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To develop a sound base on which to design efficient lightguides,
it is necessary to understand the physics of the propagating modes of
this new and important transmission medium. To achieve this end,
we have calculated numerical solutions to the vector form of Max-
well’s equations for lightguides and have obtained all six components
of the electromagnetic field. We have included materials dispersion
and calculated Poynting vectors and effective and group indices.

I. INTRODUCTION

A possible first step in analyzing production line Mcvp (modified
chemical vapor deposition) lightguide preforms' is to calculate the
effective indices for a propagating wave in a fiber assumed to be
produced from the preform. A knowledge of the effective indices for
various wavelengths permits one to calculate the group indices. Using
these, we can calculate the group delay of the modes. In this way, we
can ascertain the reproducibility of the preforms and ultimately in-
crease yields of the products.

The solution of Maxwell’s equations for a radially inhomogeneous
medium such as is found in lightguides is by no means easy. This is
because we must deal with fourth-order differential equations with
variable coefficients. Various approximations can, of course, be
made.”® For example, a popular one is to neglect the gradient of the
logarithm of the dielectric constant with respect to radial distance®
and then employ wkB methods."

These approximations require that discontinuities in index be of
little importance and that the refractive index vary slowly with dis-
tance. Solutions of this sort have had a substantial impact on lightguide

engineering."’
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VERY THICK CLADDING—_
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INHOMOGENEQUS CORE~

Fig. 1—Schematic diagram of a lightguide showing an inhomogeneous core and a very
thick (essentially infinite) cladding. R or p is the radial coordinate, and ¢ is the polar
angle (p = K.R).

If we cannot or do not wish to limit ourselves to the restrictions
imposed by these approximations, we have little choice but to keep
Mazxwell’s equations intact and resort to numerical techniques. For
example, Vigants and Schlesinger'” have analyzed microwave surface
waves on radially inhomogeneous cylinders using numerical proce-
dures. In a like manner, Vassel® has studied sELFoc' optical wave-
guides.

In this paper, we extend these methods and apply them to the
analysis of idealized lightguides. In particular, we examine those as-
pects of the physics of lightguides that are most clearly elucidated by
the numerical solutions. We shall apply these methods to production-
line preforms and lightguides in subsequent papers.

A choice of wavelengths and fiber diameters to study in the present
paper is necessary. From a purely engineering point of view, a 50-
micron-diameter fiber and wavelengths of 0.6328, 0.820, 0.850, 1.30 and
1.55 microns would be essential. This diameter and these wavelengths
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will be applied to all production-line preforms and lightguides analyzed
in future work. A very large fiber (300 microns) with very many modes
would be a severe test of our numerical analysis, but would be of little
practical interest.

A compromise is clearly necesary. We have chosen to study a 100-
micron-diameter fiber. This adequately tests our programs and our
ability to handle many modes. As we are interested in this paper in
rather uniformly spaced wavelengths, our choice of wavelengths does
not coincide exactly with those of engineering importance.

Il. THEORY
We consider a cylindrical lightguide with an inhomogeneous core

and a thick (essentially infinite) cladding (see Fig. 1). The bound
propagating modes in the core will be of the form:

T'(R) exp i[wt — M¢p — K,N.Z]. (1)

Here ¢ is the polar angle, M the azimuthal mode number, Z the
longitudinal coordinate, R the radial coordinate, K, the free-space
propagation parameter, and N, the effective refractive index of the
wave.
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Fig. 2—A possible solution to eq. (2) for H.. To the left of the line d,, the solution is

purely oscillatory. To the right of the line, it is the sum of a rising and decaying
exponential. In this plot, M = 4.
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Fig. 3—The wavelength variation of refractive index of 13.5-mole-percent germania-
doped silica.

Maxwell’s equations in cylindrical coordinates can be rigorously
written as®""°

%E = p 'A(p)T(p). (2
o

Here I'(p) is a column vector whose four elements are related to the
tangential components of the electromagnetic field. These components
will be continuous through the core-cladding interface. They are as
follows: :

Ih=E.

Ty=—-ip H,Z, (3)
'y =pE,

I'y = —iH.Z,,

where Z, is the wave impedance of free space and the variable p is

defined as K,R.
The 4 X 4 matrix A(p) can be written as:

0 (N2/k) —1 0 —MN./x

px — M* 0 MN., 0 . (4)
0 MN./k 0 p® — (M*/x)

—MN, 0 N—kx 0

In this matrix, « is the dielectric constant that varies throughout the
core of the fiber and remains constant in the cladding. In general, «
will be expected to change with frequency w.

It can be shown'>' that, as p — o, we obtain a form of Bessel's
equation. For decaying solutions in the cladding, we consequently
employ modified Bessel functions of the second kind Ku(£). There will
be two independent solution vectors in the cladding. They are"
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N: - k(e) 0

k(c)ym(§) MN; . (5)
Wu(é) - | MN. and Wy(§) | ym(é)
0 N2 —«(c)

Here «(c) is the dielectric constant in the cladding and
& =[N: - k(c)]"*pec
Wu(é) = [N? = k(c)]*Kul(£) (6)
ym(§) = & Ku(§)/Ku(§),

where p.. is the p value at the core-cladding interface.
To find the solution vectors in the core, we make the following
change in variable in eq. (2):

I' = p™A. (7)
We thus obtain the differential equation,
dA 1
— =—[A(p) — MI]A, (8)
7 [A(p 1]

where I is a unit diagonal matrix.
By requiring that the solution be bounded as p — o, we obtain the
two vectors,'®
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Fig. 4—Plot of the function log | G(N.) | versus effective index for M = 4 and A = 0.806
micron. The index profile is parabolic.
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Fig. 5—A high resolution plot of log | G(Ne) | for the mode marked A in Fig. 4. This
splitting is due to the presence of the cladding and amounts to a few times 1075,

NZ — k(o) 0

Mk(o) MN.

MN., and | 5, , 9
0 NZ — k(o)

where k(o) is the dielectric constant at the center of the lightguide.

By using the two solution vectors at the center of the lightguide and
eq. (8), we can obtain two numerical solutions at the core-cladding
interface. These must match with the two cladding solutions at the
same point. This can be written as

Z sz(.pcc, Ne) Pj =0, (10)
iLj

where index J specifies a particular vectors and index i a particular
vector component. Consequently, I';; and I';; are core solutions and
I3 and T4 are cladding solutions. P, and P; are the weights applied
to the core solutions, and P; and P; are the weights applied to the
cladding solutions. The characteristic equation from which we can
determine N. can then be written as

G(N.) = Det[T; j(pec, Ne)] = 0. (11)

This is an implicit, transcendental equation, and to find its solution we
plot G(N,) as a function of N.. The zeros will give us the allowed values
of effective index.
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. COMPUTING PROCEDURE

We obtain numerical solutions to eq. (8) by means of an optimized
second-order Runge-Kutta procedure.'® Double-precision arithmetic is
employed and needed. To minimize computing time, we wrote our own
programs especially tailored to the above problem.

There will be regions in the lightguide where the solution to eq. (2)
will oscillate and other regions where the solution will grow or decay
exponentially. As we are limited by our computer to numbers between
107 to 10", this will limit the wavelength and size of the fiber we can
study. However, as will be seen, realistic fibers and wavelengths can
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Fig. 6—A plot of the absolute value of the splitting of the modal pairs vs mode
number . The dramatic change in splitting for @ = 22 and 23 is due to the cladding.
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Fig. 7—Plot of the function log| G(N.)| vs effective index for M =4 and A = 1.540
microns. Note the increase in spacing between the effective indices over the data on
Fig. 4.

be handled. As an illustration, Fig. 2 shows a possible solution to eq.
(2) for H.. To the left of the vertical line d,, the behavior is clearly
oscillatory. To the right of the line, we have the sum of a rising and
decaying exponential. The decaying term dominates nearest the line,
while the rising term dominates further away. The line d; locates the
turning point, and it should not be confused with the core-cladding
interface. It is simply that radial position where the character of the
solution changes from oscillatory to exponential. For loosely bound
modes, it will be very near the core-cladding interface. For tightly
bound modes, it will be near the center of the lightguide.

As mentioned before, the solution in the cladding can be written in
terms of modified Bessel functions of the second kind. We obtain these
functions by a double-precision routine written by Gatto and Seery."’
Again, because of the range of numbers the computer can handle,
there is some limitation on the size of the argument the program can
evaluate. However, realistic wavelengths and fiber diameters are not
precluded.

The function G(N.) that we must plot to obtain the N.'s (i.e.,
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effective indices) has a large dynamic range. We are primarily inter-
ested in the zeros of this function. The large values can be compressed
by plotting the logarithms of the absolute values of G(N,). It should be
borne in mind that exact zeros for| G(N,) | are not very likely, as G(N.)
is the result of a numerical calculation. What we find are approaches
to zero, and this causes no difficulty as these approaches are very
evident.

IV. EFFECTIVE INDICES FOR AN IDEALIZED FIBER

We study an idealized lightguide with a 13.5-mole percent germania-
doped silica core and a pure silica cladding. The core is assumed to be
perfectly cylindrical with a diameter of 100 microns. The cladding will
be considered essentially infinite. The doping profile is such that the
refractive index is a parabolic function of distance R. Thus,

N - N,

RL‘C2

where N, is the refractive index at the center of the core, N: the

N=N+ R?, (12)

1.48
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0.6 0.8 1.0 1.2 1.4 1.6
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Fig. 8—A family of dispersion curves for the various modes. The curves for the core
and cladding are also drawn. Modes that touch the cladding curve are no longer bound

to the core.
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Fig. 9—A plot of effective index vs mode number @. This highly linear behavior is
only for purely parabolic index profile.

refractive index in the cladding, and R.. the radius of the core. Both
N, and N; will be functions of wavelength.

Fleming'®' has accurately determined the wave-length variation of
the refractive index of silica and some doped silicas. The data for 13.5-
mole percent germania-doped silica is shown in Fig. 3. As expected,
the refractive index falls off slowly with wavelength.

It is necessary to have a formula for the wave-length dependence of
index data such as is shown in Fig. 3. One which is linear in its
constants is®

Ni= Co + CiA2 + CoA* + Cs/ (A = 0.035)
+ Cs/(A\? — 0.035) + Cs/(A\* — 0.035)%, (13)

where A is in microns and i = 1, 2. We find that this formula fits the
data of Fig. 3 with a correlation coefficient of 0.9999. Table I lists the
coefficients for eq. (1) for both 13-mole-percent germania-doped silica
and silica.

There is a physical interpretation of eq. (13). The first terms are a
Taylor series corresponding to the influence of a far infrared band.
The last terms are a Laurent series corresponding to an absorption
band near A = 1870A. We find that this formula is also useful in fitting

1184 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1980



Table |—Coefficients for eq.
(13) for core and cladding

Core* Cladding*
Cy= 1.4706868 1.4508554
C) = —0.0026870 —0.0031268
C» = —0.0000356 —0.0000381
Cy= 0.0035756 0.0030270
Cy = —0.0000828 —0.0000779
Cs = 0.0000018 0.0000018

* The deviation of any index from
the fitted curve is less than 1077,

the effective index data for the various modes. For this application,
the correlation coefficient is equally good.

Figure 4 shows a plot of the log | G(IN.) | vs effective index for our
idealized fiber with M = 4 and A = 0.806 micron. We notice that there
are 23 clear approaches to zero, and these are the allowed values of N..
The spacing between the N. values is essentially uniform, and they
span a range from the core center index (1.47453235) to the cladding

index (1.4535429).

log | G (Ng)|

Fig. 10—Plot of the function log | G(Ne)

A= 1.540 tm

AR

—4

1.454 1.464
NE

vs effective index for M = 12 and A = 1.540.

A comparison with Fig. 7 shows a gap in the allowed effective index values. As M gets
even larger, the gap will increase further.
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Table ll—Listing of
the wavelengths*
used in Figs. 8 and 9

I Ar (microns)
1 0.6040
2 0.6520
3 0.7000
4 0.7600
5 0.8060
6 0.8480
7 0.9020
8 0.9500
9 1.0040

10 1.0400

11 1.1000

12 1.1560

13 1.2020

14 1.2520

15 1.2980

16 1.3520
17 1.4000
18 1.4556
19 1.5040
20 1.5400
21 1.6000

* Rounded from double
precision values.

If we examine the approaches to zero under higher resolution than
is shown in Fig. 4, we find that, except for the mode marked D, the
allowed values of N, are doublets. Figure 5 shows a high resolution
plot of log| G(N.)| for the mode marked A. The two values of the
effective indices are

Ni= 145384520
N2 =1.45384788.

The difference between these two values is a few times 107°. This
splitting is due to the presence of the cladding. For example, a mode
whose electromagnetic field has decayed before reaching the cladding
(such as B in Fig. 4) has a splitting of a few times 107". Figure 6 is a
plot of the absolute value of this splitting vs mode number @. @ counts
the number of pairs of modes where @ = 1 corresponds to the
nondegenerate mode D.

From data of the sort shown in Fig. 4 except that they are taken at
different wavelengths, it is possible to draw a family of dispersion
curves for the effective indices. Figure 7 shows a curve analogous to
Fig. 4 except for A = 1.540 microns. The only obvious change is that
the spacing between the effective indices has increased. We have
collected data at 21 wavelengths, and these are listed in Table II. The
family of dispersion curves that results from this data is plotted in Fig.
8. Included in the plot are the dispersion curves for the core and
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cladding material. Note that the resolution of Fig. 8 is not high enough
to show the splitting of the degenerate modes.

There is some similarity in shape between the effective index curves
and the core and cladding curves. We also clearly see the increase in
spacing between the effective index curves for longer wavelengths.
Some modes are seen to approach the curve for the cladding. When
this happens, such modes are no longer bound to the core. Plots like
Fig. 8 display rather well the characteristics of the lightguide. Another
sort of plot of the data of Fig. 8 is also informative. Rather than
plotting N. vs wavelength for a given mode, we can plot N, vs mode
number @ for a given wavelength. Such a plot is shown in Fig. 9, and
the wavelengths are those of Table II. The most striking feature is
that N, for a given wavelength is nearly a linear function of @.

Another important aspect of the basic physics of lightguides 1s
shown in Fig. 10. This plot is identical with Fig. 7, except that M now
equals 12. We note that there is a gap in the allowed effective index
values. Such a gap also exists in the data of Fig. 7, but it is not nearly
so evident. As M increases further, the gap will get larger, until finally
all modes are prohibited.

Hp
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| 1 | | ] | | I |
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Fig. 11—The Hgy wavefunction for M = 4 and A = 0.806 micron. The effective index
is 1.4538452. Only the field in the core is plotted. The radial distance is in terms of p.
Note that, at the core cladding interface, the field has a substantial value.
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Fig. 12—A plot of all six components of the electromagnetic field. Again M = 4,
A = 0.806, and N. = 1.4538452.

V. WAVEFUNCTIONS FOR THE ELECTROMAGNETIC FIELD

Knowing the effective index for a mode, we can generate the wave-
functions for the electromagnetic field by means of egs. (3) and (10).
We again consider the pair of modes labeled A in Fig. 4. Figure 11
shows the Hy wave-function for the lower of the two effective indices.
The radial distance is in terms of the variable p. The function plotted
corresponds to the field in the core. In the cladding, which is to the
right of the dotted line at p = 380, the field decays in a roughly
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exponential manner. Since Hr is not tangential to the core-cladding
interface, it will, of course, show a discontinuity at this boundary.

We note a number of features in Fig. 11. First, the field oscillates
with decreasing frequency as a function of p. Second, the field has a
substantial, nonzero value at the core-cladding interface. This means
that, for this mode, appreciable energy is carried in the cladding.
Finally, we note that the oscillations for this component do not show
a continual decrease in amplitude with p. There is an initial decrease
to a constant level and, just at the core-cladding interface, a slight
increase. All six components are shown in Fig. 12. Only E. and H,
decay continuously with p.

Fram a knowledge of the field functions, the Poynting vector” may
be calculated. Thus:

1
P= 3 (ErH; — E,HE). (14)

This vector, which gives us the power density in the guide, is plotted
vs p in Fig. 13 for the field functions of Fig. 12. We note a decrease in
power from the guide center to a relatively constant level and then an

24—

20

&
T

RELATIVE POWER
[
T

0 | ] 1
0 200 400

RADIAL DISTANCE

Fig. 13—Poynting vector for the field functions shown in Fig. 12. The vertical scale is
relative.
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Fig. 14—Poynting vectors for the pair of modes designated C in Fig. 4. We note that
one mode has three peaks and the other two. @ = 3 for this pair of modes.

increase at the core-cladding interface. We also note an increase in the
width of the power peaks as the cladding is approached.

We may use the Poynting vector to classify the more tightly bound
modes. By tightly bound, we mean those modes that are little affected
by the cladding. Modes with @ = 1 through @ = 20 (see Fig. 6) are
examples of these. To illustrate this classification scheme, consider the
pair C, (@ = 3) in Fig. 4. The effective indices for these are:

NI =1.47106909
NZ = 1.47106947.

The Poynting vectors are plotted in Fig. 14 for this pair of modes. The
core-cladding interface is well to the right of these functions and is not
shown. Obviously, little energy is being carried in the cladding. We see
that the mode with the highest efffective index has two peaks and the
mode with the lowest has three peaks. We designate the latter mode
as HE,; and the former EHy,. A consistent classification® for the two
modes of each pair is HEy, and EHug-1. No EH mode is associated

with an HE);; mode.
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VI. CALCULATION OF GROUP INDICES

A parameter of some importance in lightguide engineering is the
group index. This will be expected to vary with wavelength and mode.
Because many modes will normally be excited and because a source
has some spectral width, there will be a spread in group indices AN,.
For a fiber of length L, this results in a spread in propagation time At
given by

L
At = EAN‘E' (15)

The group index is related to the effective index by
Ny= N.— AdN./d\). (16)

This formula may be applied to bulk glass as well, in which case N, is
simply the usual index of refraction. To apply eq. (16), we must
calculate dN./d\ for numerical data, and this could be troublesome.
We represent the data on both bulk glass and the effective index of
Fig. 8 by eq. (13). The coefficients are determined by a least-squares
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GROUP INDEX (Ngl

1.488

1.484

1.480 ] | | |
0.6 0.8 1.0 1.2 14 1.6

WAVELENGTH IN MICRONS

Fig. 15—Group index as a function of wavelength for the bulk germania-doped silica
glass whose index of refraction dependence is given in Fig. 3. Note that, near 1.4 microns,
there is very little change of group index with wavelength.
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Fig. 16—The family of group index curves for the effective index data of Fig. 8. Note
the similarity with the curve of Fig. 15. The curves deviating from the bundle are
tending to become unbound.

analysis, and this causes a degree of smoothing. The derivative dN./
d\ is then easily evaluated.

Figure 15 shows the group index as a function of wavelength for the
bulk germania-doped glass data shown in Fig. 3. Of course, since we
are dealing with bulk glass only, there will be no modal dependence. In
the neighborhood of 1.4 microns, there is little change in group index
with wavelength. Thus, at this wavelength a rather broad source would
transmit data through the bulk material efficiently.

In Fig. 16, we show the family of group index curves for the data of
Fig. 7. Each curve corresponds to a particular mode. We note that the
modes form a bundle with a shape nearly identical to that of the bulk
glass data of Fig. 15. Because of the steepness of the function near 0.8
micron, one tends to get a false impression of the relative width of the
bundle. In fact, one finds that it is only slightly wider at the longer
wavelengths. The bundle has curves deviating from it, and these are
modes that are tending to become unbound. From Fig. 16 we estimate
a spread in group index of about 6 X 107" at 1.4 microns. The time
spread calculated by eq. (15) is thus 2 X 107 s/km for a broad source.
The bundle shows narrowing at about 1 micron, and this might be a
desirable wavelength to operate a narrower source.''
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VIl. GRAPHICAL DISPLAY OF GROUP INDEX

It is useful at times to have a graphical display of group index as a
function of effective index. This may be helpful in understanding the
effect of distortions in the index profile on differential modal delay.
Differentiating eq. (9) yields

oG oG
N d\ + N, dN.=0 17
dN. oG /oG

or =T a/ N (18)

Thus we obtain the equation

aG /oG
=N+ A — .
Ne (a;\ / aNe) (19)

This function is plotted in Fig. 17 for A = 1.39 microns, M = 4, and, as
before, a parabolic index profile. From Fig. 17, we see that N, is made
up of a family of “dispersion-like curves,” and there is one curve for
each pair of nearly degenerate modes. For the modes that are little
influenced by the cladding, the curves are very similar. The only

1.520
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6.7 AT TTTT
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1.460 1 1 | |
1.446 1.450 1.454 1.458 1.462 1.466

N,

e
Fig. 17—Plot of eq. (17) relating group index to effective index for A = 1.39 microns.

The dots correspond to the allowed values of effective index and were taken from plots
of the sort shown in Figs. 4 and 7.
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Fig. 18—Plot of eq. (17) relating group index to effective index for A = 0.803 micron.
The dots correspond to the allowed values of effective index and were taken from plots
of the sort shown in Figs. 4 and 7.

difference is a downward shift as N, gets smaller. For those modes that
are influenced by the cladding, i.e., those on the extreme left of the
plot, the curves tend to reverse.

The dots on the curves are the values of effective index for each
mode. These data were obtained from plots of the sort described
earlier (see Figs. 4 and 7). For each mode, we can get a group index.
Figure 18 shows a plot for the same fiber except at a shorter wave-
length. In this case, we have A = 0.803 micron, and there are many
more modes. The curves are much steeper and, as before, they change
in character as the cladding is approached.

To accurately calculate the group indices at a particular wavelength,
one can use either eq. (16) or eq. (19). If we use eq. (16), we must very
precisely determine the effective indices for the modes of interest at
three equally spaced wavelengths, for example, 0.81, 0.82, and 0.83
microns. The required derivative is then easily evaluated. This is a
simple procedure, but has the disadvantage that precise eigenvalues
are needed at a number of wavelengths. This is costly in computer
time. On the other hand, if we use eq. (19), then we only need to
accurately determine the effective indices at one wavelength. The
actual calculation of the group index just requires a trivial incrase in
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computer time over that needed to accurately determine the effective
indices at a single wavelength.” The disadvantage of this procedure is
that the ratio of two derivatives need be calculated, and this could be
less accurate.

VIIl. CONCLUSIONS

Using numerical methods, we have obtained solutions to the vector
form of Maxwell’s equations for idealized lightguides. The results
obtained clarify the physics and suggest that application of these
methods to production-line preforms and lightguides will be useful. In
particular, displays of the effective index data such as shown in Fig. 4
and the displays of group index data such as shown in Fig. 18 may be
valuable. In addition to the work described in this paper, we have
tested the mathematical methods for step-index, single-mode fibers.
Agreement with known results is excellent.
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