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Mechanical oscillations of synchronous machines following the
application of sudden shaft loads are important to operating engi-
neers. This paper presents an analytical technique to determine the
stability of a synchronous machine. We first decompose the nonlinear
system representing the machine into an infinite number of subsys-
tems connected in parallel. We then determine a bound on the input
to the machine for which the number of subsystems will effectively be
finite in number, then determine stability of the entire system by
determining the stability of each subsystem.

I. INTRODUCTION

The problems associated with the maintenance of stability of syn-
chronous machines and the factors affecting stability during transient
disturbances have received considerable attention in recent years. If
the sudden load application is such that synchronizing torque is less
than the load torque, the machine will be thrown out of synchronism
and instability will occur. A synchronous machine has steady-state
stability if, after a small slow disturbance, it can regain and maintain
synchronous speed. On the other hand, if the machine can regain and
maintain synchronous speed after large sudden disturbances, it has
transient stability. The maximum steady-state operating limit will
depend upon the magnitude of instantaneous load changes and its
ability to follow quickly any load changes. It is the purpose of this
paper to determine an upper bound on the input load so that synchron-
ism will never be lost.

Il. MATHEMATICAL MODEL

The equation of motion of the synchronous machine is well known
and has been extensively discussed in the literature.'® However, the
derived equation based on the electromechanical properties of the
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system is highly nonlinear, and the determination of the time-domain
response of the system seems to be prohibitively difficult. Thus, to
represent the system by some suitable mathematical model, the follow-
ing simplifying assumptions are made.

() The twist in the shaft is negligibly small since the length of the
shaft is small and the rotational stiffness is large.

(Zi) All inductances are independent of current since nonsaturated
conditions are considered.

(iti) The armature flux wave is sinusoidally distributed.

(iv) The currents in both the armature and field circuits are consid-
ered to be independent of a sudden change in operating conditions.
Results obtained with an induction motor having a rotor winding
excited with direct current appear to justify this assumption for those
cases in which the time constants of the stator and rotor windings are
relatively small or the moment of inertia is large enough to assume
small acceleration.

(v) All resistances are negligible compared to inductances.

(iv) The direct-axis synchronous reactance is equal to the quadra-
ture-axis synchronous reactance. This assumption is quite valid for a
nonsalient pole machine but for a salient pole machine this assumption
is only approximate.

In order to write the system equations, the following symbols are
introduced.

JJ = polar moment of inertia of the rotor.
w = instantaneous speed.
ws = synchronous speed.
§ = angle between the rotor pole position on load
and its positions on no load (rotor angle).
T: = externally applied torque.

T. = torque of electrical origin.

D = angular viscous friction coefficient.
P; = electrical power input.

P, = system damping factor.

P, = maximum static synchronous power.
output power.
inertia constant.

]
o

Based upon the simplifying assumptions, the equation of motion of
the synchronous machine can now be derived. However, the detailed
derivation will not be given here, since it can be found elsewhere.'”
Only an outline of the derivation which is necessary for the subsequent
discussion is presented below.

8= (w— wt, (1)
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The equation of motion is given in Ref. 7 as
d*s
i=d—5 + T.. 4
Ti=dJ 1 + Dw (4)

By substituting (2) and (3) in (4) and by converting the torque equation
(4) into power equation

2 d
P.-=wJ@+Dw(—8+ws)+Po

dt? dt
or
d*s ds
=M - 5
P Mdt2+Pddt+Pﬂ, (5)

where P.(d8/dt) = Dw(d8/dt) + Dwws, Pais the system damping factor
and can only be determined empirically. P, has been evaluated® as Py,
sin 8. Equation (5) can now be put into dimensionless form by intro-
ducing the following change in variables:

t=r £
P,
P
=B
ot = L4
V(MP,)
By using the above transformation, (5) becomes

()
i2+2‘fd—+sin6=p
T dr

or
5§+ 26 +8+ N =p, (6)

where N(§) is a nonlinear function of & and is given by

2n+1

2n+ 1"
The behavior of the synchronous machine can now be determined
from (6). The damping coefficient £ cannot be evaluated using exact
methods. Its value is usually approximated empirically from the knowl-
edge of the system behavior. A value of 0 < { < 0.4 seems to be a
reasonable choice.

N©) =Y (-1)" n=1,23 ---.
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The input-output relationship of the synchronous machine can now
be viewed in the form of a simplified block diagram as shown in Fig.
1. The input load ratio p(7) is the input to the system, and its response
is the rotor angle 8(r). Now by functional expansion,® §(7) can be
expressed in terms of p(r) with all the limits of integrations ranging
from 0 to o

8(r) = f h(t)p(r — &) dt, + ff ha(ty, t)p(r — t)p(r — t2) dt, dt;

+ Jjj hs(ty, ta, t3)p(T — t)p(T — to)p(t — t3) diydtzdtz + --+. (7)

Let

8;1(1') = J' .. J hn(tl, t2, teey, tn)P(T - tl)
ceep(r—ta) dty -+ dtn.  (8)

Thus
8(r) = 3 8al7).
n=1

Hence the nonlinear system in Fig. 1 can be broken down into an
infinite number of subsystems connected in parallel as shown in Fig.
2. The response of the first-order or linear subsystem is 8,(r), and its
impulse response is Ai(t1). The response of the nth order subystem is
8.(7), and its impulse response is A, (¢, L2, - - -, £a).

Thus the system shown in Fig. 1 will be stable if

(z) Equation (7) is convergent, which also implies | 6;| > | §i+1].

(i1) The linear subsystem is stable, which also implies s* + 2¢s + 1
= 0 does not have any root with positive real part, s = d/dt.

Condition (if) can easily be checked from the system equation. To
prove the condition of convergence, we proceed as follows.

Let A(f) be the impulse response of the first order or the linear
subsystem, i.e.,

1
h() o 50—
&) < sE+28&+1
and
H= f | h(2) | dt.
pi7) SYNCHRONOUS 87l
MACHINE .

Fig. 1—Input-output relationship of a synchronous machine.
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Fig. 2—Decomposition of a synchronous machine into infinite subsystems.

Let
max |p(r) | < P.

O=r<oo

With the above assumptions, by the technique of series reversion

method,” Barrett has shown that the functional expansion expressed

in (7) will be convergent if the input has an upper bound given by
+H 1+ H 1+ H

|p(r) | < P = chosh*‘ A sinh cosh™ T

The integral H = [ | h(t) | df can be shown'® to have the value

W3
H = cothl —].
(2 v1- 52)
By knowing H, P can be calculated. The values of ¢, H, and P are
shown in Table I.

It can also be shown!” that, for the system described by (8), A2(t,, t2),
ha(ty, -+, t;) are zeros. Hence

(1) = 81(r) + 8s(7) + 8s(7), - --.

lil. DETERMINATION OF THE STEADY-STATE RESPONSE

A sudden change in the load on the synchronous machine is equiv-
alent to a step change in the prime mover torque applied to the shaft.
Hence, the system stability can thus be investigated on the basis of a
step input. It is also clear from Fig. 2 that the steady-state response of
the entire system is the summation of the steady-state responses of
each of the subsystems. Let

A, = lim 8,(7)

T
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Table |I—Input as a function of damping

coefficient
Damping Upper Bound
Coefficient I3 |h(2)|det of Input
£ H P
0.01 63.664 0.002
0.02 31.835 0.005
0.03 21.227 0.010
0.04 15.924 0.015
0.05 12.743 0.021
0.06 10.623 0.027
0.07 9.109 0.034
0.08 7.974 0.042
0.09 7.092 0.050
0.10 6.387 0.058
0.11 5.810 0.067
0.12 5.330 0.076
0.13 4.924 0.085
0.14 4.576 0.095
0.15 4.275 0.105
0.16 4012 0.116
0.17 3.780 0.127
0.18 3.574 0.138
0.19 3.390 0.149
0.20 3.225 0.160
0.25 2.599 0.221
0.30 2.186 0.285
0.35 1.895 0.353
0.40 1.680 0.421
0.45 1.517 0.490
0.50 1.390 0.557

and the input to the system be a step function p(7) = p;. It has already
been determined from Table I that, for stability the values p; will be in
the range p; = P < 0.421 for 0 < ¢ < 0.4. The values of A;, A3, ++- can
now be determined by the application of the final-value theorem. A, is
given as

A, = lim oD

s—0 5(8° + 285 + 1) = i

To determine A;, we proceed as follows: First we take a three-
dimensional transform'® of the third subsystem corresponding to the
output 85(7). Next, we apply the technique of association of variables'’
and make a transformation from three dimensions to a single dimen-
sion. Now we are ready to apply the final-value theorem to find A;.

hs(ty, ta, t3) < Hi(s, 52, s3).

Let A stand for associate variables s, 82, 53— s. Then

3
8a(s) = A [_—H"(S" Sz’sﬂ’p'}
515283
Hi(s\, sz, 3)p!
-t 0]
50 818283
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This limit has been evaluated'? to be
pi
Ay =—, Ay > As.
6
Higher limits As, A7, etc., will further be smaller, and the evaluation of
these terms is not necessary since their contributions will be insignifi-
cant. Thus

A =lim §(r) = A + Ag

is a very good approximation, and
3

maxA=p,-(1 +%) <7/2,

since 0 < p; < 0.421. Physically, it means that if the magnitude of the
abrupt load change is such that 0 < P,/P, < 0.421, the system will
never lose synchronism and will remain stable. Thus, for p(r) < 0.421
the system can be described by the linear transfer function within a
reasonable degree of accuracy.

With the above assumption, the output is given by Ref. 13:

6(r) = pi [1 - ;ze_&sin(\/l——-fz'r + coslf)].
1-¢

8(7) can be expressed in terms of ¢ only by using the relationship ¢ =
TVM/Pp,.

Now by separating p into two parts, the initial load ratio p., and the
abrupt load ratio p;, the maximum value of p; can be determined
before the system goes out of synchronism.
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