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An efficient computational method has been developed for calcu-
lating the current density distribution within electroplating cells. The
computer program can analyze two-dimensional cells with arbitrary
polygonal shapes, as well as three-dimensional axisymmetric cells
with arbitrary polygonal cross section. Laplace’s equation in the bulk
of the cell is coupled to the convective diffusion equation in the
boundary layers near the electrodes. Finite-difference and finite-
element methods, and infinite sums, are avoided by a boundary
integral formulation for the solution of Laplace’s equation. The
method is illustrated with sample calculations for copper plating of
multilayer boards. The predicted copper plating thickness distribu-
tion is essentially the same as the primary current distribution.

. INTRODUCTION

Until recently, analytic and numerical techniques have not been
available for analyzing electroplating cells. Even after the work of
Newman and coworkers,' only restricted geometries were practical.
Design of new electroplating systems has therefore necessarily been
done by educated guess, rule of thumb, extrapolation from previous
systems, and expensive experimentation. Although the physical and
chemical processes taking place in a real-life electroplating cell are
generously complex and nonlinear, realistic mathematical models can
be constructed, and it is within the state of the computing art to solve
these models efficiently.

This paper describes a computer program to solve the mathematical
models describing a wide variety of electroplating cells. An important
consideration during this development has been that the resulting
computer program be able to analyze many different cell geometries
and flow patterns with at most trivial program changes. A second
consideration has been that the program be efficient and inexpensive
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to run, since many geometry and parameter studies are likely to be
made in the design or analysis of an electroplating system.

The method is illustrated with sample calculations for copper plating
of multilayer boards.

Il. PROBLEM FORMULATION

A schematic cross section of a typical copper-plating tank is shown
in Fig. 1. Copper anodes both provide current flow and replenish the
plated metal in the solution. Cathodes, the multilayer boards, receive
the plated metal and provide the return path for the current. The
electroplating solution contains water, a salt of the plating metal, in
this case CuSQy, an acid to increase the conductivity of the solution,
in this case H2S04, and proprietary secret ingredients which improve
the microscopic structure of the plated metal. The solution is well-
stirred, and a flow of fresh solution past the cathodes is provided. In
the typical tank, there are three different stirring mechanisms. First,
the cathodes may be rocked back and forth along their width (perpen-
dicular to the plane of Fig. 1) to reduce nonuniformity of plating from
the bar anodes. Second, solution is pumped out of the tank near the
bottom, filtered to remove foreign matter and granular copper, and
then returned to the tank. Finally, each cathode has a sparger, or air
bubbling pipe, under it, directing a stream of air bubbles up each side
of the cathode and producing the convection pattern sketched in
Fig. 1.

Other complications are, of course, possible and may be analyzed by
the same program. Anodes and cathodes may be of more complex
shapes; other metals or insulators may also be present, to alter the
fluid flow or the distribution of plated metal on the cathode.
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Fig. 1—Schematic cross section of a multilayer board plating tank, showing anodes
(A), cathodes (C), and spargers (S).
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Near the cathodes, bubbles from the spargers rise, causing a convec-
tion cell between each cathode-anode pair. For analyzing many of the
possible effects, such as geometry, it is sufficient to assume a periodic
tank, and to analyze only one convection cell, as in Fig. 2. (The
program can analyze two-dimensional cells with arbitrary polygonal
shapes, as well as three-dimensional axisymmetric cells with arbitrary
polygonal cross section.) Very thin boundary layers, not shown in the
figure, are adjacent to the electrodes. In the boundary layers, the
copper concentration obeys a diffusion-convection equation. For ve-
locity flows of the boundary layer type,

Vx =2YE(X) (1)

_ » dE(X)
Vy=-Y ax (2)

the diffusion-convection equation in the boundary layer can be inte-
grated approximately,” giving the concentration in terms of the current
flow at the electrode.

The velocity fields in the boundary layers are needed. The velocity
flow caused by bubbles rising near a vertical flat plate is complicated,
and the solution for the flow is not known. However, the flow is
qualitatively similar to the case of uniform flow past a flat plate, whose
solution is available (Ref. 3, p. 125). If the flow far from the plate is V.,
in the Y direction, the velocity field is as above, with

E(X) = 0.166[ V2 /(v X)]"2 (3)
i=0
ANODE CATHODE
i=0 j=0

i=0

Fig. 2—One electroplating “cell.” The parts of the boundary with no current flow are
marked by j = 0.
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With s measuring distance along the cathode, the methods of Appendix
IT of Ref. 3 give

1 (7 j@)dt
dﬂ=1—E QGWiTWWE )

with the dimensionless parameter k. given by

. _ | 32D 0.166V2" V% (%) Co F XY

The velocity field at the anodes is more difficult, since each anode
is enclosed in a porous bag. The flow must be some kind of free
convection, caused by the variation of electrolyte density with copper
concentration. Since the only item of interest is the copper deposition
distribution on the cathode, it seems unnecessary to include all the
complications at the anode. Rather than assume a velocity field, a
simple model for the concentration has been adopted. If s measures
distance along the anode, from the bottom,

(5)

j(s)

c(s)=1+ el (6)
This approximation is equivalent to assuming that the anode boundary
layer has width proportional to s and that the concentration varies
linearly across the boundary layer. The effect on the cathode current
distribution of various choices of £, and 8 can be investigated later.
Reasonable values of & probably are in the range of from % (free
convection) to ' (uniform flow past a flat plate).

The derivation of the equations describing copper plating is by now
standard"” and will not be repeated. The dimensionless variables we
will need are the potential, ¢, the concentration of copper, ¢, and the
current density flowing into the cathode, j. In our normalization, j is
equal to the directional derivative,

. O¢
~on’ (7
where n is the outward-pointing unit normal vector at each point of
the cathode. The normalizations used are X, for lengths, R, T/F for
potentials, kR, T/Xo F for currents, and C,, the bulk concentration, for
the copper concentration.

Throughout the region shown in Fig. 2, outside the boundary layer,

Laplace’s equation holds:

Vie =0. (8)
On the anode, the potential is a given constant, ¢ = ¢.. The cathode
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is grounded. On the remaining boundaries, no current flows, d¢/dn =
0. All the complication is in the nonlinear boundary conditions on the
electrodes, coupling ¢ and j, in effect defining a nonlinear resistance of
each boundary layer. The potential across the cathode boundary layer
has two constituents,

b =ns+ 9. 9)

For the copper electroplating problem of interest, the concentration
overpotential is

ne = % In(c). (10)

The surface overpotential is given by the relation

j = kec(etme — e~y an
with the dimensionless parameter k. given by
FX,I,
© KR, T’ (12)

The boundary layer at the anode is treated similarly, although in
practice the details are not important.

The problem is thus reduced to solving Laplace’s equation in a
rectangular region. There are linear boundary conditions on part of
the boundary and complicated nonlinear boundary conditions on the
remainder. An efficient technique for solving this problem is outlined
in the next sections.

. SOLUTION OF LAPLACE'S EQUATION WITH NONLINEAR BOUNDARY
CONDITIONS

We wish to solve Laplace’s equation on a two-dimensional region,
with boundary B. Let s denote arc length on B. On the electrodes, a
nonlinear boundary condition couples ¢(s) and j(s) = a¢/dn. On the
rest of the boundary, j(s) = 0.

We first discuss solving Laplace’s equation with nonlinear boundary
conditions, assuming solutions with linear boundary conditions are
available. In the next section, Laplace’s equation with linear boundary
conditions is discussed.

We expand the potential in terms of known solutions,

L
=3 digy, (13)
=1

and determine the L coefficients d; so that the nonlinear boundary
conditions are satisfied. Letting j; = a¢;/an, ¢; is defined to be a
solution of Laplace’s equation with ¢ = b/(s) on the electrodes, and
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Ji(s) = 0 on the rest of the boundary. The functions b,(s) are in principle
arbitrary; B-splines are used as discussed in the next section.

Also choose M points s, on the electrodes. M = L is required; we
use M = 2L. Suppose approximate values for the d/'s are known. Then
Jj(s) = Efil dji(s) is the approximate current. From the integral formula,
calculate the concentration c(s.) at M points; then calculate the
concentration overpotential 1.(s.). Then obtain the surface overpoten-
tial ns(sm) by a Newton iteration. Finally, at M points do a least-squares
fit to

L
ne(s) + n:(s) = ¥ dibu(s). (14)
I=1

The differences, d; — d}, are zero when the correct boundary conditions
are obeyed.

The preceding paragraph defines a set of L nonlinear equations for
the di’s. An initial guess is made, and the equations solved by a quasi-
Newton iteration with rank-one update.*® Usually only a few iterations,
typically 5 to 10, are needed. Convergence is somewhat slower when
the current is large, since the equations then are effectively more
nonlinear.

In practice, the nonlinear equations are considerably less sensitive
to the values of the d;’s on the anode than to those on the cathode,
especially for high currents. This leads to difficulties in solving, since
the Jacobian matrix is therefore ill-conditioned. This has been over-
come by a two-step iteration process. First, ¢ on the anode is held
fixed, and Laplace’s equation is solved with nonlinear boundary con-
'ditions on the cathode. Second, the resulting ¢ on the cathode is held
fixed, and Laplace’s equation is solved with nonlinear boundary con-
ditions on the anode. These two steps are repeated. Only two or three
of these two-step iterations are needed.

IV. LAPLACE’'S EQUATION WITH LINEAR BOUNDARY CONDITIONS

To be able to deal with a wide variety of geometries, a boundary
integral method is used. A more detailed discussion appears in Ref. 6.

We wish to solve V?¢ = 0 in a two-dimensional region with boundary
B. On part of B, B,, the boundary condition is ¢ = u(s); on the
remainder, By, j = d¢p/an = 0.

We start with Green’s third boundary identity’

2mp(x, y) = f [dv(S) g -—j(S)G] ds. (15)

B

Here (x, y) is some point inside B, and G is the “fundamental solution”
to Laplace’s equation,

G =-%In[(x. — x)* + (3. — »*]. (16)
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Also, (x, y,) are the coordinates of the point at arc length s on B, and
n(s) is the outward normal at s. In three dimensions with axial
symmetry, the formulation is identical except for a different funda-
mental solution.

If $(s) and j(s) are replaced by other functions ¢*(s) and j*(s), the
function ¢ defined by

2m(x, y) =] [¢*(s) g —j*(s)G] ds (17)

B

exactly obeys Laplace’s equation inside B, but does not obey the
correct boundary conditions. The linear mixed boundary problem may
be solved approximately by choosing functions ¢*(s) and j*(s) which
make ¢ approximately obey the boundary conditions.

To do this, we parameterize ¢* and j* and determine reasonable
values for the parameters. On B, we take

N,
$*(s) = u(s) and j*(s) = kZ ax by(s). (18)
=1
On B: we take
Ny+N,
o*(s) = , g arbi(s) and j*(s) = 0. (19)
=N,+1

The a’s are coefficients to be determined so that the boundary condi-
tions are satisfied as closely as possible. The b, may be any useful set
of functions. We use B-splines." As a basis function for j*, a function
behaving like the inverse square root of distance from the lower end of
each electrode may be used, in addition. Such a term is present in the
primary current, though not in the solution to the nonlinear problem.
Inclusion of this basis function affects the result only very near the
end of the electrode; its inclusion assures that far fewer basis functions
are necessary for good accuracy. This basis function is included in the
sample calculations; its use in the program is optional.

If (x, y) approaches, from inside B, a point at arc length ¢ at a
smooth part of B, it may be shown’ that the 27 in (17) changestoa 7
and the line integral becomes a Cauchy principal value integral. Then
we have

t on By:mu(t) N 3G
Ni+N, _ y
ton Ba:m ): arbi(t) _L‘ kgl @ bi(s) El- ds

k=N+1 2

G N\ +N,
+ j [u(s) ——G ¥ a,,bk(s):l ds, (20)
B an

k=N,+1
1

where the integrals are to be interpreted as Cauchy principal value
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integrals at s = ¢. For any particular point ¢;, this equation reduces to
the form
N\+N,

ri= Y Apax, (21)
k=1

where A;; involves integrals of bx(s), and r; an integral of u(s). Some of
the integrals are singular, and require some care.® Equation (20) cannot
be made to hold for all ¢ on B, since there are only N, + N; a’s. An
approximate solution for the a’s can be found by choosing N; points ¢;,
N; > N, + N, and doing a least-squares fit of the Nj; linear equations
in N, + N: unknowns.

The resulting a:’s give ¢*(s) and j*(s) directly, with no need to
perform any derivatives. An error estimate for ¢ may be obtained by
comparing ¢*(f) and the ¢(¢) obtained from the integral definition,
letting ¢ — B.

In practice, a second integral equation is also used, to improve the
conditioning of the A;; matrix. Details are in Ref. 6.

V. SAMPLE CALCULATIONS

In this section, sample calculations are presented for a typical tank.
Its dimensions are cathode length 46 cm, anode length 46 cm, cathode-
anode separation 16 cm, and total tank depth 84 cm. We use X, = 46
cm. The three major components of the electrolyte are Cu**, H", and
HSOj;. The bulk concentrations are approximately 0.27 molar CuSO4
and 1.7 molar H,SO4. The bulk solution has a concentration of copper
ions of C, = 0.00027 moles/cm®. The bulk conductivity, «, is obtained
using data in Newman' for mobilities, giving k = 0.63(chm—cm) .
Also D = 055 X 10 cm®/s and » = 0.01 X 107 cm?/s. Then the
dimensionless parameters are a, 3, v, 8, Ra, k., and k.. The remaining
material constants are taken to be:'* a. = 1.5, a; = 0.5, and y = 0.42.
Also from Ref. 10, I, = 0.001 amp/cm®. We obtain k. =~ 26 V.* and k.
= 2.5.

Using k. = 260 and ¢. = 30, the first set of sample calculations tested
the dependence of j(x) and ¢(x) on the anode parameters k., and 8.
With k. = 50, values of 8 used were —'%, =%, 0, and +'%; with § = =4,
values of k. used were 10, 50, and 250. As hoped and expected, j(x) and
c(x) at the cathode were quite insensitive to the choices of the anode
parameters k, and §, varying by only a few percent over all the choices
of anode parameters. For the remainder of the sample calculations, &,
=50 and 8§ = —%.

The second set of calculations varied the applied potential, ¢,
keeping k. = 260. Figures 3 and 4 show j(x) and ¢(x), for ¢, = 20, 30,
and 40, as well as their limiting distributions and the primary current
distribution. (In Figure 3, the curve for ¢, = 30 has been omitted; it is
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NORMALIZED DIMENSIONLESS CURRENT

0 05 1.0
NORMALIZED DISTANCE ALONG CATHODE

Fig. 3—Normalized plating thickness distribution on cathode for anode potentials

¢« = 20 and 40. Other parameters are k, = 50, § = —'%, and k. = 260. For comparison, the
primary distribution (P) and the limiting distribution (L) are also shown.
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Fig. 4—Copper concentration on cathode for anode potentials ¢, = 20, 30, and 40.
Other parameters are k, = 50, § = —', and k. = 260.
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Fig. 5—Normalized plating thickness distribution on cathode for k. = 170, 260, and

520. Other parameters are ¢, = 30, k. = 50, and § = —%.
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Fig. 6—Copper concentration on cathode for k. = 170, 260, and 520. Other parameters

are ¢, = 30, k, = 50, and § = —'A.
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almost identical to that for ¢. = 20.) Each j(x) curve has been
normalized to its mean value, to emphasize the shapes of the curves.
The primary current distribution is the current derived from solving
Laplace’s equation with linear boundary conditions, assuming zero
potential drop across the concentration boundary layers. Recall that
J(x) is proportional to the rate of deposition of copper on the cathode,
and therefore is proportional to the plating thickness distribution. As
the applied potential increases, the concentration of copper in solution
at the cathode decreases. This decrease does not significantly change
the shape of the j(x) curve from ¢, = 20 to ¢. = 30. At ¢, = 40, c(x)
becomes quite small near x = 1; the potential between the bulk and
the cathode, 1.(x) + 7.(x), becomes large; and the j(x) curve changes
shape. With still higher applied potential, j(x) becomes less uniform.
A limiting current is defined as the j(x) in (4), which makes ¢(x)
identically zero,

3k, k
AT ~ 0207 5 (22)

x
Since n.(x) is proportional to In c(x), the limiting current requires
infinite applied potential. For Fig. 3, the total currents are approxi-
mately 35, 58, and 79 percent of the total limiting current, for ¢. = 20,
30, and 40, respectively. Practical copperplating usually is done at a

bim(x) =

20

-
o

-
o

NORMALIZED DIMENSIONLESS CURRENT

05 L 1 L 1 | ! 1 L |
0 0.5 1.0

NORMALIZED DISTANCE ALONG CATHODE

Fig. 7—Normalized plating thickness distribution on cathode for anode lengths of 41
cm (S), 46 cm (E), and 51 em (L). Other parameters are ¢, = 30, k, = 50, § = —Y%, and
k. = 260.
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Fig. 8—Copper concentration on cathode for anode lengths of 41 cm (S), 46 cm (E),
and 51 cm (L). Other parameters are ¢, = 30, k., = 50, § = —', and k, = 260.

total current less than one-quarter of the total limiting current. These
elaborate calculations demonstrate that, for these typical copperplat-
ing conditions, the primary current distribution is quite adequate for
predicting the plating thickness distribution. In the remaining calcu-
lations, ¢, = 30 is used.

The third set of calculations varies the cathode parameter k., which
is proportional to the square root of the fluid velocity. Figures 5 and 6
show the results. If k. is too small, the current becomes quite nonuni-
form. For the remaining calculations, k. = 260.

The final set of calculations shows the effect of anode length. Anode
lengths of 41, 46, and 51 cm were used; the cathode length was left at
46 cm. Figures 7 and 8 show the results. With the shorter anode, the
current was within =10 percent over more of the cathode than with a

longer anode.
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APPENDIX
Symbols

a
A,
b,
B
B,
B,

j!im

kﬂ, k(‘, k(‘
L

M

N,

N>

N;

Vx, Vy
Vo
X,y
Xsy Ys
XY
Xo

Hay Hey Y

Unknown coefficient in solution of Laplace’s equation.
Matrix element.

Function in expansion of boundary values.
Boundary of region.

Part of boundary on which ¢ is given.

Part of boundary on which no current flows.
Normalized copper concentration, dimensionless.
Bulk copper concentration, g-mole/cm®,

Coefficients in expansion of overpotential.

Diffusion coefficient, cm?/s.

Velocity field function, s™'.

Faraday’s constant, 96500 coul/g-equivalent.
Fundamental solution to Laplace’s equation.
Exchange current density, A/em’.

Normalized current density, dimensionless.
Normalized current density of /th solution, dimension-
less.

Limiting current distribution, dimensionless.
Dimensionless constants.

Number of coefficients in expansion of overpotential.
Number of fitting points for overpotential expansion.
Number of coefficients in expansion of j on B;.
Number of coefficients in expansion of ¢ on B,.
Number of fitting points in solution of Laplace’s equa-
tion.

Directional derivative, in d¢/dn and aG/on.

Unit vector in outward normal direction.

Matrix element.

Universal gas constant, 8.21 joules/g-mole deg.

Arc length along boundary, dimensionless.

Fitting points on boundary.

Absolute temperature, degrees Kelvin.

Boundary condition for ¢.

Components of fluid velocity, cm/s.

Fluid velocity far from plate, cm/s.

Coordinates, dimensionless.

Coordinates of point at distance s along electrode.
Coordinates, cm.

Normalizing length, cm.

Parameters in reaction rate expression, dimensionless.
Exponent in concentration at anode, dimensionless.
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T Gamma function.
Ne Concentration overpotential, dimensionless.
s Surface overpotential, dimensionless.
K Bulk electrolyte conductivity, (ohm—cm)™".
v Viscosity, cm?/s.
¢, o* Normalized potential, dimensionless.
¢a Anode voltage, dimensionless.
¢:  Potential for Ith solution of Laplace’s equation, dimen-
sionless.
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