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When calls offered to a primary group of trunks find all of them
busy, provisions are often made for these calls to overflow to other
groups of trunks. Such traffic overflow systems have been of interest
for a long time, but recently overflow systems that allow for some
calls to be queued have been of importance. In this paper we analyze
a traffic overflow system with queuing. The system consists of two
groups, a primary and a secondary. We consider two cases which
differ in the treatment of demands waiting in the primary queue. We
adopt a novel analytical approach, which considerably reduces the
dimensions of the problem and simplifies the calculation of various
steady-state quantities of interest. Our theoretical results include
expressions for the loss probabilities, the probability of overflow from
the primary to the secondary, and the average waiting times in the
queues.

I. INTRODUCTION

In this paper, a particular overflow system with queuing is analyzed.
The system consists of two groups, a primary and a secondary, with n,
servers and gx waiting spaces, which receive demands from indepen-
dent Poisson sources S, with arrival rates A, > 0, 2 = 1 and 2,
respectively, as depicted in Fig. 1. The service times of the demands
are independent and exponentially distributed with mean service rate
p > 0. If all n, servers in the secondary are busy when a demand from
S, arrives, the demand is queued if one of the g» waiting spaces is
available; otherwise, it is lost (blocked and cleared from the system).
Demands waiting in the secondary queue enter service (in some
prescribed order) as servers in the secondary become free.

If all n, servers in the primary are busy when a demand from S,
arrives and there is a free server in the secondary and no demands
waiting in the secondary queue, the demand is served in the secondary.
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Fig. 1—Mean flow rates for an overflow system with queuing.

If there are no free servers, then the demand is queued in the primary
queue, if one of the g, waiting spaces is available; otherwise, it is lost.
Two different cases are considered for the treatment of demands
waiting in the primary queue. In case I, a demand waiting in the
primary queue may enter service either in the primary, when a server
becomes free, or in the secondary, if a server becomes free and no
demands are waiting in the secondary queue. In case II, no overflow is
permitted from the primary queue, so that a demand in the primary
queue must wait for a server in the primary to become free.

The case g, = 0 and g2 = 0 corresponds to no queuing. This problem
has been analyzed by Brockmeyer' in the particular case A, = 0,
corresponding to no secondary source. The case Az # 0 is a special case
of two groups of servers with a common overflow group. The first
group has n, servers and the second none, while the overflow group
has n. servers. This problem has been analyzed by Kosten,>® but his
analysis differs from ours, as is explained in the next section.

Generally, let p;; denote the steady-state probability that there are
i demands in the primary and j demands in the secondary. These
probabilities satisfy a set of generalized birth-and-death equations,
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which take the form of partial difference equations connecting neigh-
boring states. Rath* has solved these equations numerically in case I,
by using a Gauss-Seidel iteration technique. Here we carry out an
analysis that reduces the dimensions of the problem, which may be
considerable in cases of interest. The basic technique is to separate
variables in regions away from certain boundaries of the state space.
This leads to various eigenvalue problems for the separation constant.
The eigenvalues are roots of polynomial equations. The probabilities
Di; are then represented in terms of the corresponding eigenfunctions.
The constant coefficients in these representations are determined from
the boundary conditions, and the normalization condition that the
sum of the probabilities is unity. In general, these constants have to be
determined numerically. In case II, additional states are accessible,
since in this case demands wait in the primary queue even if a server
is free in the secondary. In this additional region, the probabilities p;;
are expressed in terms of a fundamental solution of a partial difference
equation.

A different procedure for reducing the dimensions of the problem is
that of Herzog, Woo, and Chandy."’ Their procedure, if applied to the
problem of this paper, would involve the recursive determination of a
number of solutions of a partial difference equation, in order to express
the probabilities p; in terms of their values on certain boundaries.
Except in case II, we have to solve only ordinary difference equations
in our approach, because of the separation of variables. In case II, as
noted above, it is necessary to obtain only a single solution of a partial
difference equation in a certain region.

Various steady-state quantities which are of interest may be ex-
pressed in terms of the probabilities p;;. The quantities include the
loss (or blocking) probabilities, the probabilities that a demand is
queued, the probability of overflow from the primary to the secondary,
and the average waiting times in the queues. These quantities may be
expressed directly in terms of the constant coefficients which occur in
the representations for the probabilities p;;. Thus the steady-state
guantities of interest may be calculated directly, once the coefficients
have been determined from the boundary and normalization condi-
tions, without having to calculate the probabilities p;;. Here again the
reduction in the dimensions of the problem is valuable.

Only the theoretical results are presented in this paper. Numerical
results will be presented in a forthcoming paper by Kaufman, Seery
and Morrison.” The reduction in the dimensions of the problem by
means of the analysis presented in this paper leads to a dense matrix,
rather than the much larger sparse matrix for determining the proba-
bilities p;;. Nevertheless, the approach presented here is amenable to
numerical calculation for moderately large problems. The largest case
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run so far using this approach has been for n; = 40 = nz and ¢, = 10
= @, for case I. Kaufman® has used a numerical technique involving
matrix separability (block diagonalization) for these problems and, in
fact, is led to one of the same eigenvalue problems. In addition,
Kaufman has obtained numerical solutions by means of successive
over-relaxation techniques. For the example mentioned above, our
results for the steady-state quantities of interest agree to 12 significant
figures, although some of the probabilities p;;, which range over 30
orders of magnitude, agree to fewer significant figures.

An iterative solution of two-dimensional birth-and-death processes
has been discussed by Brandwajn.'* Although his numerical results for
some specific problems indicate better execution times than with
Gauss-Seidel iteration, the successive over-relaxation technique, with
appropriate choice of parameter, would seem to be superior.

The theoretical results are built up in stages, commencing with the
analysis of the overflow problem without queuing in Section II. Next,
the case in which there is only a secondary queue is investigated in
Section III. This analysis pertains to both case I and case II, since the
two cases differ only in the treatment of demands queued in the
primary. The overflow problem in which there are both a primary and
a secondary queue is investigated in Section IV for case I, and the
steady-state quantities of interest are calculated in Section V. Another
approach for case I, when there is only a primary queue, is presented
in Section VI. The analysis of case II, when there is only a primary
queue, is given in Section VII. The investigation of case II, when there
is both a primary and a secondary queue, is commenced in Section
VIII, and the steady-state quantities of interest are calculated in
Section IX.

Properties of the eigenfunctions which occur in the representations
of the probabilities p,;, and which are related to Poisson-Charlier”®
and Chebyshev® polynomials, are given in Appendix A. Appendix B
shows that the corresponding eigenvalues are distinct. Moreover, the
eigenvalues, which are roots of polynomial equations, enjoy an inter-
lacing property which facilitates their numerical evaluation.

Another approach to the solution of the overflow problem, which is
useful when g, is large, or even infinite, as is the analysis in Section VI
for case I with g. = 0, will be presented in a separate paper. Also, an
alternate approach, which is useful when g, is large, or even infinite,
is presented in another paper."”

Il. OVERFLOW WITHOUT QUEUING

We begin by considering an overflow system without queuing. The
system consists of two groups, a primary and a secondary, with n, =
1 servers, which receive demands from independent Poisson sources
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S with arrival rates A, > 0, 2 = 1 and 2, respectively. The service
times of the demands are independent and exponentially distributed
with mean service rate p > 0. If all n, servers in the secondary are busy
when a demand from S; arrives, the demand is lost (blocked and
cleared from the system). If all n, servers in the primary are busy when
a demand from S, arrives, then the demand is served in the secondary,
if one of the n, servers is free; otherwise, the demand is lost.

The overflow system corresponding to the case of no secondary
source (or A, = 0) has been analyzed by Brockmeyer.! Also, the system
described above is a special case of two groups of servers with a
common overflow group. The first group has n, servers and the second
none, while the overflow group has n; servers. This problem has been
analyzed by Kosten,>® but his analysis differs from ours, as will be
explained.

Let p;; denote the steady-state probability that there are { demands
in the primary and j demands in the secondary. These probabilities
satisfy a set of generalized birth-and-death equations,'® which may be
derived in a straightforward manner. We define the traffic intensities

a = A/p, @ = Ao/u, (1)
and let §;; denote the Kronecker delta; 8; = 1if 7 = j, and §; = 0 if
i # j. Then it is found that
[a1(1 = 8in,8jn,) + a2(1l — 8jn,) + i + jlpis

= a1(l — Si)pi—1,; + (1 — 8jo) (@18, + @2)pij—1
+ (1= 8in, ) (i + Dpiv1,; + (1 = 8n,) (7 + Dpijar, (2)

for 0 < i < n;, 0 =Jj =< n2. The normalization condition is

" n2

E E pii=1 (3)
=0 j=0
It is known from the theory of finite Markov chains'' that there is
a unique solution to the system (2) and (3), and p;; > 0. Once this
solution has been obtained, the steady-state quantities of interest may
be calculated. In particular, if Lx is the probability that a demand
arriving from S; is lost, then

Li=pnn, L= _Z.O Diny- (4)

Note that a demand from the primary source is lost only if all the
servers in both the primary and the secondary are busy. Such a
demand overflows to the secondary if all n, servers in the primary are
busy, but there is a server free in the secondary, so that the probability
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of overflow is
ng—1

Le= Y Pn.j (5)
j=0

We now proceed to solve the system (2). If i # n,, the variables in
(2) may be separated, and there are solutions of the form a;f; where
(@1 + i+ plai = a1(1 — Gio)ai-1 + (L + Dais, (6)
forO<i=n;—1,and

[az(1 — &jn,) +J — p1Bi= ax(1l — 8jo)Bj-1 + (1 — &in,)(J + D)Bjs1, (7)

for 0 < j < n», and p is a separation constant. The solution of (6) may
be expressed in terms of Poisson-Charlier polynomials.”® We here
denote the solution of (6) for which ag = 1 by si(p, a1). The properties
of s:(p, a) which we will need are given in Appendix A.

For 0 <j =< n; — 1, a solution of (7) is 8 = s;(—p, az2), 0 <j < ns. The
boundary condition at j = n, implies that

(nz2 = p)8n,(—p, @2) = A255,-1(—p, az). (8)

With the help of (169) and (170) in Appendix A, this equation may be
written in the form

pSn,(1—p, az) = 0. 9)

But s,,(1 — p, az) is a polynomial in p of degree n,. It is shown in
Appendix B that its zeros are positive and distinct, and we denote
them by pn, m =1, - -+, ns. Then, with po = 0, we have

PmSn,(1 — pm, @2) =0, m=0, -, ny. (10)
It follows that we may represent the probabilities p;; in the form
Pi= Y CmSi(pm, @1)Si{(—pm, @2), 0=i=m, 0=<j=<n,, (11)

m=0

where the constants ¢, are to be determined. It remains to satisfy the
boundary conditions corresponding to { = n; in (2), as well as the
normalization condition (3). Hence, for i = n, and j # n., we must
have

(a1 + az + n1 + j)pn,.;
= a1Pn,1.; + (@1 + @2)(1 = 8jo)pn,,j-1 + (J + 1)pn,j+1,  (12)

for 0 = j < np, — 1. If we substitute (11) into (12), it is found, after
reduction with the help of the recurrence relations in Appendix A, that
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na
20 Cm[pmsn, (1 + pm, @1)8;(—pm, az)
+ a18n,(pm, @1)s;(—1 — pm, @2)] =0, (13)
forO<j=n,— 1.

The boundary condition corresponding to i = n; and j = n; in (2),
namely,

(nl + n?.)pnl,nz = Q1Pn,-1,n, + (al + a2)pnl.n2—]s (14)

implies, after reduction and the use of (10), that

ng
Y cmlpmsn,(1 + pm, @1)$n,-1(1 — pm, @z)

m=0

+ alsnl(pm, al)snﬁfl('-Pm; az)] =0. (15)

As is to be expected, this condition is redundant, as may be verified by
summing (13) from j = 0 to n. — 1, and using (171) in Appendix A.
Thus the coefficients ¢, are determined by (13) only to within a
multiplicative constant, which is determined from the normalization
condition (3). From (3), (10), (11), and (171), it follows that

CoSn, (1, @1)8n,(1, @2) = 1. (16)

In general, the constants ¢, have to be calculated numerically. In the
limiting case a; = 0, for which p, = m, from (10) and (167), we were
able to obtain an analytical expression for ¢, and to reproduce the
results of Brockmeyer,' but we omit the details.

We now comment on the approach adopted by Kosten.>® Whereas
we obtained an eigenvalue problem by satisfying the boundary condi-
tions at j = ng, but not at i = n,, Kosten obtained an eigenvalue
problem by satisfying the boundary conditions at { = n;, but not at f
= n,. He obtains the eigenvalue equation ys, (1 + y, @) = 0, with
roots yo=0and y,, r =1, - - -, n,. However, since the variables cannot
be separated in (2) in the region 0 < i < n;, 0 <j < n; — 1, the
corresponding eigenfunctions, which occur in the representation of p;;,
contain two terms for r = 1, --., ni, rather than one as in (11).
Moreover, the eigenfunction corresponding to yo = 0, which corre-
sponds to the solution for n; = oo, is an infinite sum. Hence it would
seem that Kosten’s approach is preferable if n, is significantly larger
than n,, but that the representation (11) is more suitable if n; =< n,.

Once the constants ¢, have been determined, the probabilities p;;
may be calculated from (11). We note, in particular, that, with the help
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of (10) and (16), and (167) and (171) in Appendix A, it follows that

mo s(0,a)  al/i!
jg.:upu N Snl(]., 01) E

r=0

(17)

ai/r!

This is the well-known result for the steady-state probability that
there are { demands in the primary. From (4), (5), and (11), with the
help of (171), we obtain

Lo= ¥ cusn(l+ pm, @1)8n,(—pm, az) (18)
m=0
and
ny
Lz =} cnSn,(pm, @1)8n,-1(1 — pm, @2). (19)
m=0

Also, from (4), (5), and (17), we have

3 sq, (0, @ at/n,!
L+ Iz = E Pnj= 1( 1) = nll / - . (20)
Jj=0 Snl(ln a) E al/r!

r=0

We remark that the quantities L, L. and I;» may be obtained directly,
once the constants ¢,, are known, without calculating the probabilities

Dij-

. SECONDARY QUEUE ONLY

We next consider the overflow problem in which there are g» = 1
waiting spaces in the secondary, but there is no primary queue. Now,
if all n, servers in the secondary are busy when a demand from S
arrives, the demand is queued if one of the g. waiting spaces is
available; otherwise, it is lost. Demands waiting in the secondary queue
enter service (in some prescribed order) as servers in the secondary
become free. If all n, servers in the primary are busy when a demand
from S; arrives, and if there is a free server in the secondary and no
demands are waiting in the secondary queue, then the demand is
served in the secondary. If there are no free servers, the demand is
lost.

Again, we let p;; denote the steady-state probability that there are
i demands in the primary and j demands in the secondary, either in
service or waiting. It is convenient to introduce the function

_[1,¢=0,
Xe= {0’ =0 (21)
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Then, with k2 = n: + @2, it is found that
[@i(1 = 8in, X j-n,) + a2(1 — §;x,) + i + min (j, n2)]pi;
= ai(1 — Sw)pi1.; + (1 — 8jo)(@18in, Xn,—; + @2)Pij—1
+ (1 = 8in) (¢ + Dpivr; + (1 — Sp)min(j + 1, na)pi e (22)
for 0 =i < n,, 0 =j < k2. The normalization condition is
Egﬂjgopu =1L (23)

If { # n., the variables in (22) may be separated, and there are
solutions of the form «;f;, where «; satisfies (6) for 0 =i =<n; — 1 and

[a2(1 = 8jx,) + min(y, n2) — p]B;
= ax(1 — jo)Bi-1 + (1 — &, )min(j + 1, n2) B (24)

for 0 = j =< k. As before, a; = sip, a1) for 0 =i=n;. For0=j <
ns — 1, (24) reduces to (7), and so there are solutions f8; proportional to
sj(—p, az) for 0 = j < n,. Also, for n, =j < ks,

[az(1 — &;r,} + n2 — p]B; = azBi—1 + nz(l — &jx,) Bj+1. (25)

The solution of (25) may be expressed in terms of Chebyshev polyno-
mials of the second kind,” U, (x). It is convenient to define

72
no a:+n:—p
b == U/ ———— 26
/(P) (ag) /( 9 ,—aznz ) (26)
and
¢i(p) = ¥i,(p) — ¥y, 1(p). (27)

The properties of these functions which we will need are given in
Appendix A. We note here, however, that Up(x) = 1, U_;(x) = 0 and
or,(p) = 1. It follows from (25) and (177) that B; is proportional to
¢di(p) forny — 1= j=<ks.

Consequently, we take

_ | sil=p, a2)én,(p), 0=j=na,
A { Sn,(—p, a2)di(p), n2—1=<j=ky, (28)

where
Sny-1(—p, @2)pn,(p) = Sn,(—p, A2)Pn,~1(p). (29)

This equation may be written in the form

pl8n,(1 = p, @2)¥,,(p) = Sn,—1(1 — p, @2)¥g,1(p)] = 0. (30)

OVERFLOW PROBLEMS WITH QUEUING 1435



Note that this equation reduces to (9) if g. = 0. The expression in the
square brackets in (30) is a polynomial in p of degree k2 = nz + gs.
Appendix B shows that its zeros are positive and distinct, and we
denote them by p., m = 1, - - -, ka. As before, we let po = 0.

It follows that we may represent the probabilities p;;, for 0 < i < n,,

in the form

ks
Y. emSi(pm, @1)Si(—pm, @2)Pn,(pm), 0 =J = na,
=0

pij = (31)
ke

E cmsi(Pm, al)snz(_ﬁ'm: az)d)j(Pm): na 5] = k2s
m=0

where the coefficients ¢.. are to be determined. Note that (31) reduces
to (11) if g2 = 0, since ¢,(p) = 1. It remains to satisfy the boundary
conditions corresponding to i = n; in (22), as well as the normalization
condition (23). Hence, in addition to (12) for 0 = j < n, — 1, we must
have

(@z + ny + NP, n, = Q1 Pn—1.n, + (@1 + @2)Pn, -1 + N2Prnr1 (32)
and
[a2(1 = 8jx,) + 11 + nzlpn, s
= @1 Pn,-1j + @2Pn, -1 + N2l = 8jn)Pn, 1 (33)

forn: + 1 =j=ks.
If we substitute (31) into (12), we find, after reduction, that

ko
Y, cmlomsn,(1 + pm, a1)Si(—pm, a2)

m=0
+ @18n,(pm, @1)8/(—1 — pm, @2)Ipn,(pm) =0, (34)
for 0 =j < n, — 1. Also, from (33) we obtain
Ry

2 cmpmsnl(l + Pm, al}an(_pm; Gz)ﬁbj(Pm) = 0 (35)

m=0
for n, + 1 = j < ks, and from (32) we find that
Ry
E cm[pmsnl(l + Pm, al)snz(_pm; aﬂ)

m=0

_alsn](.om, ﬂl)snrl(_.ﬂmn a2)]¢'n2(Pm) = 0. (36)

This last condition is redundant, as may be verified by summing (34)
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from j = 0to n: — 1 and (35) from j = n, + 1 to k,, and using the fact
that p,, satisfies (30). Hence, the coefficients c,, are determined by (34)
and (35) only to within a multiplicative constant, which is determined
from the normalization condition (23). From (23) and (31), with the
help of (27), (30), and (170) and (171) of Appendix 4, it is found that

cosn, (1, @1)[sn,(1, @2)¥g,(0) — sn,-1(1, @2)¥q,1(0)] = 1. (37)
We note, from (167), (168), and (176), that
sa)=3 %, %0 = 5 (E) (38)
=0 I r=0 \ Q2

Once the constants ¢, have been determined, the probabilities p;;
may be calculated from (31). In particular, with the help of (27), (30),
(37), (167), and (170), it is found that

ke s:(0, ay) a'i/i!
L ) @9
- e Y ai/r!

r=0

as is to be expected. Moreover, the steady-state quantities of interest
may be calculated. If L, is the probability that a demand from S; is
lost, then

ko n
Li= Y Dn.j, L2= 3 pi ko (40)
J=n; i=0

Also, the probability of overflow I, is as given by (5), and so, from
(39),

& _ 50,0, @) al'/my!

Li+To=7Y pu,= = (41)
1 12 J,;Op J Sn1(1, al} § a,}./r‘
r=0 )
From (31), it is found that
ko
L2 = E cmSnl(1 + Pm, al)snz(—pm, aQ), (42}
m=0
since ¢ (p) = 1, from (27), and
ko
I, = E Cmsm(norns al)sﬂz—l(l = Pm, @2) ¢”z(p"")' (43)
m=0

Other quantities of interest are the probability that a demand from

the secondary source is queued on arrival, namely,
ny ko—1

Q=3 Y pi (44)

1=0 j=n,
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and the average number of demands in the secondary queue,

ny ko
Ve=3Y Y (Jj— napi. (45)
=0 j=ny+1
But, if we let
ri= Y Dij (46)
=0

and sum on ¢ in (22), we obtain
[az(1 = &jx,) + nalry = @zrj1 + na(l — &x)rjs, (47)
for np + 1 =j < k. It follows that
nar;= @xrj-1, nz+1=j=ks. (48)

Hence, since L; = ry,, from (40) and (46),

ky—J
rji= (E) Lg, na Sj = kz. (49)
az

From (45), (46), and (49), we obtain
Vo = Ay, (ﬁ) L, (50)
25

where

_ & e Jla— @+ DEFETQ - E#]T,
A0 = E‘l % {1/2 glg+1),§{=1 (51)

Similarly, from (44),

Q: =T, (ﬂ) Ly, (52)
asz
where ot
L) =3 &7 =g+ (£—1DA9. (53)
=0
The departure rate from the secondary queue is
ny ko ky
Ru=npy ¥ pj=mp Y 7 (54)
i=0 j=ny+1 J=ny+1

from (46). It may be verified from (49) that Rz = A:Q.. This result
holds since, in the steady state, the departure rate from the secondary
queue is equal to the arrival rate to it.

Now, according to Little’s theorem,'® the average number of de-
mands in a queuing system is equal to the average rate of arrival of
demands to that system times the average time spent in that system.
If we apply this result to the secondary queue, we find that the average
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waiting time of the demands which are queued in the secondary is
—_ V2
bW
independently of the order of service within the queue. Now the
average number of demands being served by the secondary group is

ny ky

X, =Y ¥ min(j, na)pi. (56)

=0 j=0

We (55)

Hence, if we apply Little’s theorem to the secondary group of servers,
we obtain

as(1 — Lg) + arl1s = X5, (67

from (1), since the mean service rate is g. From (31) and (56), with the
help of (23) and (171) and (172) of Appendix A, it is found that
ky
Xo=ny— Y CmSn(l+ pm, @1)82,-1(2 — pm, @2)Pn,(pm).  (58)
m=0
The relationship (57) may be verified from (42), (43), and (58), with
the help of the boundary conditions (34) and (35), although the
verification is difficult. Consequently, the relationship (57) provides a
useful check on the numerical calculation of the constants c,,.

IV. PRIMARY AND SECONDARY QUEUES: CASE |

We now begin the investigation of the overflow problem in which
there is a primary queue, with ¢: = 1 waiting spaces, as well as a
secondary queue, with g» waiting spaces. As before, if all n; servers in
the secondary are busy when a demand from S; arrives, the demand is
queued if one of the g- waiting spaces is available; otherwise, it is lost.
Demands waiting in the secondary queue enter service as servers in
the secondary become free. If all n, servers in the primary are busy
when a demand from S; arrives, and if there is a free server in the
secondary and no demands are waiting in the secondary queue, then
the demand is served in the secondary. If there are no free servers,
then the demand is queued in the primary queue, if one of the ¢,
waiting spaces is available; otherwise, it is lost.

We will consider two different cases for the treatment of demands
that are waiting in the primary queue. In the first case, to be considered
now, a demand waiting in the primary queue may enter service either
in the primary, when a server becomes free, or in the secondary, if a
server becomes free and there are no demands waiting in the secondary
queue. Thus overflow from the primary queue is permitted in the first
case. In the second case, to be considered later, no overflow is permitted
from the primary queue, so that a demand in the primary queue must
wait for a server in the primary to become free.
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We let
khi=n+q, k=n:+qe. (59)

Then, in the first case, it is found that the steady-state probabilities p;;
satisfy the equations

[al(l - Siklxj'_nz) + ax(1 — Bjkz) + min(i, n1) + min(J, n2)]p:;

= (1 - xi—l—HIXszlff)[al(l - 5‘.0)p‘._l'j
+ (1 — 8, )min(j + 1, na)pi j+1]

+ (1 — 8j0)[a18in, Xn,— + @21 = Xim1-n,Xn,—) 1 Dij—1

+ (1 - aikl)[(l - Xi—nIan—l.—j)min(i + 11 nl) + nEXi—nlajnz]PiH,h
(60)

for 0 < i<k, 0 =j =< k. These equations were constructed so as to
imply that

=0, m+l=i<k, 0<j=n—1, (61)

since it is impossible for demands to be waiting in the primary queue
when there is a server free in the secondary. The normalization
condition is

ny ky

ko ko
YXpi+ ¥ Y pi=1 (62)

=0 j=0 i=n,+1 j=n,

We assume for the time being that g = 1. For0=i=n; — 1and 0
<j < ks, (60) is equivalent to (22), and hence there are solutions of the
form a;f8;, where a; = si(p, a1) for 0 < i < n,, B; is given by (28), and p
is a root of equation (30). Forn, + 1=i<k;and ns + 1 <) < kg, the
variables in (60) may be separated, and there are solutions of the form
v:6;, where

[ai(1 = 8ir,) + n1 + v]yi
=@ Yi-1 + ni(1 — 6ik])Yf+], m+l=<i<k (63)
and

[az(1 — aﬂfz) + no — v]§;
= a28;—1 + n2(1 — 82,)0/+1, n2 + 1 =j=<k;, (64)

and » is a separation constant. Corresponding to (26) and (27), we

define
n i a+nm+vv
o= (3) v (gmr) o
and
B:(v) = Qu,—i(v) = g (). (66)
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Then v; is proportional to ;(v) for n, = i < k,; and §; is proportional to
¢;(v) for n, = j < ko. We note that 8x, (v) = 1.

Now 8y, () is a polynomial of degree g in ». It is shown in Appendix
B that its zeros are negative and distinct, and we denote them by »,,
£=1, -+, q1. Then

On(v) =0, ¢=1,---, qu. (67)

Since the roots p,, m =0, - - -, ks of (30) are nonnegative and distinct,
we have a joint set of distinct roots. In view of the above results, we
may represent the probabilities p;; in the form

kg

Y cnsi(pm, @1)8i(—pm, @2)n, (Omdpn,(om), 0 < j = naz,

m=0

pij = . (68}
2
E cmsi(Pm; al)sng(npm, aZ)Bn, (Pm)‘i)j(Pm), n2 5_] = k2;

m=0

for 0 =i=<n;, and

ke
Dij= Y CmSn(pPm, @1)8n,(—pm, @2)0i(pm)di(pm)

m=0
3]
+ ¥ blipi(v), msisk,ne<j<ks, (69)
=1

where the constants ¢, and &, are to be determined. Note that the
representations in (68) and (69) agree for i = n,, in view of (67). We
also note that (68) reduces to (31) if g = 0, since &, (») = 1.

It remains to satisfy the boundary conditions at i = n,, 0 = j < k2
and at j = nz, n; + 1 = i = ky, as well as the normalization condition
(62). Hence, in addition to (12) for 0 = j < n; — 1, we must have

(a1 + az + ny + n2)pn,n,
= QiPn,—1n, + (@1 + @)Pnyn—1 + (B2 + RD)Pny410, + N2Pryny+1 (70)
and
[a1 + az(1 — 8x,) + na + n2]pn,.;
= @1Pn,-1,j + @Pnyj1 + MPr1j+ Rl — S )pn e (T1)
for n: + 1 =j < k. Also,
[a:(1 — 8ix,) + a2 + n1 + nz2]pin,
= aiPi—1n, + (M1 + n2)(1 — 8ir)Piv1n, + R2Ping+1  (72)
forni+1<i1=<k.
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If we substitute (68) into (12), we find, after reduction, that

ko
Y emlpmSn,(1 + pm, @1)8i(—pm, @2)

m=0

+ @18, (0m, @1)5;(— 1 — pm, a2)]an1(Pm)¢n2(Pm) =0, (73)

for 0 = j = n, — 1. Next, from (68), (69), and (71), with the help of
(184), we obtain

ko
2 CumSnz(—Pm, ﬂ.z)[Sn](]. + Pm, al)gnl(Pm)

m=0

+ 8n,(Pm, @1)82,-1(0om) Jbi(pm) = 1 (le beln +1(ve)bi(ve), (74)

for n; + 1 = j < ky. Also, from (72), with the help of the recurrence
relation (63) satisfied by 8,(»), it is found that

ky
E_o cmsnl(pm, al)snz(_pm, a2)[a281'(pm)¢n2~1(pm)
— n2(1 = 8ir))Oiv1(pm) pn,(pm) ]

T
+ ;21 b,[azﬂ,-(v,)oﬁ,;z_l(m) - nz(l - Bfkl)ﬂi+1(v;)¢n2(v,f)] = 0, (75)
for n, + 1 < i < k. It may be verified that the boundary condition (70)
is redundant.

The coefficients ¢, and b, are determined by (73) to (75) only to
within a multiplicative constant, which is determined from the nor-
malization condition (62). But, from (68), with the help of (27), (30),
and (170) and (171) of Appendix A, it is found that

ky
¥, pij = co8i(0, @1)8:,(0)[55,(1, az)¥g,(0) — 8n,1(1, a@2)¥g,1(0)] (76)
j=0
for 0 = i = n,. Then, from (62) and (69), with the help of (66) and
(171), it follows that

€8x, (1, @1)8, (0)[8,,(1, az)¥q,(0) — $n,—1(1, a2)¥,,1(0)]
ky
+ Y CmSn,(Pm, @1)Sn,(—Ppm, @2)Qg,~1(pm) ¥4, (Pm)

m=0

q1
+ .,21 b2 1(p) ¥, (v) = 1. 77
Note that (77) reduces to (37) if g; = 0, since 2-1(v) = 0 and b, (») = 1.
Once the constants ¢, and b, have been determined, the steady-state
probabilities p,; may be calculated from (68) and (69). We remark that
the number of constants to be determined is only & + 1 + ¢, whereas
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the number of probabilities p;; is (n: + 1)(k2 + 1) + gi(gz + 1), which
in general is considerably larger.

V. SOME STEADY-STATE QUANTITIES: CASE |
Other steady-state quantities of interest are depicted in Fig. 1, which
indicates the mean flow rates. The loss probabilities L, and Ly are
given by
L

ke
Li= Y puj» L2= Eﬂpi,kz- (78)

J=ny

and the probabilities that a demand from the primary, or secondary,
source is queued on arrival are

-1 Ry By Ryl
= 2 ¥ pi, Q=Y XY Py (79)
iy j=my i=0 j=m,

The probability that a demand arriving from the primary source
overflows immediately is Ir», as given by (5).

Since the mean service rate is g, the mean departure rate from the
primary queue to the primary servers is

P
Ru=nyp Y 2% Pi (80)
i=n;+1 j=ny

while the mean rate of overflow from the primary queue to the
secondary servers is
ky
Rio=nsp Y Pin,. (81)

i=n;+1

The mean departure rate from the secondary queue is

B kg
Rop=nap ) X Pi (82)
im0 jmmg+l

It may be verified from (60) that
Ry + Ri=MQ1, Ra=AQ:. (83)

The average number of demands in the primary and secondary
queues are

ko kg PO
V= ) Y ¥ (i—mpy, Va=Y Y (- n2)pis. (84)
i=n;+1 j=ny i=0 j=ny+1

Also, the average number of demands in service in the two groups are

ke Ry ko
Xi=Y Yipy+m ¥ Y pi (85)
=0 /=0 =41 iy
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and

n; ng—1 k kg
E Y. Jpij+ nz Z Y Pij- (86)
i=0 j=0 i=0 j=ny

If we apply Little’s theorem to the primary and secondary queues, we
find that the average waiting times of the demands which are queued
in the primary or in the secondary are given by

Vi Ve
Wi=—ro, Wy=——H1, 87
NG T M@ ®7)
respectively, independently of the order of service within each queue.
Also, if we apply Little’s theorem to the primary and secondary groups
of servers, we obtain

MA—Ly— L) — Riz=pX5, A21-— L)y + Aifiz+ Rz = MXZ, (88)

since the mean service rate is p.

The steady-state quantities of interest may be expressed in terms of
the constants ¢, and b, by use of the representations in (68) and (69).
From (78), with the help of (27), since 8, (v) = 1, it is found that

E Cmsn](pm, al)snz( Pmy a2)‘1’q2(pm) + 2 bJ\qu(VJ); (89)

=0

and, with the help of (66) and (171), since ¢,(p) = 1, it is found that

ky

Lz = E CmSnz(—Pm, az)[Snl(l + om, al)en](pm)

m=0

1
+ S, (pm, a1)Qq,-1(pm)] + Y b8, 1 (). (90)
f=1
Similarly, it follows from (79) that

ky

&= 220 cmSnI(Pm, al)sﬂ'q(_pm) a2)[9q1(Pm) - l]qu(Pm)

+ 3 51000 — 11,00 OD
Next, from (5), with the help of (171), it is found that
Iy = m%; CmSn, (Pm, @1)Sny-1(1 = pm,y @2)0n, (0m)Pny(pm).  (92)
Also, from (80) and (81), it follows that

m=0

k2
Bu = n‘lnu‘[ E CmSn](pm, al)sng(_Prnr a2)nql—1(Pm)‘I’q2(pm)

1
+ 3 bfgql—l(l’f)‘l’qz(pl)jls (93)

£=1
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and
ky

Ry = ﬂz.ll[ zo CmSn,(Pm, @1)8n,(—pm, @2)2g,—1(pm)Pn,(Pm)

+ 2 baﬂql-l(w)%(w)]. (94)
=1

The first relationship in (83) provides a useful numerical check, in view
of the expressions in (91), (93), and (94).
From (84), with the help of (27), (182), and (183), it is found that

n
Vi = co8n, (0, @1)8n,(0, a2)¥,,(0)A,, (;l)
1

ko Cm
— Z — Snl(pm, al)sng(_Pm; aZ)‘PQQ(pm)

m=1 pm

.[1 — Q. (om) + % ﬂ.,,l(pm)}

q b

—a ) —{'I'qz(l’z)’:l = Qg () +Eﬂq]—1(l‘z):|, (95)
¢=1 V¢ a

where A, (£) is as defined in (51). From (85), with the help of (62), (76),

and (172), it follows that

X1 =n — cgsn,_l(Z, an)ﬂnl(ﬂ)
o[5.,(1, @s) ¥, (0) — $n,—1(1, @2)¥,,—1(0)]. (96)
Similarly, from (86), with the help of (62}, (68), (171), and (172),

kg
X2 =N — E Cmsnl(l + Pm, a:l)snz—l(2 — Pm, a2)3nl(Pm)¢n2(pm)- (97)
m=0
In view of (89), (90), (92), (94), (96), and (97), the relationships in (88)
provide a useful numerical check.
If we now define

ky
ry= 3 pi, (98)

and sum on i in (60), for n; + 1 = j =< ks, we obtain (47), and hence
(48). Also, Ly = ry,, from (78) and (98), and it follows that (49) holds
and, from (79) and (84), that (50) and (52) hold. Moreover, from (82)
and (98),
ko
Ry = nap E rj, (99)
J=ny+1

and it may be verified, as before, that Ry = A2Q». This completes the
calculation of expressions for the steady-state quantities of interest.
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We have assumed that gz = 1. We remark, however, that the
representations in (68) and (69) remain valid in the case g; = 0, so that
k; = nz and ¢.,(p) = 1. We have verified that (73) and (75) to (77) hold
for g2 = 0, and note that ¥o(p) = 1 and ¥_,(p) = 0. We have also
verified that (89) to (97) hold for g. = 0. Moreover, V> =0 and @. = 0,
which is consistent with (50) and (52), as is seen from (51) and (53). In
the next section, we investigate the case g; = 0 in a different manner.

VI. ANOTHER APPROACH: CASE |

We now give special consideration to the case g, = 1, g2 = 0, so that
k; = nz. Then (60) for0<i=<n —1and 0 < =< n; leads to the
representation

na
pi= Y dusi(pm, a1)si(—pm, @2), 0=i=m, 0=<j=nz, (100)

m=0

corresponding to (11), where pm, m =0, ---, n; are the roots of (10),
with po = 0. The coefficients d,, are to be determined. The only other
nonzero steady-state probabilities are pi., for n; + 1 < i < k. But,
from (60), with kz = nNg,

[ai(1 = 8ix,) + n1 + N2]Pin,
= @ Pi-1,n, + (n1 + n2)(1 = 8ix,)Pis+1,n, (101)

for n; + 1 < i < k. It follows that

(n1 + N2)Pin, = Q1Pi-1,n,, M+ 1= i< k. (102)
Hence,
a i—nq .
Din, = e Prynypy M=i=Fh, (103)

and pn, », is given by (100). We remark that (103) holds if g, = oo,
provided that the stability condition a; < n. + n. is satisfied.

It remains to satisfy the boundary conditions at i = n,, 0 = j < na,
as well as the normalization condition (62) with k2 = n.. But (60)
implies that (12) must hold for0<j=n,— 1, and from (100) it follows
that, corresponding to (13),

E dm[pmsnl(l + Pm, Q1 )sj(_Pm; a2)

m=0

+ @185, (Pm, @1)8(—1 = pm, @2)] =0, (104)

for 0 < j < ny — 1. It may be verified that the boundary condition
corresponding to i = n; and j = nz, namely,

(al + m + n2)pn.].n2

= 0P, -1, + (@1 + Q2)Pnyn, 1 + (M1 + N2)Pr 410,  (106)
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1s redundant. In fact, (105) reduces to (14), which was shown to be
redundant, since

(n1 + n2)pn,+1,n, = AQ1Pn, ., (106)

from (103).

The coefficients d,, are determined by (104) only to within a multi-
plicative constant, which is determined by the normalization condition.
From (62), with &, = n,, it is found, with the help of (10), (53), (100),
(103), and (171), that

q+1
dosn,(l,a,)s,.zu.az)+( @ ) qu("”’”)

n + np a

Y, AmSn,(pm, @1)Sn,(—pm, @2) = 1. (107)

m=0

We note that, for a; < n; + na,

q+1
lim (—2 r, (2t re) o . (108)
q—w \ N1 + nq ! a; (nl + nz — al)

Once the coefficients d,, have been determined from (104) and (107),
the steady-state quantities of interest may be calculated with the help
of (100) and (103). Since the calculation of these quantities is a
straightforward extension of previous calculations, in view of the
simplicity of the result in (103), we do not present the results here. We
remark that the approach adopted here in the case g; = 0 requires the
determination of only n, + 1 constants d,,, m =0, . - -, n, whereas the
approach adopted in the two previous sections requires the determi-
nation of the n, + 1 constants ¢, m =0, -+, nz and the ¢, constants
b;,, ¢=1, -+, q1. This raises the question of an analogous approach for
g2= 1. We have carried out the corresponding analysis and will present
the results in a separate paper. The results are useful, in particular,
when q, is large, or even infinite.

VIl. PRIMARY QUEUE ONLY: CASE Il

We now begin the investigation of the second case, in which no
overflow is permitted from the primary queue, so that a demand in the
primary queue must wait for a server in the primary to become free.
Hence, Rz = 0 in the diagram in Fig. 1, and this is the only aspect in
which the second case differs from the first. In this section, we consider
the case in which there is a primary queue only, with g; = 1 waiting
spaces. The steady-state probabilities p;; now satisfy the equations

[ai(1 = 8ix,8jn,) + @2(1 — §;n,) + min(i, n.) + jlpi
= ai(1 = 8i0)[1 — Xi—n,—1(1 — 8jn,)IPi-1.;

+(1-— 8,-0)(a|xe—n, + az)PiJ‘l

+ (1 = 8ip,)min(i + 1, n1)pi+1; + (1 — 8in,)(J + Dpijrr, (109)
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for 0 < i <k, 0 <j < ng, where k; = n; + ¢1. The normalization

condition is
ky ng
Y Xpi=1 (110)
i=0 j=0
But (109) for 0 < i < n, — 1 and 0 < < n leads, analogously to case
I, to the representation
ny
Pii= Y Dusi(pm, @1)$i(—pm, @2), 0=<i=m, 0=j=n,, (111)

m=0

where pn, m = 0, -+, n, are the roots of (10), with po = 0. The
coefficients D,, are to be determined. Also, for n; + 1 < i < k; and
0<j<n -1,

(a1 + az + n1 + J)py;
= (a1 + az2)(1 = §jo)pij-1 + ~i(l — 8ir, )pivri+ (F + Dpijer. (112)
We define the quantities IT,;, for r, j = 0, 1, - - -, as the solutions of
the equations
(a1 + az + ny + J)II,;
= (a1 + a2)(1 — 8o) L, ;-1 + na(1 = 8,0) 1L,y ; + (j + DI, 11, (113)
which satisfy the initial conditions
IMo=28wn, r=0,1, ... (114)
It follows from (163) that
i{, IL;v" = s;(n1(1 — v), a1 + as), (115)
and, in particular,
ILo; = si(n1, a1 + az). (116)
Also, (115) implies that
II,,=0, r>j. (117)
It may be verified, from (112), (113), and (117), that

Ry
Dii = EIP;-{)H,-_;',_,', m+l=si=skhk, 0=<j=n,. (118)
The quantities IT,; may be calculated sequentially from the recurrence
relations (113), with the help of (117) and the initial condition IToo
=1.
It remains to satisfy the boundary conditions at i = n,, 0 <j < n,
and at j = nz, n; + 1 < i < ki, as well as the normalization condition
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(110). Hence, from (109) we must have
[a1 + az(1l — &) + n1 + jlpn,; = @1pn -1, + (a1 + @2)(1 — 8jo)pn,, ;1
+ mpn+1i+ (1= 8 ) (J + )P, jer (119)
for 0 =j < nzand
[a1(1 = 8ix,) + 01 + n2]Din,
= @ipi-1,n, + (@1 + @2)Pin,—1 + N1(1 = 8ig))Piv1,n, (120)

fnrn1+ lﬁlfkl
From (111), (118), and (119), it is found, after reduction, that

g
Y Dulpmsn, (1 + pm, @1)8{—pm, G2) + G180, (pm, @1)8;(—=1 — pm, az}]

m=0

k
bl £ 51 E prOHr—nl—Lj =0 (121)

r=n;+1

for 0 <j =< n» — 1. Also, with the help of (113), the boundary conditions
(120) may be written in the form

R
2 prﬂ[(nZ + l)nr—nlvl,n2+l - (a16n1+1.k1 + ﬂ2)Hr,n1,1'n2]

r=n;+1
g
—ar Y Dnsn(pm, @1)8n,(—pm, a2) =0, (122)
m=0

and, for g; = 2,
R
E_Pro[(nz + DITr—in,e1 — (@18ir, + a2) 1,0, ]

&y
—a E prﬂnr—i+1,n2 = 0) (123)
r=i—1
form+2=<i=k.

The boundary condition corresponding to j = ns in (119) may be
reduced, with the help of (10), to that in (121) for j = n,. However, this
last condition may be shown to be redundant, and it suffices to use
(121) for 0 < j < ny — 1. These conditions, together with those in (122)
and (123), determine the constants D,, m = 0, ..., nz and the
probabilities p,o, r = ny + 1, - -+, ky, only to within a multiplicative
constant, which is determined from the normalization condition (110).
But, from (111), with the help of (10) and (171), it follows that

Y piy = Dosi(0, a1)ss,(1, @z), 0=<i=n. (124)

j=0

Also, from (109), if we sum on j from 0 to n., and on i from ¢to ki, we
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obtain
m Y ps=apran, m+l={I=sk. (125)
Jj=0
Hence, from (124) and (125), with the help of (111), (118}, and (171),
the normalization condition (110) implies that

a =
D()Sn](]-, al)sn-z(]-, az) + n—l 2 Dmsnl(.pm, al)snz(_nom: az)

1 m=0

&y r—n;—1
+ = ( Y pro X Il —Pkl,uno,nz) =1. (126)
£=0

N1\ r=n;+1

Once the constants D,,, m = 0, ---, n2 and the probabilities p.o, r
=n, + 1, -+, b have been determined, the remaining probabilities
may be calculated from (111) and (118). Also, other steady-state
quantities of interest may be calculated directly. In particular, the loss
probabilities are

Ly = par, n, = pr,0Ilon,, (127)
and, with the help of (171), '

k ny
Ly = Z‘,Op,-,nz = E__"O D8n,(1 + pmy @1)8n,(—pm, az)

ky r—n;—1
+ ¥ po Y I, (128)
r=n;+1 ¢=0

The probability that a demand from the primary source is queued on
arrival is

k-1 ng
Q= Y Pin,= ED D85, (0m, @1)8n,(—pm, @z2)

i=n,

r—-n;—1

Ry
+ Y pro Y In,—peollon, (129)
£=0

r=n;+1

which may be simplified in view of (126).
The probability that a demand arriving from the primary source
overflows (immediately) is

ky no—1 ng—1 k
he= % ¥ py= ) (Pn,.j + ¥ p,-j). (130)
i=n; j=0 Jj=0 i=ny+1

With the help of (125) and (171), it is found that

- a
I]2 = E DmSnl(pm, a])lianl(l — Pm, aZ) + _1 sn.z(_pm, az)}
m=0 n;

k r—m—1
a ! L a
+ (—1 - 1) Y po Y Iin,— —IPk..DHO-ng- (131)
/=0 n

n r=n;+1
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The mean departure rate from the primary queue to the primary
servers is

k) ny
Ru=nmnp Y ¥ pi. (132)
i=n;+1 j=0

It follows from (1) and (125) that R1; = A1Gh, as is to be expected.
The average number of demands in the primary queue is

&y 2
Vi= ¥ ¥ (—nm)py. (133)

i=n;+1 j=0

Again with the help of (125), it is found that

a| ™
- [ S Do, (0my @1)8n,(—pmy @2) — (@1 + DpiyoTlon,

N1 | m=0
ky r—n;—1
+ E Pro E (r+l1—-+¢— nl)ﬂ.;_,.z]. (134)
r=n;+1 £=0
The average number of demands in service in the primary is
ky ng
X, =} Y min(i, m)p;. (135)
i=0 j=0
With the help of (110), (124) and (172), we obtain
X1 =n — D(]Snlf1(2, al)sne(l, 022). (136)

The average waiting time of the demands which are queued in the
primary is W1, as given by (87). Also, since Ri2 = 0 and A; = ap, the
first relationship in (88) becomes

a (1 = L, — Ip) = X\. (137)

In view of (127), (131), and (136), this relationship provides a useful
numerical check. Finally, we comment that the only II,; which occur
in (127) to (129), (131), and (134) are I, ,,, for /=0, --., g1 — L

VIll. PRIMARY AND SECONDARY QUEUES: CASE Il

We now consider the second case when there is a secondary queue,
with g, = 1 waiting spaces, as well as a primary queue, with ¢; = 1
waiting spaces. The steady-state probabilities satisfy the equations

[ai(1 = 8ir,Xj-n,) + a2(l = 8;,) + min(Z, n1) + min(j, n2) |py
= (1 = 8io)(1 = Xi—n,~1Xny—1-)Pi-1.j
+ (1 = 80)(@iXi-n,Xn,— + @2)pij—1 + (1 — §x)) min(i + 1, n)pisr,;
+ (1 = 83,) min(y + 1, n2)pij+, (138)
for 0 < i =<k, 0 =j =< ks, where k, and %; are as defined in (59). The
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normalization condition is

El

1 &

[

pbi=L (139)

i=0 j=0

Now (138) for 0 =i = n, — 1 and 0 = j < k. leads, analogously to
case I, to the representation

ky
20 Cmsi(Pm!al)sj(_PmiaZ’)anl(Pm)¢n2(Prn)n 0=<j=n,,

pi=1"" (140)
Eo Cnsi(pm, al)snz("Pm, ﬂz)ﬂn, (om)dilom), n2=<j=<ky,

for 0 = i = n,, where pm, m = 0, -+, ks are the roots of (30), with po
= 0, and the constants C,, are to be determined. Similarly, (138) for
ni+1<i<k and n; + 1 =j < k,, analogously to case I, leads to the
representation

ky
Py = E Crnsnl(pm. al)snz(_pm, a2)0i(Pm)¢j(Pm)

m=0

[}
+ ¥ B.b:iv)oiv)), mi=isk,ni<j<ks, (141)
=1

where v, /=1, - -, qu, are the roots of 8, (v) = 0, and the constants B,
are to be determined. As before, the representations in (140) and (141)
agree for i = n,.

Finally, (138) for ns + 1 <i <k, and 0 < j <'ny; — 1 leads, as in the
previous section, to the representation

ky
Py = 2 p,oI'[,.ng-, nm+l=< i< k], 0 5] = nas. (142)
=i

In order that the representations in (141) and (142) agree for j = n,, we
must Have

ky ko
Z pronr—i,ng = E Cmsnl(Pm, al)sng(_Pm, a2)”i(Pm)¢'ng(Pm)
r=i m=0

a
+ ¥ BAi(vdn(ve), mi+1=i=<k. (143)
£=1

Since, from (116) and (167), o, = Sn,(n1, @1 + a2) > 0, these equations
may be used to solve successively for px o, - - -, Pn+10 in terms of Cp,
m=0,++,keand B,, =1, -+, qu.

It remains to satisfy the boundary conditions at i = n;, 0 =< j < ks
and at j = n, n; + 1 < i <k, as well as the normalization condition
(139). Hence, from (138), in addition to (119) for 0 = j =n, — 1 and
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(71) for nz + 1 = j < k2, we must have
(ar + az + ni + n2)Pnn,
= A1Pn,-1n, + (@1 + @2)Pnyny1 + R1Pn41n, + N2Dnny+r,  (144)
and
[@i(1 — 8i,) + @z + N1 + n2pin,
= @1Pi-1n, + (@1 + A2)Pin,-1 + N1(l = 8ig )Piv1n, + N2Piny+r, (145)

form+1=<i=<k.
From (119) for 0 =j < ny — 1, (140) and (142), it is found, analogously
to (121), that
ky
Y Culpmsn, (1 + pm, @1)si{(—pm, az)
m=0
+ alsn,(Pm: 0'.1)8_,'(—1 —Pm;, 02)]gn1(Pm)¢n2(Pm)
ky

—m E prOHrﬂ'l’fl.j = 0: (146)
r=n,+1
for 0 < j < n, — 1. Also, from (71), (140), and (141), it is found,
analogously to (74), that
L
E Cmpmsng(_pm, a2)[3n,(1 + Pm, al)gn,(pm)

m=0

+ 8n,(pm, @1)82q,-1(pm) Jdj(om)

()]
=n1 Y, Bl n1(vddi(ve), (147)
=1

for ny + 1 <j < k.. From (141), (142), and (145), with the help of (177)
and (180), it follows that

ko
asz E Cmsnl(Pmsal)snz(—Pm; a2)8i{Pm)¢’n2—l(Pm)

m=0

T ky
+ az Y Bbi(v)n,1(vs) — (a1 + az) ¥ prolli—in,1=0, (148)
=1

fornmy+1=<i=<k.

The boundary condition (144), which may be reduced with the help
of (30) to that in (146) for j = n,, can be shown to be redundant. The
conditions in (143) and (146) to (148) determine the constants C,, m
=0,.--,koand B, /=1, ---, q1, and the probabilities p,o, r = n, + 1,
-+ +, ki, only to within a multiplicative constant, which is determined
from the normalization condition (139). But, from (140), with the help
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of (27), (30), and (171), it follows that

k

Ez Pi= Cos:(0, ﬂ])anl(ﬁ)[snz(ls 02)‘1’,;2(0) - Sn2—1(1, aZ)'PqE—I(O)]; (149)
J=0

for 0 < i < n,. Also, from (138), if we sum on j from 0 to ks, and on i
from #to k;, we obtain

ko ka
n 2 Pog=a E Py +1=/¢= kl. (150)
Jj=0 J=ny

Hence, from (149) and (150), with the help of (27), (66), (141), and
(171), the normalization condition (139) implies that

Cosn,(l, al)gnl(o)[snz(lg aZ)‘qu(O) - Su2—1(1, a2)‘1’q2——1(0)]

ko
+ 5 Cosn(Pmy @1)Sny(~Pm @2)[ g, (om) — 11¥ 4, (0m)

1 m=0

a L3
+ 2% B[R (r) — 11¥,(v) = 1. (151)
ni =1
Once the constants C,, m =0, ---, ks and B, /=1, - -, ¢, and the
probabilities po, r = n, + 1, ---, k have been determined, the
remaining probabilities may be calculated from (140) to (142).

IX. SOME STEADY-STATE QUANTITIES: CASE Il

Other steady-state quantities of interest are depicted in the diagram
of Fig. 1. The loss probabilities L, and L, are given by (78), and the
queuing probabilities @, and @. are given by (79). Also, the mean
departure rate from the secondary queue, R3; is given by (82). The
average number of demands in the secondary queue, V5, is as given by
(84), but the average number of demands in the primary queue is

LI
Vi= 3 3 (i — npy. (152)
i=n;+1 j=0

The average waiting times of the demands which are queued in the
primary or in the secondary, Wi, and W,, are given by (87). The
(immediate) overflow probability I, is given by (130). The mean
departure rate from the primary queue to the primary servers is

ky ko
Ri=ny ¥ 3 pus (153)
i=n,+1 j=0

and the average number of demands in service in the primary is
: Ry Ry

X, =Y Y min(i, ni)pi,. (154)

i=0 j=0

The above steady-state quantities may be expressed in terms of the
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constants C,, and B,, with the help of the representations in (140) and
(141) and the relationship (150). Because of (150), we do not have to
use the representation in (142), and hence we are able to eliminate the
quantities I1,. From (78), analogously to case I, and corresponding to
(89) and (90),

ka a1
L,= E CmsnI(Pm, al)sn.z(_Pm. 02)‘Pq2(9m) + E B(\I’qz(l’() (155)

m=0 =1

and

ky
Lz = 2 Cmsnz(_pm, 02}[31\1(1 + pm, 01)0::]([3:")
0

m=

+ 5 (oms @2)Qarrlpm)] + 3 BRgya(v). (156)

=1

Similarly, from (79) we obtain, corresponding to (91),
kg
Q] = E C,,.sn,(pm, 01)3@(_Pm, 02)[901 (Pm} - l]q’qz(p'ﬂ)

m=0

q1
+ ,Z:I BAS,, () — 1]¥q,(vs), (157)

which may be simplified in view of (151).
From (130), with the help of (27), (66), (150), and (171) it is found
that

ko
I, = Z Cmsnl(Pmr al)Snz—l(l = Pm, a2)0n1(pm)¢'nz(ﬂm)

m=0
ky
+ 2 Cmsnl(pm, al)snz(_pm, (12)

m=0

. {z_i [Q‘ql(Pm) -1]- qul(Pm)} .. (om)

T a,
+ Z B, {;‘l [Qq,(”/) - 1] - qul(i’/)} ‘I’qz(l’()-

/=1

(158)

From (1), (150), and (153), it follows directly that R, = M@, as is to
be expected. From (154), with the help of (139), (149), and (172), it
follows that

Xi = n1 — Cosn,-1(2, @1)8,,(0)[51,(1, a2)¥,,(0)
— Sn,-1(1, a2)¥,,1(0)].  (159)
In view of (155), (158), and (159), the relationship in (137) provides a

OVERFLOW PROBLEMS WITH QUEUING 1455



useful numerical check. From (152), with the help of (27), (51), (66),
(150), (182), and (183), it is found that

Vi= CUSnl(O, al)s,,z(O, tItz)‘I‘..h(O)Aq1 (?)
1

k
a
+ n_l E Cmsn,(Pm, al)sng(—Pm, aQ)‘qu(pm)
1 m=1

'{ﬂq,(pm) @+ 1) = 21 = lom) + = ﬂq,-l(pm)]}
Pm 2

a @
+— ¥ BY,(v) {ﬂql(l"l) — (g1 +1)

ny /=1

= E [1 - 99,(”'/) + ﬂ gq,-l(”/)]}. (160)
Ve a,

Now (60) and (138) are identical for 0 = i <k, na + 1 <j < k.
Hence, if we define r; as in (98), and proceed as in case I, we deduce
that (50) and (52) hold, and Rz = A2, as is to be expected.

Although we assumed here that g. = 1, we remark that the expres-
sions in (155) to (160) remain valid for q» = 0. This may be verified
from (127) to (129), (131), (134), and (136), by substituting D, =
Cn0,,(pn) and using (143), noting that ¢, (p) = 1, and ke = n, for g =
0. We point out that

ky r—n;—1 ky Ry
Y oo ¥ Hp= 3 ¥ pollin, (161)
r=n;+1 =0 i=n;+1 r=i
and
ky r—n;—1
2 Pro z (T' +1-¢- m)I—I,:,,z
r=n+1 =0

k) k
= E (i+1—n) E p,ol'I,_,-,,?. (162)
i=n,+1 r=i
Similarly, the normalization condition (151) holds for g. = 0, as may
be verified from (126). Also, the boundary condition (146) reduces to
(121) for g2 = 0. Finally, it may be verified, with the help of (113) and
(143), that the boundary conditions (122) and (123) are equivalent to
(148) for g2 = 0.
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APPENDIX A
We define si(A, @) by the recurrence relation
(@ + i+ Nsi(A, a) = a(l = 8io)sia(A, a) + (i + 1)sin(A, a);
so(A, @) =1, (163)

fori =0, 1, -+ -. Thus s.(\, @) is a polynomial of degree n in both A and
a, and it may be related to a Poisson-Charlier polynomial.”® However,
we give here the properties of s,(A, a) which we will need. It follows
from (163) that the generating function

-]

gw) = ¥ s\, a)u' (164)
satisfies the equation -
(1—u) g‘g =[a(l—u)+ Mg g0 =1 (165)
Hence,
E si\, @)u' = e™(1 — u)™. (166)

=0

This leads to the explicit formula

3 i (?\),-G,Fr
si(A, a) = gﬁ ni=nr (167)
where
MNo=1, Ar=AA+1)---A+r—=1), r=12,---. (168)

If we differentiate (166) with respect to u, we obtain
(i + D)sinr(A, @) = asi(\, @) + A si(A + 1, a). (169)

Also, if we write (1 — u)™ = (1 — u)(1 — w)™", it follows from (166)
that
si\, @) = siA + 1, @) — (1 = 8iw)si.i(A + 1, a). (170)

From (170), we obtain

¥ siA, @) = su(A + 1, a). (171)

1=0

From (169) and (171), we deduce that

Y (n—si(A, a) = (1 = 8u)sn(A + 2, a). (172)

i=0
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We now turn our attention to the Chebyshev polynomials of the
second kind,” U,(x). They may be defined by the recurrence relation

2x Udx) = Uspi(x) + Uri(x); U-ilx) =0, Up(x) = 1,
for /=0, 1, -+-. From (26) and (173), it follows that
(a2 + n2 — p)¥.p) = a» ¥r1(p) + n2 ¥ri(p);
¥_1(p) = 0, ¥olp) = 1.

Since®

it also follows that

&2 ’ r

(] as + n2 naz
¥,0)=(— U = —]).
© ('12) {(Z\J’aznz) r>-:0 (a2)

From (27) and (174), we deduce that
[az(1 — 8n,) + n2 — ploi(p) = asdi-1(p) + n2(l — ix,)Pj1(p),

for j < ks.
Similarly, from (65) and (173), it follows that

(a1 + ni + v)Q2Av) = arflui(r) + ni8i(v);
Q.,1(») =0, Q(v) = 1.
Also, from (175), we obtain

o2 ¢ r
n a +n; n
2,/0) =(— U = — ).
A0) (0.1 ) [(2\‘ an ) f§0 ((11)
From (66) and (178), we deduce that

[a1(1 - 5,‘kl) + n, + V]ei(l-’) = alﬂl;l(v) + nl(l - 8,’;;1)31‘4.1(!)),
for i < k,. Also, from (179),

n ky—i
8:(0) = (—‘) )
a

Hence, since &, = n; + q,
ky n

Y (i —m)bi0) = A, (a—),

i=n,+1 1

(173)

(174)

(175)

(176)

(177)

(178)

(179)

(180)

(181)

(182)

where A,(§) is as defined in (51). If we multiply (180) by (i — n,) and

sum on I, we obtain
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&y k=1 ky
v E (i —n)fi(y) = ax E fi(v) — E Bi(v)
i=n;+1 i=n; i=n;+1

= a[Qq,(v) — 1] — n1Q,1(»), (183)

from (66). We also note, from (178), that
alanl(v) - n]&nﬁ-l(”) = Vﬂql—l(y)- (184)

APPENDIX B

We first consider the roots of s.(1 — p, @} = 0, where a > 0. We
relate this to an eigenvalue problem for a real symmetric matrix, so
that we may apply a result of Slepian and Landau® to prove that the
roots are distinct. Forj=0,1, ---, we let

]
yi= \/g 5i(1—p, a). (185)

Then, from (163) it follows that

, 1 . :
Gy+—=@-1—a—j)y+j+1ymu=0  (186)

Va
If s.(1 — p, @) = 0, then y, = 0 and
1
[An - -E (1 +a— p)In}(yo, "ty yn—l)T = OI (187)

where T denotes transpose, I, is the n X n unit matrix, and

[0 1
-1
1= V2
A=[0], A.=| Y% n=2.
T n-1)
Va | (188)
Hence the equation s,(1 — p, @) = 0 is equivalent to
1
det| A, ——=(1+a- p)In:| =0. (189)
-

We remark that Kaufman® who has analyzed the same overflow
problem using matrix techniques, arrived at the same eigenvalue

problem by block diagonalization.
Now A, is a real symmetric matrix, so that its eigenvalues are real.
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Moreover, A, may be obtained from A,.. by deleting the last row and
column. Hence we may apply the results of Slepian and Landau."”” In
order to establish that the eigenvalues of A, separate those of A.+, for
n=12, ..., we have to verify that certain quantities (see (6) of Ref.
12) are different from zero. Specifically, let a be the n-dimensional
column vector obtained from the last column of A,.: by omitting the
diagonal element, so that

1),n=1,
a =
©, ---,0,vn)T, n=2. (190)

Hence
(@ (Yo, = Yn-1)T) = VR Yoot # 0, (191)

since yn—1 7 0 for any eigenvector corresponding to y. = 0. This
establishes the desired result, and we may conclude that the zeros of
s.(1 — p, a) separate those of 8,+1(1 — p, @), forn =1,2, .--. In
particular, the zeros of s.(1 — p, @) are real and distinct. Since, from
(167), sa(A, @) > 0 for A = 0, it follows that the zeros of s.(1 — p, a) are
larger than 1, and hence positive.

We next consider the zeros of

P 4(p) = sn(1 — p, a)qlp) — sn—1(1 — p, a)g-1(p), (192)

where
n\”? a+n—p
Yelp) = (—) U (—) 193
©=\a) "\ ovam (198)
We let
Yi» J=O! e, n,
2= (194)

a+n—p .
Zntg-1Un+q—j1 (—), J=n-—-1-..--.n+gq,
2van

where y; is as in (185). We note that z,., = 0, since U_,(x) = 0. Also,
from (185), (192), and (193), the consistency of the definitions of z,_;,
and of z,, in (194) implies that P, ,(p) = 0. From (186), it follows that

; 1 . -
\/-]Z_,;1+T(p—1—a—j)2j+ Vi+1lzia=0,
a

j=03"'1n__11 (195)

and from (173) we obtain

1
\/Ezj_1+—(p—a—n)zj+ ‘\/EZj+1=0,

Va
j=n,+-+,n+qg-—1 (196)
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But P,o(p) = s.(1 — p, a) and we have shown that its zeros are real and
distinct. Proceeding as before, it follows that the zeros of P, ,(p)
separate those of P, 4+i(p), for ¢ =0, 1, - - -. In particular, the zeros of
P, ,(p) are real and distinct.

We now consider p < 0, and will show that P4(p) # 0, forn =1, 2,
...and g = 1,2, ---. Since, from (170),

Sn(]. b a) = Sn(_p: a) + sn—l(]- - P a)a (197)
and, from (167), s.(A, a) > 0 for A = 0, it follows that s.(1 — p, a) >
$p—1(1 — p, @) > 0 for p = 0. Hence

M , p=0. (198)
sn—l(l - P; a)

Also, for p =0,

atn=p_1( 1 \/E\/E
2van ‘2("+n)’ namax( a ")' (%

But, from (175),
& 2r—q
WU (1/2)0 + /)] _ &

L 200
LA+ ] 3 e o

It follows from (193), (199), and (200), that
Yaorlp) 1 \/E <1, p=0. (201)
Yq(p) n n

From (192), (198), and (201), we deduce that Png4(p) # 0 for p = 0.
Thus the zeros of P,4(p) are positive.
Finally we consider the zeros of 8, (v). For /=0, 1, 2, -+, we define

a+n +v a, a+nm+v
wev) = U(——) — \/: U,.- (—) (202)
‘ ’ 2Vain m ! 2Vainy
Then, from (59), (65), and (66), 8., (v) = 0 is equivalent to w,,(v) = 0.
From (173) we deduce that

(n1 + Y)wo = Vvaun, w, (203)
and
Yain, w1 — (@ + n + v)w, + Yain, weq =0, (204)

for /=1, 2, - - -. Proceeding as before, it follows that the zeros of wq(»)
separate those of wg.1(v), for ¢ = 1, 2, - -. In particular, the zeros of
w,(v) are real and distinct. But, from (193), (201), and (202), it follows
that w,(v) # 0 for » = 0. Hence, the zeros of w,(v) are negative.
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