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Let {X,} be a discrete-time stationary moving-average process
having the representation X, = Y A;Y,_; where the real-valued
process {Y,} has a well-defined entropy and spectrum. Let ¢* denote
the smallest mean-squared error of any estimate of X, based on
observations of Xn-1, X2, « + -, Xu_s, and let €}, be the corresponding
least mean-squared error when the estimator is linear in the k
observations. We establish an inequality of the form €22 > G(Y)e*2,
where G(Y) < 1 depends only on the entropy and spectrum of {Y,).
We also obtain explicit formulas for €}* and e}i. and compare these
quantities graphically when M = 2 and the {Y,)} are i.i.d. variates
with one of several different distributions. The best estimators are
quite complicated but are frequently considerably better than the best
linear ones. This extends a result of M. Kanter.

I. INTRODUCTION

This paper is concerned with the problem of estimating the current
value, X, of a discrete-time stationary stochastic process given the &
previous values, X,,_, X,z :-+, X, s Denote such an estimator, or
predictor, by

Xr! = fk(Xn-lg anzg Yy Xn—k)- (1)
We adopt the mean-squared error
& = E[X, - X,]* (2)

as a figure of merit for the estimator f;. Throughout the paper, we
assume EX, =0,n =0, £1, +2, ...,

It is well known, and easy to show, that no estimator has smaller
mean-squared error than

f:(anh try, Xn—k) = E(Xn IXn—ly ey Xn—k), (3)
the conditional expectation of X, given X,_,, -« -, X,_s. We denote the

367



mean-squared error of this best estimator by
et? = E[X, — ] = E[X» — E(Xa| Xa-1, -+, Xo-n) 1 (4)

While the best estimator is simply described by (3), in practice it is
frequently impossible to calculate it explicitly for processes of interest.
The simpler class of linear estimators

k
fklin(X =1y ** %y Xn—k) = E ijXn—j (5)
1

has been much studied in the past.! It is well known how to choose the
¢’s to obtain the smallest mean-squared error within this class of
predictors, and this least mean-squared error is given by the simple
formula

€titn = Di+1/Da, (6)

where D is the I X [ determinant whose entry in the ith row and jth
column is

pi-j = E[X: - EXi][X; — EX}] (7

i,j=1,2, +-+, L. The optimizing c’s are also given by determinants
involving the p;—, so that all quantities of interest for the optimal linear
predictor are specified by the second-order statistics of the process and
are generally easy to compute explicitly. For this reason, if for no
other, the optimal linear estimator has been much studied and used in
practice.

How does €!? compare with eff,? How much does nonlinear esti-
mation buy? The answer, of course, depends on the process {X,}. On
one hand, for Gaussian processes €}> = e}, so nothing is gained; on
the other, one can construct processes for which e, /et is arbitrarily
large.

In this paper we study predictors for some moving-average processes
of the form

M
Xo=Y AiY . (8)
Jj=0
These processes are often used as models in applications. When the
Y’s are identically distributed independent random variables, the X
process is sometimes called “filtered white noise.” We establish for (8)
a quite general bound of the form

€’ = G(Y ek, (9

where the constant G(Y) < 1 depends only on the spectrum and
entropy of the Y process and is independent of the A’s of eq. (8). When
the Y’s are independent identically distributed (iid.) random vari-
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ables, G(Y) is particularly simple to compute. Our bound generalizes
a similar one found by Kanter.’

We are able to find f} and €£® explicitly for several special cases of
(8). We treat in complete detail the case

Xn =AY, + A Y, (10)

where the Y’s are either i.i.d. with a uniform distribution on an interval
or are ii.d. with a one-sided exponential distribution. Curves are
presented in these cases that compare €;? with e}, for various values
of the parameters involved. It is interesting to note here that even for
k =1, €* < efii, for a wide range of parameter values. The explicit
results are compared with the bounds already mentioned.

Another special case of (10) is worked out in detail. Here Ao = 1, A,
= *1 and the Y, are i.i.d. with the discrete distribution Pr{Y, = 1] =
p=1-PrY,=-1].

We are also able to exhibit the best predictor when

M
X,=Y a'Yu (11)
j=0
and the Y’s are ii.d. uniform or have a one-sided exponential distri-
bution. The best predictors are surprisingly complicated here. We
obtained an expression for the least error, €42, but it is not included as
it is apparently useless even for numerical calculation.
Our results are presented in detail in the next section. Derivations,
proofs, and further discussion of general theory are relegated to the
succeeding sections.

Il. RESULTS
Let
X.=Y,—aY,,, EY,=0, EY:=1, (12)
n =0, £1, #2, ... where the Y’s are independent and identically
distributed random variables. Then
1+ a? Jj=0
p;=EX; X, ;= —-a, [Jl=1 (13)
0, [7]>1

and the determinant D, of (6) has value (1 — a***")/(1 — a? so that
the figure of merit for the best linear predictor is

1 - a** 1, |la|=1
2 - 3 —_
€Xiin 1 — a2+ k:’: 112, lal >1, (14)

a result that does not depend on the distribution of Y,. From (14) we
see that the behavior of the best linear predictor as £ — o depends
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markedly on whether or not |a| < 1. Since, from (12), Y. has unit
variance and is independent of Y,_1, Xn-1, Xn-2, «++, it follows that
et? = var Y, = 1 for k = 1. Thus, from (14) and the fact that always

ef? < eil,, we have

et.=1=¢? |a|=L (15)

When Y, in (12) has the uniform distribution with density

1
py(y) =| 2y lyI=v
0, Iy|>Y
y= V3, (16)

we find that
E(Xn|Xn-1, +++y Xn) = fE (X1, Xnz, + -+, Xo-i; @)

Q

o [max (_'Y: Ulr UZ! tty Uk)

M

+ min(y, Vi, Va, +++, Vi)], a=0, (17

where

U=Y a X, — a,

=1

i
Vi= 3 o’ X+ a',

=1
i=12 ...,k (18)
When a = —b <0,
EX,|Xn-1, +++, Xn-t)
= (X1, Xn-g, —Xn-3, -+, (=1 Xn-s b). (19)
For all values of @, the mean-squared error of this best predictor is

1 +
ef2=1+6azjduu(l u)[[( ”) (20)

=i |al

where (x)* = x if x = 0 and is zero otherwise. This can be written in
the alternative form

1 + 6a***Py(| a|), la|=1

1
1+6012PJ; (m), |a|21
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where the polynomial P,(x) of degree (‘g) in x is given explicitly by

E(=D)x U+ 1)/2 11— gk

1
Pulx) = 6 + El I+ 2)(+3) ,-1.11 1—x/ (22)
Another form, more suitable for computation, is
k b; xk-H — et
Pi(x) =Y 4 bo=1, b= b (23)

o (J+2)(j+3) 1—x*

Figure 1 shows e}*/eXfl, vs a for the case at hand. When | a|>2, the
best estimate of X, based on just X,_, has slightly smaller mean-
squared error than the best linear estimator based on the infinite past.
As is seen, as k increases, €}” is smaller than €*Z, for a large range of
a values.

Figure 2 compares the best estimator based on % past samples of X
with the best linear estimator based on the same samples. For |a| <
1 and large £, the linear estimator does nearly as well as the best; but
for @ = 1.5 the nonlinear estimator (17) is significantly better. The
curves shown approach the limit indicated as £ — . For a > 1.2 to
the scale shown on Fig. 2, it coincides with the curve labeled % = 20.
The bound (9) gives €2® /e, = 6/7e = 0.703, a value about 14 percent
less than the minimum shown on Fig. 2.

As noted in (13), the process (12) always has variance EX2 = 1 + a2
Figure 3 shows the mean-squared error of the best predictor for a
process of form (12) scaled to have unit variance. Again the Y’s are
i.i.d. with a uniform distribution. The limiting curve for 2 — = has the
value 1/(1 + a®) for |a| =<1 and, to the scale shown, coincides with the
curve labeled k2 = 40 for a > 1.

1.50
1.25 -
2/ w2
£ Ejl* /‘;o lin
%8
2 10
" N — —
w Y ——
C; /E;olin
0.75 p—
Xn=Yn—-a¥n_y, Y'S UNIFORM
0.50 | 1 | 1 1 | |
0 1 2 3 q 5 6 7 8
a

Fig. 1 —Comparison of €!* and e* with eXf, for X, = Y, — aY,_, with the Y’s i.i.d.
uniform variates.
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Fig. 2—Comparison of e’ with efin for X, = Y, — @Y, with the Y’s iid. uniform
variates.
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k=10
05— ——k=20
——k =40
0.4 l 1 L | | l | | |
0 1 2 3 4 5 6 7 8 9 10

Fig. 3—et?/(1 + a*) vs a for X, = Y, — a¥n, with the Y's i.id. uniform variates.

It is instructive to examine (17) more closely to understand the
nonlinear nature of the best estimator. Figure 4a shows f1 (x; a) as a
function of x for @ > 1; Fig. 4b shows this quantity when0 =a = 1.
Consider the case where a > 1. Now

Xufl =Y - aYn-2
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(a)
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Fig. 4—The best estimator f} (x; a) for the process X, = Y, — a¥._, with the Y's i.i.d.
uniform variates.

and each | Y| < y. If an observation of X,,_, has the value (1 + a)y,
then we must have Y,., = yand Y, = —y. Then X, = Y, — a¥,,
= Y, — ay. Since Y, has a symmetric distribution, the best estimate of
X, is now its mean, —ay. If now, instead of observing X, , at the
extreme value (1 + a)y, we observe a value x near the extreme, say
where (a — 1)y < x < (1 + a)y, we still obtain some information about
Y,-1. In fact, one easily calculates for x in this range that

1

T+ay—x TTO=Y=y

pYn—llxn—l(y I x) =
0, otherwise

and that E[Y, .| X,-1 = x] = %[x + (1 — a)y]. Then, from (12),
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E(XHIX -1 = x) = E(YnIXn—l = x)
— GE(Yp1 | Xarr = 2) = = 3 [ + (1= any)

When |x| < (@ — 1)y, pv,_ux,(¥|%) =py,_,(y) and knowledge of X,
no longer gives information about Y,.-1. The best estimate of X, is then
its mean which is zero. The case | a| < 1 can be discussed in a similar
manner. When £, the number of past X values observed, is larger than
1, this sort of analysis becomes difficult, however, and the intuitive
understanding of (17) becomes obscure.

Figures 5, 6, 7, and 8 give results similar to those of Figs. 2 and 3, but
for the case in which the Y’s of (12) are i.i.d. with density,

—(y+1)
_ yooy=-1
py(y) = {0’ y<-1 (24)
For a = 0, we find
f:: = —a[s + max[“"l, Wl: W2| | W*]] (25)

where

Wi=Y o' Xoj—d', i=12 ..,k

=)
a*(l—-a
8= 1 (_ ak+1) ’ (26)
and the figure of merit for this best estimator is
=1+ a’s. (27)

09

06— Xp = Yn—aYn_1, Y'S EXPONENTIAL

0.5

0.4 ] | | | ] | | | |
0 1 2 3 4 5 6 7 8 9 10

Fig. 5—Comparison of e}® with efi, for a > 0 for X, = ¥, — aY,-: with the Y's i.id.
one-sided exponential variates.
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Xn=Ypn—a¥n_y, Y'S EXPONENTIAL

0.7

0.6 | | | ] ] | | | |
0 1 2 3 4 5 6 7 8 9 10

Fig. 6—Comparison of ef* with e, for a = —b < 0 for X, = Y,, — a¥,_, with the ¥’s
i.i.d. one-sided exponential variates.
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0.5 k=5 Xp = Yp—a¥n_;. ¥'S EXPONENTIAL
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0.3 | | | | ] ] | | 1
0 1 2 3 4 5 6 7 8 9 10

Fig. 7—e?*/(1 + a@*) vs @ > 0 for X, = Y, — a¥,., with the Y’s ii.d. one-sided
exponential variates.

For a = —b < 0, the estimator is given by the more complicated
expression

— ¢ B

Ae™™ — Be "
f: = —al:ﬁ +—"E—M—].

A= max[—l, Wz, Wq, ey Wk,.],

B = min[W,, W;, ..., W, ], (28)

k, k even _ |k, k odd
k"_{k—l,kodd’ kﬂ_{k-l,keven.
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b
Fig. 8—et?/(1 + a®) vs a = —b < 0 for X, = Y, — a¥,-, with the Y's i.i.d. one-sided
exponential variates.

Its mean-squared error is given by

k+1 2 w©
4%m=1+(illiﬂ)[1—mu+A)2——1—1}

1 — (=b)*! n=1 (14 nA)
(-1 +1)/(b(b*=1)), k=246 ...
A= 1b—-10>1 , k=1,35, ..
%—Lb<1
) 2
eE(l)=1+(—k+—1)2, =13, .- (29)

It is seen from the curves that, for a > 0,e}%(a) < et*(—a), at least
for the graphs drawn. This raises the question of comparing et*(a) and
et?(—a) in general. It is easy to see (Appendix A) that these are equal
if Y has a symmetric distribution. We show in Appendix B that
e’(a, Y) < et*(—a, Y) for every Y if £ = 1 and a = 1. However, the
inequality is false in general for k = 1if a # 1. Thecase k =1, a = 1
is thus special and the inequality is shown there to be the same as the
fact that, if Y, and Y, are i.i.d. variates, then the average conditional
variance of Yo given Y, — Y, is smaller than the average conditional
variance of Y, given Yo + Y.

The bound (9) for the present case yields eX*/exfn = e/2m = 0.4326,
a value 14 percent less than the minimum shown on Fig. 5.

Consider now the case in which the Y’s of (12) have the discrete
distribution

PrY.=N=p, PrlY.=pl=¢g=1-p, A<p (30)
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To satisfy EY, = 0 and EY > = 1, we must have

A=—Vg/p, p=plq. (31)

We assume a # 0. Each X, can then take only four possible values: p
—ap, p— al, A — ap, A — al. If a # *1, these four values are distinct.
In this case, observation of X, allows one to deduce the value of Y,_,.
The best estimate of X, is then a times this value of Y,_;, and this
estimator has figure of merit }* = 1, the least value possible. The best
linear estimator still has variance given by (14) and, for |a| > 1, this
can be arbitrarily large. If @ = +1, however, the values of X,-, no
longer determine Y,-,, and the best estimator is more complicated. It
is,f fora =1,

—(Zx + A), at least one Z = p — A
fir = —(f;:lu), » atleastone Z=A —
+ »
—?ﬂ%, allZ’s =0 (32)
and, for a = -1,
s+1 ¢t + s+1 t
MU g+ 9Pt 2 either 0
P qg+qgp
orA+pn
=2+ (-1)* | A, at least one Z either
2 orp—A
e at least one Z either
ZporX —p (33)
where

Zi= E a""X,._k+(.-_,-,, (=12 ...,k

J=1
s = number of positive even integers < k,
= number of positive odd integers < k. (34)

The figure of merit for these estimators is

ko k
ez2=1+;§;%, a=1 (35)

k2 k eve
622 = 1 + {f/zl:i)q)tk_”/z k Oddn a=-1. (36)

1 It turns out that the three alternatives in (32) and (33) are mutually exclusive and
exhaustive, respectively.
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The best linear estimator in this case for a = +1 has mean-squared
error

1

14+—-.
kE+1 (37)

E.;;‘Iizn =
Figure 9 shows the best estimator for this case.

The case (12) just treated is indeed as general as (10) in which the
iid. Y’s have finite variance o® and mean m. If fif (Xa-y, + ¢, Xa-s; @)
and €}2(a) are for (12) the best estimator and its figure of merit, then
the best estimator for X, of (10) is

Aoﬂfk*(x 1, Xn—k; —A /A0 + m(Ao + Ay)

where X; = [X; — (4o + A1)m]/(Aco) for all j, and the figure of merit
for this best estimator is A2a%ez* (—A,/Ao).

As for the inequality (9) mentioned in Section I, we show in Section
VI that when X, is given by (8)

1 eZH(Y)
ex? = exfn T
2me Y ’

where H(Y) is the differential entropy of the process Y (defined in
(156)), and Sy = exp{ [o log Sy(f) df} is the geometric mean of the
spectral density Sy(f), defined in (178). The heart of the result is
Theorem 2, in Section 6, which relates the entropy H(X) to the entropy
H(Y).

Fig. 9—et? for the discrete valued process X, = Y, — a¥,-, where the Y’s are iid.
variates taking two values Pr[Y, = —Vg/p]=p=1-Pr[Y, = vp/ql=1-gq.
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lll. GENERAL THEORY

We consider the moving-average process

Xn = Yn + a Yn—l + 00+ aMYnfM = Z ann—j
Y

\ >M
EY,=0, EY:=1, a=1, a=0, 1<0
n=0*1,+2 ..., (38)
Let
1 a a
01 a
R(l) = *

00 0 .- 1] s (39)
be the ! X !/ upper-triangular matrix with element a,—, in the ith row
and jth column, i, j =1, 2, ..., . We adopt the notation

Xi=(X;, X;-1, -+, X)7T

for the column vector whose components from top to bottom are X,
X;_1, --+, X:. Then from (38) we can write

—r=R™IY I, + WinkD (40)

where the components of the (% + 1)-column vector W "**" are, from
top to bottom,

(nk+1) __
Wi E htt1+1-i Y n—f— ty

l=1
1=1,2 .-, k+ 1 (41)

Now denote the inverse of R'" by

SP=R"" = (8 )it (42)
By multiplying (40) by S'"**", we find
S”H'“Xﬂfk — Y:L;,. + S‘kHJW‘"'k"’”. (43)
The first component of (43) yields
k+1 k+1 " .
S{k+11Xn = Y + S +])W(_n.'+
j@[ +1—y E 7
n=0 %1, .-, k=1|2,...
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Using (41), we obtain the useful result

k+1 M
(k+1) (k+1)

Y S Snej=Yat XA Yok

j=1

Jj=1

n=0,-_|-1,..-’ k=1’2,..-' (44)
where
(k+1) _ o (k+1) .
A = Su Qp+141-j
=1
=12 ---, M. (45)
From (44) we see that
k] M
Xo=Ya— 3 S5 Xuni+ T A Yu, (46)
=2 J=1

since clearly S{;*” = 1. From (46) it follows that

fr(Xnth=E(X.|Xi"k

k+1 M
==Y S Xpn s+ ¥ AFTE(Yaos-o| XRTH). (47)
j=2 I=1
Before proceeding further with the calculation of the expectations
on the right of (47), we comment on the special form of the matrix S @
Consider the quantities d;, I = 1, 2, - - - defined by

a a: Qs
1 a sy
d{E(—l)I 0 1 a[
. . . - ) az
0 0 0 - 1 al (48)

where the determinant on the right has entries constant along diago-
nals as indicated. Expanding the determinant by the elements of the
first row, we see that

!
di=-Y ajdi—j, do=1,

j=1
=12 ..+. (49)

We extend the definition of the d’s by d; = 0, j < 0. It follows easily
then by direct matrix multiplication that

1 d do -+ dia
01 d -+ d-
SO = . ves

00 0 .- 1 Ixt (50)
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is indeed the inverse of R'” displayed in (39). Thus we have

Sy =d;_;

=12 ---,1 (51)
and the quantities A {*’ of (44) are

k
k)
AM =Y ajriadr;
J=1

=12 .-, M. (52)

The asymptotic behavior of the A}*’ as k£ —  is readily seen from
this form. Since the d’s satisfy the linear recurrence (49),

M
=Y Dia! (53)
1
where the quantities a;, az, -+, as are the reciprocals of the roots
(here assumed distinct) of the polynomial
M o
Q(z) = ; a;2’. (54)

In terms of these roots, (52) becomes
AP = E Qjvi-1 21 Dot
Nowletk=M+p,p>0. Slnceag=0f0rz>M,wehave
A}M+‘°) E Qj+1-1 E Dlafw'p :

=1

M M
=Y Dia? ¥ amer—jel " (55)
i=1 j=1

Since the inner sum here is independent of p, we see that

lai] < 1, i=1,2,---,M=~|A§’“|k—> 0, 1=12---,M. (56)

Now (46) shows X, to be a linear combination of Y, (which is
independent of past X’s), the expression

k+1

k
— _Z S”H“Xn‘rlfj = —-21 den—j (57)
j=

which is linear in past X’s (we have used (51)), and the random
variable ¥ A**"Y,_,_; = X. We have EX = 0, EX* =Y} [A**"]%,
and this quantity approaches zero with increasing & if the | a;| are all
less than unity. Thus we see that in this case E(X, — Xi)? — 1
as k — oo,
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Theorem 1: If the roots of

M .
Y az/=0

j=0

are all of magnitude greater than unity, a best estimator based on
the infinite past is the linear form

fm(Xﬂ 1y ‘2:'°°)=_E den—j
Jj=1
and
er.n =1= emh:l'l

Note that the linear estimator X, of (57) is not the best linear estimator
for any finite 2. However, unlike the coefficients cg; of the best linear
estimator (5), the nonzero coefficients in (57) do not depend on k.

We return now to the calculation of f; as given by (47). Rewrite (43)
replacing n by n — 1 and % by % — 1 to obtain

Stklxﬁ:}? = Y;:L + S(k)wtn—l.k!

or in component form

E Sff)X -j = Yn i + Z S:}M 2 ak+l—JYn k—1

=1 Jj=1 I=1
i=1,2 -0,k
or
Zk+1 i = 2 (i_r !X n—j — Yn i+ 2 A”H‘l l)Y..rl k—jy
J=1 J=1
i=1,2 ---,k, (58)
the A’s being given as before by (45). The triangular matrix S’
connectinng Zp+1, +++ , Z1 and the observed X, Xn 2, + ++ , Xa— via
Z%=8S"WXn"olis nonsmgular so that in (47) we can now write
E(Yn-2-1|X32k) = E(Yn-s—t| Z7). (59)
Now

E(Yn-r|ZY) =Idy| Idymyipvg_i_{'lzf(yfflz?)- (60)

But, by Bayes’ rule for conditional probabilities,

_ Pz va Py

P (61)

Pyzp-mz
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Denote the density of Y, by
py,(y) = g(y). (62)

Since the Y’s are i.i.d.,

M
pyn-i-p(yl) = I_[ g(yi). (63)

Furthermore, we see from (58) that given Y7224-¥

independent random variables, so that

= y¥ the Z’s are

k
Dz} \ynzy- ”(Zl lyl )= H g(Z; 2 A}”J’J) (64)
=
Equations (59) to (64) combine to yield
"1 o In(Z})
E(Yn_n—t| X2Z}) Iz(Z’f) , (65)

In(z'f = f dy, --- fdyMyl

M k
_[I]g(_)":') rl;[lg(Z: EA‘“y;), (66)

Jj=1

i=1

M
I(Z}) = fdyl deM I &(x:)

k M
I g(z, -3 AJ”;v,) (67)
=1 J=1

As we shall see, these M-fold integrals can be explicitly evaluated in
certain special cases.
For the figure of merit, we find

ei’ = E[(Xa = 1) (Xa = fD)] = E[(X, - f})X.]
= EX: - EX.f}, (68)
since the best predictor fi = E(X,|X7Z}) is uncorrelated with the

prediction error X,, — fi. For the two terms in (68), we have
M
EX; =Y a} (69)
0

from (38) and

EX.fi = =5 SUVEX.X, , + Z AMEXGE(Yaad| X570] - (70)

J=1
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from (47). These terms can be developed further as

k M-j
J= Y S}?:}]EX X j= E di ¥ aia
j=1 J=1 1=0

v—1

M
=Ya Y ad-

v=1 I=(v—Fk)*

on letting / + j = ». But from (49)

v—1

Y ad,-1=—a, soif k=M,
0

r—1

J= E a, 2 ad,—; = —E al, k=M.

If M > k, (71) becomes

r—1 v=1

J = ):a,za;d_1+ 2 a, 2 ard,—;

r=1 =0 v=k+1 l=v=k

M-k k-1

= _E a; + E Qk+y Z are di-1.

p=1 r=1 1=0

For the last term in (70), we find

E[XnE(Yn—k—dXﬁ:}e)]=E[(E a;Y, —J)E(Yn k- llzl):l

Combining these results, we have

er’=1- z ARV z GE[ Yo E(Yasa|ZD)], k=M,

=1 j=
k M—j
=Y d Y aas
j=0 I=0

M
Y AMVGE[ Y E(Yust|ZD)], k<M.

Jua=1
IV. THE SPECIAL CASE M = 1

When M = 1, we write a; = —a so that
Xn = Yn - G.an.

(71)

(72)

(73)

(74)

(75)

From (48), d; = a', and from (52), A{" = —a' so that (58) now reads

B
_ f—i _ k=i
Zrm—i= o Xy j=Yi—a Yo-th+ny

j=i

(=12 ---,k
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Equations (66) and (67) are

k
I = f dy yg(y) [H g(Z;+ a'y) (77)
=1
and
k
L= j dy g(y) I1 8(Z: + a'y). (78)
=1
For the best predictor, (47) now reads
k
fe(Xich) =-% @’ 'X,; — a**'I/I, (79)
j=1
while (74) is
6;2 =1- a“zE[Y,._lE(Y,,_(kHdZ‘;‘)], (80)

As an aid to the evaluation of (77) and (78), suppose that g has
support fromy =Atoy=p > Asothat g(y) =0,y <A, y > u. The
integrands in (77) and (78) then vanish unless simultaneously A < y
=pandA - Z; = a’y =p—2Z,1=1,2, ..., k. Thus, the integration in
(77) and (78) can be restricted to the range

l=y=m,
A=2Z AN—-2Z; A—Zy
lEm&X A, N 3 » k ’
a a a
a>0
. p=Z p—2 n—2Zy
= ) ’ y "ty ’ 81
m rmn(p p, — a*) (81)
or,ifa=—-b<0,
I<=y=m,

Z1—[J. )\—Zz Za—p'. .
b ’ bz y ba ] \

(82)

_ . Zy=N p—=2y Zz— ]\
m = min{ u, b , bz , b3 y e ,
k41

where there are 2 + 1 quantities within the parentheses. Now use (76)
and the notational aid
Y=Y, j=1,2 ... (83)
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Elementary operations show that

1 : .
I=Ywm+— max [a’'(A-Y))]
a” j=1,... .k+1

. 1 . i
m=Yia+— min [a/(p—Y)]
a R 201

j=1
- A 1

=Y+ 3;

.max[b*(A = Vi), b N (Yr — ), b 2N = Yicr), =+« len

m= Y + B

min[d*(p = Yrsr), 857V — A), 02 — Yacr), « o+ Joure

(84)

Since A — Y <0and p — Y = 0, we see that I = m and I < m with

probability one.

4.1 Y's are uniform
Let Y; have the density

py(y)=g(y) =

NOW?\='—Y!”=Y:

m k+1 k+1
- LY o (L) Yon-p
e o 8) 5 (8) b

and from (79)

k+1

2

k

fRXaTh) = = @/ Xy — 2 (1 + m),
1

while (80) is

k+2
a

2 E[Yni(l —m)].

2
er =1-

(85)

(86)

(87)

It is a matter of straightforward algebra to put (86), (81), and (76) in

the form (17) to (18). We omit the details here.
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The evalugtion of (87) can proceed as follows. Since Yi+1 = Yoa_(rs1)
and Y,-, = Y, are independent, from (84)

%a*E[Y, (I +m)] = E[Y) max (a'"(=y=¥))]

+%E[Y) _min (a’"'(y = ¥;)]
=1, k+

=1

=6E[(1 — 28) min (&a’)). (88)
J=0,... .k

Here we have set ¥; = y(1 — 28;-1),/=1,2, ---, k + 1, so that the
&’s are i.i.d. variates uniform on (0, 1). Then from (87) and (88),

er’=1-6a’E(1 — 26)min(8, ) (89)
where 8§ = §, and
5 = min (8;a’). (90)
1=j<k

Note that, since 8 and § are independent,
E(1 — 28)min(8, 3)

1
= f (1 — 2x)xPr(8 e dx, § > x)
0
1 x
+ f J’ (1 = 2x)yPr(8 € dx, 8 € dy)
0 0
1
= J' (1 — 2x)xPr(8 > x) dx

1 x
+ f j (1 -2x)y di_; [-Pr(y <8 <x)]dydx. (91)
0 ]

Integrate by parts in the integral on dy. The boundary terms vanish
and so
1

E(1 — 28)min(8, §) = f (1 — 2x)xPr(8 > x) dx

0
+ff(1—2x)Pr(y<5<x)dydx
0 0
1
=J (1 = 2x)xPr(8 > x) dx
0
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1 X
+f j (1-2x)
o Jo

J[Pr(§ > y) — Pr(8 > x)] dy dx

1 X

= j f (1 — 2x)Pr(§ > y) dy dx
0 0
1 1

= J f (1 —2x)Pr(8 > y) dx dy
0 Jy

1
- — f y(1 = y)Pr(8 > y) dy.
0

Since from (90),

k +
Pr(3>y) =[] (1-1)

j=1 a’

(20) follows immediately from (89) and (92).
Equation (21) follows from (20) by setting

i=]

1 k
Pi(x) = J’ du u(l —u) J] (1 — ux’).
0

Now let

k k
Ri(x,u)=T] (1 —ux’) =Y bju’
i=1

Jj=0

(92)

(93)

(94)

(95)

where the &’s depend on % and x. Substitution in (94) yields the first
part of (23) since [o du u(l — w)u' = 1/(1 + 2)(I + 3). However, one

sees from the product form for Ry in (95) that

(1 — ux)Rx(x, ux) = (1 — ux**"")Rp(x, u)
so that

k k
(1= ux) ¥ bj(ux)’ = (1 — ux**") ¥ bw’.
[1] 0

Equating the coefficient of u’ on both sides of this equation yields

b()=1, bl(l—xl)=(xk_xl)bl—h l=1) 2! "':k

from which (22) and (23) then follow directly.
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4.2 Y'’s are exponential
Let Y, have the density

e D y=> 1
py(y) =
0

’ .)’ < —1. (96)
Now A = =1 and p = o so that (81) is

. 142, 1+ 2 1+ 2,
= —min| 1, T T ,
a a a
m=w a>0 (97)
while
— . 1+2, 1+ 2,
l=—m.ln I'TJ_E"—’...
_ 14+ 72 1+ Z; 1+ Z;
m = min A L & a=-b<0 (98)

From (65), (77), and (78), we then find

E(Yn-u+n| X07h = L/ 1

l+1 >0
B a

I

St a=-b<0

1 - ak+l
B=l+4+a+ad+ .- +a"'= —— | (99)
l—-a

Using (97) to (99), it is a matter of straightforward algebra to convert

(79) into the results stated as (25), (26), and (28). Along the way, use

must be made of (76) which defines the Z’s in terms of the observed
X’s. We omit the details here.

The evaluation of €}” is somewhat more complicated. Equations

(80), (59), (83), and (99) give
E}?Q =1- ak+2E(YIIl/I2) (100)

and from (99) it is seen that the cases ¢ > 0 and a < 0 must be treated
separately.
Whena >0, 1,/F = [ + (1/B). Then (100) becomes

=1, ket

. 2 % % 1 i %
er’=1-a"E| Y, i + Y+ — max [a7(-1-Y)]
B a !
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=1+ a’E(6, — 1)min[6,, abs, - - -, a*Ors1], (101)
6=1+Y, j=12---, k+1 (102)

Here we have used (84) to express [ in terms of the Y’s and have used
the fact that EY, = 0 and that the ¥’s are independent. Now define

U = min(a#:, azﬂa, LR ﬂk0k+1)-

Since each @ has the one-sided exponential distribution

e’ 6=0
po( )=

0, <0 (103)
one readily finds that the density for U is
1 e u>0
pulu) =
0, u<o0

with 8 as in (26). Furthermore, U and 6, are independent. The calcu-
lation of (101) then reads

E:z =1+ a’E(Ol - l)ﬂl.ll'l(a], U)

=1+ az[j do@ — 1) J’ du upu(u)ps, (6)
0

]

+I dee — l)ﬂf dupu(u)pg,(ﬂ)].
0 o

The integrals are readily evaluated and (27) results.
The computation of e£? is more burdensome when @ = —b < 0. From
(99) and (100),

e Bm — [e-m]
- - |

e—B7 _ =Bl

err=1- (-1)"1:“**%:[17l (104)

where from (84)

1
I= ?k+1 + -5; max[-b*BHl, —bk_zﬂk_l, .e .]

1
o= Ve + > min[b6* 0, b* -2, -+ -]
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and we have again used (102). Now write
B EB/bk, I= Yi+l —b_kg, m= Y&+1+ btV
Now (104) becomes

e BV + e
e’=1-(-1)"pE6, - 1) — (105)
e —-BV EB
U = min[b"6+1, %0y, -+ -1,
V= min[d* 0, 8* 65—, -], (106)

where 6y, 63, - -+, Ok+1 are i.id. random variables having the density
(103).
Suppose now that k = 2/ is even. We have

U = min(6,, Z)
Z = min(b*6s, b%0s, - - -, b¥60111)
V = min(b6z, 6%, - - -, b '6z)

and
Bee %2, z2=0 1.1 1
PZ(Z) = {O, z< 0! Be b b‘ + o0 + "b_zt
_ [Boe™P*, v=0 11 1
pV(U)—{O, v<0’ Bo—z+3§+'-'+—b'§r_—].

Since #,, Z, and V are independent random variables,

ef?=1- bzf dv pv(v)
0

® ® —-Bv
. [f db ps,(6)(6 — l)f dz pz(Z)_.B;ae_._
0 8 ]

= )
+ f df pe,(6)(8 — 1) J dz pz(z)——“fi].
0 0

e Bv eBz

Inside the brackets here, the z integration can be carried out immedi-
ately in the first term. Interchange order of integration of # and 2z in
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the second term and carry out the @ integration. There results

® = _ -Bo+8)
2 =1-bBo J’ dv j b eTe-mo ¥ *0rp o1y
0 1]

e -
e~ B+ _

Now change variables of integration to x and y via v + 6 = x, 0=y
Tedious, but straightforward integration now gives

B+ B? ]

*2 _ 2 _
eX=1+0b [m S (107)

where

o —(By+2B )x
S = B"(BI'; D J axe . (108)
0

1—e B
Now
B . 1- bk+l(_1)k+l
B =B/t =—parH (109)

from (99). Since k is even in the present case, B > 0 and the factor
[1 — e®] " in (108) can be expanded as ¥§ e """ Term-by-term
integration, insertion in (107), and a little rearranging yield (29) for &
even.

The case of odd k proceeds in a similar manner. Now B as given by
(109) will be negative if b > 1. An integral of the form (108) that occurs
in the calculation must now be expanded in two different ways de-
pending on whether B is positive or negative. This gives rise to the
several forms for A in (29). We omit the straghtforward details of
calculation here.

4.3 Y's are discrete binary
Now let Y take only two values:

Pr[Y=Al=p, Pr[Y=p]=¢=1-p

q P
)\-_—_\/:, =\/:
PP q

so that as always EY = 0, EY? = 1. When £ = 1 and a, = —1, the
d;=1,A" = —1 and (38), (47), and (58) become

-Xn = Yn - Yn—l
ft=—=2Zy — E(Yn-ws1)| 21, -+ -, Zy)
Zy=Yn 1= Yoesn)

1= Ynr— Yn-(k+1)- (110)
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Here each Z can take only values 0, p — A, A — p. One readily finds

0, some Z<0
Pr[Yn-g+en =A| Z = L, some Z>0
Pt
iy g all Z’s0
0, some Z>0
1, some Z<0
Pr[Yn—(k+1] =un | Z'H = qk_H
' , all Z’
pkﬂ—_i_qﬁﬁ s0
so that
A, at least one Z>0

atleastone Z <0
E(Y,—+n| ZH) =

Apkﬂ + .U-qkﬂ

W—, all Z’s zero. (111)

Equation (32) follows then from (110) and (111).
For the figure of merit of the best predictor, we have in this case
er?=2—EX.f}
=2—-E{[Y,— Y.]
[=Yuor + Yoo — E(Yueeen| Z5)])
= 1= E[YsiE(Yn+n| Z9)]. (112)
Now

A k+1 + k+1
EYH—IE(YH—(.ﬁ+|)I Z?) - AHT‘

Pr[Y, i =A all Z's=0]

I\pk+l + #quI

T

Pr[Y,.,=p, all Z’s,=0]

+ A°Pr(Y,-1 =A, some Z>0]

+ ApPr[Y, ., =p, some Z>0]

+ ApPr{Y,., =A, some Z<0]

+ WPr[Y,-.i1=pu, some Z<0]. (113)

The six probabilities Pr[ ] listed here are readily seen to be p**', g**',
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p[1 — p**'], qp, pg, and g*[1 — g**'], respectively. Equation (35) then
follows from (112) and (113) by simple algebra.
When a = —1, the corresponding equations are

Xn = Yn + Y -1
Zk = Yn~1 - (_l)kYn—(k+ll
Zir=Yno— (=)' Yo esn)

Zy=Yor— (—=1)"Yotesn)
ft = Zi = (D E(Yagen| Z5)
er?=1- (_1)"’E[Yn,,E(Y,.—(k+n|Z?)]-

Note that the Z’s with odd subscript can take values (A + p), 2\, or
2u while the Z’s with even subscript can take values A — p, 0 or p — A.
Let there be s Z’s with even subscripts and ¢ Z’s with odd subscripts.
Then

Pr[Y.—w+n = A| Z5]

s+1 ¢

D q ,
e all Z's=(A+p) orzero
1, some Z=2\ or p—A,
Pr[Yn—(k+1] =un | z’f]
qs+‘.lp! i
ST all Zs=A+p or 0
1, some Z=2u or A—pu
and it follows that
E(Yn-en| ZH)
Apﬂlqt_*_ lu‘qa+1F,1‘ i
all Z’s=A+
i ps+1qc+ qs+1p¢ ’ 5 [ Or zero
A, some Z=2\ or p-—A
M, some Z=2u or A-—p

Equation (33) then follows at once. The computation of €}® is now a
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little more complicated in that the cases k even and %2 odd must be
treated separately. We list the key equation in the computation.

Apa-i-lqt + P'Q’HP"
pa+1 ] s+1. ¢

gtqgp

s+1 ¢ s+1 ¢
. I:A {gtqagl +u {g:pfl]

201 — tpstl
a2 {:;2(1 )

E[Yn E(Yn-x+1)| z’l‘)] =

2pq
*ha {pq[(l -q7'p) + (1 - p*'g"]

, {q:(l - p'e"™)
q
Here the upper choice corresponds to & even and the lower choice to
k odd. Straightforward manipulations now lead to (35) and (36). We
omit the tedious details here.
V.THECASE g =a/, j=1,2,¢e¢ee, M
We now consider the exponential filter

X = g a’Yuj, M>1, (114)
For the parameters of Sectic:r-lo III, we have aj=a’,j=0,1, - .., M, and
all other a; are zero. Equations (49) or (48) then yield
dHMH) = o/M+D
dim+1+1 = e

dj(M+1)+l+s =0
j = O! ]-l 2: e
s=12 ..., M—1. (115)
From (52) we then find

AJI(M+1)+1 = a;(M+ll+!

AfMrrIre o [0’ G+ fAM+1-s
—-a \ I=M+1-3s
Jj=0,1,2 ...
I=1,2,....M
s=1,2, -+, M. (116)
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As before, we suppose that the density py,(y) = g(y) has support on
A =y =< p. To evaluate (66) and (67) it is necessary to determine the
M-dimensional region of support for the integrands. The hyperplane-
boundary constraints on y; - - - ym are

A<syi=p =12 --- .M (117)
A=Z - ZA(“ (118)
J=1
1=1,2, .-+, k.
Now let
k=pM+1)+1+s (119)

for some p = 0, 1, 2, --- and some integer s such that 0 = s =M. In
view of (116), the constraints (118) on y; - - - yu become

M
(M+1 f)
AsZ,(M+,,+1—a“‘ +1) E ayy=p o0=01...,p
I=1

(o+1)(M+1),

A=<Zym+n+ie + M+ = U

06=0,1,---, p—1, j=1,2 .-, M

(p+1)(M+1)

A= Zomen+re + @ YM+1-j =
j = 1’ 2, e, S

Notice that most of the hyperplane boundaries are parallel to the
coordinate planes and that the remaining ones are all parallel. This is
because of the simple exponential form of the filter (114). Thus we
find the support for the integrands of (66) and (67) to be given by

lJ’ Y = my, .’ = 1 2 M
A= 2 'Y, <B (120)
1
where

ZoiMm+1)41 — I
Am max [—Wﬁr—‘

0=0,1,...,

B= . Zaman+1 — A
= 0“_ 1m. - _‘_ » prieay

_ A = Zimsn+1—i A = Zageryei-j
lj = max A! aM+l ] aZ(M+1)
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A = Zymen 1
Tt at(ﬂﬂ)

B Z(M+1)+1fj n= Zz(M+1)+l—j

m; = mm[.ﬂ-. C(M+l 3 az(M+1) ’

u= Zt(M+l)+1—j
" a:(ﬂﬂ)

_ ) j=1,2,"',M—S
t_{p+1, j=M-s5+1,..., M. (121)

The qﬁantities A, B, lj, m;, for j =1, ..., M are random variables,
and via (58) can be expressed in terms of the Y’s. Equations (39) read
in the present case

M+1
Za[M+l)+l-—j= o(M+1)—j — aof * )Y—j

j=1’2,...,M, U=1,2'...,p

= (p+1M(M+1
Z(p+l)(M+ll+1—j = Y[p+l][M+llfj_ a'’ )Y—j

j=M-s+1L,M-s+2 ... M
M
Zoasnyer = Youreny + @MV ¥ oY,
=1

0=O, 1,.--,p (122)

where for notational convenience we have put
Y= Yorew, uw=0%1,%2 ... (123)

Equations (121) now become

Y, -
A=3 d¥+ max [%)_&J

o=0,1,.

1‘)'(1\'f+1)—A

B= 2 aY;+u_§r11m [;am—]
s A= Yo

= Y_j+max[?\ - Y_j,[{,(_}:ﬂ‘;‘”i; c=12, ... t:'
Y\rclh‘l+1)—j

mf=Y4j+min|:u—Y_j'p_aaf +1) ) G=1,2,---' t]
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t= D, j=1!2:"" M-s
T lp+1, j=M-s+1,M-5+2 .-, M. (124)

5.1 Y’s exponential

Let the Y’s be i.i.d. with density (96). Now A = —1, p = co. Then (67)
can be written

® ® -y +3TAMY;
L=c| dy--- dyme 'e ™"
1, ]

! ”
M 3
Zown=B (125)
I, will be given by a similar expression with an extra factor of y; in the

integrand. _
It is convenient now to set x; = (y; — )a’ to obtain

. ® * gﬁm
L=¢ dxl--- dxMe
0 0

M
Y x;<B (126)
j=1
where
M -
B=B-Yda (127)
1
and
» k 1- a(p+1](M+ll a-j
Bj=a1|i[§A}”_1j|= l_wﬂ _1_aM+l

» 1 —gtPtiMsD - =12 ... M—s
1 — /Pt - =M —s4+1,-., M. (128)

But the integral in (126) can be easily evaluated. Denote I2/¢ by Ju(B:,
.-+, Bu; B). Then integration on xy yields the recurrence

1

Bm

'[eﬁﬁMJM—l(Bl = B, Bz = But, -+, Bu-1 = Bus; B)

— du(Ba, Bz, -+, Bu—1} B)]

Ju(B, ++ -, Bu; B) =
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with Jy(81; B) = [€" — 1]/B:. The solution is

M 38,
Jmtﬁl,---.ﬁu;B)=(—1)“[M1 -3 M"’B ] (129)

ns ~'s I1 (Bx— By
1 Feykf

as can be shown by induction.

As noted, I, differs from (125) by a factor y; in the integrand, or
from (126) by a factor x;/a’ in the integrand. From this, it is seen that
In = a~'(3Ju/8B)) so that from (65)

E(Ynoiet| X2 = =~ log JuBs B -, Bu; B)  (130)
]

where Ju is given by (129) and the other parameters by (127) and

(128). Expression (130) must be inserted into (47) to obtain the

complete estimator. From (115) and (116) we see that the form of the

best estimator depends on s defined in (119). Thus

p o
fEXRTR) = =Y o™X, irer) — aXnojirs1)-1)

J=1
M
{alpﬂl(ﬂrﬂl) z alE(Yn_*_z’x::i)’ s=M
I=1
+
—aPIMVE(Y, , — (M - s)|X2h), s=0,1,...,M—1 (131)

where the first sum is vacuous if p = 0.

When s = M, the last sum in (131) can be carried out. We emphasize
how complicated the best estimator is for this relatively simple case
by writing it out in full:

k=vM+1)

r—1
fHXnoh) = -2 o MK, ey — @ Xneje1)-1)

J=1
+ ar(M+1}B + ("]-)MHM/JM,
1
B + 2 r M eéﬂ:
Hy=— -+ 2 o7

I1 B =BTl (Be—B1)’
fl

1-— av(M’+1) _ a—j(l _ a(v+l)(M+l])

Bi= o . (132)

l—a

Here Ju is given by (129) and the observable B is given by (127) with
B and the /; being given by (121). Finally, from (58) the Z’s of these
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equations are given in terms of the observable X’s by

i=1

Zi= Y diXn-sjsr-ny 1=1,2,+-,k (133)
J=0

with the d’s as in (115).

The expression for €#” can be reduced to a two-dimensional integral,
but there seems to be little point in exhibiting this exceedingly com-
plicated expression.

5.2 Y’s uniform

Explicit formulas for the best estimator f} can be worked out when
the Y’s are i.i.d. with the density (85). Again, the results are exceedingly
complicated.

We now have A = —p = y = V3 and (67) can be written

my my
Iz"'C'f dyl---f dyM
! Iy

A=<Ya'y=B (134)

with the I’s, m’s, A and B given by (121). The quantity I, of (66) is
similar to (134) except for a factor of y: in the integrand.
To evaluate (134), let

oy =x, omi=m;, o=
so that
ity rin
Iz—C”J’ dxl---f dxM.
h Iy
A=Y x;=<B. (135)

We can now interpret Io/c” [[¥ (i — ;) as Pr{A <Y} T\ < B] where
the T’s are mdependent random variables and T; is uniformly distrib-
uted between /; and r;, i = 1, 2, - - -, M. The characteristic function of
the random variable S = }, T.- is

‘fm’ f— e'ﬂ'
s(f) = H @7, (f) = H—(Tn-Tl_
so that the density for S is

ps(s) = J’ df e "®s(f)

-k [aper [ 22

J=1
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) e:‘ﬂl"_,-*—sl
=KY (-1 | ——,
& « F

=1/mi™ [ (m; - [)). (136)

Here € is a contour in the complex plane that runs along the real axis
except for a semicircular excursion into the negative imaginary half-
plane along a circle with center at the origin. The 2¥ quantities I';
arise from multiplying out the product and are given by

D=1l + L+ oo + 0+ i, + o ooomi, (137)

vt

where iy, i3, - - -, v is a permutation of the integers 1,2, --., M and i),

iz, +++, i are chosen in all (¥) ways. Thus
k=12 ..., (%)
Jj=01, ..., M. (138)
Now
[ 2"'":M M-1
eif W__|_1)!U. , u>0
Tﬂdf=
@ 0, u<0

as can be readily established by contour integration, so that

(%)
1 -
Ps(s) = =D E (=17 ¥ [T —9)**" (139)

Jj=0

=]

Thus since Pr{A < S < B] = [£ ps(s) ds we find finally

cu 0

Iz—-c— 2 (-1 ¥ ([T — A= [(Tix — B)*1™).  (140)

i=1

For the numerator in (65), we have
M m, B
Iny/fe” I] (i = I) = f dtJ’ ds tpr,s(t, s) (141)
1 i A

with S and the T"’s as before. Now

prs(t, s) = pr,()ps T.(s | £)
=pr,(t)ps,(s = t) (142)

where

$=37T

Je
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is independent of 7). By the same steps that led to (139)

(")
— 1 J {v) +1M-2
Ps8) = G o T o= 1) Ea -1/ ¥ [T -8)] (143)

Jkv

i=1

where the '}y are formed in a manner analogous to I'jx, only [, and 2,
are omitted from (137). Inserting (143) and (142) into (141), one finds

finally
, ()

E -1/ T ([Ch—A+m) ™

i=1

c

b=+ A

(M + Dm, — (T — A +m,)*]
—[Thr—A+L)* MM+ 1D, — Thr-A+1)"]
—[(Ti = B+ m,)* 1M + 1)m, — (Cjs — B+ m,)"]

+[(Ta—-B+L)* MM+ 1)L - Thr—-B+1L)"] (144)

The ratio of (141) to (140), which is independent of c¢”, is
E(Yn-4-,| X223). The best estimator is obtained by using this quantity
in (131).

VI. ENTROPY INEQUALITY

We begin by giving some definitions and stating some facts concern-
ing the Shannon differential entropy of a random variable. Let U be a
real-valued random variable with probability density function pu(u),
—o0 < u < w. The (differential) entropy of U is

H(U) = - f pulu)log pu(u) du. (145)

Intuitively, H(U) can be thought of as a measure of the spread of the
density function pu(-). The following facts are easily verifiable (see,
for example, Refs. 3 and 4).

(a) H(U) can take any value in [—o, +]. However, for s > 0,

1 2%°eI"*(1/3)E | U|’

H(U) _<_; log (146)

sa—l

with equality when py(u) is of the form K,exp{(—K:z|u|"}, -0 <u <
. The constant K; is a parameter and K is chosen so that [ pu(u) du
= 1. Thus E | U|® < e, for some s > 0, implies H(U) < .
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(b) For constant @, —» < a < o,
H(U)=H(U + a). (147)
Inequality (146), for s = 2, and (147) imply that

H(U) < %log[21re(var ],

with equality when U is Gaussian.
(¢) For —w < a < o,

H(aU) =log|a| + H(U). (148)

Next assume that U and V are real-valued random variables with
joint probability density puv(u, v), and marginal densities pu(x), pviv),
respectively, — < u, v < . The conditional entropy of U given V is
usually defined as

HU|V)==| pvv)dv {j pujv(u|v)log pujv(u|v) du}, (149)

where py|v(u | v) = puv(u, v)/pv(v) (when py(v) > 0) is the conditional
density for U given V. Of course, we can write

HU|V) = f pv(iV)H(U| V = v) duv,

where H(U| V = v) is the term in brackets in (149). Furthermore, the
Shannon information between U and V is often taken as

I(U; V) = H(U) — H(U| V). (150)

In this section we need to define H(U|V) for a general random
quantity V—in particular, an infinite sequence of random variables.
The simplest way to eliminate detailed mathematical technicalities is
to exploit the fact that the information I(U; V) for abstract random
quantities U, V has been carefully defined, and many of its properties
established in the literature.”® We then define H(U/| V) in terms of
I(U; V) and H(U) using (150). Thus, for U a real-valued random
variable such that H(U) < «, and V an arbitrary random quantity, the
conditional (differential) entropy of U given V is defined as

HU|V) A HU)-IU; V). (151)

Well-known properties of the Shannon information*® can now be used
to verify these additional facts:

(d) HU|V) = H(U), U, Vindependent, (152)
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(e) HWU|V)=HU|V, W), (153)
(f) HU + f(V)| V) = HU| V), (154)
(g) H(U|V, f(V)) = HU|V), (155)

where U is any random variable with H(U) < «, V, W are any random
quantities, and f is any measurable function.

Finally, let U ={U,}7--=~ be a stationary real-valued random se-
quence. The entropy of the stationary sequence U is defined byt

H(U) A HU,|U"Z") = H(U,| Uz+). (156)

We will be concerned with the entropy of a certain family of random
sequences defined as follows. Let Y = (Y.} be a real-valued stationary
random sequence such that E|Y,|* < «, for some s > 0. We are
interested in the random sequence X = {X,} defined by

M
Xo=Y anYpm, —0<n<o, (157)

m=0

where M < « and for convenience ao = 1. Since E | Y, |*, E | X, |" < oo,
the entropies H(Y) = H(Y,|Y".) and H(X) = H(X,|X".') are
meaningful. Our first task is to establish a relation between H(X) and
H(Y).

The polynomial

M M
Q) A Y anz"=1]] 1-w2) (158)
m=0 Jj=1

is associated with the process X. The {aj'}}L; are the M, perhaps
complex and/or repeated roots of @(z).

The main result of this section is a theorem which relates the
entropy H(X) of the stationary sequence X to the entropy H( Y) of the
sequence Y. After giving the proof, we show how to apply it to obtain
a bound on the prediction error.

+ The second equality of (156) follows from
H(U, | U™ = Lim H(U,|Ui-k), and (see Ref. 5)

I(Uy; Usth) = KU,; Up-r) + K Up; Up-z| Un-r)
+ oo+ IUn; Un-n| UnZhnr)
= I(Un; Unnr) + IUs; Upsz| Unsir)
+ oo+ HUy; Unen | U
= I(U,; Unt).
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Theorem 2:
(a)
HX)zH(Y)+ Y log|la]

Jilag|=1
A H(Y) + log A. (159)

(b) If Y is ergodic and E | Y,| < o, orif |a;| # 1,1 = j < M, then
(159) holds with equality.

(c) We exhibit a nonergodic Y for which (159) holds with strict
inequality.
Remark: A straightforward integration yields

1

1 M
f log| Q™) |df= % | log|1— ae™| df
0 7

=] 0

= Y log|aj| =logA. (160a)
Jilagl>1
Kanter® showed that when {Y,} are i.id.,
1

H(X) = H(Y) +f log | Q(e?™) | df. (160b)
0

Of course, when the {Y,} are i.i.d., Theorem 2(b) implies that (160b)

holds with equality.}

Proof: Let us factor @(z) into @(2) = @:1(2)Q2(z), where

M, M,
=] 1-832) = Eo bmz™, (161a)
j=1 m=
M, M,
Q:(2) = ,I]1 1-vy2)= % cm2", (161b)
J= m=0

where |Bi/|= 1,1 =j= M, and |y;]| < 1,1 =<y = M. Thus @\(2)
corresponds to the roots of @(z) inside and on the unit circle, and @;(z)
to the roots of @(z) outside the unit circle. The {8} {y;}] may be
complex, but the {5} and {c¢,} are real. Of course,

M,
logA= 3 logal =3 logl|
j=

Jilag|>1
M,
= log [] | B;| = log| ba,|. (162)
J=1
t Let us remark that Shannon, in his classic paper (“A Mathematical Theory of
Communication,” B.S.T.J., 27 (1948)), stated that (160b) always holds with equality,

and gave an intuitive justification for this. We now know, however, that the equality will
hold only if conditions, such as those in part (b), also hold.
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Next define the delay operator D. Let u = {ux}n--~ be a sequence.
Then (Du). = Un-1. Thus X can be written as X = QDY =
QI(D)Q.‘Z(D) Y‘ Let W= Q?(D) Yl i-e-,

M,
Wa= 2 chn.—m, Co = 1. (163)
m=0

Then

1
H(W) = H(Wnl w1 (Z) H(W,,l wnrll yr!
M,
=H(Ya+ ¥ nYa-m| W2, Y2

m=1
2 3
(=) H(Y,| W=, Y2! ( ) H(Y,|Y™2) = H(Y). (164)
Step (1) follows from (153), step (2) from (154), and step (3) from (155),
since W"2! can be calculated from Y2 using (163).
We now relate H(X) to H(W) usmg the relation X = @,(D) W, i.e.,

2 bm n—ms-

m=0
Write
D
H(X) H(X |Xn.+1) H(X IXn+l, u—M,+1)
( z bnWh-m + le n—M, IXn+h Wn—Ml+1)

2
@D H(bat, Wose, | X201, Wsger)

9 H(bm, Wn-m, | Wi-pm,+1)

4
@ log| by, | + H(Wa-n, | Wa-s,+1)

= log|bu,| + HW) = D 1og &+ H(W). (165)
Step (1) follows from (153), step (2) from (154), step (3) from (155) and
the fact that Xy can be calculated from Wr-a,+1, step (4) from (148),
and step (5) from (162). Combining (164) and (165), we obtain H(X)
= H(Y) + log A, which is (159), i.e., part (a) of the theorem.
We now inquire about the conditions under which (159) holds with
equality. Clearly, this will happen if steps (1) in relations (164) and
(165) hold with equality. From (155), this occurs if there exist measur-
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able functions g1, gz such that
Y2 = g(Wr') as, (166a)
and
Wia_m+1 = g82(X741) as. (166b)

Hence we shall show that when the conditions of part (b) are satisfied,
then (166) will hold.

We begin by considering the following simple situation. Let U =
{U.} be an arbitrary real-valued stationary random sequence, such
that E | U, |* < o, for some s > 0. Let the random sequence V = {V,,}
be defined by

Va=Up—=EUpy, —0<n<oo, (167)

where £ is a complex number. We can write, for N=1,2, ...,

N-1
U= Y t*Var + ¢"Upn, —0<n <o, (168)

k=0

We now show that when |¢| <1, £"U,_.y— 0, as N — o, a.s. This will
follow when we show that forany e > 0, for N=1,2, ...,

P(| ENUN[ >¢gi.0) =0. (169)
To establish (169), invoke the Borel-Cantelli lemma and write

Y P(|¢"Un|>€)= T P(|Un|>¢€|¢|™)
N=1 N=1

= E|Un|*

= & CETr ™

In (168), we let N — o, and conclude that, when | {|< 1,

U= Y V., as, (170a)
k=0
and that
Ul = i(V2.), as., (170b)

where f; is the function defined by (170a).
Return now to the random sequences X, Y related by X =
(D)Q:(D)Y = @:(D)W, where W = @.(D)Y. Using (161b), we have

My
W=]l 1-yDY, |y|<l

J=1
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Invoking the result of (170) M; times, we conclude that Y"' is a.s.

calculable from W".l, i.e., (166a) holds.
We next investigate when (166b) will hold. Using (161a), we have

X=QD)W= H (1-BD)W. (171)

j=1

This prompts us to consider the process defined by (167) when |{|=
1. Rewriting (167) as

Up=§ " Uns1 —§'Wan, —0<n<ow

so that as in the derivation of (170) we have, for |{|> 1,

=Y £*Voup, —0<n<w, (172a)
k=1
so that
Un=fo(Van), —@o<n<oo, (172b)

If all the |B;|> 1, 1 <j =< M,, then application of (172) to (171) M,
times yields (166b). Thus (159) will hold with equality when all | 8;| #
1 or equivalently all | ;| # 1.

We complete the proof of part (b) by showing that if Y is ergodic
and E | Y, | < o, then (166b) holds. It will suffice to show that, with U
a stationary ergodic sequence with E | U, | < o and V defined by (167)
with | £| = 1, we can calculate U7 from V7... From (167) we obtain, for
—o<n<wlsk<on,

Thust =1
1 K 1 K & 1 K .
Un=_ Un=_ _Vn'+" -Un
K,El K 3.:1 E, §7Vns K,.E.:l'E h
We will show that, as K — o,
1 K
=Y U — ¢, as. (173)
K o

where ¢ is a constant (in fact ¢ =0, £# 1 and ¢ = EU,, £ = 1), which
will imply that
1 K k

RS Vntr“‘c

K—.u: K.k-l J=1

completing the proof of part (b).

+ This step was suggested by A. Gersho.
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It remains to verify (173). Let # be a complex random variable
uniformly distributed on the unit circle, and independent of the se-
quence U. Then {667} is a stationary sequence, and therefore
{07 Upaj} o is also statlona.ry Thus, as K — o,

e E 087 Unvj — m,

.r-l

a random variable with probabllity 1, and therefore

—EE Upsj =m0 'Ac, as. (174)
KA

Since the left member of (174) depends only on the tail o-field of the
{U.}, and not on 8, we conclude that c is a constant a.s. In fact, since

the expectation
0, £#1,
E— Elf TUnsj = {E’Un, £=1

we know the value of c.
Our final task, part (¢) of Theorem 2, is to exhibit a situation in
which H(X) > H(Y) + log A. Let

Xn = Yn - Yn—l,
and let
Yo=m+v

where {1, }n--« are i.i.d. standard Gaussian variates, and » is a random
variable defined as follows. Let

62;'={1 kb J=012 ...

0 =0,
and let
o2t 1-; >0, ;P
ez,-:—{o n =<0, J=12, ...,
Then the binary expansion of v is 0.€y€:1€:2€5- - - . Thus knowledge of » is

equivalent to knowledge of the sign of 71,, —» < n < «. Note that the
sequence Y is stationary but not ergodic. Also log A = 0, so that (159)
is H(X) = H(Y). Now

Xn = MNn — MNn—1,

and {7} is an ergodic sequence. Thus by part (b) H(X) = H(n) =
H(nn) = % log 2me, the last equality following by direct integration. We
now consider H(Y). Observe that

1Y 1Y
Nk= Yoir = (NE T]n+k)+lf—)l' a.s.
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as N — . Thus » and therefore € = {€;} j~0, are calculable from Y. .
It follows that

H(Y) = H(Yn.l Y:+1) = H(YHI Y:'H.’ €, y) = H(ﬂn‘ Yﬁ‘i‘l, €, P)
1 me 1
= H(ynle) = 3 log 03 < 3 log 27e = H(X).

This establishes part (c) and completes the proof of Theorem 2. Let us
remark that it is possible, using the Cantor diagonalization method, to
imbed a complete specification of the {1.} in », thus making H(Y) =
—oo, without changing H(X).

Our next task is the application of the theorem to our estimation
problem. Let X = {X,} be any stationary process such that H(X,) <
w. Let X, = f(X*3) be an estimator of X,, and let the figure of merit
be E | X, — X.|", where r > 0. It follows that

I(Xn; X25) (é) I(X,; X,) = H(X,) — H(X, | X,)
27el' (1/r) E | Xp — Xal”

rr—l

2

(z) H(X,) - % log (175)
where step (1) follows from the data-processing theorem (which states
that processing X”=! to form X, decreases information),** and step (2)
from (146) and the concavity of the logarithm. Since I(X,; X%') =
H(X,) — H(X), (175) yields

ElX — % =D g rH(X) ;
n—Xp| Z——. 1
In the special case r = 2, (176) becomes
e2H(X)
E|X,-X|’= . (176b)
2me

Inequalities (176) hold for any stationary process X. When X is given
in terms of another process Y by (157), we can use part (a) of Theorem
2 to continue these inequalities, i.e.,

r(r—l)ArerH(Y)

Zeran (177a)

E|X,-X| =

and, for r = 2,
‘ A2
E|X. —X,,|2am e, (177b)

where A is given in (160a).
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Inequality (177b) has an interesting interpretation. Assume that the
spectral density of Y,

Sv(f)= X pr(n)e™™, (178)
where py(n) = EYnYmin, =@ < n < o, exists. Then the spectral
density of X is

Sx(f) = Sv(f)| Q(e*™)|.
Using (160a) and the well-known formula for e*3;,!

1 1
2log A = j log Sx(f) df—j log Sy(f) df
0 (1]

1

= log e2%n — J- log Sy(f) df,
0

so that

e2hin
TSy
Here eX}i, is, as in Section I, the best linear mean-squared prediction

error, and Sy is the geometric mean of the spectral density of Y.
Substituting (179) into (177b), we have

E| X, — X.|* = exhin[e®Y/(27eSy)]. (180)

Now it is not hard to show that when U is a Gaussian process with
spectral density Sy, H(U) = % log (27eSy). Thus e?#¥)/2xe is the
geometric mean of the spectral density of a Gaussian process with the
same entropy as Y. This is called the “entropy power” of Y. Thus the
quantity in brackets in (180) is the ratio of the entropy power of Y to
Sy, and is unity when Y is Gaussian. Kanter® obtained (180) when the
{Y.} are ii.d. We have proved it for any stationary Y, with E|Y,|*
< oo for some s > 0.

A? (179)
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APPENDIX A

Let
X,=Y.—a¥,,, EY.=0, EY:=1 (181)

n=0=*1,=+2 ..-

with the Y’s i.i.d. variates. For a > 0, let

f:(xl’xh ey Xy ﬂ)
EE(XHIX -1 =X1,Xn—2=x2, "’,Xn—h=xk)’ (182)
e2’(a) = E[Xy — E(Xa| Xa-1, Xn2, -+ Xn-n) I (183)

Theorem 3: If the Y’s in (181) are symmetric, i.e., if Py(y) = Py(-y),
and if for a = 0 (182) and (183) hold, then for a < 0

E(Xn|X 1 =X1, vy Xnk = Xz)
= f:(_xls X2, —X3, ***, (_l)kxk; | al)s
E[X, — E(Xa| Xn-1, -+, Xa-t) P = €2’(|a)).
Proof: In (181) set

X, = (-1)""X,, Y, = (-1)"*Y, n=0,=+1, ... (184)
for some integer «. In terms of these new variables, (181) becomes
X, =Y,+a¥Y,, EY, =0, EY?:=1.

Furthermore P%(y) = Py(y). Thus if @ = —b < 0 the X, have the
same distribution as the X, do with @ = bin (181). Thusif a =<0

E(X:tIX:'l—l=x1, "")X:'L—k=xk) =f;(xls X2, "'sxk;lal)

Now in (184) let & = —n, so that X, = X,,, X7-1 = —Xo1, Xh2 = X2,
ete. But then E(X} | Xh = x1, +++, Xnr = %) = E(Xp | Xo1 = —x1,
Xn2 =%z, +++ , Xn—t = (—1)*x;) and the theorem readily follows.

APPENDIX B
Let Y, and Y; be i.i.d. with EY? < 0. We shall show that

E VBI(Y1I Y- Y)=<EFE VBI(Yl I Y.+ Y. (185)

This says that, in estimating Y, in the mean-square sense, the average
error is less if the difference Y, — Y, is known than if the sum is known.
If Y, and Y, are replaced by Y, , and Y, where X, = Y, — a¥,-1 asin
Section I, then (185) states that ef’(a = —1) < et*(a = +1), as was
asserted in Section I. We prove (185) below and the assertion that
equality holds in (185) only if Y; are symmetric provided that Y, has
a characteristic function ¢(¢) = Ee'* which is nowhere zero. However,
in general there are nonsymmetric Y; for which equality holds in (185).
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The following proof of (185) was suggested by C. Mallows: Assume
without loss of generality that EY, = 0, EY? = 1. Observe first that the
right side of (185) is ' because

E(Y\| Y1+ Yo) = E(Yo| Y1 + Yo) =E[Yl;r v+ YO] = YI; -
and
2
E(Yl— ht Y") 1
2 2

Set f(z) = E(Y: + Yo| Y1 — Yo = 2) and note that
-Ef(Yl - Yo) = 0,
EY,=-Y)f(Y1—=Yo)=E(Y1— Y (Y1 + Yo =0. (186)

Now
Y .-Y, Y.+7Y
E[Y,|Y1—Y0]=E[ ‘2 °+ ‘2 DlYl—Yo:l
Y,.-Y 1
=1 Yt _A(Y:- Yo (187)
2 2
Note that

E var[Y,|Y, — Yo] = EE[(Y, — E[ Y| Y1 — Yo))?| Y1 — Yo
=E(Y,— E(Y,\|Yi— Yo)’=1-E(E[Y:|Y: - Yo])%. (188)
But using (186) and (187),
E(E[Y:| Y1 - Yo))? = var(E[Y1]| Y1 — Yo))

2 2
=E(Y1 — Y") +E(%f(Y1 - Yo)) =

(189)

[N

2

and (185) is proved. _
To prove the assertions about equality, let ¢(¢) = Ee'¥* and note
that
o(u — v)p(u + v) = EE[e" YtV | Y, — Y, ]e/ o~ Yoy, (190)

Now equality holds in (189) if and only if f(z) = 0 which is the same as
requiring that the derivative of the left side of (190) at u = 0 vanish for
all v. That is,

¢'(V)gp(—=v) + ¢'(—V)p(v) =0, .—w<v<oo, (191)

If ¢ # 0, this says that (log ¢(v))’ = ¢'(v)/$(v) is odd and so log ¢(v)
and ¢(v) are even, ie., Y is symmetric. Note that a characteristic
function is real if and only if the corresponding random variable is

symmetric.
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Our aim now is to show that (191) can hold without ¢ being real. We
shall construct a ¢o(t) that satisfies (191) and is positive definite, real
for |t] < 1, and pure imaginary for | ¢| = 1. We write

do(t) = ¢r(t) + ea(?) (192)

and denote Fourier transforms by upper-case letters so that

$i(t) = J Dj(x)e™ dx,  D(x) =% j di(t)e ™ dt  (193)

j=0,1,2

Now choose ¢2(¢) # 0 to be purely imaginary, to be six times
continuously differentiable and of compact support, and to satisfy

oa(t) #£0, [t| =1, dult) = —da(-2). (194)
From (193) one readily finds that
Do(x) = ®F(x) (195)
and that there exists a positive constant ¢, such that
Ci
| D2(x) | 5(1—_'_;23?- (196)
We next choose
®,(x) = co[H:x — 1) + H*(x + 1)] (197)
where
_1 sin (x/4) ?
Hix) = y [—(x 74) ] . (198)
Here c; > 0 is a constant chosen to make
$0(0) = ¢:1(0) = j ®y(x) dx=1. (199)

Note that @;(x) > 0 for all x and that, for all x, x*®:(x) = ¢ > 0. Since
from (195) ®.(x) is real and from (196) is 0(1/x°), it is possible to
choose € sufficiently small so that

Dy(x) = D1(x) + eP2(x) >0

for all x. ¢ is thus the transform of a real positive function and satisfies
the normalization (199). It is therefore a characteristic function.
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We next note that
¢i(t) =0, |¢]> 1. (200)
This follows immediately from the fact that

1_2“" Itl
[¢]

mﬂ=[mﬂméﬂu={0 f:

has support |t| < % so that the transforms of H*(x — 1) and of H*(x

+ 1) both have support | ¢| = 1. Equation (197) then implies (200). The
form of (197) also shows that

$1(t) = ¢(—t) (201)

and that ¢:1(¢) is twice differentiable.

We have now constructed a twice differentiable characteristic func-
tion ¢o(t) = ¢1(f) + e€d2(t) where real even ¢, vanishes for |£| > 1 and
pure imaginary odd ¢: vanishes for | | < 1. For all ¢, then, where ¢o(t)
# 0, the quantity ¢q(t)/do(¢) is real and odd. Thus ¢ (£)/do(t) = (po(t)/
do(t))* = —¢o(—t)/po(—t). That is, the characteristic function ¢y satis-
fies (191) and is not real (for £ > 1). QED.

Note added in print. We have recently learned of the work of M.
Rosenblatt,” which overlaps the present paper slightly.
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