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Under the Serving Area Concept, the area served by the central
office is divided into smaller geographical entities known as serving
areas. In response to uncertain demand for service, some cable pairs
can be multipled, i.e., connected to more than one serving area. In
this paper, we develop a stochastic model of the loop plant and
demonstrate that the number of multipled pairs can be reasonably
limited to about 10 to 20 percent of the total number of pairs available.
We also show the robustness of this upper limit.

I. INTRODUCTION

Under the Serving Area Concept (see Bergholm and Koliss' and
Long®), the area served by a central office is divided into smaller
geographical entities of 200 to 600 living units known as serving areas.
Each serving area has an associated terminal box called the interface.
Feeder pairs, i.e., cable pairs from the central office, are terminated on
the in side of the interface. Pairs from the living units are terminated
on the out side of the interface; they are connected to the feeder pairs
by means of jumper wires.

Feeder commitment, i.e., the process of physically connecting feeder
pairs to the interface, is a complex operation. If too small a number of
pairs is committed, frequent rearrangement or addition of cable pairs
will be required. If too many pairs are committed, the pairs may lie
unused for a long time. Thus, forecasting and optimization techniques
are essential in order to economically commit feeder pairs.

However, the uncertainty in forecasting the actual number of pairs
that would be required in each serving area is a major problem in
feeder commitment. The classical response to uncertain demand is to
build flexibility into the feeder plant by means of multipling, i.e., by
allowing some feeder pairs to appear in more than one interface.

67



While multipling builds flexibility into the feeder plant, several
problems are associated with multipling, such as:

(i) Increased complexity of record keeping.

(ii) Need for more terminals on the feeder side of the interface.
(iii) Increased craft activity at the interfaces.
(iv) Increased difficulty in testing, in fault detection, etc.

The advantages of multipling have therefore to be balanced against
the disadvantages to arrive at a suitable level of multipling.

The process of redistributing available feeder pairs is known as
recommitment, and the addition of new feeder pairs is called relief.
The main advantage of multipling is that it decreases the probability
of having to recommit feeder pairs or advance relief because of varia-
tions in customer growth. In this paper, we develop a stochastic model
of the loop plant and use it to quantify this benefit of multipling. By
studying the impact of multipling on the time of next feeder recom-
mitment or relief, we can note where multipling provides diminishing
returns and therefore arrive at reasonable upper limits on the degree
of multipling.

II. SATURATING GROWTH MODEL

Consider two serving areas, sA 1 and sa 2. In SA 1, customers
requesting telephone service arrive according to a Poisson process with
parameter A,. Each such customer, on arrival, say, in sA 1, is provided
with a feeder pair if one is available, using an intelligent assignment
rule, as follows:

(i) A spare dedicated pair is assigned if one is available.

(ii) If not, a spare multipled pair is assigned.

(¢ii) If both (i) and (i) are not possible, we choose a multipled pair
that is in use in sa 2, and transfer the service on this pair to a
spare dedicated pair in sA 2 if one is available. The multipled
pair is thus rendered free and is used in sa 1. If this operation
fails, the customer faces a held order.

The customer holds the feeder pair for a random amount of time called
the occupancy time, which is exponentially distributed with mean Q.
After this time, the customer no longer requires service and the feeder
pair becomes spare. Let the parameters Az and £ denote the mean
arrival rate and the mean occupancy time in sA 2.

Relief would be required if at any time the total demand in the two
serving areas exceeds the total available feeder pairs. Recommitment
(or relief) would be required if the demand in either serving area
exceeds the sum of the number of pairs dedicated to the area and the
number of multipled pairs. We use the expected time to relief or
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recommitment, denoted by E(r), as a criterion for evaluating different
alternatives. The random variable r denotes the actual time of relief
or recommitment.

Let

X1, = number of working pairs in saA 1 at time ¢,
X3 = number of working pairs in sa 2 at time t,

with the initial conditions Xy = Xy = 0. Both X;,; and X., have Poisson
distributions, and the mean value of X;, is A&2i(1 — e %) for i =1, 2.
The expected number of customers in sa 1 and sa 2 increases in time
but soon levels off (saturates) at A,$2; and A\»$., respectively. Thus, this
model has saturating growth behavior.

Each pair committed to sa 1 and sa 2 either can be dedicated to any
one serving area or can be multipled between the two areas. Let (see
Fig. 1)

A, = number of pairs dedicated to sa 1
A2 = number of pairs dedicated to sa 2
M = number of pairs multipled.

Relief or recommitment will not be required before time ¢ (i.e., 7 > t)
if all the following conditions are satisfied for all ¢ € [0, t]:

(1) Xy is less than A, + M, the number of pairs available to sA 1
(if) Xa is less than A, + M, the number of pairs available to sa 2
(1) Xy + Xo, is less than A, + A; + M, the total number of pairs

available to both sa 1 and sa 2.

A, PAIRS
- ]

M PAIRS

A, PAIRS

Fig. 1—Multipling under the serving area concept.
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Thus the probability, @, that relief or recommitment will not be
required before time ¢ can be written as:

X1¢$A1+M;
Q=P[r>t]=P{Xpy< A + M; for all ¢ € [0, £].
X1¢+X2¢-<_A|+A2+M

We approximate this as follows:

XusA +M;

QrzP{thﬁ:-Az‘*'M; (1)
Xu+Xa<A +A:+ M.

This relationship is exact if X\, and X3 are nondecreasing in ¢ and is a

very good approximation if the downward jumps in X, and X, are

small. Procedures for computing @ and E(r) are derived in the

appendix.

To study the effect of multipling on E(7), we let the total number of
feeder pairs allocated to the two serving areas be a fixed number, N.
We also let A; = Az and 2, = 2, so that for any value of M (the number
of multipled pairs), A, and A (the number of dedicated pairs) can both
be set equal to (N — M)/2 to maximize E(r). We can now vary M from
0 to N and compute E(r) for each value of M. The multipling level can
be expressed as a percentage of the total number of feeder pairs:

multipling level = % X 100%.

Figure 2 shows a plot of E(r) vs multipling level for N = 150 pairs, A,
= A; = 100 per year, and 2; = 2, = 1 year. (Unless otherwise specified,
these values of the parameters are used in all the following graphs.)
The plot shows that E(7) increases monotonically with the level of
multipling. However, observe that the increase in E(r) even at 100
percent multipling is small, i.e., about 10 percent. Also, most of this
increase in E(7) is obtained in the first 10 to 20 percent of multipling. -

In addition to E(7), @, is also an important measure of the effective-
ness of multipling. For example, if ¢ is the planned future relief or
recommitment date, then @, is the probability that premature (un-
planned) recommitment or relief work will not be required before that
date.

Figure 3 shows a plot of @ vs multipling level for various values of
t. For all values of ¢, @: increases monotonically with the level of
multipling. Again, most of the increase in the value of @ is obtained
in the first 10 to 20 percent of multipling.

The observations made above indicate that the incremental useful-
ness of multipling, as measured by E(r) and @, decreases rapidly after
the first 10 to 20 percent. Since the problems associated with multipling

70 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1980



E(T)IN YEARS

PROBABILITY THAT T EXCEEDS t YEARS

1.75

[ [ | I I [ T [
1.50 f p—
1.25 — —
1.00 — T
0.75 — ]
Tosof— —
0.25 |— ]
0 | | | | | | | | |
10 20 30 40 50 60 70 80 a0 100
PERCENT LEVEL OF MULTIPLING
Fig. 2—Mean plant life vs level of multipling.
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Fig. 3—Probability that plant life exceeds t years vs level of multipling,
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can be expected to increase with the level of multipling, it appears
reasonable to limit multipling to 10 to 20 percent.

Il. COMMITMENT ERRORS AND MULTIPLING

In the foregoing discussion, we assumed that the growth parameters
A1, Az, ©1, and © are known sufficiently accurately. We also assumed
that A; = Az and £, = ©; so that, for any multipling level, optimal
values of A; and A; can be determined easily. Often these two assump-
tions do not hold, and two types of errors can occur:

(i) Errors in Forecasting: The parameters A;, Az, €1, and ; are not
known accurately enough to determine optimal values of A, and A..

(ii) Errors in Commitment Strategy: Even if the parameters are
known accurately, if A; # Az or € # €2, it is not clear how the optimal
values of A; and A; can be determined, and thus there can be error in
the commitment strategy.

The effect of these two errors is that the values of A, and A; chosen
may not be optimal, resulting in a smaller E(r). The effect of non-
optimal commitment can be studied by varying A and A: at different
levels of multipling and computing E(r) in each case.

Figure 4 shows E(r) plotted vs A,/(A: + A»), the fraction of non-
multipled pairs committed to sa 1, at different levels of multipling.
The plot shows that E(r) is quite sensitive to variations in pair
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E(T)IN YEARS

0% MULTIPLING

| | | | | | | | |
0.1 0.2 0.3 0.4 0.5 06 0.7 0.8 0.9 1.0
Ayl 1A +A)

Fig. 4—Mean plant life vs fraction of pairs committed to sa 1.
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commitments when there is no multipling, but this sensitivity de-
creases remarkably as the level of multipling increases. Thus, multi-
pling provides some “buffering” against commitment errors.

Let A¥ and A be the optimal commitments at a multipling level
M. Also let A, and A, be the actual commitments, which are possibly
different from A} and A# because of the two types of error mentioned
above. We can express the error in pair commitment, e, as

(14T = Al 1Az - 4|
Af Az

Figure 5 shows a plot of E(7) vs multipling level at various values of
e. Here it is assumed that the optimal values A¥ and A¥ follow from
the condition A} = A%. By varying the values of A, and A,, we get
different values of e. From the plot we see that, at high levels of
commitment error, multipling does provide substantial increase in the
value of E(7).

E(r) attains its maximum value, denoted by E,u(7), at 100-percent
multipling. But this value can also be achieved at levels less than 100
percent. Define 0 to be the smallest multipling level at which E(r)
= Ey00(7), and pgo to be the smallest multipling level at which E(r) =
90% of E100(7). The values pi100 0r pgo can be thought of as the maximum
useful multipling level.

) X 100%.
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Fig. 5—Mean plant life vs level of multipling at different error levels.
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Fig. 6—Level of multipling vs commitment error.

Figure 6 shows pi00 and peo plotted against e. Observe that both pi00
and pg increase (approximately) linearly with e. Also note that, to
obtain a 10-percent increase in E(r), the multipling level has to be
increased from peo to o, which is a substantial increase. For error
levels of up to about 40 percent, pgo is less than 15 percent. Thus, even
in the presence of moderate commitment errors, 10 to 20 percent is a
reasonable upper limit in the level of useful multipling.

IV. SENSITIVITY ANALYSIS

To test the robustness of the results presented above, several per-
turbations were made in the model. The results of the sensitivity
analysis are described below.

V. OCCUPANCY TIME DISTRIBUTION

In the original model, we assumed that the occupancy times were
exponentially distributed. One possible perturbation would be to as-
sume different distributions for occupancy times. We consider three
distributions.

The gamma distribution is an excellent choice, and is preferred to
the exponential distribution whenever analytically tractable. The
gamma density has a peak at a positive value and a thicker tail.
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Fig. 7—Mean plant life vs level of multipling for various occupancy time distributions.

A constant occupancy time of one year is also a good choice in
certain areas, such as those which contain a large number of apart-
ments or areas near colleges and universities.

We also consider the uniform distribution (from 0 to 2 years) for the
sake of completeness. Changes in the expressions for @, for these
distributions are discussed in the appendix.

Figure 7 shows plots of E(r) vs multipling level for the four distri-
butions—exponential, gamma, constant, and uniform. Here again we
see the “diminishing returns” nature of multipling independent of the
occupancy time distribution. Note, however, that at any given multi-
pling level E(7) does depend on the distribution chosen.

VI. LINEAR GROWTH

If we let the mean occupancy time become very large, then the
demand for service in the serving area grows linearly, independent of
the occupancy time distribution. Most models of the loop plant assume
linear growth characteristics.

Under the linear growth assumption, both Xi; and X5 (the number
of working pairs in sA 1 and sa 2 at time ¢) increase monotonically in
t, and therefore approximation (1) for €, is exact.

E(7) is plotted against multipling level in Fig. 8. We see that the
linear growth model further confirms the upper limit of 10 to 20
percent,
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Fig. 8—Mean plant life vs level of multipling—linear growth case.

Since approximation (1) is exact in this case, and the results are
identical to the previous cases considered, we conclude that (1) gives
a good approximation for €.

VIl. ALLOCATION

The last perturbation in the model we study is in N, the total
number of feeder pairs allocated to the two serving areas.

Figure 9 shows E(7) plotted against the level of multipling for various
values of N for the saturating growth case with exponential occupancy
time distribution. Observe that E(r) increases rapidly as N increases.
Also, multipling is less effective for small values of N, i.e., when the
feeder pairs are underallocated. The 10- to 20-percent upper limit
holds, again, at all allocation levels.

VIIl. CONCLUSIONS
A probabilistic model of the interfaced loop plant is developed here.
Using this model, the distribution of the time until relief or recommit-
ment can be determined at any arbitrary level of multipling.
. Two objective functions for maximization can be defined:

(i) Expected time until relief or recommitment.
(ii) Probability of no premature relief or recommitment.
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Fig. 9—Maean plant life vs level of multipling at various allocation levels.

For both objectives, we demonstrate the “diminishing returns” nature
of multipling. From this, we conclude that a reasonable upper limit for
multipling between serving areas is in the range 10 to 20 percent.

The results presented here are robust in the sense that the conclu-
sions hold under very general conditions—under different occupancy
time distributions, growth rates, and allocation levels.

Commitment error, which is a result of errors in forecasting or in
commitment strategy, largely determines the level of multipling that
is to be used. This level exceeds 15 percent only under severe error
conditions.
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APPENDIX
A.71 Distributions of X;; and Xz,

Let Gi(-) denote the distribution of the occupancy time and A, be
the Poisson arrival rate in serving area sa 1. Then X,,, the number of
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working pairs in sa 1, can be shown’ to have the Poisson distribution

with mean a, ¢, where
!
1-—-
o = A j ——(—;-(-ﬂdx.
; t

)

Case 1: G, is exponential with mean £, i.e.,
Gi\(t)y=1—¢e""™,

«; is given by
A

@ = __t_ (1 - 8_”9').

Case 2: G, is gamma with mean £, and shape parameter 2, i.e,,

Gi(t)=1-— Qi e (2t + Q).

1
This yields

M )

Case 3: G, is constant at £, i.e.,

0 for t <
G\(t) =

1 for t = ;.

From this, we obtain

A for t <
o) =

b YY)
‘T’ fort = £,.

Case 4: G, is uniform [0, 22,], i.e.,
1

—t— for 0 <t <29,
Gi(t) =

1 fort = 29]
This yields

t
al:{)\l (1-m-]) for 0 < t < 2,

i\% for t = 2Q,

The distributions of X5 for these cases can be similarly derived.
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A.2 Expression for Q,
We have
Q =P{r>t)
XusA + M,

=P{Xuy<A+ M,
Xu+Xu<sAi+ A+ M,

where X, is Poisson-distributed with mean «,t and X, is Poisson-
distributed with mean ast. Conditioning on the event

)(u = k,

we have

A+M Xo< As + M;

Gh = :S I’{;XE: = k}.f’ .
k=0 Xu+k<sA +A+ M.
_ A|E+M efﬂ;!(a]t)k - E e—azt(azt)i

k=0 k! =0 i!

where

O =min(A: + M, A+ A+ M- k).
Computation of €, is now straightforward.

A.3 Mean time till blockage, E(1)

The time till blockage 7 is a positive-valued random variable. There-
fore, we can write

E(r) = J P{r>1t} dt
0

=f Q; dt.

Thus, E(r) can be evaluated using numerical integration methods.
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