THE BELL SYSTEM
TECHNICAL JOURNAL

DEVOTED TO THE SCIENTIFIC AND ENGINEERING
ASPECTS OF ELECTRICAL COMMUNICATION

Volume 59 April 1980 Number 4

Copyright © 1980 American Telephone and Telegraph Company. Printed in U.S.A.

The Application of Mathematical Programming
to Loop Feeder Allocation

By T. R. ELKEN
(Manuscript received October 26, 1979)

Loop feeder allocation is the process of planning for economic use
of the spare capacity in a feeder route, which supplies a central office.
This paper presents a model of the feeder route for which a good
allocation of feeder pairs is derived using a combination of heuristic
and mathematical programming techniques. The model of the route
reflects the factors relevant to making allocation decisions: subscriber
growth, operating costs due to subscriber movement, transmission
requirements, relief, and rearrangement costs. The model is flexible
enough to handle allocation problems on routes with pair gain
systems as well as conventional resistance design cable routes with
multiple paths from some customers to the central office. An iterative
separable linear programming algorithm is used to find the feasible
allocation with the minimum expected operating expense. The need
to reserve existing pairs in the feeder route to connect to the pairs
placed in future relief jobs requires the solution of a multi-time period
model. To save on computation time, a heuristic algorithm is used to
solve the dynamic problem approximately.

I. INTRODUCTION

The loop network is divided into two components, distribution and
feeder. The distinction is basically economic. Distribution is the por-
tion of the network nearest to the customer. Each distribution cable
serves a small, well-defined geographical area, resulting in a low
ultimate demand for capacity. Thus, economies of scale imply that
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cables should be sized according to the ultimate demand. Distribution
cables are spliced into larger feeder cables that connect them to the
central office. Since the cross-sectional demand increase is consider-
ably greater, it becomes economically advantageous to add capacity
periodically rather than all at once.

An impending shortage of spare facilities (wire pairs) in some distri-
bution cable is usually due to a shortage of feeder pairs which are
spliced to that distribution cable. If similar scarcities of spare feeder
pairs appear throughout the geographic area fed by that cable, then
more feeder cable must be added to the route. However, if some areas
have an excess of spare pairs, splicing operations can sometimes be
performed to make those spare pairs available to the distribution cable
in need of them.

The economic management of existing facilities and planning for
new facilities in the loop network has come to be called feeder admin-
istration. This paper is concerned with the management of existing
facilities, also referred to as the allocation process.! It describes a
model of the physical feeder route and the craft activity required to
connect subscribers to the central office. This model is solvable by a
mathematical programming algorithm which is the basis of a computer
program being developed to help outside plant engineers perform the
feeder administration function.

The purpose of this algorithm is to suggest an allocation that will
move more of the available feeder capacity to those areas which are
growing more quickly than anticipated or are exhibiting high operating
expenses due to customers connecting to or disconnecting from the
network, or “churn.” In feeder routes experiencing substantial growth,
this movement or rearrangement of capacity has the primary benefit
of deferring the next facility (cable or pair gain system) placement. On
slowly growing routes for which the next facility placement is not an
immediate concern, the primary motivation for rearrangements is to
reduce the operating expenses due to churn. To aid in making decisions
for both types of routes, it was decided that the theoretical allocation
should be one which minimizes route operating expenses subject to
some constraints. The constraints should insure that:

(i) The allocation satisfies resistance design requirements.

(ii) The available feeder capacity is not exceeded.

(iii) Demand is routed along the correct path back to the central
office (co).

(iv) Some facilities remain unallocated initially so that they may be
allocated in conjunction with future feeder cable placements.

Once the program has suggested a theoretical allocation, the engi-
neer investigates the feasibility and cost of the rearrangements neces-
sary to effect the proposed allocations. If the rearrangements are
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feasible, the engineer interactively describes the rearrangements and
the costs associated with them to the feeder administration program.
Then, using the cost models of Ref. 2, the economic impact of the
rearrangements is evaluated as described in Ref. 3. The program was
designed to be interactive because factors involved in the cost of
rearrangements are very difficult to model and must be studied by the
engineer.

A mathematical program with a convex objective function and linear
constraints can be solved to provide a theoretical allocation which
fulfills the properties mentioned above. The reader who is more
interested in mathematical programming than feeder route modeling
can get a quick introduction to the model by reading Appendix A and
moving directly to Section IV. Section II discusses the constraints and
Section III presents the objective function for the model. An adapta-
tion of separable linear programming techniques for the solution of
such a convex program will be presented in Section IV. When several
facility placements (relief jobs) are anticipated in the next few years,
it may be unwise to suggest a rearrangement which will have to be
reversed in a short time in order to splice up the relief pairs to the
central office. T'o prevent such short-sighted actions, an estimate must
be made of what configuration the pairs in the feeder route will have
after the relief job. In Section V, a multi-time-period model is defined
which has constraints preventing the temporary allocation of pairs to
an allocation area. Section VI describes how to calculate the number
of pairs reserved between the central office and future cable place-
ments.

Il. THE FEEDER ROUTE PHYSICAL MODEL
2.1 Definitions

To plan for the economic expansion of capacity, the feeder route is
divided into feeder sections, which include all the cable and conduit in
a cross section between two points along the route. A feeder section is
defined so that it has a nearly uniform cross-sectional capacity. The
Exchange Feeder Route Analysis Program (EFRAP) is used to deter-
mine the economical size and nominal time for cable placements in
each section of the route.*

An EFRAP schematic is a representation of the feeder route in the
form of a graph. Each section has an associated load area which is the
geographic area served by lateral cables which enter the feeder route
in a particular section. These are sometimes called EFRAP load areas
or ELAS. Figure 1 illustrates the EFRAP schematic and an ELA. The
EFRAP load area is the unit for forecasting demand in the feeder route.
If the loops feeding an ELA follow two or more paths back to the
central office, the engineer must predict the future demand which will
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Fig. 1—A feeder route schematic with an outline of an EFRAP load area (ELA).

be placed upon each path from such load areas. More than one path
in a route can occur when there are circuits or loops in the feeder route
schematic. The demand routing decision is part of the long-range
planning process and may be considered fixed for the purposes of
allocation. The allocation process is part of short-term planning.

Pair gain systems are electronic devices which use multiplexing,
either analog or digital, and switching to allow a large number, N, lines
to feed customers from a remote terminal (RT) which uses only n
trunks to connect to the central office, where N > n. Pair gain systems
can be modeled using the multiple-path concept. The availability of
this type of capacity for allocation is represented by an alternate path
consisting of one section between the RT site and the central office.

The use of physical cable pairs between the RT site and the central
office is modeled by creating another ELA at the location of the RT site
which demands n pairs for each pair gain system placed. Figure 2 is an
example of this model when the SLC™-96 systems are in place at an
RT site.

The portion of an ELA fed by a single path is called a computational
unit (cu). In the mathematical model below, a variable x;, i =1, - -+,
NcvU is defined for the number of pairs allocated to each cu, where
NCU is the number of computational units.

Actually, some pairs may have appearances in two different ELAS, so
it is difficult to define the current number of pairs available in an ELA,
let alone define a future allocation. The allocation area is a geographic
area with between 500 and 2000 ultimate available pairs and is defined
so that less than 10 percent of its complements (groups of pairs, usually
in multiples of 25) appear in another allocation area. The allocation
area allocations will be represented by the variables, z;, i = 1, -+,
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Fig. 2—If two SLC™-96 systems (concentrated version) were placed at the RT site,
section c? would have a capacity of 192 pairs and ELA 5 would require 12 pairs in sections
1, 2, and 3.

NAA, where NAA is the number of allocation areas and allocation area
is made up of a number of computational units indexed by the set of
E;. Thus the equation

zi= Y xj, =1, ..., NAA (1)

JeE;

equates the allocation of an AA to the sum of allocations to the cus
which comprise the AA. Define z = (21, 2o, + - -, 2nas) to be the vector
of AA allocations and x = (x1, X2, - - -, Zncu) the vector of cU allocations.
Then the NAA equations (1) can be written in matrix form z = Dx
where D is the appropriate 0-1 matrix. The cu variables are intended
to ensure that the allocation to an AA is feasible and the AA variables
are used in cost functions which estimate the influence of the number
of pairs allocated to an allocation area upon the operating expenses.

2.2 The section constraints

To ensure that allocation vector z = (z;,i =1, --., NAA) is feasible,
the cable in the feeder sections must be segregated by gauge (26, 24,
22, or 19 gauge), and the demand must be accumulated by gauge.

The minimum two-gauge resistance design (an overview by Long®
defines this and other loop terminology) for each cu determines which
gauge wire it requires in the feeder sections between it and the central
office. Overgauging is also allowed so that coarser gauges than the
required gauge can be used to serve a cu. Consider a feeder section
which contains only 26- and 24-gauge facilities. In general terms, the
constraints for section can be represented as

Dyy(t) < 524
Dos(t) + Dog(t) < s24 + 526
O0sst=T,
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where D,(t) is the demand for gauge g facilities in the section at time
¢, sg is the number of gauge g pairs available during the interval [0, T']
and T is the time until the next capacity expansion. To define these
inequalities in terms of the allocations to cU’s, let G4 be the set of
indices i such that x; requires 24-gauge facilities. In the section under
consideration, Gy is similarly defined. Also, let x: be the maximum
number of pairs demanded in cu i during the interval [0, T']. Then the
constraints for the section in question are

T X< su @)
ieGyy
E xi + 2 Xi < So4 + 826 (3)
ieGy, ieGog
Xi = Xi i€ Gy or G (4)

The form of the constraints is analogous when three or four gauges are
present in a section. Appendix A gives a simple feeder route and the
resulting system of constraints when only one gauge of cable is present.

For simplicity of notation, we now refer to cable gauges as 1, 2, 3, 4
rather than 19, 22, 24, and 26. Define ¢, = }f-1 s;1, the pairs available
in section / of gauge g or coarser. If constraints similar to (2), (3), and
(4) are constructed for each section, the total set of inequalities will
define the set of feasible allocations for the feeder route. Often sections
will not have every gauge of capacity or demand, so a smaller number
of constraints may define the feasible set. Let S be the set of pairs (g,
1) which correspond to an inequality in the model and ¢ = (¢|(g, 1)
¢ S) be the vector of capacities. Then if the coefficients of the variables
%i,i=1, ---, NCU are in the form of a 0-1 matrix, C, the constraint set
can be written as

Cx<t (5)
=X (6)

Even though C is a 0-1 matrix, it is not totally unimodular.* The
nature of the multipath routes makes it possible to construct examples
with nonunimodular submatrices. An example of a feeder route with
this property is in Appendix B. This means that it is not possible to
transform the problem into a network flow problem.®

Ill. THE ALLOCATION AREA OPERATING COST MODEL

The modeling of operating costs in the loop network has been
discussed by Koontz.2 Those models were quite detailed because they
aim to predict the economic effect of a particular sequence of network

* A matrix is totally unimodular if and only if each of its square submatrices has a
determinant with value 0 or £1.
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changes (rearrangements, conversion to the Serving Area Concept or
SAC, etc.) as accurately as possible. The purpose of this allocation
model is to choose the allocation for the route which has the lowest
total operating cost. Since these cost functions must be evaluated quite
a few times during the course of the algorithm below, a simplification
of the models developed in Ref. 2 is used. The sum of these operating
cost functions serve as the objective function for the mathematical
program defined below.

The operating expenses are divided among those incurred in the
Multiple Outside Plant (MoP) and those incurred in the sac areas. To
predict the expenses in the MoOP portion of the AA when pairs are
available, the following exponential approximation model is used:?

(!
Cuor(w) = (1 — 7) j AiveCeri-Flw, t)%e™ dt,
4]

where

o = the fraction of the AA which is interfaced,
A = the number of inward movements (arrivals) per year for
this AA,
Cark = the cost of clearing a blockage in this Aa,
F(w, t) = fill in the AA at time ¢ given that « pairs are available
= (assigned pairs at time t)/w,

a = the average serving terminal size in the AA, and
r = the cost of money.

The parameters for this cost model can be obtained from the LATIS
(Loop Activity Tracking Information System)’ program. The param-
eters are defined so that the initial operating expenses, at least, will
correspond closely to the recent history.

The expenses in the portion of the aa served by sac are the present
worth of the expenses due to BcTs (break connect-through) and rTCs
(reterminated connections). For definitions of these operations, see
Ref. 2.

T,
Csac(w) = WDJ AIN(Caer + CHTC/(]- + r1o)).
0

F(w, t)kssce™ dt,
where

Crer = cost of a BCT
Crrc = cost of an RTC
T, = the mean vacancy time for premises in the Aa
KSAC = a positive parameter chosen so that F(w, £)*5*¢ approximates
the probability of a BcT.
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Since several of the parameters above are indexed by allocation area,
we can write the expected present worth of operating costs for AA i as

f[(‘-\?) = CMOP(W) + ngc((.d).

It is possible to factor out the terms involving w and express the rest
of the terms as a constant and write

filw) = Biw™ + yiw ™84,

Since both a; and KSAcC are positive, it is clear that f; is a convex
decreasing function. This cost function will result in very high oper-
ating costs when the maximum number of pairs demanded gets close
to w, the number of pairs allocated, because F(w, ¢)* will be close to 1
implying that nearly every inward order results in a blockage. A high
churn area will have a large value for Azv, the inward movement rate,
and, hence, may have high operating costs even if the growth rate is
low. Thus a search for the allocation which minimizes the sum of all
the operating cost functions, fi(w), results in an equitable allocation of
pairs to both growing and nongrowing areas. This feature is important
for many urban feeder routes in the Bell System that have little net
growth but high operating expenses due to churn.

IV. THE OPTIMIZATION MODEL

In this section, we assume that the interval [0, T'] during which no
capacity expansions occur is long enough that the planning engineer is
not really concerned with the effect that the allocation during the
interval has upon the rearrangement costs after T. This is often the
case in low growth routes in which the next cable placement is not
expected in the next five years or so. The next section will discuss the
case in which one or more cable placements are being planned shortly
and some pairs should be held in the feeder route so that the planned
relief cable can be spliced to the central office without undue expense.

The optimization problem for the single period model is

NAA

Minimize ¥ filz)
i=1
subject to Cx<t
Dx—-—2z=0
x<ux. (7

This problem has a nonlinear, convex objective function and linear
constraints. A number of algorithms have been developed that solve
problems with this structure; the generalized reduced gradient method
of Lasdon et al® and the gradient projection algorithm of Rosen’ are
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two well-known examples. However, since the objective is also sepa-
rable (it is a sum of single variable functions), the techniques of
separable linear programming can be employed. These techniques
convert the nonlinear objective function into a linear one by construct-
ing piecewise linear approximations to the single variable functions.
Computational experiments by Collins et al' indicate that the sepa-
rable programming approach is efficient and robust when compared to
some of the leading nonlinear programming algorithms. Linear pro-
gramming codes are also more readily available than nonlinear codes.
For these reasons, the separable linear programming approach was
selected for these allocation problems.

There are two methods for representing convex functions as piece-
wise linear functions for the purposes of separable linear programming.
The technique of lambda-separable programming (see Dantzig,'' p.
483) was used in a preliminary version of the allocation algorithm.
However, to eliminate NAA equations from the LP (linear programming)
model, the method of delta-separable programming can be used (Ref.
10, p. 485). With this technique, the slopes for the linear segments are
the cost coefficients, and the variables are the number of pairs which
are used at the various constant slope intervals. Figure 3 has an
example:

fi(zi) = do + diviy + di2Uia + disvis + disvis,
where
zi=L;+ viy + iz + Vi3 + Uiy
O=swvy=<vy, Jj=1,234.

L; is defined as the lowest possible allocation for AA i; hence, it is equal
to Y e, x;. The upper bounds 0, j =1, +++, 4 are defined so that L;
+ Y/, b; = U,, the upper bound on pairs which can be allocated to
Aa i. Since the interval of possible allocations [L;, U;] must be finite,
we set U; = 2.L; because this upper bound should rarely be attained
in practice.

The problem of choosing the correct number of intervals to define
the piecewise linear approximation is a difficult one. To get a reason-
ably accurate approximation, one would like to define many intervals,
but since this strategy increases both storage and computational
requirements, it is not recommended. Instead, a dynamic approach is
chosen in which only four intervals of equal widths are chosen initially.
But after the optimal solution is found with the coarse approximation,
the two middle intervals with length ToL are placed on each side of 3;,
the optimal solution (typical values for TOL are 10 or 25 pairs). The
method is specified in more detail below. First, we write the linear
program which is to be solved.
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Fig. 3—Example of delta-separable programming.

NELAC 4
Minimize Z Z dijvij
i=1 j=1

subject to Cx=t

4
Y xx=Li+ Y vy, i=1,.--,NAA
keE; Jj=1

_ i=1,+++,NAA

i=1, .-+, NCU, 0=v;=<vy j=1, .-, 4 (8)

Note that the variable z; has been omitted, but its two representations
are equated: Yz, xx and L; + ¥ /-1 vy. The constraint z; < U, is
maintained because the choice of 0, j =1, - - -, 4 implies that U; = L;
+ Y4, ;. The following alogrithm solves the convex program (7).

0. wo:= Li.

Repeat forj = 1, 4:
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wj:=L;+ j/4(U; - L;)
ﬁ.‘j =W T Wi
dij == (filw) — filwj-1))/0y.
1. Solve the linear program (8).
Determine the “optimal” AA allocations Z;,i =1, .. -, NAA.
2. Optimality test—Check to see if there is a breakpoint (wp, +- -,
w4) in the interval [2; — TOL, 2;) and the interval (2;, Z; + ToL].
If this is true for i = 1, ..., NAA, STOP.
Otherwise, for each i such that the check fails, alter the break-
points w;, w2, and ws so that
we = é,‘
w; := max(Z; — TOL, (wo + w2)/2)
wsz = min(Z; + TOL, (w: + wy)/2).
Repeat for j = 1, 4;
5.'_,' =W Wi
dij = (filw;) = fwj1)) /0.
Return to Step 1.

The optimality test is a check to see whether the approximation to
f: is good in the neighborhood of Z;. If the test fails, the fixup insures
that the test will not fail on the next iteration if the new optimal
solution Z; is in the open interval (Z; —ToL, Z; + TOL).

R. R. Meyer" provides a proof that this algorithm for solving (7) by
dynamically changing the breakpoints for the linear approximations
does result in an “optimal” (actually, each value z; is within +ToL of
being optimal) solution to (7). The time necessary to solve the linear
programs following the first iteration should be quite small because
the LP-optimal solution (%, Z) can be used as a starting point for the
next problem.

V. THE DYNAMIC MODEL

The static model described above is quite adequate when the next
relief job is far away or the next relief job reinforces the central office
section. But when the next cable placement needs to be connected to
the central office by pairs in intervening sections, a judgment must be
made as to whether any spare pairs in those sections should be held in
the feeder or spliced to an allocation area to reduce operating expenses.
Figure 4 depicts the situation under consideration. Should the unallo-
cated pairs in section 1101 be committed to AA 1101 now and cut and
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Fig. 4—Should the unallocated pairs be committed to AA 1101 now and cut and
spliced to the relief cable one year from now?

spliced to the relief cable a year from now? In general, the answer is
“No.”

Although the primary objective is to reduce operating expenses and
to defer relief, this must not be done at the expense of generating too
many recommitments. In order to consider the effects that recommit-
ments performed before the first facility placement have upon later
recommitments, the study period is extended to the time of the fourth
facility placement or the first facility placement which reinforces the
central office section, whichever happens first. The allocation module
assumes that rearrangements (changes in the Aa allocations) are done
at the current time and the time of each facility placement. To reduce
the number of planned recommitments, we continue to make the
assumption, implicit in the load balance worksheet of Ref. 10, that no
commitments will be made to an AA which are planned for another Aa
at a later date. Deviations from the current forecast may require
recommitments later, but the above assumption should reduce the
number of recommitments. This assumption implies that the alloca-
tions to AAs will be monotonically nondecreasing over time and, hence,
sufficient pairs will remain unallocated in the sections on the central
office side of future facility placements.

Thus, the model will be concerned with M(<3) facility placements
at times T4, - - -, T which separate M + 1 time intervals called relief
cycles. The end of relief cycle M + 1, T is the time of facility
exhaust following the placement at time T». Since we must compute
an allocation for each relief cycle, let z” be the allocation to the AAs
during relief cycle p, p = 1, ---, M + 1. Similarly, x”, xP, L%, U, d¥,
v%, and 0% are defined for relief cycle p. The vector t! is the initial
facilities available in the feeder route. The user inputs subsequent
facility additions so that one can construct the capacity vectors
¢2, ..., tY* to reflect those additions.

To represent the assumption that the allocations to AAs are nonde-
creasing over time, the inequalities

<2k, p=1,....M (9)
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are added to the model. After the solution of the dynamic model
described below, certain differences z?*' — 2? are accumulated to
calculate the number of pairs which should remain unallocated. This
calculation is described in the following section.

The dynamic model is just a repetition of the constraints (7) for each
relief cycle with the appropriate parameters for each relief cycle. Only
the inequalities (9) link one relief cycle to the next.

The dynamic model is
M+1 NaA

Minimize X X fizh)

p=1 i=1

subject to CxP < 1P,

X’ = x”,
Dx? = z°, p=1..-, M+1, and
<2’ p=1,..., M. (10)

In considering algorithms to solve such a problem, the maximum
size problem which can be expected must be estimated. Experience
with EFRAP indicates that the following should be the maximum
dimensions that the algorithm will need to solve:

Number of sections = 200.

Number of allocation areas = 50.
Number of computational units = 600.
Number of relief cycles = 4.

Number of section constraints = 500.

Thus the number of variables in the problem could be 4.600 + 4.50
= 2600 and the number of constraints could be 4(500 + 50) + 3.50 =
2350. Lower and upper bounds on variables are not counted as con-
straints because they do not add to computation time. Such a problem
could be solved by mathematical programming techniques, but it
would be quite expensive. The problem’s constraint matrix has a
staircase structure (see Fig. 5) which is typical of dynamic planning
problems. Specialized linear programming techniques have been de-
veloped to handle these problems,'®'* but the time and storage to
solve such a problem would be unacceptable for an engineering plan-
ning program. For this reason, an algorithm is presented which results
in a feasible, but not a necessarily optimal, solution to problem (10).
The algorithm decomposes the problem into M + 1 smaller problems
to be solved rather than one large one. For this algorithm to work, we
assume that L? < L?*! In effect, we are assuming that there is no
negative growth in an allocation area.
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Fig. 5—The staircase mathematical programming structure exhibited by the dynamic
allocation model.

5.1 Algorithm 2

0. Set p = M + 1, let UM*" be an upper bound vector for M+,
UM+1 = 2'LM+].
1. Solve

Minimize Y fA(=zh)
i=1

subject to CxP<t?
Dx? = zP
xP < xP, L? < zP < UP,

using Algorithm 1.
Let the resulting optimal solution be (X7, 2”).

2. If p=1, STOP.

Otherwise, let UP™':= 2’ andp:=p — 1L
Return to Step 1.

This algorithm solves the M + 1 subproblems beginning with the
one farthest away in time. The only interaction between subproblems
is the fact that 77*!, the optimal ELAc allocation for problem p + 1
becomes an upper bound for z* on the next iteration. This algorithm
does not necessarily provide an optimal solution to problem (10), but
we have reason to believe that it is nearly optimal. For Aas i such that
3P+ = 27 ie., z¢ achieves its upper bound, it may be economic to
increase the allocation to both 22*" and 7. This is true because when
2?*! was being set at the optimal level for relief cycle p + 1, no
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recognition was made that 27*' was also influencing the allocation

during relief cycle p (and perhaps earlier relief cycles as well). The
reason that the decomposition of the problem in Algorithm 2 probably
does not hurt the objective function too much is that, if 22" is an
optimal allocation during relief cycle p + 1, it is probably a good
allocation for cycles 1, - - -, p as well. This is true because the assump-
tion that the AA growth rates are nonnegative implies that the fill
during these cycles will be less than or equal to the fill during relief
cyclep + 1.

Algorithm 2 begins by solving the subproblems in reverse order,
starting with relief cycle M + 1. An intuitive reason for this procedure
is that feeder administration attempts to transform the feeder network
to its future configuration as economically as possible. A first step in
that process is to estimate the future allocations so that a minimal
number of recommitments need be performed to attain the ultimate
configuration.

The practical reason for solving the subproblems in reverse chron-
ological order is that it works that way. It is easy to show that, if
sufficient capacity has been added so that each subproblem is feasible
when solved without upper bounds on z£, then the subproblems to be
solved during Step 1 of Algorithm 2 are also feasible.

Suppose the most obvious algorithm for solving the subproblems in
their natural order were constructed. This algorithm must maintain
the constraints z2? < z"*, p=1, ..., M,and L’ < z’, p = 1, .

M + 1. The following algorithm satisfies those requirements.

5.2 Algorithm 2'
0. Letp:=1and U':=2.L"
1’. Same as in Algorithm 2.
2. If p=M+ 1, STOP.
Otherwise, let L?*' := max(?, L?*"), i =1, ..., NAA, UP*! =
2.L”*' andp:=p+ 1.
Return to Step 1.

The following simple problem shows that Algorithm 2’ can result in
infeasible subproblems even when the original subproblems are feasi-
ble. In this example, AAs are identical to cus.

Subproblem 1: Minimize (zD)7'+ (22)"
subject to zi+ 23 <500
21 <150

L}
L}

n.— ..-._-

200
100

IA ﬂ\
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Subproblem 2: Minimize () + (23)7!

subject to 2% + 23 =< 500

Following Algorithm 2’, the optimal solution to Subproblem 1 is Zl =
350 and 3} = 150. The new lower bounds for Subproblem 2 are

L} := max(2i, L}) = max(350, 275) = 350
L3 := max(23, L}) = max(150, 175) = 175.

The resulting subproblem to be solved in Step 1 is infeasible because
the inequalities

=< 500
35
17

zi +

N

N
v
S

2
2
2
1
2
2

N
v
=

have no solution.

VI. CALCULATION OF PAIRS ALLOCATED TO SECTIONS

After the allocations have been determined for relief cycles 1, - -+,
M + 1, it is quite easy to calculate the number of pairs that should be
allocated to sections on the central office side of the sections which
are receiving additional facilities. Suppose we are considering the pairs
to be held for facility placement p < M. First, the routing of demand
from cus to the co determines which section is on the co side of a
particular relief job. Call this the reserve section. Then each compu-
tational unit which is fed by the reserve section is examined to
determine the number and type of additional pairs it receives as a
result of the facility placement. By “type of pairs” we mean the gauge
and break section and path back to the co required of a particular cu.
The break section is the section between the reserve section and the
co in which a two-gauge loop changes from the coarser to the finer
gauge wire; the fine gauge portion is usually closer to the co. The total
number of pairs by “type” which are held unallocated in the reserve
section is calculated and will be displayed on an output report of the
feeder administration program. Figures 6 and 7 depict an example of
this process of analyzing the pairs to be allocated to sections.

The example route has nine sections and two paths. Relief cable is
to be placed in sections 1205, 1208, 1209. The route must be examined
to determine what additional allocations were made possible by the
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CENTRAL
OFFICE
HE

SECTIONS TO BE
/1177717 RelieveD AT TIME T,

THE SECTION ALLOCATIONS DERIVED
FROM THESE CU ALLOCATIONS ARE
ON THE NEXT FIGURE

1208 IS FED BY PATH 1
x; 1 ISTHE ALLOCATION FOR THE COMPUTATIONAL UNIT (CU)

CORRESPONDING TO ELA 1209 PATH 1
";)2 CORRESPONDS TO ELA 1209 PATH 2

Fig. 6—Example of analyzing pairs to be allocated to sections.

capacity expansions. For example, the relief job in 1205 allows the
allocation to ELA 1205 to increase by 25 pairs: x — xi = 475 — 450.
Since section 1205 is in path 2, only increased allocations to compu-
tational units which are fed by path 2 are added to the section
allocation for 1204. Thus, the increase of 50 pairs for the portion of
ELA 1209 fed by path 2 is credited to 1204 while the increase of 25
pairs for ELA 1209 path 1 is not. Figure 7 shows the results of the
calculation.

Vil. CONCLUSION

An algorithm for computing the allocation of pair groups to alloca-
tion areas for the reduction of feeder route operating expenses has
been described. The route model is quite general. It allows two-gauge
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CENTRAL
OFFICE PAIRS ALLOCATED TO SECTION

1204 = (150 — 100) + {900 — 825} +
(475 — 450) = 150

1
120 PAIRS ALLOCATED TO SECTION

SECTION ALLOCATION 1207 = {125 — 100) + (350 — 300) = 75
1S 150 PAIRS

IN 1204

SECTION ALLOCATION IS
75 PAIRS IN 1207

1208 1209

Fig. 7—Pairs reserved in the section(s) on the central office side of the cable placement
to energize the relief pairs.

resistance design with overgauging. Since the model allows feeder
routes with multiple paths, routes with pair gain systems can be
modeled by creating an alternate path for each remote terminal site.
The driving force of the allocation algorithm is to minimize operating
expenses while reserving enough pairs in certain sections to feed future
relief jobs. Thus, a heuristic algorithm which uses a linear program-
ming code as a subroutine is designed for solving a multi-time-period
nonlinear optimization problem. This promises to be a versatile and
efficient algorithm for solving the feeder route allocation problem.
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APPENDIX A

The feeder route allocation problem is described below with the
aid of a simple example. The geographic area which a feeder route
serves is divided into allocation areas, or aas (the number of Aas is
NAA), whose number of pairs allocated, z;, determine the operating
cost, fi(z;). The symbol f; is a convex decreasing function of the form
biz;i“. The objective function for the example depicted in Fig. 8 is

4
Minimize Y. fi(z). (11)
i=1

Feeder sections are linear segments of the cable route with uniform
numbers of wire pairs along their length. They are the edges between
nodes in Fig. 8. The capacity of these sections is the scarce commodity
in this problem. From the objective function (11), it is clear that the
larger the allocation to each Aa, the lower the objective function value
will be. However, the allocation of pairs (z), 22, 23, 24) must not use
more pairs than are available in the feeder sections.

An allocation area is fed by pairs which may not all pass through
the same number of sections or follow the same path back to the
central office. Thus we subdivide the AA into a smaller unit of demand,
the computational unit. A computation unit, cu, is an area served by

FEEDER 2
SECTION
NUMBER
\
‘\
CENTRAL 1 A 3
OFFICE e
/z -1 """ I "‘\\
/ \
/ \
| cu1 cu3 |
\ i
No AA1 o

Fig. 8—Example of feeder route allocation problem.
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wire pairs which follow a unique path back to the central office. Call
the allocation to the NcU computational units xi, - -+, xs. From the
figure, the following relationships are derived:

21=x1+ Xx3

22 = X2

23 = X4+ X5

24 = X¢ + X7 + Xs. (12)

Forecasts of expected growth are subdivided to the cu level. The
allocations derived from this model must satisfy the growth forecast
over the interval [0, T'] where T is the time of the next feeder capacity
expansion. Let x; be the maximum expected demand in cu i during [0,
T]. Then the lower bound constraints

Xi=Xx, i=1,...,8 (13)

will insure that each cu is allocated enough pairs to meet demand.

The sum of all the cus whose pairs pass through a particular section
7 must not exceed the capacity of the section s;. Thus, the following
section constraints are imposed.

N+ X+ Xatxa+tx+rxst+tartrss

X2 + x5 + x6 + X7 =8
X3 + X4 + Xsg = 83
X4 + Xg = 84
Xs + X6 + X7 = 85
X7 + X3 = Ss. (14)

The routing of the pairs serving a particular cu can be derived by
examining the constraints (14). The pairs serving cu 5, for example,
pass through sections 5, 2, and 1 because x; appears in the constraints
for sections 5, 2, and 1.

The objective function (11) and the constraints (12), (13), and (14)
define the mathematical program whose solution is discussed in Sec-

tion IV.

APPENDIX B

An example is presented to show that the constraint matrix for the
feeder route model presented in this paper need not be totally uni-
modular. This example route has only five sections and is concerned
with three demand points or computational units (see Fig. 9).
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1201

1202

CENTRAL 1203
OFFICE

1204 1205
cu3

Fig. 9—Feeder route model.

The routing of demand for the computational units is

cu 1: Sections 1202, 1201
cu 2: Sections 1203, 1202, 1204
cU 3: Sections 1203, 1205, 1201.

The gauge requirement for each cu is 26 gauge, so no multiple-gauge
considerations are relevant.
The constraints for sections 1201, 1203, and 1205 are

Section x1 x2 a3

1201 1 0 1 =4
1202 1 1 0 =i,
1203 0 1 1 =i
1204 0 1 0 =i
1205 0 0 1 =<¢t.

The square submatrix created by ignoring the last two rows has a
determinant of 2. Thus, the constraint matrix is not totally unimodular.
It is clear from this example that the fixed routing of demand prevents
the use of network flow algorithms, with their efficiencies of speed and
storage, for the solution of the allocation subproblems.
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