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An important objective in designing switching networks is to min-
imize the probability of calls being blocked. A number of methods
have been developed in the past for designing efficient switching
networks that satisfy various constraints on their parameters. In this
paper we investigate a special class of subnetworks of a switching
network, called channel graphs. It is known that, under the usual
assumptions made for calculating blocking probabilities, the blocking
probability of a switching network is small if blocking probabilities
of its channel graphs are small. With the use of certain combinatorial
structures, known as block designs, we construct a large class of
nearly optimal channel graphs.

I. INTRODUCTION

Two switching networks having the same number of crosspoints but
with different linking patterns can, in general, have different blocking
performance. One widely used method to estimate the blocking per-
formance of a switching network is to calculate the (Lee) blocking
probabilities' of the channel graphs (also called the linear graphs),
each of which is the union of all paths that can be used to connect an
input terminal and an output terminal.*

Two channel graphs G, G: of two balanced® k-stage networks Nj,
N,, respectively, having the same number of crosspoints but with
different linking patterns, often satisfy the following properties:

(i) The number of distinct paths in G, is equal to the number of
distinct paths in Gs.

(if) Suppose we use Lee’s probability model together with the
assumption that the probabilities of being busy for links in successive
stages are independent. If we assume N, and N: carry the same traffic

* The reader is referred to Refs. 2 and 3 for graph representations of switching
networks or undefined graph-theoretic terminology.
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loads then for a fixed i, 1 < i < %k — 1, a link between stage i and stage
i + 1 in G, has the same probability of being blocked as that of a link
between stage i and stage ¢ + 1 in Ge. In other words, G, and G: have
the same link occupancies.

For example, in Fig. 1, we have 4-stage channel graphs. The first
and last stage each consist of one node, called the source and the sink,
respectively. In Fig. 1a, m nodes are in stages 2 and 3. Each node in
stage 2 is connected by n links to exactly one node in stage 3. (We note
that this multilink 4-stage channel graph can sometimes be viewed as
a simple link k-stage channel graph for k > 4 after replacing each link
between stage 2 and 3 by a path of length > 1.) In Fig. 1b, m nodes are
in stage 2, n nodes in stage 3, and every node in stage 2 is connected
(by one link) to all nodes in stage 3. In Fig. 1c, m nodes are in stage 2
and m’ nodes in stage 3. Every node in stage 2 is connected (by one
link) to n distinct nodes in stage 3, and every node in stage 3 is
connected to n’ distinct nodes in stage 2. Furthermore, mn = m'n’.

We note that the channel graph G, in Fig. 1a is series-parallel®, but
the channel graphs G: and G; in Figs. 1b and 1c are not series-parallel.
They are often called spider-web channel graphs. Recent studies have
shown, either by analysis or by simulation,*® that spider-web channel
graphs can sometimes significantly reduce blocking probabilities over
series-parallel channel graphs for given switching network hardware.
The history of this can be traced back to Le Gall’ who showed that,
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Fig. 1—Three channel graphs.
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under certain independence assumptions, the channel graph in Fig. 1b
is superior to that of Fig. 1a if n = m, 1.e., the blocking probability of
G- does not exceed that of G, for any given link occupancies. Takagi®
and Van Bosse” strengthened this result by relaxing the independence
assumption in different directions. Chung and Hwang” generalized this
result by showing that the channel graph G; in Fig. 1c is superior to
the channel graph G, in Fig. 1a for n = m. Hwang'’ also showed that
G is, in fact, superior to G..

We note that all the graphs in Fig. 1 have the property that each of
the m nodes in stage 2 is connected by the same number of links, say
n links, to nodes in stage 3. Also, each of the m’ nodes in stage 3 is
connected by the same number of links, say n’ links to nodes in stage
2. This set of channel graphs will be denoted by C(m, n, m’, n’) where
mn = m'n’, m’" = m. Graphs in C(m, n, m’, n’) often come from
switching networks with the same number of crosspoints but having
different linking patterns. The main problem is to determine the best
linking pattern in graphs of C(m, n, m’, n’). In this paper, we intend to
study this problem by the use of block designs.

Il. BLOCK DESIGNS

The following is a generalized version of block designs.

A (v, b, r, k, A; t)-design is a family of subsets X, -+ , X, of a »-
element set X satisfying the following conditions.

(i) Each X; has k elements.

(if) Each t-subset of X is a subset of exactly A of the sets X, ...,
X,.

Properties (iif), (iv) and (v) follow immediately from (z) and (ii).

(ii1) Each element of X is in exactly r of the sets X, . -+ , X;, and bk
= pr.

v

; kY
(iv) b(t) = )\(t
(v) Xy, ---, X, are also a (v, b, r, &, A;; [)-design where

)\=?\(;}::)/(ij::) for =1,.-.,t-1,

As an example, let us set X; = {{, i + 1, + 3} (mod 7) for i = 1,
..., 7. It is easy to check that X;, 1 =i="7,isa (7,7, 3, 3, 1 ; 2)-design.

The reader is referred to Refs. 11 to 13 for the existence and
construction of various classes of block designs, and referred to Refs.
2 and 3 for some applications of block designs in switching networks.

lll. AN EXAMPLE

To show the use of block designs in designing good linking patterns
for switching networks, let us first have an example. Figure 2 has two
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Fig. 2—Two channel graphs in C (7, 3, 7, 3).

channel graphs in the class of graphs C(m, n, m’, n’), where m = m'
=17, n =n'= 3, one of which is connected by the use of block designs
and will be subsequently shown to be superior to the other. The graph
H, in Fig. 2a is connected according to a cyclic rule: the ith, node in
stage 2 is connected to the ith, (i + 1)th, (i + 2)th nodes (modulo 7)
in stage 3. The graph H. in Fig. 2b is connected according to the (7, 7,
3, 3, 1 ; 2)-design: the ith node in stage 2 is connected to the ith, (i +
1)th, (i + 3)th nodes in stage 3, modulo 7.

We will show that, for any given link occupancy, {p, pz, ps} (ie.,

any link between stage i and i + 1 has probability p; of being blocked),
the blocking probability of H, exceeds that of H;. First we will have an
auxiliary lemma:
Lemma I: In a channel graph H in C(m, n, m', n'), let S be a state
(i.e., a set of unblocked links) on the set of all links between stages 1
and 2. Suppose S contains | S| unblocked links. We define x;(S) to be
the number of nodes in the second stage which are joined to the jth
node in stage 3 and are connected by unblocked links in S to the
source. Then the (Lee) blocking probability of H is

P(H) = §pi""s'(1 —p)'S' I (1 = (1 = p5*¥) (1 = pa)).
J

Proof: We note that the blocking probability of H under S is
P(H,S)=]](1-(1 —py* ) (1 = ps)).
J
P(H) is just the sum of P(H, S) over all states S. Lemma 1 is proved.

To compare the blocking probability of H; with that of Hz, we only
have to consider, for each fixed integer ¢, 1 =g <=m,

P, H)= Y [[(1-@1=p7)01—p)

|Sl=q 7

fori=1,2.
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Using the inequality for arithmetic and geometric means, one can
show that

P\(H)) = P\(H2) = 7(1 = (1 = p2)(1 — p3))°

Py(Hy) = 7(1 — (1 = p3)(1 — ps))*(1 = (1 = p2) (1 = p3))?
+7(1 = (1 = p3)(1 = pa))(1 = (1 = pa)(1 = pa))*
+7(1 = (1= p2)(1 = ps))°

= (;) (1—=(1—-pH—ps))(1 = (1= ps)(1 — p3))*

= Pz(H:a)-

It can be verified (also see Ref. 14) that P;(H;) = P3(H.). However,
the detail is a little messy and will be omitted here.

IV. BLOCK DESIGN GRAPHS IN C(m, n, m’, n')

To simplify the expressions, let us first define some notation.

For a graph H in C(m, n, m’, n), let Sy denote the set of states on
the set of links between stages 1 and 2. Let Sy, , be a subset of Sy
consisting of all states containing ¢ unblocked links. Also, as defined
in the above section, x;(S), SeSy, is the number of nodes of the second
stage which are joined to the jth node in the third stage and connected
by unblocked links in S to the source. From Lemma 1 we know that
the blocking probability of H is

P(H) =Y pT (1 — p1)'P,(H),
q9

where
P, H)= Y [0 -1-p79)1 - ps).

SESqu J

We will prove the following
Main Theorem: Suppose we have a (v, b, r, k, X ; t)-design. Then in
Cim, n,m', n'), withm =v,n=r,m = b, n' =k, let H be connected
according to this t-design, i.e., the ith node in stage 2 is connected to
the jth node in stage 3 if and only if the ith element of X belongs to
the jth block X;. Then for any q = t or ¢ = m — t we have P,(H) <
P,(H') for any graph H' in C(m, n, m’, n’).

Before proving the main theorem, we will first prove several auxiliary
lemmas.
Lemma 2: For a graph G in C(m, n, m’, n’), we have

2300 ()G
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Proof: Let T be a set of ¢ nodes of the second stage. We define g(J, S,
T) to be 1 if all nodes in T are joined to the jth node of the third stage
and connected by unblocked links in S to the source, and to be 0
otherwise. It is easy to see that

553808 T =33 (x;(tS))’

which is equal to the following

. m—t n'y (m-—t

.S, T) = =

pppecis =23 (570) -3 (7) ()
- m ny{m-—t
t qg-—t)

Thus, Lemma 2 is proved.
Lemma 3: Let G and G’ be two graphs in C(m, n, m’, n’). Let X(S)
denote the set {x;(S): j = 1, --- , m}. Then the union (counting
multiplicity) of all X(S), SeSe, 4, is the same as the union (counting

multiplicity) of all X(S'), S'eSe; o
Proof: From Lemma 2 we have

x x’
¥y oy (t)= ¥ ) (t) for t=gq.
SeSg, o xeX(S) SeSg. 4 VeX(S)

Let ¥ = max{x:xeX(S) or xeX(S")}.

If we choose t = X, in the above equality we have the number of x in

the union of X(S) over all SeSg,, having value x’ is equal to the
number of x’ in the union of X(S’) over all S’eS¢', ; having value x. It
follows easily from the above equality (by induction) that the union of
X (S) over all SeSg, , is the same as the union of X (S”) over all S’eS¢", 4.
Lemma 4: Let H be a graph in C(m, n, m’, n’) which is connected
according to a t-design. Let S and S’ be two states in Sy, where q
< t. Then it follows that the set {x;(S): j=1, +++,m'} = {x;(S) : J
=1, ..., m’}. In other words, x;(S) is a permutation of x;(S’).
Proof: Let T be a set of i nodes of the second stage and assume i < g.
We define g (j, T) to be 1 if all nodes in T are joined to the jth node of
the third stage and are connected by unblocked lines in S to the source;
and 0 otherwise. It is easy to see that

22e(iT) =3 (x,-(s)),

- i
J
which is equal to
LYgU,T) = A.(jj;’).
T j
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Thus we have S) (S
X; _ X;
()= ()
for any i =< q.

It is easy to see that the number of x; with value g in {x;(S’) : j =
1, --- , m} is equal to A,. It can be easily derived from the above
equations (by induction) that
{xj(S) :j= 1! et )m,} = {xj(S,) :j= 1! b )m’}'
Lemma 5: Let H be a graph in C(m, n, m’, n’) which is con-
nected according to a t-design. Let S and S’ be two states in Suq
where ¢ = m — t. Then we have {x;(S) : j=1, --- , m'} = {x;(S) :
Jj=1,.--,m}.
Proof: Let T be a set of i nodes of the second stage and assume i < m
— q. We define g'(j, T') to be 1 if all nodes in T are joined to the jth
node of the third stage and are connected by blocked lines in S to the
source, and to be 0 otherwise. It is easy to see that
] " — % S
NYEUT) =Y (“ il ’),
J T

l

J

which is equal to
DOW-AVAAES }\z(f)
T J

n - x(8)\ o (n —x(S)
p () -n (M)

foranyi=m — q.
Similar to the proof in Lemma 4, we have

(xj(s):j=1) i )ml] = {xf(s'):j=1! e sm’}'

Thus we have

Lemma 6: Suppose sets Z and Z;, i = 1, --- , w, consist of positive
integers (repetition allowed). If the union of Z; (counting multiplicity)

over i = 1, --- , w is the same as the union of w copies (counting
multiplicity) of Z, then we have

I zszw]] 2

I zlsz'- zJ{Z

Proof: Since z;; and z; are all positive, it follows from the arithmetic-
geometric mean inequality.
Proof of the Main Theorem: Let us define

flx)=1—-(1—p3)(1 — ps).
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Then for a graph G in C(m, n, m’, n’), we have

P(G)= Y Il f(x).

S‘SG, g xeX(S)

Suppose H and H’ are two graphs in C(m, n, m’, n’) and let H be
constructed according to a ¢-design and let ¢ <t or ¢ = m — ¢. From
Lemma 3 we have the union (counting multiplicity here) of all X(§’),
SeSy- 4, is the same as the union of all X(S), SeSy, ;. From Lemma 4,
we have X(S;) = X(S.) for any S\, S:¢Su,. By Lemmas 5 and 6, we
have

P,(H)= ¥ I f(x)

S’eSH‘ g xeX (8)

> (”‘) [ f(x)=P,(H).
q ] zX(S)
This completes the proof of the main theorem.

We remark that, in case of 2¢ + 1= m, the graph connected according
to the ¢-design has the least blocking probability in C(m, n, m’, n’).

V. CONCLUDING REMARKS

We note that the channel graphs connected according to ¢-designs
are, somehow, more “evenly distributed.” Roughly speaking, by
“evenly distributed” we mean the following: Over all possible g-node
combinations of the second-stage nodes, the number of distinct third-
stage nodes connected to any given g-node combination of the second-
stage nodes varies less for block design graphs than for other graphs.
In other words, the vector sets {x;(S):j=1, ---, m} for | S| = g have
likely similar patterns. We note the probability P;(G) can be written
as a sum over all states S, | S| = ¢. Since the arithmetic mean is always
greater than or equal to the geometric mean, P,(G) tends to be
minimized when the graph is “evenly distributed.” We also note that
the interconnection pattern of the channel graph will then help to
determine the linking pattern of the multi-stage switching network
(see Refs. 2 to 4).
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