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When calls offered to a primary group of trunks find all of them
busy, provisions are often made for these calls to overflow to other
groups of trunks. Such traffic overflow systems have been of interest
for a long time, but recently overflow systems that allow for some
calls to be queued have been of importance. In this paper we analyze
a traffic overflow system with queuing. The system consists of two
groups, a primary and a secondary. We consider two cases which
differ in the treatment of demands waiting in the primary queue. We
present an analytical approach which is suitable if the secondary
queue is large, or even infinite, and we contrast it with an earlier
approach of ours which is more suitable if the secondary queue is not
large. The analysis considerably reduces the dimensions of the prob-
lem and simplifies the calculation of various steady-state quantities
of interest. Our results include expressions for the loss probabilities,
the average waiting times in the queues, and the average number of
demands in service in each group.

I. INTRODUCTION

In an earlier paper,’ we analyzed a traffic overflow system with
queuing. The system consists of two groups, a primary and a secondary,
with n, servers and g: waiting spaces, which receive demands from
independent Poisson sources S, with arrival rates Az > 0, k=1and 2,
respectively, as depicted in Fig. 1. The service times of the demands
are independent and exponentially distributed with mean service rate
> 0. If all n, servers in the secondary are busy when a demand from
S, arrives, the demand is queued if one of the g. waiting spaces is
available; otherwise, it is lost (blocked and cleared from the system).
Demands waiting in the secondary queue enter service (in some
prescribed order) as servers in the secondary become free.
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Fig. 1—Mean flow rates for an overflow system with queuing.

If all n; servers in the primary are busy when a demand from S,
arrives and there is a free server in the secondary and no demands
waiting in the secondary queue, the demand is served in the secondary.
If there are no free servers, then the demand is queued in the primary
queue, if one of the g, waiting spaces is available; otherwise, it is lost.
Two different cases were considered for the treatment of demands that
are waiting in the primary queue. In case I, a demand waiting in the
primary queue may enter service either in the primary, when a server
becomes free, or in the secondary, if a server becomes free and no
demands are waiting in the secondary queue. In case II, no overflow is
permitted from the primary queue, so that a demand in the primary
queue must wait for a server in the primary to become free.

In this paper, we use an alternate approach to analyze the same
overflow system. This alternate approach is useful, in particular, when
g2 is large, or even infinite. Which approach is preferable depends,
essentially, on the relative size of g2 to n,. Other approaches to the
problem were discussed in the earlier paper.' Let p;; denote the steady-
state probability that there are ; demands in the primary and j
demands in the secondary, either in service or waiting. These proba-
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bilities satisfy a set of generalized birth-and-death equations, which
take the form of partial difference equations connecting nearest neigh-
boring states. Here we carry out an analysis that reduces the dimen-
sions of the problem, which may be considerable in cases of interest.
An analogous reduction was obtained in the earlier analysis."

The basic technique is to separate variables in regions away from
certain boundaries of the state space, the elements of which are (i, ).
These regions are depicted in Fig. 2a. The analogous regions corre-
sponding to the analysis of the earlier paper' are depicted in Fig. 2b,
for comparison. The separation of variables leads to two sets of
eigenvalue problems for the separation constant. The eigenvalues are
roots of polynomial equations. The probabilities p; are then repre-
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Fig. 2—Boundaries of regions in state space for the analysis of (a) this paper, and (b)
the earlier paper.
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sented in terms of the corresponding eigenfunctions. The constant
coefficients in these representations are determined from the boundary
conditions and the normalization condition that the sum of the prob-
abilities is unity. In general, these constants have to be determined
numerically. In case II, additional accessible states are in the region
bordered by the broken lines in Fig. 2, since in this case demands wait
in the primary queue even if a server is free in the secondary. In this
additional region, the probabilities p;; are expressed, as in the earlier
analysis,' in terms of a fundamental solution of a partial difference
equation.

There are various steady-state quantities of interest, which may be
expressed in terms of the probabilities p;;. The quantities include the
loss (or blocking) probabilities, the average waiting times in the queues,
and the average number of demands in service in each group. These
quantities may be expressed directly in terms of the constant coeffi-
cients which occur in the representations for the probabilities p;;. Thus
the steady-state quantities of interest may be calculated directly, once
the coefficients have been determined from the boundary and normal-
ization conditions, without having to calculate the probabilities p;.
Here again the reduction in the dimensions of the problem is valuable.

We first consider case 1. The representation of the probabilities p;;
in terms of the eigenfunctions is discussed in Section II, and the
boundary and normalization conditions are considered in Section III.
Various steady-state quantities of interest are calculated in Section IV.
Next, we consider case II and discuss the representation of the prob-
abilities p;; and the boundary and normalization conditions in Section
V. The corresponding steady-state quantities of interest are considered
in Section VI. Properties of the eigenfunctions which occur in the
representations of the probabilities p;; are given in the appendix.

Il. REPRESENTATION OF SOLUTION: CASE |

Let p; denote the steady-state probability that there are ; demands
in the primary and j demands in the secondary, etther in service or
waiting. These probabilities satisfy a set of generalized birth-and-death
equations,” which may be derived in a straightforward manner. We
define the traffic intensities

a = A/, az = Az/, (1)
and let

kBi=n+ q, ke =nys + ¢s. (2)

It is convenient to introduce the function

1, ¢ = o
x“{o, ¢ < 0 @)
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as well as the Kronecker delta
o= b % @
Then,' for case I, it is found that
[ai(1 = ik, xj-n,) + @21 = &,) + min(z, n1) + min(j, n2)]py
= (1 = Xi-1-n, Xnp1-5)[@2(1 — 8i0) Pi-1,)
+ (1 — 8,)min(j + 1, n2) pij+1]
+ (1 = 8jp)[@18in, Xn,— + @2(l — Xi-1-n, Xn—) 1Pi, j-1,
+ (1 = 8, )[ (1 = Xi=n, Xn,-1~)min(i + 1, n1) + RoXi—n,8jn, 1Pi+1,j, (5)

for 0 =i < ki, 0 =<j < k». These equations were constructed to imply
that

pi=0, m+l=si=<k, 0=<j=ny—-1, (6)

since it is impossible for demands to be waiting in the primary queue
when a server is free in the secondary. The normalization condition is

n; np—l1 ky ko
Y Ypi+t X Ypi=1 (7)
i=0 j=0 =0 j=n,

We assume that g2 = 1. Then, for 0 <i <k, and n. + 1 <j < kg, the
variables in (5) may be separated, and there are solutions of the form

a;8; where
[ai(1 = 6ix,) + min(i, n1) + x]a:
= a(1 — 8io)ai-1 + (1 — 8ix,)min(i + 1, n1)aivr  (8)
for0=i=<k, and
[@z(1 — 8s,) + n2 — x]B; = azBj-1 + na(l — 8w, )Bin (9)

for ns + 1 <j < ks, and « is a separation constant. The solution of (9)
may be expressed in terms of Chebyshev polynomials of the second
kind,® U,(x). It is convenient to define

&2
na az +n: —k
Vi) =|— ) U|———]|, 10
A (‘12) f( 2vazn, ) 1o
and
¢ilk) = ¥p, () — Pp, (k). (11)

The properties of these functions which we will need are given in the
appendix. We note here, however, that Us(x) = 1, U_i(x) = 0 and
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or,(k) = 1. It follows from (9) and (102) that 8; is proportional to ¢;(x)
for n: < j < ks.
For 0 =i =< n; — 1, (8) implies that

(a1 + i+ K)o = ar(l = 8ip)ai1 + (i + Daisa. (12)
The solution of (12) may be expressed in terms of Poisson-Charlier
polynomials.*® We here denote the solution of (12) for which ap = 1 by
si(k, a1). The properties of s;(x, @) which we will need are given in the
appendix. For n, < i < ki, (8) implies that

[01(1 - 8,~k,) + n + K]ﬂi = q;a;—1 + ni(l — 8;‘.&1)0!.41. (13)
Corresponding to (10) and (11), we define
42
+n +«k
Q(x) = (ﬂ) U, (al—) (14)
‘ a4 ‘ 2Vain,
and
0.'(!() bt ﬂk]*f (K) - gk,—i—l (K) (15)

It follows from (13) and (111) that a; is proportional to ;(k) for n, — 1
=1i=< k), and we note that 8; (k) = 1.
Consequently, we take

= SE(KI al)an,(’c)s O0=i=< n,
“= {sn.(n, a)bik), m—-1<i<kh, (16)
where

8n,-1 (K, @1)0n, (k) = Sn, (k, @1)0n,—1(k). (17)

With the help of (15), (96), (97), and (110), this equation may be
written in the form

Kk[8n, (1 + &, @1)8y, (k) — sp,—1(1 + &, @1)Q, 1 (k)] = 0. (18)
The expression in the square brackets in (18) is a polynomial in « of
degree k1 = n; + q:. It was shown' that its zeros are negative and
distinct, and we denote them by x,, r =1, -- -, k,. We also let ko = 0.

It was also shown' that the zeros of ¢,,(k) are positive. Hence,
¢n, (k) # 0, r =0, - -, k1. Moreover, it follows from (118) that

. ilkr) [ \/; 1 T‘-"ﬂ
lim = , r=1,.--,k, (19
a0 Pn, (1) n2 (g, + VeZ — 1) b (19)
for fixed j, where

_ (az + nz2 — x,) (20)

E =
’ 2\‘(127&2 ’

1468 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1980



and the positive square root of e? — 1 is taken in (19). We note, from
(109), that

er+\/ef—1>\/§—2, r=1,.+, ki, (21)
2
since k, <0, r =1, + -+, k1. On the other hand, from (105),
%) _ ("2)1—"2, (22)
®n, (0) nz

and, as expected, the condition a; < n» is necessary for a steady-state
solution when g; = .

In view of the above results, we may represent the probabilities p;;,
for ny, = j < k3, in the form

ky .
N 20 Brsi(r, @1)8n, (=K, @), (62) (::2((':,)) O<i=n,
by = )] (Kr)

2 brsn, (kr, @1)8n, (—kr, a2)8; (k) —— m=i<k, (23)

bn, (k7))

where the constants b, are to be determined. The reason for the factor
Sn,(—kr, az) will be apparent shortly We note, from (94), that
Sn,(—K:r, az) >0, since k, <0, r = -, k.

ForO<i<n, — land0<]<nz— 1, the variables in (5) may be
separated, and there are solutions of the form y:8; where

(a1 + i+ )y = ai(l — 8io)vi-1 + (€ + Dyiva, O=si=n-—-1, (24)
and
(0'.2 +j -_— 7])8_, = (12(1 - 81'0)6}‘_1 + (_] + 1)6j+1, 0 S_]S na — 1, (25)
and 7 is a separation constant. It follows from (93) that y; is propor-
tional to si(n, a;) for 0 < i < n, and §; is proportional to s;(—n, a:) for
0 = j = ny. Now s,,(—n, a2) is a polynomial in n of degree n.. It was
shown' that its zeros are positive and distinct, and we denote them by
Mo =1, +++, n2. Then

Sn, (14 az) =0, £=1, -+, na. (26)

Consequently, we represent p;, for 0 =i < n, and 0 <J < n,, in the
form
ky

Z brsi(kr, @1)s;i(—kr, a2)n, (x/) + Z c:5i(Me, a1)si(—n., az), (27)

where the constants ¢, are also to be determined. Note that the
representations in (23) and (27) agree for j = n,, 0 < i < n,, in view of
(26).
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It remains to satisfy the boundary conditions at i = n;, 0 < j <
n: — 1 and at j = ng, 0 < i < k,, as well as the normalization condition
(7). This is done in the next section.

lIl. BOUNDARY CONDITIONS: CASE |
From (5), the boundary conditions at i = n; imply that
(a1 + a2+ ni+j)pn,,
= a1 pn,1;+ (@1 + a2)(1 = 8jo) Pnyj-1 + (J + 1) Py,  (28)
for 0 = j < n, — 1. Also, the boundary conditions at j = n; imply that
(a1 + a2 + i + n2) Pin,,
= ai(l — 8u) Pi-1,n, + @2Piny—1 + (i + 1) Pivin, + N2Ping1, (29)
forO<i=n —1,
[ai(1 = 84,0) + @z + m1 + n2]pn n, = @1Pn;-1,n,
+ (a1 + @2)Pn,ny1 + (M1 + n2) (1 — 84,0) Pny+1n, + N2Pny ny+1,  (30)
and, if g, = 1,
[ai(1 = 8x,) + a2 + n1 + n2]pin,
= @1 Pi-1n, + (11 + N2)(1 = 8, Piv1n, + NaPinyr1, (31)

formi+1<i=<k.
If we substitute (27) into (28), we find, after reduction with the help
of the recurrence relations in the appendix, that

k
Y 6.0, (k:)krSn, (1 + k7, @1)8;(—Kr, @2) + @18n, (Kr,a1)8;(—=1 = kr, a:)]
r=0
ny
+ ¥ ednesn, (1 + 14 a1)si(—n, az)
=1
+ a18n, (5 @1)si(—1 — 14 a2)] =0, (32)

for 0 <j < n; — 1. We remark that the first sum in (32) may be written
in a different form with the help of the relationship

Kr-[8n, (1 + Kkr, @1)0n, (kr) + 8, (K7, @1)8,-1(k-)] =0, (33)
which follows from (15), (97), and the fact that x,, r =0, ---, ki, are
the roots of (18).

If we make use of (23) and (27) in (29), we find after reduction that

ky
az ¥, brsi(kr, a1)0n, (Kr)[Sn‘z(_fcr; az) T,;—L(S) — Sn,-1(—Kr, az):l

r=0
ng

— Q2 E cs5i(ne, al)Snz-l(—‘lIz, az) =0 (34)
/=1
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for 0 < i < n, — 1. The first sum in (34) may be written in a different
form with the help of the relationship

az[Sn,(—Kr, az)d)n!—l('fr) - Sn.z—l(_'fn a2)¢'n2 (Kr)]
= —Kr[Sn,z(l - Kr, 02)‘Pq2("r) - Sng—l(l — Kr, a2)‘I’q2—l ("r)]: (35)

which follows from (11) and the recurrence relations in the appendix.
We note that ko = 0. Also, for g1 = 1, if we make use of (23) in (31), it
is found after reduction that
kl

E brs"l (KT: al)sng (_Kr, a2)[a205(xr)w
r=0

¢n2(’¢r)
— ny(1 - Sikl)ai-rl("r)jl =0, (36)
form+1=i=k.

If we substitute (23) and (27) into (30), and make use of (17), (102),
and (111), we find that

&y
Y b8, (kr, @1)Sn, (—kKr, az)[azﬁn,(rcr)‘t"%:c;) — na(1 =8, ,o)Bn,n(Kr)]
r=0 n, \Mr

ky
— (a1 + az) Y brsn,(xr, @1)Sn,—1(—Ky, a2)by, (k;)

r=0

— (a1 + a2) Y csn, (M, @1)Sny-1(—=1s @2) = 0. (37)
/=1

This condition may be shown to be redundant, by summing (32) from
J=0tony—1,(34) from i = 0 to n, — 1 and, for ¢, = 1, (36) from i =
n, + 1 to k1, and adding.

The constants b,,r =0, --- kyand ¢, /=1, - - -, ny are determined
by (32), (34), and (36) only to within a multiplicative constant, which
is determined from the normalization condition (7). But, from (23),
with the help of (15), (18), (97), and (98), it is found that

gop.j = bosn, (0, az)gz%))-[snl(l, @1)82,(0) — sn,-1(1, @:1)82,-1(0)], (38)
for n; = j < ky. Then, from (7) and (27), with the help of (11) and (98),
it follows tl:;nt o
bo5,,(0, az )quq:(a)—

+ Eﬂ brsn, (1 + kr, @1)8Sn,—1(1 = K7, @2)0, (x/)

[Snl (1; al)ﬂq,(o) - Snﬁ](l, a; )qu—l(o)]

+ ¥ cosn, (1 + 14 @1)Sn,1(1 — 1 a2) = 1. (39)

=1
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We note, from (104) and (105), that

hm ‘I’q 9 (0) nz

, fi < ns. 40
grm 6ny(0)  (n2 — @) or m=Th 0

Once the constants b, and c,have been determined, the steady-state
probabilities p; may be calculated from (23) and (27). We remark that
the number of constants to be determined is only %k, + 1 + n., whereas
the number of probabilities pj; is (g2 + 1) (k1 + 1) + nz(m + 1), which
in general is considerably larger. It is of interest to compare the
approach taken in this paper with that adopted in the earlier paper’
(see Fig. 2). There the variables in (5) were separated in the region
0=<i=<n —1and 0 <j < ks, leading to k» + 1 eigenvalues and
eigenfunctions, and, for g, = 1, in the region n, + 1 =i < k and
ns + 1 < j < ks, leading to g eigenvalues with corresponding eigen-
functions vanishing at i = n,. In the corresponding representation of
the probabilities p; in terms of the eigenfunctions, there are thus k;
+ 1 + ¢ constants to be determined. In view of (2), which approach is
preferable depends on the relative size of g» to n.. The approach
adopted in this paper is suitable if g» is large, or even infinite.

IV. SOME STEADY-STATE QUANTITIES: CASE |

We proceed now to the calculation of various steady-state quantities
of interest. These quantities are depicted in Fig. 1, which indicates the
mean flow rates. The loss probabilities Ll and L, are given by

ky

Ll = E Pryjs 2 Pi, k2! (41)

J=ny i=0

and the probabilities that a demand from the primary, or secondary,
source is queued on arrival are

ky—1 ko ky ko=
Ql (1- 6010) E E Dij, E E Pij. (42)
i=ny j=ny i=0 j=ny

The probability that a demand arriving from the primary source

overflows immediately is
ng—1

I12 = E p"[-j' (43)

Jj=0

Since the mean service rate is p, the mean departure rate from the
primary queue to the primary servers is

ky ko
Ry = nlu(l - Bq,.o) E E Pij, (44)
i=ny+1 j=ny

while the mean rate of overflow from the primary queue to the
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secondary servers is

ky
Rio=nop(1 = 830) 3 Pims (45)

i=n,+1

The mean departure rate from the secondary queue is

kB Ry
Ry = na i E E Dij. (46)
i=0 j=ny+1

It may be verified from (5) that
Ru + Rlz = )\1Q], R22 = }\2Q2- (47)

These relationships hold since, in the steady state, the departure rates
from the queues are equal to the arrival rates to them.

The average number of demands in the primary and secondary
queues are

ky ke ky k2
Vi=Y ¥ (i—-mpy, Va=3% ¥ (J— n2)pi. (48)
i=ny j=n, =0 j=ny+1

Also, the average number of demands in service in the two groups are

ny ky ky kg
Xi=Y Yipi+m(l—28,0 X X Py (49)
i=0 j=0 i=n;+1 j=n,
and
ny np—1 ky ko
Xo=Y Y jpi+n Yy ¥ pi (50)
i=0 j=0 i=0 j=n,

If we apply Little’s theorem” to the primary and secondary queues, we
find that the average waiting times of the demands which are queued
in the primary or in the secondary are given by

V] V2
Wi=——I(q@=1), We=—m,
1 O, (Q1 ) 2 A Qz
respectively, independently of the order of service within each queue.
Also, if we apply Little’s theorem to the primary and secondary groups
of servers, we obtain

M(l—=L,—1I2) — Rp=pXy, Aa(l —L2) + Ailio+ Ria=pXs, (52)

since the mean service rate is p.

The steady-state quantities of interest may be expressed in terms of
the constants b, and ¢, with the help of the representations in (23) and
(27). From (41), it is found, with the help of (11), since i (k) = 1, that

(51)

ky ‘I’ .
Ll = rzo brSnl(Kr, a )Sn.z(_l(r, a2) (ﬁ::((:,-)) ’ (53)
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and, with the help of (22) and (38), that
q2
L= bo(:—:) 8ny (0, @2)[5n, (1, @1)824,(0) — sn,—1(1, @1)2g,1(0)].  (54)

From (42), it is found, with the help of (11) and (15), that

&y
Q] = E brsnl{"r, al)snz(—xr: aZ)[ﬂq,("r) - 1] ‘qu("r) N (55)
r=0 ¢n2('fr)
and, with the help of (38), that
_ 5 [ ¥g,(0) — 1]
Q:=bo— 0

*8n,y (0, @z)[8n,(1, @1)82¢,(0) — 8n,-1(1, @1)82,-1(0)]. (56)

Next, from (43), with the help of (98), it is found that
&y
Io= Y brsn, (kr, @1)8n,—1(1 — Kr, @2)0n, (k;)

r=0
ny
+ Y csSn, (s @1)Sny1 (1 — 1y @2).  (B7)
=1
Also, from (44) and (45), if we make use of (11) and (15), we obtain
k) ‘I’ 3
R, = ny z brSnl(Kr, al)sn,(_lfr, az)ﬂql—l("r) qz(" ) (58)
r=0 ¢"2(Kr)
and
&y
Rz = nap Z b,8p (Kr, @1)8n,(—kK, ﬂz)ﬂql—l(xr)- (59)
r=0

From (46), with the help of (11), (38), (566), and (104), it follows that

Ry = A2, as expected. The first relationship in (47) provides a useful

numerical check, in view of the expressions in (55), (58), and (59).
From (48), with the help of (11), (114), and (115), it is found that

Vi= bOSu] (0, al)s"z(o’ a2)(ﬂ) Aq1 (?t_;) ::qz((g))
ny

+ Z snl(xr, @1)8n,(—Kr, @2)

r=1 Kr

a,(Kr)

mh)(w

Aa[Qg, (k,) — 1] — Qg 1(xr)}

where

A = 3 a2/ =

f=]1

1= (g +DE+ a1 -4 E£1 o)
“alg+1), £&=1.
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Also, with the help of (22) and (38), it is found that
Ve = boAy, (;‘T:) 8n, (0, @2)[8n, (1, @1)2q,(0) — 8n,-1(1, @1)82g,-1(0)].  (62)

It follows from (51), (56), and (62) that
_ Ay, (a2/7) 40, (0)
Ae[¥q, 0 — 17

Next, from (49), with the help of (7), (11), (98), and (99), it is found
that

W2 (63)

ng
Xi=n1— Y ¢n-12 + 1 a1)8n,1(1 = 7, a2)
=1

ky
=3 brsma( + kr, @1)0 (K1)

r=0

Yo, (k-
. |:sn2-](1 = Kr, a?) + sne(_Kh a2) ¢::((:r)):l . (64)

Similarly, from (50), it is found that

na
X =na— 3, c8n,(1 +ns @1)sn,-1(2 — 1y, @2)
=1

ky
- Z brsnl(l + K, al)sng—l(z — Ky az)on,("r)- (65)
r=0
In view of (53), (54), (57), (59), (64), and (65), the relationships in (52)
provide a useful numerical check.
From (107) to (109), it follows that

m ‘qu('fr) _ (e + EE —-1)
g On(Kr) (e, + V2 —1— Vﬂz/nﬂ)j

where ¢, is given by (20). With the help of (40) and (66), we obtain the
results for the limiting case g, = o, with a; < n», in (53), (55), (58),
(60), and (64). From (54), as expected, Ly — 0 as g2 — o, for az < na.
Also, since ¢,(0) = 1, it follows from (22) and (40) that

r=1!"'skl) (66)

. [P, (0) — 1] ng
1 E = , f < ng, 67
o @ (m—ay e 1)
and from (61) that
lim A% E = _n?aﬂ_z ’ for a; < n». (68)
gy—x na2 (n2 - a‘Z)

From (67) and (68), we obtain the limiting results in (56) and (62), and
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from (1) and (63), we have

1
lim W, =

——, for a; < ns. (69)
qy—® ;U-(ﬂz - az)

We remark that the steady-state quantities of interest may be
calculated directly, once the constants b, and ¢, have been determined,
without having to calculate the probabilities p;;.

V. REPRESENTATION AND BOUNDARY CONDITIONS: CASE Il

We now consider the second case, in which no overflow is permitted
from the primary queue, so that a demand in the primary queue must
wait for a server in the primary to become free. Since case II differs
from case I only in the treatment of demands waiting in the primary
queue, we assume that ¢; = 1, as well as g2 = 1. The steady-state
probabilities p;; now satisfy the equations'

[ai(1 = i, xj-n,) + @2(1 = 8;,) + min(i, n1) + min(j, n2)]py;
= ai(l — 8w )(1 — Xi-n,~1Xn,—1-/)Pi-1.;
+ (1 = Gjo) (@1 Xi=n, Xny—j + @2)Pij—1

+ (1 = 8, )min(i + 1, n1)pisy,;

+ (1 = &, )min(j + 1, n2)pi, 41, (70)
for 0 =i =<k, 0 <j =< k;. The normalization condition is
ky kg
Z Y pi=1 (71)
i=0 j=0

Now (5) and (70) are identical for 0 <i=<n, — 1,0 <j < n; and for
0=i=k,n+1=j=ks. It follows that the representations in (23)
and (27) are still valid, although the constants b, and ¢, will, of course,
be different. However, the boundary conditions (29), which correspond
toj = nyfor 0 <i =< n, — 1, are still satisfied, and hence (34) still holds,
for 0 = i = n, — 1. The remaining boundary conditions are different.
Also, from (70),forn; + 1<i<k;and 0 =<j < n; — 1, we have

(a1 + a2 + ny + j)pij
= (a1 + a2)(1 — §jo)pij—1 + ni(1l — 8ix )Pivr; + (J + Dpijer.  (72)

We define' the quantities I1,;, for m, j = 0, 1, -- -, as the solutions
of the equations

(a1 + az + ny + j)Ini = (a1 + a2)(1 = 80) 1 ;1
+ n1(1 = 8mo) lm—1; + (j + DIl ju1, (73)
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which satisfy the initial conditions

Mmoo =8mo, m=0,1, ... (74)
It follows from (73) and (74), by induction on j, that
II,,=0, m>j. (75)

It may be verified, from (72) to (74), that

k)
Pij= E prrt(lr-[m*ivj! n +].E iskl, OSJ'S ng. (76)

m=i

The quantities IT,,; may be calculated sequentially from the recurrence

relations (73), with the help of (75) and the initial condition ITo, = 1.
In order that the representations in (23) and (76) agree for J = ns,

we must have

ky

ky
2 meHm—i,ng = brsn,(fcr, O‘,])Snﬂ(—'K,-, a2)gi(fcr) (77)
; -0

for n; + 1 =i < k,. But, from (73), (74), and (93), it follows that ITy,,,
= 8n,(n1, a1 + az2) > 0. Hence, (77) may be used to solve successively
for pro, +++, Pny+1,0in terms of b, r =0, - .., k1. It remains to satisfy
the boundary conditions at i = n,,0<j=n,— landatj=ny,n; <1
= k1, as well as (34) for 0 =< { = n, — 1, and the normalization condition
(71). From (70), these boundary conditions are

(ﬂl + a: + ny +..i)Pf!|J = a\Pn,1,j

+ (a1 + a2)(1 — Sjo)pn]‘j—] + mpna;+ (J+ Dpn, j+1, (78)
for0<j=<n;—1and

[ai(1 = &ix,) + a2 + n1 + na2]pi,

= @\Pi-1n, + (@1 + @2)Pin,—1 + (1 = 8ix )Pis1n, + noPin,+1, (79)

forn, <i<k,.
From (27), (76), and (78), we find, after reduction, that
]
2 bl (k) Krsn, (1 + Kry @1)si(—Kr, @2) + aisn, (kr, @1)s;(—1 — &, @2)]

r=0
ny
+ E Cf[ﬂfsnl(l + 1., )Sj(_’f]/, a) + O!]Snl('l',lg, a)si(—1 — ., az)]
/=1
ky

- n 2 pmﬂnmfnlfl‘; =0, (80)

m=n,+1
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for 0 =j < n, — 1. Also, from (23), (76), and (79), it is found that

kl
as Z BrSn, (Kry @1)Sny(—1r, a2) (k) ¢;, z(x;)

- (a] + a-2) Z meHm—i.nﬂ—l = 0, (81)

m=i
formy+1<i=k.

From (23) and (27), the boundary condition corresponding to i = n;
in (79) reduces to

&y
as E brsnl(pc” al)s,.ﬂ(-xr, a2)0n1("r) ‘t’: E(K;)

L2
—(ay + az2) ¥ b8, (kr, @1)8n,1(—kr, a2)0n, (k)
r=0

— (a1 + a2) {Z] ¢/8n,(Mz, @1)Sn,—1(—10, @2) = 0. (82)
This condition may be shown to be redundant, by summing (80) from
j=0ton;—1,(34) fromi=0ton, — 1, and (81) from i = n; + 1 to %,
and adding.

The constants b,, r =0, ---, ki and ¢;, £ = 1, ---, n2, and the
probabilities pmo, m = ny + 1, -+, k,, are determined by (34), (77),
(80), and (81) only to within a multiplicative constant, which is
determined by the normalization condition (71). But, from (70), if we
sum on j from 0 to k2, and on i from ¢ to k,, we obtain

I ko
nlzpﬂ—alzp; 1,7s n+ls¢<k. (83)
J=ny

Hence, from (23), (27), and (83), with the help of (11), (15), and (98),
the normalization condition (71) implies that

ky
rgo b,.snl(l + Kr, al)gm (KF)[S"'A (_Kr’ az) I::((::))

+ Sn-z—l(l — Kr, aZ):|

Ry

+ ): cSn, (1 + 1y @1)8n,—1(1 — 1y, @2)

O b (0 @1)m (ks @) R, () — 17225 1 (4

ni o Pn, (K1)

VI. SOME STEADY-STATE QUANTITIES: CASE Il

We now consider the calculation of various steady-state quantities
of interest. Since no overflow is permitted from the primary queue, R»
= 0 in Fig. 1. The loss probabilities L, and L are given by (41), and
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the probabilities @, and @. that demands from the primary and
secondary sources are queued on arrival are given by (42). Hence, from
(23) and (27), it follows that (53) to (56) still hold. We emphasize,
however, that the constants b,, as well as c,, differ for the two cases.
Similarly, R is given by (46) and V: is given by (48), so that Ry =
A2@Q):, as before, and (62) holds. Also,

by kg ny kg
Xl = E E mm( i, n1)p£j =n - 2 E (n1 - l.)p;_,', (85)
i=0 j=0 i=0 j=0

and it follows, from (23) and (27), that (64) holds.
The probability that a demand arriving from the primary source
overflows (immediately) is

By ng—1 na—1 ky
Lo=% ¥ pi= % (Pnl.j+ z Pij)- (86)
i=n; j=0 Jj=0 i=n,+1
Hence, with the help of (83), we obtain
ny—1 &y Ry
I = Z Pnj+ > ) ( Di-1,;— Pl'.f)- (87)
i=n,+1 j=ny

From (23) and (27), with the help of (11), (15), and (98), it is found
that

ki
Iz = 2 brsnl(xr, 23] )Sn.z-l(]- = Kr, (12)6,11(“3;-)

r=0
ny &y
+ Z C{Snl('l]f, a )Sn2_1(1 i/ PR 0.2) + E b,snl (K,», al)s,.,z(—rcr, az)
=1 r=0
a ¥, (k)
=[R2, (k) — 11— Q0. _1(k,) } —2—"". (88
{m [9a, () = 1] = Rg,-1( )} g ©®
Since Riz = 0 and A, = a,, the first relationship in (52) becomes
a(l — L, — Ix) = X;. (89)

In view of (53), (64), and (88), this relationship provides a useful
numerical check.

The mean departure rate from the primary queue to the primary
servers is

ky ko
Ry = nu E Z Dij- (90)
t=n+1 j=0

From (42) and (83), it follows that Ri, = A, @, as expected. Finally,
the average number of demands in the primary queue is

by ka
Vi= ¥ ¥ (i—n)py. (91)
i=n;+1 j=0
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Hence, with the help of (11), (15), (23), (83), (113), and (115), it is found
that

L)
Vi = bosn, (0, @1)sn, (0, aﬂ(%) A, (
1

"\ n,

g) ¥,,(0)
¢n,(0)
A
£ 2% by (0, @), az) Yl

ny ;=1 ﬁbnz('fr)
-{Qq,(m) —(qi+ 1)+ 2 [ﬂql("r) -1- Eﬂq,-l(fcr)]}, (92)
Kr a
where A, (£) is as defined in (61).

APPENDIX
We define s;()\, @) by the recurrence relation

(a+i+MNsi(A, a) =a(l —8is)sia(A, a) + (i + 1)sia(A, a);
so(A, a) =1, (93)

fori =0, 1, --- . Thus s.(\, @) is a polynomial of degree n in both A
and a, and it may be related to a Poisson-Charlier polynomial.**
However, we will give here the properties of s.(A, @) which we will
need. An explicit formula is'

i (}\),ai"

si(A, a) = Ea;!_(_i_—r_)!’ (94)
where
MNo=1, Ar=AA+1) .-+ A+r-1), r=12.... (95)
It was also shown' that
(i + Dsini(A, @) = asi(A, @) + Asi(A + 1, a) (96)
and
si(\, @) = si(A + 1, @) — (1 — 8io)simi(A + 1, a). 97)
From (97), it follows that
¥ si(A, @) = s.(A + 1, a), (98)
i=0
and, from (96) and (98), we deduce that
T (n —i)si(A, @) = (1 = 8ro)sn-1(A + 2, a). (99)
i=0

We now turn our attention to the Chebyshev polynomials of the
second kind,? U,(x). They may be defined by the recurrence relation

2xUx) = Ussr(x) + Usi(x); U-1(x) =0, Uo(x) =1, (100)
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for /=0,1, .-+ . From (10) and (100), it follows that

(a2 + n2 — kK) ¥, (k) = a2 ¥, 41 (k) + na¥,_1(k);
¥ (k) =0, ¥olx)=1. (101)

From (11) and (101), we deduce that
[a@z(1l = 8jx,) + n2 — k]Pi(k) = @z 1(k) + na(l — &) pjra(x), (102)

for j < ks. Since®

U [l (g + l):l _y g (103)
‘ 2 g r=0 ’
it follows that
¥,(0) = (E)UQU (ﬂ'«‘! + n2) _ é (f_z)r (104)
‘ Qaz ‘ 2Vasns r=0 \ @2 |
Hence, from (11), we have
ka—J
]
¢;(0) = (az) . (105)
Now®
22 1y\¢+1 _ e g+l
Uy = WX =D —G=Ve =D (106

2vVx?—1 ’

Hence, from (10), we obtain

" [(er + Ve — 1) — (6 — V2 — 1))
Vox,) =|— ,  (107)
a 2Vel -1
forr =1, --., k1, where ¢, is given by (20). We note that ¢, > 1 for
r=1, .-, k,sincex, <0forr=1, ..., k. We take the positive

square root of €2 — 1 in (107). From (11), it follows that

2 _q1_ ka—J
¢j(Kr) — (e- + 521' — (12/1'4’-2) |: %2 (e + \/E%Tl)]
ver —

S 1 _ ko—j
Sk L az/"z)[ E(er—\/«sETl)} . (108)

2veZ —1 as
forr=1,.--,k.8Sincex, <0forr=1, ..., ki, we deduce from (20)
that
e+ Vel—1>e+ Ves— 1= max(\/‘—?u%, \/E) S (109)
na asz na

forr=1, ---, k1.
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Next, from (14) and (100), it follows that
(a1 + m + €)Q(x) = ar1Qrsa(x) + n1Q,-1(k);
Q-1(k) =0, Qo(x) =1. (110)
From (15) and (110), we deduce that
[@i(1 = 8ir,) + 01 + k]0:(k) = @:16;1(k) + n1(1 — 8ix)0isa(x), (111)
for i = k. Also, from (14) and (103), we obtain

£/2 P r
n a+m n;
Q.,00)=— U, = —1. 112
) (01) {(2\/01711) ’g‘) (01) ( )
Hence, from (15), we have
ky—i
8:(0) = (ﬂ) . (113)
a
Since k; = n; + ¢, it follows that -
k q1
S (- n)6i(0) = (1) Aq, (1) (114)
i=n, a n

where A, (£) is as defined in (61). Finally, if we multiply (111) by
(i — n,) and sum on {, we obtain, with the help of (15),

ky
k Y (i —n)bix) = ar[Qq,(x) — 1] — n18q, 1(k). (115)

t=n,
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