypassing the compilation phase.

The above discussion is relevant to both Versions 1.0 and 1.1.
However, Version 1.1, which implements the class-hopping feature of
queueing networks, has an additional feature. The storage of the
routing matrices and the process of solving for their Perron eigenvector
are done out-of-core. A “MAP” is kept in-core denoting the exact
position, in secondary storage, of the matrix element P, (transi-
tion probability of going from node 7 to node i while hopping from
customer class o to customer class 7). Whenever this element needs to
be retrieved or stored, PANACEA performs an input/output operation
to the appropriate place in secondary storage. Naturally, a compromise
is made in sacrificing run time while gaining significant reduction in
virtual memory. The run time can be improved by “optimal” caching
of matrix elements, according to the availability of physical memory.

2856 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1982

I USER PROGRAM

LEXICAL
ANALYZER
INPUT
PHASE
PARSER
OBJECT MODULE

CONTROL MODULE

COMPUTATION
PHASE

PSEUDO-NETWORK MODULES

QUTPUT

QUTPUT MODULE PHASE

Fig. 3—Structure of PANACEA.

lll. THE COMPUTATIONS
3.1 Background to asymptotic expansions

Our description of the background to asymptotic expansions shall
be brief. We begin with the main results arrived at in the companion
papers.'"®® In addition, we restrict our descriptions to the first and
autocorrelative second moments of individual queue lengths in the
processors; various other quantities, such as throughput and processor
utilization, are also computed in PANACEA but omitted in the dis-
cussion as they are either simply derived from or closely related to the
quantities discussed.

In the network

p = number of classes of jobs, (1)

g = number of active (i.e., of types 1, 2, and 4)
processing centers’ (2)

PANACEA 2857

and let the classes and centers be indexed by o and 7, respectively. Let
n,. denote the random number of jobs of class ¢ in center 7. For the
leading moments from the stationary distributions of individual proc-
essor queue lengths, we have from Refs. (19) and (20) the following

exacl expressions:

ey () — T L)
ot o I(N) 1< o=p, (3)
__rgTKo(Ku_ 1) I:'Z:(N) IS_T'SQ'
(nﬂr(nar - 1))(K) - a12' I(N)

where

K, = population of jobs of class o

Tar = poy/puﬂ
_ relative number of visits of class o jobs to center 7

for = service rate of class o jobs in center 7
relative number of visits of class ¢ jobs to center 7
Pa0 = Z . - 3 ’
service rate of class o jobs in center 7

where the sum is over all infinite server centers 7 visited by class o
jobs;

a, =1-=Y K,r,, (>0 in “normal usage”)

I™(N) = integrals parameterized by N
m=0,1,2 1=so=p, 1l=17=g¢q

I(N) = I(N) (for m = 0 there is no dependence on ¢ or)

N = large parameter.
PANACEA chooses
N = 1/min r,,. (4)

While this choice is not at all critical, theoretical reasons corroborated
by computational experience indicate that it serves very well to keep
well within machine range all terms calculated in the expansions to be
described below.

Thus, the quantities requiring computation are the integrals and the
theory has developed the asymptotic expansions

t—1

I(N) ~ % Agw/N™ (5)

k=0

2858 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1982

Let us digress on
t = number of terms in asymptotic expansion. (6)

The error in the calculation of the integrals, and therefore of the queue
length moments in (3), from using only # terms is 0(1/N*). In PANA-
CEA, generally,

t=4. (7

[For I(N') only, the maximum number of terms is 5.] However, PAN-
ACEA has the facility to automatically select ¢ to be less than the
maximum. There are two reasons for this. First, if the user desires a
guaranteed response time, our detailed complexity count (see Section
IV) allows PANACEA to satisfy this by calculating the appropriate
value of ¢. As all output quantities are typically accompanied by lower
and upper bounds (see Section 3.6), this facility leading to small ¢ is
both useful and often exercised. A second reason is that PANACEA
looks for departure from monotonicity of the series in (5), and in the
event of its occurrence it truncates the series optimally. This a rare
phenomenon and always occurs, as the theory explains, for small
networks when N given in (4) is not large enough.

The following resumes the discussion on the computation of the

(m)

expansion coefficients A,).

3.2 The pseudo-networks in the computation of the expansion
coefficients

(m)

The expansion coefficients {4, ,;0=m=2,1<oc=<p l=7=<g,
0 = & = ¢ — 1} have been completely specified in Refs. 19 and 20 as
simple algebraic combinations of other basic quantities g™ (n). For
example,

1 2
Ala=2 Z Big:"(3e) + 2 ¥ B g (e))
J

—t

= E BiBrg! (2e; + 2e.) + 38,2 (3e,)

[\3

+ Y Big. (e, + 2e) + 22" (2e,), (8)

J#a

in which j and % are distinct class indices, €, is the vector with 1 in the
Jth location and 0 elsewhere, and B, = K;/N. (For m = 0, A", is
independent of ¢, T and also denoted by A,.)

It turns out that the underlymg quantities g™ (n) are the mth
moment partition functions® of a hypothetical network with popula-
tion vector n. This latter network is related to the original network in
having the same number, g, of processing centers but has no infinite

PANACEA 2859

server center and has quite different processing rates. The two impor-
tant features to note of the population vectors n that appear as
arguments of g!™ in formulas such as (8) are that

at most ¢ classes have nonzero population, (9a)
the total population,), n, < 8. (9b)

For the worst case ¢ = 4, we represent
n = n;e; + nje; + nye, + nsey, ni+nj+n,+n,=<8, (10)

where (i, j, k, ¢) are class indices of the original network and thus 1 =
i, j, k, £< p. Without loss of generality we consider only 1 = ¢ < J<k
<{=p.

For a particular choice of a 4-tuple (i, j, k, ¢) we therefore have a
hypothetical network with only four classes. We call such a restricted
hypothetical network a pseudo-network. Clearly, there are as many as

(‘Z) pseudo-networks in the worst case and (};) in general. However,

each pseudo-network is small.

To summarize, PANACEA computes ¢ (¢ < 4) terms in the expan-
sions of each of (1 + 2pq) integrals, and the expansion coefficients
A!™, are computed from the moment partition functions of the pseudo-

networks of which there are (I;), each with ¢ classes and a total

population over all classes of at most 8.

3.3 The pseudo-network computations

PANACEA solves for the mth moment partition functions { g (n))
for each of the pseudo-networks in turn where each pseudo-network is
characterized by a leading ¢-tuple from (i, j, k,), 1 s i<j<k</{(=
p. The Oth moment partition function is independent of , i.e.,

£g%n) = g(n), (11)

which is the usual partition function in the literature. The computation
of g(n) is done by the established convolutional algorithm.'” For
moments m = 1, 2 the computation is done by specializing the recur-
sions given in Ref. 20 to pseudo-networks.

It is noteworthy that for PANACEA we have devised a scheme for
implementing the recursion in which only those g{™(n) for which
¥ n, < 8 are computed.

As each pseudo-network has ¢ job classes there are (8 :' t) such
8+ t) (m)

1A

vectors n, and (1 + 2q) (computed values of { g7 (n)}.

In the computational phase of PANACEA the set of pseudo-net-

2860 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1982

works is analyzed only once to compute all the expansion coeffcients
A,y This implementation relies on (1 + 2pq) registers to be set up
at the outset of the computational phase, one for each of the expansion
coefficients. On completion of the computations pertaining to any
pseudo-network, the computed data is used to update the relevant
registers.

The implementation described above attempts to minimize not only

arithmetical operations, but also virtual storage requirements.

3.4 Error bounds

A basic feature of PANACEA is that all computed quantities are
accompanied by upper and lower bounds. This is made possible by the
following theoretical result'**:

t—1
IV'Y(N)= ¥ A, /N* if tis even,
k=0

t—1
= ¥ A7W/N* if tis odd. (12)
k=0
PANACEA computes the upper (lower) bound for the moments of the
individual queue lengths given in (3) by using odd and even (even and
odd) numbers of terms, respectively, in the asymptotic expansions for
the integrals in the numerators and denominators of the expressions
in (1). In certain cases (see Section 3.1) only one of the usual pair of
bounds can be computed and in other, even rarer, cases no bounds can
be computed.

IV. COMPUTATIONAL COMPLEXITY

We give a count of the total number of multiplications and the
storage requirements for a problem solution on PANACEA. As mul-
tiplications are overwhelmingly more time-consuming than additions
in double-precision floating-point operations, we omit a count of the
latter.

4.1 Multiplications

Consider first the multiplications in the analysis of a particular
pseudo-network. We have already noted in Section 3.4 that the number
of vectors n that are valid arguments of g™ (.) is (8 ': t). For each
vector n as argument the convolutional algorithm for computing g(n)
requires g multiplications, and to calculate g (n), m = 1, 2 and all
7, there are 2¢g additional multiplications. Thus,

multiplications per pseudo-network = (¢g + 2tq) (8 ': t). (13)

PANACEA 2861

Since only (I;) pseudo-networks are analyzed,

multiplications total = (f:) 3tq (3 j ‘) (14)

~ O(gp") (15)

as g and p become large.
The remaining major component of the computations, the updatings

of the registers (see Section 3.5), requires a total of less than 280 (Ft))

multiplications, which is usually negligibly small compared with the
number in (14).

4.2 Storage

Again, consider first the requirement for a particular pseudo-net-
work. The actual storage used in PANACEA is somewhat more than
the number of computed quantities and is

(1 + 2¢)10" (16)

No further storage is required for the computations of all the pseudo-
networks. There are also the (1 + 2pq) registers, a small number
relative to (16).

4.3 Experimental results

We have conducted experiments on PANACEA to verify these
results. Figure 4 presents PANACEA’s response time for a particular
network (see Fig. 4a) in which the number of terms in the asymptotic
expansions ¢ = 4. The results are for various values of the population
K (Fig. 4b), the number of classes (Fig. 4c), and the number of active
processing centers g (Fig. 4d). The broad features of the results on the
response times are in agreement with the above complexity analysis:
most importantly, K does not affect the response time and the de-
pendencies on p and q are like p* and gq.

V. NUMERICAL EXAMPLES

Several computational experiments have been conducted on PAN-
ACEA. These experiments were designed to highlight specific features
of the package, explore its limitations, and to identify numerical
stability issues. To date, we have not encountered difficulties with
overflow or underflow in computing the asymptotic series. Hence, the
rescaling of problem parameters that is often required to avoid nu-
merical instability in the established algorithms is not at all an issue

2862 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1982

Sl

cl

(p)

4!

[44

[43

Sl

b ‘s1a3u92 3uissadord SA1OR JO JaqUINU Y3 (P) ‘SISSE[I Jo Jaquinu ayy (9) ‘¥
uorjerndod ay3 yo san[ea sNoLIBA (q) 110§ S}MNsal AJxa[dwod surL], ‘Pajonpuod alam sJUSWLIAAXa ay) Yorym Uo yiomjau ay,L, (8)—p "]

cl 6 9 or

(2)

oct

(e)
S3SSV1D ONILYINJHID TVIILN3IA! d

g=

b'gl=d

(q)

SS¥1D HOV3 NI SHIWOLSND ¥

0g

0§

oL

06

SANOJ3S NI JWIL 3SNOJS3IH

PANACEA 2863

here. The package has so far performed in a very stable and robust
fashion in solving queueing network problems of widely differing sizes.

In all our computational experiments, the queueing network prob-
lems ranged in size from very small (one customer class with ten
members in the class) to very large (17 customer classes with 17,000
total members in the customer classes). All problems were real-life
problems arising in modeling large communication networks. The
nature of the interaction of the performance analyst with the package
involved solving a given problem, making quick parameter changes in
the model, resolving the problem, and so on. This iterative mode of
interaction implies the ability of the package to give fast response
times, irrespective of the size of the problem. PANACEA was able to
ensure a response time of less than 70 seconds for all problems by
adaptively truncating the asymptotic series. (All problems were solved
on VAX 11/780 with the UNIX* operating system, Version 3.0, and
lightly loaded <60%.) For reasons of brevity, we elaborate only on five
numerical examples.

5.1 Example 1

The seven-node, nine-class queueing network shown in Fig. 1 (see
the PML program shown in Fig. 2 for degrees of multiprogramming,
service rates, etc.) was solved by PANACEA with a response time of
about 20 seconds. Figure 5 shows the output displayed by PANACEA
corresponding to the node DBP. Several features of Fig. 5 are note-
worthy. First, PANACEA prints the number of terms computed in
each asymptotic series. In solving this problem, three terms were
computed. Second, the bounds printed for all quantities of interest are
very “tight.” For example, the DBP utilization for customer class 9 is
44.412201 and the upper bound on this utilization is 44.4305312 (an
error of at most 0.05 percent). The standard deviations on queue
lengths of all customer classes in the node DBP again show the “tight”
nature of the bounds. Hence, with three terms in the series, a near-
exact solution was obtained for the problem. This implies that for this
particular problem, with a given set of parameters, the series converged
rapidly.

5.2 Example 2

For some queueing network problems, one may not be able to
achieve rapid convergence. This typically happens for “small” net-
works. Truncating the series too early may result in unacceptable
errors. To demonstrate this phenomenon of slow convergence, we
modeled the queueing network shown in Fig. 1 with one customer class

* Trademark of Bell Laboratories.

2864 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1982

COMPUTATION PHASE BEGINS.
PACKAGE USES 3 TERMS IN THE ASYMPTOTICS FOR GOOD RESPONSE

TIME ON THE VAX 11/780 HARDWARE

UTILIZATION STATISTICS ON PROCESSING NODES

UTILIZATION STATISTICS FOR NODE DBP

CLASS UTILIZATION UPPER BOUND LOWER BOUND
1 0.00000000e + 00 0.00000000e + 00 0.00000000e + 00
2 0.00000000e + 00 0.00000000e + 00 0.00000000e + 00
3 0.00000000e + 00 0.00000000e + 00 0.00000000e + 00
4 0.00000000e + 00 0.00000000e + 00 0.00000000e + 00
5 1.68863533e — 01 1.68890352e — 01 1.68863533e — 01
6 1.68879473e — 01 1.68906161e — 01 1.68879473e — 01
7 9.95496911e — 04 9.95522116e — 04 9.95496911e — 04
8 1.03167269e — 03 1.03169971e — 03 1.03167269e — 03
9 4.44122010e — 01 4.443056312e — 01 4.44122010e — 01

MEAN QUEUE LENGTH STATISTICS
STATISTICS FOR NODE DBP

MEAN QUEUE UPPER BOUND LOWER BOUND
CLASS LENGTH

1 0.00000000e + 00 0.00000000e + 00 0.00000000e + 00
2 0.00000000e + 00 0.00000000e + 00 0.00000000e + 00
3 0.00000000e + 00 0.00000000e + 00 0.00000000e + 00
4 0.00000000e + 00 0.00000000e + 00 0.00000000e + 00
5 7.61035551e — 01 7.61035551e — 01 7.37862183e — 01
6 7.61104587e — 01 7.61104587e — 01 7.37942427e — 01
7 4.50140929e — 03 4.50140929%e — 03 4.37652979% — 03
8 4.66486873e — 03 4.66486873e — 03 4.53537014e — 03
9 1.99251497e + 00 1.99251497e + 00 1.92234003e + 00

STANDARD DEVIATION STATISTICS ON QUEUE LENGTH
STATISTICS FOR NODE DBP

CLASS STD. DEVIATION UPPER BOUND LOWER BOUND
1 0.00000000e + 00 — —_
2 0.00000000e + 00 — —_
3 0.00000000e + 00 — —
4 0.00000000e + 00 — —
5 1.14408350e + 00 1.15916418e + 00 1.08306158e + 00
6 1.14414970e + 00 1.15922376e + 00 1.08317002e + 00
7 6.71791109e — 02 6.71873612e — 02 6.62227374e — 02
8 6.83911390e — 02 6.83998675e — 02 6.74162160e — 02
9 2.39306393e + 00 2.44979369e + 00 2.16185701e + 00

Fig. 5—Output of model example.

(this class required the services of DBP) with 20 terminals in the class.
Table I shows the variation in the utilization of DBP as the number of
terms in the asymptotic series is varied. Assuming that after accumu-
lation of five terms, the series has converged to the exact solution, we
see that truncating the series after the first term results in a 7-percent
error, truncating the series after the second term results in a —4.4-
percent error, and so on. Notice the oscillatory nature of convergence.
After accumulation of four terms, we still have an error in the units
position. Typically, this slow convergence occurs for “small” problems,
and hence one can potentially compute more terms in the series
without adversely increasing the time complexity. It is interesting to

PANACEA 2865

Table |I—Benefit of multiple terms

Number of
Terms Used in DBP
Expansion Utilization Error (%)

1 55.56 +7.0
2 49.63 —4.4
3 53.91 +3.8
4 50.68 -24
5 51.92 0

observe that slow convergence is an inherent property of the problem
that cannot be cured by large choice of N. At first sight it might appear
that simply by choosing N large enough, the convergence of the series
may be speeded up. A closer examination of the terms of the asymp-
totic series reveals the fact that these terms are independent of N and
depend only on the initial problem parameters.

5.3 Example 3

Table II shows results of comparing our package with a commercially
available package, CADS.” CADS is marketed by Information Re-
search Associates and it uses the convolutional algorithm to solve the
queueing network. Again, the prototypical network shown in Fig. 1
was solved with one customer class and ten terminals in that class.
Attempts at increasing the degree of multiprogramming or increasing
the number of classes in the problem resulted in a breakdown of
CADS. Hence, extensive comparisons of PANACEA and CADS on
large problems could not be accomplished. Table II shows the results
for a particular problem solved by both CADS and PANACEA and
substantial agreement is exhibited. We have also validated PANACEA
and CADS on many other “small” networks. On “small” networks
with more than one class and about 10 terminals in all the classes, a
significant improvement in the response time of PANACEA was
observed, while near-identical results were printed by both PANACEA
and CADS. This, of course, is corroborated by our time-complexity
analysis (Section IV).

Table Il—Comparison with CADS

CADS PANACEA
Utilization Queue Utilization Queue
Processor (%) Length (%) Length
DBP 26.1 0.338 26.08 0.3365
CPU1 4.35 0.0452 4.34 0.0452
FEP1 4.3 0.0452 4.34 0.0452

2866 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1982

CUSTOMERS PERMITTED TO CHANGE
CLASSES AFTER COMPLETING SERVICE
AT A NODE

J—=i+1

=i

PROBABILITY =0.5 DBP1
5 —=1 /

TERMINAL CPU

i—=i

PROBABILITY = 0.5 DBP2

i+l

PROGRAM BEHAVIOR

CPU TIME DBP TIME
ATOMIC OPERATION INMILLISECONDS IN MILLISECONDS
OPEN FILE SYSTEM 200 80

OPEN FILE 50 40

READ 10 a0

CLOSE 10 40

Fig. 6—Class-hopping model.

5.4 Example 4

This example illustrates the inter-class-transition feature of PAN-
ACEA. Version 1.1 of PANACEA permits “class hopping” between
customer classes. Models with class-hopping features are the natural
tools for analyzing precedence-constrained sequences of actions of a
customer in a computer system. Figure 6 shows the central server
model in which a terminal-generated request goes through a series of
transactions in a strict sequence. Initially, the terminal request is
processed by the CPU by executing a program. The germane aspects
of the program behavior are captured in four atomic data base opera-
tions. Each data base operation set-up time in the CPU and the access
time in either of the data base processors, denoted by DBP1 and
DBP2, are shown in Fig. 6. When the terminal request is processed by
the program, a series of data base transactions is generated to either
of the DBPs with equal probability. The transactions, by their inherent
nature, have to be executed in the following strict sequence: open file
system, open file, read, and close. This precedence is enforced in the
model by class hopping. The open-file-system transaction and the
terminal request are both assigned a customer class label of 1. The
other three atomic data base transactions are assigned class indices 2,
3, and 4, respectively. Class 5 is a ‘“clean-up” class to gracefully

PANACEA 2867

1 /*CLASS HOPPING EXAMPLE*/
2 OUTPUT CPU util + glength + g2length;
3 /*ROUTING*/

4 CLASS TRANSITION (1,2,3,4,5};

5 TER :.CPU ((1)1.0);

6 CPU ‘TER (5 ((1)L.O}};
CPU .DBPL,DBP2 {(1 to 4).5);

DBPLDBP2 :CPU
{{(2)1.0},{(3)1.0},{(4)1.0},{(5) 1.0} };

/*SERVICE RATES*/

CPU {1000,/200,1000/50,1000/10,1000/10,1000/5};
DBP1,DBP2 {1000/80,(2 to 4)1000/40};

TER {(1).05};

CPU PS; TER IS;DBP1,DBP2 PS;
DEGREE ((1)40};
END;

Fig. 7—PML program describing the class-hopping model.

terminate the terminal request. Now, all customers retain their class
identity in all but three transitions. When a transition is made from
DBP1 or DBP2 to CPU, a hop occurs from class j to class j + 1, as
shown in Fig. 6 (1 = =< 4). Customer class 5 hops back to class 1 when
transiting from the CPU to the terminal.

Figure 7 shows the PML program describing this model. A statement
in line number 4 indicates class indices among which hops can take
place. The routing statements appropriately denote the “from” class
and the “to” class, if necessary.

Figure 8 shows a snapshot of the output produced by PANACEA.
The upper and lower bounds are observed to be “tight” for all the
quantities displayed in Fig. 8. The response time in solving this
problem by PANACEA was almost instantaneous, once the out-of-
core phase was completed. The out-of-core phase itself consumed
about 60 seconds of elapsed time, on a lightly loaded VAX 11/780.

5.5 Example 5

We now consider the large communication network shown in Fig. 9,
which consists of 23 processors, 17 classes and 1,000 terminals in each
class. For reasons of brevity, we omit further description of this
network. However, one can easily appreciate the explosion in state
space of this queueing network and the CPU time that would be
required to solve this problem by the previous methods. PANACEA
was able to solve this problem almost instantaneously (response time
was not perceived by the user). Figure 10 shows the output produced
by PANACEA. Notice that only one term was computed for each
asymptotic series. This implies, from the error analysis, that one of
the bounds could not be computed for mean queue length and standard

2868 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1982

COMPUTATION PHASE BEGINS.
PACKAGE USES 4 TERMS IN THE ASYMPTOTICS FOR GOOD RESPONSE TIME ON

THE VAX 11/780 HARDWARE

UTILIZATION STATISTICS ON PROCESSING NODES
UTILIZATION STATISTICS FOR NODE CPU

CLASS NODE UTILIZATION UPPER BOUND LOWER BOUND
1 3.84754302e-01 3.84754302e—01 3.84336505e—01
2 9.61885755e—02 9.61885755e—-02 9.60841263e—02
3 1.92377144e-02 1.92377144e-02 1.92168245e—-02
4 1.92377144e—-02 1.92377144e-02 1.92168245e—-02
5 9.61885719e—03 9.61885719e—-03 9.60841227e—-03

MEAN QUEUE LENGTH STATISTICS

STATISTICS FOR NODE CPU

CLASS MEAN QUEUE LENGTH

UPPER BOUND

LOWER BOUND

1 7.65705297e—-01 7.93131456e—01 7.65705297e—01
2 1.91426324e—-01 1.98282864e—01 1.91426324e—01
3 3.82852634e—-02 3.96565713e—02 3.82852634e—02
4 3.82852634e—02 3.96565713e—02 3.82852634e—-02
5 1.91426317e—-02 1.98282857e—02 1.91426317e—-02

STANDARD DEVIATION STATISTICS ON QUEUE LENGTH

STATISTICS FOR NODE CPU

CLASS STD. DEVIATION UPPER BOUND LOWER BOUND
1 1.08703258e+00 1.19926103e+00 1.06718645e+00
2 4.66285569e—01 4.88468353e~ 01 4.63411440e—-01
3 1.98305571e—01 2.03148498e—01 1.98035885e—01
4 1.98305571e—01 2.03148498e—-01 1.98035895e—01
5 1.39293183e—01 1.42237373e-01 1.39197236e—01

END OF OUTPUT STATISTICS.

process terminated

*Q
Alice:E

Fig. 8—Output of Example 4.

deviation statistics. Nevertheless, bounds on the utilization could be
computed and they show acceptable accuracy. For example, the max-
imum percentage error occurs for customer class 14 in the node “hsc2”
and it is less than 3 percent. Higher accuracy can be obtained only by
computing the second element of the series at the expense of significant
increase in response time.

VI. RECENT AND FUTURE DEVELOPMENTS

Recently, we have implemented Version 2.0 of PANACEA in which
several additional features have been incorporated.

PANACEA 2869

HSC1 HSC2

CPU1 CcPU2 . . . CPU10

SWITCH

TERMINAL

23 NODES, 17 CLASSES, 17000 CUSTOMERS

Fig. 9—Large network of Example 5.

(i) Version 2.0 solves mixed queueing networks in which some job
classes, or possibly no job classes, are closed, while the remaining
classes are open.

(it) The computational method described in this paper is supple-
mented by other established recursive techniques.”*'” The package
selects the latter for small networks and the method of asymptotic
expansions for all other networks.

Future work will be directed to:

() Heavy usage asymptotics

(iZ) Incorporation of load-dependent servers
(tit) Sparsity exploitation in solving pseudo-networks
(iv) -Priority queue approximations.

2870 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1982

COMPUTATION PHASE BEGINS.
PACKAGE USES 1 TERMS IN THE ASYMPTOTICS FOR GOOD RESPONSE TIME ON

THE VAX 11/780 HARDWARE

UTILIZATION STATISTICS ON PROCESSING NODES
UTILIZATION STATISTICS FOR NODE hsc2

CLASS

10
11
12
13
14
15
16
17

MEAN QUEUE LENGTH STATISTICS

UTILIZATION

6.58941204e—-02
6.59778304e—-03
1.09938399e-02
5.99891352e—-03
6.46839982e—01
6.59868518e—03
1.09963458e—-02
5.99891352e—-03

STATISTICS FOR NODE hsc2

CLASS MEAN QUEUE LENGTH

10
11
12
13
14
15
16
17

STANDARD DEVIATION STATISTICS ON QUEUE LENGTH

3.87797861e—01
3.87797869e—02
6.46329747e—02
3.52543520e—02
3.87797866e+00
3.87797869e—-02
6.46329747e—02
3.52543520e—-02

STATISTICS FOR NODE hsc2

CLASS

10
11
12
13
14
15
16
17

STD. DEVIATION

6.88753131e—-01
1.99112072e-01
2.58917088e—-01
1.89657360e—01
3.54066101e+00
1.99112072e-01
2.58917088e—01
1.89657360e—01

END OF OUTPUT STATISTICS.

Fig. 10—Output of Example 5.

UPPER BOUND

6.60000106e—02
6.60000119e—-03
1.10000014e—-02
6.00000113e—03
6.60000114e—-01
6.60000119e—-03
1.10000014e—-02
6.00000113e—-03

UPPER BOUND

3.87797861e—01
3.87797868e—-02
6.46329747e—02
3.52543520e—-02
3.87797866e+00
3.87797869e—02
6.46329747e—-02
3.52543520e—-02

UPPER BOUND

7.90422721e—01
2.02853370e-01
2.66862288e—01
1.92906147e—01
5.25119023e+00
2.02853370e—-01
2.66862288e—01
1.92906147e—-01

LOWER BOUND

6.58941204e—-02
6.59778304e—03
1.09938399e—02
5.99891352e-03
6.46839982e—01
6.59868518e—03
1.09963458e—02
5.99891352e—-03

LOWER BOUND

LOWER BOUND

REFERENCES

1. F. P. Kelly, Reversibility and Stochastic Networks, New York: John Wiley, 1980,
Chapter 3.

2. L. Kleinrock, Queueing Systems. Vol II: Computer Applications, New York: John
Wiley, 1976, Chapter 4.

PANACEA 2871

3. M. Schwartz, Computer-Communication Network Design and Analysis, Englewood
Cliffs, NJ: Prentice-Hall, 1977, Chapter 11.

. F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios, “Open, Closed and
Mixed Networks of Queues with Different Classes of Customers,” J. of the ACM,
22, No. 2 (April 1975), pp. 248-60.

5. F. R. Moore, “Computational Model of a Closed Queueing Network with Exponential
Servers,” IBM Journal of Research and Development, 16, No. 6 (November 1972),
pp. 567-72.

. J. Buzen, “Queueing Network Models of Multiprogramming,” Ph.D. Thesis, Div. of
Eng. and App. Sci., Harvard University, Cambridge, MA: 1971.

. R. R. Muntz and J. Wong, “Asymptotic Properties of Closed Queueing Network
Models,” Proc. 8th Annual Princeton Conf. on Info. Sci. and Systems (March
1974), pp. 348-52.

8. D. P. Gaver and G. S. Shedler, “Approximate Models for Processor Utilization in
Multiprogrammed Computer Systems,” SIAM J. on Computing, 2 (September
1973), pp. 183-92.

9. M. Reiser, “A Queueing Network Analysis of Computer Communication Networks
with Flow Control,” IEEE Trans. Commun., COM-27, No. 8 (August 1979), pp.
1199-1209.

10. S. S. Lam and M. Reiser, “Congestion Control of Store-and-Forward Networks by
Input Buffer Limits-An Analysis,” IEEE Trans. Commun., COM-27, No. 1 (Jan-
uary 1979), pp. 127-34.

11. B. Pittel, “Closed Exponential Networks of Queues with Saturation: The Jackson-
Type Stationary Distribution and Its Asymptotic Analysis,” Math. of Oper. Res.,
4, No. 4 (November 1979), pp. 357-78.

12. E. Arthurs and B. W. Stuck, “A Theoretical Performance Analysis of a Markovian
Switching Node,” IEEE Trans. Commun., COM-26, No. 11 (November 1978), pp.
1779-84.

13. J. P. Buzen, “Computational Algorithms for Closed Queueing Networks with Ex-
ponential Servers,” Commun. of the ACM, 16 (September 1973), pp. 527-31.

14. M. Reiser and H. Kobayashi, “Queueing Networks with Multiple Closed Chains:
Theory and Computational Algorithms,” IBM J. of Res. and Dev., 19, No. 3 (May
1975), pp. 283-94.

15. M. Reiser and S. S. Lavenberg, “Mean Value Analysis of Closed Multichain Queueing
Networks,” J. Assoc. Comput. Mach., 27 (April 1980), pp. 312-22.

16. C. H. Sauer and K. M. Chandy, “Computer Systems Performance Modeling, A
Primer,” Englewood Cliffs, NJ: Prentice Hall, 1981.

17. S. C. Bruell and G. Balbo, “Computational Algorithms for Closed Queueing Net-
works,” New York: North-Holland, 1980.

18. J. McKenna, D. Mitra, and K. G. Ramakrishnan, “A Class of Closed Markovian
Queueing Networks: Integral Representations, Asymptotic Expansions, General-
izations,” B.S.T.J., 60, No. 5 (May-June 1981), pp. 599-641.

19. J. McKenna and D. Mitra, “Integral Representations and Asymptotic Expansions
for Closed Markovian Queueing Networks: Normal Usage,” B.S.T.J., 61, No. 5
(May-June 1982), pp. 661-83.

20. J. McKenna and D. Mitra, “Asymptotic Expansions and Integral Representation of
Moments of Queue Lengths in Closed Markovian Networks,” to be presented at
the Int. Seminar on Modelling and Performance Evaluation Methodology, Paris,
January 1983. .

21. M. E. Lesk and E. Schmidt, unpublished work.

22. K. G. Ramakrishnan and D. Mitra, unpublished work.

23. G. M. Weinberg, Psychology of Computer Programming, New York: Van Nostrand,
1971.

24. Stephen C. Johnson, unpublished work.

25. “User’s Manual for CADS,” Austin, TX: Information Research Associates.

-

]

2872 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1982

