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In a multiple-access, spread-spectrum system, the messages in-
tended for a particular user are distinguished by a specific signal
pattern called the address. Here we consider such a system where an
address is a sequence of L tones, chosen from € possible frequencies.
It can be described as a pattern in an L X Q time-frequency matrix.
We study the problem of assigning addresses to the user in such a
system using an algebraic approach which provides € distinct ad-
dresses that guarantee minimum interference among @ or fewer
system users. Both a synchronous and a nonsynchronous situation
are considered. In the latter case, we have derived an address
assignment that prevents interference from time-shifted signals from
other users. We evaluate the performance of the system by studying
the message error probability caused by interference among users
and present upper bounds that give the maximum number of simul-
taneous users the system can accommodate at a certain error prob-
ability.

I. INTRODUCTION

In multiple-access, spread-spectrum communication, each user has
access to the entire system bandwidth."” One way of distinguishing
the signals from different users is to give each user an address consist-
ing of a fixed pattern in time and frequency. The information to be
transmitted is modulated or coded onto the address. The receiver
detects the appropriate address and decodes the message. This tech-
nique is often referred to as random-access discrete address (RADA) or
code-division multiple access (CDMA).

This paper deals with such a system proposed by A. J. Viterbi® for
multiple-access satellite communication by mobile users. It has been
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studied for mobile radio communication by D. J. Goodman et al.* A
somewhat similar system, utilizing a different modulation technique,
has been proposed by G. R. Cooper and R. W. Nettleton® and has been
investigated by P. S. Henry.®

We consider the problem of generating the addresses assigned to the
individual users. By means of an algebraic method, we derive a set of
addresses that guarantee minimum interference.

Il. SYSTEM DESCRIPTION

We consider a time-frequency coded system where the transmitted
signal from each user is a sequence of L tones, chosen from @ possible
frequencies. The transmission time T for the code words is assumed to
be the same for all users. Each code word conveys log: @ bits of
information resulting in an information rate R = (log: @)/T b/s. The
total system bandwidth W is divided into € subchannels each of width
W/Q and the message time 7 is divided into L time slots each of
duration T/L. The possible signals employed in the system are char-
acterized by the matrix shown in Fig. 1 having @ rows representing
frequency channels and L columns representing time slots. The ele-
ments of the matrix, usually called chips, have & time-bandwidth
product equal to WT/QL. It is assumed to be large enough so that
signals located in different chips are orthogonal, i.e., they will not
interfere with each other.

Each user is assigned an address occupying L chips, one in each
column of the matrix. Figure 1 shows an example of such an address.
The message can modulate the address in different ways. In Ref. 3, it
is done by shifting the address vertically in the matrix. With each shift
corresponding to a transmitted message, there is a total of @ possible
messages. The transmitted code word shown in Fig. 1 is obtained by
shifting the address cyclically three steps.

It is convenient to describe the modulation procedure in algebraic
terms. Let the address of user m be denoted by a vector.

an = (amh Am2, * =, amL): (1)

where an.; € GF(Q) represents the frequency channel occupied by the
address at time slot i. The symbol GF(Q) denotes the finite field
(Galois field) of @ elements. A summary of some basic features of
finite fields can be found in Appendix A.

For @ a prime number, the rule of addition in GF(Q) is ordinary
addition modulo @. A transmitted sequence y formed by the operation

Ym = 8n + Xn-1 (2)
will therefore correspond to the address a. shifted cyclically x,, steps
in the signal matrix. The notation 1 is used for the all-one vector 1 =
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FREQUENCY

TIME

Fig. 1—Signal matrix showing an address (A——A) and a transmitted signal

(1,1, .-+, 1). When @ is not a prime number, the rule of addition is
different (see Appendix A). It is still a simple and well-defined opera-
tion transforming a,, into y.

The receiver scans the received signal matrix and determines which
chips are active. It then subtracts the address a, resulting in the
message X,,-1 appearing as a complete row in the matrix.

lll. ADDRESS ASSIGNMENT

For the moment we consider a synchronous system, which means
that the signals from all users are aligned in time. Two transmitted
signals will interfere if and only if they occupy the same time-frequency
chip in the signal matrix. This happens if the corresponding vectors y
have coinciding symbols.

We propose the following way of generating a set of § addresses.

Let
€ a, = (Ym; YmB, 'YmB2» ey, YmﬁL_l)a (3)

where v,, is an element of GF(@) assigned to user m and B is a fixed
primitive element of GF(Q).
To see to what extent transmitted signals can interfere with each
other, let y, and y. denote two sequences generated by two different
addresses a, and a», respectively.
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yi=a+ x1-1
Y:=az+ xz-l}' “)

The symbols in position i are

Yu=ai+x= Y]Bf_l +x 5)
Y=+ xX=1B""+ x|

Assume y;; = ¥2;, in which case
n—yIB '+ —x:=0. (6)
Consider next the symbols y;; and y»; at position j # i. We have

yii—yi=(pn—y)B " +x1— xa (7
Substitution of (6) gives
Y= Y= (n— )BT =B (8)

According to our assumptions, a; # a;, which implies that (y1 — y2)
# 0. The factor (8! — B°™) is different from zero as long as j and i are
less than or equal to @ — 1, which is the order of 8. (By definition, if
B is a primitive element of GF(Q) all powers of 8 up to @ — 1 will be
different. See Appendix A.)

Since (8) applies to an arbitrary j # i, we have shown that, with
appropriate choice of 8, two transmitted vectors with different ad-
dresses will coincide in at most one chip. Notice that this is true
independent of the information transmitted. From (4) and (5), it
follows that messages exist that cause coincidence at position : for any
choice of the address symbols a;; and ;. Since the method proposed
can have no more than one coincidence, it is optimum in terms of the
amount of interference between users. The maximum number of
addresses obtained is equal to @, and the maximum possible value of
Lisequal to @ — 1.

Example 1:
Let @ =7and L = 4.

Since 7 is a prime number, the modulo @ arithmetic presented in
Appendix A applies. With 8 = 3, which is a primitive element (i.e., of
order 6), the following set of addresses are obtained from (3) with yn,
=m(@m=0,12.--,Q—1).

a=20

(= I~ - I SR

=T WO
e = O NO
H N WA OISO
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The address a, = (1, 3, 2, 6) in conjunction with message x = 3 will
result in y, = (1, 3, 2, 6) + (3, 3, 3, 3) = (4, 6, 5, 2}, which is depicted in
Fig. 1.

Notice that the address set shows each symbol of GF(Q) once and
only once in each column, which means that the @ addresses com-
pletely fill the signal matrix without interference.

Example 2:

Consider @ = 8 and L = 4, where @ is of the form @ = 2¥. Such a @
is advantageous because each message conveys K bits of information
and because the operations in GF(2¥) are readily implemented with
binary logic. We use the octal representation introduced in Appendix
A with (101) = 5, etc. The element 8 = (010) = 2 is primitive and has
the following sequence of powers 8%, ', --- ,8°=1,2,4, 3,6, 7, 5. See
Appendix A for details.

Equation (3) then gives the following set of addresses

a=0 0 0 0

p—t
R =g T Y W

U N
U1 =3 = OO DD
ST =1L

7

The addition in (2) should now be performed according to the rules of
GF(8). As shown in Appendix A, this is accomplished by bit-by-bit
addition (exclusive OR) of the three-digit binary numbers representing
the elements of GF(8), i.e.,, 3 + 2 = (011) + (010) = (001) = 1. The
address a, = (1, 2, 4, 3) and message x = 2 will result in y; = (3, 0, 6,
1).

The change-in-addition rule does not affect the communication
capability of the system. The receiver detects the chips separately and
decodes the message by subtracting the address from the received
sequence, 1.e., performs the inverse operation of (2). This works equally
well if @ is a prime number or not.

1 2.

IV. NONSYNCHRONOUS SYSTEM

In practice, it may be difficult to achieve synchronization between
all users in the system. We consider a situation where not only a
transmitted sequence itself but also a time-shifted version of it can
cause interference to another user. The address assignment described
in Section III is not well suited for this nonsynchronous case because
the addresses generated by (3) are cyclic shifts or shortened cyclic
shifts of each other.

ADDRESS ASSIGNMENT IN SPREAD-SPECTRUM SYSTEM 1245



As an example, consider the addresses a; = (1, 3, 2, 6) and a; = (3,
2, 6, 4) of Example 1. A shift of one element to the left in a, causes
three symbols to coincide with a;. This has the effect that time-shifted
versions of transmitted sequences from different users have a high
tendency to coincide and cause interference. In the special case when
L = @ — 1, the addresses are true cyclic shifts of each other. This
means that any vector y from any user will then be transformed into
a message for another user by a cyclic shift rendering the modulation
scheme completely useless without synchronization.

The cyclic property of the address set generated by (3) is due to the
fact that the addresses form a shortened cyclic code (with one infor-
mation symbol y and L — 1 check symbols). It is a (shortened) Reed-
Solomon code. The use of such codes to generate sequences of minimal
interference for spread spectrum communication has been suggested
in Refs. 7 and 8.

One easy way to obtain a system resistant to nonsynchronous
interference is to let the transmitted sequence y be formed by the new
rule

Yo =XmB + ym-l, 9

where B8 = (1, 8, 8% +++, B"™"), yn € GF(Q) represents the address of
user m, and x., € GF(Q), as before, is the message symbol.
Let y' and y* denote the transmitted sequences from two users

yl = x1-,8+‘}'1-1
y2 = xz-ﬂ+}'2-1. (10)

We consider the interference between y' and y” shifted % steps to the
left. The symbol in position i of y' is

yi=xf + (11)
The symbol in y? that can interfere with y{ is
Yie = 1B + o (12)

The condition for interference is
yi=yie =08 — B =12 =0. (13)

Two symbols y; and y}: at an arbitrary position j # ¢ have the
difference

yi =Y =0B" = o = e (14)
Combining (13) and (14) gives
Y= Yhe=—B -y +n—7
=(1-87)n—y)#0. (18)

1246 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1980



Equation (15) shows that two sequences y from different users will not
coincide in more than one position for any cyclic shift between the two
sequences. In a nonsynchronous situation, parts of two consecutive
code words from an interferer can fall into the message time T for a
receiver. If these code words are identical, we have the case of cyclic-
shifted sequences analyzed above, and only one coincidence is possible.
When the interfering messages are different, each of them can produce
at most one coincidence. Since this is the best that can be achieved by
any address selection, procedure (9) is optimum in the sense of gen-
erating least interference between nonsynchronous users.

The fundamental difference between (2) and (9) is that, in the
former case, the @ addresses constitute a shortened cyclic code, in the
latter case the @ possible messages belonging to a particular user form
a cyclic set.

Example 3:

Let @ =8and L =4.

The address set according to (9) consists of the vectors a, = (0, 0, 0,
0), a; = (1, 1, 1, 1), etc.

With 8 = 2, the vector 8 is (8", B', B% B”) = (1, 2, 4, 3). The
multiplication of 8 by x is most easily carried out by expressing x as a
power of 8. For example, x = 3 is equal to 8° and 8’8 = (8, B*, B°,
B°) = (3,6,7,5).

The addition of a to form the transmitted sequence y is the binary
number addition previously used in Example 2. The address a; = (2,
2,2, 2) will give ys = (3,6, 7,5) + (2,2, 2,2) = (1, 4, 5, 7), and so on.

In contrast to the previous case, a system operating according to (9)
will not directly reveal the transmitted information by subtraction of
the address from the received sequence. A receiver detects each chip
in the signal matrix and subtracts the address y from all chips. It then
multiplies the first column by B" = 1, the next by 87, the third by
B~ and so on. This transforms the vector x-8 into x.1, which will
show up as a complete row in the matrix at position x.

V. ERROR PROBABILITY

Consider a situation where there is no noise in the system and the
only source of errors is interference from other users. Also assume that
all signals transmitted in the system will be received by any user
creating additional entries in his signal matrix.

A decoded message shows up as a complete row of filled chips in the
signal matrix. For an error to occur the interfering signals must
combine into one or more complete rows located elsewhere in the
matrix.

One way of estimating the error probability is to use a random
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coding argument. The addresses are assigned randomly, and the av-
erage error probability is calculated over all possible assignments. This
is equivalent to the assumption that all transmitted chips are indepen-
dent and have equal probability 1/ of taking any of the @ possible

values.
The probability of M — 1 interfering users producing an erroneous
complete row of length L at a specific location in the signal matrix is

then®*
Pr=[1-(1-1/@"""~ (16)

The probability that a false row appears in at least one of the Q-1
positions not corresponding to the transmitted message is bounded by
the union bound

Pyw=<Pwm=(@Q-1[1-(1-1/""" (17

The expression (17) constitutes an upper bound to the message error
probability when addresses are chosen randomly. An expression for
the bit error probability can be obtained from it in the way shown in
Ref. 3.

Bounds on the error probability for the specific address assignment
proposed in this report are derived in Appendix B. For a synchronous
system, a simple combinatorial argument gives

M-1)M-2)---(M-1L)
Q" '
By studying the probability of a chip being filled conditional on

previous chips being occupied, an alternative upper bound on Pw is
obtained:

L1 ] \M-H
Pw<Pws=(@-1) ] [1 - (1 - —) ] (19)=(30)
k=0 Q—-*k
The right-hand side of (19) is always less than (17). The word error
probability bounds (18) and (19) are plotted in Fig. 2 for @ =32and L
= 12 together with (17). The diagram shows that (18) is a better bound
than (19) at low error probability, while the opposite is true at higher
values. Notice that when M = L the error probabilities (18) and (19)
are equal to zero because tones from L — 1 interfering users will not be
able to combine into a complete row.

For a nonsynchronous system, the calculation of error probability is
more complicated than in the synchronous case. In Appendix B the
error probability for a system with signals generated according to (9)
is studied and the following expression derived:

L1 1 M-k-1y2
Pws= (@ —1) { k1=10 [1 - (1 _Q_—}Z) ]} , (20)=(32)
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M

Fig. 2—Word error probability as functions of the number of users M for a system

" with @ = 32 and L = 12. Py, is the average probability for random coding. Py» and Pws

are upper bounds for a synchronous system with address assignment according to eqgs.

(2) or (9). Pw, represents a nonsynchronous system with the address assignment of
eq. (9).

where L is assumed to be even. Pw, is greater than the synchronous
bound (19) but less than the random coding bound (17). It is plotted
for @ = 32 and L = 12 in Fig. 2.

It has been assumed that the receiver cannot be certain of what
message was transmitted when more than one complete row shows up
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in the decoded signal matrix. A more complicated receiver could
investigate which rows are due to interference and which is due to the
wanted message by, in principle, decoding the messages from all users.
Such a scheme of complete detection would reduce the probability of
error but seems hard to analyze.
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APPENDIX A
Algebra of Finite Fields
A1. Definitions

This appendix presents a few elementary concepts of algebra for
finite fields needed to understand the address assignment procedures
in Sections II and III. For a more extensive and rigorous account, see
Albert® or Chapter 4 of Berlekamp."

A finite field GF(Q) is a set of @ elements with rules for addition
(and subtraction) and multiplication (and division) consistently de-
fined. As a consequence, a finite field has a zero element and a unit
element, both being unique. The zero element has the property a + 0
= a and for the unit element a-1 = a for all a € GF(§).

We denote the elements of GF(§) by the integers 0, 1, 2, ...,
@ — 1 with 0 and 1 the zero and unit element, respectively. It should
be realized that this notation is arbitrary and that the rules of addition
and multiplication have not yet been specified.

A fundamental result of higher algebra is that there exist finite fields
only for @ equal to a prime or the power of a prime number p, i.e., @
= p¥. This means that @ = 2, 3,4, 5,7, 8, 9, 11, 13, etc. are permissible
but there is no finite field with, for instance, 10 elements. All fields
with @ elements are isomorphic which means that they differ only in
the way the elements are named. The field of @ elements is called the
Galois field after the French mathematician Evariste Galois, which
explains the notation GF(Q).

A2. Q equal to a prime number

When @ is equal to a prime number, the rules of addition and
multiplication in GF(®) are defined by modulo @ arithmetic. This
means that the sum or product between two elements is defined as
this operation in the usual algebra of integer numbers with the results
reduced modulo @ (i.e., equal to the remainder after dividing by @).
Let @ = 7. We then have, for example: 2.3 =6,1+4=05,4.3=5
(=12mod 7),2 + 5 =0 (=7 mod 7).
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A nonzero element a € GF(Q) is said to be of (multiplicative) order
N if N is the lowest nonzero integer such that a™ = 1. Since a’ is equal
to a nonzero element and there are @ — 1 such elements in the field,
N must be less than or equal to @ — 1. An element with N=@ — 1is
called a primitive element. Examples: In GF(7), the element a = 2 has

the powers a’, a', a’, --- =1,2,4,1,2, --- . The order of a = 2 is thus
N = 3. The element a = 3 has the powers a°, a', a? --- =1, 3, 2, 6, 4,
51,3, --., which shows that @ = 3 is a primitive element, i.e., of order

N = 6. It is clear from the examples that the powers of a primitive
element are all the nonzero elements of a finite field.

A3. Q equal to the power of a prime number

When @ is a prime number, the rules for addition and multiplication
are related to ordinary real number algebra in a simple way. When @
is a power of a prime number, things are a little more complicated.
Consider the case p = 2, which is important since the operations in the
field can then be instrumented by binary circuitry.

To define addition in a field with @ = p*, the elements of the field
are represented as p-ary numbers or vectors of length K. As an
example, for @ = 2° = 8 the elements are expressed as three-digit
binary numbers: 1 = 001, 3 = 011, 4 = 100, etc. which makes 0,
1, ..., 7 the octal representation of these numbers.

Addition is now defined as mod p addition of the components. For
p = 2, this is the binary addition: 1 + 0 = 1 and 1 + 1 = 0, which gives
3+1=0114+001=010=2,5+ 4 =101 + 100 = 001 = 1, etc.

To specify multiplication in GF(p*), the K-tuplets are transformed
into polynomials in z of degree K — 1 by letting the first digit be the
coefficient of z¥~', the second digit the coefficient of z*7%, etc. The
triplet (111) corresponds to z° + z + 1, (011) to z + 1, and so on.
Addition and multiplication of polynomials are defined as in ordinary
algebra using the mod-p rule for the coefficients. The multiplication
rule of GF(p*) is polynomial multiplication modulo an irreducible
polynomial P(z) of degree K. A polynomial is irreducible if it is not
possible to factor it into a product of polynomials of lower degree. It
thus has the features of a prime number in the algebra of polynomials.

As an example, consider p = 2 and K = 3. The polynomial P(z) = z*
+ z + 1 is irreducible. The multiplication of 5 = (101) and 3 = (011)
gives (22 + 1)(z + 1) = (2%) = (2 + 2 + z + 1) mod P(z). We thus
have 5.3 = (100) = 4 in GF(8).

The element d = (z) = (010) is primitive, having the table of powers
shown in Table I. Multiplication in GF(p*) is most easily performed
by using such a list of the nonzero elements expressed as the power of
a primitive element. For instance, 5 = b° and 3 = b° giving 5-3 = b°**
=b'=0b".b =b*=4.
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Table |—Powers of b = 2
Binary Octal

b 1 001 1
bz 010 2
2,2 100 4
bj 2=z4+1 011 3
bt z2P+:z 110 6
b 2+t=z24z+1 111 7
¥ Pt z=2"+1 101 5
¥ 24z=1 001 1
APPENDIX B
Error Probability

An error is assumed to occur when interfering signals combine in
such a way that one or more erroneous messages occur in the signal
matrix. We will upper-bound the probability Pr that a particular
sequence, say y: of user 1, will be formed by the M — 1 interfering
signals from the other users in the system.

For a synchronous system, we have proved that any signal can
coincide with any other signal in at most one chip, which means that
at least L interfering signals are needed to make an error. Moreover,
for any user one and only one of its € messages can occupy a specified
chip. The number of ways in which L out of M — 1 signals can combine
into a specific pattern of L chips is therefore (M — 1)(M — 2) ...
(M — L). For any such combination, the remaining M — L — 1 signals
can take @ “~! values. The expressions

M-1)yM-2).:- (M- L)QM—L—I 21)

is therefore an upper bound to the number of combinations of M — 1
signals that will result in an erroneous message. It is a bound and not
an exact expression since combinations with more than L signals
contributing to the error are counted more than once. By dividing (21)
by @*~!, the total number of interfering signal combinations, the
following bound for Pg is obtained:

M-1)M-2)..- (M- L)
= Q7 :

A bound that is better than (22) at higher error probabilities is
obtained in the following way. Let I, denote the number of interfering
signals occupying chip number %, £ = 1, 2, - - - , L, of the fixed pattern
y1. The probability Pr of y; occurring in the signal matrix is then a
product of conditional probabilities

PR =P(11#O)P(Iz?’-'0|.[1 ?50) soe
P, #0|L,#0, I, #0, --- I, #0). (23)

Ppg (22)
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The need for conditional probabilities in (22) is due to the fact that
the address coding introduces dependence between transmitted sym-
bols from a certain user.

The first term in (23) is

Q

where [1 — (1/Q)] is the probability of the chip not being occupied by
a single interfering signal.
The first two terms of (23) can be expanded into
M-1

P(IL #0)P(L#0|1,#0) = ¥ P(L=1)P(# 0|, =1). (25)

1\
P(Il#0)=1—(l——) , (24)

When I, = i, there are M — { — 1 interfering signals which can
contribute to I,. We therefore have

1 M—-i-1
ofLh=ip=1-{1-

P(L#0|L=1) ( 0= 1) ’ (26)
where 1/(@ — 1) is the probability of chip no. 2 being filled by any of
the M — i — 1 signals not occupying chip number one. The factor
€ — 1 is due to the fact that these signals are assumed not to occupy
chip no. 1, which reduces the number of possible choices from @ to
Q-1

From (26) follows that P(I, # 0|I, = i) takes its largest value when
{ = 1. We can therefore overbound the right-hand side of (25) by
M-1

P(IL;#0|L=1) ¥ P(Ii=1i) =P # 0|, =1)P(I;#0). (27)

Combining (24) and (26) for i = 1 gives
P(I, # 0)P(I. # 0|1, # 0)

[y bt ]

The next term in (23) is bounded the same way by replacing
M—-i—j—-1
. 1
P(I; # 0|I1 =1, I, =j) =1- (1 - Q—:E) (29)

by its largest value, which is given by i = j = 1. Continuing this
reasoning, we arrive at

L—1 1 M—k-1
PR<kl;[0 [1_(1_Q—k) j| (30)

The analysis above assumes a synchronous system. In the nonsyn-
chronous case, the interfering sequences need not be aligned in time
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with the message sequence yi. For the coding rule (9), we have proved
that an interfering user can coincide with y; in at most two chips.

The probability of an interferer producing coincidences is a function
of the alignment. The probability of two coincidences in a word of
length L is

kRL-Fk
PI=2)=—=—

(I=2) 0 @ (31)
where 2 =0, 1, ---, L — 1 represents the misalignment between the
two sequences. See Fig. 3. P(I = 2) is zero for £ = 0, which is the
synchronous case and takes it maximum value for 2 = L/2 (L assumed
even).

Next consider a situation where L is even and all the M — 1
distributing signals are placed in the position 2 = L/2 with respect to
¥1. A bound on the error probability for such a system is easily obtained
by observing that the interference in chips 1 to L/2 and in chips
L/2 + 1 to L are independent. The probability of at least L/2 coinci-
dences is for each part bounded by (30) with L replaced by L/2,

yielding
L/2—1 1 M—k—172
i N-(-om) T

The error probability (32) is calculated for a system where the inter-
ferers are most harmful in terms of their probability of producing two
coincidences. We believe that it constitutes an upper bound also for a
general nonsynchronous situation with arbitrary alignment between
the users.

In all cases considered, an upper bound on the probability Pw for
the occurrence of at least one false message is obtained from Pg by the
union bound

Py = (Q - I)PR. (33)

Fig. 3—Two signals of a nonsynchronous system. The displacement % takes integer
values0 <k <L - 1.
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