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I. INTRODUCTION

Frequency-shift-position (Fsp) modulation sends a sample x € (0, T')
by changing the frequency of a wave from wo to w, at the time x. We
consider the problem of optimal mean-square estimation of x from an
FsP signal to which white noise has been added in transmission. The
best estimator, given by a known formula of nonlinear filtering, con-
tains stochastic integrals and is hard to implement. An approximation,
obtained by omitting 0(w;"') terms, is readily implemented over the
next interval (0, T') by ordinary differential equations driven by the
observed signal.

We pose the optimal least-squares demodulation problem for the
following simple communications system: The signal to be sent con-
sists of successive i.i.d. random variables x having a density & with
support (0, T); the channel provides an FM wave, of random initial
phase 6, which shifts frequency from wo to w: at the point x during
(0, T'); the resulting signal is
_ JR cos(f + wot, t<x
T IR cos(B 4+ wox + (t—x)wy), T=t=x;

this signal is observed through white noise, the received signal or
observation being y, given by
dy.r = 8 dt + db;,

where b, is a Brownian motion independent of x; the process is
repeated over each interval of length T', and the problem is to guess or
calculate a good estimate of x from the observation {y,, 0 =t = T}.
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This problem is resolved by using nonlinear filtering to give an exact
but not recursive least-squares estimator x based on {y,, 0 <t =< T}.
The estimator ¥ is then analyzed for ways of calculating it in real time.
First, it is re-expressed in terms of ordinary integrals by eliminating
the stochastic differentials. Second, we find that by ignoring two terms
that are 0(R?/min{wo, w;}) we can use a Bessel integral and some
simple differential equations to calculate an approximate version of %
over the next interval of length T'. This version will be very close to %
when the carrier frequencies wo and w; are large compared to the
amplitude R. To make the integrals appearing in the likelihoods we
will use suitably dimensionless, we let R have unit sec™"/%

Il. FORMULA FOR x

At time T, the best mean-square estimate of x given the observation
{ys, 0 < s < T} is given by the Kallianpur-Striebel or Bayes formula'

- T t
=D iJ’ dﬂf tf(t) dt exp{R J' cos(@ + wos) dys
2'” - [}] 0
R2 t T
- ?f cos’(f + wos) ds + R j cos(f + wot + wi(u — t)) dy.
0 t

RrR* ("
-5 J’ cos2(0 + wol + wi(u — t)) du},
t

where D = normalizer = same integral with f(¢) for #f(¢). We first
reduce this formula to ordinary integrals. Since the signal s(¢) is of
bounded variation, the mixed quadratic variation ( ys) is 0, and the
differentiation formula justifies an integration by parts that expresses
the exponent above as

t t
R2
Ry.cos(8 + wot) + Rwoj yssin(@ + wos) ds — ?I cos?(8 + wos) ds
0 0
+ Ryrcos(8 + wot + wi(T — ) — Ry.cos(8 + wot)

T
+ Ruw,y f Yusin(f + wot + wi(u — t)) du
t P2 r
- 7] cos®(0 + wot + wilu — ¢)) du.
t

The stochastic integrals are thereby eliminated. Also,
R cos(8 + wot + i (T = t)) = s(T),
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and the cos® integrals can be evaluated thus:
t G+wqt

f cos?(f + wos) ds = wp'! j cos’u du
0 8

sin(28 + 2wot) — sin 26
4wo

1 . t

= wp' = (u + sin u cos u)§+o* = - 4+ ,
2 2

and similarly

T
1 }
f cos®(0 + wot + wi(u — 1)) du = w7’ 2 (u + sin u cos u) it (T-0
t

T—1¢ + sin(260 + 2wot + 2w1(T — ¢)) — sin(28 + 2wot)
2 4(01 ’

We thus arrive at the formula for #:

L4 T
x= D‘I%f dﬁj if(¢) dt exp{Rchos(9+ wot + w1 (T = ¢))
- 0

¢ T
+ Ruwo J ¥s8in(f + wos) ds + R f ¥s8in(f + wot
4] t

+ wi(u —t)) du—

R'T g2 Sin(26 + 2wot) — sin 26
4

8 wo

8w1

_ g2 Sin@20 + 2wot + 2 (T — ¢)) — sin(26 + 2wut))

again with D the same with f(¢) in place of ¢f(¢). Note that the RT
term can be ignored, since it occurs also in D.

The df dt integration can be interchanged by absolute convergence,
so we look at the dependence of the exponent on 6. This is of the form

R2
a:cos f + BtSi.n a8+ 0( ),

wo/\un

where with

T T
A= f ¥s8in w; s ds, B= f ¥sCO08 w; s ds, W= wp — w;
0 (1]

t
o = Rwof ¥ssin wos ds + yrR cos(wot + wi (T — £))
(1]

+ Rwi (B sin wt + A cos wt)

t t

¥s8In w15 ds — Rw,sin wi J’ ¥sCOS i S ds
0

— Rw,cos wt J

0
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¢
B = Rwof ¥s€08 wos ds — yrR sin(wot + w1 (T — £))
0

+ Rw; (B cos wt — A sin wt)

t t

¥5€08 w18 ds + Ruwssin wt J' ¥s8in w18 ds.
0

— Rwicos wt J

0

The vector (a, B) satisfies the differential equations:
a _ 01 o sin wol
()=o(2 o)(5)rem(mz)
- waof ys( c.os)wos ds.
o =—Ssin

It can be expressed in terms of the quantities
&

s(t) = ar— Rwo j ¥s8in wos ds,
1]
t

c(t) =B — Rwof ¥sCOS woS ds,

4]
which satisfy the nicer system
s _ 01 8 -R sin wol
¢) %=1 o/\ec 1Y\ cos wot )
The initial conditions for a, 8, and also for s, c, are

50 = oo = RuA + Ryrcos inT
co = fo = Ruw B — Ryrsin w, T.

lil. APPROXIMATION FOR SMALL R?/{wo N\ 1)

The “double-phase” 0(R?/wo /A w1) term in the exponent is indepen-
dent of y, and considerable simplification results if we ignore it. The
numerator of % is then nearly

T 1 Ls
J’ tf(t) _f eu,c058+ﬁ,-ai.n6‘ dﬁ dt,
0 2” -7

and we can use the Bessel function integral representation

1

ﬂ -

.

g0 Fin? df = Io(Va® + B7)
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to “do” the df integral approximately, to get

T
i=D" J tf()o(Vai + B7) dt, (1)
0
again with D the same integral with the £ factor left out.

IV. IMPLEMENTATION

We can now use the differential equations for «; and 8; to suggest
how to realize the approximate estimator (1) in real time. Since the
initial values ap and Bo depend on both

T
A=J ys8in w1 s ds
0

T
B= J- ¥sC08 w18 ds
0

as well as on yr, we shall first wait till the end of the current interval
of length T, all the while “beating” the received signal y, with the
“second” M frequency w, and integrating, to end up with A and B at
time T. Noting the value of yr, we obtain ap and 8, and start to solve
the differential equations for a; and B, during the next interval of
length T. This is achieved by having, in the preceding interval, beaten
ys with the “first” FM frequency wo, integrated, and passed the results
through a delay of size T to obtain, at time T + ¢, each of

t
Ccos
J; ys(_sin)wos ds;

this vector being precisely what we need to add to the solution of the
differential equations

(£)=o( §)(2) ~ man( e e

to get a; and B,. We also delay y; by T so as to have it available in real
time as soon as s, and ¢, are known, so as to use it to drive the system
for s, ¢ in the last equation.

Once a., f; are available, we can calculate I(Va? + 87), and thence
the integrals making up the ratio (1) that approximates x. Figure 1 is
a block diagram for this implementation.

Since the approximate estimator depends on y, only through the
“magnitude” r = vVa® + B°, some simplifications occur upon a change
to polar coordinates. Putting also ¢ = arctan a/f, we obtain these
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equivalent equations in terms of the new variables r = r; and ¢ = ¢;:
t
F = —wRy,cos(¢p — wot) — wRwo J’ yssin(w — wos) ds
0
t

$ = —wRysin(w — wot) — waoj yscos(p — wos) ds.
(1]
It is perhaps not surprising that these equations should bear some
resemblance to those arising in the study of the pendulum, the phase-
locked loop, and the FM-with-feedback circuit.

V. BASEBAND VERSION

Instead of shifting frequency from wp to w; at the sample value x e
[0, T'], we can imagine changing a signal from the constant value ry to
r, at the sample value (time) x. This leads to a “baseband” version of
the problem just studied. The signal is now

s = {rn O=t=x
rn x<st<T,

and the observation is dy, = s, dt + db, again. The optimal mean-
square estimate x is

T
D™ J tf(t)er.;y.fuzrﬁuntn-fnH/zr%(Tfn dt,
(1]

where the normalizer I is the same integral with f(2) for ¢f(¢). Figure
2 is an exact implementation of this estimator in real time. The terms
in yr and 7T cancel with the same ones in D, so can be ignored.

N
@ -
+ D
Yo N fa—n EXP : f
fl)
1/2 (rg +1y) PROBABILITY
RAMP AT MIDVALUE WEIGHTING

Fig. 2—Baseband version of estimator.
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