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Symmetric n-way power dividers (and combiners) are needed to
feed multi-element antennas and to combine the output powers of a
number of solid-state amplifiers and oscillators over a broad fre-
quency range. We present a unified method of analysis for computing
the frequency responses of symmetric, n-way power dividers of the
Wilkinson, radial, and fork types, whose transmission lines are
allowed to be coupled and nonuniform and may be surrounded by an
inhomogeneous dielectric medium. The method is based on the anal-
ysis of a simple one- or two-port network for each of the n eigenmodes
of the power-divider structure, resulting in a considerable improve-
ment in the speed of computation, as well as a sizable reduction in
storage requirements, as compared to a standard method of nodal
analysis. Furthermore, the aforementioned one- and two-port net-
works facilitate the design and optimization of the power dividers
over a desired frequency band.

. INTRODUCTION

Symmetric, n-way power dividers have the advantage of giving
neither amplitude nor phase power-division unbalance at all frequen-
cies. Thus, they are used in many broadband applications such as in
the feed system of multi-element antennas, and as combiners of solid-
state amplifiers and oscillators. They are also used (without isolation
resistors) for fanning in and fanning out in high-speed, digital inte-
grated circuits. This paper is primarily concerned with methods of
analysis suitable for the computation of the frequency response of the
class of symmetric, n-way power dividers represented schematically in
Fig. 1. This includes the well-known Wilkinson power divider,'™® the
recently introduced radial®'* and fork'*"® power dividers (see also Ref.
14, Fig. 1), and the coaxial power divider described in Ref. 14, Fig. 2,
which has the same topology as the radial power divider. The radial

1493



and the fork power dividers are particularly interesting since they are
both planar.

When Wilkinson' introduced his power divider, which consisted of
one stage of n, uniform, uncoupled transmission lines, and one network
of isolation resistors, he limited his analysis to the center frequency.
Later, several simple methods of analysis were introduced for the
computation of the frequency response of single- or multi-stage, Wilk-
inson, n-way power dividers with uniform, uncoupled lines and an
arbitrary n,>* with uniform uncoupled lines and n = 2,° with uniform,
coupled lines and n = 2,° with nonuniform, uncoupled lines and n = 2,’
and with uniform, coupled lines and n = 3.2 No methods are available
in the literature for the analysis of Wilkinson power dividers with
coupled and/or nonuniform transmission lines and an arbitrary value
of n.

The author' presented a method of analysis that led to closed-form
expressions for the scattering parameters of single- and double-stage,
radial and fork, n-way power dividers, and gave general design formulas
and tables for the values of the isolation resistances and characteristic
impedances involved to optimize the match and isolation among their
output ports. That work, however, was limited to the center frequency
and was restricted to uniform lines that may include coupling only in
the first stage.

A unified method of analysis is presented in the present paper for
the computation of the frequency responses of multi-stage, Wilkinson,
radial, and fork n-way power dividers. The n-conductor transmission
lines employed in these power dividers may be coupled and nonuniform
and may be surrounded by an inhomogeneous dielectric medium. The
method is based on developing n simple one- and two-port networks
that correspond to the n eigenmodes of the power-divider structure.
Nagai, Maekawa and Ono'* used similar networks but gave no details
of their development. (See note at the end of paper.)

Il. GEOMETRY AND BASIC ASSUMPTIONS

A schematic diagram of an n-way, equi-amplitude, equi-phase power
divider of the type considered in this paper is shown in Fig. 1. A source
of admittance Ysis connected to the input port (port 0), and n identical
loads of admittance Y, are connected to the output ports (ports 1
through n). The power divider has two main sections. The first section
is an input transformer consisting of p cascaded stages of transmission
lines of characteristic admittances Y, and electrical lengths ¢}, & =
1, 2, -+, p. The second section consists of / stages of n-conductor
transmission lines, within a shield or over a ground plane, with a
floating, n-terminal network of isolation resistors connected at the
output end of each stage. Three different geometries for these networks
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Fig. 1—A schematic diagram of an /-stage, n-way power divider with a p-stage input
transformer. The G’s are isolation-resistor networks (see Fig. 2).

are shown in Fig. 2, which correspond to (a) the Wilkinson power
divider,"® (b) the radial power divider®'? or to the coaxial power
divider described in Ref. 14, Fig. 2, and (c) the fork power divider'?'?
(see also Ref. 14, Fig. 1). All the isolation resistors in each stage, & =
1,2, ..., [, have the same conductance, G}, which may be different for
different stages. Thus, the conductance matrices of the isolation-resis-
tor networks may be written as

G’i = GkM: (1)

(b)

1 2 3 4 n

O O O

Gk

(c)
Fig. 2—Three different geometries for the isolation-resistor networks of Fig. 1, cor-

responding to the Wilkinson (a), the radial (b), and the fork (c) power dividers. The
conductance of each isolation resistor is G, where k£ (=1, 2, - - -, ) is the stage number.
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where M is an n X n matrix that depends on the topology of the
isolation resistors and is independent of k2. A g-stage output trans-
former may be included at each output port by eliminating the isola-
tion-resistor networks, i.e., by setting G, = 0, in the last ¢ stages.

Each of the n-conductor transmission-line stages may consist of
electrically identical, coupled or uncoupled, longitudinally uniform or
nonuniform conductors in a transversely homogeneous or inhomoge-
neous dielectric medium. However, to ensure proper operation of the
power divider and to facilitate the method of analysis presented in this
paper, these transmission lines, and the isolation-resistor networks,
must satisfy the three basic assumptions given below. As is seen later,
these assumptions are not as restrictive as may appear at a first glance.
For example, they are automatically satisfied when the n conductors
are identical and uncoupled from one another, or when the arrange-
ment of the n conductors, which may be arbitrarily coupled, and the
geometry of the isolation-resistor networks are both circularly sym-
metric, as is the case in the Wilkinson and the radial power dividers.
Also, in a planar, side-by-side conductor arrangement combined with
a linear geometry for the isolation-resistor networks, as is the case in
the fork power divider, these assumptions can be satisfied after impos-
ing some realistic conditions, which are discussed later.

Let Ci(x) and Cy(x) be, respectively, the n X n per-unit-length (pUL)
capacitance matrices' of the n conductors at a location x on the kth
stage when the surrounding dielectric, if any, is left in place, and when
it is replaced by free space. Various numerical methods are available
in the literature'®'® for the computation of the PUL capacitance ma-
trices of uniform coupled or uncoupled lines in a homogeneous or
inhomogeneous dielectric medium. The same methods can be used for
lines with gradual nonuniformities by considering them to be locally
uniform in the vicinity of any given cross section.

Assumption 1: The matrices Ci(x) and Cir(x) have the same set of
real, orthonormal eigenvectors, qm, m = 0, 1, ---, n — 1, which are
independent of both k and x, even for nonuniform lines.

Thus, fork=1,2, ..., ,andm=0,1, ..., n — 1,

Ck(x)qm = Tfk.m(x)q'n, (28)
Ci(x) Qi = N (X) Qo (2b)

where the eigenvalues, n.n(x) and 7x=(x), are real and positive since
the PUL capacitance matrices are real, symmetric and positive defi-
nite.'®

Assumption 2: One of the aforementioned eigenvectors, whose mode
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number is defined to be m = 0, is the vector
1
q@=n"1]. 3)
1

Since the sum of the ith row of the PUL capacitance matrix is the
PUL capacitance to ground of the ith conductor,” it follows from (2)
and (3) that Assumption 2 is equivalent to requiring all conductors to
have the same PUL capacitance to ground at each cross section. An
important implication of this assumption in the case of uncoupled
lines, where both Ci(x) and Ci(x) are diagonal, is that each matrix
would have equal diagonal elements, and hence, equal eigenvalues; i.e.,
both 7m(x) and Mm(x) become independent of m. In that case, the set
of eigenvectors of both matrices is arbitrary.

Assumption 3: All conductance matrices, Gy, of the isolation-resis-
tor networks have the same set of eigenvectors, which coincide with
the set of real, orthonormal vectors defined in Assumption 1.

Thus, from (1),

qu=Amqm, m=0! 11 ---,n—l, (4)

where the eigenvalues, A, are real nonnegative numbers because the
conductance matrices of passive, resistive networks are real, symmet-
ric, and positive semidefinite.

Since no current would flow in the terminals of an isolation-resistor
network when the voltages between its terminals and ground are all
equal, it follows that the multiplication of the matrix G, or M, by a
voltage vector proportional to qo, defined in (3), results in the zero
vector. Thus, qo is indeed an eigenvector of M, with the corresponding
eigenvalue

Ao = 0. (5)

As will be seen later, the above three assumptions guarantee that
the power-divider structure can support n uncoupled modes, one for
each q,,. Furthermore, the mode associated with qq, given in (3), is the
common, or equal-voltage, equal-current mode, which ensures equi-
amplitude, equi-phase power division at all frequencies with no dissi-
pation in the isolation resistors, when a signal is applied to the input
port of the power divider.

Ill. EIGENMODES IN THE N-CONDUCTOR TRANSMISSION LINES

Under the quasi-static, or quasi-TEM approximation, the generalized,
lossless, telegrapher’s equations, with exp( jwt) excitation, for any stage

SYMMETRIC N-WAY POWER DIVIDERS 1497



of the n-conductor transmission lines in Fig. 1 assume the form'

dii L(x) = —jwCh(x) Va(x), (6a)

Chl) % Vi(x) = —j(w/cHL(x), (6b)

where & (=1, 2, - .+, [) is the stage number, x is the distance along the
stage, w is the angular frequency, c is the speed of light in free space,
Vi(x) and I.(x) are n X 1 vectors representing, respectively, the
voltages and currents on the n conductors, and Cx(x) and Cg(x) are the
n X n, PUL capacitance matrices defined in the previous section.

It follows from (2) and (6) that the voltage and current eigenvectors
associated with the mth mode in the kth stage can be written as

Vin(x) = Ubm(x)qm, (7a)
Lem(x) = tam(x)Qm, (7b)

where vim(x) and ipm(x) are scaler functions satisfying the transmis-
sion-line differential equations

d% em(X) = —JBrm(X) Yim(x)Vsm(x), (8a)
L hn®) = 7 Ban) Yo Vin(), (8b)
where we defined the modal characteristic admittance
Yim(x) = c[nem(x)em(x)]" (9a)
and the modal propagation constant
Brm(x) = (w/€)[nr.m(x) /e m(x) ], (9b)

Note that if the surrounding dielectric medium is homogeneous of
permitivity e, then Ci(x) = ,Ci(x) and hence nen(x) = €ifm(x). Thus,
(9b) gives Bim(x) = (w/c) Ve, which is independent of m and x, even
for nonuniform and/or coupled lines.

3.1 Uniform lines

If the kth stage of the n-conductor lines is uniform, or even if it is
nonuniform with the cross section at any distance being a scaled
version of that at any other distance, then C; and C;, and hence also
Nem and 7M., are independent of x. In that case, (8) and (9) indicate
that the mth mode is represented in the kth stage by a uniform
transmission line of characteristic admittance

Yk.m = C(nk,mﬁk.m) 1/2 (103)
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and electrical length
Skm = BrmLr = (w/C)(nk.m/ﬁk.m)Usz, (10b)

where L, is the length of the kth stage. If, in addition to being uniform,
the lines are also uncoupled, it follows from (10) and from the discus-
sion following Assumption 2 that Y}, = Y and ¢»m = ¢» are indepen-
dent of m. In that case, Y, and ¢: are simply the characteristic
admittance and electrical length of each line in the kth stage.

3.2 Nonuniform lines

For some special cases of nonuniform lines, (8) can be solved
analytically (see, for example, the fundamental-mode solution of radial
waveguides given in Ref. 19). However, in the general case of nonuni-
form lines, (8) has to be solved numerically for each mode and each
stage. An effective numerical method of solution is to approximate the
nonuniform transmission line represented in (8) by a cascade of a large
number, s, of small, piecewise uniform, transmission-line segments of
lengths A;, i = 1, 2, -+, s. In that case, the ABCD matrix of the mth
mode on the kth stage is calculated from the matrix product

o]
Ck.m Dk,m
ima cos[ Bum(x:)A;] JY m(x)sin( Br.m(x:)Ai]
, (1)

~
-~

i=1

J Yk m(x)sin] Brm(x:)A] cos[ Brm(x:)A:]

where x; is the location of the center of the ith segment. The m may
be dropped from (11) if the lines are uncoupled.

IV. DEVELOPING THE MODAL EQUIVALENT CIRCUITS

In this section, we show that the power divider of Fig. 1 can be
represented by n simple networks—one lossless two-port network (Fig.
3a) corresponding to the common mode (m = 0), and rn — 1, generally
lossy, one-port networks (Fig. 3b) corresponding to the remaining
modes (m=1,2, ..., n—1).

A mode, m, on the n-conductor lines is identified from the fact that
both its voltage and current vectors are proportional to g, everywhere,
as given by (7). If the n-conductor lines are uniform, the mth mode is
represented on the kth stage by a uniform transmission line of char-
acteristic admittance Y., given by (10a), and electrical length ¢m,
given by (10b), as depicted in Fig. 3. If the n-conductor lines are
nonuniform, then the corresponding transmission lines in Fig. 3 should
be replaced by nonuniform lines whose ABCD matrices are given by
(11).
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Fig. 3—Equivalent circuits for the n modes of the power divider of Fig. 1, correspond-
ing to (a) the common mode, m = 0, and (b) the remaining modes.

Since each q,, is an eigenvector of every G, as given by Assumption
3, it follows that if a voltage vector proportional to q.. is applied to any
isolation-resistor network, then the corresponding current vector is
also proportional to q,.. Thus, the isolation-resistor networks preserve
each of the modes of the n-conductor lines. Furthermore, it follows
from (1) and (4) that the kth isolation-resistor network presents a
shunt conductance of A, Gy to the mth mode, as shown in Fig. 3b. No
such conductances exist in Fig. 3a since A, = 0, as given by (5).

The voltages on all conductors are forced to be equal at the node
joining the input transformer and the n-conductor lines in Fig. 1. Since
the common mode, m = 0, is the only mode with equal voltages on the
n conductors, and since all the other modes are orthogonal to that
mode, it follows that the common mode is the only mode coupled to
the input section of the power divider, as shown in Fig. 3a. The
remaining modes are effectively short-circuited at that point, as shown
on the left-hand side of Fig. 3b. The 1/n factor multiplying the
admittances of the input section in Fig. 3a is due to the fact that the
current at the output end of the input transformer is equally divided
among the n conductors of the output section.

Since the load admittances of the power divider are all equal to Y.,
it follows that the admittance matrix representing these loads is
diagonal, with all its diagonal elements equal to Y.. Thus, its eigen-
vectors are arbitrary, and hence can be the set, gn, m =0, 1, +.-,
n — 1, and its eigenvalues are all equal to Y.. This results in equal,
uncoupled loads, Y., for all the modal equivalent circuits in Fig. 3.

For n = 2, the equivalent circuits in Figs. 3a and 3b coincide,
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respectively, with the familiar even-mode and odd-mode circuits used
in the analysis of symmetric 2-way power dividers.””

V. CALCULATION OF THE FREQUENCY RESPONSE

Define the following reflection and transmission coefficients:

ro: Reflection coefficient of the input port of the two-port network
of Fig. 3a.

to: Transmission coefficient of the two-port network of Fig. 3a,
normalized to the port admittances such that | £ |* is the power
transmission coefficient.

T,.: Reflection coefficient of the output port of the network in Fig.
3 corresponding to the mth mode, m=0,1, ---,n — L.

These coefficients can be calculated at any frequency through the use
of standard, A BCD-matrix analysis® of the one- and two-port networks
of Fig. 3. Here, we show how to use this information to calculate the
frequency responses of the various elements of the (n + 1) X (n + 1)
scattering matrix, S’, of the power divider of Fig. 1. Let S be put in
the partitioned form

(12)

where Sp is the reflection coefficient of the input port, Su, i = 1, 2,
..., n, are the normalized transmission coefficients between the input
port and the n output ports, and 8 =[Sy, 5,7 =1,2, ---, n] is the
symmetric n X n scattering matrix among the n output ports.

Since the common mode, m = 0, is the only mode excited when a
signal is applied to the input port of the power divider, it can be shown
that

Soo = To (13)
Soi = n" 1, i=1,2 .+, 0. (14)
It follows from losslessness of the network of Fig. 3a that

Ir0|2+|t0|z=|SOO|2+n|SOi12=1. (15)

To calculate the output-ports scattering matrix, S, let a, and b
(= Sa,,) be the n X 1 vectors representing, respectively, the incident
and reflected wave amplitudes at the output ports of the power divider,
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corresponding to the mth mode. Thus, from the definition of I', it
follows that b,, = I'na,. Furthermore, because of (7), and from the
fact that a,, and b,, are defined by linear combinations of the voltage
and current vectors at the output ports, it follows that a,, and b,, are
both proportional to q... Hence, we reach the interesting result that
g~ is an eigenvector of S, with the corresponding eigenvalue I',, for
m=20,1, ---, n — 1. Thus, defining the orthogonal, modal matrix

Q=[qoq: * -+ Qn-1], (16)
and the diagonal matrix of eigenvalues
I'= diag(I‘o, F], ey, Pn—l), (17)

one can write S in the form
S =Qrq’, (18)

where “T” represents matrix transposition. If g ; is the ith entry of
Qm, (18) can be rewritten as

n—1

SU = S.fl' = n’_ll—‘o + E Qm,iQm,ij, i! J = 1! 2) sev, N, (19)
m=1
where use was made of (3).

VI. THE WILKINSON AND THE RADIAL POWER DIVIDERS

The Wilkinson and the radial power dividers, as well as the coaxial
power divider described in Ref. 14, Fig. 2, share the property of circular
symmetry. An example of the cross section of their n-conductor lines
is given in Fig. 4a, which also shows the various PUL capacitances. Of
course, this figure is only a topological representation of the case of
radial power dividers, where the actual cross section would lie on the
surface of a circular cylinder. Let Cipo(x) be the PUL capacitance to
ground of each conductor, and C;s(x) be the PUL capacitance between
two conductors separated by s spaces along the circumference, s =
1,2, ..., n— 1, where k represents the stage number and x the distance
along the stage. Thus, the off-diagonal elements of the PUL capacitance
matrix, Cr(x), are given by

Ci(x) |ij = Cr(x) |ji = —Chr,ji=j)(x) = —Chn—izji(x),
1#j=1,2++-,n, (20a)

where the last equality follows from circular symmetry, and its diagonal
elements are given by

[n/2]
Ck(x)iii = Ck.O(x) +2 E uSCk.s(x)a L= 11 2! e N, (20b)

g=1
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Fig. 4—Circularly symmetric (a), and side-by-side (b} conductor arrangements. (a)

corresponds to the Wilkinson power divider and, topologically, to the radial power
divider. (b) corresponds to the fork power divider.

where [n/2] is the integer part of n/2, and

(21)

v = Y%, neven, s=n/2
711, otherwise.

Similar expressions hold for the free-space PUL capacitance matrix,
Cu(x). The conductance matrix, G, of the kth isolation-resistor
network is given by (1), with

10 - 0 11 -0 1
.. 1 -

m=|? ! ol_2j11 1 (22)
M : n|: - H
00 -o- 1 11 1

for the resistors configuration of the Wilkinson power divider shown
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in Fig. 2a, or

r 2 -1 -1
-1 2 -1 0
-1 2 .
M= . . (23)
. 0
2 -1
-1 ' . -1 2|

for the resistor configuration of the radial power divider shown in Fig.
2b.

The matrices Cx(x), C #(x), and M given above are real, symmetric
circulants,” which is a direct consequence of circular symmetry.
Including the properties of realness and symmetry to the results given
in Ref. 21 for circulants, one can show that all real, symmetric circu-
lants of order n have the same set of real, orthonormal eigenvectors,

qm,m=0,1, ..., n — 1, where the ithentry, i = 1, 2, +++, n, of g is
given by

n=\2 m=0,

(2um/n)"*cos[2m(i — 1)x/n],
Qmi = m=12, ..., [n/2], (24)

(2/n)*sin[2m(i — 1)=/n],
m=[n/2]+1,[n/2]+2, ---,n -1,
where u,, is defined in (21) with s replaced by m. Note that (3) is
satisfied. Thus, circularly symmetric power dividers automatically
satisfy Assumptions 1 to 3 of Section II.
The eigenvalues of C.(x) are given, from (2a), (20), and (24), by

Meo(x) = Crolx), (25a)
[n/2]
Mem (X) = Nhn-m(x) = Cro(x) + 4 Y usCrs(x)sin®*(msm/n),

m=12 .-.,n—1. (25b)

Similar expressions hold for 7zm(x).
The eigenvalues of M for the Wilkinson power divider are given,
from (4), (22), and (24), by

Am=1 m=12...,n—1 (26)

The eigenvalues of M for the radial power divider are given, from (4),

1504 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1980



(23), and (24), by
An = Anem = 4 sin’(mz/n), m=12 -..,n—1. (27)

For both power dividers, A, = 0, as given in (5).

Because of the degeneracies of the mth and (n — m)th eigenvalues,
m # 0, shown in (25b), (26), and (27), which can actually be shown to
be a property of all real, symmetric circulants, it follows that the modal
equivalent circuits of Fig. 3b are identical for the mth and the
(n — m)th modes. Thus, for the Wilkinson and radial power dividers,

I=Thm, m=12 ...,n-1, (28)
and, hence, (19) and (24) give

m=1

[n/2]
Si;j=8ji= n“{l"g +2 Y umcos[2m(i -j)-r.r/n]I‘m}. (29)

Note that S;, is only a function of | — j |, and does not change when
|i —j|is replaced by n — | i — j |. This, of course, is consistent with the
circular symmetry of these power dividers.

For a Wilkinson power divider with uncoupled lines, i.e., with Cps(x)
= 0 for s # 0, it follows from (25) that 7, ..(x) is independent of m. This
fact and (26) indicate that the modal equivalent circuits of Fig. 3b are
identical for all modes, m # 0, i.e.,

T =T, m=23,---,n—1 (30)

Thus, (29) gives
Si=n""[To+ (n— DT], (31a)
Sij=n""[To —T], L #J. (31b)

These equations give the same results obtained in Refs. 2 to 8.
VIl. THE FORK POWER DIVIDER

The conductance matrix, G, of the kth isolation-resistor network of
the fork power divider (Fig. 2c) is given by (1), with

[ 1 -1 .
-1 2 -1 0
-1 2.
M= (32)
'0
2 -1
| -1 1
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It can be shown that M has the real orthonormal set of eigenvectors,

qm,m=20,1, ..., n — 1, where the ith entry,: = 1,2, ..., n, of qm is
o nT m =0, (33a)

Imi =1 (2/n)?cos[m(2i — 1)w/2n], m=1,2, ---,n—1 (33b)

Note that (3) is satisfied. The corresponding eigenvalues are given,
from (4), (32), and (33), by

Am = 4 sin*(mn/2n), m=0,1,..-,n—1. (34)

Note that (5) is satisfied.

A cross section of a microstrip circuit showing the planar, side-by-
side arrangement of the n-conductor lines of the fork power divider is
given in Fig. 4b. Pompei, Benevello, and Rivier” gave strong evidence,
based on extensive numerical computations, that the capacitance
matrices, Ci(x) and C.(x), of such a conductor arrangement have the
same set of eigenvectors. However, for that set to be independent of &
and x, and to coincide with the set defined in (33), i.e., to satisfy
Assumptions 1 to 3 of Section II, the following conditions and approx-
imations have to be fulfilled.

(i) The n conductors have the same PUL capacitance to ground,
which is denoted by Cio(x), or Cro(x), depending on the presence, or
absence, respectively, of the dielectric substrate.

(i) The PUL capacitances between adjacent conductors are identical
and are given by Cp.(x), or Cp;(x), depending on the presence, or
absence, respectively, of the dielectric substrate.

(iti) The puL capacitances between nonadjacent conductors are
negligible.

Note that these conditions would, in general, require the conductors
to have different widths and spacings. The two end conductors, in
particular, would have to be narrower than the intermediate conduc-
tors, as depicted in Fig. 4b, to account for the fringing capacitances at
both ends. Of course, all the conditions are fulfilled exactly for well-
separated, i.e., uncoupled, identical conductors.

With the above three conditions in mind, one can write the PUL
capacitance matrix of the conductors of Fig. 4b in the form

Cir(x) = Cro(x)U + Cp,1 (x)M, (35)
where U is the n X n unity matrix and M is the same matrix given in
(32). A similar expression holds for Ci(x). Since any vector is an
eigenvector of the unity matrix, it follows that C(x), Cx(x), and M have
the same set of eigenvectors defined in (33), i.e., that Assumptions 1 to
3 of Section II are satisfied. The eigenvalues of C(x) are given, from
(2a) and (33) to (35), by

N (X) = Cro(x) + 4 sin®*(mn/2n)Cr1(x), m=0,1, -+, n — 1. (36)
A similar expression holds for 7um(%).
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Fig. 5—The six-way, fork power divider with one stage of isolation resistors that is
discussed in Example (a).

Vill. EXAMPLES
8.1 Example a

Consider the 6-way, fork power divider of Fig. 5, which consists of a
one-stage input transformer, a one stage of 6-conductor lines and
isolation-resistor network, and a one-stage transformer at each output
port. All transmission lines are assumed to be uniform and uncoupled

25 T T ; T T T T T 1 06
r w
-
w
[}
20— O
w
« a
= z
@ P
- w
5 S
s =
= <]
1.5 =
@
[*T)
w
2

1.0 L b= — 1

1 1.1 1.2 1.3 1.4 1.5
NORMALIZED FREQUENCY

Fig. 6—The frequency responses of the input vswr and the total insertion loss of the
power dividers discussed in Examples (a), (b), and (c).

SYMMETRIC N-WAY POWER DIVIDERS 1507



15 I T T T T I I T T

e ——

,,,,,,, ISOLATION
E T 1-2 —

RETURN LOSS

MINIMUM QUTPUT ISOLATION
AND RETURN LOSS IN DECIBELS
s
I

5 | | I ] 1 | | | |
1 1.1 1.2 1.3 1.4 1.5

NORMALIZED FREQUENCY

Fig. 7—The frequency responses of the minimum output return loss and minimum
output isolation for the power divider discussed in Example (a). The numbers next to
the curves correspond to the port numbers for which the return loss is minimum, or
between which the isolation is minimum.

and to have quarter-wave lengths at band center. The characteristic
impedances shown in the figure were calculated by applying the
formulas of a maximally flat, homogeneous, 3-section, quarter-wave
transformer [Ref. 20, eq. (6.04-2), p. 272] to the common-mode equiv-
alent circuit of Fig. 3a. The value of each isolation resistance was
calculated from Ref. 12, Table II, which gives an optimum value of
12.1 dB for the minimum output return loss and isolation at band
center. The corresponding frequency responses of the input voltage
standing-wave ratio (vSWR) and the total insertion loss are shown in
Fig. 6. Figure 7 gives the corresponding minimum output return loss
(solid line), and the minimum output isolation (dashed line). The
numbers on the figure correspond to the port numbers for which the
return loss is minimum, or between which the isolation is minimum.

8.2 Example b

A similar design procedure was used for the 6-way, fork power
divider of Fig. 8, which consists of a one-stage input transformer, and
two stages of 6-conductor lines and isolation-resistor networks. Note
that the transmission lines are identical to those of Fig. 5. The values
of the isolation resistances were calculated from Ref. 12, Table IV,
which gives an optimum value of 21.3 dB for the minimum output
return loss and isolation at band center. The frequency responses of
these parameters are given in Fig. 9. Note the dramatic improvement
in comparison to case (a). The frequency responses of the input vswr
and the total insertion loss are still given by Fig. 6.

8.3 Example ¢

To investigate the effects of coupling between adjacent conductors,
consider the power divider of Fig. 8. Let the ratios of the PUL capaci-
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Fig. 8—The six-way, fork power divider with two stages of isolation resistors that is
discussed in Examples (b) and (c).

tances (see Fig. 4b) be C11/Cio = C,,/C1, = 1 for the first stage, which
corresponds to fairly strong coupling, and C1/Cs0 = C51/Czp = 0.25
for the second stage, which corresponds to moderate coupling. The
characteristic impedances shown in Fig. 8 are for the common mode.

2 T T T T T T T T
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MINIMUM OUTPUT ISOLATION
AND RETURN LOSS IN DECIBELS

10 | | 1 | 1 | 1 | 1
1 1.1 1.2 13 14 15

NORMALIZED FREQUENCY

Fig. 9—The frequency responses of the minimum output return loss and minimum
output isolation for the power divider discussed in Example (b).
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Fig. 10—The frequency responses of the minimum output return loss and minimum
output isolation for the power divider discussed in Example (c).

The corresponding frequency responses of the minimum output return
loss and minimum output isolation are given in Fig. 10. Note that the
minimum output isolation (dashed line) is only slightly worse than
that of case (b). On the other hand, the minimum output return loss
(solid line), even though still excellent, dropped by about 5 dB near
band center in comparison to that of case (b) (see Fig. 9). Presumably,
some of that drop could be recovered by optimizing the values of the
isolation resistances. This point, however, was not investigated. The
frequency responses of the input vSswr and the total insertion loss are
still given by Fig. 6.

IX. CONCLUSIONS

A unified theory has been presented for the computation of the
frequency response of multi-stage, equi-amplitude, equi-phase, n-way
power dividers of the Wilkinson, radial, and fork types. The n-conduc-
tor lines employed in these power dividers may consist of coupled or
uncoupled, longitudinally uniform or nonuniform conductors in a
transversely homogeneous or inhomogeneous dielectric medium. The
theory reduces the analysis of the power divider to that of calculating
the reflection and transmission coefficients of one lossless, two-port
network, and n — 1, generally lossy, one-port networks. For circularly
symmetric power dividers, such as the Wilkinson and the radial power
dividers, the number of one-port networks that need to be considered
reduces to only [n/2], and for a Wilkinson power divider with uncou-
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pled lines, to only one, as was done in Refs. 2 to 5. This method of
analysis results in a considerable improvement on the speed of com-
putation, as well as a sizable reduction in storage requirements, as
compared to a standard method of nodal analysis. Furthermore, the
aforementioned one- and two-port networks facilitate the design and
optimization of the power dividers over a desired frequency band.
Note added in proof: The author was unaware of an excellent paper
by Nagai, Maekawa, and Ono,” which is an expansion of their short
paper of Ref. 14. The present paper duplicates some of their results.
However, they only considered the case of uniform uncoupled lines.
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