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In an attempt to simplify the design of separation filters in fre-
quency-division multiplexed digital data transmission by FsK, it was
found that the energy on one side of the FSK carrier can be reduced
by suitably modulating the amplitude of the Fsk signal. We present
a simple technique for controlling the energy on one side of the
carrier of an FSK signal. The method entails modulating the ampli-
tude of the FM wave in unison with the frequency. In other words, if
the energy in the region above the carrier must be reduced, the
envelope is somewhat suppressed while the higher frequency is trans-
mitted. The proposed hybrid modulation technique is applicable in
frequency-division multiplexed digital data transmission by FsK and
can often ease the design of separation filters. Here we investigate
this modulation technique theoretically as well as experimentally.
Our theoretical results include closed-form formulas for the various
power spectra of interest. We also determine the optimum amount of
amplitude modulation to achieve the greatest amount of sidelobe
energy suppression for a fixed amount of total average power. The
experimental investigations substantiate the analysis, and we make
comparisons of the technique with alternative approaches.

I. INTRODUCTION

It has been known that complete elimination of one of the sidebands
in FM can be achieved by modulating the envelope by a signal related
to the baseband modulation. This scheme is known as ssB-FM."2 In
general, beneficial spectral shaping in FM is achieved only if the
amplitude modulating signal is related in some manner to the fre-
quency modulation. Also the amplitude modulation must be positive
so that the zero-crossings of the original FM wave will not be altered.

For random data, the spectrum of FsK is known to be symmetrical
about the carrier frequency, and it appears intuitively clear that
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reducing the carrier amplitude during the period while the higher
frequency is being transmitted reduces the energy of the spectrum in
this frequency range.

We have observed experimentally that the amount of amplitude
modulation critically affects the energy distribution. These preliminary
experimental observations prompted us to examine this subject ana-
lytically and to verify the analysis by further experimentation.

Section II outlines the derivations of the AM-FM spectral density
when the baseband modulation is a synchronous digital data signal.
Section III repeats the derivation for asynchronous data. Section IV
discusses numerical and experimental results

IIl. THE SPECTRUM OF AM-SYNCHRONOUS FSK

To illustrate the principal ideas and to bring out the possible benefits
of AM-FSK, we use two simple models of digital FM and restrict ourselves
to simple amplitude modulation mechanisms. We first outline the
derivation of the spectrum for a general parameter set and then
specialize to binary FM.

Consider a stream of data symbols, ao, @1, ---, where each a, can
assume real values independently and with equal probability. Now
form the pulse train

D(t) = ¥ ang(t—nT), (1)
n=0
where g(t) is a unit-height, T-second duration rectangular pulse. This
signal will be used to modulate the frequency of a carrier wave. For
the amplitude modulation, form another pulse train

DO = 3, blan)g(t —nT), @

where b(x) is a nonnegative function. Next, apply (1) to an FM modu-
lator and multiply the output by (2). These operations result in an AM-
FM wave which is represented by

S(t) = D-(t)exp{i,:wct + wdf D(t') dt’ + 0]} (3)
0

where w,. is the carrier angular frequency, wq is a constant of propor-
tionality, and 6 is a uniformly distributed phase angle on the interval
[—m, 7). We use the complex representation of Fm for calculational
economy without loss of generality.

Because D(t) is always positive, D(t) can be recovered by conven-
tional FM demodulation methods,” and the role of the amplitude
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modulation here is only to shape the spectrum of the FM wave. The
manner in which spectral shaping is accomplished is our main interest
and motivates our investigation of the spectral properties of (3).

Denote the spectral density of S(f) by G(w). A convenient definition
of the spectrum is the limit

.1 2
lim ZE(|Z(, N) |*), “

where
NT

Z(w, N) = f S(t)e ™ dt
0

and where E{.} denotes the ensemble average.
The sequence of squared magnitudes of Z(w, N) is calculated in a
straightforward manner:

N-1 (k+1)T -
|Z(w, N)|2=| ¥ blaz) j exp{i[(wc—~w)t+wd Y an
k

k=0 T n=0
t—=nT

[ aonae))
—nT

t—nT

WO = (@-w)t—wi Y an | glt') dt,

n=(0 0

2

. (5)

By recognizing that the phase angle,

must be a linear function of time in the interval AT <t < (& + 1)T, it
is possible to put (5) into the form

N-=1

|Z(w, N)|*= ¥ blax)bla,)e” ™ F(y — arwa) F*(v — aswa)

k,s=0
k=1 s—1
-exp{ia[z an — 3, a,,:l}, (6)
n=0 n=0

where o = wqT, v = w — w., , is the complex conjugate, and
T
F(x) = f e ™ dE.
0

[See Ref. 4 for detailed manipulations leading to (6).]

To get the spectral density, (6) is first averaged with respect to the
identically distributed random variables, ay, a,, az, -- -, and then the
limit in (4) evaluated. Manipulations similar to those carried out in
Ref. 4 lead to the desired result, namely,
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G(w) = lim %E|Z(w, N |?
2
- Ea[b(a)s,»(ﬁ_—““)}
2
e " wa (T — aa
+ 2 RG{WW(E;;[B 2 S.(—'z_‘)b(ﬂ)]) }: (7)

where a is a data symbol, C(a) = E.(e“®), and Si(x) = sin x/x. The
above result for G(w) holds only when | C(a) | < 1. When | C(a) | = 1,
the spectrum contains delta functions. These can be determined with-
out too much difficulty,* but, since in this application | C| < 1, we do
not need the most general results.

In our application, the data are binary so that a = +1. We also
specialize to @ = wysT = m/2. For this special case, the spectral density
formula reduces to a very simple form.

Let

b(l)=A
and
b(-1) = B.

Now evaluate explicitly the averages specified in (7).

2G(w) = AZS?("‘ _2T") + stf(“ + T’)

2

+ Re{e‘m[ J=1 AZS?(“ 'ZT”) -J=1 BZS?(“ J;T”)

+ 2ABS,(“ = T”)Sf(“ A T")]}. ®)
2 2
Making use of the identities

2
a—Trv\ fa—Tr\y .
2( 5 )S,( 3 )—1—smvT,

2
2(“ + T") s%’(“ + T") =1+ sin T,

2 2
(a =m/2),
eq. (8) becomes

4,
a—Tv a+Tr

2
G(y) = K[ :l cos’»yT, 9)

where K is an unimportant normalization constant.
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Several checks reveal the physical reasonableness of (9). When
A = B, we have no amplitude modulation and hence S(#) becomes a
constant-envelope, continuous-phase FM wave. In this case,

1 2
G(v) [(VT)2 — azjl ,
which is a well-known result.’

Notice that, in this case, because of phase continuity, the spectrum
behaves like 1/w" for large w. When A # B, the spectrum behaves only
as 1/w’, as w becomes large. In the extreme situation when A = 0, we
have 100-percent amplitude modulation and, in fact, no frequency
modulation. The only tone transmitted is at w. —wy, and S(¢) is an on-
off sine wave with frequency w. — wq. The spectrum of this wave is the
well-known (sin x/x)*. Put A = 0 in (9) and, with a = wsT = 7/2, obtain

sinfw — (we — wa))T'] :
G [ (@ — (@ — @a)T ] '

which is in agreement with physical intuition.

lll. THE SPECTRUM OF AM-ASYNCHRONOUS FSK

The baseband asynchronous FSK wave is constructed as follows. On
the interval [0, T'], pick a set of points at random and arrange them

such that
O=h<thi<tb<-:--«-tn=T. (10}

Define a set of functions

— 1» tﬂ = t = tn+1
8, (t =) = {0, otherwise, (11)
where A=ty — b, (12)

In terms of (10) and (11), construct the baseband signal X(#) as the
following time series

N=1
X(t) = E angd,.,(t - tn), (13)

n=0

where @ = (a0, @i, -+, an-1) is an arbitrary set of identically
distributed random variables.
The instantaneous phase y/(¢) in this case is
t
U(t) = wet + ﬁ-"df x(t')dt'+ 6
0
=y(t)+86, 0=t=T (14)
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The constants w. and ws have the same definition as in the previous
section.

As before, let b(x) be a nonnegative function and construct the AM-
asynchronous FM wave as follows:

N-1

S(t) = 3 blan)ga,(t — ta)e¥ O, (15)
n=0

Now define the truncated Fourier transform

T
Z(w, T) = j S(t)e ™ dt
0

N-1 e+
= ¢ E b(ar) expli(¥a(t) — wt)] dt

e

N-1 k k1
= g% -——-—b(,ak)[exp{i 2 AnAn} - exp{i 2_:0 AnAn}:| ’ (16)

B0 A n=0

where
An = Walln — W + we.

To proceed further, the magnitude squared of (16) must be averaged
with respect to the set of random vectors

—_

A =(AyAs, -+, An) and A =1, A oe, AN).

In (15), the A,’s are the intervals between transitions. We shall assume
that these intervals are independent and identically distributed. On
the other hand, the random variables A, which are linear functions of
the amplitudes a,, are not independent if only actual transitions are
considered. Clearly, for observable transitions a, # a.-1 and therefore
adjacent amplitudes cannot be independent.

This difficulty in the analysis has been overcome in Ref. 6 where
asynchronous FM without amplitude modulation is treated. Our prob-
lem here is a slight modification of the pure FM case, and identical
reasoning and techniques to those exhibited in that reference can be
used to obtain a closed-form formula for the power spectrum with
amplitude modulation. Since the algebra leading from (16) to the final
result is rather involved, we shall not repeat it here and will give only
the final formula.

Thus, for the special case where the number of ¢ points in a fixed
interval T' obeys the Poisson probability law with parameter v =
(1/T)Y% = average number of real transition per second, we get for the

power spectrum
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1
G(w) = lim — E | z(w, T) |2
TﬂncT

_[AT@ + wa) = BT(@ — wa)|*
(Tw)* + (T*@* - w3)*

(17)

where

and
b(1) = A, b(-1) = B.

Our experimental work is based on synchronous data, and formula
(17) is included only for completeness. Clearly, the spectrum for the
asynchronous data exhibits similar properties to that of the synchro-
nous case.

IV. NUMERICAL AND EXPERIMENTAL RESULTS

In Figs. 1 and 2, we have plotted several curves exhibiting the power
spectrum G(f) [eq. (9)] for different values of the parameter

o p=1
10 |- A p=075

20
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Fig. 1—Power spectral densities for FSk and AM-FSK.
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Fig. 2—Power spectral densities for AM-FSK.

p = A/B.T An FSK transmitter with amplitude modulation (AM-FSK)
has also been implemented. The measured power spectra for different
values of p are shown in Figs. 3 and 4. In the experiments, we have
chosen a carrier frequency of 250 Hz and a bit rate of 75 b/s. The
agreement between the analytical and experimental results is seen to
be excellent. For p = 1, we have a conventional binary FsK signal. From
Figs. 3 and 4, we see that when p decreases the amount of power in the
right sidelobes decreases at first and then increases again. At the same
time, the amount of power in the left sidelobes increases steadily but
at a slower rate. Quantitative results are given in Fig. 5, where we have
plotted the residual powers P, = {7t G(f) df and P = —{=fr G(f) df
in the right and left sidelobes, respectively, as a function of the
parameter p. For the two sets of curves, corresponding to two different
values of £T, the minimum value of the residual power in the right
lobes is obtained for a value of p approximately equal to 0.75. It is
possible to derive a closed-form expression for the value of p which
gives the minimum residual power as a function of f,r. The derivation
is given in the appendix. For f,r = 1, the optimum theoretical value of
p is 0.7623.

AM-FSK has potential applications in situations where the power in
the right or left lobes of a conventional FsK signal might be detrimental

t In the following we always assume p =< 1. The spectra corresponding to p > 1 are
simply the mirror images with respect to the carrier frequency of the spectra correspond-
ingtop <1
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to the proper functioning of a contiguous neighbor. Filter requirements
can also be eased if power in the interfering lobes can be reduced.
Clearly, methods other than amplitude modulation exist to reduce the
power in the lobes of an FsK signal. One obvious method is simply to
filter some of the power. However, in a digital environment, such an
approach can be rather costly. Typically, a good nonrecursive filter
requires about two orders of magnitude more computation time than
is required for the implementation of the amplitude modulation de-
scribed here. A second possibility to decrease the amount of interfer-
ence produced by the lobes of an FsK signal on another signal consists
in moving away the carrier frequency of the FsK signal. To investigate
this possiblity, we have computed the amount A f.- T by which the Fsk
spectrum should be shifted with respect to the AM-FSK spectrum in

P =075

Fig. 3—Measured power spectra of Fsk and aM-rsk (10-dB per division along the
vertical axis).
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p =025

p=0

Fig. 4—Measured power spectra of AM-FSK signals.

order to get the same residual power above the point fT' = 1.f The
results are shown in Fig. 6. In the neighborhood of the point p = 0.75,
the shifting Af. of the carrier frequency has to be close to 1/T to get
the same performance for the FSK and AM-FSK signals.

Finally, a third way to reduce the power in the sidelobes of the Fsk
signal consists in simply decreasing the total power of the signal. In
Fig. 6, the dashed curve shows by what amount the power of the Fsk
signal must be reduced with respect to the power of the AM-FSK signal
in order to have the same residual power beyond the point ;T = 1. It
can be seen that around the optimum point, near p = 0.75, this is
achieved when the power of the Fsk signal is about one-tenth the
power of the AM-FsK signal. Figure 7 gives a more detailed comparison

+ The point £;T = 1 corresponds to the center of the first lobe of the nonshifted signal.
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between the residual power for FSK and AM-FsK as a function of /T in
the case where p = 0.75.

APPENDIX
The Optimum Value of p

The residual power in the upper sidelobes of the power spectrum is
given by:

kY A B 2 )
P, = j, [a —5 v Tv] cos’Ty db, (18)

where a = 7/2 and wﬁ- a/T. The functional P, is minimized under the
power constraint
P =A? + B? = Constant. (19)

This variational problem can be solved in a straightforward manner
by introducing a Lagrange multiplier and evaluating
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Fig. 5—Residual power in the upper and lower side lobes of AM-FSK.
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Fig. 6—Curves showing by how much the FsK signal should be shifted or attenuated
in order to have the same residual power as AM-FSK.

aPu aP
A + )\aj =0 (20)
oP, oP
3B + }\EE = 0. (21)

Replacing P, and P by their expressions and letting p = A /B, we have

| p 1 2
+ +A0=0 22
f, a— Tu[a - Tv a+ ij|cos VT dv P (22)

| P 1 . _
Jj a+Tv[a—Tv+a+Tv:|COSVTdy-I_A—O'A (23)

44

Eliminating A between (22) and (23) and redefining some variables, we
get

K, - K;
2 _ _._.___1=0’ 24
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where

RESIDUAL POWER IN DECIBELS
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ig. 7—Residual power in the upper sidelobes of FSK and AM-Fsk.
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These integrals can be expressed in terms of tabulated sine and cosine
integrals.
After some algebra, we get

1 2V{T - T 1 . 1 .
Kl = ; lIl m + ; CI(ZPfT '.'T) ; CI(ZV{T + 'n')
2
Ko=———(1+ cos 2¢,T) — 2si2v T — m)
20 — 7
K; = 2 (1 + cos 2¢.T) — 2 si(2v T + m)
T 2w +m ‘ ‘ ’
where
si(z) = — f T dx
, X
and

ci(z) = — f COS X dx.
z X

Tables for the si(z) and ci(z) functions can be found in Ref. 7.

The optimal values of p are the roots of the quadratic equation (24).
The root that is positive and less than one is the solution to our
problem. It is given by

K — K \[Kz—Ka ?
popt_—w"‘ (—ﬁ]—) + 1. (25)
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