Copyright © 1980 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 59, No. 5, May-June 1980
Printed in U.S.A.

Time- and Frequency-Domain Representation
of Multipath Fading on Line-of-Sight
Microwave Paths

By W. D. RUMMLER

(Manuscript received December 17, 1979)

Propagation on a radio path experiencing multipath fading can be
modeled in the time domain by an N-path transmission network with
each path characterized by gain and delay. We examine the inter-
relations of such a representation with the more frequently observed
frequency domain characteristics of the channel. We show that the
decibel gain and envelope delay distortion of the transfer function
may both be expressed as summations of elementary functions each
associated with a zero in the complex frequency domain. We find
that the average frequency spacing of the zeros, and of transmission
minima, is determined by the maximum delay. Although published
propagation data indicate an average spacing of 100 MHz or more
for common carrier radio hops, we verify that closely spaced zeros
can occur with nominal path gains and short delay spreads. This is
demonstrated by developing multipath synthesis procedures which
allow path gains and delays to be determined from a specification of
gain and/or delay distortion in a finite frequency band. The resulting
networks are not unique; for instance, more than 5000 three-path
delay networks with delay spread less than 10 ns can be found to
provide a match over a 60-MHz band near 6 GHz to a sample gain
shape with two minima. These developments provide the basis for a
qualitative comparison of the ability of a channel modeling function
to statistically represent the state of the transmission channel. We
describe the limitations of both delay and complex power series
models of varying degrees of complexity.

I. INTRODUCTION

The use of digital radio in the common carrier, line-of-sight, micro-
wave radio bands has rekindled an interest in propagation modeling.'™
Recently, a statistical model was developed®® for a 26.4-mile path in
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the 6-GHz band (30-MHz bandwidth) at Palmetto, Georgia, using a
multipath channel model. It was found, in the modeling study,’ that
for appreciable periods of time the channel was well characterized with
modeled delay spreads exceeding 25 ns. Such a spread is considerably
larger than the 8.5 ns that would be predicted on the basis of (deter-
ministic) ray modeling,® or expected on the basis of previous propa-
gation studies.” One of the objectives of the present study is to verify
that these results are not inconsistent for multipath (three or more
paths) channels.

The analysis provides the basis for determining the extent to which
one can predict the transmission characteristics in a narrowband (20-
to 40-MHz bandwidth) channel from knowledge of the physical delays
present in the radio path and, conversely, the extent to which one can
determine the physical delays present in this path from observation of
the channel. These developments clarify the limitations of existing
statistical models for channel characterization in the frequency domain
and indicate directions for developing extended models.

While a number of authors have placed bounds on the attenuation
and group delay produced by finite-delay-spread channels,™*'" the
present work is the first attempt to describe the overall structure of
the frequency response of a multipath channel. Our approach is to
view the channel transmission characteristic from the standpoint of
classical network theory. We begin in Section II by reviewing the
properties of network transfer functions and developing simple means
for calculating the channel attenuation and envelope delay distortion
(or group delay). The frequency dependence of the envelope delay
distortion and the channel attenuation provide a complete description
of a transfer function. These quantities are simply related to the
complex frequency (s-plane) representation of the transfer function.
The transmission path is modeled as an ideal N-path network, which
provides at the receiver N scaled replicas of the transmitted signal,
where each replica appears at a discrete delay. The transfer function
of such a network can be uniquely represented by its s-plane zeros.
Such a canonic representation is useful because it allows one to obtain
the envelope delay and attenuation characteristics from the zero
configuration. Considerable attention is given to determining the po-
sition and distribution of zeros from a given multipath transfer function
(MTF).

The procedure is inverted in Section III, where we develop tech-
niques for synthesizing MTFs from specified s-plane zeros. The insights
provided are used in Section IV to compare simple multipath and
power series models that are appropriate for statistical modeling of
narrowband radio channels. A summary of results and conclusions is

given in the final section.
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Il. DISCRETE MULTIPATH TRANSFER FUNCTIONS
2.1 Characterizing network transfer functions

The transfer properties of a network may be characterized by H(s),
the complex voltage transfer function in the s-plane, or complex-
frequency plane. If we represent the effective voltage at the input
(transmitting antenna) by

Vr(s) = e”, (1)
where s is the complex frequency,

s=0+Jjw, (2)
then the effective voltage at the output (receiving antenna) is given by

Vr(s) = H(s) Vr(s). (3)

We take eq. (3) as the definition of the transfer function of the
propagation path. As the transfer function of a passive network, H(s)
must be analytic in the right half plane' (o > 0). Hence, it may have
poles only in the left half plane but zeros anywhere. If all the zeros are
in the left half plane, the function is described as a minimum phase
function; otherwise, it is nonminimum phase.

A transfer function may be completely specified by its attenuation
(or loss) and phase functions on the jw-axis.'”> We may define these
functions by writing

H(]w) — e*(n+j_H]: (4)

where a(w) and B8(w) are the loss function in nepers and the phase-lag
function in radians, respectively. We shall use two closely related, but
equivalent, functions to describe the transfer impedance: A(w), the
attenuation in decibels; and D(w), the delay distortion function, where

. 20
A(w) = —20log| H(jw)| = (ﬁ)a(w) (5)
and
a
D(w) = a—B (6)
w

The delay distortion function is also referred to as the envelope delay
distortion function, the group delay function, or simply the delay
function, when the meaning is not ambiguous.

To obtain a more explicit expression for the delay distortion function,

we write

H(s) = R(o, w) + jX (0, w). (7)
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Comparing (4) and (7), we see that

(8)

B = —arc tangent X
8 R

o=0

Hence from (6) and (8),

X(dR/dw) — R(8X/dw)
D(w) = X1 R . (9)
Applying the Cauchy-Riemann conditions, we obtain
a
D(w) = — —In| H(s)| (10)
do

o=0

In addition to its utility in deriving the delay distortion function
from the transfer function, the expression in eq. (10) is particularly
useful for qualitatively visualizing the shape of a delay distortion
function given the pole-zero distribution of the transfer function. One
merely visualizes | H(s)| as the height above the s-plane of a uniform
infinitely stretchable sheet pushed infinitely high at the poles and to
zero height at the zeros of H(s). The delay distortion is the negative
of the (logarithmic) slope of the surface in the o-direction at the jw-
axis.

2.2 Characterization of multipath transfer functions

Consider a propagation link characterized by N discrete paths. If
the signal replica arriving via the nth path has amplitude a, and delay
., we may write the transfer function for the propagation link from

eq. (3) as N
H(s) = 3 a,e™™™. (11)

We number the paths in order of increasing delay and, for simplicity,

take the delay of the first path as zero. That is, we subtract the delay
of the first path from all physical path delays. Hence,

O=m<mn<s<- --- <7N. (12)

Since H(s) is analytic and of bounded magnitude in the finite s-
plane, it is classified as an integral or entire function. As such, it can
be expanded in terms of its zeros as an infinite product:'

Hi(s) = H(0) {elO/HO ﬁ (1 - i)e.e/s;,v (13)
k=1 Sk

It is assumed that the zeros have been numbered in some consistent
manner and that each zero appears as often as is required by its degree
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of multiplicity. The coefficient of s in the leading exponential term
may be determined from eq. (11) as
N

H'(0) Y Taly

HO)

— (14)

Y an

n=1

Hence, the leading exponential term represents the weighted average
delay of the paths of the network.

The infinite product representation of (13) provides a basis for
describing the properties of H(s). The representation may be shown
to be uniformly and absolutely convergent in the finite s-plane,'® and

each of the factors in the product is referred to as a primary factor. It
is instructive to examine the kth primary factor,

Fu(s) = (1 - i)em*, (15)

Sk

where )
Sp = O + Jwi (16)

denotes the location of the %Ath zero. The location of a zero is unre-
stricted, except that we allow jw-axis zeros only as a limiting case (o,
— 0). The contribution of the primary factor to the channel attenuation
may be obtained with eq. (5) as

ok + (0 — wi)?

wWwyp
A = -_— ——— e —_
rw) 10 log 7 7 (20 log e) 7 7 (17)

For physical networks, the zeros always occur in conjugate pairs.
Hence, there is a zero at (ox, —fw:), which produces a frequency term
that cancels the last term in eq. (17). Thus, we may represent A(w)
by

ok + (0 — we)?

Ap(w) = —10 log -

: 17
oi + wi (17a)

The delay distortion corresponding to F is obtained with eq. (10) as

Ok Ok

Dy (w) = (18)

0+ (w—wi)® 01+ w0}

From egs. (5), (10), and (13) to (18), it is apparent that the atten-
uation and delay functions of the transfer function can be expressed,
respectively, as

Alw) = =20 log H(0) + 3 Ax(w) (19)
k=1
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and

HI(O) - -]
D(w) = — + Y Dip(w). 20
(w) (H(O)) El ke (20)
Thus, the channel attenuation and delay functions can be expressed as
the summation of primary attenuation and delay distortion functions.

The function Ax(w) is similar to the response of a resonant circuit.
Using the standard notion for tuned circuits, we let

Py L
T
_w _ I
Qk_2|0k|_fbk
_f—fh_,f-F
8 = For Qr A (21)

where fy is the 3-dB bandwidth of the response, @ is the equivalent
circuit @ or the ratio of the resonant frequency to the bandwidth, and
8 is the frequency variable measured in 3-dB bandwidths from reso-
nance. Using eqs. (21) in (17a) and (19), we find

Ar(w) = 10 log(1 + 4Q%) — 10 log[1 + (28:)%] (22)

l/dk _ I/Uk
1+ (26:)° 1+4Q%°

These two expressions both involve the frequency variable through
the term 1 + 48%: the delay distortion function varies inversely with
this term; the attenuation depends on its logarithm. Equations (22)
and (23) are plotted in Fig. 1. The attenuation displays a maximum at
the resonant frequency (8 = 0). The delay distortion function is more
strongly peaked and localized than the logarithmically varying atten-
uation curve. Note that, for o). < 0, corresponding to a minimum phase
zero, the delay function has a minimum at the resonant frequency,
whereas for o, > 0, corresponding to a nonminimum phase zero, the
delay function has a maximum. This difference is normalized out of
Fig. 1.

One may visualize the attenuation function of H(s) as the resultant
of a summation of curves such as that shown in Fig. 1, with each curve
in the summation being translated and scaled (compressed or ex-
panded) in frequency to correspond to the position of the associated
complex zero. The delay distortion function may be visualized as a
similar type of summation. Thus, the attenuation and delay in a band
of frequencies will be dominated by the zeros that are “close” to the
band. Zeros with f; within the band will tend to produce maxima in

Dy(w) = (23)
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Fig. 1—Attenuation and delay of primary functions.

the attenuation and either minima or maxima in the delay. Zeros with
fi outside the band are evidenced in the in-band attenuation by an
attenuation slope; the slope observed would be the net slope resulting
from all zeros. While one can make a similar observation with respect
to delay, it is apparent that the effects of distant zeros are more
pronounced in the attenuation than in the delay. That is, the atten-
uation characteristic of a primary factor decreases much more slowly
with frequency than does the envelope delay. The interested reader
may verify these statements by examining the asymptotic behavior of
Aj(w) and Dy (w); however, rather than pursue the matter further here,
we shall demonstrate this effect with examples in Section II1.

2.3 Determining transfer function zeros

In the preceding section, we showed how the attenuation and delay
distortion of a multipath transfer function are related to its s-plane
zeros. In this section, we show by a conceptual example how to obtain
the s-plane zeros from the MTF. Although the precise calculation of the
positions of the zeros is a formidable problem, it is relatively simple to
determine their average density of occurrence. To this end, we shall
assume that all the multipath delays are expressible as rational num-
bers.* While this is a trivial limitation from a physical standpoint,

* Or contain a common irrational factor.
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since we cannot determine the rationality of a physical quantity from
finite measurement, it greatly simplifies the mathematical develop-
ment.*

If each of the delays in eq. (11) is rational, it is possible to find a pair
of relatively prime integers p, and g, for each 7, such that

=L (24)
gn
Defining a delay, 7o, by
0= 1/lem{q.}, (25)

where lem{g,} denotes the least common multiple of the g.’s; and
integers, m,, by

.

mn =2 lem{g,), (26)

n

we may write (11) as N
H(s) =Y a,e ™™™, (27)
n=1

It is apparent that H(s) is a periodic function with a period along
the frequency axis of f, = 1/70. That is,

H(s + j2uf,) = H(s). (28)
If we now make the transformation
z=e™™ (29)

in (27), we obtain the polynomial P(z) where

_ N
P(2) =_H( lnz) = 3 anz™ (30)
(1]

n=1

Since the order of the polynomial, P(z), is my, it can be factored in
terms of its roots. Denoting the gth root by z,, we have

P2 =a [l (1 - 5), (31)

g=1 Zq

where multiple roots are multiply reported. We note that for real
coefficients, a,, the roots will be real or in complex conjugate pairs.

* It is worth noting that, with irrational delays, H(s) would become an almost periodic
function (with infinite N allowed as long as 2 | a, | is finite) (Ref. 16); with rational delays
and infinite N, the function H(s) would become a limit periodic function, a subset of
almost periodic functions (Ref. 17). While the developments of the preceding section are
valid for almost periodic functions, the results of this section are strictly true only for a
finite number of rational delays. These results can be extended in a limiting sense to the
more general classes of multipath transfer functions if they are restricted to have a
bounded set of delays (Ref. 18); however, the mathematical complexity required would
mask the simplicity of the results.
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We see that there are my roots in the z-plane. Since a sheet of the
z-plane transforms, by eq. (29) into the s-plane as a strip of infinite
extent in o and extent 27/1, along the jw-axis, we conclude that there
are mnTo zeros per hertz along the jw-axis. Since my7, is the maximum
delay present in H(s), the average spacing between zeros is 1/7y Hz.
Because delays are measured relative to the delay of the first path, the
average spacing between zeros (in hertz) is equal to the reciprocal of
the spread of delays present in the propagation path. We return to this
point in the next section.

Transforming P(z), as given by eq. (31) back into the s-plane, we
have

H(s) = Ple™) = a ]| (1 1 e“’"“). (32)
q=1 2q

However, each of the factors in eq. (32) may be represented as an
infinite product. Thus we obtain, after manipulation,

my =
H(s) = H(0)e""" /"N T ] (1 - i)ea”""’, (33)
q=1 p=—o Sgp
where
_1 .
Sgp = - [In r, + 7(8, + 27p)] (34)
[{]
and
2q = ree’%. (35)

The expansion of (33) is identical to that of (13) if one develops a
numbering scheme that relates a given s,, to a unique s;. For instance,

Sk = 3gp (36)
for
k=g+2p=1my p>0
= q — 2pmn p=0. 37

Thus we have developed the means of relating the delay represen-
tation and the product representation of a multiple delay function.
Before we put this knowledge to use in Section III, synthesizing delay
networks from s-plane zero configurations, we shall pursue the topic of
the distribution of zeros in the following subsection.

2.4 Estimation of channel delay spread

In Section 2.3, we demonstrated that, for a time-invariant channel,
the total spread of delays in the channel, n, is equal to the average
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number of zeros per unit frequency along the jw-axis. In this subsection,
we argue that for a propagation link one can estimate, from amplitude
observations in a narrow-frequency band, the average value of the
total spread of channel delays giving rise to frequency selective atten-
uation in the channel.

Let us assume that we have a microwave radio channel characterized
by a multipath transfer function as given by eq. (11) except that the
amplitudes and delays are random processes evolving continuously in
time but slowly with respect to the rate at which we can probe the
channel. Since the amplitudes and delays are physical quantities, they
can be represented by continuous and bounded functions of time.
(Short pulse observations’ indicate that the atmosphere has a limited
capability of increasing the a,’s through focusing; observation’ and
modeling® do not indicate a mechanism for providing relatively unat-
tenuated delays much in excess of 10 ns for paths on the order of 25
miles long.)

Let us first assume that the statistics of the model are stationary
and that as time evolves we can, by some means, observe all the zeros
in a strip of the s-plane extending from a frequency f to a frequency
fo. If na(fi, fz, t) is the number of zeros in the strip at time ¢, the average
delay spread would be estimated as

T
1 (" nafi B )
TN(fh f.!) = }}_{gﬁjT—W dt, (38a)

or in discrete time form as

T r Y1 L M nﬂ(flsf?’pAt}
TN(f]) fz) —nlﬂszzz_M (f2 —fj) .

the expressions in (38a) and (38b) are equivalent as long as the spacing,
At, between time samples is sufficiently small.

From egs. (17) and (19), we know that each s-plane zero (w, ox) can
be evidenced by an attenuation maximum (transmission minimum) at
w = w. However, if oy is too large, its presence may be masked by a
local slope in attenuation; i.e., there may be no maximum.* Therefore,
the number of maxima of A(w) in an observed frequency band, which
we denote by no(fi, f2, t) is less than or equal to the number of zeros
present in the strip, or

no(fi, fo, t) < na(fi, fo, 8). (39)

(38b)

* There are no strong statements to be made concerning the distribution of zeros in
the o-dimension. For multipath transfer functions with ¥, | a, | finite and bounded delay,
one can prove that all zeros lie in a strip of finite width parallel to the frequency axis
(Ref. 18).
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Since a well-designed microwave radio path does not show a preference
for fading at any particular frequency, the choice of the frequencies f;
and f; is not important as long as the frequency interval (f,, f2) is large
enough that a reasonable number of events (no > 0) are observed in a
manageable time period.

In characterizing multipath fading, the statistical picture is further
complicated because fading is a nonstationary process; fading occurs
during discrete time periods when the atmospheric conditions are
appropriate. Thus, to statistically characterize multipath propagation,
one assumes that multipath time periods are identifiable and that the
statistics are always the same in each of these periods. On this basis,
we would estimate 7y, the average value of the maximum delay spread,
as

f no(fi, fz, £) dt
'FN(fl, fz) - multipath , (403)
(fr=f) dt

multipath

or with discrete time samples as

S no(fi, fo, it)

A __ lim)
lfis ) =L T (40b)
{im

where {i,} denotes the set of time indices covering the periods during
which multipath fading occurred.

The estimator of (40b) was implemented for data acquired at 6 GHz
on a 26.4-mile path near Atlanta, Georgia, in 1977. The estimated
delay® was 9.1 ns using the study multipath time. Using subsets of the
fading intervals chosen on the basis of fade depth and shape gave
estimated values of 7y between 6 and 11 ns. This consistency implies
that the assumption of statistical homogeneity was a reasonable one
for the data studied. The 9.1 ns is consistent with the maximum values
of 7 ns observed’ with short pulse measurements on a 22.8-mile path
at 4 GHz,* and with predictions of maximum delays of 8.5 ns based on
a three-layer propagation model® The estimator of (40b) may be
applied to published broadband spectral measurements. A delay of
6 ns is obtained from measurements on the 22.8-mile path,® and 9 ns
is obtained from measurements at 4 GHz on a 31-mile path in Ohio.?

The above results suggest that it may be reasonable to model

* The short pulse measurements were performed with a linear received voltage scale
and a limited maximum delay measuring capability. They do not preclude the existence
of small-amplitude delayed components, particularly at large delays.
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wideband multipath-fading channel transfer characteristics by apply-
ing a distribution for the number and location of the zeros of the
functions. For instance, one could assume that the distribution of zeros
along the frequency (jw) axis is Poisson, and that the distribution of
the o coordinates of position are identical, but independent for each
zero. The state of the channel would be determined by a Monte Carlo
selection. Such a model does not appear to be inconsistent with the
observations above; however, its verification and parameterization
would require considerable effort.

2.4.1 Effects of very large delays

As may be observed from egs. (38) to (40), the delay spread, 7w,
estimated from amplitude information is biased towards low values.
This bias is due to the limited precision in measuring the attenuation
spectrum. To show that this masking can be significant in a case of
interest, consider the case where the multipath transfer function, H(s),
contains two parts: one due to multipath propagation Hy(s) and
another due to multipath reflections in the receiving waveguide runs,
H,(s). That is,

H(s) = Hp(s)H.(s). (41)

Assume a single delayed return due to mismatch or mode conversion
at both ends of a waveguide run. Then

Hu(s) =1— bue ™, (42)

where 7, is the round-trip delay associated with the waveguide. We
assume for 7, a typical value of 400 ns. Using egs. (5) and (10), the
attenuation and delay produced by H.(s) may be written as

Au(w) = =10 log(1 + b — 2b,.c08 wTw) (43)

buTw(bw — COS WTW)
1+ b% — 2b,C0S WTw

Du(w) = (44)

Both these functions are periodic in frequency with a period of 2.5
MHz for the given delay. The peak-to-peak variation of amplitude and
delay are

1+ by
w=201
AA, =20log - (45)
and
2b.uTw
AD, = -1—-:‘—3; (46)

For b = 0.01, which corresponds to the delayed signal being 40 dB
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below the primary signal,* one finds that the peak-to-peak variation in
attenuation is 0.17 dB, while the peak-to-peak variation in delay is 12
ns. Hence, the effect of such a waveguide multipath would be difficult
to detect from observations of attenuation. The delay distortion of 12
ns, however, would be comparable to the delay distortion produced by
a rather severe fade."

One may draw two conclusions from the preceding calculation. First,
one must have good return loss and/or short waveguide runs to make
phase coherent propagation measurements on a radio path. Second, in
estimating the channel delay spread from the number of attenuation
maxima, the value obtained reflects the largest delays that contribute
to the attenuation selectivity and not the largest physical delay that
will have any impact on the received signal. This effect may have been
in evidence in Ref. 4, where large delays were estim:‘ted when an
average of the type given in eq. (40) was applied to a subset of scans
that had little attenuation shape in band.

lll. SYNTHESIS OF MULTIPATH TRANSFER FUNCTIONS

The synthesis problem consists of finding a set of amplitudes and
delays for an MTF, given the position of a finite number of zeros in a
given frequency band. In Section 3.1, we briefly review synthesis from
a single zero. Section 3.2 describes how to synthesize a three-path MTF
from the specification of a pair of zeros. Other approaches to the two-
zero problem and the M-zero problem are discussed in Section 3.3.

3.1 Synthesis from a single zero

We may synthesize an MTF for a single zero, at s, = go + jwo, by
taking a single term from the product representation of (32); thus,

H(s) = a[1 — be™ "=, (47)
where
b=emm (48)

and a represents the magnitude of the remaining terms at s = s
Although (47) appears to be a two-path transfer function, it cannot, in
general, be synthesized by a transmission link with two real paths.
(Synthesis with two real paths is possible only if wory is an odd multiple
of 7.) Since it can be synthesized with three paths under the constraint
that two of the paths have very nearly the same delay,’' it has been
described as a simple three-path model of a fade.

Figure 2 shows the location of the s-plane zeros of H(s) as given by

* A value of 50 dB would be more typical of a well-designed and -installed system.
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T =(ln b}/ Ty
;

(o]

Fig. 2—Zeros of transfer function of a simple three-path fade.

(47). We note that the function is minimum-phase (all zeros in the left
half plane) when gy < 0 or b < 1, it is maximum-phase (all zeros in the
right half plane) when g, > 0 or b > 1. In a given frequency band, the
attenuation and delay distortion of such a function depend only on the
location of the closest zero, and are independent of 7, for 7o sufficiently
small or the zero spacing sufficiently large. In particular, it is shown in
the appendix that a function such as that given by (47) may be
approximately matched over a bandwidth, fs, by functions of the same
form but different delay. The magnitudes of such functions match to
within 0.4 dB as long as 7o < 1/(6 fs). Furthermore, the fractional
difference in the delay distortion of these matched functions over the
same bandwidth is less than 10 percent if, in addition, | g0 | < 0.83/70,
or b > 0.436. For this reason, a simple three-path fade model can be
used to synthesize the effects of a single transmission zero in or near
a band of frequencies.

3.2 Synthesis with three paths

Consider the problem of finding a three-path fade that will have
zeros at two specified complex frequencies. Designate the locations of
the zeros by s = 01 + jw), and s; = 0z + jwy, with w2 > w;. We wish to
find amplitudes and delays so that
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H(s1) = H(s:) =0 (49)

for

H(s) =1+ aze ™ + aze ™. (50)

For convenience, we define the mid-frequency and half-separation,
respectively, as

We = % (wl + w?}
(51)

Aw =} (w2 — wi).

At the mid-frequency, w., we can represent H(jw.) by a phasor diagram
as shown in Fig. 3. Since each phasor could have made any number of
rotations in getting to the angles #, and #,;, we may write

weTy = B2 + 2 M>
(52)
wery = by + 27M,

where M, and M; are integers representing the whole number of
rotations, which is also equivalent to the integral number of periods at
the center frequency contained in the delays. Using eqs. (50) to (52),
we may write (49) explicitly as

1+ a2e—jﬂge—a1rgeﬂlw73 + aae—Jﬂ;;e—orr;lejAwr;; =0
(53)
1 + aze_j”'.’e_"u"ﬂ —JAwry + age_jﬂ:]e—ﬂgf;,e—jﬁur“ =0.

For an arbitrary choice of the integers M, and Mj, (562) and (53) may
be solved iteratively for a self-consistent solution. One begins by
assuming values for the angles # and #,, using (52) to determine 7, and
73, and then solving (53) for a., ai, &, and #;. When the same set of
#'s or 7's is obtained in two successive iterations, the solution has
converged. In cases that have been tried, to date, the procedure has
converged to ten-place accuracy in one to four iterations.

The convergence is improved (usually by only one iteration) by
making a good initial choice of #;’s. One may choose wisely by observing
that the complex amplitude of H(jw) traces an epicycloidal curve as
shown in Fig. 4. An epicycloid is the locus of a point on a wheel whose

2

Fig. 3—Phasor diagram of three-path fade at mid-frequency, w..
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Fig. 4—Polar representation of a three-path fade for a; = 1.2, a; = 0.30 with points
spaced by 1 MHz for 7 = 1.39 ns, rr2 = 11.1 ns.

hub is rolling on another circle. If the generating point is within the
hub (r3as < T2a3), the locus is a prolate epicycloid; if the generating
point is at a radius greater than the hub radius (r3as > 72as), the curve
is a curtate epicycloid. Note that the curve closes on itself in a single
rotation of the wheel about the entire circle only if 73 is an integral
multiple of r3, i.e., if 1/7: is the period of H(s) along the frequency axis.

One may also show that each encirclement of the origin (in a
clockwise direction) corresponds to a nonminimum-phase, or right-
half-plane, zero. While many additional insights can be obtained from
a detailed examination of this geometric model, its primary use is in
choosing initial values of # and #;. The most rapidly convergent
starting values have generally been 6 = 180°, 65 = 0.

3.2.1 Examples of three path synthesis

As an example of the application of the method, consider the case
where the frequency coordinates of the zeros are 5.980 and 6.020 GHz,
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and o, = o0» = —0.0214 nepers per nanosecond. This choice of zero
locations allows a comparison between three-path fades and an ob-
served simple three-path fade (in this case, realizable as a two-path
fade) given by

Hs(jw) = 0.0116[1 + 0.5729 e 7**7], (54)

This function has zeros at the indicated locations* and parameters
close to those obtained from field data.'

The attenuation and delay distortion of the MTF of (54) are compared
to those of four different three-path MTFs in Fig. 5. All these MTFs have
zeros at the two required complex frequencies; they were obtained by
solving (52) and (53) for different values of the integers M» and M;
which represent the number of periods of oscillation (% ns at the
center frequency) contained in 72 and 73, respectively. The parameters
of the MTFs are indicated in the table on the figure. All five MTFs have
virtually identical delay distortion characteristics in the frequency
band shown (except for a constant delay shift). The attenuation
characteristics of the MTFs, with appropriate scaling, differ from each
other by less than 1 dB and from the two-path characteristic by 2 dB
or less at all frequencies shown. These similarities are obtained despite
the large differences in the maximum delays in the MTFs. The second
MTF has a maximum delay of 2.2 ns, which is less than Yo that of the
two-path fade.

Note that three of the four three-path MTFs in Fig. 5 have the same
normalization in that the first path gain is unity. That is, the MTFs
represented by curves 2, 3, and 4 were chosen from many available
because they had transmission minima at the same level (near 45 dB)
as the two-path fade (curve 1). If the MTF represented by curve 5 were
normalized for unity gain in the first path, its minimum transmission
level would be at 24.3 dB. This MTF was included to indicate the large
range of transmission levels that may be obtained for three-path
transfer functions with normalized path gains and prescribed zero
positions which provide closely matched shapes in attenuation and
delay distortion characteristics.

While the two-path fade with the prescribed zero locations is unique,
it is apparent that there is a two-parameter family of three-path MTFs
with these zero locations. Since each increment in M- or M; increases
the delay of the corresponding path by approximately ' ns [see eq.
(52)], for the given pair of zero locations, one can find approximately
10,000 three-path MTFs, all of which have essentially the same atten-
uation and delay characteristics and maximum delay less than 25 ns.

Since the five MTFs represented in Fig. 5 have left-half-plane zeros

* For these examples, we measure delays in nanoseconds, frequencies in gigahertz,
and o in nepers per nanosecond.
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1 00116  0.00665 0 25 0

= 2 1.0 193609 0.95469  1.0833 2.1667
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Fig. 5a—Attenuation characteristics of two-path (curve 1) and three-path MTFs with
transmission minima at 5980 and 6020 MHz. The transfer function zeros associated with
these minima are in the left half plane.

in the plotted band, they appear to be minimum phase functions. By
comparing (54) with (47) and (48) or Fig. 2, one may verify that the
two-path MTF in Fig. 5 is truly minimum phase; it has all zeros in the
left half plane. Forming the z-plane polynomials for the second MTF in
Fig. 5, as in egs. (29) and (30), one may show directly that mTF No. 2
is also minimum phase. (The right half of the s-plane maps into the
interior of the unit circle in the z-plane.) Using Fig. 4, one may show
that the third MTF in Fig. 5 is also minimum-phase. Equations (5) and
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Fig. 5b—Delay distortion characteristics corresponding to the MTFs of Fig. 5a.

(10) may be used to calculate the attenuation and delay characteristics
of the other mTFs in Fig. 5, and the nature of the zeros may be
determined by noting whether the delay distortion is experiencing a
minimum or maximum near each transmission minimum. By this
means, we find that the fourth MTF has right-half-plane zeros near
frequencies of (3.333 + 4k) GHz, k =0, 1, 2, - - ., . The fifth MTF is
periodic in 12 GHz, with 84 zeros in each period. Adjacent zeros
alternate between the left and right half planes except for the pair
closest to 6 GHz which are both left-half-plane zeros (see Fig. 5) and
the two closest to 12 GHz, which are both right-half-plane zeros.
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B 1 00116 000665 O 25 - _
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Fig. 6a—Attenuation characteristics of two-path (curve 1) and three-path MTFs with
transmission minima at 5980 and 6020 MHz. The associated zeros of the transfer
functions for curves 1 and 3 are both in the left half plane, and for curve 6 are both in
the right half plane. For curve 7, the lower frequency one is in the left half plane and the
other in the right half plane.

Although verifying the statements of the preceding paragraph may
be tedious, the conclusions are important. The envelope delay of an
MTF can look like that of a minimum phase function even if the
function is not minimum phase; conversely, one cannot determine
whether an MTF is truly minimum phase by examining its amplitude
and phase in a frequency band less than its period in the frequency
domain [1/7 in eq. (29)]. Thus, as predicted in Section 2.2, we have
demonstrated that the delay distortion characteristics of an MTF in a
frequency band depend only on the nature of the local zeros.
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Fig. 6b—Delay distortion characteristics corresponding to the MTFs of Fig. 6a.

To demonstrate just how localized the delay characteristic is to the
nature of the nearest zero, consider the effect of moving into the right
half plane one or both of the zeros in the preceding example. Figure 6
compares the attenuation and delay characteristic for these cases [with
M, = 4, M: = 15 in (52)]. It is apparent that neither zero impacts on
the shape of the delay curve in the neighborhood of the other.
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3.3 General synthesis problem

Consider the case where one wishes to construct an MTF that will
have M zeros at specified complex frequencies. The most direct pro-
cedure is to extend the method described in Section 3.2 [egs. (49) to
(53)]. This procedure leads to an MTF with M + 1 paths; it requires M
equations of the form of eq. (52) and M complex equations, or 2M real
equations of the form of eq. (53). The only uncertainty with this
method is the initial choice of the #s; there is no apparent geometric
construct at an appropriately defined mid-frequency that will instruct
one in a good initial choice for the iterative procedure. No attempts
have been made to apply this procedure to the case of M zeros. A
simpler procedure that uses a greater number of delays is described in
the following paragraphs.

One may synthesize an MTF capable of matching M zeros by assum-
ing that the associated z-plane polynomial is of the form

M
P(z) =[] (am + 2"), (55)

where the a. are all positive real numbers and the n., are integers.
Such a model leads to an MTF with 2" delay paths. We note that the
mth factor in (55) has its z-plane zeros uniformly spaced on a circle of
the radius | (@)"""|. Thus, the kth zero of the mth term, which we
denote as the k,th zero, is at

2k -1
- ™ i m = 1,
k

2 ...
= 1/ngy,
Zmh | (aM) Ie = 1; 2; ey Ny (56)
We achieve a synthesis by requiring the £,th zero in the z-plane to
map the mth zero in the s-plane. Denoting the mth s-plane zero by
0m + jwnm and using the transformation of eq. (29) with (56), we find

Um = e*"m"nufu (57)
_Zkn =1 (58)
NmTo = 2fm .

Thus, for a set of M integers { k. }, one may determine the set of delays
{nm7o} through (58), and the coefficients a, through (57). Used in
conjunction with eqgs. (565) and (29), these are sufficient to determine
H(jw). Note that the maximum delay is Y m nmTo.

Although knowledge of 7, is not necessary to the development, it

can be shown that
l - M-1
_ lem(fn}] 59

2 Illfm

To
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Fig. 7a—Attenuation characteristics of two-path (curve 1) and four-path MTFs with
transmission minima at 5980 and 6020 MHz. The transfer function zeros associated with
these minima are in the left half plane.

where lem{ f..} is the least common multiple of the set of frequencies
{fm}-

Figure 7 shows the attenuation and envelope delay of four different
MTFs generated by this method to match the same zero locations as
the preceding three-path example. The attenuation and delay of the
two-path mMTF of (54) are also shown. All four functions shown are
minimum-phase everywhere. Figure 8 is similar to Fig. 6 in that it
shows the effect on the four-path MTFs of shifting one or both zeros to
the right half plane. The similarity between Figs. 6 and 8 is striking. It
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Fig. 7b—Delay distortion characteristics corresponding to the mTFs of Fig. 7a.
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is noteworthy that all the MTFs shown in Figs. 7 and 8 have path
strengths that are close to unity. Such solutions are typical for this
synthesis method; in accepting 2" delays for matching M zeros, we
obtain 2* path strengths that are close to unity for | o | sufficiently

small.

IV. MODELING MULTIPATH TRANSFER FUNCTIONS

The evaluation of the performance of radio systems in the common
carrier bands requires a statistical model of the channel. The required
model is essentially a channel transfer function with parameters whose
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values are determined from statistical distributions. Using the param-
eter statistics, one can determine the probability of finding a channel
transfer function corresponding to a given element of parameter space.
Equivalently, one can determine the fraction of time that the channel
condition will exceed some measured bound. The concerns of the
general modeling problem include: choosing parameters to measure,
determining sample spacings in time and frequency, evaluating the
effects of measurement noise and quantization, and estimating model

30 T T T T T

— CURVE a ap ER] EY) T2 T3 T4 ]
| 1 0.0116 0.00665 Qo 0 25 - - |
8 1.04369 1.02702 1.01623 1.0 0.7525 1.2458 1.9984

12 095814 0.97369 0098403 1.0 0.7526 1.2458 1.9984
= 13 098950 0.97369 1.01623 1.0 0.7525 1.2458 1.9984 .

35

ATTENUATION IN DECIBELS
&
]

45

50 | | | | ]
5.97 5.98 599 6.00 6.01 6.02 6.03

FREQUENCY IN GIGAHERTZ

Fig. 8a—Attenuation characteristics of two-path (curve 1) and four-path MTFs with
transmission minima at 5980 and 6020 MHz. The associated zeros of the transfer
functions for curves 1 and 8 are both in the left half plane, and for curve 12 are both in
the right half plane. For curve 13, the lower frequency one is in the left half plane and

the other in the right half plane.
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Fig. 8b—Delay distortion characteristics corresponding to the MTFs of Fig. 8a.

parameters from the observed data. In this section, we limit our
discussions to part of the underlying modeling problem which may be
more accurately described as the approximation problem. Thus, our
concern is to determine, given perfect and complete data, how we can
best describe what has been observed.

Since the maximum delays observable in typical microwave radio
hops are on the order of 10 ns, the average frequency spacing of the
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zeros of channel transfer functions is about 100 MHz, as discussed in
Section 2.4. This spacing is large compared to the channel bandwidths
of 20 to 40 MHz in the common carrier bands. On the average, we
expect the channel transfer function to be influenced by only one zero;
however, observations suggest that spacings as small as 40 MHz may
be observed for 40 seconds a month. Although multiple zeros in band
are observed occasionally, it is probably not necessary to have a model
capable of representing such a situation because of the infrequency
and short duration of such events. In brief, one would use a more
complicated model only if it more accurately represented the channel
for a greater fraction of the fading time, and if this incremental
improvement had a significant impact on equipment performance
estimates. Thus, as a minimum, a channel model should be capable of
representing the channel transfer function when there is one zero in or
near the channel. However, to accurately predict outage for radio
systems with very effective equalizers might require a model capable
of representing a channel when a second zero is nearby. We shall
consider below two model alternatives for both the single zero case
and the double zero case.

In Section 3.2 we demonstrated that knowledge of the precise
location of two moderately closely spaced zeros was sufficient to
determine the transmission characteristics in the frequency band near
those zeros, but was not sufficient to uniquely determine the five
parameters of a three-path fade. From this it follows that a multipath
model should not require more than four parameters; ie., eq. (47)
should be sufficient. On the other hand, since only a finite number of
zeros have impact on the transfer function and a complex function in
the neighborhood of its zeros is well represented by a power series
expansion, one can use a model based on a power series expansion of
the transfer function.

4.1 Channel transfer function dominated by a single zero

Let us first consider the case where the channel transfer function
may be characterized, in a frequency band, by a single term in the
product expansion of eq. (13). It is equivalent to use a group of terms,
or a single term of the expansion of eq. (32). This results in the simple
three-path model described in Section 3.1, with response given by:

H(jw) = a[1 — be =], (47)

If the channel, of width fz, is under the influence of a single zero, one
may fix the value of 7, at any value less than 1/(6fz), and use eq. (47)
as a three-parameter model. Although the fixed-delay model fits the
observed channel characteristics equally well regardless of the partic-
ular choice of 7, the statistics of the remaining parameters do depend
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on the choice. A 6-GHz channel has been successfully characterized
with such a model.*’

If one takes, as a channel model, a single term from eq. (13) and
ignores the residual exponential terms, one obtains

H(jw) = a[o1 — j(we — 1) — j(w — wc)]. (60)

For the model function, we have chosen the zero at jw, + o, and shown
the function as expanded about a convenient frequency, w.. The factor
a represents the composite effect of all other terms in the expansion of
eq. (13). This model has been proposed and used for channel model-
ing.>?*?! Although the modeled function of eq. (60) does not represent
the response of a real physical network, it can be approximated by
standard bandpass techniques.

It is apparent that the model of eq. (60) and the fixed delay model
of eq. (47) are both three-parameter models that are representing the
same phenomena in the same manner. Given that only one dominant
zero is affecting the channel transfer function, there is little difference
between the accuracy with which these two models can represent the
state of the channel.

4.2 Channel transfer function with one dominant zero and second zero
nearby

Assume that a second zero, more distant from the band center than
the primary zero, is exerting an influence on channel attenuation and
delay distortion. From discussions in conjunction with egs. (17) and
(18) and from examples in Section 3.3, we expect the second zero to
evidence itself primarily through the shape of the attenuation char-
acteristics, which may exhibit both a maximum and a minimum in
band.

With the simple three-path model of eq. (47), this situation may be
accommodated by allowing the delay 7, to be variable. Thus, the delay
is increased to the point where an adjacent zero is brought close
enough to produce the desired effect.

With a power series model, this situation may be accommodated by
introducing additional terms from eq. (13). By analogy with eq. (60),
we assume a model of the form

H(jw) = a[o1 — j(we — 1) — j(w — we)]
o2 — jlwe — w2) — jlw — we)]
= a{[0102 — (we — w1 )(we — w2)]
— jlo2(we = @) + 01 (we — w2)]
= [20: — w1 — w2 ][w — @]

—jlo1 + a2][w = we] — [ — we]*}. (61)
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We see that the five-parameter, power series model of eq. (61) is more
flexible than the four-parameter delay model because it can place the
second zero arbitrarily, whereas the delay model has all zeros at the
same o value.

If, for the power series model, we force o> = —o it reduces to a four-
parameter model. This four-parameter model is comparable to the
simple three-path model; however, the two models cannot be made to
match each other exactly because of their structural properties. The
zeros of the simple three-path model are members of an infinite equally
spaced set; hence, its attenuation characteristics will have symmetric
maxima (transmission minima). Since the power series model has only
two zeros, its attenuation maxima will be asymmetric (as are the cases
shown in Fig. 5, which have no other zero nearby).

We conclude that there would be only slight differences between the
characteristics that can be generated by the simple three-path model
and a four-parameter, power series model. Thus, the choice between
power series and delay models for channel characterization is more
likely to depend on the convenience of using the model and its
parameter statistics in verifying the performance of radio systems by
theoretical calculation or by laboratory measurement.

V. SUMMARY AND CONCLUSIONS

The primary accomplishment of this study is to provide the basis
for relating the observed transmission characteristics of a narrowband
channel (in terms of attenuation and envelope delay distortion func-
tions*) to the physical parameters (in terms of path delays and
amplitudes) which give rise to multipath fading. The interrelations
were obtained by using the well-known property of pure delay net-
works: that they may be uniquely represented in terms of their s-plane
Zeros.

We have shown that the attenuation and delay characteristics of a
multipath transfer function can each be expressed as a summation of
primary attenuation and delay functions. Except for changes and shifts
in scale, all those primary functions, of a given type, are identical, and
each represents the effect of a single zero. Thus, one can relate the
attenuation or delay characteristics to the positions of the zeros and
hence to each other.f (The transmission characteristic of a radio
channel in the common carrier bands is usually dominated by a single
zero during periods of multipath fading.)

We have shown that the average spacing of the zeros along the

* A novel and simple means of relating the delay distortion to the network transfer
function is derived. This relation may be particularly useful for network designers.

T There is ambiguity because the delay distortion of a minimum phase (left-half-
plane) zero is the negative of that of a nonminimum phase (right-half-plane) zero.
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frequency axis is the reciprocal of the longest physical delay difference
present in the channel. Since each zero will cause (at most) a single
maximum in the attenuation characteristic, one can estimate the
maximum observable delay by determining the average frequency
spacing of the attenuation maxima. Using an argument that the zeros
show no statistical preference for any particular frequency, one can
estimate the spacing from a sequence of observations in a narrow
frequency band.* All available measurements in the frequency domain
suggest a delay of about 10 ns for the average value of the largest delay
spread present in a microwave line-of-sight radio path of 22- to 30-mile
length. This estimate is in reasonable agreement with short pulse
measurements and theoretical estimates for the same paths.

While a given delay network with N paths and a total delay spread
of 10 ns would have zeros with an average spacing of 100 MHz, there
is no minimum spacing between zeros; that is, two zeros may be
arbitrarily close to each other. Several synthesis procedures were
developed to match multipath transfer functions at several complex
zeros. For instance, one can find about 1800 three-path delay networks
with delay spreads less than 10 ns that will match at zeros 40 MHz
apart near 6 GHz. A similarly sized family of four-path networks can
be developed. The point of these exercises is to demonstrate that one
can construct large families of multipath delay functions with widely
differing delays but all with approximately the same attenuation and
delay distortion functions over wide bandwidths (60 MHz for the
example chosen). In other words, the shape of the attenuation and
delay distortion curves over a 60-MHz bandwidth gives no information
as to the spread of physical delays that might be present in the
channel. Alternatively, one cannot construct a unique delay network
from information obtained in a finite frequency band.

The material presented in the final section demonstrates that there
is virtually no difference in the modeling capability of a three-param-
eter (fixed-delay) multipath model and a three-parameter power-series
model. The differences between a four-parameter delay model and a
four-parameter power-series model are also of little significance. Al-
though the four-parameter models have more flexibility than three-
parameter models, it is not clear that such flexibility is required for
evaluating any existing or projected radio system. It appears that more
significant differences between delay and power-series models could
exist in the following areas: (i) the ease with which model parameters
may be estimated from available field data; (ii) the convenience in
representing the joint statistics of the model parameters; and (iiZ) the
facility with which the statistical models may be used to calculate and
measure the performance of digital systems.

* This argument is similar to the ergodic hypothesis.
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APPENDIX

In this appendix, we determine the conditions under which two
simple three-path fades have matching amplitude and envelope delay
characteristics over a frequency band fg either side of the frequency
where they both have a minimum. Using eq. (47), the two transfer
characteristics are given by

H\(0) = ar(1 — bie™") (62)

Hy(w) = a2(1 — bze—jmz), (63)

where, without loss of generality, we have set wo = 0. We assume that
the magnitudes and the second derivatives of the magnitudes of these
functions are matched at w = 0. This gives

a(l — b)) =1 - b)a: I<az=a1=1 (64)
and

\/6_11'1 \/b_z‘l'z

1-b 1-b
The ratio of the magnitude squared of the two responses is given by
_ |H'1(00)|2 _1+a

(65)

R = = y 66
© =@ T+e (66)

where .
&= (am sine %) (67)
&= (aw sinc &gz) (68)
sinc x = > (69)

From (64) we know that

b= b,, (70)
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and hence from (65) that

T2 = T1.
By definition, then,
sinc —2 > gine s | |<
—= — T g
2 2 SRS
It follows that
. 2
1< R(w) < s_mc (wr1/2) - 1 .
sinc (wr2/2) [sinc (wT2/2)]

or

1

1= R(w) s—i-m,

where we have used the relation

If we impose the condition | wrz | =< 7/3, we find

1
1= = ~1.106.
R(@) =1 710g) 06

(71)

(72)

(73)

(74)

(75)

(76)

Hence, the amplitude characteristics track to within 0.4 dB for wr, =
/3. For a 25-mHz bandwidth with the minimum at one edge, this

condition corresponds to 7» = 1/6B = 6.7 ns.

By comparison with eqs. (42) and (44), we may write the expression
for the envelope delay distortion of (62) and (63), relative to the

distortion at w = 0, as

5 = 2b171(1 + by)sin® wry /2
T = B)[(1 = 51)® + 4b; sin® wr /2]

and
Scbe = 2by72(1 + bz)SiI'l2 wra /2
71 = by)[(1 = b2)? + 4b, sin® w2 /2]
The fractional error between these is denoted by ® where
_ 8¢ — 5
8y

P

From (77) and (78),

%=72(1+bz)_ 1-5) g _1+g1
A (1—56) n(1+b)1+g g

(77)

(78)

(79)

(80)
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Using (65), this becomes

82 _ (Vbo+1/vb2) (14 1/g,) )
81 (Vb + 1/vVB)\1 +1/8g2)
From (67), (68), and (72),
&2 _ sincz(mn/?)
g sinc’(wr1/2) =1 (82)
It follows from this and from (73) and (74) that
_lom) e _1tVe_, (83)

12 @ 1+1/g

Since vx +1/vx is an increasing function of | 1 — x|, it follows from
(70) that

-—-—\/E +1/V8; =1 (84)
NCRES YN
It is easily shown that for x <1
pe T at— a4 (85)
V-« 4(1 = x)
From this, we sce that
‘/b—2+1/‘/b_251+(1_b")2. (86)
b, + 1/vb, 8b,
Using (83), (1), and (86) in (81) gives
- (“’;22)2 = % <14+ 80 B_bzbz)z. (87)
Substituting in (79) gives the bound on the fractional error as
wr2)’ 1—b)°
—(l—z)sd)s———( 8b22) : (88)

The condition | wr2| < 7/3 was chosen to keep the inband amplitude
error to less than 0.5 dB [see (76)]. Applying this same condition to
(88) gives ® = —0.091. If we limit values to b such that

0.436 < by < by,

then
—0.091 = ® < 0.091

or
|®| =< 0.091.
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